2017年初中数学模拟试题(二)
陕西省中考数学模拟试卷(含解析)-人教版初中九年级全册数学试题
2017年某某省中考数学模拟试卷一、选择题(本大题共10小题,每小题3分,共30分)1.﹣的相反数是()A.﹣2017 B.2017 C.D.2.下列立体图形中,主视图、左视图和俯视图都是矩形的是()A.B.C. D.3.下列计算正确的是()A.a3•a2=a5B.(﹣2a2)3=8a6C.2a2+a2=3a4D.(a﹣b)2=a2﹣b24.如图,已知直线AB∥CD,BC平分∠ABD,∠1=63°,则∠2的度数是()A.63° B.60° C.54° D.53°5.已知正比例函数y=kx(k≠0)的函数值y随x的增大而减小,则一次函数y=kx+k的图象经过的象限为()A.二、三、四B.一、二、四C.一、三、四D.一、二、三6.点G是△ABC的重心,如果AB=AC=5,BC=8,那么AG的长是()A.1 B.2 C.3 D.47.在平面直角坐标系中,将直线l1:y=﹣3x﹣2向左平移1个单位,再向上平移3个单位得到直线l2,则直线l2的解析式为()A.y=﹣3x﹣9 B.y=﹣3x﹣2 C.y=﹣3x+2 D.y=﹣3x+98.如图,在矩形ABCD中,点O为对角线AC、BD的交点,点E为BC上一点,连接EO,并延长交AD于点F,则图中全等三角形共有()A.5对B.6对C.8对D.10对9.如图,在△ABC中,∠ACB=90°,∠A=40°,以C为圆心,CB为半径的圆交AB于点D,连接CD,则∠ACD=()A.10° B.15° C.20° D.25°10.在平面直角坐标系中,有两条抛物线关于x轴对称,且它们的顶点相距6个单位长度,若其中一条抛物线的函数表达式为y=﹣x2+4x+m,则m的值是()A.1或7 B.﹣1或7 C.1或﹣7 D.﹣1或﹣7二、填空题(本大题共4小题,每小题3分,共12分)11.不等式﹣x+1<﹣2的解集是.12.请从以下两个小题中任选一个作答,若多选,则按所选的第一题计分.A.一个正六边形的内角和为度.B.如图,小华在一建筑物的标牌处看到该建筑高137米,他在地面上的B处用测角仪测得该建筑物顶部A处的仰角为49°,那么B处距离该建筑物米(结果保留整数,测角仪高度忽略不计)13.已知反比例函数y=的图象上有两个点(x1,y1),(x2,y2),其中x1<0<x2,则y1,y2的大小关系是.14.已知菱形OABC在平面直角坐标系的位置如图所示,顶点A(5,0),OB=4,点P是对角线OB上的一个动点,D(0,1),当CP+DP最短时,点P的坐标为.三、解答题(本大题共11小题,共78分)15.|﹣1|+(π﹣3.14)0﹣(﹣)﹣1﹣.16.解方程﹣2.17.如图,在△ABC中,∠C=90°,∠A>∠B,请你用直尺和圆规作边AB的垂直平分线,交AB于点D,交BC于点E(要求:保留作图痕迹,不写作法)18.为了了解本班学生关注“两会”新闻的情况,“两会”期间,小明对本班全体同学一周内收看“两会”新闻的次数作调查,调查结果制成统计图如图所示(其中男生一周内收看4次的人数没有标出):请你根据以上信息,解答下列问题:(1)该班女生有人,该班女生一周内收看“两会”新闻次数的中位数是次;(2)对于某个群体,我们把一周内收看“两会”新闻次数高于4次的人数占该群体总人数的百分比叫做该群体对“两会”新闻的“关注指数”,如果该班男生对“两会”新闻的“关注指数”为60%,试求该班男生有多少人.19.如图,在四边形ABCD中,AD∥BC,点E在BC的延长线上,CE=BC,连接AE,交CD边于点F,且CF=DF.(1)求证:AD=BC;(2)连接BD、DE,若BD⊥DE,求证:四边形ABCD为菱形.20.如图,一位同学想利用树影测量树(AB)的高度,他在某一时刻测得高为1米的竹竿直立时影长为,此时,因树靠近一幢建筑物,影子不全落在地面上(有一部分影子落在了墙上CD处),他先测得落在墙上的影子(CD)高为,又测得地面部分的影长(BC)为,则他测得的树高应为多少米?21.某城市城区居民从2017年1月1日开始执行阶梯水价,收费标准如下表所示:平均月用水量不超过的部分超过不超过23立方米的部分超过23立方米的部分收费标准(元/立方米)设该城市城区居民月用水量为x(立方米)时,每月应缴纳水费为y(元).(1)求该城市城区居民每月应缴纳的水费y与月用水量x之间的函数关系式;(2)该城市城区居民小华家1月份缴纳水费为79.2元,则小华家1月份的用水量是多少?22.某某市某中学九年级同学夏明和X辉报名参加学校运动会,有以下四个项目可供他们选择:田赛:跳远,跳高(分别用A1、A2表示);径赛:200米,400米(分别用B1、B2表示).(1)X辉同学从四个项目中随机选取一个报名,恰好选择径赛的概率为是;(2)若X辉和夏明各随机从四个项目中选一个报名,请你利用树状图或列表法求出他们恰好都选择田赛的概率.23.如图,在△ABC中,以AB为直径的⊙O分别与BC,AC相交于点D,E,且BD=CD,过D 作DF⊥AC,垂足为F.(1)求证:DF是⊙O的切线;(2)若AD=5,∠CDF=30°,求⊙O的半径.24.如图,抛物线y=ax2+bx+1过A(1,0)、B,(5,0)两点.(1)求:抛物线的函数表达式;(2)求:抛物线与y轴的交点C的坐标及其对称轴(3)若抛物线对称轴上有一点P,使△COA∽△APB,求点P的坐标.25.自定义:在一个图形上画一条直线,若这条直线既平分该图形的面积,又平分该图形的周长,我们称这条直线为这个图形的“等分积周线”.(1)如图1,已知△ABC,AC≠BC,过点C能否画出△ABC的一条“等分积周线”?若能,说出确定的方法,若不能,请说明理由.(2)如图2,在四边形ABCD中,∠B=∠C=90°,EF垂直平分AD,垂足为F,交BC于点E,已知AB=3,BC=8,CD=5.求证:直线EF为四边形ABCD的“等分积周线”;(3)如图3,在△ABC中,AB=BC=6,AC=8,请你作出△ABC的一条“等分积周线”EF(要求:直线EF不过△ABC的顶点,交边AC于点F,交边BC于点E),并说明理由.2017年某某省中考数学模拟试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分)1.﹣的相反数是()A.﹣2017 B.2017 C.D.【考点】14:相反数.【分析】根据一个数的相反数就是在这个数前面添上“﹣”号,求解即可.【解答】解:﹣的相反数是,故选:D.2.下列立体图形中,主视图、左视图和俯视图都是矩形的是()A.B.C. D.【考点】U1:简单几何体的三视图.【分析】根据主视图、左视图、俯视图的定义,可得答案.【解答】解:矩形的主视图、左视图、俯视图都是矩形,故选:B.3.下列计算正确的是()A.a3•a2=a5B.(﹣2a2)3=8a6C.2a2+a2=3a4D.(a﹣b)2=a2﹣b2【考点】4I:整式的混合运算.【分析】各项中化简得到结果,即可作出判断.【解答】解:A、原式=a5,符合题意;B、原式=﹣8a6,不符合题意;C、原式=3a2,不符合题意;D、原式=a2﹣2ab+b2,不符合题意,故选A4.如图,已知直线AB∥CD,BC平分∠ABD,∠1=63°,则∠2的度数是()A.63° B.60° C.54° D.53°【考点】JA:平行线的性质.【分析】根据两直线平行,同位角相等可得∠ABC=∠1,再根据角平分线的定义求出∠ABD,然后根据平角等于180°求出∠3,再利用两直线平行,同位角相等求解.【解答】解:∵AB∥CD,∴∠ABC=∠1=63°,∵BC平分∠ABD,∴∠ABD=2∠ABC=2×63°=126°,∴∠3=180°﹣∠ABD=180°﹣126°=54°,∵AB∥CD,∴∠2=∠3=54°.故选:C.5.已知正比例函数y=kx(k≠0)的函数值y随x的增大而减小,则一次函数y=kx+k的图象经过的象限为()A.二、三、四B.一、二、四C.一、三、四D.一、二、三【考点】F7:一次函数图象与系数的关系.【分析】先根据正比例函数y=kx的函数值y随x的增大而减小判断出k的符号,再根据一次函数的性质即可得出结论.【解答】解:∵正比例函数y=kx的函数值y随x的增大而减小,∴k<0,∵b=k<0,∴一次函数y=kx+k的图象经过二、三、四象限,故选A.6.点G是△ABC的重心,如果AB=AC=5,BC=8,那么AG的长是()A.1 B.2 C.3 D.4【考点】K5:三角形的重心.【分析】根据题意画出图形,连接AG并延长交BC于点D,由等腰三角形的性质可得出AD ⊥BC,再根据勾股定理求出AD的长,由三角形重心的性质即可得出AG的长.【解答】解:如图所示:连接AG并延长交BC于点D,∵G是△ABC的重心,AB=AC=5,BC=8,∴AD⊥BC,BD=BC=×8=4,∴AD===3,∴AG=AD=×3=2.故选B.7.