2013年中考数学模拟试卷

合集下载

2013年中考数学模拟试题(优质)及答案

2013年中考数学模拟试题(优质)及答案

2 013年中考数学模拟试题(二)时间:100分钟 满分:120分一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个是正确的)1.一个数的相反数是3,则这个数是( )A .-13 B.13C .-3D .32.下列命题中真命题是( ) A .任意两个等边三角形必相似; B .对角线相等的四边形是矩形; C .以40°角为内角的两个等腰三角形必相似;D .一组对边平行,另一组对边相等的四边形是平行四边形3.据中新社北京2010年12月8日电,2010年中国粮食总产量达到546 400 000吨,用科学记数法表示为( )A .5.464×107吨B .5.464×108吨C .5.464×109吨D .5.464×1010吨4.在一个不透明的口袋中,装有5个红球3个白球,它们除颜色外都相同,从中任意摸出一个球,摸到红球的概率为( )A.15B.13C.58D.385.抛物线y =-(a -8)2+2的顶点坐标是( ) A .(2,8) B .(8,2)C .(-8,2)D .(-8,-2)6.若不等式组841,x x x m +<-⎧⎨>⎩的解集是x >3,则m 的取值范围是( )A .m >3B .m ≥3C .m ≤3D .m <37.在平面内有线段AB 和直线l ,点A ,B 到直线l 的距离分别是4 cm,6 cm.则线段AB 的中点C 到直线l 的距离是( )A .1或5B .3或5C .4D .58.正八边形的每个内角为( ) A .12° B .135° C .140° D .144°9.在Rt △ABC 的直角边AC 边上有一动点P (点P 与点A ,C 不重合),过点P 作直线截得的三角形与△ABC 相似,满足条件的直线最多有( )A .1条B .2条C .3条D .4条 10.如图M2-1,在ΔABC 中,∠C =90°,AC =8,AB =10,点P 在AC 上,AP =2,若⊙O 的圆心在线段BP 上,且⊙O 与AB 、AC 都相切,则⊙O 的半径是( )图M2-1A .1 B.54 C.127 D.94二、填空题(本大题共6个小题,每小题4分,共24分) 11.有6个数,它们的平均数是12,再添加一个数5,则这7个数的平均数是____________.12.实数范围内分解因式:x 3-2x =______________.13.已知抛物线y =ax 2+bx +c (a ≠0)经过点(1,2)与(-1,4),则a +c 的值是________. 14.已知菱形ABCD 的边长为6,∠A =60°,如果点P 是菱形内一点,且PB =PD =2 3,那么AP 的长为________.15.已知BD ,CE 是△ABC 的高,直线BD ,CE 相交所成的角中有一个角为50°,则∠BAC 等于________度.16.函数y =12x -4中,自变量x 的取值范围是________.三、解答题(一)(本大题共3小题,每小题5分,共15分) 17.计算:(-2 011)0+-122⎛⎫ ⎪ ⎪⎝⎭+22--2cos60°.18.先化简,再求值:2212442a a a a a a -+⎛⎫- ⎪-+-⎝⎭÷41a ⎛⎫- ⎪⎝⎭,其中a =2- 3.19.已知某开发区有一块四边形的空地ABCD ,如图M2-2所示,现计划在空地上种植草皮,经测量∠A =90°,AB =3 m ,BC =12 m ,CD =13 m ,DA =4 m .若每平方米草皮需要200元,问需要多少投入?图M2-2四、解答题(二)(本大题共3小题,每小题8分,共24分)20.列方程解应用题:A,B两地的距离是80千米,一辆公共汽车从A地驶出3小时后,一辆小汽车也从A地出发,它的速度是公共汽车的3倍.已知小汽车比公共汽车迟20分钟到达B地,求两车的速度.21.在图M2-3的网格图中,每个小正方形的边长均为1个单位,在Rt△ABC中,∠C =90°,AC=3,BC=6.(1)试作出△ABC以A为旋转中心、沿顺时针方向旋转90°后的图形△AB1C1;(2)若点B的坐标为(-4,5),试建立合适的直角坐标系,并写出A、C两点的坐标;(3)作出与△ABC关于原点对称的图形△A2B2C2,并写出A2,B2,C2三点的坐标.22.如图M2-4,ABCD是正方形,点G是BC上的任意一点,DE⊥AG于E,BF∥DE,交AG于F.求证:AF=BF+EF.五、解答题(三)(本大题共3小题,每小题9分,共27分)23.为促进节能减排,倡导节约用电,某市将实行居民生活用电阶梯电价方案.图M2-5中折线反映了每户居民每月用电电费y(单位:元)与用电量x(单位:度)间的函数关系.(1)根据图象,阶梯电价方案分为三个档次,请填写下表:档次第一档第二档第三档每月用电量x度0<x≤140(2)小明家某月用电120度,需交电费________元;(3)求第二档每月电费y(单位:元)与用电量x(单位:度)之间的函数关系;(4)在每月用电量超过230度时,每多用1度电要比第二档多付电费m元,小刚家某月用电290度,缴纳电费153元,求m的值.图M2-524.已知抛物线y=-x2+2(k-1)x+k+2与x轴交于A,B两点,且点A在x轴的负半轴上,点B在x轴的正半轴上.(1)求实数k的取值范围;(2)设OA,OB的长分别为a,b,且a∶b=1∶5,求抛物线的解析式;(3)在(2)的条件下,以AB为直径的⊙D与y轴的正半轴交于P点,过P点作⊙D的切线交x轴于E点,求点E的坐标.25.已知四边形ABCD中,P是对角线BD上的一点,过P作MN∥AD,EF∥CD,分别交AB,CD,AD,BC于点M,N,E,F,设a=PM·PE,b=PN·PF,解答下列问题:(1)当四边形ABCD是矩形时,见图M2-6,请判断a与b的大小关系,并说明理由.(2)当四边形ABCD是平行四边形,且∠A为锐角时,见图M2-7,(1)中的结论是否成立?并说明理由.(3)在(2)的条件下,设BPPD=k,是否存在这样的实数k,使得S平行四边形PEAMS△ABD=49?若存在,请求出满足条件的所有k的值;若不存在,请说明理由.图M2-6图M2-72013年中考数学模拟试题(二)1.C 2.A 3.B 4.C 5.B 6.C 7.A 8.B 9.D 10.A 11.11 12.x (x +2)(x -2) 13.3 14.2 3或4 3 15.50°或130° 16.x ≠2 17.解:原式=1+2+2-2-1=218.解:原式=⎣⎢⎡⎦⎥⎤a -1(a -2)2-a +2a (a -2)÷4-a a=a (a -1)-(a -2)(a +2)a (a -2)2·a 4-a =1(a -2)2. 当a =2-3时,原式=13.19.解:如图D100,连接BD .图D100∵∠A =90°,AB =3 m ,DA =4 m ,∴BD =5 m. ∵BC =12 m ,CD =13 m ,∴∠DBC =90°.∴S ABCD =12×3×4+12×5×12=36(m 2).∴36×200=7 200(元).20.解:设公共汽车的速度为x 千米/小时,则小汽车的速度是3x 千米/小时.依题意,得80x =803x +3-13. 解得x =20千米/小时,经检验x =20是原方程的解,故符合题意. ∴小汽车的速度=3x =60(千米/小时). 21.(1)作图如图D101:图D101(2)坐标轴如图所示,A (-1,-1),C (-4,-1). (3)A 2(1,1),B 2(4,-5),C 2(4,1). 22.证明:DE ⊥AG ,DE ∥BF , ∴BF ⊥AG .又∵ABCD 是正方形,∴AD =AB ,∠ABF =∠EAD .在△ABF 和△AED 中,∵AD =AB ,∠ABF =∠EAD ,∠AED =∠AFB , ∴△AED ≌△ABF (AAS). ∴BF =AE .∴AF =BF +EF 得证. 23.解:(1)如下表:档次 第一档 第二档 第三档每月用电量x 度 140<x ≤230x >230 (2)54元(3)设y 与x 的关系式为y =kx +b .∵点(140,63)和(230,108)在y =kx +b 上, ∴⎩⎪⎨⎪⎧63=140k +b ,108=230k +b . 解得⎩⎪⎨⎪⎧k =0.5,b =-7.∴y 与x 的关系式为y =0.5x -7.(4)第三档中1度电交电费=(153-108)÷(290-230)=0.75(元), 第二档中1度电交电费=(108-63)÷(230-140)=0.5(元), ∴m =0.75-0.5=0.25.24.解:(1)设点A (x 1,0),B (x 2,0)且满足x 1<0<x 2. 由题意可知x 1·x 2=-(k +2)<0,即k >-2.(2)∵a ∶b =1∶5,设OA =a ,即-x 1=a ,则OB =5a ,即x 2=5a ,a >0. ∴⎩⎪⎨⎪⎧ x 1+x 2=-a +5a =4a ,x 1·x 2=-a ·5a =-5a 2.即⎩⎪⎨⎪⎧2(k -1)=4a ,-(k +2)=-5a 2. ∴k =2a +1,即5a 2-2a -3=0,解得a 1=1,a 2=-35(舍去).∴k =3.∴抛物线的解析式为y =-x 2+4x +5.(3)由(2)可知,当-x 2+4x +5=0时,可得x 1=-1,x 2=5. 即A (-1,0),B (5,0).∴AB =6,则点D 的坐标为(2,0). 当PE 是⊙D 的切线时,PE ⊥PD .由Rt △DPO ∽Rt △DEP 可得PD 2=OD ·DE ,即32=2×DE .∴DE =92,故点E 的坐标为⎝⎛⎭⎫-92,0. 25.解:(1)如图D102,∵ABCD 是矩形,MN ∥AD ,EF ∥CD , ∴四边形PEAM .PNCF 也均为矩形. ∴a =PM ·PE =S 矩形PEAM ,b =PN ·PF =S 矩形PNCF . 又∵BD 是对角线,∴△PMB ≌△BFP ,△PDE ≌△DPN ,△DBA ≌△DBC .∵S 矩形PEAM =S △BDA -S △PMB -S △PDE ,S 矩形PNCF =S △DBC -S △BFP -S △DPN , ∴S 矩形PEAM =S 矩形PNCF .∴a =b . (2)成立.理由如下:∵ABCD 是平行四边形,MN ∥AD ,EF ∥CD , ∴四边形PEAM ,PNCF 也均为平行四边形. 模仿(1)可证S 平行四边形PEAM =S 平行四边形PNCF .图D102(3)由(2)可知,S 平行四边形PEAM =AE ·AM sin A , S 平行四边形ABCD =AD ·AB sin A∴S 平行四边形PEAM S △ABD =2S 平行四边形PEAM 2S △ABD =2S 平行四边形PEAM S 平行四边形ABCD=2AE ·AM sin A AD ·AB sin A =2·AE AD ·AM AB . 又∵BP PD =k ,即BP BD =k k +1,PD BD =1k +1,而AE AD =BP BD =k k +1,AM AB =PD BD =1k +1, ∴2×k k +1×1k +1=49,即2k 2-5k +2=0.∴解得k 1=2,k 2=12.故存在实数k =2或12,使得S 平行四边形PEAM S △ABD=49.。

2013年中考数学模拟题(含答案)

2013年中考数学模拟题(含答案)

2013年中考数学模拟题一、选择题(每小题3分,共15分)1.下列运算正确的是 ( )A. x 2·x 3=x 6B. –2x -2=- 14x 2 C.(-x 2)3=x 5 D.-x 2-2x 2=-3x 2 2.在平面直角坐标系中,点P (-1,-1)关于x 轴的对称点在( ) A.第一象限 B. 第二象限C.第三象限D. 第四象限3.某班5位同学的身高(单位:厘米)分别155,160,160,161,169,这组数据中,下列说法错误的是 ( )A.众数是160B.中位数是160C.平均数是161D.方差是24.如图,PA 切⊙O 于A ,∠P=30°,OP =2,则⊙O 的半径的是 ( )A.21B.1C. 2D.45.已知圆锥的母线长为5cm ,底面半径为3cm ,则此圆锥的侧面积为 ( )A. 12πcm 2B. 15πcm 2C. 20πcm 2D. 30πcm 2二、填空题(每小题4分,共20分)6.已知代数式2x 2-x+1的值等于2,则代数式 4x 2-2x+5的值为___________.7.若反比例函数y=- x8的图象经过点(m ,-2m ),则m 的值为___________.8、十字路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,当你抬头看信号灯时,是黄灯的概率是________.9.如图,CD⊥AB,BE⊥AC,请你再添加一个条件:________使ΔABE≌ΔACD。

10.如图,在 RtΔABC中,∠C=90°,AB=4cm,AC=23cm,以B为圆心,以BC为半径作弧交AB于D,则阴影部分的面积是 _____cm2。

三、解答题(每小题6分,共30分)11.有这样一道题:“计算x2-2x+1x2-1÷x-1x2+x-x 的值,其中x=2007”。

甲同学把“x=2007”错抄成“x=2070”,但他的计算结果也是正确的,你说这是怎么回事?12. ,并把解集在数轴上表示出来。

2013中考数学模拟测试卷

2013中考数学模拟测试卷

2013中考数学模拟测试卷一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填在题.前括号内.....【】1. -2的绝对值是A.2 B.-2 C.12- D.2±【】2. 下列计算正确的是A.3x2·4x2=12x2 B.x3·x5=x15 C.x4÷x=x3 D.(x5)2=x7【】3. 某同学在“百度”搜索引擎中输入“魅力南通”,能搜索到与之相关的结果个数约为3930000,这个数用科学记数法表示为A.0.393×107 B.393×104C.39.3×105 D.3.93×106【】4. 若一个多边形的内角和是900°,则这个多边形的边数是A.5 B.6 C.7 D.8【】5. 如图所示,△ABC的顶点是正方形网格的格点,则sin A的值为A.12B.5C.10D.25【】6. 如图,点A、C、B、D分别是⊙O上四点,OA⊥BC,∠AOB=50°则∠ADC的度数为A.20° B.25° C.40° D.50°【】7. 如图所示的工件的主视图是【】8. 某鞋店一天中卖出运动鞋11双,其中各种尺码的鞋的销售量如下表:则这11双鞋的尺码组成的一组数据中,众数和中位数分别是A.24.5,24.5 B.24.5,25 C.25,24.5 D.25,25尺码(cm)23.5 24 24.5 25 25.5销售量(双) 1 2 2 5 1A.B.C.D.(第5题)【 】9. 下列轴对称图形中,只用一把无刻度的直尺不能..画出对称轴的是 A .菱形B .矩形C .等腰梯形D .正五边形【 】10. 如图,已知在Rt△ABC 中,AB =AC =2,在△ABC 内作第一个内接正方形DEFG ;然后取GF 的中点P ,连接PD 、PE ,在△PDE 内作第二个内接正方形HIKJ ;再取线段KJ 的中点Q ,在△QHI 内作第三个内接正方形……依次进行下去,则第n 个内接正方形的边长为A .21()32n ⋅B .221()2n ⋅C .121()32n -⋅ D . 1221()2n -⋅二、填空题:本大题共8小题,每小题3分,共24分.请把最后结果填在题中横线上. 11. 计算:327-= .12. 将一直角三角板与两边平行的纸条如图所示放置,若∠1=53°,则∠2= °. 13. 已知分式21x x -+的值为0,那么x 的值为 . 14. 一个圆锥的母线长为4,侧面积为12π,则这个圆锥的底面圆的半径是 . 15. 如图,函数2y x =和5y ax =+的图象相交于A (m ,3),则不等式25x ax <+的解集 为 .16. 设m ,n 是方程220120x x --=的两个实数根,则2m n +的值为 . 17. 如图,已知正方形ABCD 的边长为2,对角线AC 、BD 相交于点O ,AE 平分∠BAC 交 BD 于点E , 则BE 的长为 . 18. 如图,点A 是双曲线4y x=在第一象限上的一动点,连接AO 并延长交另一分支于点B , 以AB 为斜边作等腰Rt △ABC ,点C 在第二象限,随着点A 的运动,点C 的位置也不断的变化,但始终在一函数图象上运动,则这个函数的解析式为 .A BCD EFGH I K J PQ (第10题)(第6题)OD C B12(第12题)三、解答题:本大题共10小题,共计96分.解答时应写出文字说明、证明过程或演算步骤.19.(本题满分10分) (1)计算:0(3)-+12cos30°-11()5- (2)解方程组:38 53 4 x y x y +=⎧⎨-=⎩①②20.(本题满分8分)化简分式222421444a aa a a -÷--++,并选取一个你认为合适的整数a 代入求值.y AOx(第15题)xBAC(第18题)O y(第17题)OE小敏为了解本市的空气质量情况,从环境监测网随机抽取了若干天的空气质量情况作为样本进行统计,绘制了如图所示的条形统计图和扇形统计图(部分信息未给出).请你根据图中提供的信息,解答下列问题:(1)计算被抽取的天数;(2)请补全条形统计图,并求扇形统计图中表示优的扇形的圆心角度数; (3)请估计该市这一年(365天)达到优和良的总天数.22.(本题满分8分)如图,AB 与⊙O 相切于点C ,OA =OB .(1)如图①,若⊙O 的直径为8cm ,AB =10cm ,求OA 的长(结果保留根号); (2)如图②,OA 、OB 与⊙O 分别交于点D 、E ,连接CD 、CE ,若四边形ODCE 为菱形,求ODOA的值.OA B C 图 ①ADCBOE图 ②本市若干天空气质量情况扇形统计图优良 64%轻微污染轻度污染 中度污染 重度污染轻微 污染 轻度 污染 天数(天)20 15105832311中度 污染 重度污染空气质如图,在边长为1的正方形组成的网格中,△ABC的顶点和O点均在格点上.(1)以点O为位似中心,在网格中将△ABC放大为原来的2倍,得到△A′B′C′;(2)△A′B′C′绕点B′顺时针旋转90°,画出旋转后得到的△A″B′C″,并求边A′B′在旋转过程中扫过的图形面积.24.(本题满分8分)如图,某飞机于空中探测某座山的高度,在点A处飞机的飞行高度是AF=3700米,从飞机上观测山顶目标C的俯角是45°,飞机继续以相同的高度飞行300米到B处,此时观测目标C的俯角是50°,求这座山的高度CD.DF甲、乙两个袋中均装有三张除所标数值外完全相同的卡片,甲袋中的三张卡片上所标有的三个数值为-7,-1,3,乙袋中的三张卡片所标的数值为-2,1,6,先从甲袋中随机取出一张卡片,用x表示取出的卡片上的数值,再从乙袋中随机取出一张卡片,用y 表示取出卡片上的数值.把x、y分别作为点A的横坐标和纵坐标.(1)用列表或画树形图的方法写出点A(x,y)的所有情况;(2)求点A落在直线2上的概率.y x26.(本题满分10分)甲、乙两组同时加工某种零件,乙组工作中有一次停产更换设备,更换设备后,乙组的工作效率是原来的2倍.两组各自加工零件的数量y(件)与时间x(时)的函数图象如图所示.(1)直接写出甲组加工零件的数量y与时间x之间的函数关系式▲;(2)求乙组加工零件总量a的值;(3)甲、乙两组加工出的零件合在一起装箱,每满300件装一箱,零件装箱的时间忽略不计,求经过多长时间恰好装满第1箱?如图,在矩形ABCD中,AB=3,BC=4.动点P从点A出发沿AC向终点C运动,同时动点Q从点B出发沿BA向点A运动,到达A点后立刻以原来的速度沿AB返回.点P,Q运动速度均为每秒1个单位长度,当点P到达点C时停止运动,点Q也同时停止.连结PQ,设运动时间为t(t >0)秒.(1)当点Q从B点向A点运动时(未到达A点),若△APQ∽△ABC,求t的值;(2)伴随着P,Q两点的运动,线段PQ的垂直平分线为直线l.①当直线l经过点A时,射线QP交AD边于点E,求AE的长;②是否存在t的值,使得直线l经过点B?若存在,请求出所有t的值;若不存在,请说明理由.如图,二次函数212y x mx n =-++的图象与y 轴交于点N ,其顶点M 在直线32y x =-上运动,O 为坐标原点. (1)当m =-2时,求点N 的坐标;(2)当△MON 为直角三角形时,求m 、n 的值;(3)已知△ABC 的三个顶点的坐标分别为A (-4,2),B (-4,-3),C (-2,2),当抛物线212y x mx n =-++在对称轴左侧的部分与△ABC 的三边有公共点时,求m的取值范围.(第2问图)。

