(新课标)2014高考物理一轮复习课时练42
2014高考物理一轮(全套)答案
参考答案45分钟单元能力训练卷(一)1.C [解析] 由于x =v 2t =82×1 m =4 m<5.9 m ,故刹车试验符合规定.2.B [解析] 无论加速度正在增大还是正在减小,只要加速度与速度同向,物体速度就一直增大,当加速度减小到零时,物体速度达到最大,速度不再增大,但位移会继续增大,本题只有选项B 正确.3.A [解析] 甲车中的乘客以甲车为参考系,相当于甲车静止不动,乙车以初速度v 0向西做匀减速运动,速度减为零之后,再向东做匀加速运动,A 正确;乙车中的乘客以乙车为参考系,相当于乙车静止不动,甲车以初速度v 0向东做匀减速运动,速度减为零之后,再向西做匀加速运动,B 错误;以地面为参考系,当两车速度相等时,距离最远,C 、D 错误.4.C [解析] 质点甲在第1 s 内向负方向运动,其他三个质点在第1 s 内均向正方向运动,而平均速度是矢量,选项A 错误.质点丙在前2 s 内一直向正方向运动,不可能回到出发点,选项B 错误.第2 s 内,质点甲、丙、丁的速度大小都在增大,选项C 正确.前2 s 内质点乙、丙都向正方向运动,且第2 s 末位移相同,选项D 错误.5.C [解析] 根据v -t 图象,在0~2 s 内和4 s ~6 s 内,图线位于横轴上方,这表示物体的运动方向与规定的正方向相同,2 s ~4 s 内,图线位于横轴下方,表示物体运动的方向与规定的正方向相反.在第1 s 末前后瞬间,图线都位于横轴上方,表示物体的运动方向都与正方向相同,选项A 错误;在v -t 图象中,图线的斜率表示加速度,物体在第2 s 内和第4 s 内对应图线的斜率不同,所以加速度不同,选项B 错误;根据“面积法”,图线与横轴在4 s 内所围的面积表示位移为0,故物体在4 s 末返回出发点,选项C 正确;物体在5 s 末仍然沿正方向远离出发点运动,只不过开始做减速运动,到6 s 末速度降为0,所以物体在6 s 末离出发点最远,且最大位移为1 m ,选项D 错误.6.CD [解析] A 、B 两个物体的速度均为正值,故运动方向相同,选项A 错误;t =4 s 时,A 、B 两个物体的速度大小相同,相距最远,选项B 错误,选项C 正确;在相遇前,A 、B 两个物体的最远距离为(15-5)×4×12m =20 m ,选项D 正确.7.AD [解析] 小盒子B 向被测物体发出短暂的超声波脉冲后,经过12t 1时间到达被测物体并被反射折回,再经过12t 1时间回到小盒子B ,在该过程中,超声波经过的路程为2x 1,所以超声波的速度为v 声=2x 1t 1,选项A 正确;从小盒子B 发射超声波开始计时,经时间Δt 0再次发射超声波脉冲,经过12(t 2-Δt 0)时间到达被测物体并被反射折回,再经过12(t 2-Δt 0)回到小盒子B ,该过程中,超声波经过的路程为2x 2,所以,超声波的速度为v 声=2x 2t 2-Δt 0,选项B 错误;被测物体在12t 1时刻第一次接收到超声波,在Δt 0+12(t 2-Δt 0)即12(t 2+Δt 0)时刻第二次接收到超声波,该过程中被测物体发生的位移为x 2-x 1,所以物体的平均速度为v =x 2-x 112(t 2+Δt 0)-12t 1=2(x 2-x 1)t 2-t 1+Δt 0,故选项C 错误,选项D 正确.8.Ⅰ.(1)3.0×10-2 9×10-2 (2)能 利用(x 6-x 4)-(x 4-x 2)=4aT 2可以求出位置4的具体位置(其他方法合理均可)[解析] 从图中读出位置5、6之间的距离为37.5 cm -24.0 cm =13.5 cm ,位置2、3之间的距离为6.0 cm -1.5 cm =4.5 cm ,由x 56-x 23=3aT 2,求出a =3.0×10-2 m/s 2;位置4对应的速度为v 4=x 352T =9×10-2 m/s ;欲求4的具体位置,可以采用逐差法利用(x 6-x 4)-(x 4-x 2)=4aT 2求解.Ⅱ.(1)D (2)v 22—h 速度平方的二分之一 重物下落的高度[解析] (1)打点计时器需接交流电源;重力加速度与物体的质量无关,所以不要天平和砝码;计算速度需要测相邻计数点间的距离,需要毫米刻度尺.(2)由公式v 2=2gh ,如绘出v 22—h 图象,其斜率也等于重力加速度.9.0.8 s [解析] 设货车启动后经过时间t 1两车开始错车,则有 x 1+x 2=180 m ,其中x 1=12at 21,x 2=vt 1,联立解得t 1=10 s.设货车从开始运动到两车错车结束所用时间为t 2,在数值上有 x 1′+x 2′=(180+10+12) m =202 m. 其中x 1′=12at 22,x 2′=vt 2,联立解得t 2=10.8 s.故两车错车的时间Δt =t 2-t 1=0.8 s.10.4 m/s [解析] 设小球甲在斜面上运动的加速度为a 1,运动时间为t 1,运动到B 处时的速度为v 1,从B 处到与小球乙相碰所用时间为t 2,则a 1=gsin30°=5 m/s 2由hsin30°=12a 1t 21,得t 1=4ha 1=0.2 s 则t 2=t -t 1=0.8 s ,v 1=a 1t 1=1 m/s 小球乙运动的加速度a 2=μg =2 m/s 2 小球甲、乙相遇时满足:v 0t -12a 2t 2+v 1t 2=L代入数据解得:v 0=4 m/s.45分钟单元能力训练卷(二)1.A [解析] 取滑块为研究对象,受力分析如图所示,由平衡条件得Nsin θ=mg ,即N =mgsin θ,选项C 、D 错误;由Ftan θ=mg ,得F =mgtan θ,选项A 正确,选项B 错误.2.A [解析] 根据f =μF N ,物体与桌面间的滑动摩擦力和最大静摩擦力均为40 N ,故当用15 N 、30 N 、80 N 的水平拉力拉物体时,物体受到的摩擦力依次为15 N 、30 N 、40 N ,A 正确.3.A [解析] 木块A 和木板B 均处于平衡状态,受力分析后可以知道,地面与木板B 之间没有摩擦力,A 和B 间的滑动摩擦力等于F ,A 正确,B 错误;若木板以2v 的速度运动或用力2F 拉木板B ,木块A 受到的滑动摩擦力为F ,C 、D 错误.4.C [解析] 如图所示,对C 点进行受力分析,由平衡条件可知,绳CD 对C 点的拉力F CD =mgtan30°,对D 点进行受力分析,绳CD 对D 点的拉力F 2=F CD =mgtan30°,F 1方向一定,则当F 3垂直于绳BD 时,F 3最小,由几何关系可知,F 3=F CD cos30°=12mg.5.B [解析] 对球受力分析如图所示,球受重力G 、墙对球的支持力N 1′和板对球的支持力N 2′而平衡.作出N 1′和N 2′的合力F ,它与G 等大反向.在板BC 逐渐放至水平的过程中,N 1′的方向不变,大小逐渐减小,N 2′的方向发生变化,大小也逐渐减小,如图所示,由牛顿第三定律可知:N 1=N 1′,N 2=N 2′.选项B 正确.6.BD [解析] 木块A 、B 分别受弹簧的弹力为F =kx =5 N ,则用F =7 N 的水平力作用在木块A 上后,A 受水平向左的静摩擦力为2 N ,选项A 、C 错误,选项B 正确;木块在B 水平方向上只受弹簧的弹力和地面的静摩擦力,二者等大反向,即木块B 受到静摩擦力为5 N ,选项D 正确.7.BC [解析] 由图乙可知,物块A 沿斜面匀速下滑,故物块A 一定受到重力、斜面对A 的支持力和摩擦力三个力的作用,A 错误,B 正确;以A 、B 为一个系统,由于系统在水平方向上无加速度,水平方向合外力必定为零,故地面对斜面体的作用力竖直向上,C 正确,D 错误.8.Ⅰ.(1)AB (2)C [解析] (1)本实验中应以所研究的一根弹簧为实验对象,在弹性限度内通过增减钩码的数目来改变对弹簧的拉力,从而探究弹力与弹簧伸长的关系,A 、B 正确,C 、D 错误.(2)考虑弹簧自身重力的影响,当不挂钩码时,弹簧的伸长量x>0,C 正确.Ⅱ.(1)④⑤①③② (2)ABD[解析] (1)做该实验的过程中应该首先将三根橡皮条拴在图钉上,这样便于测橡皮条的原长,之后就要固定两个图钉拉第三个图钉到适当的位置进行实验,把第三个图钉也固定好后就可测每根橡皮条的长度并计算出伸长量,最后按照胡克定律转换成力作出力的图示进行实验研究,所以正确的实验步骤是④⑤①③②.(2)该实验的关键是应用三个共点力平衡的推论进行实验原理的改进,应用胡克定律将测量力的大小转换为测量橡皮条的长度,选项A 、B 正确;任何实验都有误差,误差是不可避免的,不能因为有误差就把实验完全否定,选项C 错误;实验的误差有系统误差和偶然误差,三根橡皮条不能做到粗细、长短完全相同,是该实验误差的主要来源之一,选项D 正确.9.52[解析] 平衡后绳圈c 受力如图所示,有F 1=m 2g F 2=m 1g由图中几何关系及平衡条件可知 F 2F 1=l 2+⎝⎛⎭⎫l 22l=52解得m 1m 2=52.10. (1)100 N (2)200 N[解析] (1)对A 进行受力分析,可知A 受到四个力的作用,分解绳的拉力,根据平衡条件可得N 1=m A g +Tsin θ, f 1=Tcos θ, 其中f 1=μ1N 1解得T =μm A gcos θ-μ1sin θ=100 N.(2)对B 进行受力分析,可知B 受6个力的作用 地面对B 的支持力N 2=m B g +N 1, 而N 1=m A g +Tsin θ=160 N 故拉力F =μ2N 2+μ1N 1=200 N.45分钟单元能力训练卷(三)1.C [解析] 物体在不受外力作用时保持原有运动状态不变的性质叫惯性,故牛顿第一定律又叫惯性定律,A 正确.牛顿运动定律都是在宏观、低速的情况下得出的结论,在微观、高速的情况下不成立,B 正确.牛顿第一定律说明了两点含义,一是所有物体都有惯性,二是物体不受力时的运动状态是静止或匀速直线运动,牛顿第二定律并不能完全包含这两点意义,C 错误.伽利略的理想实验是牛顿第一定律的基础,D 正确.2.C [解析] 相同大小的力作用在不同的物体上产生的效果往往不同,故不能从效果上去比较作用力与反作用力的大小关系,选项C 正确.3.B [解析] 物体与地面间最大静摩擦力F f =μmg =0.2×2×10 N =4 N .由题给F -t 图象知,0~3 s 内,F =4 N ,说明物体在这段时间内保持静止不动;3~6 s 内,F =8 N ,说明物体做匀加速运动,加速度a =F -fm =2 m/s 2;6 s 末物体的速度v =at =2×3 m/s =6 m/s ;在6~9 s 内,物体以6 m/s 的速度做匀速运动;9~12 s 内,物体以2 m/s 2的加速度做匀加速运动.作出v -t 图象如图所示,故0~12 s 内的位移x =12×6×3 m +6×3 m +12×(6+12)×3m =54 m.4.D [解析] 当电梯静止时,弹簧被压缩了x ,说明弹簧弹力kx =mg ;弹簧又被继续压缩了x 10,弹簧弹力为1.1mg ,根据牛顿第二定律有1.1mg -mg =ma ,电梯的加速度为g10,且方向是向上的,电梯处于超重状态,符合条件的只有D. 5.D [解析] 用水平力F 将B 球向左推压缩弹簧,平衡后弹簧弹力为F.突然将水平力F 撤去,在这一瞬间,B 球的速度为零,加速度为Fm,选项D 正确.6.BD [解析] 小煤块刚放上传送带后,加速度a =μg =4 m/s 2,故小煤块加速到与传送带同速所用的时间为t 1=v 0a =0.5 s ,此时小煤块运动的位移x 1=v 02t 1=0.5 m ,而传送带的位移为x 2=v 0t 1=1 m ,故小煤块在传送带上的划痕长度为l =x 2-x 1=0.5 m ,C 错误,D 正确;之后小煤块匀速运动,故运动到B 所用的时间t 2=x -x 1v 0=1.75 s ,故小煤块从A 运动到B 所用的时间t =t 1+t 2=2.25 s ,A 错误,B 正确.7.BD [解析] 由速度图象可得,在0~2 s 内,物体做匀加速运动,加速度a =ΔvΔt =0.5m/s 2,2 s 后,物体做匀速运动,合外力为零,即推力等于阻力,故0~2 s 内的合外力F 合=21.5 N -20 N =1.5 N ,由牛顿第二定律可得:m =F 合a =1.50.5 kg =3 kg ,选项A 错误;由匀速运动时F =mgsin α+μmg cos α,解得:μ=39,选项B 正确;撤去推力F 后,物体先做匀减速运动到速度为零,之后所受的合外力为F 合′=mgsin α-μmg cos α=10 N>0,所以物体将下滑,下滑时的加速度为a′=F 合′m =103m/s 2,选项C 错误,选项D 正确.8.Ⅰ.(1)用交流电源;木板右侧垫起以平衡摩擦力;小车应放在靠近打点计时器处;细线应与木板平行(任写两条即可) (2)4.0[解析] (1)“验证牛顿第二定律”的实验中,通过打点计时器测量加速度,而打点计时器需要使用交流电源;小车运动中受到摩擦力,故需要使木板形成斜面以平衡摩擦力;小车应放在靠近打点计时器处.(2)小车运动的加速度a =(x 6+x 5+x 4)-(x 3+x 2+x 1)9(2T )2=4.0 m/s 2. Ⅱ.(1)如图所示 (2)0.2[解析] (1)由a =(x 3+x 4)-(x 1+x 2)4T 2可得,5条纸带对应的加速度分别为:a 1=0.25m/s 2,a 2=0.49 m/s 2,a 3=0.75 m/s 2,a 4=0.99 m/s 2,a 5=1.26 m/s 2,在a —F 坐标系中描点连线.(2)由牛顿第二定律知,F =ma ,m =F a =1k ,其中k 为a —F 图线的斜率,由图可得k =5,故m=0.2 kg.9.(1)1.0 m/s 2(2)0.25[解析] (1)根据运动学公式有:s =12at 2,解得a =2s t 2=2×0.51.02 m/s 2=1.0 m/s 2. (2)物体运动过程受力如图所示.根据胡克定律有F =kx =200×0.9×10-2 N =1.8 N 根据牛顿第二定律有 F -f -mgsin37°=ma则f =F -mgsin37°-ma =1.8 N -0.2×10×0.6 N -0.2×1.0 N =0.4 N 又N =mgcos37°=0.2×10×0.8 N =1.6 N 根据滑动摩擦力公式f =μN 得: μ=f N =0.41.6=0.25.10.(1)3 s (2)26 N[解析] (1)对于B,在未离开A时,其加速度为a B1=μ1mgm=1 m/s2设经过时间t1后B离开A,离开A后B的加速度为a B2=-μ2mgm=-2 m/s2设A从B下抽出瞬间B的速度为v B,有v B=a B1t112a B1t 21+v2B-2a B2=s联立解得t1=2 s则t2=v B-a B2=1 s所以B运动的时间是t=t1+t2=3 s(2)设A的加速度为a A,则根据相对运动的位移关系得12a A t 21-12a B1t21=L-s解得a A=2 m/s2根据牛顿第二定律得F-μ1mg-μ2(m+M)g=Ma A解得:F=26 N.45分钟滚动复习训练卷(一)1.C[解析] 小球受重力和向上的弹力,在平衡位置上方,F合=mg-F弹,且弹力逐渐增大,合力减小,加速度减小但方向一直向下,速度增大;在平衡位置下方,F合=F弹-mg,且弹力继续增大,合力增大,加速度增大但方向向上,速度减小.2.D[解析] 对物块进行受力分析可知,由于初始状态弹簧被拉伸,所以物块受到的摩擦力水平向左,当倾角逐渐增大时,物块所受重力沿斜面方向的分力逐渐增大,所以摩擦力先逐渐减小,弹力与重力沿斜面方向的分力平衡时,摩擦力变为0;当倾角继续增大时,摩擦力向上且逐渐增大,故选项D正确.3.C[解析] 若绳对B的拉力恰好与B的重力沿斜面向下的分力平衡,则B与C间的摩擦力为零,A项错误;将B和C看成一个整体,则B和C受到细绳向右上方的拉力作用,故C有向右滑动的趋势,一定受到地面向左的摩擦力,B项错误,C项正确;将细绳剪断,若B依然静止在斜面上,利用整体法判断,B、C整体在水平方向不受其他外力作用,处于平衡状态,则地面对C的摩擦力为0,D项错误.4.A[解析] 若摩擦力与拉力同向,则F+f=ma b,f=ma a,解得F=f=0.1 N;若摩擦力与拉力反向,则f-F=ma a,f=ma b,解得f=0.2 N,F=0.1 N,A错误,B、C、D正确.5.C[解析] 由于A、B之间的最大静摩擦力F1大于B、C之间的最大静摩擦力F2,当外力F小于F2时,A、B静止不动;当F大于F2时,A、B一起加速运动,由牛顿第二定律有:F-F2=(m A+m B)a,由于F逐渐增大,故加速度逐渐增大,对木板,当其最大加速度a m=F1-F2m B,此时F=F1+m Am B(F1-F2);当F再增大时,A、B即开始相对滑动,对木板B有:F 1-F 2=m B a ,此后木板B 做匀变速直线运动,选项C 正确.6.CD [解析] v -t 图象描述速度随时间变化的规律,并不代表运动轨迹,0~1 s 内物体速度方向始终为正方向,所以物体是做正向的直线运动,选项A 错误;1~2 s 内物体的速度为正,方向应向右,速度大小不断减小,选项B 错误;1~3 s 内物体的加速度为-4 m/s 2,表示加速度方向向左,大小为4 m/s 2,选项C 正确;v -t 图象中图象与坐标轴所围“面积”代表位移,时间轴上方的面积明显大于下方的面积,故物体的总位移为正,方向向右,物体位于出发点右方,选项D 正确.7.AC [解析] 车减速上坡,其加速度沿斜面向下,将其加速度正交分解为竖直向下和水平向左的加速度,故乘客处于失重状态,受到水平向左的摩擦力,受到的合力沿斜面向下,A 正确,B 、D 错误;因乘客在上坡,故重力做负功,重力势能增加,C 正确.8.(1)C (2)打点计时器与纸带间存在摩擦[解析] (1)处理纸带求加速度,一定要知道计数点间的距离,故要有米尺;打点计时器就是测量时间的工具,故不需要秒表;重力加速度的值和物体的质量无关,故不需要天平.(2)加速度小了,说明物体受到了阻力作用,据此说一条理由就行.9.(1)图略 (2)正比例关系 (3)平衡摩擦力时木板抬得过高 没有平衡摩擦力或平衡摩擦力不够[解析] (1)若a 与F 成正比,则图象是一条过原点的直线.同时,因实验中不可避免出现误差,所以在误差允许的范围内图象是一条过原点的直线即可.连线时应使尽可能多的点在直线上,不在直线上的点应大致对称地分布在直线两侧,离直线较远的点应视为错误数据,不予考虑.(2)由图可知a 与F 的关系是正比例关系.(3)图中甲在纵轴上有截距,说明绳对小车拉力为零时小车就有加速度a 0,可能是平衡摩擦力过度所致.乙在横轴上有截距,可能是实验前没有平衡摩擦力或平衡摩擦力不够.10. (1)1.5 m/s 2 1 m/s 2 0.5 m/s 2 (2)3∶2 (3)20 m[解析] (1)由v -t 图象可求出,物块冲上木板后做匀减速直线运动的加速度大小a 1=10-44 m/s 2=1.5 m/s 2,木板开始做匀加速直线运动的加速度大小a 2=4-04 m/s 2=1 m/s 2,物块和木板达到共同速度后一起做匀减速运动的加速度大小a 3=4-08m/s 2=0.5 m/s 2.(2)对物块冲上木板的减速阶段有 μ1mg =ma 1对木板在水平地面上的加速阶段有 μ1mg -μ2(m +M)g =Ma 2对物块和木板达到共同速度后的减速阶段有 μ2(m +M)g =(M +m)a 3 联立解得m M =32.(3)由v -t 图可以看出,物块相对于木板滑行的距离Δx 对应图中△ABC 的面积,故Δx =10×4×12m =20 m.45分钟单元能力训练卷(四)1.D2.B [解析] 轨道对小球的支持力始终与小球运动方向垂直,轨道对小球不做功;小球从P 运动到Q 的过程中,重力做正功,动能增大,可判断v P <v Q ;根据v =ωr ,又r P >r Q ,可知ωP <ωQ ,A 错误,B 正确.根据a =v 2r ,由v P <v Q ,r P >r Q ,可知a P <a Q ,C 错误.