在平面直角坐标系中,将直线l1:y=﹣3x﹣2向左平移1个单位,再向上平移3个单位得到直线l2,则直线l2的解析式为()A.y=﹣3x﹣9 B.y=﹣3x﹣2 C.y=﹣3x+2 D.y=﹣3x+9【考点】F9:一次函数图象与几何变换.【分析】平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.【解答】解:将直线y=﹣3x﹣2的图象向左平移1个单位,再向上平移3个单位,得到的直线的解析式是:y=﹣3(x+1)﹣2+3=﹣3x﹣2,即y=﹣3x﹣2.故选B.8.如图,在矩形ABCD中,点O为对角线AC、BD的交点,点E为BC上一点,连接EO,并延长交AD于点F,则图中全等三角形共有()A.5对B.6对C.8对D.10对【考点】LB:矩形的性质;KB:全等三角形的判定.【分析】根据已知及全等三角形的判定方法进行分析,从而得到答案.【解答】解:∵四边形ABCD为矩形,其矩形的对角线相等且相互平分,∴AB=CD,AD=BC,AO=CO,BO=DO,EO=FO,∠DAO=∠BCO,又∠AOB=∠COD,∠AOD=∠COB,∠AOE=∠COF,易证△ABC≌△DCB,△ABC≌△CDA,△ABC≌△BAD,△BCD≌△ADC,△BCD≌△DAB,△ADC ≌△DAB,△AOF≌△COE,△DOF≌△BOE,△DOC≌△AOB,△AOD≌△BOC故图中的全等三角形共有10对.故选D.9.如图,在△ABC中,∠ACB=90°,∠A=40°,以C为圆心,CB为半径的圆交AB于点D,连接CD,则∠ACD=()A.10° B.15° C.20° D.25°【考点】M1:圆的认识.【分析】先求得∠B,再由等腰三角形的性质求出∠BCD,则∠ACD与∠BCD互余.【解答】解:∵∠ACB=90°,∠A=40°,∴∠B=50°,∵CD=CB,∴∠BCD=180°﹣2×50°=80°,∴∠ACD=90°﹣80°=10°;故选:A.10.在平面直角坐标系中,有两条抛物线关于x轴对称,且它们的顶点相距6个单位长度,若其中一条抛物线的函数表达式为y=﹣x2+4x+m,则m的值是()A.1或7 B.﹣1或7 C.1或﹣7 D.﹣1或﹣7【考点】H3:二次函数的性质.【分析】根据顶点公式求得已知抛物线的顶点坐标,然后根据轴对称的性质求得另一条抛物线的顶点,根据题意得出关于m的方程,解方程即可求得.【解答】解:∵一条抛物线的函数表达式为y=﹣x2+4x+m,∴这条抛物线的顶点为(2,m+4),∴关于x轴对称的抛物线的顶点(2,﹣m﹣4),∵它们的顶点相距6个单位长度.∴|m+4﹣(﹣m﹣4)|=6,∴2m+8=±6,当2m+8=6时,m=﹣1,当2m+8=﹣6时,m=﹣7,∴m的值是﹣1或﹣7.故选D.二、填空题(本大题共4小题,每小题3分,共12分)11.不等式﹣x+1<﹣2的解集是x>9 .【考点】C6:解一元一次不等式.【分析】根据解一元一次不等式基本步骤:去分母、去括号、移项、合并同类项、系数化为1可得.【解答】解:移项,得:﹣x<﹣2﹣1,合并同类项,得:﹣x<﹣3,系数化为1,得:x>9,故答案为:x>9.12.请从以下两个小题中任选一个作答,若多选,则按所选的第一题计分.A.一个正六边形的内角和为720 度.B.如图,小华在一建筑物的标牌处看到该建筑高137米,他在地面上的B处用测角仪测得该建筑物顶部A处的仰角为49°,那么B处距离该建筑物119 米(结果保留整数,测角仪高度忽略不计)【考点】TA:解直角三角形的应用﹣仰角俯角问题;L3:多边形内角与外角.【分析】A.根据多边形的内角和公式可得答案;B.由正切函数的定义可得BC=,即可知答案.【解答】解:A.正六边形的内角和为(6﹣2)×180°=720°,故答案为:720;B、由题意知,Rt△ABC中,AC=137米,∠ABC=49°,∵tan∠ABC=,∴BC==≈119(米),故答案为:119.13.已知反比例函数y=的图象上有两个点(x1,y1),(x2,y2),其中x1<0<x2,则y1,y2的大小关系是y1<y2.【考点】G6:反比例函数图象上点的坐标特征.【分析】根据k=6>0,得出反比例函数过第一三象限,再由x1<0<x2,得出(x1,y1)在第三象限,(x2,y2)在第一象限,即可得出答案.【解答】解:∵k=6>0,∴图象过一三象限,∵x1<0<x2,∴y1<y2,故答案为y1<y2.14.已知菱形OABC在平面直角坐标系的位置如图所示,顶点A(5,0),OB=4,点P是对角线OB上的一个动点,D(0,1),当CP+DP最短时,点P的坐标为(,).【考点】PA:轴对称﹣最短路线问题;D5:坐标与图形性质;L8:菱形的性质.【分析】如图连接AC,AD,分别交OB于G、P,作BK⊥OA于K.首先说明点P就是所求的点,再求出点B坐标,求出直线OB、DA,列方程组即可解决问题.【解答】解:如图连接AC,AD,分别交OB于G、P,作BK⊥OA于K.∵四边形OABC是菱形,∴AC⊥OB,GC=AG,OG=BG=2,A、C关于直线OB对称,∴PC+PD=PA+PD=DA,∴此时PC+PD最短,在RT△AOG中,AG===,∴AC=2,∵OA•BK=•AC•OB,∴BK=4,AK==3,∴点B坐标(8,4),∴直线OB解析式为y=x,直线AD解析式为y=﹣x+1,由解得,∴点P坐标(,).故答案为:(,).三、解答题(本大题共11小题,共78分)15.|﹣1|+(π﹣3.14)0﹣(﹣)﹣1﹣.【考点】2C:实数的运算;6E:零指数幂;6F:负整数指数幂.【分析】原式利用零指数幂、负整数指数幂法则,绝对值的代数意义,以及算术平方根定义计算即可得到结果.【解答】解:原式=1+1+2﹣4=0.16.解方程﹣2.【考点】B3:解分式方程.【分析】观察可得最简公分母是(x﹣3),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.【解答】解:方程的两边同乘(x﹣3),得:2﹣x=﹣1﹣2(x﹣3),解得:x=3,检验:把x=3代入(x﹣3)=0,即x=3不是原分式方程的解.则原方程无解.17.如图,在△ABC中,∠C=90°,∠A>∠B,请你用直尺和圆规作边AB的垂直平分线,交AB于点D,交BC于点E(要求:保留作图痕迹,不写作法)【考点】N2:作图—基本作图;KG:线段垂直平分线的性质.【分析】利用线段垂直平分线的作法作图即可.【解答】解:如图,直线DE即所求.18.为了了解本班学生关注“两会”新闻的情况,“两会”期间,小明对本班全体同学一周内收看“两会”新闻的次数作调查,调查结果制成统计图如图所示(其中男生一周内收看4次的人数没有标出):请你根据以上信息,解答下列问题:(1)该班女生有 3 人,该班女生一周内收看“两会”新闻次数的中位数是 3 次;(2)对于某个群体,我们把一周内收看“两会”新闻次数高于4次的人数占该群体总人数的百分比叫做该群体对“两会”新闻的“关注指数”,如果该班男生对“两会”新闻的“关注指数”为60%,试求该班男生有多少人.【考点】VC:条形统计图;W4:中位数.【分析】(1)将各观看次数的人数相加得到女生总数,观看次数最多的为众数,从小到大排列后,最中间或中间两数的平均为中位数;(2)根据题意,求出女生的关注指数,进而得到男生的关注指数,设男生人数为x,列出方程,解之可得.【解答】解:(1)该班级女生人数为:2+5+6+5+2=20(人),该班级女生收看次数的中位数是从小到大排列的第10、11个数的平均数,均为3,故中位数是3;故答案为:3,3;(2)由题意:该班女生对“两会”新闻的“关注指数”为×100%=65%,所以,男生对“两会”新闻的“关注指数”为60%设该班的男生有x人则=60%,解得:x=25,答:该班级男生有25人.19.如图,在四边形ABCD中,AD∥BC,点E在BC的延长线上,CE=BC,连接AE,交CD边于点F,且CF=DF.(1)求证:AD=BC;(2)连接BD、DE,若BD⊥DE,求证:四边形ABCD为菱形.【考点】L9:菱形的判定;KD:全等三角形的判定与性质.【分析】(1)由平行线的性质得出∠D=∠ECF,由ASA证明△ADF≌△ECF,得出AD=CE,即可得出结论;(2)首先四边形ABCD是平行四边形,由直角三角形斜边上的中线性质得出CD=BE=BC,即可得出四边形ABCD是菱形.【解答】(1)证明:∵AD∥BC,∴∠D=∠ECF,在△ADF和△ECF中,,∴△ADF≌△ECF(ASA),∴AD=CE,∵CE=BC,∴AD=BC;(2)证明:∵AD∥BC,AD=BC,∴四边形ABCD是平行四边形,∵BD⊥DE,∴∠BDE=90°,∵CE=BC,∴CD=BE=BC,∴四边形ABCD是菱形.20.如图,一位同学想利用树影测量树(AB)的高度,他在某一时刻测得高为1米的竹竿直立时影长为,此时,因树靠近一幢建筑物,影子不全落在地面上(有一部分影子落在了墙上CD处),他先测得落在墙上的影子(CD)高为,又测得地面部分的影长(BC)为,则他测得的树高应为多少米?