2013年数学中考模拟试题及答案

2013年数学中考模拟试题及答案

2013年中考数学模拟试题一、选择题:本大题共8小题,在每小题给出的四个选项中,只有一项是正确的,请把正确选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记零分. 1.- 13的倒数是A .-3B .3C .- 13D .132.下列各式运算中,正确的是A .222()a b a b +=+ B3=C .3412a a a ⋅=D .)0(6)3(22≠=a a a3.下列几何体中,主视图、左视图、俯视图完全相同的是 A. 圆柱 B. 圆锥 C. 球 D. 棱锥 4.下列说法正确的是A .买一张福利彩票一定中奖,是必然事件.B .买一张福利彩票一定中奖,是不可能事件.C .抛掷一个正方体骰子,点数为奇数的概率是13. D .一组数据:1,7,3,5,3的众数是3. 5.函数y =中自变量的取值范围在数轴上表示为6.在□ABCD 中,点E 为AD 的中点,连接BE ,交AC 于点F ,则=CFAFA .1:2B .1:3C .2:3D .2:5第7题图7.如图,在△ABC 中,AB = AC ,AB = 8,BC = 12以AB 、AC 为直径作半圆,则图中阴影部分的面积是A.64π-B .1632π-C.16π-.16π-8.如图,点P 按A →B →C →M 的顺序在边长为1的正方形边上运动,M 是CD 边上的中点。

设点P 经过的路程x 为自变量,△APM 的面积为y ,则函数y 的大致图像是二、填空题:本大题共8小题,共32分,只要求填写最后结果,每小题填对得4分. 9.我国公安部交管局公布的数据显示,截至2012年初,全国机动私家车保有量达0.195亿辆,将0.195亿辆用科学记数法表示应是 辆(结果保留2个有效数字) 10.分解因式:=+-y xy y x 22 。

11.= . 12.如果圆锥的底面周长为20πcm ,侧面展开后所得的扇形的圆心角是120º,则该圆锥的侧面积是___________.(结果保留π) 13.如图,直线a ∥b ,l 与a 、b 交于E 、F 点,PF 平分∠EFD 交a 于P 点,若∠1 = 70︒,则∠2 = . 14.已知n 是正整数,n P (n x ,n y )是反比例函数xky =图象上的一列点,其中1x 1=,21F E DblPa2x 2=,…,n x n =,记211y x T =,322y x T =,…,1099y x T =;若1T 1=,则921T T T ⋅⋅⋅⋅⋅⋅的值是_________;15.如图,在等边△ABC 中,9=AC ,点O 在AC 上,且3=AO ,点P 是AB 上一动点,连接OP ,以O 为圆心,OP 长为半径画弧交BC 于点D , 连接PD ,如果PD PO =,那么AP 的长是 .16.如图,n +1个边长为2的等边三角形有一条边在同一直线上,设211B D C ∆的面积为1S ,322B D C ∆的面积为2S ,……,1n n n B D C +∆的面积为n S ,则n S = (用含n 的式子表示).三、解答题:本大题共7小题,共64分.解答要写出必要的文字说明、证明过程或演算步骤.17.化简求值 (本题满分6分) 。

2013年中考数学模拟试卷(含答案)

2013年中考数学模拟试卷(含答案)

数学试题 第1页(共4页)2013年初中毕业生学业水平调研测试数 学本试卷共4页,22小题,满分120分,考试时间100分钟. 注意事项:⒈ 答卷前,考生务必用黑色字迹的签字笔或钢笔在答题卡填写自己的姓名、考生号等,用2B 铅笔把对应号码的标号涂黑.⒉ 选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试题上.⒊ 非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.⒋ 考生务必保持答题卡整洁.考试结束时,将答卷和答题卡一并交回.一、选择题(本大题5小题,每小题3分,共15分)在每小题给出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑. 1.31的相反数是A .31 B .31-C .3D .3-2.下列算式正确的是A .632a a a =+B .532a a a =+C .632a a a =⋅D .532a a a =⋅ 3.如图1是一个底面水平放置的圆柱,它的左视图是A .B .C .D .4.菱形ABCD 的对角线长为分别32=AC ,2=BD ,则菱形的内角=∠BAD A .o30 B .o60 C .o120 D .o1505.袋中有2个红球和4个白球,它们除颜色上的区别外其他都相同.从袋中随机地取出一个球,取到红球的概率是 A .61 B .32 C .31 D .21二、填空题(本大题5小题,每小题4分,共20分)请将下列各题的正确答案填写在答题卡相应的位置上. 6.据统计,某市2011年有初中毕业生约53600人.试用科学计数法表示=53600 .数学试题 第2页(共4页)7.在2012年“植树节”义务植树活动中,某校九年级5个班植树的颗数分别为16、20、15、21、18,则这组数据的平均数是 . 8.若点)213, 12(-+m m P 在第四象限,则常数m 的取值范围是 .9.如图2,⊙O 的半径5=R ,13=PO ,过P 作⊙O 的切线,切点为A ,则=PA . 10.观察下列连等式:⑴21)1(1)1)(1(x x x x x x -=-+-=+-⑵222)1(1])1)[(1()1)(1(x x x x x x x x -+-=++-=++-⑶43332321)1(1])1)[(1()1)(1(x x x x x x x x x x x x -=-+-=+++-=+++- 依此下去,第四个连等式为: . 三、解答题㈠(本大题5小题,每小题6分,共30分) 11.计算:o145cos 2)21( |22|)13( +---+--.12.先化简,再求值:xx x xx 1121222+++÷+,其中3=x .13.如图3,E 、F 分别是平行四边形ABCD 的边AD 、BC 的中点.⑴求证:DF BE =;⑵直接写出直线BE 与DF 的位置关系(不需要证明.....).14.如图4,在边长为 1 个单位长度的正方形方格纸中建立直角坐标系,坐标轴都在格线上.已知ABC ∆各顶点的坐标为)0 , 1(-A 、)3 , 4(-B 、)1 , 5(-C . ⑴画出ABC ∆关于y 轴对称的///C B A ∆;⑵写出点/B 的坐标,并直接写出//A ABB 是怎样的特殊四边形(不需要证明.....).AB CDEF15.如图5,反比例函数xky=的部分图象与直线xy-=1交点A的横坐标为2-.⑴试确定k的值;⑵当31<≤x时,求反比例函数y的取值范围.四、解答题㈡(本大题4小题,每小题7分,共28分)16.去冬今春,我国西南地区遭遇历史上罕见的旱灾,武警某部接到了限期打30口水井的作业任务,部队官兵到达灾区后,目睹灾情心急如焚,他们增派机械车辆,争分夺秒,每天比原计划多打3口井,结果提前5天完成任务,求原计划每天打多少口井?17.开展阳光体育运动后,体育老师为了解九年级360名男生的身体素质状况,在九年级随机抽取50位男生进行100米跑测试,以测试数据为样本,绘制出如下的频数分布表和频数分布直方图(均未完成):请根据图表数据解答下列问题:⑴求频数分布表中a的值,并把频数分布直方图补充完整;⑵这个样本数据的中位数落在第组(直接填写结果,不必写出求解过程);⑶若九年级男生100米跑的时间小于3.14秒为优秀,根据以上图表,估计九年级全级大约有多少名男生达到优秀?18.如图6,已知ABD∆和ACE∆都是等边三角形,CD、BE相交于点F.⑴求证:ABE∆≌ADC∆;⑵ABE∆可由ADC∆经过怎样的旋转变换得到?数学试题第3页(共4页)数学试题 第4页(共4页)19.为美化环境,建设绿色校园,学校计划铺设一块面积为230m 的等腰三角形绿地,已知等腰三角形一边长为m 10,且顶角是锐角,试求这块等腰三角形绿地另外两边的长.五、解答题㈢(本大题3小题,每小题9分,共27分)20.如图7,B 是线段AD 上一点,ABC ∆和BDE ∆都是等边三角形,⊙O 是ABC ∆的外接圆.CE 与⊙O 相交于G ,CE 的延长线与AD 的延长线相交于F . ⑴求证:BCF ∆∽DEF ∆; ⑵求证:BE 是⊙O 的切线; ⑶若21=BCDE ,求CGEG .21.某商场销售一批进价为16元的日用品,为了获得更多利润,商场需要确定适当的销售价格.调查发现:若按每件20元销售,每月能卖出360件;若按每件25元销售,每月能卖出210件.假定每月销售量y (件)是销售价格x (元/件)的一次函数. ⑴试求y 与x 之间的函数关系式;⑵销售价格定为多少时,商场每月获得的利润最大?每月的最大利润是多少?22.如图8,在平面直角坐标系xOy 中,二次函数542++-=x x y 的图象交x 轴于点A 、B ,交y 轴于点C ,顶点为P ,点M 是x 轴上的动点. ⑴求MB MA +的最小值; ⑵求MC MP -的最大值;⑶当M 在x 轴的正半轴(不包含坐标原点)上运动时, 以CP 、CM 为邻边作平行四边形PCMD .PCMD 能否 为矩形?若能,求M 点的坐标;若不能,简要说明理由.(参考公式:二次函数c bx ax y ++=2图象的顶点坐标是)44, 2(2ab ac ab --)数学试题 第5页(共4页)评分参考一、选择题 BDABC二、填空题 6.41036.5⨯ 7.18 8.3121<<-m 9.1210.5444324321)1(1])1)[(1()1)(1(x x x x x x x x x x x x x x -=-+-=++++-=++++-三、解答题㈠ 11.原式222)2( )22(1⨯+---+=……4分(每项1分) 5=……6分12.原式xx x x 1)1()1(22++⨯+=……2分, xx xxx 321)1(2+=++=……4分,3=x 时,原式332+=……5分, 32+=……6分.13.⑴(方法一)ABCD 是平行四边形,所以BC AD //,且BC AD =……2分,因为E 、F 分别的边AD 、BC 的中点.所以BF ED =……3分,所以DEBF 是平行四边形……4分,所以DF BE =……5分.(方法二)ABCD 是平行四边形,所以CD AB =,BC AD =且C A ∠=∠……2分,因为E 、F 分别的边AD 、BC 的中点.所以CF AE =……3分,所以CDF ABE ∆≅∆……4分,所以DF BE =……5分.⑵DF BE //……6分.14.⑴正确画图……3分,正确写出顶点/A 、/B 、/C ……4分⑵)3 , 4(/B ……5分;//A ABB 是等腰梯形……6分.15.⑴2-=x 时,31=-=x y ……1分,所以632-=⨯-=k ……2分.⑵1=x 时,反比例函数的值616-=-==x k y ……3分;3=x 时,236-=-==x k y……4分.所以,31<≤x 时,反比例函数的取值范围为26-<≤-y ……6分.数学试题 第6页(共4页)ABCADB CD四、解答题㈡16.设原计划每天打x 口井……1分,由题意得:533030=+-x x ……3分去分母,整理得01832=-+x x ……4分, 解得31=x ,62-=x …… 5分,经检验,31=x ,62-=x 都是原方程的根,但62-=x 不合题意,舍去……6分 答(略)……7分.17.⑴503122043=+++++a ……1分,所以8=a ……2分,画图……3分⑵4……5分⑶估计九年级达到优秀的男生大约有36050843⨯++……6分,108=(名)……7分.18.⑴因为A B D ∆和ACE ∆都是等边三角形,所以AE AC =,AB AD =……2分,60=∠=∠CAE BAD ……3分,BAC BAE DAC ∠+=∠=∠060……4分,所以ABE ∆≌ADC ∆……5分.⑵ABE ∆可由ADC ∆逆时针旋转060得到……7分.19.如图,等腰三角形ABC ∆,AC AB =,面积为230m若底边长m BC 10=(如左图),作BC AD ⊥,垂足为D ,由3021=⨯⨯=BC AD S 得6=AD ……1分,因为ABC ∆是等腰三角形,所以521=⨯=BC BD ……2分,所以61==AC AB ……3分若腰长m AC AB 10==(如右图),作AC BD ⊥,垂足为D ,由3021=⨯⨯=BD AC S 得6=BD ……4分,所以822=-=BDABAD ……5分,所以2=CD ,10222=+=BDCDBC ……6分所以,这块等腰三角形绿地另外两边的长为m 61、m 61或m 10、m 102……7分.数学试题 第7页(共4页)五、解答题㈢20.⑴ABC ∆和BDE ∆都是等边三角形,所以060=∠=∠BDE ABC ,所以DE BC //……1分,所以DEF BCF ∠=∠,又因为F F ∠=∠,所以BCF ∆∽DEF ∆……2分 ⑵连接OB ,依题意得,OB 是ABC ∠的平分线,03021=∠=∠ABC ABO ……3分,90)(180=∠+∠-=∠DBE ABO EBO ……4分,所以BE OB ⊥,BE 是⊙O 的切线……5分⑶由⑴DE BC //得21==BCDE BFDF ,所以DE DB DF ==,所以030=∠=∠=∠BCE DEF F ……6分,连接OC 、OG ,与⑵同理得030=∠OCB ,所以060=∠OCG ,从而060=∠COG ,3021=∠=∠COG CBG ……7分,在EBC ∆中,030=∠BCE ,060=∠CBE ,090=∠CEB ,所以BE CE 3=,同理在EBG ∆中,000303060=-=∠EBG ,090=∠GEB ,所以BE EG 33=……8分,所以EG CE 3=,从而21=CGEG ……9分.21.⑴依题意,设b kx y +=……1分,则⎩⎨⎧=+=+2102536020b k b k ……2分,解得⎩⎨⎧=-=96030b k (3)分,所以96030+-=x y ,3216≤≤x (不写x 的取值范围不扣分)……4分.⑵商场每月获利)16)(96030(-+-=x x w ……6分,153601440302-+-=x x ……7分,1920)24(302+--=x ……8分,所以,当24=x 时w 有最大值,最大值是1920元。

2013届中考数学模拟试题(含答案)

2013届中考数学模拟试题(含答案)