在最高点有mg +F N =ma ,即F N =ma -mg ,因a P <a Q ,所以F Q >F P ,D 错误.3.B [解析] 由开普勒第三定律a 3T 2=k 可知,只要椭圆轨道的半长轴与圆轨道的半径相等,它们的周期就是相同的,A 项错误;沿椭圆轨道运行的一颗卫星在关于长轴(或短轴)对称的点上时,线速度的大小是相同的,B 项正确;同步卫星的轨道半径、周期、线速度等都是相同的,C 项错误;经过同一点的卫星可以在不同的轨道平面内,D 项错误.4.A [解析] 飞镖做平抛运动,运动到靶子处的时间为t =xv ,当v ≥50 m/s 时,t ≤0.1 s ,飞镖下落高度为h =12gt 2≤5 cm ,落在第6环以内,A 错误,B 正确;若要击中第10环的圆内,则飞镖运动的时间t ≤2R 0g=0.002 s ,所以飞镖的速度v 至少应为505m/s ,C 正确;同理,若要击中靶子,则飞镖运动的时间t ≤2R 1g=0.02 s ,所以飞镖的速度v 至少应为25 2 m/s ,D 正确.5.C [解析] 若使质点到达斜面时位移最小,则质点的位移应垂直斜面,如图所示,有x =v 0t ,y =12gt 2,且tan θ=x y =v 0t 12gt2=2v 0gt ,所以t =2v 0gtan θ=2v 0gtan37°=8v 03g ,选项C 正确.6.BD [解析] 滑雪者开始时做平抛运动,水平方向做匀速运动,竖直方向做自由落体运动,加速度为g ,落到斜坡后,滑雪者沿斜坡以gsin30°的加速度匀加速下滑,将运动分解水平方向做匀加速运动,竖直方向做匀加速运动,加速度a 1=gsin30°·sin30°=14g ,故选项A 、C 错误,选项B 、D 正确.7. AC [解析] “空间站”运行的加速度及其所在高度处的重力加速度均完全由其所受的万有引力提供,选项A 正确;由G Mm R 2=m v 2R得v =GMR,运动速度与轨道半径的平方根成反比,并非与离地高度的平方根成反比,选项B 错误;由G MmR 2=m ⎝ ⎛⎭⎪⎫2πT 2R 得T =2πRRGM,所以“空间站”运行周期小于地球自转的周期,站在地球赤道上的人观察到“空间站”向东运动,选项C 正确;“空间站”内的宇航员随“空间站”做匀速圆周运动,处于非平衡状态,选项D 错误.8.Ⅰ.2πnr 1r 3r 2[解析] 前进速度即为Ⅲ轮的线速度,因为同一个轮上的角速度相等,而同一条传送链上的线速度大小相等,所以可得:ω1r 1=ω2r 2,ω2=ω3,又有ω1=2πn ,v =ω3r 3,所以v =2πnr 1r 3r 2.Ⅱ.34∶1 1∶316 [解析] 同步卫星的周期为T 1=24 h .由开普勒第三定律,有R 31T 21=R 32T 22,得R 1R 2=341;卫星做匀速圆周运动时由万有引力充当向心力,G Mm R 2=ma ,得a 1a 2=R 22R 21=1316. 9.(1)2gl (2)12l g[解析] (1)飞镖被投掷后做平抛运动.从掷出飞镖到击中气球,经过时间t 1=lv 0=l g此时飞镖在竖直方向上的分速度 v y =gt 1=gl故此时飞镖的速度大小 v =v 20+v 2y =2gl.(2)飞镖从掷出到击中气球过程中下降的高度h 1=12gt 21=l 2气球从被释放到被击中过程中上升的高度 h 2=2l -h 1=3l2气球上升的时间t 2=h 2v 0=3l 2v 0=32l g可见,t 2>t 1,所以应先释放气球. 释放气球与掷飞镖之间的时间间隔 Δt =t 2-t 1=12l g. 10.(1)2π (R +h )3Gm 月 (2)T 02πGm 月(R +h )3(3)2π2R T 0(R +h )3Gm 月[解析] (1)“嫦娥二号”的轨道半径r =R +h ,由G mm 月r 2=m 4π2T2r ,可得“嫦娥二号”卫星绕月运行的周期T =2π (R +h )3Gm 月.(2)在月球自转一周的过程中,“嫦娥二号”将绕月运行的圈数n =T 0T =T 02π Gm 月(R +h )3.(3)摄像机只要将月球的“赤道”拍摄全,就能将月面各处全部拍摄下来;卫星绕月球转一周可对月球“赤道”拍摄两次,所以摄像机拍摄时拍摄到的月球表面宽度至少为s =2πR 2n=2π2R T 0 (R +h )3Gm 月. 45分钟单元能力训练卷(五)1.D [解析] 由能量守恒定律可知,运动员减小的机械能转化为床垫的弹性势能,故选项A 错误;当F 弹=mg 时,a =0,在此之前,F 弹<mg ,加速度方向向下(失重),物体做加速运动;在此之后,F 弹>mg ,加速度方向向上(超重),物体做减速运动,选项B 错误选项D 正确;从A 位置到B 位置,由动能定理得,W 合=-E k0,选项C 错误.2.C [解析] 对两个过程分别应用机械能守恒定律得:m B gH -m A gH =12(m A +m B )v 2,2m A gH -m B gH =12(2m A +m B )v 2,联立解得m A m B =22,选项C 正确. 3.B [解析] 当两个物块共同向上运动时弹簧弹力减小,弹簧弹力恰好为零时,两个物块的共同加速度为重力加速度,此时两个物块恰好分离,A 物块做竖直上抛运动,由竖直上抛运动的规律可求得A 、B 分离时的初速度v =2gh =2 m/s ,当B 回到弹簧原长位置时,弹簧弹力又恰好为零,弹簧在此过程中做功为零,B 的动能与分离时的动能相同,速度仍为2 m/s ,B 正确.4.D [解析] 物块匀速运动时,速度沿斜面向上,故传送带顺时针传动.0~t 1内,物块沿传送带向下运动,物块对传送带的滑动摩擦力向下,物块对传送带做负功,选项A 错误;由图乙可知,在t 1时刻,物块的速度减为零,之后向上加速运动,所以μmg cos θ>mgsin θ,即μ>tan θ,选项B 错误;0~t 2内,传送带对物块做的功W 加上物块重力做的功W G 等于物块动能的增加量,即W +W G =12mv 22-12mv 21,而根据v -t 图象可知物块的位移小于零,故W G >0,选项C 错误; 在0~t 2内时间内,物块与传送带之间有相对滑动,系统的一部分机械能会通过“摩擦生热”转化为热量即内能,其大小Q =fx 相对,该过程中,物块受到的摩擦力f 大小恒定,设0~t 1内物块的位移大小为x 1,t 1~t 2内物块的位移大小为x 2,对0~t 2内的物块应用动能定理有:-fx 1+fx 2+W G =ΔE k ,即-ΔE k =f(x 1+x 2)-W G ,由图乙知x 相对>x 1-x 2,,选项D 正确.5.D [解析] 汽车速度最大时, 汽车所受到的牵引力F 1=f =P v m,根据牛顿第二定律F -f =ma 得,P v -P v m =ma ,即a =P m (1v -1v m ),图象斜率k =P m ,横轴截距b =1v m,所以汽车的功率P 、汽车行驶的最大速度v m 可求,由f =P v m可解得汽车所受到阻力,选项A 、B 、C 正确;汽车不是匀加速运动,故不能求出汽车运动到最大速度所需的时间,选项D 错误.6.AC [解析] 设斜面倾角为θ,物体受到的合力F 沿斜面向下,F =mgsin θ-f ,故F不随t 变化,选项A 正确;根据牛顿第二定律知加速度a =F m也不变,由v =at 知,v -t 图象为过原点的一条倾斜直线,选项B 错误;物体做匀加速运动,故位移x =12at 2,x -t 图象是开口向上的抛物线的一部分,选项C 正确;设物体起初的机械能为E 0,t 时刻的机械能为E ,则E =E 0-fx =E 0-f·12at 2,E -t 图象是开口向下的抛物线的一部分,选项D 错误. 7.BD [解析] A 、B 及弹簧组成的系统机械能守恒,选项A 错误,选项B 正确;B 在运动过程中,除重力外弹簧对其做功,所以B 的机械能不守恒,因此根据机械能守恒定律m B gh =12m B v 2解得的v =2gh = 2 m/s 是错误的,选项C 错误;根据系统机械能守恒,到达地面时的机械能与刚释放时的机械能相等,又弹簧处于原长,则E =E k =m A g(L +h)+m B gh +E p =6 J ,选项D 正确.8.(1)钩码的重力 mg (2)①(x 1+x 2)f 4 ②Mf 232[(x 6+x 7)2-(x 1+x 2)2] mg(x 2+x 3+x 4+x 5+x 6)[解析] (1)滑块匀速下滑时,有Mgsin α=mg +f ,滑块匀速下滑时,滑块所受合力F =Mgsin α-f =mg.(2)v A =x 1+x 24T =(x 1+x 2)f 4;v F =(x 6+x 7)f 4,从A 到F 动能的增加量ΔE k =12Mv 2F -12Mv 2A =Mf 232[(x 6+x 7)2-(x 1+x 2)2],合力F 做的功W F =mg(x 2+x 3+x 4+x 5+x 6). 9.(1) 2gLsin θ-2μgL cos θ+v 202gsin θ+2μg cos θ (2) 2gLsin θ+v 202μgcos θ[解析] (1)设滑块第一次与挡板碰撞后上升离开挡板P 的最大距离为x.对滑块应用动能定理有mg(L -x)sin θ-μmg cos θ(L +x)=0-12mv 20解得x =2gLsin θ-2μgL cos θ+v 202gsin θ+2μg cos θ. (2)最终滑块必停靠在挡板处,设滑块在整个运动过程中通过的路程为s.根据能量守恒定律得mgLsin θ+12mv 20=μmgs cos θ 解得s =2gLsin θ+v 202μgcos θ. 10.(1)4 m/s (2)R ≤0.24 m 或R ≥0.6 m[解析] (1)根据牛顿第二定律:对滑块有μmg =ma 1对小车有μmg =Ma 2当滑块相对小车静止时,两者速度相等,即v 0-a 1t =a 2t由以上各式解得t =1 s ,此时小车的速度为v 2=a 2t =4 m/s.滑块的位移x 1=v 0t -12a 1t 2 小车的位移x 2=12a 2t 2 相对位移L 1=x 1-x 2联立解得L 1=3 m ,x 2=2 mL 1<L ,x 2<s ,说明滑块滑离小车前已具有共同速度,且共速时小车与墙壁还未发生碰撞,故小车与墙壁碰撞时的速度为:v 2=4 m/s.(2) 滑块与墙壁碰后在小车上做匀减速运动,运动L 2=L -L 1=1 m 后滑上半圆轨道. 若滑块恰能通过最高点,设滑至最高点的速度为v m .则mg =m v 2m R根据动能定理得-μmgL 2-mg·2R =12mv 2m -12mv 22 解得R =0.24 m若滑块恰好滑至14圆弧到达T 点时就停止,则滑块也能沿圆轨道运动而不脱离圆轨道. 根据动能定理得-μmgL 2-mgR =0-12mv 22解得R =0.6 m所以滑块不脱离圆轨道必须满足:R ≤0.24 m 或R ≥0.6 m.45分钟滚动复习训练卷(二)1.A [解析] 若一个鸡蛋大约55 g ,鸡蛋抛出的高度大约为60 cm ,则将一只鸡蛋抛出至最高点的过程中对鸡蛋做的功等于鸡蛋重力势能的增加量,即W =mgh =55×10-3×10×60×10-2 J =0.33 J ,A 正确.2.D [解析] “天宫一号”和“神舟八号”绕地球做圆周运动,是万有引力充当了“天宫一号”和“神舟八号”做圆周运动的向心力,根据万有引力定律和向心力的公式可得G Mm r 2=ma =m v 2r =m 4π2T 2r =mω2r ,所以a =GM r 2,v =GM r ,T =2πr 3GM ,ω=GM r 3;根据“神舟八号”与“天宫一号”运行轨道示意图可得,“天宫一号”的轨道半径大于“神舟八号”的轨道半径,根据a =GM r2,“神舟八号”轨道半径小,加速度比“天宫一号”大,选项A 错误;根据v =GM r ,“神舟八号”轨道半径小,运行的速率比“天宫一号”大,选项B 错误;根据T =2πr 3GM ,“神舟八号”轨道半径小,运行的周期比“天宫一号”短,选项C 错误;根据ω=GM r 3,“神舟八号”轨道半径小,运行的角速度比“天宫一号”大,选项D 正确.3.C [解析] 对全过程分析,由于物体再次经过P 点时位移为零,所以合外力做功为零,动能增量为零,初、末速率应相等,选项C 正确.4.C [解析] 小球沿管上升到最高点的速度可以为零,选项A 、B 错误;小球在水平线ab 以下的管道中运动时,由外侧管壁对小球的作用力F N 与小球重力在背离圆心方向的分力F 1的合力提供向心力,即:F N -F 1=m v 2R +r,因此,外侧管壁一定对小球有作用力,而内侧壁无作用力,选项C 正确;小球在水平线ab 以上的管道中运动时,小球受管壁的作用力与小球速度大小有关,选项D 错误.5.D [解析] 平抛运动可分解为水平方向的匀速直线运动和竖直方向的自由落体运动,所以水平位移图象为倾斜直线,水平速度图象为平行横轴的直线,竖直位移图象为曲线且各点切线的斜率随时间逐渐变大,竖直速度图象为倾斜的直线,斜率等于重力加速度;沿斜面下滑运动可分解为水平方向的匀加速直线运动和竖直方向的匀加速直线运动,且竖直加速度分量小于重力加速度,所以水平位移图象为曲线且各点切线的斜率随时间逐渐变大,水平速度图象为向上倾斜的直线,竖直位移图象为曲线且各点切线的斜率随时间逐渐变大,竖直速度图象为倾斜的直线,斜率小于重力加速度.选项D 正确.6.AC [解析] 由于引力与质量乘积成正比,所以在质量密集区引力会增大,提供的向心力增大了,探测器会发生向心现象,引力做功,导致探测器飞行速率增大.7.BC [解析] 当盒子速度最大时,kx =(m A +m B )gsin θ,此时弹簧仍处于压缩状态,弹性势能不为零,选项A 错误;除重力外,只有A 对B 的弹力对B 做功,对应B 机械能的增加量,选项B 正确;对A 、B 组成的系统,弹簧弹力对系统做的正功等于弹簧弹性势能的减小量,也等于系统机械能的增加量,选项C 正确;对A 应用动能定理可知,A 所受重力、弹簧弹力、B 对A 的弹力做功之和等于A 动能的增加量,因B 对A 的弹力对A 做负功,故知A 所受重力和弹簧弹力做功的代数和大于A 动能的增量,选项D 错误.8. (1)左 (2)B (3)1.88 1.84 (4)在误差允许的范围内,重物下落过程中机械能守恒[解析] (1)重物在下落过程中做加速运动,纸带上相邻两点间的距离增大,故纸带左端与重物相连;(2)重物做匀变速直线运动,在某段时间内的平均速度等于这段时间中间时刻的瞬时速度,故可计算纸带上B 点对应的重物的瞬时速度,应取图中的O 点和B 点来验证机械能守恒定律.从O 点到B 点,重物的重力势能减少ΔE p =mgh B =1.88 J ,B 点对应的速度v B =h AC 2T=(23.23-15.15)×10-22×0.02m/s =1.92 m/s ,物体动能的增加量ΔE k =12mv 2B =1.84 J .可得出结论:在误差允许的范围内,重物下落过程中机械能守恒.9.(1)36 km (2)1.25×105 N (3)3.42×105 N ,与前进方向相同[解析] (1)由图象知海监船先做匀加速直线运动再匀速最后做匀减速直线运动.加速阶段a 1=20-015×60m/s 2=145 m/s 2 x 1=v m 2t 1=202×15×60 m =9×103m 匀速阶段x 2=v m t 2=20×(35-15)×60 m =2.4×104 m。
【全程复习】2014届高考物理第一轮复习方略 1.3运动图象 追及相遇问题课时提能演练(含解析)
《全程复习》2014届高考物理全程复习方略(人教版-第一轮)课时提能演练(含详细解析)1.3运动图象追及相遇问题(40分钟 100分)一、选择题(本题共8小题,每题9分,至少一个答案正确,选不全得5分,共72分)1.某物体运动的v-t图象如图所示,则下列说法正确的是( )A.物体在第1 s末运动方向发生改变B.物体在第2 s内和第3 s内的加速度是相同的C.物体在第6 s末返回出发点D.物体在第5 s末离出发点最远,且最大位移为0.5 m2.如图所示,是A、B两质点运动的速度图象,则下列说法正确的是( )A.前4 s内A质点以10 m/s的速度匀速运动B.前4 s内B质点一直以5 m/s的速度与A同方向运动C.B质点最初3 s内的位移是10 mD.B质点最初3 s内的路程是10 m3.甲、乙两质点在一直线上做匀加速直线运动的v-t图象如图所示,在3 s末两质点在途中相遇,两质点出发点间的距离是( )A.甲在乙之前2 mB.乙在甲之前2 mC.乙在甲之前4 mD.甲在乙之前4 m4.(2012·白银模拟)一质点沿x轴运动,其速度—时间图象如图所示,由图象可知( )A.质点在前10 s内运动的位移为20 mB.质点的加速度为-0.4 m/s2C.质点的初速度为4 m/sD.质点前20 s内所做的运动是匀变速运动5.某同学在学习了动力学知识后,绘出了一个沿直线运动的物体的加速度a、速度v、位移x随时间变化的图象如图所示,若该物体在t=0时刻,初速度均为零,则下列图象中表示该物体沿单一方向运动的图象是( )6.(2012·荆州模拟)完全相同的甲、乙两个物体放在同一水平地面上,分别在水平拉力F1、F2作用下,由静止开始做匀加速直线运动,分别经过时间t0和4t0,速度分别达到2v0和v0时撤去F1、F2,甲、乙两物体开始做匀减速直线运动,直到静止.其速度随时间变化情况如图所示,则下列各项说法中正确的是( )A.若在F1、F2作用时间内甲、乙两物体的位移分别为x1、x2,则x1>x2B.若整个运动过程中甲、乙两物体的位移分别为x1′、x2′,则x1′>x2′C.甲、乙两物体匀减速过程的位移之比为4∶1D.若在匀加速过程中甲、乙两物体的加速度分别为a1和a2,则a1<a27.如图所示,A、B两物体相距x=7 m,物体A以v A=4 m/s的速度向右匀速运动,而物体B此时的速度v B=10 m/s,只在摩擦力作用下向右做匀减速运动,加速度大小为a=2 m/s2,那么物体A追上物体B所用的时间为( )A.7 sB.8 sC.9 sD.10 s8.(2012·潍坊模拟)两辆游戏赛车a、b在两条平行的直车道上行驶,t=0时两车都在同一计时处,此时比赛开始,它们在四次比赛中的v-t图象如图所示,其中哪些图对应的比赛中,有一辆赛车追上了另一辆( )二、计算题(本大题共2小题,共28分,要有必要的文字说明和解题步骤,有数值计算的要注明单位)9.(14分)汽车由静止开始在平直的公路上行驶,0~60 s内汽车的加速度随时间变化的图线如图所示.(1)画出汽车在0~60 s内的v-t 图线;(2)求在这60 s内汽车行驶的路程.10.(14分)A火车以v1=20 m/s速度匀速行驶,司机发现前方同轨道上相距100 m处有另一列火车B正以v2=10 m/s速度匀速行驶,A车立即做加速度大小为a的匀减速直线运动.要使两车不相撞,a应满足什么条件?答案解析1.【解析】选B.物体在前2 s 内速度方向均为正方向,A 错误;物体在第2 s 内和第3 s 内的v-t 图线的斜率相同,故加速度相同,B 正确;物体在前4 s 内的总位移为零,在第2 s 末和第6 s 末离出发点最远,最大位移为m 1x 12=⨯ 2 m 1 m ⨯=,故C 、D 均错误.2.【解析】选A 、D.匀速直线运动的速度图线平行于时间轴,图线在t 轴上方为正方向,在t 轴下方为负方向.当速度为零时,图线在t 轴上,图线与时间轴围成的面积表示位移.由图象可知前4 s 内A 质点以10 m/s 的速度匀速运动,B 质点先以5 m/s 的速度与A 同方向运动1 s ,而后停了1 s ,最后以5 m/s 相反方向的速度匀速运动,A 正确,B 错误;B 质点最初3 s 内的位移x=(5×1-5×1) m=0,而路程s=(5×1+5×1) m=10 m ,故C 错误,D 正确.3.【解析】选D.甲、乙两质点3 s 末在途中相遇时,各自的位移分别为11x 2 2 m 2 m x 3 4 m 6 m 22=⨯⨯==⨯⨯=甲乙,,因此两质点出发点间的距离是甲在乙之前4 m ,故D 正确.4.【解析】选D.由v-t 图象可知质点运动的初速度为-4 m/s ,负号表示质点初速度的方向与正方向相反,C 错误;图线的斜率表示质点运动的加速度,2v a 0.4 m /s t∆==∆,质点做匀变速直线运动,B 错误,D 正确;图线与时间轴围成的面积表示位移,质点在前10 s 内运动的位移1x 10 4 m 20 m 2=-⨯⨯=-,负号表示质点位移的方向与正方向相反,A 错误.5.【解析】选C.A 项位移正负交替,说明物体做往复运动;B 项物体先做匀加速运动,再做匀减速运动,然后做反向匀加速运动,再做匀减速运动,周而复始;C 项表示物体先做匀加速运动,再做匀减速运动,循环下去,物体始终单向运动,C 正确;D 项表示物体先做匀加速运动,再做匀减速运动至速度为零,然后做反向匀加速运动,不是单向运动.6.【解析】选B 、C.在F 1、F 2作用时间内甲、乙两物体的位移之比为0012002v t /2x 1x v 4t /22==,所以x 1<x 2,A 错误;整个运动过程的位移之比为0012002v 3t /2x 6x v 5t /25'==',所以12x x ''>,B正确;甲、乙两物体匀减速过程的位移之比为00002v 2t /24v t /21=,C 正确;匀加速过程中甲、乙两物体的加速度之比为00002v /t 8v /4t 1=,所以a 1>a 2,D 错误.7.【解题指南】解答本题时应把握以下两点:(1)计算物体B 停止运动时,A 、B 两物体各自发生的位移,判断物体A 是否已经追上物体B.(2)由位移公式求出追及时间.【解析】选B.物体B 做匀减速运动,到速度为0时,所需时间B 1v 10t s 5 s a 2===,运动的位移22B B v 10x m 25 m 2a 22===⨯,在这段时间内物体A 的位移x A =v A t 1=4×5 m=20 m ;显然还没有追上,此后物体B 静止,设追上所用时间为t ,则有4t=x+25 m ,解得t=8 s ,故B 正确.8.