【考点】SA:相似三角形的应用.【分析】过点C作CE⊥AB于E,根据同时同地物高与影长成正比列比例式求出AE的长度,再根据矩形的对边相等可得BE=CD,然后根据AB=AE+BE计算即可得解.【解答】解:如图,过点C作CE⊥AB于E,则四边形BDCE是矩形,所以,CE=BD=,BE=CD=,由题意得,=,所以,AE==3米,树高AB=AE+BE=3+1.2=.21.某城市城区居民从2017年1月1日开始执行阶梯水价,收费标准如下表所示:平均月用水量不超过的部分超过不超过23立方米的部分超过23立方米的部分收费标准(元/立方米)设该城市城区居民月用水量为x(立方米)时,每月应缴纳水费为y(元).(1)求该城市城区居民每月应缴纳的水费y与月用水量x之间的函数关系式;(2)该城市城区居民小华家1月份缴纳水费为79.2元,则小华家1月份的用水量是多少?【考点】FH:一次函数的应用.【分析】(1)根据表格中的数据可以分别求得在各个阶段的函数解析式;(2)根据(1)中的函数解析式,可以求得小华家1月份的用水量.【解答】解:(1)由题意可得,当0≤x≤13.5时,y=3.8x,<x≤×+4.65(x﹣13.5)=4.65x﹣11.475,当x>×+×(23﹣13.5)+×(x﹣23)=7.18x﹣69.665;(2)∵×<×+(23﹣13.5)×>79.2,∴79.2=4.65x﹣11.475,解得,x=19.5,即小华家1月份的用水量是19.5度.22.某某市某中学九年级同学夏明和X辉报名参加学校运动会,有以下四个项目可供他们选择:田赛:跳远,跳高(分别用A1、A2表示);径赛:200米,400米(分别用B1、B2表示).(1)X辉同学从四个项目中随机选取一个报名,恰好选择径赛的概率为是;(2)若X辉和夏明各随机从四个项目中选一个报名,请你利用树状图或列表法求出他们恰好都选择田赛的概率.【考点】X6:列表法与树状图法.【分析】(1)直接利用概率公式求解;(2)画树状图展示所有16种等可能的结果数,再找出X辉和夏明恰好都选择田赛的结果数,然后根据概率公式求解.【解答】解:(1)X辉同学从四个项目中随机选取一个报名,恰好选择径赛的概率==;故答案为;(2)画树状图为:共有16种等可能的结果数,X辉和夏明恰好都选择田赛的结果数为4,所以他们恰好都选择田赛的概率==.23.如图,在△ABC中,以AB为直径的⊙O分别与BC,AC相交于点D,E,且BD=CD,过D 作DF⊥AC,垂足为F.(1)求证:DF是⊙O的切线;(2)若AD=5,∠CDF=30°,求⊙O的半径.【考点】MD:切线的判定.【分析】(1)连接OD,由BD=CD,OB=OA,得到OD为三角形ABC的中位线,得到OD与AC 平行,根据DF垂直于AC,得到DF垂直于OD,即可得证;(2)由直角三角形两锐角互余求出∠C的度数,利用两直线平行同位角相等求出∠ODB的度数,再由OB=OD,利用等边对等角求出∠B的度数,设BD=x,利用勾股定理列出关于x的方程,求出方程的解得到x的值,即可确定出圆的半径.【解答】解:(1)连接OD,∵BD=CD,OB=OA,∴OD为△ABC的中位线,∴OD∥AC,∵DF⊥AC,∴OD⊥DF,则DF为圆O的切线;(2)∵DF⊥AC,∠CDF=30°,∴∠C=60°,∵OD∥AC,∴∠ODB=∠C=60°,∵OB=OD,∴∠B=∠ODB=60°,∵AB为圆的直径,∴∠ADB=90°,∴∠BAD=30°,设BD=x,则有AB=2x,根据勾股定理得:x2+75=4x2,解得:x=5,∴AB=2x=10,则圆的半径为5.24.如图,抛物线y=ax2+bx+1过A(1,0)、B,(5,0)两点.(1)求:抛物线的函数表达式;(2)求:抛物线与y轴的交点C的坐标及其对称轴(3)若抛物线对称轴上有一点P,使△COA∽△APB,求点P的坐标.【考点】HF:二次函数综合题.【分析】(1)把A、B两点坐标代入,可求得a、b的值,可求得抛物线的函数表达式;(2)根据(1)中所求抛物线的解析式可求得C点的坐标,及对称轴;(3)由A、C点的坐标可判定△COA为等腰直角三角形,若△COA∽△APB,可知△APB为等腰直角三角形,利用直角三角形的性质可求得P到x轴的距离,可求得P点坐标.【解答】解:(1)∵抛物线y=ax2+bx+1过A(1,0)、B,(5,0)两点,∴,解得,∴抛物线的函数表达式为y=x2﹣x+1;(2)在y=x2﹣x+1中,令x=0可得y=1,∴C点坐标为(0,1),又y=x2﹣x+1=(x﹣3)2﹣,∴抛物线对称轴为直线x=3;(3)∵A(1,0),C(0,1),∴OA=OC=1,∴△COA为等腰直角三角形,且∠COA=90°,∵△COA∽△APB,∴△APB为等腰直角三角形,∠APB=90°,∵P在抛物线对称轴上,∴P到AB的距离=AB=×(5﹣1)=2,∴P点坐标为(3,2)或(3,﹣2).25.自定义:在一个图形上画一条直线,若这条直线既平分该图形的面积,又平分该图形的周长,我们称这条直线为这个图形的“等分积周线”.(1)如图1,已知△ABC,AC≠BC,过点C能否画出△ABC的一条“等分积周线”?若能,说出确定的方法,若不能,请说明理由.(2)如图2,在四边形ABCD中,∠B=∠C=90°,EF垂直平分AD,垂足为F,交BC于点E,已知AB=3,BC=8,CD=5.求证:直线EF为四边形ABCD的“等分积周线”;(3)如图3,在△ABC中,AB=BC=6,AC=8,请你作出△ABC的一条“等分积周线”EF(要求:直线EF不过△ABC的顶点,交边AC于点F,交边BC于点E),并说明理由.【考点】KY:三角形综合题.【分析】(1)若直线CD平分△ABC的面积,那么S△ADC=S△DBC,得出AC≠BC,进而得出答案;(2)根据勾股定理可得出:AB2+BE2=CE2+DC2,进而得出BE=5,CE=3,进而得出周长与面积分别相等得出答案即可;(3)在AC上取一点F,使得FC=AB=6,在BC上取一点E,使得BE=2,作直线EF,则EF是△ABC的等分积周线,结合全等三角形的判定与性质得出答案.【解答】解:(1)不能,理由:如答图1,若直线CD平分△ABC的面积,那么S△ADC=S△DBC,∴AD=BD,∵AC≠BC,∴AD+AC≠BD+BC,∴过点C不能画出一条“等分积周线”(2)如答图2,连接AE、DE,设BE=x,∵EF垂直平分AD,∴AE=DE,AF=DF,S△AEF=S△DEF,∵∠B=∠C=90°,AB=3,BC=8,CD=5,∴Rt△ABE和Rt△DCE中,根据勾股定理可得出:AB2+BE2=CE2+DC2,即32+x2=(8﹣x)2+52,解得:x=5,所以BE=5,CE=3,∴AB+BE=CE+DC,S△ABE=S△DCE,∴S四边形ABEF=S△ABE+S△AEF,S四边形DCEF=S△DEF+S△DCE,∴S四边形ABEF=S四边形DCEF,AF+AB+BE=DF+EC+DC,∴直线EF为四边形ABCD的“等分积周线”;(3)如答图3,在AC上取一点F,使得FC=AB=6,在BC上取一点E,使得BE=2,作直线EF,则EF是△ABC的等分积周线,理由:由作图可得:AF=AC﹣FC=8﹣6=2,在CB上取一点G,使得CG=AF=2,则有AB+AF=CF+CG,∵AB=BC,∴∠A=∠C,在△ABF和△CFG中,,∴△ABF≌△CFG(SAS),∴S△ABF=S△CFG,又易得BE=EG=2,∴S△BFE=S△EFG,∴S△EFC=S四边形ABEF,AF+AB+BE=CE+CF=10,∴EF是△ABC的等分积周线,若如答图4,当BM=2cm,AN=6cm时,直线MN也是△ABC的等分积周线.(其实是同一条),另外本问的说理也可以通过作高,进行相关计算说明).。
(压轴题)人教版初中七年级数学上册第二章《整式的加减》模拟测试题(含答案解析)(2)