2013届中考数学模拟试题(含答案)一、选择题本大题共8小题,每小题3分,共24分.1.一元二次方程x(x-2)=2-x的根是()A.-1B.2C.1和2D.-1和22.下列各式中,正确的是()A.(-3)2=-3B.-32=-3C.(±3)2=±3D.32=±33.如图,菱形ABCD的周长是16,∠A=60°,则对角线BD的长度为() A.2B.23C.4D.434.已知二次函数y=ax2+bx+c(a≠0)的图象如图,则下列结论中正确的是()A.a>0B.当x>1时,y随x的增大而增大C.c<0D.3是方程ax2+bx+c=0的一个根5.如图,⊙O的弦AB=8,M是AB的中点,且OM=3,则⊙O的半径等于()A.8B.4C.10D.56.下面是甲、乙两人10次射击成绩(环数)的条形统计图,则下列说法正确的是()A.甲比乙的成绩稳定B.乙比甲的成绩稳定C.甲、乙两人的成绩一样稳定D.无法确定谁的成绩更稳定7.已知二次函数的图象(-0.7≤x≤2)如右图所示.关于该函数在所给自变量x的取值范围内,下列说法正确的是()A.有最小值1,有最大值2B.有最小值-1,有最大值1C.有最小值-1,有最大值2D.有最小值-1,无最大值8.如右图,正五边形ABCDE中,对角线AC、AD与BE分别相交于点N、M.下列结论错误的是()A.四边形NCDE是菱形B.四边形MNCD是等腰梯形C.△AEM与△CBN相似D.△AEN与△EDM全等二、填空题本大题共10小题,每小题3分,共30分.9.已知一组数据:4,-1,5,9,7,6,7,则这组数据的极差是. 10.如图,□ABCD中,∠A=120°,则∠1=°.11.如图,河堤横断面迎水坡AB的坡比是1:3,则坡角∠A=°.12.如图,AB为⊙O的直径,PD切⊙O于点C,交AB的延长线于D,且CO=CD,则∠PCA=°.13.某校九年级学生毕业时,每个同学都将自己的相片向全班其他同学各送一张作纪念,全班共送了2070张相片.若全班有x名学生,根据题意,列出方程为.14.如图,△ABC中,AB=AC=13,BC=10,D为BC中点,DE⊥AB于E,则DE=.15.如图,梯形ABCD中,AB∥DC,AD=DC=CB,若∠ABD=30°,则sin∠BAD=.16.如图,在△ABC中,∠C=120°,AB=4cm,两等圆⊙A与⊙B外切,则图中两个扇形(即阴影部分)的面积之和为cm2(结果保留π).17.如图,已知抛物线y=x2+bx+c经过点(0,-3),请你确定一个b的值,使该抛物线与x轴的一个交点在(1,0)和(3,0)之间.你所确定的b的值是(写出一个值即可).18.边长为2的两种正方形卡片如上图①所示,卡片中的扇形半径均为2.图②是交替摆放A、B两种卡片得到的图案.若摆放这个图案共用两种卡片21张,则这个图案中阴影部分图形的面积和为(结果保留π).三、解答题19.(本题满分8分)(1)计算:(3+6)(2-1)-3tan30°-2cos45°. (2)已知关于x的方程kx2=2(1-k)x-k有两个实数根,求k的取值范围. 20.(本题满分8分)如图,已知E、F分别是□ABCD的边BC、AD上的点,且BE=DF.(1)求证:四边形AECF是平行四边形;(2)若BC=10,∠BAC=90°,且四边形AECF是菱形,求BE的长.21.(本题满分8分)某校初三所有学生参加2011年初中毕业英语口语、听力自动化考试,现从中随机抽取了部分学生的考试成绩,进行统计后分为A、B、C、D四个等级,并将统计结果绘制成如下的统计图.请你结合图中所提供的信息,解答下列问题:(说明:A级:25分~30分;B级:20分~24分;C级:15分~19分;D 级:15分以下)(1)请把条形统计图补充完整;(2)扇形统计图中D级所占的百分比是;(3)扇形统计图中A级所在的扇形的圆心角度数是;(4)若该校初三共有850名学生,试估计该年级A级和B级的学生共约为多少人.22.(本题满分8分)在不透明的口袋中,有四只形状、大小、质地完全相同的小球,四只小球上分别标有数字12,2,4,-13.小明先从盒子里随机取出一只小球(不放回),记下数字作为平面直角坐标系内点的横坐标;再由小华随机取出一只小球,记下数字作为平面直角坐标系内点的纵坐标.(1)用列表法或画树状图,表示所有这些点的坐标;(2)小刚为小明、小华两人设计了一个游戏:当上述(1)中的点在正比例函数y=x图象上方时小明获胜,否则小华获胜.你认为这个游戏公平吗?请说明理由.23.(本题满分10分)小鹏学完解直角三角形知识后,给同桌小艳出了一道题:“如图所示,把一张长方形卡片ABCD放在每格宽度为12mm 的横格纸中,恰好四个顶点都在横格线上,已知∠α=36°,求长方形卡片的周长.”请你帮小艳解答这道题.(结果精确到1mm)24.(本题满分10分)如图,已知抛物线y=ax2+bx+c(a≠0)与x轴相交于点A(-2,0)和点B,与y轴相交于点C,顶点D(1,-92).(1)求抛物线对应的函数关系式;(2)求四边形ACDB的面积;(3)若平移(1)中的抛物线,使平移后的抛物线与坐标轴仅有两个交点,请直接写出一个平移后的抛物线的关系式.25.(本题满分10分)如图,AB是⊙O的直径,点A、C、D在⊙O上,过D作PF∥AC交⊙O于F、交AB于E,且∠BPF=∠ADC.(1)判断直线BP和⊙O的位置关系,并说明你的理由;(2)当⊙O的半径为5,AC=2,BE=1时,求BP的长.26.(本题满分10分)某专买店购进一批新型计算器,每只进价12元,售价20元.多买优惠:凡一次买10只以上的,每多买一只,所买的全部计算器每只就降低0.10元.例如:某人买20只计算器,于是每只降价0.10×(20-10)=1(元),因此,所买的全部20只计算器都按每只19元的价格购买.设一次性购买计算器为x只,所获利润为y元.(1)若该专卖店在确保不亏本的前提下进行优惠销售,试求y与x(x >10)之间的函数关系式,并写出自变量x的取值范围;(2)若该专买店想获得200元的销售利润,又想让消费者多获得实惠,应将每只售价定为多少元?(3)某天,顾客甲买了42只新型计算器,顾客乙买了52只新型计算器,店主却发现卖42只赚的钱反而比卖52只赚的钱多,你能用数学知识解释这一现象吗?27.(本题满分12分)如图,△AEF中,∠EAF=45°,AG⊥EF于点G,现将△AEG沿AE折叠得到△AEB,将△AFG沿AF折叠得到△AFD,延长BE和DF相交于点C.(1)求证:四边形ABCD是正方形;(2)连接BD分别交AE、AF于点M、N,将△ABM绕点A逆时针旋转,使AB与AD重合,得到△ADH,试判断线段MN、ND、DH之间的数量关系,并说明理由.(3)若EG=4,GF=6,BM=32,求AG、MN的长.28.(本题满分12分)如图a,在平面直角坐标系中,A(0,6),B(4,0).(1)按要求画图:在图a中,以原点O为位似中心,按比例尺1:2,将△AOB缩小,得到△DOC,使△AOB与△DOC在原点O的两侧;并写出点A的对应点D的坐标为,点B的对应点C的坐标为;(2)已知某抛物线经过B、C、D三点,求该抛物线的函数关系式,并画出大致图象;(3)连接DB,若点P在CB上,从点C向点B以每秒1个单位运动,点Q在BD上,从点B向点D以每秒1个单位运动,若P、Q两点同时分别从点C、点B点出发,经过t秒,当t为何值时,△BPQ是等腰三角形?九年级数学参考答案及评分说明一、选择题1~4DBCD5~8DBCC三、解答题19.(1)原式=3-3×33-2×22……3分=3-3-1=-1.……4分(2)原方程可化为kx2-2(1-k)x+k=0,b2-4ac=4-8k,……2分∵方程有两个实数根,∴b2-4ac≥0,即4-8k≥0,∴k≤1/2.……3分∵k≠0,∴k的取值范围是k≤1/2,且k≠0.……4分20.证:(1)由□ABCD,得AD=BC,AD∥BC.……2分由BE=DF,得AF=CE,∴AF=CE,AF∥CE.……3分∴四边形AECF是平行四边形;……4分(2)由菱形AECF,得AE=EC,∴∠EAC=∠ACE.……5分由∠BAC=90°,得∠BAE=∠B,∴AE=EB.……7分∴BE=AE=EC,BE=5.……8分21.(1)右图所示;……2分(2)10%;……4分(3)72°;……6分(4)561.……8分22.(1)用表格列出这些点所有可能出现的结果如下:……4分1/224-1/31/2(1/2,2)(1/2,4)(1/2,-1/3)2(2,1/2)(2,4)(2,-1/3)4(4,1/2)(4,2)(4,-1/3)-1/3(-1/3,1/2)(-1/3,2)(-1/3,4)(2)在正比例函数y=x图象上方的点有:(1/2,2)、(1/2,4)、(2,4)、(-1/3,1/2)、(-1/3,2)、(-1/3,4).……6分∴P(小明获胜)=1/2,P(小华获胜)=1/2.∴这个游戏是公平的.……8分23.解:作BE⊥l于点E,DF⊥l于点F.……2分∵∠α+∠DAF=180°-∠BAD=180°-90°=90°,∠ADF+∠DAF=90°,∴∠ADF=∠α=36°.根据题意,得BE=24mm,DF=48mm.……4分在Rt△ABE中,sinα=BE/AB,∴AB=BE/sin36°=40(mm).……6分在Rt△ADF中,cos∠ADF=DF/AD,∴AD=DF/COS36°=60(mm).8分∴矩形ABCD的周长=2(40+60)=200(mm).……10分24.(1)设二次函数为y=a(x-1)2-9/2,……1分求得,a=1/2,……3分∴y=1/2(x-1)2-9/2.……4分(2)令y=0,得x1=-2,x2=4,∴B(4,0),……6分令x=0,得y=-4,∴C(0,-4),……7分S四边形ACDB=15.∴四边形ACDB的面积为15.……8分(3)如:向上平移9/2个单位,y=1/2(x-1)2;向上平移4个单位,y=1/2(x-1)2-1/2;向右平移2个单位,y=1/2(x-3)2-9/2;向左平移4个单位y=1/2(x+3)2-9/2.(写出一种情况即可).……10分25.(1)直线BP和⊙O相切.……1分理由:连接BC,∵AB是⊙O直径,∴∠ACB=90°.……2分∵PF∥AC,∴BC⊥PF,则∠PBH+∠BPF=90°.……3分∵∠BPF=∠ADC,∠ADC=∠ABC,得AB⊥BP,……4分所以直线BP和⊙O相切.……5分(2)由已知,得∠ACB=90°,∵AC=2,AB=25,∴BC=4.……6分∵∠BPF=∠ADC,∠ADC=∠ABC,∴∠BPF=∠ABC,由(1),得∠ABP=∠ACB=90°,∴△ACB∽△EBP,……8分∴ACBE=BCBP,解得BP=2.即BP的长为2.……10分当x=50时,20-(50—10)×0.1=16(元),当x=40时,20-(40—10)×0.1=17(元).……6分∵16<17,∴应将每只售价定为16元.……7分(3)y=-0.1x2+9x=-0.1(x-45)2+202.5.①当10<x≤45时,y随x的增大而增大,即当卖的只数越多时,利润更大.②当45<x≤90时,y随x的增大而减小,即当卖的只数越多时,利润变小.且当x=42时,y1=201.6元,当x=52时,y2=197.6元.……9分∴y1>y2.即出现了卖46只赚的钱比卖50只嫌的钱多的现象. (10)分27.(1)由∠BAD=∠ABC=∠ADC=90°,得矩形ABCD,……2分由AB=AD,得四边形ABCD是正方形.……3分(2)MN2=ND2+DH2.……4分理由:连接NH,由△ABM≌△ADH,得AM=AH,BM=DH,∠ADH=∠ABD=45°,∴∠NDH=90°,……6分再证△AMN≌△AHN,得MN=NH,……7分∴MN2=ND2+DH2.……8分(3)设AG=x,则EC=x-4,CF=x-6,由Rt△ECF,得(x-4)2+(x-6)2=100,x1=12,x2=-2(舍去)∴AG=12.……10分由AG=AB=AD=12,得BD=122,∴MD=92,设NH=y,由Rt△NHD,得y2=(92-y)2+(32)2,y=52,即MN=52.……12分28.(1)画图1分;C(-2,0),D(0,-3).……3分(2)∵C(-2,0),B(4,0).设抛物线y=a(x+2)(x-4),将D(0,-3)代入,得a=3/8.……5分∴y=3/8(x+2)(x-4),即y=3/8x2-3/4x-3.……6分大致图象如图所示.……7分(3)设经过ts,△BPQ为等腰三角形,此时CP=t,BQ=t,∴BP=6-t.∵OD=3,OB=4,∴BD=5.①若PQ=PB,过P作PH⊥BD于H,则BH=1/2BQ=1/2t,由△BHP∽△BOD,得BH:BO=BP:BD,∴t=48/13s.……9分②若QP=QB,过Q作QG⊥BC于G,BG=1/2(6-t).由△BGQ∽△BOD,得BG:BO=BQ:BD,∴t=30/13s.……10分③若BP=BQ,则6-t=t,t=3s.……11分∴当t=48/13s或30/13s或3s时,△BPQ为等腰三角形.……12分。

2013年中考模拟数学试卷数学答案

2013年中考模拟数学试卷数学答案
(2)由全等及三线合一得AO⊥BC,(5分)
∴∠DBC=∠BAO,∵BD是直径,∴∠BCD=∠ABO=90°,
∴△BDC∽△AOB,(6分)∴ , (7分)
22.(1)设A组的频数是x,那么B组的频数为5x,那么x+5x=12,x=2,(2分)
12÷(1-40%-28%-8%)=50(4分)
(2) (7分)(3)(28%+8%)×500=180(户)(9分)
(2)S1=4m-4(m-4)=16,(5分)
S2=S梯形AECD-S△CEEF= =16,∴S1=S2(8分)
(求S2时也可以将两个三角形的面积一一求出,再求差)
.(3)∵△AEG与△FDG面积和为24,差为16,∴△AEG的面积=20(10分)
∴ ,∴AG=10,∵△FDG∽△FCE,∴ ,
m1=12,m2=6(舍去),∴tan∠BAE= (12分)
∴ ,即
∴ 或 .(14分)
19.解:原式= (4分)= (6分)
20. → (2分)→
→ (5分)→经检验,原方程的解是 (7分)
21.解:(1)证明:连结OC,
∵OB=OC,AB=AC,OA=OA,∴△ABO≌△ACO,(2分)
∴∠ABO=∠ACO,∵AC是切线,∴∠ACO=90°,
∴∠ABO=90°,∴AB是⊙O的切线.(4分)
26.(1)第一条抛物线的解析式是 (3分)
(2)第n个三角形的面积是 ,当n=1,2,5时为整数(6分)
(3)设第n条抛物线的解析式为 ,(7分)
又∵过点 ∴ ,设 ,∴
= ,∴
,n=2.(10分)
(4)作第m个三角形和第n个三角形底边上的高AmC和AnD,
∵顶角互补,∴底角互余.即△AmCBm-1∽△AnDBn-1.