【解析】选A 、C.v-t 图线与t 轴所围图形的面积的数值表示位移的大小,A 、C 两图中在 t=20 s 时a 、b 两车的位移大小分别相等,故在20 s 时b 车追上a 车;B 图中b 车一直领先,间距越来越大;D 图中a 车在前7.5 s 一直落后,在7.5~12.5 s 间尽管a 车速度大于b 车,但由于前7.5 s 落后太多未能追上,12.5 s 后v a <v b ,故a 车不能追上b 车.【变式备选】(2012·东莞模拟)a 、b 两物体从同一位置沿同一直线运动,它们的速度图象如图所示,下列说法正确的是( )A.a 、b 加速时,物体a 的加速度大于物体b 的加速度B.20秒时,a 、b 两物体相距最远C.60秒时,物体a 在物体b 的前方D.40秒时,a 、b 两物体速度相等,相距900 m【解析】选C 、D.v-t 图象的斜率大小表示加速度的大小,物体a 加速时图线的斜率小于物体b 加速时图线的斜率,故物体a 的加速度小于物体b 的加速度,A 错误;a 、b 两物体速度相等时相距最远,故40秒时,a 、b 两物体相距最远,B 错误;图线与时间轴围成的面积表示物体的位移,60秒时,图线a 与时间轴围成的面积大于图线b 与时间轴围成的面积,故物体a 在物体b 的前方,C 正确;40秒时,a 、b 两物体速度相等,相距()a b 1x x x 104020 m 2∆=-=⨯+⨯+ 12040 m 2⨯⨯ 900 m =,D 正确.9.【解析】(1)设t=10、40、60 s 时刻的速度分别为v 1、v 2、v 3.由题图知0~10 s 内汽车以加速度2 m/s 2匀加速行驶,由运动学公式得:v 1=2×10 m/s=20 m/s ①(3分)由题图知10~40 s 内汽车匀速行驶,则:v 2=20 m/s②(2分)由题图知40~60 s 内汽车以加速度1 m/s 2匀减速行驶,由运动学公式得:v 3=v 2-at=(20-1×20) m/s=0 ③(3分)根据①②③式,可画出汽车在0~60 s 内的v-t 图线,如图所示.(3分)(2)由第(1)问v-t 图可知,在这60 s 内汽车行驶的路程为:3060x 20 m 900 m 2+=⨯= (3分)答案:(1)见解析(2)900 m10.【解析】两车恰不相撞的条件是两车速度相同时相遇,则v 2=v 1-a ′t(3分)对A :2111x v t a t 2=-' (3分) 对B :x 2=v 2t(2分)又有:x 1=x 2+x 0(2分)()22221202010(v v )a m /s 0.5 m /s 2x 2100--'===⨯ (2分)则a >0.5 m/s2 (2分)答案:a >0.5 m/s 2【总结提升】解决追及、相遇问题的常用方法(1)物理分析法:抓好“两物体能否同时到达空间某位置”这一关键,画出运动简图,列位移、时间关系式.(2)相对运动法:巧妙地选取参考系,然后找两物体的运动关系.(3)数学分析法:设相遇时间为t ,根据条件列方程,得到关于t 的一元二次方程,用判别式进行讨论,若Δ>0,即有两个解,说明可以相遇两次;若Δ=0,说明刚好追上或相碰;若Δ<0,说明追不上或不能相碰.(4)图象法:将两者的速度—时间图象在同一个坐标系中画出,然后利用图象求解.。
(新课标)2014高考物理一轮复习课时练5汇总
课时作业(五)1.关于力的概念,下列说法正确的是( )A.一个力必定联系着两个物体,其中每个物体既是受力物体,又是施力物体B.放在桌面上的木块受到桌面对它向上的弹力,这是由于木块发生微小形变而产生的C.压缩弹簧时,手先给弹簧一个压力F,等弹簧再压缩x距离后才反过来给手一个弹力D.根据力的作用效果命名的不同名称的力,性质可能也不相同[解析] 力是物体间的相互作用,受力物体同时也是施力物体,施力物体同时也是受力物体,所以A正确;产生弹力时,施力物体和受力物体同时发生形变,放在桌面上的木块受到桌面给它向上的弹力,这是由于桌面发生微小形变而产生的,故B不正确;力的作用是相互的,作用力和反作用力同时产生、同时消失,故C选项错误;根据力的作用效果命名的力,性质可能相同,也可能不相同,D选项正确.[答案] AD2.(2012·杭州高三检测)如下图所示,下列四个图中,所有的球都是相同的,且形状规则质量分布均匀.甲球放在光滑斜面和光滑水平面之间,乙球与其右侧的球相互接触并放在光滑的水平面上,丙球与其右侧的球放在另一个大的球壳内部并相互接触,丁球用两根轻质细线吊在天花板上,且其中右侧一根线是沿竖直方向.关于这四个球的受力情况,下列说法正确的是( )A.甲球受到两个弹力的作用B.乙球受到两个弹力的作用C.丙球受到两个弹力的作用D.丁球受到两个弹力的作用[解析] 甲球受水平面的弹力,斜面对甲球无弹力,乙球受水平面的弹力,乙与另一球之间无弹力,丙球受右侧球和地面的两个弹力作用,丁球受竖直细线的拉力,倾斜细线的拉力刚好为零,故C对,A、B、D错.[答案] C3.(2012·台州质检)一根轻质弹簧,当它上端固定、下端悬挂重为G 的物体时,长度为L 1;当它下端固定在水平地面上,上端压一重为G 的物体时,其长度为L 2,则它的劲度系数是( )A.G L 1B.G L 2C.GL 1-L 2D.2G L 1-L 2[解析] 由胡克定律知,G =k (L 1-L 0),G =k (L 0-L 2),联立可得k =2GL 1-L 2,D 对. [答案] D4.一根轻质弹簧一端固定,用大小为F 1的力压弹簧的另一端,平衡时长度为l 1;改用大小为F 2的力拉弹簧,平衡时长度为l 2.弹簧的拉伸或压缩均在弹性限度内,该弹簧的劲度系数为( )A.F 2-F 1l 2-l 1 B.F 2+F 1l 2+l 1 C.F 2+F 1l 2-l 1D.F 2-F 1l 2+l 1[解析] 根据胡克定律有F 1=k (l 0-l 1),F 2=k (l 2-l 0),解得k =F 2+F 1l 2-l 1,C 正确.[答案] C5.如右图所示,小球A 的重力为G =20 N ,上端被竖直悬线挂于O 点,下端与水平桌面相接触,悬线对球A 、水平桌面对球A 的弹力大小可能为( )A .0,GB .G,0 C.G 2,G2D.12G ,32G[解析] 球A 处于静止状态,球A 所受的力为平衡力,即线对球的拉力F T 及桌面对球的支持力F N 共同作用与重力G 平衡,即F T +F N =G ,若绳恰好伸直,则F T =0,F N =G ,A 对;若球刚好离开桌面,则F N =0,F T =G ,B 对;也可能F N =F T =G2,C 对.[答案] ABC6.(2012·浙江宁波联考)实验室常用的弹簧测力计如(图甲)所示,有挂钩的拉杆与弹簧相连,并固定在外壳的一端上,外壳上固定一个圆环,可以认为弹簧测力计的总质量主要集中在外壳(重量为G )上,弹簧和拉杆的质量忽略不计.再将该弹簧测力计以两种方式固定于地面上,如图(乙)、(丙)所示,分别用恒力F 0竖直向上拉弹簧测力计,静止时弹簧测力计的读数为( )A .(乙)图读数F 0-G ,(丙)图读数F 0+GB .(乙)图读数F 0+G ,(丙)图读数F 0-GC .(乙)图读数F 0,(丙)图读数F 0-GD .(乙)图读数F 0-G ,(丙)图读数F 0 [解析]对(乙)中弹簧测力计的外壳受力分析可知,受重力G 、拉力F 0和弹簧的拉力F 1,如右图所示,则弹簧测力计的读数为F 1=F 0-G ;由于弹簧和拉杆的质量忽略不计,所以(丙)中弹簧的拉力等于F 0,即弹簧测力计的读数为F 2=F 0,故D 正确.[答案] D 7.如右图所示,质量为m 的物体悬挂在轻质支架上,斜梁OB 与竖直方向的夹角为θ,设水平横梁OA 和斜梁OB 作用于O 点的弹力分别为F 1和F 2,以下结果正确的是A .F 1=mg sin θB .F 1=mgsin θC .F 2=mg cos θD .F 2=mgcos θ[解析]由题可知,对悬挂的物体由力的平衡条件可知绳子的拉力等于其重力,则绳子拉O 点的力也等于重力.求OA 和OB 的弹力,选择的研究对象为作用点O ,受力分析如图,由平衡条件可知,F 1和F 2的合力与F T 等大反向,则由平行四边形定则和几何关系可得:F 1=mg tan θ,F 2=mgcos θ,故D 正确.[答案] D8.(2012·山东烟台市测试)如右图所示,两根相距为L 的竖直固定杆上各套有质量为m 的小球,小球可以在杆上无摩擦地自由滑动,两小球用长为2L 的轻绳相连,今在轻绳中点施加一个竖直向上的拉力F ,恰能使两小球沿竖直杆向上匀速运动.则每个小球所受的拉力大小为(重力加速度为g )A.mg2 B .mg C.3F /3D .F[解析] 根据题意可知:两根轻绳与竖直杆间距正好组成等边三角形,每个小球所受的拉力大小为F ′,对结点进行受力分析,根据平衡条件可得,F =2F ′cos30°,解得小球所受拉力F ′=3F3,C 正确.[答案] C9.(2012·江西师大附中、临川联考)如右图所示,完全相同的质量为m 的A 、B 两球,用两根等长的细线悬挂在O 点,两球之间夹着一根劲度系数为k 的轻弹簧,静止不动时,弹簧处于水平方向,两根细线之间的夹角为θ,则弹簧的长度被压缩了A.mg tan θkB.2mg tan θkC.mg tan θ2kD.2mg tan θ2k[解析] 考查受力分析、物体的平衡.对A 受力分析可知,有竖直向下的重力mg 、沿着细线方向的拉力F T 以及水平向左的弹簧弹力F ,由正交分解法可得水平方向F T sin θ2=F =k Δx ,竖直方向F T cos θ2=mg ,解得Δx =mg tan θ2k ,C 正确.[答案] C10.(2012·洛阳市期中)如图所示,小车上有一根固定的水平横杆,横杆左端固定的轻杆与竖直方向成θ角,轻杆下端连接一小铁球;横杆右端用一根细线悬挂一小铁球,当小车做匀变速直线运动时,细线保持与竖直方向成α角,若θ<α,则下列说法中正确的是A .轻杆对小球的弹力方向沿着轻杆方向向上B .轻杆对小球的弹力方向与细线平行向上C .小车一定以加速度gtg α向右做匀加速运动D .小车一定以加速度gtg θ向右做匀加速运动[解析] 由于两小球加速度方向相同,所受弹力方向也应该相同,所以轻杆对小球的弹力方向与细线平行向上,选项A 错误B 正确;对细线悬挂的小铁球受力分析,由牛顿第二定律可得,小车一定以加速度gtg α向右做匀加速运动,选项C 正确D 错误.[答案] BC11.如右图所示,在动力小车上固定一直角硬杆ABC ,分别系在水平直杆AB 两端的轻弹簧和细线将小球P 悬吊起来.轻弹簧的劲度系数为k ,小球P 的质量为m ,当小车沿水平地面以加速度a 向右运动而达到稳定状态时,轻弹簧保持竖直,而细线与杆的竖直部分的夹角为θ,试求此时弹簧的形变量.[解析] F T sin θ=ma ,F T cos θ+F =mg ,F =kx 联立解得:x =m (g -a cot θ)/k 讨论:(1)若a <g tan θ,则弹簧伸长x =m (g -a cot θ)/k (2)若a =g tan θ,则弹簧伸长x =0(3)若a >g tan θ,则弹簧压缩x =m (a cot θ-g )/k [答案] 见解析12.如右图所示,原长分别为L 1和L 2,劲度系数分别为k 1和k 2的轻质弹簧竖直悬挂在天花板上,两弹簧之间有一质量为m 1的物体,最下端挂着质量为m 2的另一物体,整个装置处于静止状态.(1)求这时两弹簧的总长.(2)若用一个质量为M 的平板把下面的物体竖直缓慢地向上托起,直到两弹簧的总长度等于两弹簧的原长之和,求这时平板对物体m 2的支持力大小.[解析] (1)设上面弹簧的伸长量为Δx 1,下面弹簧的伸长量为Δx 2,由物体的平衡及胡克定律得,k 1Δx 1=(m 1+m 2)g ,Δx 1=m 1+m 2gk 1,k 2Δx 2=m 2g , Δx 2=m 2g k 2所以总长为L =L 1+L 2+Δx 1+Δx 2=L1+L2+m1+m2gk1+m2gk2.(2)要使两个弹簧的总长度等于两弹簧原长之和,必须是上面弹簧伸长Δx,下面弹簧缩短Δx.对m2∶F N=k2Δx+m2g对m1∶m1g=k1Δx+k2ΔxF N=m2g+k2k1+k2m1g.[答案] (1)L1+L2+m1+m2gk1+m2gk2(2)m2g+k2k1+k2m1g。
2014届高考物理一轮复习同步课时作业-课时作业2
课后作业(二)(时间45分钟,满分100分)一、选择题(本题共10小题,每小题7分,共70分.在每小题给出的四个选项中,有的只有一个选项正确,有的有多个选项正确,全部选对的得7分,选对但不全的得4分,有选错的得0分.)1.(2011·重庆高考)某人估测一竖直枯井深度,从井口静止释放一石头并开始计时,经2 s听到石头落底声,由此可知井深约为(不计声音传播时间,重力加速度g取10 m/s2)()A.10 m B.20 m C.30 m D.40 m2.一物体从一行星表面某高处做自由落体运动.自开始下落计时,得到物体离该行星表面的高度h随时间t变化的图象如图1-2-6所示,则()图1-2-6A.行星表面重力加速度大小为8 m/s2B.行星表面重力加速度大小为10 m/s2C.物体落到行星表面时的速度大小为20 m/sD.物体落到行星表面时的速度大小为25 m/s3.如图所示的各图象能正确反映自由落体运动过程的是()4.汽车进行刹车试验,若速度从8 m/s匀减速到零所用的时间为1 s,按规定速率为8 m/s的汽车刹车后位移不得超过5.9 m,那么上述刹车试验是否符合规定()A.位移为8 m,符合规定B.位移为8 m,不符合规定C.位移为4 m,符合规定D.位移为4 m,不符合规定5.(2012·上海高考)小球每隔0.2 s从同一高度抛出,做初速度为6 m/s的竖直上抛运动,设它们在空中不相碰.第一个小球在抛出点以上能遇到的小球数为(取g=10 m/s2)()A.三个B.四个C.五个D.六个6.给滑块一初速度v0使它沿光滑斜面向上做匀减速运动,加速度大小为g 2,当滑块速度大小减为v02时,所用时间可能是()A.v02g B.v0g C.3v0g D.3v02g7.(2013届宝鸡模拟)升降机由静止开始以加速度a1匀加速上升2 s,速度达到3 m/s,接着匀速上升10 s,最后再以加速度a2匀减速上升3 s才停下来,则()A.匀加速上升的加速度为1.5 m/s2B.匀减速上升的加速度为1.5 m/s2C.上升的总高度为37.5 mD.上升的总高度为32.5 m8.汽车以20 m/s的速度做匀速运动,某时刻关闭发动机而做匀减速运动,加速度大小为5 m/s2,则它关闭发动机后通过37.5 m所需时间为() A.3 s B.4 s C.5 s D.6 s9.图1-2-7(2013届上海交大附中模拟)如图1-2-7所示,木块A、B并排且固定在水平桌面上,A的长度是L,B的长度是2L.一颗子弹沿水平方向以速度v1射入A,以速度v2穿出B.子弹可视为质点,其运动视为匀变速直线运动,则子弹穿出A 时的速度为()A.2(v1+v2)3 B.2(v21+v22)3C. 2v21+v223 D.23v110.(2013届铜川模拟)如图1-2-8所示,传送带保持1 m/s的速度顺时针转动.现将一质量m=0.5 kg的物体轻轻地放在传送带的a点上,设物体与传送带间的动摩擦因数μ=0.1,a、b间的距离L=2.5 m,则物体从a点运动到b点所经历的时间为(g取10 m/s2)()图1-2-8A. 5 s B.(6-1) sC.3 s D.2.5 s二、非选择题(本题共2小题,共30分.计算题要有必要的文字说明和解题步骤,有数值计算的要注明单位.)11.(14分)从车站开出的汽车,做匀加速直线运动,走了12 s时,发现还有乘客没上来,于是立即做匀减速运动至停车.汽车从开出到停止总共历时20 s,行进了50 m.求汽车的最大速度.12.(16分)(2012·高新一中检测)如图1-2-9所示,一辆长为12 m的客车沿平直公路以8.0 m/s的速度匀速向北行驶,一辆长为10 m的货车由静止开始以2.0 m/s2的加速度由北向南匀加速行驶,已知货车刚启动时两车相距180 m,求两车错车所用的时间.图1-2-9答案及解析一、1.【答案】 B2.【解析】 由图中可以看出物体从h =25 m 处开始下落,在空中运动了t =2.5 s 到达行星表面,根据h =12at 2,可以求出a =8 m/s 2,故A 正确;根据运动学公式可以算出v =at =20 m/s ,可知C 正确.【答案】 AC3.【解析】 自由落体运动为初速度是零的匀加速直线运动,其v -t 图象应是一条倾斜的直线,若取竖直向上为正方向,则C 正确.D 中图象说明物体做匀速直线运动,所以D 错误.【答案】 C4.【解析】 由s =v t =v 0+v t 2t 得:s =8+02×1 m =4 m <5.9 m ,故C 正确. 【答案】 C5.【解析】 小球在抛点上方运动的时间t =2v 0g =2×610 s =1.2 s .因每隔0.2 s 在抛点抛出一个小球,因此第一个小球在1.2 s 的时间内能遇上n =1.2 s0.2 s -1=5个小球,故只有选项C 正确.【答案】 C6.【解析】 当滑块速度大小减为v 02时,其方向可能与初速度方向相同,也可能与初速度方向相反,因此要考虑两种情况,即v =v 02和v =-v 02,代入公式t =v -v 0a ,得t =v 0g 和t =3v 0g ,故B 、C 选项正确.【答案】 BC7.【解析】 由v =at 知a 1=v t 1=32 m/s 2=1.5 m/s 2,A 正确;匀减速时a 2=vt 3=33 m/s 2=1 m/s 2,B 错误;升降机上升总高度s =v 2·t 1+v ·t 2+v 2·t 3=(3+30+4.5)m =37.5 m ,故C 正确,D 错误.【答案】 AC8.【解析】 由s =v 0t +12at 2代入数据得37.5=20t -12×5t 2,解得t =3 s 或t =5 s ,由于汽车匀减速至零所需时间为t ′=v 0a =4 s <5 s ,故A 正确.【答案】 A9.【解析】 设子弹在木块中减速时的加速度大小为a ,穿出A 时的速度大小为v A ,由匀变速直线运动知识可得:v 21-v 22=2a ×3L ,v 21-v 2A =2aL联立得v A = 2v 21+v 223.选项C 正确.【答案】 C10.【解析】 物体做由静止开始的匀加速直线运动,a =μg =1 m/s 2,速度达到传送带的速度时发生的位移s =v 22a =12×1 m =0.5 m <L ,故物体接着做匀速直线运动,第1段时间t 1=va =1 s ,第2段时间t 2=L -s v =2.5-0.51 s =2 s ,t 总=t 1+t 2=3 s.【答案】 C二、11.【解析】 设最高速度为v m ,由题意,可得方程组: s =12a 1t 21+v m t 2+12a 2t 22,t =t 1+t 2 v m =a 1t 1,0=v m +a 2t 2整理得:v m =2s t =2×5020 m/s =5 m/s. 【答案】 5 m/s12.【解析】 设货车启动后经过时间t 1时两车开始错车,则有s 1+s 2=180 m , 其中s 1=12at 21,s 2=v t 1, 联立可得t 1=10 s.设货车从开始运动到两车错车结束所用时间为t 2,在数值上有s 1′+s 2′=(180+10+12) m =202 m.其中s 1′=12at 22, s 2′=v t 2,解得t 2=10.8 s. 故两车错车时间Δt =t 2-t 1=0.8 s. 【答案】 0.8 s。
(新课标)2014高考物理一轮复习课时练31汇总