一、选择题1.(0分)[ID :68030]下列代数式的书写,正确的是( ) A .5nB .n5C .1500÷tD .114x 2y 2.(0分)[ID :68053]如图,下列各三角形中的三个数之间均具有相同的规律,根据此规律,最后一个三角形中y 与n 之间的关系是()A .y=2n+1B .y=2n +nC .y=2n+1+nD .y=2n +n+13.(0分)[ID :68052]有一组单项式如下:﹣2x ,3x 2,﹣4x 3,5x 4……,则第100个单项式是( ) A .100x 100 B .﹣100x 100C .101x 100D .﹣101x 1004.(0分)[ID :68041]化简2a -[3b -5a -(2a -7b )]的值为( )A .9a -10bB .5a +4bC .-a -4bD .-7a +10b5.(0分)[ID :68040]下列去括号正确的是( ) A .112222x y x y ⎛⎫ =⎭-⎪⎝--- B .()12122x y x y ++=+- C .()16433232x y x y --+=-++ D .()22x y z x y z +-+=-+6.(0分)[ID :68025]观察下列单项式:223344191920202,2,2,2,,2,2,x x x x x x ---,则第n 个单项式是( ) A .2n n xB .(1)2n n n x -C .2n n x -D .1(1)2n n n x +-7.(0分)[ID :68021]1261年,我国南宋数学家杨辉用图中的三角形解释二项和的乘方规律,比欧洲的相同发现要早三百多年,我们把这个三角形称为“杨辉三角”,请观察图中的数字排列规律,则,,a b c 的值分别为( )1111211464115101051331151161a b c A .1,6,15a b c ===B .6,15,20a b c ===C .15,20,15a b c ===D .20,15,6a b c ===8.(0分)[ID :68015]已知132n x y +与4313x y 是同类项,则n 的值是( ) A .2B .3C .4D .59.(0分)[ID :68009]已知有理数1a ≠,我们把11a-称为a 的差倒数,如:2的差倒数是1112=--,1-的差倒数是()11112=--.如果12a =-,2a 是1a 的差倒数,3a 是2a 的差倒数,4a 是3a 的差倒数…依此类推,那么2020a 的值是( ) A .2-B .13C .23D .3210.(0分)[ID :68003]下面去括号正确的是( ) A .2()2y x y y x y +--=+- B .2(35)610a a a a --=-+ C .()y x y y x y ---=+-D .222()2x x y x x y +-+=-+11.(0分)[ID :67992]下列去括号正确的是( ) A .221135135122x y x x y y ⎛⎫--+=-++⎪⎝⎭B .()8347831221a ab b a ab b --+=---C .()()222353261063x y x x y x +--=+-+ D .()()223423422x y x x y x --+=--+12.(0分)[ID :67980]代数式21a b-的正确解释是( ) A .a 与b 的倒数的差的平方 B .a 与b 的差的平方的倒数C .a 的平方与b 的差的倒数D .a 的平方与b 的倒数的差13.(0分)[ID :67978]有20个数排成一行,对于任意相邻的三个数,都有中间的数等于前后两数的和.如果第一个数是0,第二个数是2,这20个数的和是( ) A .2B .﹣2C .0D .414.(0分)[ID :67977]下列关于多项式21ab a b --的说法中,正确的是( ) A .该多项式的次数是2 B .该多项式是三次三项式 C .该多项式的常数项是1D .该多项式的二次项系数是1-15.(0分)[ID :67963]小明乘公共汽车到白鹿原玩,小明上车时,发现车上已有(6a ﹣2b )人,车到中途时,有一半人下车,但又上来若干人,这时车上共有(10a ﹣6b )人,则中途上车的人数为( ) A .16a ﹣8bB .7a ﹣5bC .4a ﹣4bD .7a ﹣7b二、填空题16.(0分)[ID :68154]如果多项式32242(176)x x kx x +-+-中不含2x 的项,则k 的值为__.17.(0分)[ID :68148]已知整数a 1,a 2,a 3,a 4…满足下列条件:a 1=0,a 2=﹣|a 1+1|,a 3=﹣|a 2+2|,a 4=﹣|a 3+3|,…,依此类推,则a 2016的值为_______.18.(0分)[ID :68147]在同一平面中,两条直线相交有一个交点,三条直线两两相交最多有3个交点,四条直线两两相交最多有6个交点……由此猜想,当相交直线的条数为n 时,最多可有的交点数m 与直线条数n 之间的关系式为:m =_____.(用含n 的代数式填空) 19.(0分)[ID :68145]观察下面的一列单项式:2342,4,8,16,,x x x x --根据你发现的规律,第n 个单项式为__________. 20.(0分)[ID :68135]在多项式422315x xx x 中,同类项有_________________;21.(0分)[ID :68131]m ,n 互为相反数,则(3m –2n )–(2m –3n )=__________. 22.(0分)[ID :68129]某商店经销一种品牌的洗衣机,其中某一型号的洗衣机每台进价为a 元,商店将进价提高20%后作为零售价进行销售,一段时间后,商店又以9折优惠价促销,这时该型号洗衣机的零售价为__元.23.(0分)[ID :68118]将连续正整数按以下规律排列,则位于第 7 行第 7 列的数 x 是________________.?13 61015 2128 2 5 9 1420 27 ? 4813 19 26 ?? 7121825 ?? 1117 24?? 1623 ??22?????x?24.(0分)[ID :68104]在如图所示的运算流程中,若输出的数3y =,则输入的数x =________________.25.(0分)[ID :68084]已知5a b -=,3c d +=,则()()b c a d +--的值等于______. 26.(0分)[ID :68083]一个长方形的周长为68a b +,其一边长为23a b +,则另一边长为______.27.(0分)[ID :68081]为了鼓励节约用电,某地对用户用电收费标准作如下规定:如果每户用电不超过50度,那么每度电按a 元收费,如果超过50度,那么超过部分按每度()0.5a +元收费,某居民在一个月内用电98度,他这个月应缴纳电费______元.三、解答题28.(0分)[ID :67777]先化简,再求值:-2x 2-2[3y 2-2(x 2-y 2)+6],其中x =-1,y =-2. 29.(0分)[ID :67763]有这样一道题,计算()()4322433222422xx y x y x x y y x y -----+的值,其中0.25x =,1y =-;甲同学把“0.25x =”,错抄成“0.25x =-”,但他的计算结果也是正确的,你说这是为什么? 30.(0分)[ID :67759]已知多项式﹣x 2y 2m +1+xy ﹣6x 3﹣1是五次四项式,且单项式πx n y 4m ﹣3与多项式的次数相同,求m ,n 的值.【参考答案】2016-2017年度第*次考试试卷 参考答案**科目模拟测试一、选择题 1.A 2.B 3.C 4.A6.B7.B8.B9.A10.B11.C12.D13.A14.B15.B二、填空题16.2【分析】先去括号再根据不含的项列出式子求解即可得【详解】由题意得:解得故答案是:2【点睛】本题考查了去括号多项式中的无关型问题熟练掌握去括号法则是解题关键17.﹣1008【解析】a2=−|a1+1|=−|0+1|=−1a3=−|a2+2|=−|−1+2|=−1a4=−|a3+3|=−|−1+3|=−2a5=−|a4+4|=−|−2+4| =−2…所以n是奇数18.【分析】根据题意3条直线相交最多有3个交点4条直线相交最多有6个交点5条直线相交最多有10个交点而3=1+26=1+2+310=1+2+3+4故可猜想n条直线相交最多有1+2+3+…+(n-1)=个19.【分析】分别从单项式的系数与次数两方面总结即可得出规律进而可得答案【详解】解:由已知单项式的排列规律可得第n个单项式为:故答案为:【点睛】本题考查了单项式的规律探求通过所给的单项式找到规律并能准确的20.-2x5x【分析】根据同类项:所含字母相同并且相同字母的指数也相同进行判断即可【详解】解:-2x与5x是同类项;故答案为:-2x5x【分析】本题考查了同类项的知识解题的关键是掌握同类项的定义21.0【解析】由题意m+n=0所以(3m-2n)-(2m-3n)=3m-2n-2m+3n=m+n=0【点睛】本题考查相反数去括号法则等解题的关键是根据题意得出m+n=0然后再对所求的式子进行去括号合并同22.08a【解析】试题分析:根据题意得:a•(1+20)×90=108a;故答案为108a考点:列23.【分析】先根据第一行的第一列的数以及第二行的第二列的数第三行的第三列数第四行的第四列数进而得出变化规律由此得出结果【详解】第一行的第一列的数是1;第二行的第二列的数是5=1+4;第三行的第三列的数是24.或【分析】由运算流程可以得出有两种情况当输入的x为偶数时就有y=x当输入的x 为奇数就有y=(x+1)把y=3分别代入解析式就可以求出x的值而得出结论【详解】解:由题意得当输入的数x是偶数时则y=x当25.