2013年中考数学模拟试卷及答案

2013年中考数学模拟试卷及答案

2013年第一次升学模拟考试数学试卷亲爱的同学:欢迎参加考试!请你认真审题,积极思考,细心答题,发挥最佳水平。

答题时,请注意以下几点:1.全卷共4页,有三大题,24小题。

全卷满分150分。

考试时间120分钟。

2.答案必须写在答题纸相应的位置上,写在试题卷、草稿纸上均无效。

3.参考公式:抛物线y=ax²+bx+c(c≠0)的顶点坐标是(24,24b ac ba a--)祝你成功!一、选择题(共10小题,每小题4分,满分40分)1.如图,数轴上表示数﹣2的相反数的点是()A.点P B.点Q C.点M D.点N2.某校羽毛球训练队共有8名队员,他们的年龄(单位:岁)分別为:12,13,13,14,12,13,15,13,则他们年龄的众数为()A.12 B.13 C.14 D.153.中央电视台有一个非常受欢迎的娱乐节目:墙来了!选手需按墙上的空洞造型摆出相同姿势,才能穿墙而过,否则会被墙推入水池.类似地,有一个几何体恰好无缝隙地以三个不同形状的“姿势”穿过“墙”上的三个空洞,则该几何体为()A. B. C.D.4.在下列四组点中,可以在同一个正比例函数图象上的一组点是()A.(2,﹣3),(﹣4,6) B.(﹣2,3),(4,6)C.(﹣2,﹣3),(4,﹣6) D.(2,3),(﹣4,6)5. a4b﹣6a3b+9a2b分解因式得正确结果为()A.a2b(a2﹣6a+9) B.a2b(a﹣3)(a+3)C.b(a2﹣3)2 D.a2b(a﹣3)26.下列调查:①调查一批灯泡的使用寿命;②调查全班同学的身高;③调查市场上某种食品的色素含量是否符合国家标准;④企业招聘,对应聘人员进行面试.其中符合用抽样调查的是()A.①②B.①③C.②④D.②③7. 2012年7月27日国际奥委会的会旗将在伦敦上空升起,会旗上的图案由五个圆环组成.如图,在这个图案中反映出的两圆的位置关系有()A.内切、相交 B.外离、内切 C.外切、外离 D.外离、相交8.下列命题中,假命题是()A.平行四边形是中心对称图形B.三角形三边的垂直平分线相交于一点,这点到三角形三个顶点的距离相等C.对于简单的随机样本,可以用样本的方差去估计总体的方差D.若x2=y2,则x=y9.小颖家离学校1200米,其中有一段为上坡路,另一段为下坡路.她去学校共用了16分钟.假设小颖上坡路的平均速度是3千米/时,下坡路的平均速度是5千米/时.若设小颖上坡用了x分钟,下坡用了y分钟,根据题意可列方程组为()A.B. C. D.10.已知二次函数y=ax2+bx+c的图象如图所示,它与x轴的两个交点分别为(﹣1,0),(3,0).对于下列命题:①b﹣2a=0;②abc<0;③a﹣2b+4c<0;④8a+c>0.其中正确的有()A.3个 B.2个C.1个 D.0个二.填空题(共6小题,每题5分,共30分)11.已知x+y=﹣5,xy=6,则x2+y2= _________ .12.小程对本班50名同学进行了“我最喜爱的运动项目”的调查,统计出了最喜爱跳绳、羽毛球、篮球、乒乓球、踢毽子等运动项目的人数.根据调查结果绘制了人数分布直方图.若将其转化为扇形统计图,那么最喜爱打篮球的人数所在扇形区域的圆心角的度数为_________ °.13.如图,直线y=﹣x+3与x轴、y轴分别交于A、B两点,把△AOB绕点A旋转90°后得到△AO′B′,则点B′的坐标是_________ .第12题图第13题图第16题图14.已知(a﹣)<0,若b=2﹣a,则b的取值范围是_________ .15.如果关于x的不等式组的整数解仅有1,2,那么适合这个不等式组的整数a,b组成的有序数对(a,b)共有_________ 个.16.如图,点M是反比例函数y=在第一象限内图象上的点,作MB⊥x轴于B.过点M的第一条直线交y轴于点A1,交反比例函数图象于点C1,且A1C1=A1M,△A1C1B的面积记为S1;过点M的第二条直线交y轴于点A2,交反比例函数图象于点C2,且A2C2=A2M,△A2C2B的面积记为S2;过点M的第三条直线交y轴于点A3,交反比例函数图象于点C3,且A3C3=A3M,△A3C3B的面积记为S3;以此类推…;则S1+S2+S3+…+S8= _________ .三、解答题(本题有8小题,共80分.解答需写出必要的文字说明、演算步骤或证明过程)17.(10分)(1)计算:.(2)解方程:(x﹣3)2﹣9=0.18.(8分)如图,已知线段AB,(1)线段AB为腰作一个黄金三角形(尺规作图,要求保留作图痕迹,不必写出作法);(友情提示:三角形两边之比为黄金比的等腰三角形叫做黄金三角形)(2)若AB=2,求出你所作的黄金三角形的周长.19.(8分)在3×3的方格纸中,点A、B、C、D、E、F分别位于如图所示的小正方形的顶点上.(1)从A、D、E、F四个点中任意取一点,以所取的这一点及点B、C为顶点画三角形,则所画三角形是等腰三角形的概率是________ ;(2)从A、D、E、F四个点中先后任意取两个不同的点,以所取的这两点及点B、C为顶点画四边形,求所画四边形是平行四边形的概率(用树状图或列表法求解).20.(8分)如图,小丽想知道自家门前小河的宽度,于是她按以下办法测出了如下数据:小丽在河岸边选取点A,在点A的对岸选取一个参照点C,测得∠CAD=30°;小丽沿岸向前走30m选取点B,并测得∠CBD=60°.请根据以上数据,用你所学的数学知识,帮小丽计算小河的宽度.21.(10分)已知:如图,D是△ABC的边AB上一点,CN∥AB,DN交AC于点M,MA=MC.①求证:CD=AN;②若∠AMD=2∠MCD,求证:四边形ADCN是矩形.22.(10分)如图,AB是⊙O的直径,AM,BN分别切⊙O于点A,B,CD交AM,BN于点D,C,DO平分∠ADC.(1)求证:CD是⊙O的切线;(2)若AD=4,BC=9,求⊙O的半径R.23.(12分)库尔勒某乡A,B两村盛产香梨,A村有香梨200吨,B村有香梨300吨,现将这些香梨运到C,D两个冷藏仓库.已知C仓库可储存240吨,D仓库可储存260吨,从A 村运往C,D两处的费用分别为每吨40元和45元;从B村运往C,D两处的费用分别为每吨25元和32元.设从A村运往C仓库的香梨为x吨,A,B两村运香梨往两仓库的运输费用分别为y A元,y B元.(1)请填写下表,并求出y A,y B与x之间的函数关系式;C D 总计A x吨200吨B 300吨总计240吨260吨500吨(2)当x为何值时,A村的运费较少?(3)请问怎样调运,才能使两村的运费之和最小?求出最小值.24.(14分)如图,在平面直角坐标系xOy中,矩形AOCD的顶点A的坐标是(0,4),现有两动点P,Q,点P从点O出发沿线段OC(不包括端点O,C)以每秒2个单位长度的速度匀速向点C运动,点Q从点C出发沿线段CD(不包括端点C,D)以每秒1个单位长度的速度匀速向点D运动.点P,Q同时出发,同时停止,设运动时间为t(秒),当t=2(秒)时,PQ=2.(1)求点D的坐标,并直接写出t的取值范围.(2)连接AQ并延长交x轴于点E,把AE沿AD翻折交CD延长线于点F,连接EF,则△AEF 的面积S是否随t的变化而变化?若变化,求出S与t的函数关系式;若不变化,求出S 的值.(3)在(2)的条件下,t为何值时,四边形APQF是梯形?浙江省温州市2013年第一次学业模拟考试数学参考答案一、选择题(共10小题,每题4分,共40分)题号 1 2 3 4 5 6 7 8 9 10答案 A B A A D B D D B B 二.填空题(共6小题,每题5分,共30分)题号11 12 13 14 15 16答案13 144 (﹣1,﹣2)或(5,2)2﹣<b<2 6第16题:解:过点M作MD⊥y轴于点D,过点A1作A1E⊥BM于点E,过点C1作C1F⊥BM 于点F,∵点M是反比例函数y=在第一象限内图象上的点,∴OB×BM=1,∴=OB×MB=,∵A1C1=A1M,即C1为A1M中点,∴C1到BM的距离C1F为A1到BM的距离A1E的一半,∴S1===,∴=BM•A 2到BM距离=×BM×BO=,∵A2C2=A2M,∴C2到BM的距离为A2到BM的距离的,∴S2===,同理可得:S3=,S4=…∴++…++,=++…++,=,三、解答题(本题有8小题,共80分.解答需写出必要的文字说明、演算步骤或证明过程)17. (1)解:=1﹣8+3+2 (3分)=﹣2.(5分)(2)解:移项得:(x﹣3)2=9,开平方得:x﹣3=±3,(1分)则x﹣3=3或x﹣3=﹣3,(3分)解得:x1=6,x2=0.(5分)18. 解:(1)可分为两种情况:底与腰之比均为黄金比的等腰三角形如图1,(2分)腰与底之比为黄金比为黄金比如图2,(4分)(2)∵如图1,AB=2,当底与腰之比为黄金比时:∴=,∴AD=﹣1,∴AB+AD+BD=,(6分)如图2,当腰与底之比为黄金比时,=,∴AC=+1,∴△ABC周长为.(8分)19. 解:(1)根据从A、D、E、F四个点中任意取一点,一共有4种可能,只有选取D点时,所画三角形是等腰三角形,故P(所画三角形是等腰三角形)=;(2分)(2)用“树状图”或利用表格列出所有可能的结果:∵以点A、E、B、C为顶点及以D、F、B、C为顶点所画的四边形是平行四边形,(6分)∴所画的四边形是平行四边形的概率P==.(8分)20. 解:过点C作CE⊥AD于点E,由题意得,AB=30m,∠CAD=30°,∠CBD=60°,故可得∠ACB=∠CAB=30°,(2分)即可得AB=BC=30m,(4分)设BE=x,在Rt△BCE中,可得CE=x,又∵BC2=BE2+CE2,即900=x2+3x2,(6分)解得:x=15,即可得CE=15m.(8分)答:小丽自家门前的小河的宽度为15m.21.证明:①∵CN∥AB,∴∠DAC=∠NCA,(1分)在△AMD和△CMN中,∵,∴△AMD≌△CMN(ASA),(2分)∴AD=CN,(3分)又∵AD∥CN,∴四边形ADCN是平行四边形,(4分)∴CD=AN;(5分)②∵∠AMD=2∠MCD,∠AMD=∠MCD+∠MDC,∴∠MCD=∠MDC,(6分)∴MD=MC,(7分)由①知四边形ADCN是平行四边形,∴MD=MN=MA=MC,(8分)∴AC=DN,(9分)∴四边形ADCN是矩形.(10分)22.(1)证明:过O点作OE⊥CD于点E,∵AM切⊙O于点A,∴OA⊥AD,(1分)又∵DO平分∠ADC,∴OE=OA,(2分)∵OA为⊙O的半径,∴OE是⊙O的半径,且OE⊥DC,(3分)∴CD是⊙O的切线.(4分)(2)解:过点D作DF⊥BC于点F,∵AM,BN分别切⊙O于点A,B,∴AB⊥AD,AB⊥BC,(5分)∴四边形ABFD是矩形,∴AD=BF,AB=DF,(6分)又∵AD=4,BC=9,∴FC=9﹣4=5,(7分)∵AM,BN,DC分别切⊙O于点A,B,E,∴DA=DE,CB=CE,(8分)∴DC=AD+BC=4+9=13,(9分)在Rt△DFC中,DC2=DF2+FC2,∴DF==12,∴AB=12,(10分)∴⊙O的半径R是6.23.(1)填写如下:每空1分C D 总计A (200﹣x)吨B (240﹣x)吨(60+x)吨由题意得:y A=40x+45(200﹣x)=﹣5x+9000;y B=25(240﹣x)+32(60+x)=7x+7920;(2)对于y A=﹣5x+9000(0≤x≤200),∵k=﹣5<0,∴此一次函数为减函数,则当x=200吨时,y A最小,其最小值为﹣5×200+9000=8000(元)(3分)(3)设两村的运费之和为W,则W=y A+y B=﹣5x+9000+7x+7920=2x+16920(0≤x≤200),(8分)∵k=2>0,∴此一次函数为增函数,(10分)则当x=0时,W有最小值,W最小值为16920元.(11分)此时调运方案为:从A村运往C仓库0吨,运往D仓库为200吨,B村应往C仓库运240吨,运往D仓库60吨.(12分)24.(1)由题意可知,当t=2(秒)时,OP=4,CQ=2,在Rt△PCQ中,由勾股定理得:PC===4,∴OC=OP+PC=4+4=8,(2分)又∵矩形AOCD,A(0,4),∴D(8,4).点P到达终点所需时间为=4秒,点Q到达终点所需时间为=4秒,由题意可知,t的取值范围为:0<t<4.(4分)(2)结论:△AEF的面积S不变化.∵AOCD是矩形,∴AD∥OE,∴△AQD∽△EQC,(5分)∴,即,解得CE=.由翻折变换的性质可知:DF=DQ=4﹣t,则CF=CD+DF=8﹣t.(6分)S=S梯形AOCF+S△FCE﹣S△AOE=(OA+CF)•OC+CF•CE﹣OA•OE=[4+(8﹣t)]×8+(8﹣t)•﹣×4×(8+)(8分)化简得:S=32为定值.所以△AEF的面积S不变化,S=32.(9分)(3)若四边形APQF是梯形,因为AP与CF不平行,所以只有PQ∥AF.由PQ∥AF可得:△CPQ∽△DAF,(10分)∴,即,化简得t2﹣12t+16=0,(11分)解得:t1=6+2,t2=6﹣2,(13分)由(1)可知,0<t<4,∴t1=6+2不符合题意,舍去.∴当t=(6﹣2)秒时,四边形APQF是梯形.(14分)。

2013 年中考数学模拟试卷参考答案

2013 年中考数学模拟试卷参考答案

1 1 1 1 6( x 2) 2 x x(6 x) x 2 x 6 2 2 2 2 当 4 x 6 时,△EPQ 的面积等于梯形 ABPQ 的面积减去△AEQ 和△BEP 的面积 1 1 1 y 4( x 10 x) 2(10 x) 2 x 10 2 2 2 y
1 2
3 2
15. 4 3 3或4 3 3 三、解答题(本大题共 11 小题,共 88 分) 17(本题 6 分) 解:△= 62 4 7 8
16. 2 2 2或2 - 2 2
x1
6 8 6 8 3 2, x2 3 2 2 2
18(本题 9 分)
2013 年中考数学模拟试卷参考答案
一、选择题(每小题 2 分,共 12 分) 题号 答案 1 B 2 D 3 D 4 B 5 D 6 B
二、填空题(每小题 2 分,共 20 分) 7. 4 11.9.0 8.圆柱体(此题答案不唯一) 12.( 1,3 ) 9. 1或 1 13. 10. 6 14. m 1且m
4x 1 x 解不等式 3 4 x 6 x 6
得 3 x 1 满足条件的整数 a 的值为-2、-1、0、1 但由
a2 1 a 2 2a 1 1 知 a 1 a2 a a
a -1、0、1
所以满足条件的整数 a 的值只有-2
a2 1 a 2 2a 1 1 a 1 a2 a a (a 1) 2 1 (a 1)(a 1) a 1 a (a 1) a (a 1) 1 a 1 a (a 1) a 1 1 a 1 a a a 1 = 当a 2时,原式= 1
y1 950 250 x, y2 300( x 0.5)