课时作业(三^一)1. (2012 •海南卷)如右图所示,在两水平极板间存在匀强电场和匀强磁场,电场方向 竖直向下,磁场方向垂直于纸面向里. 一带电粒子以某一速度沿水平直线通过两极板. 若不计重力,下列四个物理量中哪一个改变时,粒 子运动轨迹不会改变A.粒子速度的大小 B.粒子所带的电荷量C.电场强度D.磁感应强度[解析]粒子在电场中运动,当做直线运动时 Eq = qvB,电量改变,粒子受力仍平衡,B 正确.[答案]B2. (2012 •福建泉州联考)在空间某一区域中既存在匀强电场,又存在匀强磁场.有一 带电粒子,以某一速度从不同方向射入到该区域中 (不计带电粒子受到的重力),则该带电粒子在区域中的运动情况可能是()①做匀速直线运动 ②做匀速圆周运动③做匀变速直线运动 ④做匀变速曲线运动A. ③④ B .②③ C.①③D.①②[解析]如果粒子受到的电场力和洛伦兹力平衡, 则粒子做匀速直线运动, ①正确;如果粒子速度方向与磁感线平行,则③④正确.[答案]AC3. (2012 •福州调研)如图所示,某空间存在正交的匀强电磁场,电场方向水平向右,瓦7x\x X -- f c- x X XXX X \XX XX ・磁场方向垂直纸面向里.一带负电微粒由 斜向上运动,则下列说法正确的是a 点以一定初速度进入电磁场,刚好能沿直线( )abA. 微粒的动能一定增加C.微粒的电势能一定减少B. 微粒的动能一定减少D.微粒的机械能一定不变C 正确;[解析]微粒从a到b过程中,电场力做正功,所以微粒的电势能一定减少,由于除重力以外的外力中只有电场力做正功,所以微粒的机械能增大, 做匀速运动,才能满足题设条件,故动能不变,A 、B 错误.[答案]C4. (2012 •温州市联考)如右图所示,一个静止的质量为m 带电荷量为q 的粒子(不计B 的匀强磁场中,粒子打至 P 点,设O 圧x .5. (2012 •浙江杭州月考)有一个带电荷量为+ q 、重为G 的小球,从两竖直的带电平行 板上方h 处自由落下,两极板间另有匀强磁场,磁感应强度为 B ,方向如右图所示,则带电小球通过有电场和磁场的空间时,下列说法正确的是( )A —定做曲线运动 B. 不可能做曲线运动 C. 有可能做匀加速运动 D. 有可能做匀速运动[解析]由于小球的速度变化时,洛伦兹力会变化,小球所受合力变化,小球 不可能做匀速或匀加速运动, B C D 错,A 正确.D 错误;因微粒必须1qU= 2mv ,带电粒子在磁场中x mv8m做匀速圆周运动有:2= qB ,整理得:x 2= qgU,故B 正确.uF重力),经电压U 加速后垂直进入磁感应强度为[解析]带电粒子在电场中做加速运动,由动能定理有:[答案]B[答案]A6. 如右图所示,a、b是一对平行金属板,分别接到直流电源两极上,右边有一挡板,正中间开有一小孔d,在较大空间范围内存在着匀强磁场,磁感应强度大小为B,方向垂直纸面向里,在a、b两板间还存在着匀强电场E.从两板左侧中点c处射入一束正离子(不计重力),这些正离子都沿直线运动到右侧,从d孔射出后分成3束•则下列判断正确的是A. 这三束正离子的速度一定不相同B. 这三束正离子的比荷一定不相同C. a、b两板间的匀强电场方向一定由a指向bD. 若这三束离子改为带负电而其他条件不变则仍能从d孔射出[解析]因为三束正离子在两极板间都是沿直线运动,电场力等于洛伦兹力,可以判断三束正离子的速度一定相同,且电场方向一定由a指向b,选项A错误,C正确;在右侧磁场中三束正离子做圆周运动的半径不同,可知这三束正离子的比荷一定不相同,选项B正确;若将这三束离子改为带负电,而其他条件不变的情况下受力分析可知,三束离子在两板间仍做匀速直线运动,仍能从d孔射出,选项D正确.[答案]BCD7. (2012 •河北石家庄市教学检测)劳伦斯和利文斯设计出回旋加速器,工作原理示意图如右图所示.置于高真空中的D形金属盒半径为R两盒间的狭缝很小,带电粒子穿过的时间可忽略.磁感应强度为B的匀强磁场与盒面垂直,高频交流电频率为f,加速电压为U若A处粒子源产生的质子质量为m电荷量为+ q,在加速器中被加速,且加速过程中不考虑相对论效应和重力的影响.则下列说法正确的是A. 质子被加速后的最大速度不可能超过2 n RfB. 质子离开回旋加速器时的最大动能与加速电压U成正比C. 质子第2次和第1次经过两D形盒间狭缝后轨道半径之比为 2 : 1D.不改变磁感应强度B和交流电频率f,该回旋加速器的最大动能不变2n R [解析]粒子被加速后的最大速度受到D形盒半径R的制约,因v = 〒 =2 n Rf, A1 1正确;粒子离开回旋加速器的最大动能E<m= ~2mv= 2m K4 n 2Rf2= 2m n 2Rf2,与加速电压Umv 1 1无关,B错误;根据R= Bq, Uq= 2mV, 2Uq= ?mV,得质子第2次和第1次经过两D形盒间狭缝后轨道半径之比为护:1, C正确;因回旋加速器的最大动能E<m= 2n n 2Rf2与m R f 均有关,D错误.[答案]AC8. (2012 •河南省质量调研)如右图所示,空间存在水平向左的匀强电场和垂直纸面向里的匀强磁场.在该区域中,有一个竖直放置的光滑绝缘圆环,环上套有一个带正电的小球. 0点为圆环的圆心,a、b、c、d为圆环上的四个点,a点为最高点,c点为最低点,b、O d 三点在同一水平线上. 已知小球所受电场力与重力大小相等. 现将小球从环的顶端a点由静止释放,下列判断正确的是()A. 小球能越过d点并继续沿环向上运动B. 当小球运动到c点时,所受洛伦兹力最大C. 小球从a点运动到b点的过程中,重力势能减小,电势能增大D. 小球从b点运动到c点的过程中,电势能增大,动能先增大后减小[解析]由题意可知,小球运动的等效最低点在b、c中间,因此当小球运动到d点时速度为0,不能继续向上运动,选项A错误;小球在等效最低点时速度最大,所受洛伦兹力最大,选项B错误;小球从a运动到b的过程中,重力做正功,电场力也做正功,所以重力势能与电势能均减小,选项C错误;小球从b运动到c的过程中,电场力做负功,电势能增大,合外力先做正功再做负功,动能先增大后减小,选项D正确.[答案]D"能力提升"9. 如右图所示,粗糙的足够长的竖直木杆上套有一个带电的小球,个运动过程中小球的 v —t 图象如右图所示,其中错误的是10. 目前有一种磁强计,用于测定地磁场的磁感应强度•磁强计的原理如右图所示,电 路有一段金属导体,这的横截面是宽为a 、高为b 的长方形,放在沿 y 轴正方向的匀强磁场中,导体中通有沿 x 轴正方向、大小为I 的电流•已知金属导体单位体积中的自由电子数为n 电子电荷量为e ,金属导电过程中,自由电子所做的定向移动可视为匀速运动•两电 极M N 均与金属导体的前后两侧接触,用电压表测出金属导体前后两个侧面间的电势差为 U 则磁感应强度的大小和电极M N 的正负为( )nebUneaU A .—P , M 正、N 负B~T ,M 正、N 负nebUneaUC~T~, M 负、N 正 D.—p , M 负、N 正[解析]由左手定则知,金属中的电子在洛伦兹力的作用下将向前侧面聚集、故M 负、U nebUN 正.由 F 电=F 洛,即 ae = Bev, I = nevS= nevab,得 B = I .[答案]C整个装置处在由水平匀强电场和垂直纸面向外的匀强磁场组成的足够大的复合场中, 小球由静止开始小滑,在整[解析]小球下滑过程中,qE 与qvB 反向,开始下落时qE>qvB ,所以 m —qE — qvB,随下落速度v 的增大 a 逐m —qvB- qE,随下落速度v的增大a 逐渐减小;最后 a = 0,小球匀速下落,故图正确,A B D 错误.[答案]ABD11. (2012 •山西四校联考)有一个带正电的小球,质量为m电荷量为q,静止在固定的绝缘支架上.现设法给小球一个瞬时的初速度V。
2014高考物理一轮复习课时练44.pdf
课时作业(四十四) 1.(2012·长宁区模拟)关于光的衍射,下列说法中错误的是( ) A.光的衍射是光在传播过程中绕过障碍物的现象 B.只有两列频率相同的光波叠加后才能发生衍射 C.光的衍射没有否定光沿直线传播的结论 D.光的衍射现象为波动说提供了有利的证据 [答案] B 2.(2012·黑龙江一模)下列说法正确的是( ) A.光纤通信的工作原理是全反射,光纤通信具有容量大、抗干扰性强等优点 B.自然光斜射到玻璃、水面、木质桌面时,反射光和折射光都是偏振光 C.经过同一双缝所得干涉条纹,红光条纹宽度大于绿光条纹宽度 D.紫外线比红外线更容易发生衍射现象 [解析] 根据光纤工作原理和偏振光的概念知,选项A、B正确;红光的波长比绿光的波长长,根据双缝干涉条纹间距公式Δx=λ可知,经过同一双缝所得干涉条纹,红光条纹宽度大于绿光条纹宽度,选项C正确;衍射现象的明显程度与缝的宽度(或障碍物的尺寸)和光的波长有关,缝越窄(或障碍物的尺寸越小),波长越长,衍射现象越明显,与红外线相比,紫外线的波长更短,更不容易发生衍射现象,选项D错误.[答案] ABC 3.(2011·浙江高考)关于波动,下列说法正确的是( ) A.各种波均会发生偏振现象 B.用白光做单缝衍射与双缝干涉实验,均可看到彩色条纹 C.声波传播过程中,介质中质点的运动速度等于声波的传播速度 D.已知地震波的纵波波速大于横波波速,此性质可用于横波的预警 [答案] BD 4.(2012·南开模拟)如图所示是用光学的方法来检查一物体表面光滑程度的装置,其中A为标准平板,B为被检查其表面平整程度的物体,C为单色入射光,如果要说明能检查平面平整程度的道理,则需要用到的下列光学概念是( ) A.反射和干涉 B.全反射和干涉 C.反射和衍射 D.全反射和衍射 [答案] A 5.(2012·福建四校联考)关于光的干涉现象,下列说法正确的是( ) A.在波峰与波峰叠加处,将出现亮条纹;在波谷与波谷叠加处,将出现暗条纹 B.在双缝干涉实验中,光屏上距两狭缝的路程差为1个波长的某位置,将出现亮纹 C.把入射光由黄光换成紫光,两相邻明条纹间的距离变窄 D.当薄膜干涉的条纹是等间距的平行线时,说明薄膜的厚度处处相等 [解析] 在波峰与波峰叠加处,或在波谷与波谷叠加处,都是振动加强区,将出现亮条纹,选项A错误;在双缝干涉实验中,出现亮纹的条件是光屏上某位置距两狭缝的路程差为波长的整数倍,出现暗纹的条件是光屏上某位置距两狭缝的路程差为半波长的奇数倍,选项B正确;条纹间距公式Δx=λ,λ黄>λ紫,选项C正确;薄膜干涉实验中的薄膜是“楔形”空气膜,选项D错误. [答案] BC 6.下列有关光现象的说法正确的是( ) A.在光的双缝干涉实验中,若仅将入射光由紫光改为红光,则条纹间距一定变大 B.以相同入射角从水中射向空气,紫光能发生全反射,红光也一定能发生全反射 C.紫光从空气射向水中,只要入射角足够大,就可以发生全反射 D.拍摄玻璃橱窗内的物品时,往往在镜头前加装一个偏振片以增加透射光的强度 [解析] 在双缝干涉实验中,条纹间距d与入射光波长成正比,所以入射光由紫光改为红光时波长变长,条纹间距d变大,A项正确.全反射中的临界角为C,由sinC=可知,折射率越大,临界角越小,即紫光的临界角小于红光的临界角,所以紫光能发生全反射时,红光不一定能发生全反射,则B错误.光从空气射入水中为从光疏介质射入到光密介质,不会发生全反射,所以C错误.在镜头前加装偏振片是为减弱玻璃反射的光对拍摄的负面影响,所以D错误. [答案] A 7.如下图所示是一种利用光纤温度传感器测量温度的装置,一束偏振光射入光纤,由于温度的变化,光纤的长度、芯径、折射率发生变化,从而使偏振光的透振方向发生变化,光接收器接收的光强度就会变化.设起偏器和检偏器透振方向相同,关于这种温度计的工作原理,正确的说法是( ) A.到达检偏器的光的透振方向变化越小,光接收器所接收的光强度就会越小,表示温度变化越大 B.到达检偏器的光的透振方向变化越大,光接收器所接收的光强度就会越小,表示温度变化越大 C.到达检偏器的光的透振方向变化越小,光接收器所接收的光强度就会越小,表示温度变化越小 D.到达检偏器的光的透振方向变化越大,光接收器所接收的光强度就会越小,表示温度变化越小 [答案] B 8.(2012·湖南十校联考)双缝干涉实验装置如右图所示,绿光通过单缝S后,投射到具有双缝的挡板上,双缝S1和S2与单缝的距离相等,光通过双缝后在与双缝平行的屏上形成干涉条纹.屏上O点距双缝S1和S2的距离相等,P点是距O点最近的第一条亮条纹.如果将入射的单色光换成红光或蓝光,讨论屏上O点及其上方的干涉条纹的情况是( ) A.O点是红光的亮条纹 B.O点不是蓝光亮条纹 C.红光的第一条亮条纹在P点的上方 D.蓝光的第一条亮条纹在P点的上方 [解析] O点处波程差为零,对于任何光都是振动加强点,均为亮条纹,故B错;红光的波长较长,蓝光的波长较短,根据Δx=λ可知,C正确. [答案] AC 9.抽制高强度纤维细丝时可用激光监控其粗细,如图所示,观察激光束经过细丝时在光屏上所产生的条纹即可判断细丝粗细的变化( ) A.这主要是光的干涉现象 B.这主要是光的偏振现象 C.如果屏上条纹变宽,表明抽制的丝粗了 D.如果屏上条纹变宽,表明抽制的丝细了 [解析] 由于是激光光束通过障碍物,所以为光的衍射现象,A、B错误;观察其衍射现象,根据衍射的情况判断其粗细程度,屏上的条纹变宽,表明衍射现象更明显了,抽制的丝细了,C错误,D正确. [答案] D 10.奶粉的碳水化合物(糖)的含量是一个重要指标,可以用“旋光法”来测量糖溶液的浓度,从而鉴定含糖量.偏振光通过糖的水溶液后,偏振方向会相对于传播方向向左或向右旋转一个角度α,这一角度α称为“旋光度”,α的值只与糖溶液的浓度有关,将α的测量值与标准值相比较,就能确定被测样品的含糖量了.如图所示,S是自然光源,A、B是偏振片,转动B,使到达O处的光最强,然后将被测样品P置于A、B之间. (1)偏振片A的作用是什么?__________________________________. (2)偏振现象证明了光是一种________. (3)以下说法中正确的是( ) A.到达O处光的强度会明显减弱 B.到达O处光的强度不会明显减弱 C.将偏振片B转动一个角度,使得O处光强度最强,偏振片B转过的角度等于α D.将偏振片A转动一个角度,使得O处光强度最强,偏振片A转过的角度等于α [答案] (1)把自然光变成偏振光 (2)横波 (3)ACD 11.(1)如图所示,a、b、c、d四个图是不同的单色光形成的双缝干涉或单缝衍射图样,分析各图样的特点可以得出的正确结论是( ) A.a、b是光的干涉图样 B.c、d是光的干涉图样 C.形成a图样的光的波长比形成b图样的光的波长短 D.形成c图样的光的波长比形成d图样的光的波长短 (2)如图所示,电灯S发出的光先后经过偏振片A和B,人眼在P处迎着入射光方向,看不到光亮,则图中a光为________光.图中b光为________光.以SP为轴将B转过180°后,在P处________(选填“能”或“不能”)看到光亮,以SP为轴将B转过90°后,在P处________(选填“能”或“不能”)看到光亮. [答案] (1)A (2)自然 偏振 不能 能 12.登山运动员在登雪山时要注意防止紫外线的过度照射,尤其是眼睛更不能长时间被紫外线照射,否则将会严重地损伤视力.有人想利用薄膜干涉的原理设计一种能大大减小紫外线对眼睛伤害的眼镜.他选用的薄膜材料的折射率为n=1.5,所要消除的紫外线的频率为ν=8.1×1014 Hz, (1)他设计的这种“增反膜”所依据的原理是________________________. (2)这种“增反膜”的厚度是多少? (3)请判断以下有关薄膜干涉的说法正确的是( ) A.薄膜干涉说明光具有波动性 B.如果薄膜的厚度不同,产生的干涉条纹一定不平行 C.干涉条纹一定是彩色的 D.利用薄膜干涉也可以“增透” [解析] (1)为了减少进入眼睛的紫外线,应使入射光分别从该膜的前后两个表面反射后形成的反射光叠加后加强,从而使透射的紫外线减弱. (2)光程度(大小等于薄膜厚度d的2倍)应等于光在薄膜中的波长λ′的整数倍,即2d=Nλ′(N=1,2,…),因此,膜的厚度至少是紫外线在膜中波长的.紫外线在真空中的波长是λ=c/ν≈3.70×10-7 m.在膜中的波长是λ′=λ/n≈2.47×10-7 m,故膜的厚度至少是1.24×10-7 m. (3)干涉和衍射都证明光具有波动性,如果薄膜厚度均匀变化,则干涉条纹一定平行,白光的干涉条纹为彩色条纹,单色光的干涉条纹则为该色光颜色,当膜的厚度为四分之一波长时,两反射光叠加后减弱则会“增透”. [答案] (1)两反射光叠加后加强 (2)至少为1.24×10-7 m (3)AD。
(新课标)2014高考物理一轮复习课时练14
课时作业(十四)r 基础训练1. (2012 •山东济南月考)在平坦的垒球运动场上,击球手挥动球棒将垒球水平击出,垒球飞行一段时间后落地•若不计空气阻力,则(A. 垒球落地时瞬时速度的大小仅由初速度决定B. 垒球落地时瞬时速度的方向仅由击球点离地面的高度决定C. 垒球在空中运动的水平位移仅由初速度决定D. 垒球在空中运动的时间仅由击球点离地面的高度决定12h[解析]被水平击出的垒球做平抛运动,则有h= 2gt[x= v o t , C错误;所以t =何” __t由h决定,D正确;x= v o、y&, x由v o和h决定;v=寸v X + v:=寸v0+ 2gh, v由v o和hV y gt决定;垒球落地时瞬时速度与水平方向的夹角为0 , tan 0 = V x= v0, B由v o和h决定.故选项A、B错误.[答案]D2. (2oi2 •济南模拟)以v o的速度水平抛出一物体,当其水平分位移与竖直分位移相等时,下列说法错误的是()A. 即时速度的大小是5v o2v oB. 运动的时间是gC. 竖直分速度的大小等于水平分速度的大小2承V:D. 运动的位移是g2010年8月29日,巴克莱高尔夫球赛上,美国高尔夫球名将“老虎”伍兹在丑闻后成绩再次滑落,排名落至第 28名•如右图所示,若伍兹从高出水平地面 h 的坡上水平击出 个质量为m 的高尔夫球.由于恒定的水平风力的作用,高尔夫球竖直地落入距击球点水平距 离为L 的A 穴.则A. 小球从圆弧顶部飞出时,圆弧对小球的支持力大小为mgC. 球被击出时的初速度大小D. 球受到水平风力的大小为 [解析]小球从圆弧顶部飞出, 由曲线运动向心力的特点可知,圆弧对小球的支持力小1f 2h于mg A 项错误;由h = 2gt 2得球从被击出到落入 A 穴所用的时间为t = 丫,水平风力 并不会影响高尔夫球下落的时间, B 项错误;由题述高尔夫球竖直地落入 A 穴可知球水平末V o t阿速度为零,由L = 得球被击出时的初速度大小为v o = L ' h , C 项正确;由v o = at 得球gLmgL水平方向加速度大小 a = h ,球被击出后受到的水平风力的大小为F = ma= h , D 项正确.[答案]CD 4.如右图所示,jcD P ~P 是水平地面上的一点, A B C D 在一条竖直线上,且 AB= BC = CD 从A 、B C 三点分别水平抛出一个物体, 这三个物体都落在水平地面上的 P 点.则三个物体抛出时速度大小之比 V A : V B : V C 为()A. 2 :3 : 6B. 1 :N3C. 1 : 2 : 3D. 1 : 1 :1B.由于受风力的影响,该球从被击出到落入 mgL F =肓A 穴所用的时间小于[解析]由题意及题图可知DP= V A t A= V B t B= V e tC,所以1V *1又由h= 2gt2,得t * , h,如图所示,一长为,2L 的木板,倾斜放置,倾角为 45°,今有一弹性小球,自与木板上端等高的某处自由释放,小球落到木板上反弹时,速度大小不变,碰撞前后,速度方向与 木板夹角相等,欲使小球一次碰撞后恰好落到木板下端, 则小球释放点距木板上端的水平距离为( )A. L /2B. L /3C. L /4D. L /5[解析]设小球释放点距木板上端的水平距离为 x ,小球自与木板上端等高的某处自由释放,碰撞时小球的速度为 V ,则有v 2= 2gx ,与木板碰撞后平抛,gt 2/2 = vt , L = vt + x , 联立解得x = L /5,选项D 正确.[答案]D7. (2012 •山东青岛)某人向放在水平地面的正前方小桶中水平抛球,结果球划着一条弧线飞到小桶的前方 (如右图所示)•不计空气阻力,为了能把小球抛进小桶中,则下次再水平抛时,他可能作出 的调整为A. 减小初速度,抛出点高度不变B. 增大初速度,抛出点高度不变C. 初速度大小不变,降低抛出点高度D. 初速度大小不变,提高抛出点高度 [解析]小球做平抛运动,竖直方向 入小桶中,需减小 x ,有两种途径,减小[答案]AC6. (2012 •湖北孝感一模)h = i gt 2,水平方向x = v o t = v冷2,欲使小球落h 或减小v o , B D 错,A 、C 对.跳台滑雪运动员的动作惊险而优美,其实滑雪运动可抽象为物体在斜坡上的平抛运动•如右图所示,设可视为质点的滑雪运动员,从倾角为0的斜坡顶端P处,以初速度V。
(新课标)2014高考物理一轮复习课时练24汇总