-2【分析】把原式去括号转化为含有(a-b)和(c+d)的式子然后代入求值即可【详解】故答案为:-2【点睛】本题考查了整式的化简求值把原式转化为含有(a-b)和(c+d)的式子是解决此题的关键26.【分析】根据长方形的周长公式列出代数式求解即可【详解】解:由长方形的周长=2×(长+宽)可得另一边长为:故答案为:a+b【点睛】本题考查了整式的加减长方形的周长公式列出代数式是解决此题的关键27.【分析】98度超过了50度应分两段进行计费第一段50每度收费a元第二段(98-50)度每度收费(a+05)元据此计算即可【详解】解:由题意可得:(元)故答案为:(98a+24)【点睛】本题考查了列代三、解答题28.29.30.2016-2017年度第*次考试试卷参考解析【参考解析】**科目模拟测试一、选择题解析:A【分析】直接利用代数式书写方法分析得出答案.【详解】解:A、5n,书写正确,符合题意;B、n5,书写错误,不合题意;C、1500÷t,应为1500t,故书写错误,不合题意;D、114x2y=54x2y,故书写错误,不合题意;故选:A.【点睛】此题主要考查了代数式,正确把握代数式的书写方式是解题关键.2.B解析:B【详解】∵观察可知:左边三角形的数字规律为:1,2,…,n,右边三角形的数字规律为:2,22,…,2n,下边三角形的数字规律为:1+2,222+, (2)n+,∴最后一个三角形中y与n之间的关系式是y=2n+n.故选B.【点睛】考点:规律型:数字的变化类.3.C解析:C【分析】由单项式的系数,字母x的指数与序数的关系求出第100个单项式为101x100.【详解】由﹣2x,3x2,﹣4x3,5x4……得,单项式的系数的绝对值为序数加1,系数的正负为(﹣1)n,字母的指数为n,∴第100个单项式为(﹣1)100(100+1)x100=101x100,故选C.【点睛】本题综合考查单项式的概念,乘方的意义,数字变化规律与序数的关系等相关知识点,重点掌握数字的变化与序数的关系.4.A【解析】2a -[3b -5a -(2a -7b)]=2a-(3b-5a-2a+7b)=2a-(10b-7a)=2a-10b+7a=9a-10b , 故选A.【点睛】本题考查去括号,合并同类项,解题的关键是按运算的顺序先去括号,然后再进行合并同类项.5.D解析:D 【分析】根据整式混合运算法则和去括号的法则计算各项即可. 【详解】 A. 112222x y x y ⎛⎫ =⎭-⎪⎝--+,错误; B. ()12122x y x y ++=++,错误; C. ()136433222x y x y --+=-+-,错误; D. ()22x y z x y z +-+=-+,正确; 故答案为:D . 【点睛】本题考查了整式的混合运算,掌握整式混合运算法则和去括号的法则是解题的关键.6.B解析:B 【分析】要看各单项式的系数和次数与该项的序号之间的变化规律.本题中,奇数项符号为负,偶数项符号为正,数字变化规律是(-1)n 2n ,字母变化规律是x n . 【详解】因为第一个单项式是1112(1)2x x -=-⨯; 第二个单项式是222222(1)2x x =-⨯; 第三个单项式是333332(1)2x x -=-⨯, …,所以第n 个单项式是(1)2n n n x -. 故选:B . 【点睛】本题考查了单项式的系数和次数的规律探索,确定单项式的系数和次数时,把一个单项式改写成数字因数和字母因式的积,是找准单项式的系数和次数的关键.分别找出单项式的系数和次数的规律也是解决此类问题的关键.7.B【分析】由数字排列规律可得:除去每行两端的数字外,每个数字都等于上一行的左右两个数字之和,据此解答即可. 【详解】解:根据图形得:除去每行两端的数字外,每个数字都等于上一行的左右两个数字之和, 所以156a =+=,51015,101020b c =+==+=. 故选:B . 【点睛】本题以“杨辉三角”为载体,主要考查了与整式有关的数字类规律探索,找准规律是关键.8.B解析:B 【分析】根据同类项的概念可得关于n 的一元一次方程,求解方程即可得到n 的值. 【详解】 解:∵132n x y +与4313x y 是同类项, ∴n+1=4, 解得,n=3, 故选:B. 【点睛】本题考查了同类项,解决本题的关键是判断两个项是不是同类项,只要两看,即一看所含有的字母是否相同,二看相同字母的指数是否相同.9.A解析:A 【分析】求出数列的前4个数,从而得出这个数列以-2,13,32依次循环,用2020除以3,再根据余数可求a 2020的值. 【详解】∵a 1=-2, ∴2111(3)3a ==--,3131213a ==-, 412312a ==-- ∴每3个结果为一个循环周期 ∵2020÷3=673⋯⋯1,∴202012a a ==- 故选:A. 【点睛】本题考查了规律型:数字的变化类:通过从一些特殊的数字变化中发现不变的因素或按规律变化的因素,然后推广到一般情况.10.B解析:B 【分析】根据去括号法则对四个选项逐一进行分析,要注意括号前面的符号,以选用合适的法则. 【详解】A. 2()2y x y y x y +--=--,故错误;B. 2(35)610a a a a --=-+,故正确;C. ()y x y y x y ---=++,故错误;D. 222()22x x y x x y +-+=-+,故错误; 故选:B 【点睛】本题考查去括号的方法:去括号时,运用乘法的分配律,先把括号前的数字与括号里各项相乘;括号前是“+”,去括号后,括号里的各项都不改变符号;括号前是“一”,去括号后,括号里的各项都改变符号.11.C解析:C 【分析】依据去括号法则计算即可判断正误. 【详解】 A. 221135135122x y x x y x ⎛⎫--+=-+-⎪⎝⎭,故此选项错误;B. ()8347831221a ab b a ab b --+=-+-,故此选项错误;C. ()()222353261063x y x x y x +--=+-+,此选项正确;D. ()()223423422x y x x y x --+=---,故此选项错误;故选:C. 【点睛】此题考查整式的化简,注意去括号法则.12.D解析:D 【分析】说出代数式的意义,实际上就是把代数式用语言叙述出来.叙述时,要求既要表明运算的顺序,又要说出运算的最终结果. 【详解】解:代数式21a b-的正确解释是a 的平方与b 的倒数的差. 故选:D.用语言表达代数式的意义,一定要理清代数式中含有的各种运算及其顺序.具体说法没有统一规定,以简明而不引起误会为出发点.13.A解析:A【分析】根据题意可以写出这组数据的前几个数,从而发现数字的变化规律,再利用规律求解.【详解】解:由题意可得,这列数为:0,2,2,0,﹣2,﹣2,0,2,2,…,∴这20个数每6个为一循环,且前6个数的和是:0+2+2+0+(﹣2)+(﹣2)=0,∵20÷6=3…2,∴这20个数的和是:0×3+(0+2)=2.故选:A.【点睛】本题考查了数字的变化规律,正确理解题意,发现题目中数字的变化规律:每6个数重复出现是解题的关键.14.B解析:B【分析】直接利用多项式的相关定义进而分析得出答案.【详解】A、多项式21ab a b--次数是3,错误;B、该多项式是三次三项式,正确;C、常数项是-1,错误;D、该多项式的二次项系数是1,错误;故选:B.【点睛】此题考查多项式,正确掌握多项式次数与系数的确定方法是解题关键.15.B解析:B【分析】根据题意表示出途中下车的人数,再根据车上总人数即可求得中途上车的人数.【详解】由题意可得:(10a﹣6b)﹣[(6a﹣2b)﹣(3a﹣b)]=10a﹣6b﹣6a+2b+3a﹣b=7a﹣5b.故选B.【点睛】本题考查了整式加减的应用,根据题意正确列出算式是解决问题的关键.16.2【分析】先去括号再根据不含的项列出式子求解即可得【详解】由题意得:解得故答案是:2【点睛】本题考查了去括号多项式中的无关型问题熟练掌握去括号法则是解题关键 解析:2【分析】先去括号,再根据“不含2x 的项”列出式子求解即可得.【详解】3223242(176)4(2)176x x kx x x k x x +-+-=+--+,由题意得:20k -=,解得2k =,故答案是:2.【点睛】本题考查了去括号、多项式中的无关型问题,熟练掌握去括号法则是解题关键. 17.﹣1008【解析】a2=−|a1+1|=−|0+1|=−1a3=−|a2+2|=−|−1+2|=−1a4=−|a3+3|=−|−1+3|=−2a5=−|a4+4|=−|−2+4|=−2…所以n 是奇数解析:﹣1008【解析】a 2=−|a 1+1|=−|0+1|=−1,a 3=−|a 2+2|=−|−1+2|=−1,a 4=−|a 3+3|=−|−1+3|=−2,a 5=−|a 4+4|=−|−2+4|=−2,…,所以n 是奇数时,a n =−12n -;n 是偶数时,a n =−2n ; a 2016=−20162=−1008. 故答案为-1008. 