2013年中考数学模拟试题和答案

2013年中考数学模拟试题和答案

数 学 试 卷(一)*考试时间120分钟 试卷满分150分一、选择题(下列各题的备选答案中,只有一个答案是正确的,将正确答案的序号填在题后的括号内,每小题3分,共24分) 1.|65-|=( ) A .65+B .65-C .-65-D .56-2.如果一个四边形ABCD 是中心对称图形,那么这个四边形一定是( ) A .等腰梯形 B .矩形 C .菱形 D .平行四边形 3. 下面四个数中,最大的是( )A .35-B .sin88°C .tan46°D .215- 4.如图,一个小圆沿着一个五边形的边滚动,如果五边形的各边长都和小圆的周长相等,那么当小圆滚动到原来位置时,小圆自身滚动的圈数是( ) A .4 B .5 C .6 D .10 5.二次函数y=(2x-1)2+2的顶点的坐标是( ) A .(1,2) B .(1,-2) C .(21,2) D .(-21,-2)6.足球比赛中,胜一场可以积3分,平一场可以积1分,负一场得0分,某足球队最后的积分是17分,他获胜的场次最多是( ) A .3场 B .4场 C .5场 D .6场 7. 如图,四边形ABCD 的对角线AC 和BD 相交于点E ,如果△CDE 的面积为3,△BCE 的面积为4,△AED 的面积为6,那么△ABE 的面积为( ) A .7 B .8 C .9 D .108. 如图,△ABC 内接于⊙O,AD 为⊙O 的直径,交BC 于点E ,若DE =2,OE =3,则tanC·tanB = ( )A .2B .3C .4D .5 二、填空题(每小题3分,共24分)9.写出一条经过第一、二、四象限,且过点(1-,3)的直线解析式 . 10.一元二次方程x2=5x的解为 .11. 凯恩数据是按照某一规律排列的一组数据,它的前五个数是:269,177,21,53,31,按照这样的规律,这个数列的第8项应该是 . 12.一个四边形中,它的最大的内角不能小于 . 13.二次函数x x y 2212+-=,当x 时,0<y ;且y 随x 的增大而减小.14. 如图,△ABC 中,BD 和CE 是两条高,如果∠A =45°,则BC DE= . 15.如图,已知A 、B 、C 、D 、E 均在⊙O 上,且AC 为⊙O 的直径,则∠A +∠B +∠C =__________度. 16.如图,矩形ABCD 的长AB =6cm ,宽AD =3cm. O 是AB 的中点,OP ⊥AB ,两半圆的直径分别为AO 与OB .抛物线y=ax2经过C 、D 两点,则图中阴影部分 的面积是 cm 2.三、(第17小题6分,第18、19小题各8分,第20小题10分,共32分) 17.计算:01)32009(221245cos 4)21(8--⨯÷-︒-+-18.计算:22111211x x x x ⎛⎫-+÷ ⎪-+-⎝⎭19.已知:如图,梯形ABCD 中,A B ∥CD ,E 是BC 的中点,直线AE 交DC 的延长线于点F .(1)求证:△ABE ≌△FCE ; (2)若BC ⊥AB ,且BC =16,AB =17,求AF 的长.CA20.观察下面方程的解法x4-13x2+36=0解:原方程可化为(x2-4)(x2-9)=0∴(x+2)(x-2)(x+3)(x-3)=0∴x+2=0或x-2=0或x+3=0或x-3=0∴x1=2,x2=-2,x3=3,x4=-3你能否求出方程x2-3|x|+2=0的解?四、(每小题10分,共20分)21.(1)顺次连接菱形的四条边的中点,得到的四边形是.(2)顺次连接矩形的四条边的中点,得到的四边形是.(3)顺次连接正方形的四条边的中点,得到的四边形是.(4)小青说:顺次连接一个四边形的各边的中点,得到的一个四边形如果是正方形,那么原来的四边形一定是正方形,这句话对吗?请说明理由.22.下面的表格是李刚同学一学期数学成绩的记录,根据表格提供的信息回答下面的问题(1)李刚同学6次成绩的极差是.(2)李刚同学6次成绩的中位数是.(3)李刚同学平时成绩的平均数是.(4)如果用右图的权重给李刚打分,他应该得多少分?(满分100分,写出解题过程)23.(本题12分)某射击运动员在一次比赛中,前6次射击已经得到52环,该项目的记录是89环(10次射击,每次射击环数只取1~10中的正整数).(1)如果他要打破记录,第7次射击不能少于多少环?(2)如果他第7次射击成绩为8环,那么最后3次射击中要有几次命中10环才能打破记录?(3)如果他第7次射击成绩为10环,那么最后3次射击中是否必须至少有一次命中10环才有可能打破记录?24.(本题12分)甲、乙两条轮船同时从港口A出发,甲轮船以每小时30海里的速度沿着北偏东60°的方向航行,乙轮船以每小时15海里的速度沿着正东方向行进,1小时后,甲船接到命令要与乙船会和,于是甲船改变了行进的速度,沿着东南方向航行,结果在小岛C 处与乙船相遇.假设乙船的速度和航向保持不变,求:(1)港口A与小岛C之间的距离(2)甲轮船后来的速度.25.(本题12分)如图,在平面直角坐标系内,已知点A (0,6)、点B (8,0),动点P 从点A 开始在线段AO 上以每秒1个单位长度的速度向点O 移动,同时动点Q 从点B 开始在线段BA 上以每秒2个单位长度的速度向点A 移动,设点P 、Q 移动的时间为t 秒. (1) 求直线AB 的解析式;(2) 当t 为何值时,△APQ 与△AOB 相似?(3) 当t 为何值时,△APQ 的面积为524个平方单位?26.(本题14分)如图,直线y= -x+3与x轴,y轴分别相交于点B、C,经过B、C两点的抛物线与x轴的另一交点为A,顶点为P,且对称轴为直线x=2.(1)求A点的坐标;(2)求该抛物线的函数表达式;(3)连结AC.请问在x轴上是否存在点Q,使得以点P、B、Q为顶点的三角形与△ABC 相似,若存在,请求出点Q的坐标;若不存在,请说明理由.2009年中考模拟题 数学试题参考答案及评分标准一、选择题(每小题3分,共24分)1.D; 2.D ; 3.C ;4.C;5.C; 6.C ;7.B;8.C . 二、填空题(每小题3分,共24分)9.y=-x+2等; 10.x1=0,x2=5; 11.133; 12.90°; 13.227; 14.2115.90;16.π49三、(第17小题6分,第18、19小题各8分,第20小题10分,共32分) 17.解:原式=222224222⨯⨯-⨯-+ -1 ...............4分 =822222--+ -1=-7 .............................6分18.计算:22111211x x x x ⎛⎫-+÷ ⎪-+-⎝⎭解:原式=)1(])1()1)(1(1[2-⨯--++x x x x ).............................4分 xx x x x x 211)1(]111[=++-=-⨯-++................................8分19.(1)证明: ∵E 为BC 的中点 ∴BE =CE ∵AB ∥CD∴∠BAE =∠F ∠B =∠FCE∴△ABE ≌△FCE .............................4分解:由(1)可得:△ABE≌△FCE∴CE=AB=15,CE=BE=8,AE=EF∵∠B=∠BCF=90°根据勾股定理得AE=17∴AF=34.............................8分20.解:原方程可化为|x|2-3|x|+2=0.............................3分∴(|x|-1)(|x|-2)=0∴|x|=1或|x|=2∴x=1,x=-1,x=2,x=-2 .............................10分四.(每小题10分,共20分)21.解:(1)矩形;(2)菱形,(3)正方形.............................6分(4)小青说的不正确如图,四边形ABCD中AC⊥BD,AC=BD,BO≠DO,E、F、G、H分别为AD、AB、BC、CD的中点显然四边形ABCD不是正方形但我们可以证明四边形ABCD是正方形(证明略)所以,小青的说法是错误的..............................10分22.解:(1)10分.............................2分(2)90分.............................4分(3)89分.............................6分(4)89×10%+90×30%+96×60%=93.5李刚的总评分应该是93.5分..............................10分23.小强和小亮的说法是错误的,小明的说法是正确的....................2分不妨设小明首先抽签,由树状图可知,共出现6种等可能的结果,其中小明、小亮、小强抽到A 签的情况都有两种,概率为31,同样,无论谁先抽签,他们三人抽到A 签的概率都是31.所以,小明的说法是正确的..............................12分24.解:(1)作BD ⊥AC 于点D由题意可知:AB =30×1=30,∠BAC =30°,∠BCA =45° 在Rt △ABD 中∵AB =30,∠BAC =30°∴BD =15,AD =ABcos30°=153 在Rt △BCD 中, ∵BD =15,∠BCD =45° ∴CD =15,BC =152 ∴AC =AD +CD =153+15即A 、C 间的距离为(153+15)海里.............................6分 (2)∵AC =153+15轮船乙从A 到C 的时间为1515315 =3+1由B 到C 的时间为3+1-1=3 ∵BC =152∴轮船甲从B 到C 的速度为3215=56(海里/小时)答:轮船甲从B到C的速度为56海里/小时..............................12分七、25.解:(1)老师说,三个同学中,只有一个同学的三句话都是错的,所以丙的第一句话和老师的话相矛盾,因此丙的第一句话是错的,同时也说明甲、乙两人中有一个人是全对的;............................2分(2)如果丙的第二句话是正确的,那么根据抛物线的对称性可知,此抛物线的对称轴是直线x=2,这样甲的第一句和乙的第一句就都错了,这样又和(1)中的判断相矛盾,所以乙的第二句话也是错的;根据老师的意见,丙的第三句也就是错的.也就是说,这条抛物线一定过点(-1,0);.............................6分(3)由甲乙的第一句话可以断定,抛物线的对称轴是直线x=1,抛物线经过(-1,0),那么抛物线与x轴的两个交点间的距离为4,所以乙的第三句话是错的;由上面的判断可知,此抛物线的顶点为(1,-8),且经过点(-1,0)设抛物线的解析式为:y=a(x-1)2-8∵抛物线过点(-1,0)∴0=a(-1-1)2-8解得:a=2∴抛物线的解析式为y=2(x-1)2-8即:y=2x2-4x-6.............................12分八、(本题14分)26.【探究】证明:过点F作GH∥AD,交AB于H,交DC的延长线于点G∵AH∥EF∥DG,AD∥GH∴四边形AHFE和四边形DEFG都是平行四边形∴FH=AE,FG=DE∵AE=DE∴FG=FH∵AB∥DG∴∠G=∠FHB,∠GCF=∠B∴△CFG≌△BFH2013年中考数学模拟试题和答案- 11 - / 11 ∴FC =FB .............................4分【知识应用】过点C 作CM ⊥x轴于点M ,过点A 作AN ⊥x轴于点N ,过点B 作BP ⊥x轴于点P则点P 的坐标为(x2,0),点N 的坐标为(x1,0)由探究的结论可知,MN =MP∴点M 的坐标为(221x x +,0) ∴点C 的横坐标为221x x + 同理可求点C 的纵坐标为221y y + ∴点C 的坐标为(221x x +,221y y +).............................8分 【知识拓展】 当AB 是平行四边形一条边,且点C 在x轴的正半轴时,AD 与BC 互相平分,设点C 的坐标为(a,0),点D 的坐标为(0,y)由上面的结论可知:-6+a=4+0,-1+0=5+b∴a=10,b=-6∴此时点C 的坐标为(10,0),点D 的坐标为(0,-6)同理,当AB 是平行四边形一条边,且点C 在x轴的负半轴时求得点C 的坐标为(-10,0),点D 的坐标为(0,6)当AB 是对角线时点C 的坐标为(-2,0),点D 的坐标为(0,4).............................14分。

2013年历年初三数学中考模拟题及答案

2013年历年初三数学中考模拟题及答案

2013届中考模拟试题数 学一、仔细选一选(本大题有10小题,每小题3分,共30分。

请选出各题中一个符合题意的正确选项,不选、多选、错选,均不得分) 1、下列一元二次方程中,没有实数根的是( )A.2210x x +-= B.2x +22x+2=0C.210x += D.220x x -++=2、如图,将三角尺ABC (其中∠ABC =60°,∠C =90°)绕B 点按顺时针方向转动一个角度到△A 1BC 1的位置,使得点A ,B ,C 1在同一条直线上,那么这个角度等于( )A .120°B .90°C .60°D .30°3、在成都市二环路在某段时间内的车流量为30.6万辆,用科学记数法表示为() A .430.610⨯辆 B .33.0610⨯辆C .43.0610⨯辆D .53.0610⨯辆4、给出下列命题:(1)平行四边形的对角线互相平分; (2)对角线相等的四边形是矩形;(3)菱形的对角线互相垂直平分; (4)对角线互相垂直的四边形是菱形. 其中,真命题的个数是( )A.4 B.3 C.2 D.1 5、下列各函数中,y 随x 增大而增大的是( ) ①1y x =-+. ②3y x=-(x < 0) ③21y x =+. ④23y x =- A .①② B .②③ C .②④ D .①③ 6、在△ABC 中,90C ∠=o,若4BC =,2sin 3A =,则AC 的长是( )A.6B.C.D.7、若点A (-2,y 1)、B (-1,y 2)、C (1,y 3)在反比例函数xy 1-=的图像上,则( )_1_ A _1_ A(第13题图)A. y 1>y 2 >y 3 B.y 3> y 2 >y 1 C.y 2 >y 1 >y 3 D. y 1 >y 3> y 2 8、如图,EF 是圆O 的直径,5cm OE =,弦8cm MN =则E ,F 两点到直线MN 距离的和等于( ) A.12cm B.6cmC.8cm D.3cm9、若抛物线22y x x c =-+与y 轴的交点坐标为(0,3)-,则下列说法不正确的是( ) A.抛物线的开口向上 B.抛物线的对称轴是直线1x = C.当1x =时y 的最大值为4- D.抛物线与x 轴的交点坐标为(1,0)-、(3,0) 10、反比例函数k y x=的图象如左图所示,那么二次函数221y kx k x =--的图象大致为 ( )二、填空题:(每小题4分,共16分)11、2008年8月5日,奥运火炬在成都传递,其中8位火炬手所跑的路程(单位:米)如下:60,70,100,65,80,70,95,100,则这组数据的中位数是 . 12、方程2(34)34x x -=-的根是 .A .B. C.D .(第8题图)13、如图,有一块边长为4的正方形塑料摸板ABCD ,将一块足够大的直角三角板的直角顶点落在A 点,两条直角边分别与CD 交于点F ,与CB 延长线交于点E .则四边形AECF 的面积是 .14、在Rt △ABC 中,90C ∠=o,D 为BC 上一点,30DAC ∠=o ,2BD =,AB =AC 的长是.三、(第15题每小题6分,第16题6分,共18分) 15、解答下列各题:(1)计算:323+—2)(-+2cos30°—23—(2)解方程:2430x x +-=.17、把一副扑克牌中的3张黑桃牌(它们的正面牌面数字分别是3、4、5、)洗匀后正面朝下放在桌面上。

2013年中考数学模拟试题及参考答案

2013年中考数学模拟试题及参考答案

2013年中考数学模拟考试数学试题一、选择题(本大题共有8小题,每小题2分,共16分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡...相应位置....上) 1.-2的相反数是A.-2B.2C.-21 D.212.已知两圆的半径分别为6和4,圆心距为7,则两圆的位置关系是 A .相交B .内切C .外切D .内含3.下列计算中,正确的是( )A .42232a a a =+ B .()52322x x x -=-⋅ C .()53282a a -=- D .22326x x xm m=÷4.下列美丽的图案,既是轴对称图形又是中心对称图形的个数是A .1个B . 2个C . 3个D . 4个 5.下列说法正确的是A .若甲组数据的方差20.01S =甲,乙组数据的方差20.1S =乙,则乙组数据比甲组数据稳定B .为了解全国中学生的心理健康情况,应该采用普查的方式C .一组数据6,8,7,8,8,9,10的众数和中位数都是8D .一个游戏的中奖概率是110,则做10次这样的游戏一定会中奖 6.下面四个几何体中,左视图是四边形的几何体共有A. 1个B. 2个C. 3个D. 4个7.如图所示,在方格纸上建立的平面直角坐标系中,将△ABO 绕点O 按顺时针方向旋转90°,得A B O ''△ ,则点A '的坐标为A .(3,1)B .(3,2)C .(2,3)D .(1,3)y C 2C 1C y 24 3B8.在平面直角坐标系中,正方形ABCD 的位置如图所示,点A 的坐标为(1,0),点D 的坐标为(0,2).延长CB 交x 轴于点A 1,作正方形A 1B 1C 1C ;延长C 1B 1交x 轴于点A 2,作正方形A 2B 2C 2C 1…按这样的规律进行下去,第2011个正方形的面积为 ( ) A .201035()2⨯B .201195()4⨯ C . 200995()4⨯ D .402035()2⨯二、填空题(本大题共有10小题,每小题3分,共30分.不需写出解答过程,请把答案直接填写在答题卡相应位置.......上) 9.去年冬季的某一天,学校一室内温度是8℃,室外温度是2-℃,则室内外温度相差 ▲ ℃.10.国家游泳中心“水立方”是北京2008年奥运会场馆之一,它的外层膜的展开面积约为260 000平方米,将260 000用科学记数法表示应为 ▲ 平方米. 11.五边形的内角和为 ▲ 度.12.已知反比例函数的图象经过点A (6,-1),请你写出该函数的表达式 ▲ . 13.已知二元一次方程组⎩⎨⎧=-=-52832y x y x ,则y x -的值为 ▲ .14.不等式组30210x x -<⎧⎨-⎩≥的解集是 ▲ .15.在如图的甲、乙两个转盘中,指针指向每一个数字的机会是均等的.当同时转动两个转盘,停止后指针所指的两个数字表示两条线段的长,如果第三条线段的长为5,那么这三条线段能构成三角形的概率为_____▲____.16.如图,点A 、B 、C 在⊙O 上,若∠BAC = 24°,则∠BOC = °.17.已知圆锥的底面半径是3cm ,母线长为6cm ,则这个圆锥的侧面积为_ ▲ .cm 2.(结果保留π)B 题)yxO BCA (第18题)OAC(第16题)·(第15题)18.如图,A 、B 是双曲线 y = k x(k >0) 上的点, A 、B 两点的横坐标分别是a 、2a ,线段AB 的延长线交x 轴于点C ,若S △AOC =6.则k= ▲ .三、解答题(本大题共有10小题,共74分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤) 19.(本题6分)计算:(1)200821(1)()162---+; (2)2311()11x x x x--⋅-+. 20.(本题6分)为了增强环境保护意识,6月5日“世界环境日”当天,在环保局工作人员指导下,若干名“环保小卫士”组成的“控制噪声污染”课题学习研究小组,抽样调查了全市40个噪声测量点在某时刻的噪声声级(单位:dB ),将调查的数据进行处理(设所测数据是正整数),得频数分布表如下: 组 别 噪声声级分组 频 数 频 率 1 44.5——59.5 4 0.1 2 59.5——74.5 a 0.2 3 74.5——89.5 10 0.25 4 89.5——104.5 bc 5 104.5——119.56 0.15 合 计401.00根据表中提供的信息解答下列问题:(1)频数分布表中的a =________,b =________,c =_________; (2)补充完整频数分布直方图;(3)如果全市共有200个测量点,那么在这一时刻噪声声级小于75dB 的测量点约有多少个?21.(本题6分)小晶和小红玩掷骰子游戏,每人将一个各面分别标有1,2,3,4,5,6的正方体骰子掷一次,把两人掷得的点数相加,并约定:点数之和等于6,小晶赢;点数之和等于7.小红赢;点数之和是其它数,两人不分胜负.问他们两人谁获胜的概率大?请你用“画树状图”或“列表”的方法加以分析说明.22.(本题6分)某村计划建造如图所示的矩形蔬菜温室,要求长与宽的比为2:1.在温室内,沿前侧内墙保留3m 宽的空地,其它三侧内墙各保留1m 宽的通道.当矩形温室的长与宽各为多少时,蔬菜种植区域的面积是2288m ?23.(本题8分)如图,点E 、F 是四边形ABCD 的对角线AC 上的两点,AF =CE ,DF =BE ,DF ∥BE .(第24题)(第22题)蔬菜种植区域前 侧 空 地F EDCBA(第23题)(1)求证:△AFD ≌△CEB(2)四边形ABCD 是平行四边形吗?请说明理由.24.(本题8分)如图15,河旁有一座小山,从山顶A 处测得河对岸点C 的俯角为30°,测得岸边点D 的俯角为45°,又知河宽CD 为50米.现需从山顶A 到河对岸点C 拉一条笔直的缆绳AC ,求缆绳AC 的长(结果精确到0.1m )(参考数据:2 1.41≈,3 1.73≈) 25.(本题8分)如图,A (-1,0)、B (2,-3)两点在二次函数y 1=ax 2+bx -3与一次函数y 2=-x +m 图像上。

2013年中考数学模拟试题(第一组)

2013年中考数学模拟试题(第一组)

2013年中考数学模拟试题(第一组)数 学本试卷分第Ⅰ卷和第Ⅱ卷,满分120分,考试时间120分钟.注意:答案一律填写在答题卡上,在试卷上作答无效.........考试结束,将本试卷和答题卡一并交回.第Ⅰ卷(选择题,共36分)一、选择题(本大题共12小题,每小题3分,共36分)每小题都给出代号为(A )、(B )、(C )、(D )四个结论,其中只有一个是正确的.请考生用2B 铅笔在答题卡上将选定的答案标号涂黑. 1.-5的绝对值是:(A )-5(B )51 (C )-51 (D )52.某同学把如图1所示的几何体的三种视图画出如下(不考虑尺寸):这三种视图正确的是:(A )主视图和左视图 (B )主视图和俯视图 (C )左视图和俯视图 (D )全部正确 3.在学习党的十八大精神的知识竞赛中,全国有10.5万人参加,10.5万人用科学记数法表示为:(A )10.5×310 (B )1.05×410 (C )1.05×510(D )1.05×6104. 下列计算中,正确的是:(A )25 =±5 (B )=(C )325a a a ⋅= (D )22x x x -= 5.在函数y =x 的取值范围是: (A )x ≥ 3(B )x ≤ 3 (C )x ≥ - 3(D )x ≤ - 36.把多项式22123x y -分解因式所得结果是:(A )3(4 x 2-y 2) (B )3(2x+y )(2x -y ) (C )3(4x+y )(4x -y ) (D )(12x+3y)(12x -3y) 7.函数x1y -=的图象上有两点A )y ,x (11,B )y ,x (22,若21x x 0<<,则: (A ) 21y y < (B ) 21y y > (C ) 21y y = (D ) 1y 、2y 的大小不确定8.如图2,⊙O 是等边三角形ABC 的外接圆,⊙O 的半径为2,则等边三角形ABC 的边长为:(A )3 (B )5 (C )23 (D )25A主视图左视图俯视图图19.某校九年级(1)班50名学生中有20名团员,他们都积极报名参加学校开展的“文明劝导活动”。