课时作业(二十四)1.(2012·广州测试)如右图所示的电容式键盘,是通过改变电容器的哪个因素来改变电容的( )A .两板间的距离B .两板间的电压C .两板间的电介质D .两板的正对面积[解析] 计算机键盘上下运动时,改变了上、下两板间的距离,故A 正确. [答案] A2.(2012·山东淄博月考)如右图所示,用电池对电容器充电,电路a 、b 之间接有一灵敏电流表,两极板间有一个电荷q 处于静止状态.现将两极板的间距变大,则( )A .电荷将向上加速运动B .电荷将向下加速运动C .电流表中将有从a 到b 的电流D .电流表中将有从b 到a 的电流[解析] 充电后电容器的上极板A 带正电.不断开电源,增大两板间距,U 不变、d 增大.由E =Ud 知两极板间场强减小,场强减小会使电荷q 受到的电场力减小,电场力小于重力,合力向下,电荷q 向下加速运动.由C =εS4πkd 知电容C 减小,由Q =CU 知极板所带电荷量减少,会有一部分电荷返回电源,形成逆时针方向的电流,故电流表中将会有由b 到a的电流,选项BD 正确.[答案] BD3.电荷量和质量之比叫比荷,质量和电荷量不同的带电粒子,在具有相同电压的加速电场中由静止开始加速后,必定是( )A .比荷大的粒子其动能大,电荷量大的粒子其速度大B .比荷大的粒子其速度大,电荷量大的粒子其动能大C .比荷大的粒子其速度和动能都大D .电荷量大的粒子其速度和动能都大[解析] 由动能定理E k =12mv 2=qU 可知,电荷量大的粒子其动能大.又可得v = 2qUm ,可知比荷大的粒子其速度大,B 对.[答案] B4.(2012·秦淮检测)如图(甲)所示为一只“极距变化型电容式传感器”的部分构件示意图.当动极板和定极板之间的距离d 变化时,电容C 便发生变化,通过测量电容C 的变化就可知道两极板之间距离d 的变化的情况.在图(乙)中能正确反映C 与d 之间变化规律的图象是( )[解析] 由平行板电容器电容的决定式C =εr S /(4πkd )可知,电容C 与极板之间距离d 成反比,在第一象限反比例函数图象是双曲线的一支,所以A 正确.[答案] A5.(2012·滨海检测)如图(甲)所示,一个带正电的粒子以一定的初速度垂直进入水平方向的匀强电场,若不计重力,在图(乙)中能正确描述粒子在电场中运动轨迹的是[解析] 粒子在电场中做类平抛运动,受力方向总是沿电场线方向指向轨迹的凹侧,C 正确.[答案] C 6.如右图所示,平行板电容器的电容为C ,带电荷量为Q ,两极板间距离为d ,今在距两极板的中点12d 处放一电荷q ,则( )A .q 所受静电力的大小为QqCdB .q 所受静电力的大小为k 4Qqd 2 C .q 点处的电场强度是k 4Qd 2 D .q 点处的电场强度是k 8qd 2[解析] 两极板之间的电场强度E =U d ,q 受到的静电力F =Eq =U d q =QCd q ,A 正确;Q 不是点电荷,点电荷的场强公式E =k Qr 2在这里不能用,B 、C 、D 不正确.[答案] A 7.如右图所示,水平放置的平行板电容器,上板带负电,下板带正电,带电粒子以速度v 0水平射入电场,且沿下板边缘飞出.若下板不动,将上板上移一小段距离,粒子仍以相同的速度v 0从原处飞入(不计重力),则带电粒子( )A .将打在下板中央B .仍沿原轨迹由下板边缘飞出C .不发生偏转,沿直线运动D .在两板间运动时间不变[解析] 将电容器上板移动一小段距离,电容器带电荷量不变,由公式E =U d =QCd =4k πQεr S ,可知,电容器产生的场强不变,以相同速度入射的带电粒子仍将沿原轨迹运动,下板不动时,带电粒子沿原轨迹由下板边缘飞出,B 正确;带电粒子运动时间t =lv 0不变,D正确.[答案] BD 8.如图所示装置,真空中有三个电极:发射电子的阴极:其电势φk =-182 V ;栅网:能让电子由其间穿过,电势φk =0;反射极电势为φr =-250 V ,与栅网的距离d =4 mm.设各电极间的电场是均匀的,从阴极发射的电子初速度为零,电子所受重力可以忽略,已知电子质量是0.91×10-30 kg ,电荷量e =1.6×10-19 C ,设某时刻有一电子穿过栅网飞向反射极,问它经过多长时间后再回到栅网?[解析] 因为|φk |<|φr |,所以电子穿过栅网,不到反射极就返回.设电子在到达栅网时速度为v ,则12mv 2=e (φg -φk ),电子在栅网和反射极间的加速度a =e φg -φrmd ,又t =2va ,联立以上几式解得t =1.5×10-9s.[答案] 1.5×10-9 s9.如右图所示,从F 处释放一个无初速度的电子向B 板方向运动,指出下列对电子运动的描述中哪项是正确的(设电源电动势为E )( )A .电子到达B 板时的动能是Ee B .电子从B 板到达C 板动能变化量为零C .电子到达D 板时动能是3Ee D .电子在A 板和D 板之间做往复运动[解析] 电子从A 板到B 板做匀加速运动,且eE =ΔE k ,A 正确;在BC 之间做匀速运动,B 正确;从C 板到D 板做匀减速运动,到达D 板时,速度减为零,C 错误,D 正确.[答案] ABD 10.如右图所示,质量相同的两个带电粒子P 、Q 以相同的速度沿垂直于电场方向射入两平行板间的匀强电场中,P 从两极板正中央射入,Q 从下极板边缘处射入,它们最后打在同一点(重力不计),则从开始射入到打到上极板的过程中( )A .它们运动的时间t Q =t pB .它们运动的加速度a Q <a pC .它们所带的电荷量之比q P ∶q Q =1∶2D .它们的动能增加量之比ΔE KP ∶ΔE KQ =1∶2[解析] 设P 、Q 两粒子的初速度为v 0,加速度分别为a P 和a Q ,粒子P 到上极板的距离是h /2,它们做类平抛运动的水平距离为l .则对P ,由l =v 0t P ,h 2=12a P t 2P ,得到a P =hv 20l 2.同理对Q ,l =v 0t Q ,h =12a Q t 2Q ,得到a Q =2hv 20l 2.由此可见t P =t Q ,a Q =2a P ,而a P =q P E m ,a Q =q Q Em ,所以q P ∶q Q =1∶2.由动能定理,它们的动能增加量之比ΔE k P ∶ΔE k Q =ma P h2∶ma Q h =1∶4.综上所述,A 、C 正确.[答案] AC11.质谱分析技术已广泛应用于各前沿科学领域.汤姆孙发现电子的质谱装置示意如图所示,M 、N 为两块水平放置的平行金属极板,板长为L ,板右端到屏的距离为D ,且D 远大于L ,O ′O 为垂直于屏的中心轴线,不计离子重力和离子在板间偏离O ′O 的距离.以屏中心O 为原点建立xOy 直角坐标系,其中x 轴沿水平方向,y 轴沿竖直方向.设一个质量为m 0、电荷量为q 0的正离子以速度v 0沿O ′O 的方向从O ′点射入,板间不加电场和磁场时,离子打在屏上O 点.若在两极板间加一沿+y 方向场强为E 的匀强电场,求离子射到屏上时偏离O 点的距离y 0.[解析] 离子在电场中受到的静电力F y =q 0E离子获得的加速度a y =F ym 0 离子在板间运动的时间t 0=Lv 0到达极板右边缘时,离子在+y 方向的分速度v y =a y t 0离子从板右端到达屏上所需时间t 0′=Dv 0离子射到屏上时偏离O 点的距离y 0=v y t 0′由上述各式,得y 0=q 0ELDm 0v 20. [答案] q 0ELD m 0v 2012.如下图甲所示,静电除尘装置中有一长为L 、宽为b 、高为d 的矩形通道,其前、后面板使用绝缘材料,上、下面板使用金属材料.如下图乙是装置的截面图,上、下两板与电压恒定的高压直流电源相连.质量为m 、电荷量为-q 、分布均匀的尘埃以水平速度v 0进入矩形通道,当带负电的尘埃碰到下板后其所带电荷被中和,同时被收集.通过调整两板间距d 可以改变收集效率η.当d =d 0时,η为81%(即离下板0.81d 0范围内的尘埃能够被收集).不计尘埃的重力及尘埃之间的相互作用.(1)求收集效率为100%时,两板间距的最大值d m ; (2)求收集效率η与两板间距d 的函数关系.[解析] (1)收集效率η为81%,即离下板0.81d 0的尘埃恰好到达下板的右端边缘,设高压电源的电压为U ,则在水平方向有L =v 0t① 在竖直方向有0.81d 0=12at 2② 其中a =F m =qE m =qUmd 0③当减小两板间距时,能够增大电场强度,提高装置对尘埃的收集效率.收集效率恰好为100%时,两板间距即为d m .如果进一步减小d ,收集效率仍为100%.因此,在水平方向有L =v 0t④ 在竖直方向有d m =12a ′t 2⑤ 其中a ′=F ′m =qE ′m =qUmd m⑥联立①②③④⑤⑥式可得d m =0.9d 0⑦(2)当d >0.9d 0时,设距下板x 处的尘埃恰好到达下板的右端边缘,此时有 x =12qU md (L v 0)2⑧ 根据题意,收集效率为η=xd⑨联立①②③⑧⑨式可得η=0.81(d 0d )2.即当d ≤0.9d 0时η=100%当d >0.9d 0时η=0.81(d 0d )2[答案] (1)0.9d 0 (2)η=0.81(d 0d )2(d >0.9d 0) η=100% (d ≤0.9d 0)。
(新课标)2014高考物理一轮复习课时练2
课时作业(二)1.(2012·南通模拟)对以a =2 m/s 2做匀加速直线运动的物体,下列说法正确的是 A .在任意1 s 内末速度比初速度大2 m/s B .第n s 末的速度比第1 s 末的速度大2n m/s C .2 s 末速度是1 s 末速度的2倍 D .n s 时的速度是n2s 时速度的2倍[解析] 加速度是2 m/s 2,即每秒速度增加2 m/s ,经t s 速度增加2t m/s ,所以很明显A 正确;第n s 末的速度比第1 s 末的速度大2(n -1)m/s ,B 错;因为物体不一定是从静止开始做匀加速运动,所以C 、D 说法不正确.[答案] A2.(2012·山东东营高三月考)一物体以5 m/s 的初速度、-2 m/s 2的加速度在粗糙水平面上滑行,在4 s 内物体通过的路程为( )A .4 mB .36 mC .6.25 mD .以上答案都不对[解析] 此题属刹车类题目,要注意其实际运动时间.因v 0=5 m/s ,a =-2 m/s 2,故只需t =v a =2.5 s 停下来,其4 s 内位移即为2.5 s 内位移,s =v 2t =52×2.5 m=6.25 m .选项C 正确.[答案] C3.(2012·淮安质检)做匀加速直线运动的质点,在第5 s 末的速度为10 m/s ,则 A .前10 s 内位移一定是100 m B .前10 s 内位移不一定是100 m C .加速度一定是2 m/s 2D .加速度不一定是2 m/s 2[解析] 质点在第5 s 末的速度为瞬时速度,因不知质点运动的初速度,故无法确定其加速度大小,C 错误,D 正确;质点在前10 s 内一直做匀加速运动,则前10 s 内的平均速度等于5 s 末瞬时速度为10 m/s ,前10 s 内的位移为100 m ,故A 正确,B 错误.[答案] AD4.(2012·福建师大附中月考)火车从甲站出发,沿平直铁路做匀加速直线运动,紧接着又做匀减速直线运动,到乙站恰好停止.在先、后两个运动过程中( )A .火车的位移一定相等B .火车的加速度大小一定相等C .火车的平均速度一定相等D .所用的时间一定相等[解析] 火车从甲站出发,沿平直铁路做匀加速直线运动,即初速度为零,紧接着又做匀减速直线运动,也就是做匀加速直线运动的末速度就是做匀减速直线运动的初速度,而做匀减速直线运动的末速度又为零,所以,在先、后两个运动过程中的平均速度v =v 0+v2相等,选项C 正确;火车运动的位移x =v t =v 0+v 2t ,火车运动的加速度a =v 0-vt,即它们不仅与初速度、末速度有关,还跟时间有关,而前后两个运动过程中所用的时间不一定相同,所以火车的位移、加速度在先、后两个运动过程中不一定相等,即A 、B 、D 选项都不正确.[答案] C5.骑自行车的人由静止开始沿直线运动,在第1 s 内通过1米、第2 s 内通过2米、第3 s 内通过3米、第4 s 内通过4米.则下列说法中正确的是( )A .自行车和人都做匀加速直线运动B .第2 s 末的瞬时速度为2.5 m/sC .第3、4两秒内的平均速度为3.5 m/sD .整个过程中加速度为1 m/s 2[解析] 本题已明确指出骑自行车的人做初速度为零的直线运动,因此,若为匀变速直线运动,必有连续相等时间内的位移之比是1∶3∶5∶7,而这里对应的位移之比是1∶2∶3∶4.虽然在连续相等时间内位移差相等,但不是匀变速直线运动,故无法求出加速度及第 2 s 末的瞬时速度.根据平均速度的定义可求得第3、4两秒内的平均速度为v =3+42 m/s =3.5m/s.C 选项正确.[答案] C6.汽车刹车后开始做匀减速运动,第1 s 内和第2 s 内的位移分别为3 m 和2 m ,那么从2 s 末开始,汽车还能继续向前滑行的最大距离是( )A .1.5 mB .1.25 mC .1.125 mD .1 m[解析] 由平均速度可求0.5 s 、1.5 s 时的速度分别为3 m/s 和2 m/s ,得a =-1 m/s 2.由v =v 0+at 得v 0=3.5 m/s ,共运动3.5 s,2 s 末后汽车还能运动1.5 s ,由x =12at 2得x =1.125 m.[答案] C7.(2012·成都模拟)做匀减速直线运动的物体经4 s 停止,若在第1 s 内的位移是14 m ,则最后1 s 内位移是( )A .3.5 mB .2 mC .1 mD .0[解析] 利用“逆向推理法”,把物体的运动看成逆向的初速度为零的匀加速直线运动,则相等时间内的位移之比为7∶5∶3∶1,所以71=14 m x 1,x 1=2 m .故选B.[答案] B8.目前,配置较高的汽车都安装了ABS(或EBS)制动装置,可保证车轮在制动时不会被抱死,使车轮仍有一定的滚动,安装了这种防抱死装置的汽车,在紧急刹车时可获得比车轮抱死更大的制动力,从而使刹车距离大大减小.假设汽车安装防抱死装置后刹车制动力恒为F ,驾驶员的反应时间为t ,汽车的质量为m ,刹车前匀速行驶的速度为v ,则A .汽车刹车的加速度大小为a =vtB .汽车刹车时间t ′=mv FC .汽车的刹车距离为s =vt +mv 2FD .汽车的刹车距离为s =vt +mv 22F[解析] 由F =ma 可知,a =F m ,制动时间应为t ′=v a =mvF,A 错误,B 正确;刹车距离应为s =vt +v 22a =vt +mv 22F,C 错误、D 正确.[答案] BD9.(2012·南师附中模拟)如图甲所示是一种速度传感器的工作原理图,这个系统中只有一个不动的小盒子B ,工作时小盒子B 向被测物体发出短暂的超声波脉冲,脉冲被运动的物体反射后又被B 盒接受,从B 盒发射超声波开始计时,经时间Δt 0再次发射超声波脉冲,图乙是连续两次发射的超声波的位移—时间图象,则下列说法正确的是A .超声波的速度为v 声=2x 1t 1B .超声波的速度为v 声=2x 2t 2C .物体的平均速度为v =2x 2-x 1t 2-t 1+2Δt 0D .物体的平均速度为v =2x 2-x 1t 2-t 1+Δt 0[解析] 由图乙可知,超声波的速度为v 声=2x 1t 1,A 项正确;对图乙添加辅助线如图,通过数量关系,找出运动物体在发生位移Δx 所用时间Δy ,由图可知,Δt =t 2-t 1+Δt 02,则物体的平均速度为v =2x 2-x 1t 2-t 1+Δt 0,D 项正确.[答案] AD10.物体以速度v 匀速通过直线上的A 、B 两点,所用时间为t ,现在物体从A 点由静止出发,先做匀加速直线运动(加速度为a 1)到某一最大速度v m ,然后立即做匀减速直线运动(加速度大小为a 2)至B 点速度恰好减为0,所用时间仍为t .则物体的A .v m 只能为2v ,与a 1、a 2的大小无关B .v m 可为许多值,与a 1、a 2的大小有关C .a 1、a 2必须是一定的D .a 1、a 2必须满足a 1·a 2a 1+a 2=2vt[解析] 匀速运动时x =vt ① 匀加速、匀减速运动时x =12v m t② 由①②得v m =2v③ 由v 2=2ax 得:v 2m 2a 1+v 2m2a 2=x④由①③④得:a 1·a 2a 1+a 2=2vt,所以选项A 、D 正确.[答案] AD11.一列火车做匀变速直线运动驶来,一人在轨道旁边观察火车运动,发现在相邻的两个10 s 内,火车从他跟前分别驶过8节车厢和6节车厢,每节车厢长8 m(连接处长度不计),求:(1)火车的加速度的大小;(2)人开始观察时火车速度的大小.[解析] (1)由题知,火车做匀减速运动,设火车加速度大小为a ,L =8 m. Δx =aT 2,8L -6L =a ×102,a =2L 100=2×8100m/s 2=0.16 m/s 2.(2)设人开始观察时火车速度大小为v 0,v t 2=v =8L +6L 2T =14×820 m/s =5.6 m/s.v t2=v 0-aT ,解得v 0=7.2 m/s.[答案] (1)0.16 m/s 2(2)7.2 m/s12.(2012·洛阳四校联考)2010年11月18日,珠海航展现场空军八一飞行表演队两架歼10飞机表演剪刀对冲,上演精彩空中秀.质量为m 的歼10飞机表演后返回某机场,降落在跑道上减速过程简化为两个匀减速直线运动.飞机以速度v 0着陆后立即打开减速阻力伞,加速度大小为a 0,运动时间为t 1;随后在无阻力伞情况下匀减速直至停下.在平直跑道上减速滑行总路程为s .求:第二个减速阶段飞机运动的加速度大小和时间.[解析] 如图,A 为飞机着陆点,AB 、BC 分别为两个匀减速运动过程,C 点停下.A 到B 过程,依据运动学规律有 s 1=v 0t 1-12a 1t 21 v B =v 0-a 1t 1B 到C 过程,依据运动学规律有 s 2=v B t 2-12a 2t 220=v B -a 2t 2A 到C 过程,有: s =s 1+s 2联立解得:a 2=v 0-a 1t 122s +a 1t 21-2v 0t 1,t 2=2s +a 1t 21-2v 0t 1v 0-a 1t 1.v0-a1t12 2s+a1t21-2v0t1t2=2s+a1t21-2v0t1v0-a1t1[答案] a2=。
2014高考物理一轮复习课时练42
课时作业(四十二)1.(2012·上海崇明期末)如右图所示是利用水波槽观察到的水波衍射图象,从图象可知( )A.B侧波是衍射波B.A侧波速与B侧波速相等C.减小挡板间距离,衍射波的波长将减小D.增大挡板间距离,衍射现象将更明显[解析] B侧波在传播过程中遇到带有窄缝的挡板后发生衍射,A侧水波是衍射波,选项A错误;同种机械波在相同介质中的传播速度相同,选项B正确;减小挡板间距离,衍射现象会更明显,但是衍射波的波速不变,频率不变,故波长不变,选项C错误;因为只有当挡板间距跟波长差不多,或者比波长更小时,衍射现象才明显,所以当增大挡板间距离时,衍射现象将变得不明显,选项D错误.本题答案为B.[答案] B2.(2011·上海卷)两波源S1,S2在水槽中形成的波形如右图所示,其中实线表示波峰,虚线表示波谷,则( ) A.在两波相遇的区域中会产生干涉B.在两波相遇的区域中不会产生干涉C.a点的振动始终加强D.a点的振动始终减弱[解析] 根据题意,由于介质相同,所以两列波的波速相等.由图可知,两列波的波长不相等.由v=λf知,两列波的频率不相等,因此相遇时不会发生干涉现象,也就不会出现振动始终加强或者始终减弱的区域,选项A错误,B正确.a点在图示时刻是两波峰相遇,振动加强,但因频率不相同,另一时刻,可能是两列波的波峰和波谷相遇,振动就减弱了,故选项C,D均错误.[答案] B3.(2012·山西太原市模拟)关于振动和波的关系,下列说法中正确的是 ( )A.振动是波的成因,波是振动的传播B .振动是单个质点呈现的运动现象,波是许多质点联系起来呈现的运动现象C .波的传播速度就是质点振动的速度D .波源停止振动时,波立即停止传播[答案] AB4.有一列简谐横波在弹性介质中沿x 轴正方向以速率v =5.0 m/s 传播,t =0时刻的波形如右图所示,下列说法中正确的是 ( )A .该列波的波长为0.5 m ,频率为5 HzB .t =0.1 s 时,波形沿x 轴正方向移动0.5 mC .t =0.1 s 时,质点A 的位置坐标为(1.25 m,0)D .t =0.1 s 时,质点A 的速度为零[解析] 由y -x 图知λ=1.0 m .T =λv =15s ,f =5 Hz ,A 项错.t =0.1 s 时,波传播的距离x =vt =5×0.1 m=0.5 m ,B 项正确.在t =0.1 s =T 2时,A 在平衡位置,位置坐标仍为(0.75 m,0),且A 此时的速度最大,C 、D 项错.[答案] B5.如右图所示,S 1、S 2为两个振动情况完全一样的波源,两列波的波长都为λ,它们在介质中产生干涉现象,S 1、S 2在空间共形成6个振动减弱的区域(图中虚线处),P 是振动减弱区域中的一点,从图中可看出( ) A .P 点到两波源的距离差等于1.5λB .两波源之间的距离一定在2.5个波长到3.5个波长之间C .P 点此时刻振动最弱,过半个周期后,振动变为最强D .当一列波的波峰传到P 点时,另一列波的波谷也一定传到P 点[解析] 从S 1、S 2的中点起到向右三条虚线上,S 1、S 2的距离差依次为0.5λ、1.5λ、2.5λ.[答案] ABD6.(2012·山东期中)一列简谐横波沿x 轴传播,某时刻的波形如下图所示,已知此时质点F 的运动方向向y 轴负方向,则 ( )A .此波向x 轴正方向传播B .质点C 此时向y 轴负方向运动C .质点C 将比质点B 先回到平衡位置D .