梯形的定义及性质
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
梯形的定义及性质
一、学习目标:
1.认识梯形、等腰梯形、直角梯形,掌握它们的定义和特征。
2、会运用梯形、等腰梯形、直角梯形的概念以及特征解决有关问题。 三、学习过程 (一)学习新课
1、阅读书本106--107页并填空:
(1)梯形: 的四边形叫做梯形。 (2)等腰梯形:两腰______的梯形是等腰梯形。
∵梯形ABCD 中,AB___CD ∴梯形ABCD 是_____ __
(3)直角梯形:有一个角是_______的梯形是直角梯形。
∵梯形ABCD 中,∠B=____ ∴梯形ABCD 是____ ___ 2、小组讨论并完成练习:
(1)观察右图:等腰梯形是 图形,它的对称轴有___条,
请在图中画出它的对称轴。
(2)已知:梯形ABCD 中,AB =DC ,则梯形ABCD 的四个内角之间存
在什么关系?请说明理由。
你观察到的结论: 理由:(观察下图1和图2,选择其中之一对上述结论进行证明)
(3)在图中画出等腰梯形的对角线AC 与BD ,请问AC 与BD 之间存在什么关系?你能说明理由吗?关系: 。 理由:
3、归纳:等腰梯形的特征:
(1)等腰梯形同一底上的两个底角 。 几何语言:∵梯形ABCD 中,AB =DC ,
∴∠ =∠ ,∠ =∠ 。
(2)等腰梯形的两条对角线 。 几何语言:∵梯形ABCD 中,AB =DC ,
∴ = 。
C
A D
B
C
C
图1
C
C
E
C
B
图
1
F
E
C
B
图2
例题1:延长等腰梯形ABCD 的腰BA 与CD ,使它们相交于点E , 求证:△EBC 和△EAD 都是等腰三角形。 (二)课堂练习:
1、判断题:已知:梯形ABCD 中,AB =DC ,以下说法正确吗? (1)∠A +∠B =180°( ) (2)∠B =∠D ( ) (3)∠B +∠C =180°( ) (4)∠A +∠C =180°( )
2、已知等腰梯形ABCD ,AC=8,则BD=_____。
3、已知直角梯形ABCD 中,上底AD=4,下底BC=6,高为3,则直角梯形的面积是 。
4、如图,梯形ABCD 中,若AD =BC ,∠A =60°,DB ⊥AD ,则∠ABC = ,∠C = ,∠DBC =_____
5、如图,在梯形ABCD 中,AB ∥CD,BE ∥AD ,∠D=80°,∠C=50°,若AB=4cm,CD=7cm ,则EC=____,∠CBE=_____,腰AD 的长为_____
6、如图,在等腰梯形ABCD 中,AB=DC ,∠B=60°,DE ∥AB,AB=8,则∠DEC=____,DE=____, DC=____,△CDE 的周长为______
7、直角梯形ABCD 中,∠B=90°,∠C=45° DE ⊥BC ,AB=3cm ,则EC=_____,若AD=4cm ,CD=6cm ,则直角梯形的周长_____ 第4题 第5题 第6题 第7题
8、如图,等腰梯形ABCD 中,∠B =60°,DE 是高,AD =6,则∠C = ,
∠ADE = ,BC = 。
9、如右图,在直角梯形ABCD 中,DE ⊥BC 于E ,AB =4,AD =3,腰CD 与BC 的夹角是45°,则DE = ,CE = ,BE = ,直角梯形ABCD 的 面积是 。
第8题 第9题
10、在等腰梯形ABCD 中,CE ∥DA ,AB =8,DC =5,AD =6,求△CEB 的周长。
11、如图,在梯形ABCD 中,AB ∥DC ,DE ∥CB ,△AED 的周长为18,EB =4,求梯形的周长。
12、如图,梯形ABCD 中,AD ∥BC ,∠1=∠C ,AD=5,且它的周长为29,⊿ABE 的周长是多
少?
E
B C
D E E
D
C
B E C
A E 第
B
B E B