2013年中考数学模拟卷含答案一

2013年中考数学模拟卷含答案一

各位同学,考试开始请认真作答一.选择题(每小题3分,共30分)1.方程x -1=1的解是( ).A 、x =-1B 、x =0C 、x =1D 、x =2 2.21的倒数( ).A 、2B 、-2C 、21D 、21-3.如图,直线a 、b 被直线c 所截,如果a ∥b ,那么( ). A 、∠1>∠2 B 、∠1=∠2 C 、∠1<∠2 D 、∠1+∠2=180°4.近几年某地区义务教育普及率不断提高,据2006年末统计的数据显示,仅初中在校生就约有13万人.数据13万人用科学记数法表示为( ).A 、13×104人B 、1.3×106人C 、1.3×105人D 、0.13×106人 5.在正方形网格中,∠α的位置如图所示,则sin α的值为( ).A 、21B 、22C 、23D 、336.若顺次连接四边各边中点所得四边形是矩形,则原四边形一定是( ).A 、等腰梯形B 、对角线相等的四边形C 、平行四边形D 、对角线互相垂直的四边形 7.如图,CD 是⊙O 的直径,A 、B 是⊙O 上的两点,若∠ABD =20°,则∠ADC 的度数为( ).A 、40°B 、50°C 、60°D 、70° 8.当x <0时,反比例函数x31y -=( ).A 、图象在第二象限内,y 随x 的增大而减小B 、图象在第二象限内,y 随x 的增大而增大C 、图象在第三象限内,y 随x 的增大而减小 C 、图象在第三象限内,y 随x 的增大而增大 9.下面有关概率的叙述,正确的是( ).A 、投掷一枚图钉,钉尖朝上的概率和钉尖着地的概率不相同B 、因为购买彩票时有“中奖”与“不中奖”两种情形,所以购买彩票中奖的概率为21C 、投掷一枚均匀的正方体骰子,每一种点数出现的概率都是61,所以每投掷6次,肯定出现一次6点D 、某种彩票的中奖概率是1%,买100张这样的彩票一定中奖10.如图①是一个几何体的主视图和左视图.某班同学在探究它的俯视图时,画出了如图②的几个图形,其中,可能是该几何体俯视图的共有( ). A 、3个 B 、4个 C 、5个 D 、6个二.填空题(每小题2分,共20分) 11.计算:(-3)2的结果等于_______. 12.比较大小:-3___-2.(用“>”、“=”或“<”填空)α (第05题图) (第07题图)(第10题图) a b c d 图① 图②左视图主视图第03题图) ab c1213.函数3x 1y -=的自变量x 的取值范围是___________. 14.分解因式:a 3+a 2=_____________.15.小亮的身高是1.6米,某一时刻他在水平地面上的影长是2米,若同一时刻测得附近一古塔在水平地面上的影长为18米,则古塔的高度是________米.16.如图,在8×8的网格中,每个小正方形的顶点叫做格点,△OAB 的顶点都在格点上,请在网格中画出.....△OAB 的一个位似图形,使两个图形以O 为位似中心,且所画图形与△OAB 的位似比为________.17.小明要用圆心角为120°,半径是27cm 的扇形纸片(如图)围成一个圆锥形纸帽,做成后这个纸帽的底面直径为____________cm .(不计接缝部分,材料不剩余) 18.二次函数y =x 2+bx +c 的图象经过点A(-1,0)、B(3,0)两点.其顶点坐标是_____________. 19.如图,正方形ABCD 的边长为216cm ,对角线AC 、BD 相交于点O ,过O作OD 1⊥AB 于D 1,过D 1作D 1D 2⊥BD 于点D 2,过D 2作D 2D 3⊥AB 于D 3,…,依次类推.其中的OD 1+D 2D 3+D 4D 5+D 6D 7=__________cm .20.用长度分别为2、3、4、5、6(单位:cm)的5根细木棒摆成一个三角形(允许连接,但不允许折断),在所有摆成的三角形中,面积最大的三角形的面积为____________cm 2.三.解答题(本大题含9个小题,共80分)21.(本小题满分7分)解不等式组:⎪⎩⎪⎨⎧-≤--x 2382x x6x 2>,并把它的解集表示在数轴上.22.(本小题满分8分)先化简,再求值:4a 4a a 2)2a 12a 1(2+-÷++-,其中a =-4.23.(本小题满分8分)市政府为了解决老百姓看病贵的问题,决定下调一些药品的价格.某种药品原售价为125元/盒,连续两次降价后售价为80元/盒.假设每次降价的百分率相同,求这种药品每次降价的百分率.24.(本小题满分8分)如图①,在等腰梯形ABCD 中,AB ∥CD ,E 、F 是边AB 上的两点,且AE =BF ,DE 与CF 相交于梯形ABCD 内一点O . (1)求证:OE =OF ;(2)如图②,当EF =CD 时,请你连接DF 、CE ,判断四边形DCEF 是什么样的四边形,并证明你的结论.AB O (第17题图)A (第19题图)BDCOD 1 D 3 D 2 D 4 …(第24题图)C DOC DO25.(本小题满分8分)某地区教育部门要了解初中学生阅读课外书籍的情况,随机调查了本地区500名初中学生一学期阅读课外书的本数,并绘制了如图的统计图.请根据统计图反映的信息回答问题. (1)这些课外书籍中,哪类书的阅读数量最大?(2)这500名学生一学期平均每人阅读课外书多少本?(精确到1本)(3)若该地区共有2万名初中学生,请估计他们一学期阅读课外书的总本数.26.(本小题满分9分)今年的全国助残日这天,某单位的青年志愿者到距单位6千米的福利院参加“爱心捐助活动”.一部分人步行,另一部分人骑自行车,他们沿相同的路线前往.如图,l 1、l 2分别表示步行和骑自行车的人前往目的地所走的路程y(千米)随时间x (分钟)变化的函数图象. (1)分别求l 1、l 2的函数表达式; (2)求骑车的人用多长时间追上步行的人.27.(本小题满分10分)如图,有两个可以自由转动的均匀转盘,转盘A 被分成面积相等的三个扇形,转盘B 被分成面积相等的四个扇形,每个扇形内都涂有颜色.同时转动两个转盘,停止转动后,若一个转盘的指针指向红色,另一个转盘的指针指向蓝色,则配成紫色;若其中一个指针指向分界线时,需重新转动两个转盘.(1)用列表或画树状图的方法,求同时转动一次转盘A 、B 配成紫色的概率; (2)小强和小丽要用这两个转盘做游戏,他们想出如下两种游戏规则: ①转动两个转盘,停止后配成紫色,小强获胜;否则小丽获胜;②转动两个转盘,停止后指针都指向红色,小强获胜;指针都指向蓝色,小丽获胜. 判断以上两种规则的公平性,并说明理由.(第25题图) 术类技类记类说类它类漫类(第26题图) )(第27题图)转盘A 转盘B28.(本小题满分10分)数学课上,同学们探究下面命题的正确性:顶角为36°的等腰三角形具有一种特性,即经过它某一顶点的一条直线可把它分成两个小等腰三角形.为此,请你解答问题(1).(1)已知:如图①,在△ABC 中,AB =AC ,∠A =36°,直线BD 平分∠ABC 交AC 于点D .求证:△ABD 与△DBC 都是等腰三角形;(2)在证明了该命题后,小颖发现:下面两个等腰三角形如图②、③也具有这种特性.请你在图②、图③中分别画出一条直线,把它们分成两个小等腰三角形,并在图中标出所画等腰三角形两个底角的度数;(3)接着,小颖又发现:直角三角形和一些非等腰三角形也具有这样的特性,如:直角三角形斜边上的中线可把它分成两个小等腰三角形.请你画出两个具有这种特性的三角形的示意图,并在图中标出三角形各内角的度数.说明:要求画出的两个三角形不相似,而且既不是等腰三角形也不是直角三角形.29.(本小题满分12分)如图,在平面直角坐标系中,□ABCO 的顶点O 在原点,点A 的坐标为(-2,0),点B 的坐标为(0,2),点C 在第一象限. (1)直接写出点C 的坐标;(2)将□ABCO 绕点O 逆时针旋转,使OC 落在y 轴的正半轴上,如图②,得□DEFG(点D 与点O 重合).FG 与边AB 、x 轴分别交于点Q 、点P .设此时旋转前后两个平行四边形重叠部分的面积为S 0,求S 0的值;(3)若将(2)中得到的□DEFG 沿x 轴正方向平移,在移动的过程中,设动点D 的坐标为(t ,0),□DEFG 与□ABCO 重叠部分的面积为S .写出S 与t(0<t ≤2)的函数关系式.(直接写出结果)(第29题图)A (第28题图)BC D图① 图② 图③36°123数学试题参考答案一.选择题(每小题3分,共30分)二.填空题(每小题2分,共20分)11.9 12.< 13.x ≠3 14.a 2(a +1) 15.144 16.2∶1 17.1818.(1,-4) 19.215 20.106三.解答题(本大题含9个小题,共80分)21.解:解不等式2x -6>-x ,得x >2解不等式x 2382x -≤,得x ≤4 所以,原不等式组的解集伟2<x ≤4在数轴上表示为22.解:原式=2)2a (a2)2a )(2a (2a 2a -÷-+-++ =)2a )(2a (a2-+·a 2)2a (2-=2a 2a +- 当a =-4时,原式=323.解:设这种药品每次降价的百分率为x ,根据题意得125(1-x)2=80解这个方程,得x 1=0.2,x 2=1.8 ∵x =1.8不合题意,舍去 ∴x =0.2=20%答:这种药品每次降价的百分率为20%. 24.证明:(1)∵梯形ABCD 为等腰梯形,AB ∥CD∴AD =BC ,∠A =∠B ∵AE =BF∴△ADE ≌△BCF ∴∠DEA =∠CFB ∴OE =OF(2)∵DC ∥EF 且DC =EF∴四边形DCEF 是平行四边形 又由(1)得△ADE ≌△BCF ∴CF =DE∴四边形DCEF 是矩形25.解:(1)这些类型得课外书籍中,小说类课外书阅读数量最大(2)(2.0+3.5+6.4+8.4+2.4+5.5)×100÷500=5.64≈6(本) 答:这500名学生一学期平均每人阅读课外书6本. (3)20000×6=120000(本)或2×6=12(万本)答:他们一学期阅读课外书得总数是12万本.26.解:(1)设l 1的表达式为y 1=k 1x由图象知l 1过点(60,6)∴60k 1=6,k 1=101 ∴y 1=101x 设l 2的表达式为y 2=k 2x +b 2由图象知l 2过点(30,0)和(50,6)两点∴⎩⎨⎧=+=+6b k 500b k 302222解得⎪⎩⎪⎨⎧-==9b 103k 22 ∴y 2=103x -9 (2)当骑车的人追上步行的人时, y 1=y 2,即101x =103x -9 ∴x =4545-30=15(分钟)答:骑车的人用15分钟追上步行的人.27.解:∴P (配成紫色)=124=31(2)由(1)可知,P (配不成紫色)=128=32≠P (配成紫色) ∴规则①不公平∵P (都指向红色)=122=61 P (都指向蓝色)=122=61∴规则②是公平的28.证明:(1)在△ABC 中,AB =AC∴∠ABC =∠C ∵∠A =36°∴∠ABC =∠C =21(180°-∠A)=72° ∵BD 平分∠ABC ∴∠1=∠2=36°∴∠3=∠1+∠A =72° ∴∠1=∠A ,∠3=∠C ∴AD =BD ,BD =BC∴△ABD 与△BDC 都是等腰三角形 (2)如下图所示:(3)如下图所示:29.解:(1)C(2,2);(2)∵A(-2,0),B(0,2) ∴OA =OB =2∴∠BAO =∠ABO =45°∵□EFGD 由□ABCO 旋转而成∴DG =OA =2,∠G =∠BAO =45° ∵□EFGD ∴FG ∥DE∴∠FP A =∠EDA =90°或40°80°60°35°70°75°α 2α20°60°100° 80°25°75°35°105°45°α 3α…或…0°<α<45°, 其中,α≠30°, α≠36°.0°<α<45°, α≠36°,a ≠7180.其中,α≠30°,∵∠AQP =90°-∠BAO =45° ∴PQ =AP =OA -OP =2-2 S 0=21(PQ +OB)·OP =21(2-2+2)·2=22-1当□DEFG 运动到点F 在AB 上是,如图①,t =22-2 <1>当0<t ≤22-2时,如图②,S =-t 2+2t +22-1 <2>当22-2<t ≤2时,如图③,S =-21t 2+42-3<3>当2<t ≤2时,如图④,S =-2t +42-2图①图② 图③图④。

2013年九年级中考数学模拟试卷

2013年九年级中考数学模拟试卷

年九年级中考数学模拟试卷全卷共五大题25小题,卷面分数:120分考试时限:120分钟)I卷时请将解答结果填写在第II卷上指II卷..第Ⅰ卷(选择题、填空题共45分)10个小题,每小题3分,共30分))A B C D)B、3与|-3|C、-3与2)3(-D、32与(-3)2)6B、x8÷x4=x2C、x4+x4=2x8D、x4·x3=x1252”栏目中的有一种竞猜游戏,规则如下:在20个商标牌中,有5其余商标牌的背面是一张哭脸,若翻到哭脸,就不,某观众前两次翻牌)B、51C、61D、203b,点B在直线b上,且AB⊥BC,2的度数为()、450 C、550 D、12502. 62×10-5秒.已知电磁波的传播速度为3.0×108)米 B、7.86×104米 C、1.572×103米 D、1.572×104米7、下列图案中既是中心对称图形,又是轴对称图形的是( )考场号_____座位号_______姓名_____A.B.C.D.8、如图,路灯E距地面的距离EO为8米,身高1.6(点O)20米的点A处,沿OA所在的直线行走14米到点N时,人影的长度()A、增大1.5米B、减小1.5米C、增大3.5米D、减小3.5米9、如果a+b<0,且b>0,那么a、b、-a、-b的大小关系为(A、a<b<-a<-bB、-b<a<-a<bC、a<-b<-a<bD、a<-b<b<-a10、在同一直角坐标系中,函数y=kx+k与y=xk(k≠0)的图象大致为()A B C D二、填空题:(3分×5=15分)11、甲、乙两班各有51名同学,一次数学考试成绩甲、乙两班的中位数分别是66分、79分,若不少于79分算优秀,则甲、乙两班优秀率高的班级是_____________12、在Rt△ABC中,∠C=900,AB=5,AC=4,则sinA的值为__________13、一个口袋中装有黑球8个和若干个白球,为估计白球的个数,若不许将球倒出来,现从口袋中随机摸出一球,记下其颜色,再把它放回袋中,不断重复上述过程,共摸了200次,其中有57次摸到黑球,则口袋中大约有白球_______个。