质点E 的振幅为零[解析] 因为机械波在传播过程中,靠近波源的质点的振动带动相邻的后边质点的振动,而后面质点要“模仿”前面质点的振动,本题中,已知质点F 的运动方向向y 轴负方向,即F 质点正在“模仿”右边质点的振动,这说明波源在右边,波从右向左传播,即此波向x 轴负方向传播,选项A 错误;质点C 此时刚到达最大位移处,速度为0,此后才向y 轴负方向运动,选项B 错误;质点B 要先向y 轴正方向运动到达波峰位置再回到平衡位置,而质点C 直接从波峰位置回到平衡位置,所以选项C 正确;振幅指的是质点离开平衡位置到达的最大距离,虽然此时质点E 的位移为零,但其振幅不为零,选项D 错误.本题答案为C.[答案] C7.(2012·北京石景山期末)如下图所示是一列简谐横波在t =0时的波形图,若波的传播速度为2 m/s ,此时质点P 向上振动.下列说法正确的是 ( )A .质点P 的振动周期为0.25 sB .经过任意时间,质点Q 和P 的振动情况总是相同的C .经过Δt =0.4 s ,质点P 向右移动0.8 mD .经过Δt =0.4 s ,质点P 仍在平衡位置,它通过的路程为0.2 m[解析] 根据波形图可知,波长λ=0.4 m ,振幅A =5 cm ,已知v =2 m/s ,所以T =λ/v =0.2 s ,选项A 错误;质点Q 和P 间的距离刚好是1个波长,所以它们的振动情况总是相同的,选项B 正确;在机械波的传播过程中,各质点并不随波迁移,而是在各自的平衡位置附近振动,选项C 错误;经过Δt =0.4 s =2T ,质点P 回到初始位置,不在平衡位置,它通过的路程是8A =40 cm =0.4 m ,也不是0.2 m ,选项D 错误.本题答案为B.[答案] B8.一列沿x 轴正方向传播的简谐横波在t =0时的波形如右图所示,已知t =0.6 s 时,B 点第三次出现波峰.则这列波的周期是多少?x =50 cm 处的质点A 回到平衡位置的最短时间为多少?[解析] 由题意得t =212T ,解得T =0.24 s 由图象可知,λ=120 cm =1.2 m ,v =λT=5 m/s x =50 cm 处的质点A 回到平衡位置的最短时间为t ′=x v=0.1 s. [答案] 0.24 s 0.1 s9.(2012·四川卷)在xOy 平面内有一列沿x 轴正方向传播的简谐横波,波速为2 m/s ,振幅为A .M ,N 是平衡位置相距2 m 的两个质点,如右图所示.在t =0时,M 通过其平衡位置沿y 轴正方向运动,N 位于其平衡位置上方最大位移处.已知该波的周期大于1 s ,则A .该波的周期为53s B .在t =13s 时,N 的速度一定为2 m/s C .从t =0到t =1 s ,M 向右移动了2 mD .从t =13 s 到t =23s ,M 的动能逐渐增大[解析]由题意可知波源起振方向沿y 轴正方向,周期大于1 s ,可画出t =0时的波形图如右图所示,则波长λ=83 m ,周期T =λ/v =43s ,则A 错;质点的振动速度与波速是两个不同的概念,B 错;质点不会随波迁移,C 也错误;13s 就是T /4,画出T /4时刻的波形图就可以判断只有D 项正确.正确答案为D.[答案] D10.(2012·北京顺义区模拟)一列简谐横波某时刻的波形如图所示中实线所示,经过0.50 s 后的波形如图中虚线所示.已知波的周期为T ,且0.25 s<T <0.50 s ,则A .当波向x 轴的正方向传播时,波速大小为10 m/sB .无论波向x 轴正方向传播还是向x 轴负方向传播,在这0.50 s 内x =1.0 m 的质点M ,通过的路程都相等C .当波向x 轴正方向传播时,x =1.0 m 的质点M 和x =2.5 m 的质点N 在0.50 s 内通过的路程不相等D .当t =0.10 s 时,x =1.0 m 的质点M 振动的位移一定是0[解析] 由波形图可知,波长λ=4 m ,当波向x 轴的正方向传播时,0.50 s 传播5λ/4,5T /4=0.50 s ,所以波速v =λ/T =10 m/s ,选项A 正确;当波向x 轴的正方向传播时,在这0.50 s 内x =1.0 m 的质点M ,通过的路程为5/4×4A =5A =10 cm ;当波向x 轴的负方向传播时,在这0.50 s 内x =1.0 m 的质点M ,通过的路程为7/4×4A =7A =14 cm ,选项B 错误;当波向x 轴正方向传播时,x =1.0 m 的质点M 和x =2.5 m 的质点N 在0.50 s 内通过的路程相等,选项C 错误;当波向x 轴正方向传播时,当t =0.10 s =T /4时,x =1.0 m 的质点M 的位移为0,当波向x 轴负方向传播时,当t =0.10 s =0.35T 时,x =1.0 m 的质点M 的位移为负值,选项D 错误.本题答案为A.[答案] A11.(2012·山西忻州四校联考)一列横波在x 轴上传播,在t 1=0时刻波形如图中实线所示,t 2=0.05 s 时刻波形如图中虚线所示.(1)求这列波的波速是多少.(2)若有另一列波能与这列波发生稳定干涉,则另一列波的最小频率是多少?[解] (1)根据波形图可知,波长λ=8 m ,这列波的传播方向存在两种可能.若波沿x轴正方向传播,则0.05 s =(n +14)T (其中n =0,1,2,3…),所以周期T =1n +(n =0,1,2,3…),波速v =λ/T =40(4n +1)m/s(n =0,1,2,3…);若波沿x 轴负方向传播,则0.05s =(n +34)T ,所以,周期T =15n +(n =0,1,2,3…),波速v =λ/T =40(4n +3)m/s(n =0,1,2,3…).(2)若有另一列波能与这列波发生稳定干涉,则另一列波的频率与这列波的频率相同;若波沿x 轴正方向传播,且当n =0时,周期最大,频率最小,最小频率为5 Hz ,所以另一列波的最小频率是5 Hz.[答案] (1)40(40n +3) m/s(n =0,1,2,3…) (2)5 Hz12.(2012·辽宁本溪期末联考)如右图所示,一列沿x 轴正方向传播的简谐横波,波速大小为0.3 m/s ,P 点的横坐标为96 cm ,从图中状态开始计时,求:(1)经过多长时间,P 质点开始振动,振动时的方向.(2)经过多长时间,P 质点第一次到达波峰.(3)以P 质点第一次到达波峰开始计时,作出P 点的振动图象.(至少画出1.5个周期)[解析] (1)开始计时时,这列波的最前端的质点坐标是24 cm ,根据波的传播方向,可知这一点沿y 轴负方向运动,因此在波前进方向的每一个质点开始振动的方向都沿y 轴负方向运动,故P 点开始振动时的方向沿y 轴负方向,P 质点开始振动的时间是t =Δx v =0.96-0.240.3s =2.4 s.(2)波形移动法:质点P 第一次到达波峰,即初始时刻这列波的波峰传到P 点,因此所用的时间是t ′=0.96-0.060.3s =3.0 s. (3)由波形图知,振幅A =10 cm ,T =λv=0.8 s ,由P 点自正向最大位移开始的振动图象如下图所示.[答案] (1)2.4 s 方向沿y轴负方向(2)3.0 s (3)见解析。
(新课标)2014高考物理一轮复习课时练33汇总
课时作业(三十三)1.(2012·江苏南通月考)电磁炉的工作原理是利用电磁感应现象产生的涡流,使锅体发热从而加热食物.下列相关的说法中正确的是( ) A.锅体中涡流的强弱与磁场变化的频率有关B.电磁炉中通入电压足够高的直流电也能正常工作C.金属或环保绝缘材料制成的锅体都可以利用电磁炉来烹饪食物D.电磁炉的上表面一般都用金属材料制成,以加快热传递、减少热损耗[解析] 涡流是高频交流电产生的磁场引起的电磁感应现象,故选项A正确、B错误;电磁炉表面一般用绝缘材料制成,避免产生涡流,锅体用金属制成利用涡流加热食物,故选项C、D错误.[答案] A2.(2012·湖南嘉兴模拟)在竖直向下的匀强磁场中,将一水平放置的金属棒PQ以初速度v0水平抛出,如右图所示.棒在运动过程中始终保持水平,空气阻力不计,那么,下列说法中正确的是( ) A.PQ棒两端的电势一定满足φP<φQB.PQ棒中的感应电动势越来越大C.PQ棒中的感应电动势越来越小D.PQ棒中的感应电动势保持不变[解析] PQ棒水平切割磁感线,利用右手定则可判断两端的电势一定满足φP<φQ,A 正确;因PQ棒水平方向速度不变,竖直方向不切割磁感线,所以PQ棒中的感应电动势保持不变,D正确.[答案] AD3.如右图所示,平行导轨间距为d,一端跨接一个电阻R,匀强磁场的磁感应强度为B,方向垂直于平行金属导轨所在平面.一根金属棒与导轨成θ角放置,金属棒与导轨的电阻均不计.当金属棒垂直于棒的方向以恒定的速度v在金属导轨上滑行时,通过电阻R的电流是( )A.BdvR B.Bdv sin θRC.Bdv cos θRD.BdvR sin θ[解析] 导体棒与磁场垂直,速度与磁场垂直且与棒长度方向垂直,由E =Blv ,l =dsin θ得I =E R =BdvR sin θ,D 正确.[答案] D4.(2012·徐州检测)如图所示,A 、B 、C 是相同的白炽灯,L 是自感系数很大、电阻很小的自感线圈.现将S 闭合,下面说法正确的是( )A .B 、C 灯同时亮,A 灯后亮B .A 、B 、C 灯同时亮,然后A 灯逐渐变暗,最后熄灭 C .A 灯一直不亮,只有B 灯和C 灯亮D .A 、B 、C 灯同时亮,并且亮暗没有变化[解析] 由于线圈的自感系数很大,在开关闭合瞬间线圈的阻碍作用很大,线圈中电流为零,所以电流通过A 和B 、C 支路,三灯同时亮;随着L 中的电流增大,A 中电流逐渐减小;由于线圈L 的电阻很小,电路达到稳定时灯泡A 被线圈短路,灯泡A 中电流为零,最后熄灭,故B 项正确.[答案] B5.如右图所示,两块水平放置的金属板距离为d ,用导线、开关S 与一个n 匝的数圈连接,线圈置于方向竖直向上的均匀变化的磁场中.两板间放一台小压力传感器,压力传感器上表面绝缘,在其上表面静止放置一个质量为m 、电荷量为+q 的小球.开关S 闭合前传感器上有示数,开关S 闭合后传感器上的示数变为原来的一半.则线圈中磁场的变化情况和磁通量变化率分别是( )A .正在增强,ΔΦΔt =mgd2q B .正在增强,ΔΦΔt =mgd2nq C .正在减弱,ΔΦΔt =mgd2qD .正在减弱,ΔΦΔt =mgd2nq[解析] 开关S 闭合后传感器示数减小,说明带电小球对传感器的压力变小,小球带正电,说明金属板上极板带负电,由楞次定律判断可知,线圈中感应电流的磁场方向是竖直向下的,从而推知题图中的磁场正在增强;依题意知,闭合开关S 后小球受重力mg .支持力F N 和电场力F 电而处于平衡状态,即F 电+F N =mg ,其中F 电=q ·n ΔΦΔt d ,F N =12mg ,代入解得ΔΦΔt=mgd2nq ,故选项B 正确.[答案] B6.如右图所示的电路中,两个相同的小灯泡L 1和L 2分别串联一个带铁芯的电感线圈L 和一个滑动变阻器R .闭合开关S 后,调整R ,使L 1和L 2发光的亮度一样,此时流过两个灯泡的电流为I .然后,断开S.若t ′时刻再闭合S ,则在t ′前后的一小段时间内,正确反映流过L 1的电流i 1、流过L 2的电流i 2随时间t 变化的图象是[解析] 闭合开关S ,调整R ,使两个灯泡L 1、L 2发光亮度相同,电流为I ,说明R L =R ;若t ′时刻再闭合S ,流过电感线圈L 和灯泡L 1的电流迅速增大,电感线圈L 产生自感电动势,阻碍流过L 1的电流i 1增大,直至达到电流I ,故选项A 错误,B 正确;而对于R 和L 2支路来说,流过灯泡L 2的电流i 2立即达到电流I ,故C 、D 均错误.[答案] B7.如右图,垂直矩形金属框的匀强磁场的磁感应强度为B ,导体棒ab 垂直线框两长边搁在框上,ab 长为l ,在Δt 时间内,ab 向右以速度v 匀速滑过距离d ,则A .因右边面积减小ld ,左边面积增大ld ,则ΔΦ=2Bld ,E =2Bld2ΔtB .因右边面积减小ld ,左边面积增大ld ,减小磁通量与增大磁通量相互抵消,ΔΦ=0,E =0C .ΔΦ=Bld ,E =BldΔtD .因ab 棒做切割磁感线运动,所以不能用E =ΔΦΔt 计算感应电动势,只能用E =Blv 计算感应电动势[解析] 磁通量的变化等于磁感应强度与导线扫过面积的乘积,即ΔΦ=Bld ,故选项A 、B 均错误;感应电动势E =ΔΦΔt =BldΔt 或E =Blv ,故选项C 正确,D 错误.[答案] C8.(2012·扬州检测)面积S =0.2 m 2、n =100匝的圆形线圈,处在如下图所示的匀强磁场内,磁感应强度B 随时间t 变化的规律是B =0.02 t T .电阻R 与电容器C 并联后接在线圈两端,电阻R =3 Ω,电容C =30 μF ,线圈电阻r =1 Ω.求:(1)通过R 的电流的大小和方向; (2)电容器所带的电荷量.[解析] (1)通过圆形线圈的磁通量Φ变大,由楞次定律和安培定则知,线圈中感应电流的方向为逆时针,所以通过R 的电流方向为由b 到a .由法拉第电磁感应定律,线圈产生的感应电动势为E =n ΔΦΔt =nS ΔBΔt =100×0.2×0.02 V=0.4 V ,由闭合电路欧姆定律,通过R 的电流为 I =ER +r =0.43+1 A =0.1 A.(2)电容器两端的电压等于电阻R 两端的电压,即U C =U R =IR =0.1×3 V=0.3 V ,电容器所带的电荷量为Q =CU C =30×10-6×0.3 C=9×10-6 C.[答案] (1)0.1 A ,方向b →R →a (2)9×10-6C9.(2012·无锡检测)如右图所示,在存在右边界的垂直纸面向里、磁感应强度为B 的匀强磁场区域中有一个均匀导线制成的单匝直角三角形线框.现用外力使线框以恒定的速度v 沿垂直磁场方向向右运动,运动中线框的AB 边始终与磁场右边界平行.已知AB =BC =l ,线框导线的总电阻为R .则线框离开磁场的过程中A .线框中的电动势随时间均匀增大B .通过线框截面的电荷量为Bl 22RC .线框所受外力的最大值为2B 2l 2vRD .线框中的热功率与时间成正比[解析] 三角形线框向外匀速运动的过程中,由于有效切割磁感线的长度L =vt ,所以线框中感应电动势的大小E =BLv =Bv 2t ,故选项A 正确;线框离开磁场的运动过程中,通过线圈的电荷量Q =It =ΔΦΔtR ×Δt =Bl 22R ,选项B 正确;当线框恰好刚要完全离开磁场时,线框有效切割磁感线的长度最大,则F =BIl =B 2l 2vR ,选项C 错误;线框的热功率为P =Fv =BIvt ×v =B 2v 4t 2R ,选项D 错误.[答案] AB10.某学习小组设计了一种发电装置如下图甲所示,图乙为其俯视图.将8块外形相同的磁铁交错放置组合成一个高h =0.5 m 、半径r =0.2 m 的圆柱体,其可绕固定轴OO ′逆时针(俯视)转动,角速度ω=100 rad/s.设圆柱外侧附近每个磁场区域的磁感应强度大小均为B =0.2 T 、方向都垂直于圆柱体侧表面.紧靠圆柱外侧固定一根与其等高、电阻R 1=0.5 Ω的细金属杆ab ,杆与轴OO ′平行.图丙中阻值R =1.5 Ω的电阻与理想电流表A 串联后接在杆a 、b 两端.下列说法正确的是( )A .电流表A 的示数约为1.41 AB .杆ab 产生的感应电动势的有效值E =2 VC .电阻R 消耗的电功率为2 WD .在圆柱体转过一周的时间内,流过电流表A 的总电荷量为零 [解析] 圆柱体转过一周为感应电动势的4个周期, T =T 04=142πω=π200 s.金属杆上感应电动势的大小E ′=Blv =Bhr ω=2.0 V ;感应电动势的方向周期性变化,周期为π200 s ,所以有效值E =2.0 V ,则I =ER 1+R =1.0 A ,电阻R 的电功率为P =I 2R =1.5 W .电流在电流表中周期性变化,每个周期的总电流为零.[答案] BD11.如右图所示,金属杆ab 放在光滑的水平金属导轨上,与导轨组成闭合矩形电路,长l 1=0.8 m ,宽l 2=0.5 m ,回路总电阻R =0.2 Ω,回路处在竖直方向的磁场中,金属杆用水平绳通过定滑轮连接质量M =0.04 kg 的木块,磁感应强度从B 0=1 T 开始随时间均匀增加,5 s 末木块将离开水平面,不计一切摩擦,g 取10 m/s 2,求回路中的电流强度.[解析] 设磁感应强度B (t )=B 0+kt ,k 是大于零的常量,于是回路电动势E =S ΔBΔt =kS① S =l 1×l 2② 回路电流I =ER③杆受安培力F (t )=BIl 2=(B 0+kt )Il 2④5秒末有F (5)=B 0+5·k kl 1l 22R=Mg ⑤可以得到k =0.2 T/s 或k =-0.4 T/s(舍去), 解得I =0.4 A. [答案] 0.4 A12.(2012·长春调研)如图甲所示,空间存在一宽度为2L 的有界匀强磁场,磁场方向垂直纸面向里.在光滑绝缘水平面内有一边长为L 的正方形金属线框,其质量m =1 kg 、电阻R =4 Ω,在水平向左的外力F 作用下,以初速度v 0=4 m/s 匀减速进入磁场,线框平面与磁场垂直,外力F 大小随时间t 变化的图线如图乙所示.以线框右边刚进入磁场时开始计时,求:(1)匀强磁场的磁感应强度B ;(2)线框进入磁场的过程中,通过线框的电荷量q ; (3)判断线框能否从右侧离开磁场?说明理由.[解析] (1)由F —t 图象可知,线框加速度a =F 2m =2 m/s 2框的边长L =v 0t -12at 2=(4×1-12×2×12) m =3 mt =0时刻线框中的感应电流I =BLv 0R线框所受的安培力F 安=BIL 由牛顿第二定律F 1+F 安=ma 又F 1=1 N ,联立得B =13 T =0.33 T(2)线框进入磁场的过程中,平均感应电动势E =BL 2t平均电流I =ER 通过线框的电荷量q =I t联立得q=0.75 C(3)设匀减速运动速度减为零的过程中线框通过的位移为x,由运动学公式得0-v20=-2ax代入数值得x=4 m<2L所以线框不能从右侧离开磁场.[答案] (1)0.33 (2)0.75(3)不能从右侧离开磁场理由见解析。
(新课标)2014高考物理一轮复习课时练8汇总
课时作业(八)1.如右图所示,一运送救灾物资的直升飞机沿水平方向匀速飞行.已知物资的总质量为m ,吊运物资的悬索与竖直方向成θ角.设物资所受的空气阻力为F f ,悬索对物资的拉力为F ,重力加速度为g ,则( )A .F f =mg sin θB .F f =mg tan θC .F =mg cos θD .F =mgtan θ[解析] 救灾物资匀速飞行,受力平衡,它受到向下的重力mg ,向右的阻力F f 和沿细绳斜向上的拉力,可得F f =mg tan θ,A 错误、B 正确;F =mgcos θ,C 、D 错误.[答案] B 2.(2012·泉州质检)滑滑梯是小孩子很喜欢的娱乐活动.如右图所示,一个小孩正在滑梯上匀速下滑,则( )A .小孩所受的重力与小孩所受的弹力大小相等B .小孩所受的重力与小孩所受的摩擦力大小相等C .小孩所受的弹力和摩擦力的合力与小孩所受的重力大小相等D .小孩所受的重力和弹力的合力与小孩所受的摩擦力大小相等 [解析] 小孩在滑梯上受力如图所示,设滑梯斜面倾角为θ,则F N=mg cosθ,F f=mg sinθ,所以A、B错误;小孩在重力、弹力和摩擦力三个力作用下处于平衡状态,其中任意两个力的合力一定与第三个力大小相等,方向相反,故C、D正确.[答案] CD3.(2012·潍坊市联考)如右图所示,斜面A和物块B静置在水平地面上,某时刻起,对B施加一个沿斜面向上的拉力F,力F从零开始随时间均匀增大,在这一过程中,A、B始终保持静止.则地面对A 的( ) A.支持力不变B.支持力减小C.摩擦力增大D.摩擦力减小[解析] 设斜面的倾角为θ,以A、B整体为研究对象,因为A、B始终保持静止,由平衡条件得F f=F cosθ,(m A+m B)g=F N+F sinθ,又F均匀增大,故摩擦力F f增大,支持力F N减小,选项B、C正确.[答案] BC4.如图所示,轻杆A端用光滑水平铰链装在竖直墙面上,B端用水平绳连在墙C处,在B端悬挂一重物P,在水平向右的力F缓慢拉起重物P的过程中,杆AB所受压力的变化情况是A.变大B.变小C.先变小再变大D.不变[解析] 根据力的合成与分解可知,CB绳的拉力增大,BP绳的拉力也增大,但杆与竖直方向的夹角不变,杆所受压力沿竖直方向的分力始终与重物的重力大小相等,故杆所受压力也不变,D正确.[答案] D5.(2012·安徽省省城名校联考)如图所示,放在粗糙水平面上的“L型”物体A,上表面光滑,下表面粗糙.A和B之间用一根弹簧连接,物体A始终静止在水平地面上,某时刻物体A受到地面水平向右的摩擦力作用.关于此时刻,下列说法中正确的是A.弹簧处于伸长状态B.弹簧处于原长状态C.弹簧处于压缩状态D.B一定静止在物体A上[解析] 某时刻物体A受到地面水平向右的摩擦力作用,隔离物体A,根据平衡条件,A一定受到弹簧对A向左的弹力,弹簧处于伸长状态,选项A正确.[答案] A6.(2012·安徽省省城名校联考)如图所示,在竖直墙壁的A点处有一根水平轻杆a,杆的左端有一个轻滑轮O.一根细线上端固定在该天花板的B点处,细线跨过滑轮O,下端系一个重为G的物体,开始时BO段细线与天花板的夹角为θ=30°.系统保持静止,当轻杆a缓慢向下移动的过程中,不计一切摩擦.下列说法中正确的是A.细线BO对天花板的拉力不变B.a杆对滑轮的作用力逐渐减小C.a杆对滑轮的作用力的方向沿杆水平向右D.墙壁对a杆的作用力不变[解析] 细线BO对天花板的拉力大小等于物体重力,当轻杆a缓慢向下移动的过程中,拉力大小不变,方向改变,选项A错误;以滑轮为研究对象,画出受力分析图,当轻杆a 缓慢向下移动的过程中,a杆对滑轮的作用力逐渐减小,选项B正确;a杆对滑轮的作用力的方向偏向右上,选项C错误;以杆为研究对象,分析受力可得,墙壁对a杆的作用力方向改变,大小减小,选项D错误。