点睛:此题考查数字的变化规律,根据所给出的数,观察出n 为奇数与偶数时的结果的变化规律是解题的关键. 探寻数列规律:认真观察、席子思考、善用联想是解决问题的方法.利用方程解决问题.当问题中有多个未知数时,可先设其中一个为x ,再利用它们之间的关系,设出其它未知数,然后列方程.18.【分析】根据题意3条直线相交最多有3个交点4条直线相交最多有6个交点5条直线相交最多有10个交点而3=1+26=1+2+310=1+2+3+4故可猜想n 条直线相交最多有1+2+3+…+(n-1)=个解析:()12n n - 【分析】根据题意,3条直线相交最多有3个交点,4条直线相交最多有6个交点,5条直线相交最多有10个交点.而3=1+2,6=1+2+3,10=1+2+3+4,故可猜想,n条直线相交,最多有1+2+3+…+(n-1)=()12n n-个交点.【详解】解:∵3条直线相交最多有3个交点,4条直线相交最多有6个交点.而3=1+2,6=1+2+3,10=1+2+3+4,∴可猜想,n条直线相交,最多有1+2+3+…+(n-1)=()12 n n-个交点.即()12n nm-=故答案为:()12n n-.【点睛】本题主要考查了相交线,图形的规律探索,此题着重培养学生的观察、实验和猜想、归纳能力,掌握从特殊向一般猜想的方法.19.【分析】分别从单项式的系数与次数两方面总结即可得出规律进而可得答案【详解】解:由已知单项式的排列规律可得第n个单项式为:故答案为:【点睛】本题考查了单项式的规律探求通过所给的单项式找到规律并能准确的解析:(2)n n x-【分析】分别从单项式的系数与次数两方面总结即可得出规律,进而可得答案.【详解】解:由已知单项式的排列规律可得第n个单项式为:(2)n n x-.故答案为:(2)n n x-.【点睛】本题考查了单项式的规律探求,通过所给的单项式找到规律,并能准确的用代数式表示是解题的关键.20.-2x5x【分析】根据同类项:所含字母相同并且相同字母的指数也相同进行判断即可【详解】解:-2x与5x是同类项;故答案为:-2x5x【分析】本题考查了同类项的知识解题的关键是掌握同类项的定义解析:-2x,5x【分析】根据同类项:所含字母相同,并且相同字母的指数也相同,进行判断即可.【详解】解: -2x与5x是同类项;故答案为:-2x,5x.【分析】本题考查了同类项的知识,解题的关键是掌握同类项的定义.21.0【解析】由题意m+n=0所以(3m-2n)-(2m-3n)=3m-2n-2m+3n=m+n=0【点睛】本题考查相反数去括号法则等解题的关键是根据题意得出m+n=0然后再对所求的式子进行去括号合并同解析:0【解析】由题意m+n=0,所以(3m-2n)-(2m-3n)=3m-2n-2m+3n=m+n=0.【点睛】本题考查相反数、去括号法则等,解题的关键是根据题意得出m+n=0,然后再对所求的式子进行去括号,合并同类项,整体代入数值即可.22.08a【解析】试题分析:根据题意得:a•(1+20)×90=108a;故答案为108a考点:列代数式解析:08a【解析】试题分析:根据题意得:a•(1+20%)×90%=1.08a;故答案为1.08a.考点:列代数式.23.【分析】先根据第一行的第一列的数以及第二行的第二列的数第三行的第三列数第四行的第四列数进而得出变化规律由此得出结果【详解】第一行的第一列的数是1;第二行的第二列的数是5=1+4;第三行的第三列的数是解析:85【分析】先根据第一行的第一列的数,以及第二行的第二列的数,第三行的第三列数,第四行的第四列数,进而得出变化规律,由此得出结果.【详解】第一行的第一列的数是 1;第二行的第二列的数是 5=1+4;第三行的第三列的数是 13=1+4+8;第四行的第四列的数是 25=1+4+8+12;......第n行的第n列的数是1+4+8+12+...+4(n-1)=1+4[1+2+3+...+(n+1)]=1+2n(n-1);∴第七行的第七列的数是1+2×7×(7-1)=85;故答案为:85.【点睛】本题考查数字的变化规律,学生通过观察、分析、归纳发现其中的规律,从而利用规律解决问题.24.或【分析】由运算流程可以得出有两种情况当输入的x为偶数时就有y=x当输入的x为奇数就有y=(x+1)把y=3分别代入解析式就可以求出x的值而得出结论【详解】解:由题意得当输入的数x是偶数时则y=x当解析:5或6【分析】由运算流程可以得出有两种情况,当输入的x为偶数时就有y=12x,当输入的x为奇数就有y=12(x+1),把y=3分别代入解析式就可以求出x的值而得出结论.【详解】解:由题意,得当输入的数x是偶数时,则y=12x,当输入的x为奇数时,则y=12(x+1).当y=3时,∴3=12x或3=12(x+1).∴x=6或5故答案为:5或6【点睛】本题考查了有理数的混合运算,解答此题的关键是,根据流程图,列出方程,解方程即可得出答案.25.-2【分析】把原式去括号转化为含有(a-b)和(c+d)的式子然后代入求值即可【详解】故答案为:-2【点睛】本题考查了整式的化简求值把原式转化为含有(a-b)和(c+d)的式子是解决此题的关键解析:-2【分析】把原式去括号转化为含有(a-b)和(c+d)的式子,然后代入求值即可.【详解】()()()()532b c a d b c a d b a c d+--=+-+=-++=-+=-.故答案为:-2.【点睛】本题考查了整式的化简求值,把原式转化为含有(a-b)和(c+d)的式子是解决此题的关键.26.【分析】根据长方形的周长公式列出代数式求解即可【详解】解:由长方形的周长=2×(长+宽)可得另一边长为:故答案为:a+b【点睛】本题考查了整式的加减长方形的周长公式列出代数式是解决此题的关键解析:+a b【分析】根据长方形的周长公式列出代数式求解即可.【详解】解:由长方形的周长=2×(长+宽)可得,另一边长为:()()68223a b a b a b +÷-+=+. 故答案为:a +b .【点睛】本题考查了整式的加减,长方形的周长公式列出代数式是解决此题的关键.27.【分析】98度超过了50度应分两段进行计费第一段50每度收费a 元第二段(98-50)度每度收费(a+05)元据此计算即可【详解】解:由题意可得:(元)故答案为:(98a+24)【点睛】本题考查了列代解析:()9824a +【分析】98度超过了50度,应分两段进行计费,第一段50,每度收费a 元,第二段(98-50)度,每度收费(a +0.5)元,据此计算即可.【详解】解:由题意可得:()()5098500.59824a a a +-+=+(元).故答案为:(98a +24).【点睛】本题考查了列代数式,根据题意,列出代数式是解决此题的关键.三、解答题28.2221012x y --,-50.【分析】根据整式的加减及合并同类项先对原式进行化简,得到2221012x y --,再将1,2x y =-=-代入即可求解,需要注意本题中两次遇到去括号,注意符号的改变.【详解】原式=2222223226x y x y ⎡⎤---++⎣⎦=2222264412x y x y --+--=2222246412x x y y -+---=2221012x y --,当1,2x y =-=-时,原式=222(1)10(2)1250⨯--⨯--=-.【点睛】本题主要考查了去括号,整式的加减,合并同类项,乘法的分配律等相关内容,熟练掌握各项计算法则是解决本题的关键,注意去括号中符号的改变原则. 29.化简后为32y ,与x 无关.【分析】原式去括号合并得到最简结果中不含x ,可得出x 的取值对结果没有影响.【详解】解:()()4322433222422x x y x y x x y y x y -----+ =43224332224242x x y x y x x y y x y ---+++=32y ,原式化简后为32y ,跟x 的取值没有关系.因此不会影响计算结果.【点睛】本题考查了整式的加减——化简求值,正确的将原式去括号合并同类项是解决此题的关键.30.m =1,n =4.【分析】根据多项式的次数是多项式中次数最高的单项式的次数,可得m 的值,根据单项式的次数是单项式中所有字母指数和,可得n 的值.【详解】∵多项式﹣x 2y 2m +1+xy ﹣6x 3﹣1是五次四项式,且单项式πx n y 4m ﹣3与多项式的次数相同, ∴2+2m +1=5,n +4m ﹣3=5,解得m =1,n =4.【点睛】本题考查了多项式,利用多项式的次数是多项式中次数最高的单项式的次数,单项式的次数是单项式中所有字母指数和得出m 、n 的值是解题关键.。
2017年初中数学模拟卷参考答案