2013年历年初三数学中考模拟试卷及答案

2013年历年初三数学中考模拟试卷及答案

2013年中考数学模拟试卷一、选择题(本大题共有8小题,每小题3分,共计24分.在每小题所给出的四个选项中,只有一项是正确的,请将正确选项前的字母代号涂在答题卡相应位......置.上) 1.51-的绝对值是( ▲ ) A .-5 B .15 C .15- D . 52.下列图形是生活中常见的道路标识,其中不是..轴对称图形的是( ▲ )A .B .C .D .3.下列运算正确的是( ▲ )A .22a a a =+B .4226)3(a a =C .49)23)(23(2-=-+-a a aD .ab ba ab 2=+4.两个大小不同的球在水平面上靠在一起,组成如图所示的几何体,则该几何体的主视图是( ▲ )A .两个外离的圆B .两个相交的圆C .两个外切的圆D .两个内切的圆5. 将不等式组x 1x 3≥⎧⎨≤⎩的解集在数轴上表示出来,正确的是( ▲ ) A. B.C. D.6.下列说法中正确的是( ▲ )A .“打开电视,正在播放《新闻联播》”是必然事件B .想了解某种饮料中含色素的情况,宜采用抽样调查C .数据1,1,2,2,3的众数是3D .一组数据的波动越大,方差越小7. 若直线y 3x m =+经过第一、三、四象限,则抛物线2y (x m)1=-+的顶点必在 ( ▲ )A .第一象限B .第二象限C .第三象限D .第四象限8. 下列图形都是由同样大小的五角星按一定的规律组成,其中第①个图形一共有2个五角星,第②个图形一共有8个五角星,第③个图形一共有18个五角星,…,则第⑥个图形中五角星的个数为( ▲ )二、填空题(本大题共有10小题,每小题3分,共计30分.不需写出解答过程,请把答案直接填写在答题卡相应位置.......上) 9. 4的算术平方根为 ▲ .10.若代数式21-+x x 的值为零,则x = ▲ . 11.分解因式:y xy -= ▲ . 12.今年3月底在上海和安徽两地发现的H7N9型禽流感是一种新型禽流感.研究表明,禽流感病毒的颗粒呈球形,杆状或长丝状,其最小直径约为0.00000008m , 其最小直径用科学计数法表示约为 ▲ m .13.如图,过CDF ∠的一边DC 上的点E 作直线AB ∥DF ,若110AEC ∠=o,则CDF ∠的度数为 ▲ o .14. 已知关于x 的一元二次方程x 2+2x ﹣a=0有两个相等的实数根,则a 的值是 ▲ .15.如图,AB 是⊙O 的直径,圆心O 到弦BC 的距离是1,则AC 的长是 ▲ .第13题 第15题 第18题16. 某学校用420元钱到商场去购买“84”消毒液,经过还价,每瓶便宜0.5元,结果比用原价多买了20瓶,求原价每瓶多少元?若设原价每瓶x 元,则可列出方程为 ▲ .17.将一个圆心角为120°,半径为6cm 的扇形围成一个圆锥的侧面,则所得圆锥的高为 ▲ cm .18. 如图所示,点1A 、2A 、3A 在x 轴上,且11223OA A A A A ==,分别过点1A 、2A 、3A 作y 轴的平行线,与反比例函数()80y x x=>的图象分别交于点1B 、2B 、3B ,分别过点1B ,2B ,3B 作x 轴的平行线,分别与y 轴交于点1C ,2C ,3C ,连接1OB ,2OB ,3OB ,那么图中阴影部分的面积之和为 ▲ .三、解答题(本大题共有10小题,共计96分.请在答题卡指定区域内作答..........,解答时应写出必要的文字说明、证明过程或演算步骤)19. (本题满分8分)(1)计算:()10230sin 3-︒-+-π;(2)化简:2242(1)44a a a a-÷-++.20.(本题满分8分)某班从2名男生和2名女生中随机抽取学生参加学校举行的“我的中国梦”演讲比赛,求下列事件的概率:(1)抽取1名,恰好是男生;(2)抽取2名,恰好是1名女生和1名男生.21(本题满分8分)小敏为了解我市的空气质量情况,从环境监测网随机抽取了若干天的空气质量情况作为样本进行统计,绘制了如图所示的条形统计图和扇形统计图(部分信息未给出).请你根据图中提供的信息,解答下列问题:(1)计算被抽取的天数;(2)请补全条形统计图,并求扇形统计图中表示优的扇形的圆心角度数;(3)请估计该市这一年(365天)达到优和良的总天数.如图,点E ,F 在平行四边形ABCD 的对角线AC上,AE =CF .(1)证明:ABE ∆≌CDF ∆;(2)猜想:BE 与DF 平行吗?对你的猜想加以证明.23.(本题满分10分)如图,在我国钓鱼岛附近海域有两艘自西向东航行的海监船A 、B ,B 船在A 船的正东方向,且两船保持10海里的距离,某一时刻两海监船同时测得在A 的东北方向,B 的北偏东15°方向有一不明国籍的渔船C ,求此时渔船C 与海监船B 的距离是多少.(结果保留根号)24.(本题满分10分)如图, Rt ABC △中,90ABC ∠=°,以AB 为直径作半圆⊙O 交AC于点D ,点E 为BC 的中点,连结DE .(1)求证:DE 是半圆⊙O 的切线;(2)若︒=∠30BAC ,DE =2,求AD 的长.A B C D E F·先锋岛大润发超市进了一批成本为8元/个的文具盒. 调查发现:这种文具盒每个星期的销售量y(个)与它的定价x(元/个)的关系如图所示:(1)求这种文具盒每个星期的销售量y(个)与它的定价x(元/个)之间的函数关系式(不必写出自变量x的取值范围);(2)每个文具盒的定价是多少元时,超市每星期销售这种文具盒(不考虑其他因素)可获得的利润最高?最高利润是多少?26.(本题满分10分)在直角坐标系中,点A是抛物线y=x2在第二象限上的点,连接OA,过点O 作OB⊥OA,交抛物线于点B,以OA、OB为边构造矩形AOBC.(1)如图1,当点A的横坐标为▲时,矩形AOBC是正方形;(2)如图2,当点A的横坐标为时,①求点B的坐标;②将抛物线y=x2作关于x轴的轴对称变换得到一个新抛物线,试判断新抛物线经过平移变换后,能否经过A,B,C三点?如果可以,说出变换的过程;如果不可以,请说明理由.定义:如图1,射线OP 与原点为圆心,半径为1的圆交于点P ,记xOP α∠=,则点P 的横坐标叫做角α的余弦值,记作cos α;点P 的纵坐标叫做角α的正弦值,记作sin α;纵坐标与横坐标的比值叫做角α的正切值,记作tan α.如:当ο45=α时, 点P 的横坐标为ο45cos =22, 纵坐标为ο45sin=22,即P (22,22). 又如:在图2中,α-=∠ο90xOQ (α为锐角), PN ⊥y 轴,QM ⊥x 轴,易证OPN OQM ∆≅∆, 则Q 点的纵坐标)90sin(α-ο等于点P 的横坐标cos α,得)90sin(α-ο= cos α. 解决以下四个问题:(1)当60α=o 时,求点P 的坐标;(2)当α是锐角时,则cos α+sin α ▲ 1(用>或<填空),(sin α)2 + (cos α)2= ▲ ;(3)求证:sin(90)cos αα+=o (α为锐角);(4)求证:1cos tan2sin ααα-=(α为锐角).图1 图2已知,把Rt△ABC和Rt△DEF按图1摆放(点C与E重合),点B,C,E,F始终在同一条直线上,∠ACB=∠EDF=90°,DE=DF,AC=8,BC=6,EF=10.如图2,△DEF从图1位置出发,以每秒1个单位的速度沿CB向△ABC匀速运动,同时,点P从点A出发,沿AB以每秒1个单位的速度向点B匀速运动,AC与△DEF 的直角边相交于点Q,当E到达终点B时,△DEF与点P同时停止运动,连接PQ,设移动的时间为t(s).解答下列问题:(1)当D在AC上时,求t的值;(2)在P点运动过程中,是否存在点P,使△APQ为等腰三角形?若存在,求出t的值;若不存在,说明理由.(3)连接PE,设四边形APEQ的面积为y(cm2),求y与t之间的函数关系式,并写出自变量t的取值范围.参考答案1-8 BBDC ABBC9.2 10.-1 11.y(x-1) 12.8×10-8 13.70 14.-1 15.216.204205.0420=--xx 17.24 18.949 19.(1) 1 ; (2)2+a a 20.(1)21; (2)32 21.(1)50; (2)57.6度 (3)29222.(1)证明略; (2)平行,证明略23.21024.(1)证明略;(2)6 25.(1)y=-10x+300 ; (2)设超市每星期销售这种文具可获得利润为w 元,w=y(x-8)=-10(x-19)2+1210, 当x=19时,最高利润为1210元26.(1)-1;(2)①B (2,4)②过点C 作CG ⊥FB 的延长线于点G ,∵∠AOE+∠EAO=90°,∠FBO+∠CBG=90°,∠AOE=∠FBO ,∴∠EAO=∠CBG ,在△AEO 和△BGC 中,,∴△AEO ≌△BGC (AAS ), ∴CG=OE=,BG=AE=.∴x c =2﹣=,y c =4+=,∴点C (,), 设过A (﹣,)、B (2,4)两点的抛物线解析式为y=﹣x 2+bx+c ,由题意得,,解得,∴经过A 、B 两点的抛物线解析式为y=﹣x 2+3x+2,当x=时,y=﹣()2+3×+2=,所以点C 也在此抛物线上,故经过A 、B 、C 三点的抛物线解析式为y=﹣x 2+3x+2=﹣(x ﹣)2+. 平移方案:先将抛物线y=﹣x 2向右平移个单位,再向上平移个单位得到抛物线y=﹣(x。