(新课标)2014高考物理一轮复习课时练35汇总
课时作业(三十五)1.(2012·济宁模拟)水平放置的金属框架cdef 处于如图所示的匀强磁场中,金属棒ab 处于粗糙的框架上且接触良好,从某时刻开始,磁感应强度均匀增大,金属棒ab 始终保持静止,则 ( )A .ab 中电流增大,ab 棒所受摩擦力增大B .ab 中电流不变,ab 棒所受摩擦力不变C .ab 中电流不变,ab 棒所受摩擦力增大D .ab 中电流增大,ab 棒所受摩擦力不变[解析] 由法拉第电磁感应定律E =ΔΦΔt =ΔBΔt ·S 知,磁感应强度均匀增大,则ab 中感应电动势和电流不变,由F f =F 安=BIL 知摩擦力增大,选项C 正确.[答案] C2.如图所示,闭合金属线框从一定高度自由下落进入匀强磁场中,磁场足够大,从ab 边开始进入磁场到cd 边刚进入磁场的这段时间内,线框运动的速度-时间图象不可能是[解析] 当ab 边刚进入磁场时,若线框所受安培力等于重力,则线框在从ab 边开始进入磁场到cd 边刚进入磁场前做匀速运动,故A 是可能的;当ab 边刚进入磁场时,若线框所受安培力小于重力,则线框做加速度逐渐减小的加速运动,最后可能做匀速运动,故C 情况也可能;当ab 边刚进入磁场时,若线框所受安培力大于重力,则线框做加速度逐渐减小的减速运动,最后可能做匀速运动,故D 可能;线框在磁场中不可能做匀变速运动,故B 项是不可能的,故选B.[答案] B3.如右图所示,在粗糙绝缘水平面上有一正方形闭合线框abcd ,其边长为l ,质量为m ,金属线框与水平面的动摩擦因数为μ.虚线框a ′b ′c ′d ′内有一匀强磁场,磁场方向竖直向下.开始时金属线框的ab 边与磁场的d ′c ′边重合.现使金属线框以初速度v 0沿水平面滑入磁场区域,运动一段时间后停止,此时金属线框的dc 边与磁场区域的d ′c ′边距离为l .在这个过程中,金属线框产生的焦耳热为( )A.12mv 20+μmglB.12mv 20-μmglC.12mv 20+2μmgl D.12mv 20-2μmgl [解析] 依题意知,金属线框移动的位移大小为2l ,此过程中克服摩擦力做功为2μmgl ,由能量守恒定律得金属线框中产生的焦耳热为Q =12mv 20-2μmgl ,故选项D 正确.[答案] D4.如图(甲)、(乙)、(丙)中,除导体棒ab 可动外,其余部分均固定不动,(甲)图中的电容器C 原来不带电.设导体棒、导轨和直流电源的电阻均可忽略,导体棒和导轨间的摩擦也不计,图中装置均在水平面内,且都处于方向垂直水平面(即纸面)向下的匀强磁场中,导轨足够长.现给导体棒ab 一个向右的初速度v 0,在(甲)、(乙)、(丙)三种情况下导体棒ab 的最终运动状态是 ( )A .三种情形下导体棒ab 最终都做匀速运动B .(甲)、(丙)中, ab 棒最终将以不同速度做匀速运动;(乙)中,ab 棒最终静止C .(甲)、 (丙)中,ab 棒最终将以相同速度做匀速运动;(乙)中,ab 棒最终静止D .三种情形下导体棒ab 最终都静止[解析] 题图(甲)中ab 棒运动后给电容器充电,当充电完成后,棒以一个小于v 0的速度向右匀速运动.题图(乙)中构成了回路,最终棒的动能完全转化为电热,棒停止运动.题图(丙)中棒先向右减速为零,然后反向加速至匀速.故正确选项为B.[答案] B5.(2012·温州模拟)如图所示电路,两根光滑金属导轨,平行放置在倾角为θ的斜面上,导轨下端接有电阻R ,导轨电阻不计,斜面处在竖直向上的匀强磁场中,电阻可略去不计的金属棒ab 质量为m ,受到沿斜面向上且与金属棒垂直的恒力F 的作用,金属棒沿导轨匀速下滑,则它在下滑高度h 的过程中,以下说法正确的是A .作用在金属棒上各力的合力做功为零B .重力做的功等于系统产生的电能C .金属棒克服安培力做的功等于电阻R 上产生的焦耳热D .金属棒克服恒力F 做的功等于电阻R 上产生的焦耳热[解析] 根据动能定理可知,合力做的功等于动能的变化量,故选项A 正确;重力做的功等于重力势能的变化量,重力做的功等于克服F 所做的功与产生的电能之和,而克服安培力所做的功等于电阻R 上产生的焦耳热,故选项B 、D 均错误,C 正确.[答案] AC6.如右图所示,匀强磁场的磁感应强度为B ,方向竖直向下,在磁场中有一个边长为L 的正方形刚性金属框,ab 边的质量为m ,电阻为R ,其他三边的质量和电阻均不计.cd 边上装有固定的水平轴,将金属框自水平位置由静止释放,第一次转到竖直位置时,ab 边的速度为v ,不计一切摩擦,重力加速度为g ,则在这个过程中,下列说法正确的是A .通过ab 边的电流方向为a →bB .ab 边经过最低点时的速度v =2gLC .a 、b 两点间的电压逐渐变大D .金属框中产生的焦耳热为mgL -12mv 2[解析] ab 边向下摆动过程中,磁通量逐渐减小,根据楞次定律及右手定则可知感应电流方向为b →a ,选项A 错误;ab 边由水平位置到达最低点过程中,机械能不守恒,所以选项B 错误;金属框摆动过程中,ab 边同时受安培力作用,故当重力与安培力沿其摆动方向分力的合力为零时,a 、b 两点间电压最大,选项C 错误;根据能量转化和守恒定律可知,金属框中产生的焦耳热应等于此过程中机械能的损失,故选项D 正确.[答案] D7.如右图所示,光滑的“Π”形金属导体框竖直放置,质量为m 的金属棒MN 与框架接触良好.磁感应强度分别为B 1、B 2的有界匀强磁场方向相反,但均垂直于框架平面,分别处在abcd 和cdef 区域.现从图示位置由静止释放金属棒MN ,当金属棒进入磁场B 1区域后,恰好做匀速运动.以下说法中正确的是 ( )A .若B 2=B 1,金属棒进入B 2区域后将加速下滑B .若B 2=B 1,金属棒进入B 2区域后仍将保持匀速下滑C .若B 2<B 1,金属棒进入B 2区域后将先加速后匀速下滑D .若B 2>B 1,金属棒进入B 2区域后将先减速后匀速下滑[解析] 当金属棒MN 进入磁场B 1区域时,金属棒MN 切割磁感线而使回路中产生感应电流,当金属棒MN 恰好做匀速运动时,其重力和安培力平衡,即有B 21l 2v R =mg .金属棒MN 刚进入B 2区域时,速度仍为v ,若B 2=B 1,则仍满足B 22l 2v R =mg ,金属棒MN 仍保持匀速下滑,选项A 错误,B 正确;若B 2<B 1,则金属棒MN 刚进入B 2区域时B 22l 2v R <mg ,金属棒MN 先加速运动,当速度增大到使安培力等于mg 时,金属棒MN 在B 2区域内匀速下滑,故选项C 正确;同理可知选项D 也正确.[答案] BCD9.如图所示,水平地面上方矩形区域内存在垂直纸面向里的匀强磁场,两个边长相等的单匝闭合正方形线圈Ⅰ和Ⅱ,分别用相同材料、不同粗细的导线绕制(Ⅰ为细导线).两线圈在距磁场上界面h 高处由静止开始自由下落,再进入磁场,最后落到地面.运动过程中,线圈平面始终保持在竖直平面内且下边缘平行于磁场上边界.设线圈Ⅰ、Ⅱ落地时的速度大小分别为v 1、v 2,在磁场中运动时产生的热量分别为Q 1、Q 2.不计空气阻力,则A .v 1<v 2,Q 1<Q 2B .v 1=v 2,Q 1=Q 2C .v 1<v 2,Q 1>Q 2D .v 1=v 2,Q 1<Q 2 [解析] 线圈进入磁场前机械能守恒,进入磁场时速度均为v =2gh ,设线圈材料的密度为ρ1,电阻率为ρ2,线圈边长为L ,导线横截面积为S ,则线圈的质量m =ρ14LS ,电阻R =ρ24L S ,由牛顿第二定律得mg -B 2L 2v R =ma ,解得a =g -B 2v16ρ1ρ2,可见两线圈在磁场中运动的加速度相同,两线圈落地时速度相同,即v 1=v 2,故A 、C 选项错误;线圈在磁场中运动时产生的热量等于克服安培力做的功,Q =W 安,而F 安=B 2L 2v R =B 2Lv4ρ2S ,线圈Ⅱ横截面积S大,F 安大,故Q 2>Q 1,故选项D 正确,B 错误.[答案] D10.(2012·海淀一模)光滑平行金属导轨M 、N 水平放置,导轨上放一根与导轨垂直的导体棒PQ .导轨左端与由电容为C 的电容器、单刀双掷开关和电动势为E 的电源组成的电路相连接,如图所示.在导轨所在的空间存在方向垂直于导轨平面的匀强磁场(图中未画出).先将开关接在位置a ,使电容器充电并达到稳定后,再将开关拨到位置b ,导体棒将会在磁场的作用下开始向右运动,设导轨足够大,则以下说法中正确的是A .空间存在的磁场方向竖直向下B .导体棒向右做匀加速运动C .当导体棒向右运动的速度达到最大值,电容器的电荷量为零D .导体棒运动的过程中,通过导体棒的电荷量Q <CE[解析] 充电后电容器的上极板带正电,将开关拨向位置b ,PQ 中的电流方向是由P →Q ,由左手定则判断可知,导轨所在处磁场的方向竖直向下,选项A 正确;随着放电的进行,导体棒速度增大,由于它所受的安培力大小与速度有关,所以由牛顿第二定律可知导体棒不能做匀加速运动,选项B 错误;运动的导体棒在磁场中切割磁感线,由右手定则判断可知,感应电动势方向由Q →P ,当其大小等于电容器两极板间电势差大小时,导体棒速度最大,此时电容器的电荷量并不为零,故选项C 错误;由以上分析可知,导体棒从开始运动到速度达到最大时,电容器所带电荷量并没有放电完毕,故通过导体棒的电荷量Q <CE ,选项D 正确.[答案] AD11.如图所示,足够长的光滑平行金属导轨cd 和ef ,水平放置且相距L ,在其左端各固定一个半径为r 的四分之三光滑金属圆环,两圆环面平行且竖直.在水平导轨和圆环上各有一根与导轨垂直的金属杆,两金属杆与水平导轨、金属圆环形成闭合回路,两金属杆质量均为m ,电阻均为R ,其余电阻不计.整个装置放在磁感应强度大小为B 、方向竖直向上的匀强磁场中.当用水平向右的恒力F =3mg 拉细杆a ,达到匀速运动时,杆b 恰好静止在圆环上某处,试求:(1)杆a 做匀速运动时,回路中的感应电流;(2)杆a 做匀速运动时的速度;(3)杆b 静止的位置距圆环最低点的高度.[解析] (1)匀速时,拉力与安培力平衡,F =BIL得:I =3mgBL(2)金属棒a 切割磁感线,产生的电动势E =BLv回路中电流I =E2R联立得:v =23mgRB 2L 2(3)设平衡时棒b 和圆心的连线与竖直方向的夹角为θ则tan θ=Fmg =3,得θ=60°h =r (1-cos θ)=r2[答案] (1)3mg BL (2)23mgR B 2L 2 (3)r212.(2012·安徽六校联考)相距L =1.5 m 的足够长金属导轨竖直放置,质量为m 1=1 kg 的金属棒ab 和质量为m 2=0.27 kg 的金属棒cd 均通过棒两端的套环水平地套在金属导轨上,如图(甲)所示,虚线上方磁场方向垂直纸面向里,虚线下方磁场方向竖直向下,两处磁场磁感应强度大小相同.ab 棒光滑,cd 棒与导轨间动摩擦因数为μ=0.75,两棒总电阻为1.8 Ω,导轨电阻不计.ab 棒在方向竖直向上、大小按图(乙)所示规律变化的外力F 作用下,从静止开始沿导轨匀加速运动,同时cd 棒也由静止释放.(g =10 m/s 2)(1)求磁感应强度B 的大小和ab 棒加速度的大小;(2)已知在2 s 内外力F 做功40 J ,求这一过程中两金属棒产生的总焦耳热;(3)判断cd 棒将做怎样的运动,求出cd 棒达到最大速度所需的时间t 0,并在图(丙)中定性画出cd 棒所受摩擦力F f cd 随时间变化的图象.[解析] (1)经过时间t ,ab 棒的速率:v =at ,此时,回路中的感应电流为:I =E R =BLv R ,对ab 棒,由牛顿第二定律得:F -BIL -m 1g =m 1a ,由以上各式整理得:F =m 1a +m 1g +B 2L 2R at ,在题图(乙)图线上取两点:t 1=0,F 1=11 N ;t 2=2 s ,F 2=14.6 N ,代入上式得a =1 m/s 2,B =1.2 T.(2)在2 s 末ab 棒的速率v 1=at =2 m/s ,所发生位移x =12at 2=2 m ,由动能定理得W F -m 1gx -W 安=12m 1v 21,又Q =W 安,联立以上方程,解得:Q =18 J.(3)cd 棒先做加速度逐渐减小的加速运动,当cd 棒所受重力与滑动摩擦力相等时,速度达到最大;然后做加速度逐渐增大的减速运动,最后停止运动.当cd 棒速度达到最大时,有m 2g =μF N 又F N =F 安,F 安=BIL ,I =E R =BLv m R ,v m =at 0,整理解得:t 0=m 2gRμB 2L 2a =2 s.F f cd 随时间变化的图象如图所示.[答案] (1)1.2 T 1 m/s 2(2)18 J (3)见解析。
高考物理一轮复习课时练42光电效应波粒二象性含解析新人教版
光电效应波粒二象性基础对点练1.(光子能量的计算)(2020山东高三二模)激光在“焊接”视网膜的眼科手术中有着广泛的应用。
在一次手术中,所用激光的波长λ=6.6×10-7 m,每个激光脉冲的能量E=1.5×10-2 J。
则每个脉冲中的光子数目是(已知普朗克常量h=6.6×10-34J·s,光速c=3×108 m/s)() A.3×1016 B.3×1012C.5×1016D.5×10122.(光电效应方程的理解)(2020山东威海高三二模)用波长200 nm的光照射铝的表面发生光电效应,已知铝的逸出功是4.2 eV,普朗克常量h=6.6×10-34J·s,电子电荷量e=1.6×10-19 C,则光电子的最大初动能约为()A.0.2 eVB.2 eVC.20 eVD.200 eV3.(多选)(光电效应和康普顿效应)(2019全国高三专题练习)关于光电效应和康普顿效应的规律,下列说法正确的是()A.光电效应中,金属板向外发射的光电子又可以叫做光子B.用光照射金属不能发生光电效应是因为该入射光的频率小于金属的截止频率C.对于同种金属而言,遏止电压与入射光的频率无关D.石墨对X射线散射时,部分X射线的散射光波长会变长,这个现象称为康普顿效应4.(波粒二象性)(2020北京高三三模)关于波粒二象性,下列说法正确的是()A.图甲中紫光照射到锌板上可以发生光电效应,则其他可见光照射到锌板上也一定可以发生光电效应B.图乙中入射光的强度越大,则在阴极板上产生的光电子的最大初动能越大C.图丙说明光子既有粒子性也有波动性D.戴维孙和汤姆孙利用图丁证明了电子具有波动性5.(光电效应规律)(2020四川宜宾第四中学高三三模)在光电效应实验中,某实验小组用同种频率的单色光,先后照射锌和银的表面,都能产生光电效应。
(新课标)2014高考物理一轮复习课时练3汇总
课时作业(三)F 基础训练”1 •伽利略对自由落体运动的研究,开创了研究自然规律的科学方法,这就是 A. 对自然现象进行总结归纳的方法 B. 用科学实验进行探究的方法C. 对自然现象进行总结归纳,并用实验进行验证的方法D. 抽象思维、数学推导和科学实验相结合的方法[解析]伽利略对运动的研究,通常包括以下几个方面的要素: 通过对现象的一般观察, 提出假设,运用逻辑(包括数学)推理得出推论,通过实验对推论进行检验, 最后对假设进行 修正和推广.伽利略对自由落体运动的研究也是如此,故正确选项为D.[答案]D2. —个小石块从空中 a 点自由落下,先后经过 b 点和c 点,不计空气阻力.已知它经h ac = 1 : 9,故选 D.[答案]D3.甲物体的质量是乙物体质量的5倍,甲从H 高处自由下落,同时乙从2H 高处自由下落,下列说法中正确的是 (高度H 远大于10 m )( )A. 两物体下落过程中,同一时刻甲的速率比乙的大B. 下落1 s 末,它们的速度相等C. 各自下落1 m ,它们的速度相等D. 下落过程中甲的加速度比乙的大[解析]甲、乙两物体的重力加速度相同,由于同时释放,由 相同的速度;由v 2 = 2gx 知,下落相同位移时速率也相同.[答案]BC4. 一个小石子从离地某一高度处由静止自由落下,某摄影爱好者恰好拍到了它下落的 1段轨迹AB 该爱好者用直尺量出轨迹的长度,如右图所示,已知曝光时间为 1000 s ,则小石子出发点离A 点的距离约为过b 点时的速度为v ,经过c 点时的速度为 3v .则ab 段与ac 段位移之比为 A. 1 : 3 B. 1 : 5C. 1 : 8D. 1 : 9[解析]经过b 点时的位移为 h ab =函,经过C 点时的位移为 h ac =:〕v 22g ,所以 h ab :v = gt 可知,相同时刻有0二匚 6 cm7 cm8 cm□9 cmA. 6.5 mB. 10 mC. 20 mD. 45 m[解析]AB长度为L= 0.02 m,小石子从A到B用时0.001 s,根据匀变速直线运动中间时刻的瞬时速度等于这段时间的平均速度,即经过AB的中间时刻的瞬时速度v = 20 m/s ,小石子从静止开始下落到该处的高度为h,则v2= 2gh,解得h= 20 m,由于A点离AB的中间时刻的位置很小,故小石子出发点离A点距离约为20 m.[答案]C5. 关于自由落体运动,下列说法中不正确的是()A. 自由落体运动是竖直方向的匀加速直线运动B. 前3 s竖直方向的位移只要满足X i : X2 : x s= 1 : 4 : 9的运动一定是自由落体运动C. 自由落体运动在开始的连续三个 2 s内的位移之比是1 : 3:5D. 自由落体运动在开始的连续三个 2 s末的速度之比是1 : 2:3[解析]自由落体运动是竖直方向上初速度v o= 0, a= g的匀加速直线运动,满足初速度为零的匀加速直线运动的规律,故A C、D均正确,对B项,平抛运动也满足,故B选项错误.[答案]B6.如右图所示,让一个苹果从楼上某一高度自由下落,苹果在空中依次经过三个完全相同的窗户1、2、3.图中直线为苹果在空中的运动轨迹.若不计空气阻力的影响,以下说法正确的是A. 苹果通过第1个窗户所用的时间最长B. 苹果通过第2个窗户的平均速度最大C. 苹果通过第3个窗户所用的时间最长D. 苹果通过第3个窗户的平均速度最大[解析]苹果做自由落体运动,速度逐渐增大,所以苹果通过第1个窗户的平均速度最小,通过第3个窗户的平均速度最大,通过第3个窗户所用的时间最短,通过第1个窗户所用的时间最长,A、D对.[答案]AD7•在塔顶上将一物体竖直向上抛出,抛出点为A,物体上升的最大高度为20 m.不计空气阻力,设塔足够高•则物体位移大小为10m时,物体通过的路程可能为A. 10 mB. 20 mC. 30 mD. 50 m[解析]H物体在塔顶上的A点抛出,位移大小为10 m的位置有两处,如右图所示,一处在A点之上,另一处在A点之下.在A点之上时,位移为10 m处又有上升和下降两种过程.上升通过时,物体的路程L1,等于位移X1的大小,即L1 = X1= 10 m;下落通过时,路程L2= 2H —X1 = 2X 20 m- 10 m= 30 m;在A点之下时,通过的路程l_3= 2H+ X2= 2X 20 m+ 10 m= 50 m.[答案]ACD&研究人员为检验某一产品的抗撞击能力,乘坐热气球并携带该产品竖直升空,当热气球以10 m/s 的速度匀速上升到某一高度时,研究人员从热气球上将产品自由释放,测得经11 s产品撞击到地面.不计产品所受的空气阻力,求产品的释放位置距地面的高度.(g取10 m/s 2)[解析]正A解法一:全过程法将产品的运动视为匀变速直线运动,根据题意画出运动草图如右图所示.规定向上为正方向,则V0= 10 m/s , a=—g=—10 m/s2根据 H= v o t + 羽t 2,解得 H= — 495 m 即产品刚释放时离地面高度为 495 m.解法二:分阶段法仍然根据题意画出运动草图如右图所示•将产品的运动过程分为A eB 和 4C -D 两段来处理.A T B 为竖直上抛运动,C -D 为自由落体运动在A -B 段,根据竖直上抛运动规律可知 t AB = g = 1 S由题意可知t BD = 11 s — 1 s = 10 s 根据自由落体运动规律可得 1h BD = 2gt BD = 500 m故释放点的高度 H= h BD — h Bc = 495 m. [答案]495 m能力提升9. (2012 •山东潍坊市抽测)“蹦床”是奥运体操的一种竞技项目,比赛时,可在弹性 网上安装压力传感器,利用压力传感器记录运动员运动过程中对弹性网的压力. 并由计算机作出压力(F )—时间(t )图象,如下图为某一运动员比赛时计算机作出的F — t 图象,不计空气阻力,则关于该运动员,下列说法正确的是 ( )A. 裁判打分时可以把该运动员的运动看成质点的运动B. 1 s 末该运动员的运动速度最大C. 1 s 末到2 s 末,该运动员在做减速运动D. 3 s 末该运动员运动到最高点[解析]运动员的外形和动作影响裁判打分,不能把该运动员的运动看成质点的运动, 则A 错误;1 s 末对弹性网的压力最大,运动员在最低点,速度为 0,1 s 未到2 s 末,运动 员在做加速运动,2 s 未到3 s 末,运动员做竖直上抛运动, 3 s 末运动员运动到最高点,则D 正确.h AB =h = 1 2 、V 2 2gt A B (或 2g ) = 5F/N[答案]D10. 不计空气阻力,以一定的初速度竖直上抛一物体,从抛出至回到抛出点的时间为t , 现在物体上升的最大高度的一半处设置一块挡板,物体撞击挡板前后的速度大小相等、方向相反,撞击所需时间不计,则这种情况下物体上升和下降的总时间约为A. 0.5 tB. 0.41C. 0.3 tD. 0.21[解析]将物体的上升过程分成位移相等的两段,设下面一段位移所用时间为t i,上面一段位移所用时间为t2,根据逆向思维可得:t2:t l= 1 : ( 2 —1),又知,物体撞击挡板后t 以原速度大小弹回(撞击所需时间不计),物体上升和下降的总时间t '= 2t l且t l+ t2=2,由以上几式可得:t'= ( 2—1)t/ 2-0.3 t,正确答案为 C.[答案]C11. 在地质、地震、勘探、气象和地球物理等领域的研究中,需要精确的重力加速度g 值,g值可由实验精确测定.近年来测g值的一种方法叫“对称自由下落法”,它是将测g 归于测长度和时间,具体做法是:将真空长直管沿竖直方向放置,自其中O点向上抛小球又落到原处的时间为T2,在小球运动过程中经过比0点高H的P点,小球离开P点到又回到P 点所用的时间为T1,测得「、T2和H,可求得g等于8H4HA.T2 —ifB.T2—T28H HC. T2 —T12D.,]T a—T1 21 T2[解析]小球从0点能上升的最大高度为2g(U)2,小球从P点到最高点能上升的高度为1 T1 1 T2 1 T18H2g( 2)2,所以有H= 2g( 2) 2— 2g( 2):由此得g=T2—[答案]A12. 在高为h处,小球A由静止开始自由落下,与此同时,在A的正下方地面上以初速度V。