2017年初中毕业班质量自测试题数学参考答案一、选择题(每题4分,共40分)二、填空题(每题5分,共30分) 11.)2)(2(-+x x 12.15 13.31 14. 222=+y x 15. 32或62 16.22+三、解答题(本大题有8小题,第17~20小题每小题8分,第21小题10分,第22,23小题每小题12分,第24小题14分,共80分.解答需写出必要的文字说明、演算步骤或证明过程)17.(1)解:原式=221121=++ ………………4分 (2) 511=x ………………4分18.解:(1)150 ………………2分(2)图略 ………………2分(3)最喜爱科普类书籍的学生人数1800×=480人………………4分19.(1)2=m ………………4分(2) B 的坐标为(1,3)或(﹣3,﹣1)………………4分20.解:如图作CM ∥AB 交AD 于M ,MN ⊥AB 于N .由题意=,得 CM=1, ………………2分在RT △AMN 中,∵∠ANM=90°,MN=BC=3,∠AMN=60°, ∴AN=33 ………………2分 ∵MN ∥BC ,AB ∥CM , ∴四边形MNBC 是平行四边形, ∴BN=CM=1∴AB=AN+BN=(331+)米. ………………4分NM21.(1)证明:连接OD,如图,∵∠1=∠2,而∠2=∠3,∴∠3=∠1,∵OC⊥AB,∴∠3+∠C=90°,∴∠1+∠C=90°,而OC=OD,∴∠C=∠4,∴∠1+∠4=90°,即∠ODE=90°,∴OD⊥DE,∴GE是⊙O的切线;………………4分(2)解:设OF=x,则OC=3x,∴BF=2x,∵∠1=∠2,∴ED=EF=2x+4,在Rt△ODE中,∵OD2+DE2=OE2,∴(3x)2+(2x+4)2=(4+3x)2,解得x=2,………………4分∴OD=6,DE=8,OE=10又∵△AGE∽△DOE,AE=16,可得AG=12 ………………2分22. (1)假设甲、乙两种商品的进货单价各为x ,y 元 ……………………………1分根据题意可得:33(1)2(21)12x y x y +=⎧⎨++-=⎩………………………………………2分解得:12x y =⎧⎨=⎩…………………………………………………………………………2分 甲、乙零售单价分别为2元和3元;………………………………………………1分 (2)根据题意得出:1000500)1.0100500(-1=+⨯+mm )( ………………………………………3分 即2m 2﹣m=0,解得m =0.5或m =0(舍去), …………………………………………………2分 答:当m 定为0.5元才能使商店每天销售甲、乙两种商品获取的利润共1000元.……1分23.(1)① √ ………………1分 ② √ ………………1分 (2)设P 到AB 的距离为h ,则6321521421=⋅⨯-⋅⨯+⋅⨯h h h 解得h =2 ………………4分(3) ① 70° ………………2分②作AD 边上的高AH ,设AD=AE=5k ,则HE=4k ,AH=3k , DH=2k , tan ∠DEH=21,可得tan ∠DAP= tan ∠DEH=21,∵AP=4,∴DP=EP=2, 可证△DBP ∽△EPC ,∴4=•=•EP DP CE BD ………………4分24.(1)b=2 c=3- 直线AC 的解析式为3--=x y ………………3分 (2)①HE=3t +,EF=3+t ,FP=342---t t ,由题意可得563342=+---t t t , 解得31-=t (舍), 2.22-=t ………………4分 ②当3-<t 时,∠PEC=135°,而∠ACB>45°,所以△PEC 中不存在有一个角等于∠ACB ; ……………1分当3->t 时,∠PEC=45°=∠BAC ,若△PEC 中有一个角等于∠ACB , 则这两个三角形相似 ∴△PEC ∽△CAB 时,23-=t ………………3分 △PEC ∽△BAC 时,35-=t ………………3分。
《好题》人教版初中七年级数学上册第三章《一元一次方程》模拟测试题(含答案解析)(2)
一、选择题1.(0分)[ID :68193]已知下列四个应用题:①现有60个零件的加工任务,甲单独每小时可以加工4个零件,乙单独每小时可以加工6个零件.现甲乙两人合作,问两人开始工作几小时后还有20个零件没有加工?②甲乙两人从相距60km 的两地同时出发,相向面行,甲的速度是4/km h ,乙的速度是6/km h ,问经过几小时后两人相遇后又相距20km ?③甲乙两人从相距60km 的两地相向面行,甲的速度是4/km h ,乙的速度是6/km h ,如果甲先走了20km 后,乙再出发,问乙出发后几小时两人相遇?④甲乙两人从相距20km 的两地同时出发,背向而行,甲的速度是4/km h ,乙的速度是6/km h ,问经过几小时后两人相距60km ?其中,可以用方程462060x x ++=表述题目中对应数量关系的应用题序号是( ) A .①②③④B .①③④C .②③④D .①②2.(0分)[ID :68189]新制作的渗水防滑地板是形状完全相同的长方形.如图,三块这样的地板可以拼成一个大的长方形.如果大长方形的周长为150cm ,那么一块渗水防滑地板的面积是( ).A .2450cmB .2600cmC .2900cmD .21350cm 3.(0分)[ID :68184]方程2424x x -=-+的解是 ( ) A .x =2B .x =−2C .x =1D .x =04.(0分)[ID :68254]下列方程中,是一元一次方程的是( ) A .243x x -=B .0x =C .21x y +=D .11x x-=5.(0分)[ID :68251]解方程-3x=2时,应在方程两边( ) A .同乘以-3B .同除以-3C .同乘以3D .同除以36.(0分)[ID :68246]已知方程16x -1=233x + ,那么这个方程的解是( ) A .x =-2B .x =2C .x =-12D .x =127.(0分)[ID :68241]若代数式4x +的值是2,则x 等于( ) A .2 B .2- C .6 D .6- 8.(0分)[ID :68233]下列方程中,其解为﹣1的方程是( )A .2y=﹣1+yB .3﹣y=2C .x ﹣4=3D .﹣2x ﹣2=4 9.(0分)[ID :68229]若4a ﹣9与3a ﹣5互为相反数,则a 2﹣2a+1的值为( ) A .1B .﹣1C .2D .010.(0分)[ID :68219]如图,正方ABCD 形的边长是2个单位,一只乌龟从A 点出发以2个单位/秒的速度顺时针绕正方形运动,另有一只兔子也从A 点出发以6个单位/秒的速度逆时针绕正方形运动,则第2020次相遇在( )A .点AB .点BC .点CD .点D11.(0分)[ID :68210]一张试卷共有25道题,若做对1题得4分,做错1题扣1分,小明做了全部试题只得了70分,那么小明做对了( )道. A .17B .18C .19D .2012.(0分)[ID :68180]商店将进价2400元的彩电标价3200元出售,为了吸引顾客进行打折出售,售后核算仍可获利20%,则折扣为( ) A .九折B .八五折C .八折D .七五折13.(0分)[ID :68179]一游泳池计划注入一定体积的水,按每小时500立方米的速度注水,注水2小时,注水口发生故障,停止注水,经20分钟抢修后,注水速度比原来提高了20%,结果比预定的时间提前了10分钟完成注水任务,则计划注入水的体积为( )A .34000mB .32500mC .32000mD .3500m14.(0分)[ID :68177]已知代数式2x-6与3+4x 的值互为相反数,那么x 的值等于( ) A .2B .12C .-2D .1-215.(0分)[ID :68175]甲、乙、丙三辆卡车所运货物的质量之比为,已知甲车比乙车少运货物吨,则三辆卡车共运货物( )A .吨B .吨C .吨D .吨二、填空题16.(0分)[ID :68354]一件衣服进价120元,按标价的八折出售仍能赚32元,则标价是__元.17.(0分)[ID :68341]某商贩卖出两双皮鞋,相比进价,一双盈利30%,另一双亏本10%,两双共卖出200元.商贩在这次销售中要有盈利,则亏本的那双皮鞋的进价必须低于_________元18.(0分)[ID :68336]已知方程2224m x m +-+=是关于x 的一元一次方程,则方程的解是________.19.(0分)[ID :68329]如果34x x =-+,那么3x +________4=. 20.(0分)[ID :68324]定义一种运算:1(1)(1)x a b a b a b *=++++,若设5213*=,则34*=________.21.(0分)[ID :68315]猪是中国十二生肖排行第十二的动物,对应地支为“亥”.现规定一种新的运算,a 亥b ab b =-,则满足等式123x-亥61=-的x 的值为__________.22.(0分)[ID :68303]一般情况下2323m n m n ++=+不成立,但也有数可以使得它成立,例如:m =n =0.