2013年中考数学模拟试卷及答案

2013年中考数学模拟试卷及答案

2013年中考数学模拟试卷及答案 (总分150分,时间120分钟)一、选择题(本大题共有8小题,每小题3分,共24分)1.51-的相反数是( ) A . 51 B . 51- C . 5 D .5-2.有理数a 、b 在数轴上的位置如图所示,则b a +的值 ( )A .大于0B .小于0C .小于aD .大于b 3.下列运算中正确的是 ( ) A .2325a a a += B .22(2)(2)4a b a b a b +-=- C .23622a a a ⋅= D .222(2)4a b a b +=+4. 两个相似三角形的面积比是9:16,则这两个三角形的相似比是 ( )A .9:16B . 3:4C .9:4D .3:165.如图,每个小正方形的边长为1,A 、B 、C 是小正方形的顶点,则∠ABC 的度数为( ) A .90° B .60° C .45° D .30°6.如图,正六边形螺帽的边长是2cm ,这个扳手的开口a 的值应是 ( ) A .32 cm B .3cm C .332 cm D .1cm7.如图是某几何体的三视图及相关数据,则该几何体的侧面积是 ( )A .πab 21 B .πac 21C .πabD .πac 8.填在下面各正方形中的四个数之间都有相同的规律,根据此规律,m 的值是 ( )A .38B .52C .66D .74 二、填空题(本大题共有10小题,每小题3分,共30分) 0 2 8 4 2 4 6 22 4 6 844 m 6 b主视图 c 左视图 俯视图 a a 0 b10.使2-x 有意义的x 的取值范围是 .11.自上海世博会开幕以来,中国馆以其独特的造型吸引 了世人的目光.据预测,在会展期间,参观中国馆的人次数估计可达到14 900 000,此数用科学记数法表示是 . 12.上海世博会的某纪念品原价168元,连续两次降价a %后售价为128元.下列所列方程中正确的是13.小张和小李去练习射击,第一轮10发子弹打完后,两人的成绩如图所示.根据图中的信息,小张和小李两人中成绩较稳定的是 .14.若22=-b a ,则b a 486-+= .15.从1-9这九年自然数中任取一个,是2的倍数的概率是 . 16.如图,AB 是⊙O 的直径,CD 是弦,DAB ∠=48︒,则ACD ∠= ︒. 17.如图,已知梯形ABCD 中,AD ∥BC ,∠B =30°,∠C =60°,AD =4,AB =33,则下底BC 的长为 __________.18.如图,正方形纸片ABCD 的边长为8,将其沿EF 折叠,则图中①②③④四个三角形的周长之和为三、解答题(本大题共有10小题,共96分) 19.(本题满分8分)计算:(1)计算:(-1)2012-| -7 |+ 9 ×( 5 -π)0+( 1 5)-160°30°DC B A(2)化简:aa a a a -+-÷--2244)111(20.(本题满分8分)为增强学生的身体素质,教育行政部门规定学生每天参加户外活动的平均时间不少于1小时.为了解学生参加户外活动的情况,对部分学生参加户外活动的时间进行抽样调查,并将调查结果绘制作成如下两幅不完整的统计图,请你根据图中提供的信息解答下列问题:(1)在这次调查中共调查了多少名学生?(2)求户外活动时间为1.5小时的人数,并补充频数分布直方图;(3)求表示户外活动时间 1小时的扇形圆心角的度数; (4)本次调查中学生参加户外活动的平均时间是否符合要求?户外活动时间的众数和中位数是多少.21.(本题满分8分)有三张背面完全相同的卡片,它们的正面分别写上2、3、12,把它们的背面朝上洗匀后;小丽先从中抽取一张,然后小明从余下..的卡片中再抽取一张.(1)直接写出小丽取出的卡片恰好是3的概率;(2)小刚为他们设计了一个游戏规则:若两人抽取卡片上的数字之积是有理数,则小丽获胜;否则小明获胜.你认为这个游戏规则公平吗?若不公平,则对谁有利?请用画树状图或列表法进行分析说明.22.(本题满分8分)某商店需要购进甲、乙两种商品共160件,其进价和售价如下表:(注:获利=售价-进价)(1)若商店计划销售完这批商品后能获利1100元,问甲、乙两种商品应分别购进多少件?(2)若商店计划投入资金少于4300元,且销售完这批商品后获利多于1260元,请问有哪几种购货方案? 并直接写出其中获利最大的购货方案.D CB AO E 23.(本题满分10分)如图,O 为矩形ABCD 对角线的交点,DE ∥AC ,CE ∥BD .(1)试判断四边形OCED 的形状,并说明理由; (2)若AB =6,BC =8,求四边形OCED 的面积.24.(本题满分10分)小明家所在居民楼的对面有一座大厦AB ,AB =80米.为测量这座居民楼与大厦之间的距离,小明从自己家的窗户C 处测得大厦顶部A 的仰角为37°,大厦底部B 的俯角为48°.求小明家所在居民楼与大厦的距离CD 的长度.(结果保留整数)(参考数据:o o o o 33711sin37tan37sin 48tan48541010≈≈≈≈,,,)第25题 F EC B AB'C'25.(本题满分10分)如图,已知抛物线y =ax 2+bx +c (a ≠0)的对称轴为x =1,且抛物线经过A (—1,0)、C (0,—3)两点,与x 轴交于另一点B . (1)求这条抛物线所对应的函数关系式;(2)在抛物线的对称轴x =1上求一点M ,使点M 到点A 的距离与到点C 的距离之和最小,并求出此时点M 的坐标;(3)设点P 为抛物线的对称轴x =1上的一动点,求使∠PCB =90°的点P 的坐标.26.(本题满分10分)如图,Rt △AB 'C ' 是由Rt △ABC 绕点A 顺时针旋转得到的,连结CC ' 交斜边于点E ,CC ' 的延长线交BB ' 于点F .(1)证明:△ACE ∽△FBE ;(2)设∠ABC =α,∠CAC ' =β,试探索α、β满足什么关系时,△ACE 与△FBE 是全等三角形,并说明理由.27.(本题满分12分)甲、乙两辆汽车沿同一路线赶赴距出发地480千米的目的地,乙车比甲车晚出发2小时(从甲车出发时开始计时).图中折线OABC、线段DE分别表示甲、乙两车所行路程y(千米)与时间x(小时)之间的函数关系对应的图象(线段AB表示甲出发不足2小时因故停车检修).请根据图象所提供的信息,解决如下问题:(1)求乙车所行路程y与时间x的函数关系式;(2)求两车在途中第二次相遇时,它们距出发地的路程;(3)乙车出发多长时间,两车在途中第一次相遇?(写出解题过程)28.(本题满分12分)已知⊙O 1的半径为R ,周长为C .(1)在⊙O 1内任意作三条弦,其长分别是1l 、2l 、3l .求证:1l +2l +3l < C ; (2)如图,在直角坐标系x O y 中,设⊙O 1的圆心为O 1)(R R ,.①当直线l :)0(>+=b b x y 与⊙O 1相切时,求b 的值; ②当反比例函数)0(>=k xky参考答案一、选择题1. D 2.A 3. B 4. B 5. C 6. A 7. B 8.D 二、填空题9.-8 10.x ≥2 11.71049.1⨯. 12.128)% 1(1682=-a 13.小张 14.14 15.9416.42 17.10 18.32 三、解答题19.(1)原式=1-7+3+5=2.(2).解:()()22211442(1)1122a a a a a aa a a a a a --+--÷=⋅=----- 20.(1)调查人数=10÷ 20%=50(人);(2)户外活动时间为1.5小时的人数=50⨯24%=12(人); (3)表示户外活动时间1小时的扇形圆心角的度数=5020⨯360 o =144 o ; (4)户外活动的平均时间=18.150285.1121205.010=⨯+⨯+⨯+⨯(小时). ∵1.18>1 ,∴平均活动时间符合上级要求; 户外活动时间的众数和中位数均为1.21.(1)小丽取出的卡片恰好是3的概率为31(2)画树状图:∴共有6种等可能结果,其中积是有理数的有2种、不是有理数的有4种∴3162(==小丽获胜)P ,3264==(小明获胜)P ∴这个游戏不公平,对小明有利22.(1)设甲种商品应购进x 件,乙种商品应购进y 件.根据题意,得 1605101100.x y x y +=⎧⎨+= 解得:10060.x y =⎧⎨=答:甲种商品购进100件,乙种商品购进60件. (2)设甲种商品购进a 件,则乙种商品购进(160-a )件.根据题意,得1535(160)4300510(160)1260.a a a a +-<⎧⎨+->⎩解不等式组,得 65<a <68 . ∵a 为非负整数,∴a 取66,67. ∴ 160-a 相应取94,93.答:有两种构货方案,方案一:甲种商品购进66件,乙种商品购进94件;方案二:甲种商品购进67件,乙种商品购进93件.其中获利最大的是方案一.23.解:(1)四边形OCED 是菱形.∵DE ∥AC ,CE ∥BD ,∴四边形OCED 是平行四边形, 又 在矩形ABCD 中,OC =OD ,∴四边形OCED 是菱形. (2)连结OE .由菱形OCED 得:CD ⊥OE , ∴OE ∥BC 又 CE ∥BD ∴四边形BCEO 是平行四边形 ∴OE =BC =8∴S 四边形OCED =11862422OE CD ⋅=⨯⨯= 24.解:设CD = x .在Rt △ACD 中,tan37AD CD ︒=,则34AD x =,∴34AD x =. 在Rt △BCD 中,tan 48° =BD CD ,则1110BD x =,∴1110BD x =.∵AD +BD = AB ,∴31180410x x +=.解得:x ≈43.答:小明家所在居民楼与大厦的距离CD 大约是43米. 25.⑴设抛物线的解析式为y =ax 2+bx +c ,则有:⎪⎪⎩⎪⎪⎨⎧=--==+-1230ab c c b a 解得:⎪⎩⎪⎨⎧-=-==321c b a ,所以抛物线的解析式为y =x 2-2x -3. ⑵令x 2-2x -3=0,解得x 1=-1,x 2=3,所以B 点坐标为(3,0). 设直线BC 的解析式为y =kx +b, 则⎩⎨⎧-==+303b b k ,解得⎩⎨⎧-==31b k ,所以直线解析式是y =x -3.当x =1时,y =-2.所以M 点的坐标为(1,-2). ⑶方法一:要使∠PBC =90°,则直线PC 过点C ,且与BC 垂直, 又直线BC 的解析式为y =x -3,所以直线PC 的解析式为y =-x -3,当x =1时,y =-4, 所以P 点坐标为(1,-4). 方法二:设P 点坐标为(1,y ),则PC 2=12+(-3-y )2,BC 2=32+32;PB 2=22+y 2 由∠PBC =90°可知△PBC 是直角三角形,且PB 为斜边,则有PC 2+BC 2=PB 2.所以P 点坐标为(1,-4).26.(1)证明:∵Rt △AB 'C ' 是由Rt △ABC 绕点A 顺时针旋转得到的,∴AC =AC ',AB =AB ',∠CAB =∠C 'AB ' ∴∠CAC '=∠BAB '∴∠ACC '=∠ABB ' 又∠AEC =∠FEB ∴△ACE ∽△FBE(2)解:当2βα=时,△ACE ≌△FBE . 在△ACC '中,∵AC =AC ',∴180'180'9022CAC ACC βα︒-∠︒-∠===︒- 在Rt △ABC 中,∠ACC '+∠BCE =90°,即9090BCE α︒-+∠=︒,∴∠BCE =α ∵∠ABC =α, ∴∠ABC =∠BCE ∴CE =BE由(1)知:△ACE ∽△FBE ,∴△ACE ≌△FBE . 27.(1)设乙车所行路程y 与时间x 的函数关系式为11y k x b =+,把(2,0)和(10,480)代入,得11112010480k b k b +=⎧⎨+=⎩,解得1160120k b =⎧⎨=-⎩,y ∴与x 的函数关系式为60120y x =-.(2)由图可得,交点F 表示第二次相遇,F 点横坐标为6,此时606120240y =⨯-=,F ∴点坐标为(6,240), ∴两车在途中第二次相遇时,距出发地的路程为240千米.(3)设线段BC 对应的函数关系式为22y k x b =+,把(6,240)、(8,480)代入,得 222262408480k b k b +=⎧⎨+=⎩,解得22120480k b =⎧⎨=-⎩,∴y 与x 的函数关系式为120480y x =-.∴当 4.5x =时,120 4.548060y =⨯-=.∴点B 的纵坐标为60, AB Q 表示因故停车检修,∴交点P 的纵坐标为60.把60y =代入60120y x =-中,有6060120x =-,解得3x =, ∴交点P 的坐标为(3,60).Q 交点P 表示第一次相遇,∴乙车出发321-=小时,两车在途中第一次相遇.28.(1)证明:R l 21≤Θ,R l 22≤,R l 23≤.1l ∴+2l +3l C R R =⨯<⨯≤223π,因此,1l +2l +3l < C .(2)①如图,根据题意可知⊙O 1与与x 轴、y 轴分别相切,设直线l 与⊙O 1相切于点M ,则O 1M ⊥l ,过点O 1作直线NH ⊥x 轴,与l 交于点N ,与x 轴交于点H ,又∵直线l 与x 轴、y 轴分别交于点E (b -,0)、F (0,b∴OE =OF =b ,∴∠NEO =45o ,∴∠ENO 1=45o , 在Rt △O 1MN 中,O 1N =O 1M ÷sin 45o =R 2,∴点N 的坐标为N (R ,R R +2),把点N 坐标代入b x y +=得:b R R R +=+2,解得:R b 2=,②如图,设经过点O 、O 1的直线交⊙O 1于点A 、D ,则由已知,直线OO 1:x y =是圆与反比例函数图象的对称轴,当反比例函数xk y =的图象与⊙O 1直径AD 相交时(点A 、D 除外), 则反比例函数xk y =的图象与⊙O 1有两个交点. 过点A 作AB ⊥x 轴交x 轴于点B ,过O 1作O 1C ⊥x 轴于点C ,OO 1=O 1C ÷sin 45o =R 2,OA =R R +2,所以OB =AB =⋅OA sin 45o ==⋅+22)2(R R R R 22+, 因此点A 的坐标是A )22,22(R R R R ++,将点A 的坐标 代入k y =,解得:2)223(R k +=. 同理可求得点D 的坐标为D )22,22(R R R R --, 将点D 的坐标代入xk y =,解得: 2)223(R k -= 所以当反比例函数)0(>=k xk y 的图象与⊙O 1有两个交点时,k 的取值范围是:22)223()223(R k R +<<-。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2013年中考数学猜题试卷(本试卷共8大题,计23小题,满分150分)一、选择题(本大题共10小题,每小题4分,共40分.) 1.—3的绝对值是( )A .3B .—3C .13D .— 132.计算422()a a ÷的结果是( )A .2aB .5aC .6aD .7a3.若)(n m +∶n =5∶2,则m ∶n 的值是( )A .5∶2B .2∶3C . 2∶5D .3∶24.如图所示,下列选项中,正六棱柱的左视图是( )第3题图 A . B . C . D .5.阳光公司销售一种进价为21元的电子产品,按标价的九折销售,仍可获得20%,则这种电子产品的标价为( )A .26元B .27元C .28元D .29元6.分式方程131x x x x +=--的解为( ) A .1x = B .1x =- C .3x = D .3x =-7.如图,BD 是⊙O 的直径,∠CBD =30°,则∠A 的度数为( ) A .30° B .45° C .60° D .75° 8.估计2103112÷+⨯的运算结果应在( ) 第7题图 A .2到3之间 B .3到4之间 C .4到5之间 D .5到6之间 9.某游泳池的横截面如图所示,用一水管向池内持续注水,若单位时间内注入的水量保持不变,则在注水过程中,下列图象能反映深水区水深h 与注水时间t 关系的是( )A .B .C .D .10.已知二次函数2y ax bx c =++中,其函数y 与自变量x 之间的部分对应值如下表所示:x… 0 1 2 3 … y…5212…点A (1x ,1y )、B (2x ,2y )在函数的图象上,则当101x <<,223x <<时,1y 与2y 的大小关系正确的是t h O t h O t h O h tO 第9题图深 水 区浅水区B 60º 30º A .1y ≥2y B .12y y >C .12y y <D .1y ≤2y 二、填空题(本大题共4小题,每小题5分,共20分) 11.因式分解:a a 823-= .12.有一组数据如下:2,3,a ,5,6,它们的平均数是4,则这组数据的方差是 . 13.已知直线y =2x +k 和双曲线y =xk的一个交点的纵坐标为-4,则k 的值为 . 14.如图,菱形ABCD 中,AB =2 ,∠C =60°,菱形ABCD 在直线l 上向右作无滑动的翻滚,每绕着一个顶点旋转60°叫一次操作,则经过36次这样的操作菱形中心O 所经过的路径总长为(结果保留π) . 三、(本大题共2小题,每小题8分,满分16分)15.解不等式组:331213(1)8x x x x-⎧+>+⎪⎨⎪---⎩,≤并在数轴上把解集表示出来.16.已知一等腰三角形的两边长x ,y 满足方程组⎩⎨⎧=+=-,823,32y x y x 求这个等腰三角形的周长.四、(本大题共2小题,每小题8分,满分16分)17.某地震救援队探测出某建筑物废墟下方点C 处有生命迹象,已知废墟一侧地面上探测点 A 、B 相距4m ,探测线与地面的夹角分别是30º和60º,试确定生命所在点C 的深度(结果精确到0.1m ,参考数据:2≈1.414,3≈1.732).18.如图,在网格中、建立了平面直角坐标系,每个小正方形的边长均为1个单位长度,将第14题图四边形ABCD 绕坐标原点O 按顺时针方向旋转180°后得到四边形A 1B 1C 1D 1. (1)写出点D 1的坐标_________,点D 旋转到点D 1所经过的路线长__________; (2)请你在△ACD 的三个内角中任选二个锐角,若你所选的锐角..是________,则它所对应的正弦函数值是_________;(3)将四边形A 1B 1C 1D 1平移,得到四边形A 2B 2C 2D 2,若点D 2(4,5),画出平移后的图形.五、(本大题共2小题,每小题10分,满分20分)19.城际铁路正在紧张有序地建设中.在建成通车前,进行了社会需求调查,得到一列火车一天往返次数m 与该列车每次拖挂车厢节数n 的部分数据如下:车厢节数n 4 7 10 往返次数m16104(1)请你根据上表数据,在三个函数模型:①y =kx +b (k 、b 为常数,k ≠0);②y = kx(k为常数,k ≠0);③y =ax 2+bx +c (a 、b 、c 为常数,a ≠0)中,选取一个适合的函数模型, 求出的m 关于n 的函数关系式是m = (不写n 的取值范围);(2)结合你求出的函数,探究一列火车每次挂多少节车厢,一天往返多少次时,一天的设计运营人数Q 最多(每节车厢载客量设定为常数p ).20.已知在一个不透明的口袋中有4个形状、大小、材质完全相同的球,其中1个红色球,3个黄色球.(1)从口袋中随机取出一个球(不放回),接着再取出一个球.请用树形图或列表的方法求取出的两个都是黄色球的概率;(2)小明往该口袋中又放入红色球和黄色球若干个,一段时间后他记不清具体放入红色球和黄色球的个数,只记得一种球的个数比另一种球的个数多l ,且从口E P DCB A E PDCB A 袋中取出一个黄色球的概率为23,请问小明又放人该口袋中红色球和黄色球各多少个?六、(本题满分12分)21.已知:正方形ABCD 的边长为1,点P 为对角线BD 上一点,连接CP . (1)如图1,当BP =BC 时,作PE ⊥PC ,交AB 边于E ,求BE 的长; (2)如图2,当DP =DC 时,作PE ⊥PC ,交BC 边于E ,求BE 的长.图1 图2七、(本题满分12分)22.如图,一面利用墙,用篱笆围成的矩形花圃ABCD 的面积为S m 2,平行于墙的BC 边长为x m .(1)若墙可利用的最大长度为10m ,篱笆长为24m ,花圃中间用一道篱笆隔成两个小矩形,求S 与x 之间的函数关系式.(2)在(1)的条件下,围成的花圃的面积为45m 2时,求AB 的长.能否围成面积比45m 2更大的花圃?如果能,应该怎样围?如果不能,请说明理由.(3)若墙可利用最大长度为40m ,篱笆长77m ,中间用n 道篱笆隔成小矩形,且当这些小矩形为正方形和x 为正整数时,请直接写出一组满足条件的x 、n 的值.八、(本题满分14分)A D BCx A BD C …图1图2xDC BA21O O DCBA23.我们把既有外接圆又有内切圆的四边形称为双圆四边形,如图1,四边形ABCD 是双圆四边形,其外心为O 1,内心为O 2.(1)在平行四边形、矩形、菱形、正方形、等腰梯形中,双圆四边形有 个; (2)如图2,在四边形ABCD 中,已知:∠B =∠D =90°,AB =AD ,问:这个四边形是否是双圆四边形?如果是,请给出证明;如果不是,请说明理由;(3)如图3,如果双圆四边形ABCD 的外心与内心重合于点O ,试判定这个四边形的形状,并说明理由;参考答案一、选择题(本大题共10小题,每小题4分,共40分)1.A 2.C 3.D 4.B 5.C 6.D 7.C 8.C 9.A 10.B 二、填空题(本大题共4小题,每小题5分,共20分) 11.)2)(2(2-+a a a 12.2 13.-8 14.π)438(+ 三、(本大题共2小题,每小题8分,满分16分) 15.解不等式23-x >x +1,得x <1, 解不等式)1(31--x ≤x -8,得x ≥-2,所以,原不等式组的解集是-2≤x <1.它的解集在数轴上表示为:16.解方程组⎩⎨⎧=+=-,823,32y x y x 得⎩⎨⎧==.1,2y x所以,等腰三角形的两边长为2,1.若腰长为1,底边长为2,由1+1=2知,这样的三角形不存在.若腰长为2,底边长为1,则三角形的周长为5.所以,这个等腰三角形的周长为5. 四、(本大题共2小题,每小题8分,满分16分) 17.过点C 作CD ⊥AB ,垂足为D .∵∠CAB =30°,∠CBD =60°, ∴∠BCA =30°=∠CAB ,∴CB =AB =4. 在Rt △CBD 中,CD =BCsin60°=45.33223≈=⨯(米). 答:生命所在点C 的深度约为3.5米. 18.解:(1)(3,-l ),10π;(2)∠ACD ,22 (或∠DAC ,55) (3)画出正确图形五、(本大题共2小题,每小题10分,满分20分)x 3 2 10 0-1 -3 -219.(1)242+-=n m ; …………………………………………………………4分 (2)根据题意,一列火车载客人数为np ,则Q 与n 的函数关系式为Q =mnp =pn pn np n 242)242(2+-=⨯+-, ………………………6分 配方,得Q =p n p 72)6(22+--. ∵ -2p <0,∴ 当n =6时,Q 的值最大, ……………………………………8分 此时m =-2×6+24=12.答:一列火车每次挂6节车厢,一天往返12次时,一天设计运营人数Q最多.……………………………………10分 20.(1)画图略,……………………………………………………………………2分P (两个都是黄色球)=12; …………………………………………4分 (2)∵一种球的个数比另一种球的个数多l 。

∴又放入袋中的红球的个数只有两种可能.① 若小明又放入红色球m 个,则放入黄色球为(1)m +个,∴42523m m +=+,则2m =。

……………………7分② 若又放入红色球(1)m +个,则放入黄色球为m 个.则32523m m +=+,则1m =-(舍去)∴小明又放入红色球2个,则放入黄色球为3个. ……………………10分六、(本题满分12分)21.(1)∵四边形ABCD 是正方形,∴∠ABD =∠BDC =45°,∠BCP +∠DCP =90°, ∵PE ⊥PC ,∴∠BPE +∠BPC =90°, ∵BP =BC ,∴∠BPC =∠BCP , ∴∠BPE =∠DCP , 又BP =BC =DC , ∴△BPE ≌△DCP , ∴BE =PD .∵BC =CD =1,∴BD =2,又BP =BC =1,∴BE =PD =BD -BP =12-.………………………………6分 (2)∵BC =CD =DP =1, ∴BD =2,PB =12-.∵PE ⊥PC ,∴∠EPC =90°,∴∠BPE +∠DPC =90°. ∵DP =DC ,∴∠DPC =∠DCP , 又∠BCP +∠DCP =90°,∴∠BPE =∠BCP ,又∠PBE =∠CBP , ∴△BPE ≌△BCP ,∴BPBEBC BP =,∴2231)12(22-=-==BC BP BE .……………………12分 七、(本题满分12分)22.(1)x x x x S 8313242+-=⨯-=(0<x ≤10) ………………………………2分 (2)依题意,当S =45m 2时,有458312=+-x x ,整理,得0135242=+-x x ,解得 91=x ,152=x >10(不合题意,舍去).所以,AB =5)924(31=-m . …………………………………………5分 将(1)中的二次函数配方,得48)12(3183122+--=+-=x x x S , ∵31-<0,对称轴为x =12, ∴当0<x ≤10时,S 随着x 的增大而增大, ∴当x =10时,S 的值最大,最大值为3246>45. 所以,当9<x ≤10时,能围成面积比45m 2的花圃.…………………………9分另解:作出函数x x S 8312+-=(0<x ≤10)的图象,由图象可知, 当9<x ≤10时,45<S ≤3246.所以,当9<x ≤10时,能围成面积比45m 2的花圃. …………………………9分(3)x =33,n =2(或x =35,n =4;x =38,n =37).…………………………12分理由:依题意,有1277+=+-n xn x , 所以3277772+-=n x ,于是2n +3=7,11,77,即n =2,4,37,相应的x 值为33,35,38. 八、(本题满分14分)23.(1)1 ………………………………………………2分(2)四边形ABCD 是双圆四边形. ……………………………………3分 证明:设AC 的中点为O 1, ∵∠ABC =∠ADC =90°,∴O 1B =O 1D =AC 21=O 1A =O 1C , ∴A 、B 、C 、D 在以O 1为圆心,以O 1A 为半径的圆上. ……………………5分21HGF EO O DB CA 作∠ABC 的平分线,交AC 于O 2,分别作O 2E ⊥AB ,O 2F ⊥BC ,O 2G ⊥CD ,O 2H⊥AD ,E 、F 、G 、H 是垂足,O 2E =O 2F .在Rt △ABC 和Rt △ADC 中, ∵AB =AD ,AC =AC ,∴Rt △ABC ≌Rt △ADC , ∴∠BAC =∠DAC ,∠BCA =∠DCA ,∴O 2E =O 2H ,O 2G =O 2F ,即O 2E =O 2F =O 2G =O 2H ,∴以O 2为圆心,以O 2E 为半径的圆与四边形ABCD 的各边都相切.故四边形ABCD 是双圆四边形. …………………………………10分(3)四边形ABCD 是正方形.理由如下: ∵小圆是四边形ABCD 的内切圆,∴圆心O 到AB 、BC 、CD 、DA 的距离相等. ……………………………12分 又∵AB 、BC 、CD 、DA 是大圆的弦,∴AB =BC =CD=DA , ∴四边形ABCD 是正方形. …………………………………………14分⌒ ⌒ ⌒ ⌒。

相关文档
最新文档