2014届高考物理第一轮课时检测试题1.pdf
课时作业(一) [第1讲 描述直线运动的基本概念] 1. 以下说法中指时间间隔的是( ) A.天津开往德州的625次列车于13时35分从天津出发 B.某人用15 s跑完100 m C.中央电视台新闻联播节目每天19时开始 D.某场足球赛在开赛80分钟时,甲队才攻入一球 2.一个物体从A点运动到B点,下列结论正确的是( ) A.物体的位移一定等于路程 B.物体的位移与路程的方向相同,都从A指向B C.物体的位移大小总是小于或等于它的路程 D.物体的位移是直线,而路程是曲线3.2012·万州模拟下面关于加速度的描述中正确的是( ) A.加速度描述物体速度变化的多少 B.加速度描述物体速度变化的快慢程度 C.加速度方向与运动方向共线时,物体一定做加速运动 D.加速度逐渐减小时,物体一定在做减速运动 4.2011·龙岩摸底已知心电图记录仪的出纸速度(纸带移动的速度)是2.5 cm/s,如图K1-1所示是仪器记录下来的某人的心电图,图中每个小方格的边长为0.5 cm,由此可知( ) 图K1-1 A.此人的心率约为75次/分 B.此人的心率约为125次/分 C.此人心脏每跳动一次所需时间约为0.75 s D.此人心脏每跳动一次所需时间约为0.60 s 5.一个质点做方向不变的直线运动,加速度的方向始终与速度方向相同,但加速度大小逐渐减小直至为零,在此过程中( ) A.速度逐渐减小,当加速度减小到零时,速度达到最小值 B.速度逐渐增大,当加速度减小到零时,速度达到最大值 C.位移逐渐增大,当加速度减小到零时,位移将不再增大 D.位移逐渐减小,当加速度减小到零时,位移达到最小值 6.汽车刹车时做的是匀变速直线运动,某时刻的速度v0=6 m/s,加速度a=-1 m/s2,它表示( ) A.再过1 s,汽车的速度变为5 m/s B.再过1 s,汽车的速度变为7 m/s C.汽车的加速度方向与速度方向相反,汽车做减速运动 D.汽车的加速度方向与速度方向相反,汽车做加速运动 7.对于质点的运动,下列说法中正确的是( ) A.质点运动的加速度为零,速度可能很大 B.质点速度变化率越大,则加速度越大 C.质点某时刻的加速度不为零,则该时刻的速度也不为零 D.质点运动的加速度越大,它的速度变化越大 8.一列士兵队伍正以某一速度v0做匀速直线运动,因有紧急情况通知排头兵,一通讯员以不变的速率跑步从队尾赶到排头,又从排头返回队尾,在此过程中通讯员的平均速度为,则( )A.=v0B.>v0 C.<v0 D.无法确定 9.甲、乙两车沿平直的公路通过同样的位移,甲车在前半段位移内以v甲1=40 km/h的速度运动,在后半段位移内以v甲2=60 km/h的速度运动;乙车在前半段时间内以v乙1=40 km/h的速度运动,后半段时间内以v乙2=60 km/h的速度运动.则甲、乙两车在整个位移中的平均速度大小的关系是( )A.甲=乙B.甲>乙 C.甲<乙 D.无法确定 10.上海到南京的列车已迎来第五次大提速,速度达到v1=180 km/h.为确保安全,在铁路与公路交叉的道口处需装有自动信号灯.当列车还有一段距离才到达公路道口时,道口应亮出红灯,警告未越过停车线的汽车迅速制动,已越过停车线的汽车赶快通过.如果汽车通过道口的速度v2=36 km/h,停车线至道口拦木的距离x0=5 m,道口宽度x=26m,汽车长l=15 m(如图K1-2所示),并把火车和汽车的运动都看成匀速直线运动.问:列车离道口的距离L为多少时亮红灯,才能确保已越过停车线的汽车安全驶过道口? 图K1-2 11.2011·杭州模拟爆炸性的加速度往往是跑车的卖点.VS882型跑车由静止加速至100 km/h只需4.2 s. (1)求VS882型跑车的平均加速度. (2)假设普通私家车的平均加速度为3 m/s2,它们需要多长时间才能由静止加速至100 km/h? 12.为了测定气垫导轨上滑块的加速度,滑块上安装了宽度为3.0 cm的遮光板,如图K1-3所示,滑块在牵引力作用下先后匀加速通过两个光电门,配套的数字毫秒计记录了遮光板通过第一个光电门的时间为Δt1=0.30 s,通过第二个光电门的时间为Δt2=0.10 s,遮光板从开始遮住第一个光电门到开始遮住第二个光电门的时间为Δt=3.00 s.试估算滑块的加速度. 图K1-3 13.汽车从甲地由静止出发,沿直线运动到丙地,乙在甲、丙两地连线的中点.汽车从甲地匀加速运动到乙地,经过乙地速度为60 km/h;接着又从乙地匀加速运动到丙地,到丙地时速度为120 km/h,求汽车从甲地到达丙地的平均速度.【基础热身】 1.B [解析] 选项A、C、D中的数据都是时间轴上的一个点,指的都是时刻;而选项B中15 s是与跑完100 m这一运动过程相对应的,指的是时间间隔,故选项B正确. 2.C [解析] 位移是从起点指向终点的有向线段,是矢量;路程是运动路径的长度,是标量,它没有方向.正确选项只有C. 3.B [解析] 加速度描述物体速度变化的快慢程度,选项A错误、B正确;加速度方向与运动方向共线时,物体一定做直线运动,同向时做加速运动,反向时做减速运动,选项C、D错误. 4.A [解析] 由图可知,心脏每跳动一次,纸带向前移动大约是4个小方格的距离,约2.0 cm,则心脏每跳动一次所需时间约T==0.80 s;此人心脏一分钟跳动的次数为n==75次,故本题只有选项A正确. 【技能强化】5.B [解析] 无论加速度正在增大还是正在减小,只要加速度与速度同向,物体速度就一直增大,当同向加速度减小到零时,物体速度达到最大,速度不再增大,但位移会继续增大,由此可知本题只有选项B正确. 6.AC [解析] 速度与加速度都是矢量,其正负表示速度与加速度的方向.速度与加速度方向相反,汽车做减速运动;经1 s速度减小Δv=aΔt=1 m/s,所以再过1 s汽车的速度变为5 m/s,故选项A、C正确. 7.AB [解析] 如果物体做加速度逐渐减小的加速直线运动,则加速度为零时速度最大,选项A正确;根据加速度定义可知选项B正确;质点某时刻的加速度不为零,但该时刻的速度可以为零,选项C错误;物体速度变化量大小决定于加速度和时间两个因素,选项D错误. 8.A [解析] 由于通讯员初、末位置都跟队尾士兵相同,所以位移也相同,由平均速度公式可以判断选项A正确. 9.C [解析] 设总位移为x,则甲车运动的总时间t甲=+=x,所以甲车的平均速度甲===48 km/h;设乙车运动的总时间为t乙,则乙车的总位移x=v乙1·+v乙2·=t乙,所以乙车的平均速度乙===50 km/h.故C项正确. 10. 230 m [解析] 为确保行车安全,要求在列车驶过距离L的时间内,已越过停车线的汽车的车尾必须能通过道口.汽车越过停车线至车尾通过道口的过程中,汽车的位移为 x′=l+x0+x=(15+5+26) m=46 m 汽车速度v2=36 km/h=10 m/s 通过这段位移需要的时间 t== s=4.6 s 高速列车的速度 v1=180 km/h=50 m/s 所以安全行车的距离为L=v1t=50×4.6 m=230 m. 11.(1)6.61 m/s2 (2)9.26 s [解析] (1)末速度v=100 km/h= m/s=27.78 m/s 平均加速度a== m/s2=6.61 m/s2. (2)所需时间t′== s=9.26 s. 12.0.067 m/s2 [解析] 遮光板通过第一个光电门的速度 v1== m/s=0.10 m/s 遮光板通过第二个光电门的速度 v2== m/s=0.30 m/s 故滑块的加速度a==0.067 m/s2 【挑战自我】13.45 km/h [解析] 设甲、丙两地距离为2l,汽车通过甲、乙两地的时间为t1,通过乙、丙两地的时间为t2. 从甲到乙是匀加速运动,由l=·t1 得t1== 从乙到丙也是匀加速运动,由l=·t2 得t2== 所以甲丙===45 km/h. 高考学习网: 高考学习网:。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课时作业(四十二)1.(2012·上海崇明期末)如右图所示是利用水波槽观察到的水波衍射图象,从图象可知( )A.B侧波是衍射波B.A侧波速与B侧波速相等C.减小挡板间距离,衍射波的波长将减小D.增大挡板间距离,衍射现象将更明显[解析] B侧波在传播过程中遇到带有窄缝的挡板后发生衍射,A侧水波是衍射波,选项A错误;同种机械波在相同介质中的传播速度相同,选项B正确;减小挡板间距离,衍射现象会更明显,但是衍射波的波速不变,频率不变,故波长不变,选项C错误;因为只有当挡板间距跟波长差不多,或者比波长更小时,衍射现象才明显,所以当增大挡板间距离时,衍射现象将变得不明显,选项D错误.本题答案为B.[答案] B2.(2011·上海卷)两波源S1,S2在水槽中形成的波形如右图所示,其中实线表示波峰,虚线表示波谷,则( ) A.在两波相遇的区域中会产生干涉B.在两波相遇的区域中不会产生干涉C.a点的振动始终加强D.a点的振动始终减弱[解析] 根据题意,由于介质相同,所以两列波的波速相等.由图可知,两列波的波长不相等.由v=λf知,两列波的频率不相等,因此相遇时不会发生干涉现象,也就不会出现振动始终加强或者始终减弱的区域,选项A错误,B正确.a点在图示时刻是两波峰相遇,振动加强,但因频率不相同,另一时刻,可能是两列波的波峰和波谷相遇,振动就减弱了,故选项C ,D 均错误.[答案] B3.(2012·山西太原市模拟)关于振动和波的关系,下列说法中正确的是 ( )A .振动是波的成因,波是振动的传播B .振动是单个质点呈现的运动现象,波是许多质点联系起来呈现的运动现象C .波的传播速度就是质点振动的速度D .波源停止振动时,波立即停止传播[答案] AB4.有一列简谐横波在弹性介质中沿x 轴正方向以速率v =5.0 m/s 传播,t =0时刻的波形如右图所示,下列说法中正确的是 ( )A .该列波的波长为0.5 m ,频率为5 HzB .t =0.1 s 时,波形沿x 轴正方向移动0.5 mC .t =0.1 s 时,质点A 的位置坐标为(1.25 m,0)D .t =0.1 s 时,质点A 的速度为零[解析] 由y -x 图知λ=1.0 m .T =λv =15s ,f =5 Hz ,A 项错.t =0.1 s 时,波传播的距离x =vt =5×0.1 m=0.5 m ,B 项正确.在t =0.1 s =T 2时,A 在平衡位置,位置坐标仍为(0.75 m,0),且A 此时的速度最大,C 、D 项错.[答案] B5.如右图所示,S 1、S 2为两个振动情况完全一样的波源,两列波的波长都为λ,它们在介质中产生干涉现象,S 1、S 2在空间共形成6个振动减弱的区域(图中虚线处),P 是振动减弱区域中的一点,从图中可看出( )A .P 点到两波源的距离差等于1.5λB .两波源之间的距离一定在2.5个波长到3.5个波长之间C .P 点此时刻振动最弱,过半个周期后,振动变为最强D .当一列波的波峰传到P 点时,另一列波的波谷也一定传到P 点[解析] 从S1、S2的中点起到向右三条虚线上,S1、S2的距离差依次为0.5λ、1.5λ、2.5λ.[答案] ABD6.(2012·山东期中)一列简谐横波沿x轴传播,某时刻的波形如下图所示,已知此时质点F的运动方向向y轴负方向,则( )A.此波向x轴正方向传播B.质点C此时向y轴负方向运动C.质点C将比质点B先回到平衡位置D.质点E的振幅为零[解析] 因为机械波在传播过程中,靠近波源的质点的振动带动相邻的后边质点的振动,而后面质点要“模仿”前面质点的振动,本题中,已知质点F的运动方向向y轴负方向,即F质点正在“模仿”右边质点的振动,这说明波源在右边,波从右向左传播,即此波向x 轴负方向传播,选项A错误;质点C此时刚到达最大位移处,速度为0,此后才向y轴负方向运动,选项B错误;质点B要先向y轴正方向运动到达波峰位置再回到平衡位置,而质点C直接从波峰位置回到平衡位置,所以选项C正确;振幅指的是质点离开平衡位置到达的最大距离,虽然此时质点E的位移为零,但其振幅不为零,选项D错误.本题答案为C.[答案] C7.(2012·北京石景山期末)如下图所示是一列简谐横波在t=0时的波形图,若波的传播速度为2 m/s,此时质点P向上振动.下列说法正确的是 ( )A.质点P的振动周期为0.25 sB.经过任意时间,质点Q和P的振动情况总是相同的C.经过Δt=0.4 s,质点P向右移动0.8 mD.经过Δt=0.4 s,质点P仍在平衡位置,它通过的路程为0.2 m[解析] 根据波形图可知,波长λ=0.4 m,振幅A=5 cm,已知v=2 m/s,所以T=λ/v=0.2 s,选项A错误;质点Q和P间的距离刚好是1个波长,所以它们的振动情况总是相同的,选项B 正确;在机械波的传播过程中,各质点并不随波迁移,而是在各自的平衡位置附近振动,选项C 错误;经过Δt =0.4 s =2T ,质点P 回到初始位置,不在平衡位置,它通过的路程是8A =40 cm =0.4 m ,也不是0.2 m ,选项D 错误.本题答案为B.[答案] B8.一列沿x 轴正方向传播的简谐横波在t =0时的波形如右图所示,已知t =0.6 s 时,B 点第三次出现波峰.则这列波的周期是多少?x =50 cm 处的质点A 回到平衡位置的最短时间为多少?[解析] 由题意得t =212T ,解得T =0.24 s 由图象可知,λ=120 cm =1.2 m ,v =λT=5 m/s x =50 cm 处的质点A 回到平衡位置的最短时间为t ′=x v=0.1 s. [答案] 0.24 s 0.1 s9.(2012·四川卷)在xOy 平面内有一列沿x 轴正方向传播的简谐横波,波速为2 m/s ,振幅为A .M ,N 是平衡位置相距2 m 的两个质点,如右图所示.在t =0时,M 通过其平衡位置沿y 轴正方向运动,N 位于其平衡位置上方最大位移处.已知该波的周期大于1 s ,则A .该波的周期为53s B .在t =13s 时,N 的速度一定为2 m/s C .从t =0到t =1 s ,M 向右移动了2 mD .从t =13 s 到t =23s ,M 的动能逐渐增大[解析]由题意可知波源起振方向沿y 轴正方向,周期大于1 s ,可画出t =0时的波形图如右图所示,则波长λ=83 m ,周期T =λ/v =43s ,则A 错;质点的振动速度与波速是两个不同的概念,B 错;质点不会随波迁移,C 也错误;13s 就是T /4,画出T /4时刻的波形图就可以判断只有D 项正确.正确答案为D.[答案] D10.(2012·北京顺义区模拟)一列简谐横波某时刻的波形如图所示中实线所示,经过0.50 s 后的波形如图中虚线所示.已知波的周期为T ,且0.25 s<T <0.50 s ,则A .当波向x 轴的正方向传播时,波速大小为10 m/sB .无论波向x 轴正方向传播还是向x 轴负方向传播,在这0.50 s 内x =1.0 m 的质点M ,通过的路程都相等C .当波向x 轴正方向传播时,x =1.0 m 的质点M 和x =2.5 m 的质点N 在0.50 s 内通过的路程不相等D .当t =0.10 s 时,x =1.0 m 的质点M 振动的位移一定是0[解析] 由波形图可知,波长λ=4 m ,当波向x 轴的正方向传播时,0.50 s 传播5λ/4,5T /4=0.50 s ,所以波速v =λ/T =10 m/s ,选项A 正确;当波向x 轴的正方向传播时,在这0.50 s 内x =1.0 m 的质点M ,通过的路程为5/4×4A =5A =10 cm ;当波向x 轴的负方向传播时,在这0.50 s 内x =1.0 m 的质点M ,通过的路程为7/4×4A =7A =14 cm ,选项B 错误;当波向x 轴正方向传播时,x =1.0 m 的质点M 和x =2.5 m 的质点N 在0.50 s 内通过的路程相等,选项C 错误;当波向x 轴正方向传播时,当t =0.10 s =T /4时,x =1.0 m 的质点M 的位移为0,当波向x 轴负方向传播时,当t =0.10 s =0.35T 时,x =1.0 m 的质点M 的位移为负值,选项D 错误.本题答案为A.[答案] A11.(2012·山西忻州四校联考)一列横波在x 轴上传播,在t 1=0时刻波形如图中实线所示,t 2=0.05 s 时刻波形如图中虚线所示.(1)求这列波的波速是多少.(2)若有另一列波能与这列波发生稳定干涉,则另一列波的最小频率是多少?[解] (1)根据波形图可知,波长λ=8 m ,这列波的传播方向存在两种可能.若波沿x轴正方向传播,则0.05 s =(n +14)T (其中n =0,1,2,3…),所以周期T =154n +1(n =0,1,2,3…),波速v =λ/T =40(4n +1)m/s(n =0,1,2,3…);若波沿x 轴负方向传播,则0.05s =(n +34)T ,所以,周期T =154n +3(n =0,1,2,3…),波速v =λ/T =40(4n +3)m/s(n =0,1,2,3…).(2)若有另一列波能与这列波发生稳定干涉,则另一列波的频率与这列波的频率相同;若波沿x 轴正方向传播,且当n =0时,周期最大,频率最小,最小频率为5 Hz ,所以另一列波的最小频率是5 Hz.[答案] (1)40(40n +3) m/s(n =0,1,2,3…) (2)5 Hz12.(2012·辽宁本溪期末联考)如右图所示,一列沿x 轴正方向传播的简谐横波,波速大小为0.3 m/s ,P 点的横坐标为96 cm ,从图中状态开始计时,求:(1)经过多长时间,P 质点开始振动,振动时的方向.(2)经过多长时间,P 质点第一次到达波峰.(3)以P 质点第一次到达波峰开始计时,作出P 点的振动图象.(至少画出1.5个周期)[解析] (1)开始计时时,这列波的最前端的质点坐标是24 cm ,根据波的传播方向,可知这一点沿y 轴负方向运动,因此在波前进方向的每一个质点开始振动的方向都沿y 轴负方向运动,故P 点开始振动时的方向沿y 轴负方向,P 质点开始振动的时间是t =Δx v=0.96-0.240.3s =2.4 s.(2)波形移动法:质点P 第一次到达波峰,即初始时刻这列波的波峰传到P 点,因此所用的时间是t ′=0.96-0.060.3s =3.0 s. (3)由波形图知,振幅A =10 cm ,T =λv =0.8 s ,由P 点自正向最大位移开始的振动图象如下图所示.[答案] (1)2.4 s方向沿y 轴负方向 (2)3.0 s (3)见解析。