使得2323m n m n ++=+成立的一对数m 、n 我们称为“相伴数对”,记为(m ,n ).若(x ,1)是“相伴数对”,则x 的值为_____.23.(0分)[ID :68292]若方程()||110a a x --=是关于x 的一元一次方程,则a =____________.24.(0分)[ID :68271]用5个同样大小的小长方形恰好可以拼成如图所示的大长方形,若大长方形的周长是14,则小长方形的长是_______,宽是________.25.(0分)[ID :68270]将一个底面直径是10cm 、高为40cm 的圆柱锻压成底面直径为16cm 的圆柱,则锻压后圆柱的高为________cm.26.(0分)[ID :68279]甲、乙两队开展足球对抗赛,规定每队胜一场得3分,平一场得1分,负一场得0分.若甲队胜场是平场的2倍,平场比负场多一场,共得了21分,则甲队胜了______场,平了______场,负了______场.27.(0分)[ID :68261]某商品按标价八折出售仍能盈利b 元,若此商品的进价为a 元,则该商品的标价为_________元.(用含a ,b 的代数式表示).三、解答题28.(0分)[ID :68413]如表是中国电信两种“4G 套餐”计费方式.(月基本费固定收,主叫不超过主叫时间,流量不超上网流量不再收费,主叫超时和上网流量超出部分加收超时费和超流量费)(1)若小萱某月主叫通话时间为220分钟,上网流量为800MB ,则她按套餐1计费需________元,按套餐2计费需________元;若小花某月按套餐2计费需129元,主叫通话时间为240分钟,则上网流量为________MB .(2)若上网流量为540MB ,是否存在某主叫通话时间t (分),按套餐1和套餐2计费相等?若存在,请求出t 的值;若不存在,请说明理由.(3)若上网流量为540MB ,直接写出当主叫通话时间t (分)满足什么条件时,选择套餐1省钱;当主叫通话时间t (分)满足什么条件时,选择套餐2省钱.月基本费/元 主叫通话时间/分 上网流量/MB 套餐1 49 200 500 套餐269 250 600接听超时费(元/分)超流量费(元/MB )套餐1 免费 0.2 0.3 套餐2免费0.150.229.(0分)[ID :68391]对于任意四个有理数a b c d ,,,,可以组成两个有理数对(,)a b 与(,)c d .我们规定:(,)(,)a b c d bc ad =-★. 例如:(1,2)(3,4)23142=⨯-⨯=★. 根据上述规定解决下列问题:(1)有理数对(2,3)(3,2)--=★ ;(2)若有理数对(2,31)(1,1)9x x -+-=★,则x = ;(3)当满足等式(3,21)(,)32x k x k k --+=+★的x 是整数时,求整数k 的值. 30.(0分)[ID :68373]如图A 在数轴上所对应的数为﹣2.(1)点B 在点A 右边距A 点4个单位长度,求点B 所对应的数;(2)在(1)的条件下,点A 以每秒2个单位长度沿数轴向左运动,点B 以每秒2个单位长度沿数轴向右运动,当点A 运动到﹣6所在的点处时,求A ,B 两点间距离.(3)在(2)的条件下,现A 点静止不动,B 点沿数轴向左运动时,经过多长时间A ,B 两点相距4个单位长度.【参考答案】2016-2017年度第*次考试试卷 参考答案**科目模拟测试一、选择题 1.B 2.A 3.A4.B5.B6.A7.B8.A9.A10.A11.C12.A13.B14.B15.C二、填空题16.190【分析】设标价为元根据题意列方程即可求解【详解】解:设标价为元由题意可知:解得:故答案为:190【点睛】此题主要考查列一元一次方程解应用题解题的关键是根据题意找出等量关系17.【分析】设亏本的那双皮鞋的进价为x元则亏本的那双皮鞋的售价为(1-10)x元盈利的那双皮鞋的售价为200-(1-10)x元盈利的那双皮鞋的进价为元根据商贩在这次销售中要有盈利即可得出关于x的一元一次18.【分析】先求出m的值再代入求出x的值即可【详解】因为原方程是关于x的一元一次方程所以移项得合并同类项得把代入原方程得移项得合并同类项得系数化为1得故答案为:【点睛】本题考查了解一元一次方程的问题掌握19.x【分析】根据题意得第一个等式等号右边为-x+4第二个等式等号右边为4因为(-x+4)+x=4所以等号两边同时加x【详解】两边同时加x得3x+x=4故答案为:x【点睛】本题考查的是等式的性质熟知等式20.【分析】根据定义新运算及求出x的值即可求出的值【详解】解:∵∴∴∴∴故答案为:【点睛】本题主要考查定义新运算的知识解答此题的关键是根据所给出的式子得出x 的值再利用新的运算方法解决问题21.【分析】原式利用题中的新定义计算即可求出值【详解】根据题中的新定义得亥故答案为:【点睛】本题考查了一元一次方程的解法掌握解一元一次方程的解法是解题的关键22.﹣【分析】利用新定义相伴数对列出方程解方程即可求出x的值【详解】解:根据题意得:去分母得:15x+10=6x+6移项合并得:9x=﹣4解得:x=﹣故答案为:﹣【点睛】本题考查解一元一次方程正确理解相23.【解析】【分析】先根据一元一次方程的定义列出关于a的不等式组求出a的值即可【详解】∵是关于x的一元一次方程∴且解得a=-1故答案为:-1【点睛】本题考查的是一元一次方程的定义熟知只含有一个未知数(元24.1【解析】【分析】观察图形找出大长方形与小长方形的关系设小长方形的宽为x列出方程即可求出其长和宽的值【详解】解:设小长方形的宽为x则长=(14-10x)=2x解得x=1即小长方形的宽为1长为2;故答25.625【解析】【分析】利用等量关系:锻压前的圆柱的体积=锻压后的圆柱的体积根据圆柱的体积计算公式表示出体积列出方程解答即可【详解】解:设锻压后圆柱的高为x厘米由题意得:解得:x=15625答:锻压后26.632【解析】【分析】设甲队胜了x场则平了场负了场根据一场得3分平一场得1分负一场得0分共得了21分可列方程求解【详解】设甲队胜了x场则平了场负了场根据题意可得:解得:x=6所以故答案为:632【点27.【解析】【分析】首先设标价x元由题意得等量关系:标价×打折﹣利润=进价代入相应数值再求出x的值【详解】设标价x元由题意得:80x﹣b=a解得:x=故答案为:【点睛】此题主要考查了列代数式解决问题的关三、解答题28.29.30.2016-2017年度第*次考试试卷参考解析【参考解析】**科目模拟测试一、选择题 1.B 解析:B 【分析】①根据甲的工作量+乙的工作量+未完成的工作量=总的工作量,设x 小时后还有20个零件没有加工,据此列方程解答;②根据甲行驶的路程+乙行驶的路程=总路程+相遇后相距的路程,设x 小时后相遇后相距20km ,据此列方程解答;③依据甲乙行驶的路程和+甲先走的路程=总路程,设x 小时后相遇后,据此列方程解答; ④根据甲乙两人的距离+甲乙各自行驶的路程=总路程,设行驶x 小时,据此列方程解答即可. 【详解】①设x 小时后还有20个零件没有加工,根据题意得,462060x x ++=,故①正确; ②设x 小时后相遇后相距20km ,根据题意得,466020x x +=+,故②错误; ③甲先走了20km 后,乙再出发,设乙出发后x 小时两人相遇,根据题意得,462060x x ++=,故③正确;④经过x 小时后两人相距60km ,根据题意得,462060x x ++=,故④正确. 因此,正确的是①③④. 故选:B. 【点睛】此题考查了一元一次方程的应用,关键是读懂题意,找出题目中的等量关系,列出方程.2.A解析:A 【分析】设小长方形的长为x ,根据大的长方形对边相等得到小长方形的宽为2x ,再根据长方形的周长列等量关系得到2(2x+2x+x )=150,再解方程求出x ,然后计算小长方形的面积. 【详解】解:设小长方形的长为x ,则宽为2x , 根据题意得2(2x+2x+x )=150, 解得x=15, 2x=30,所以x•2x=15×30=450.答:一块渗水防滑地板的面积为450cm 2. 故选A . 【点睛】本题考查了一元一次方程的应用:首先审题找出题中的未知量和所有的已知量,直接设要求的未知量或间接设一关键的未知量为x ,然后用含x 的式子表示相关的量,找出之间的相等关系列方程、求解、作答,即设、列、解、答.3.A解析:A【分析】利用等式的性质解方程即可解答.【详解】x=解:移项得:2+2x4+4x=合并同类项得:48x=系数化为1得:2故选:A【点睛】本题考查解一元一次方程,难度较低,熟练掌握利用等式的性质解一元一次方程是解题关键.4.B解析:B【分析】只含有一个未知数(元),并且未知数的指数是1(次)的方程叫做一元一次方程.它的一般形式是ax+b=0(a,b是常数且a≠0).【详解】解:A、最高项的次数是2,故不是一元一次方程,选项不符合题意;B、正确,符合题意;C、含有2个未知数,故不是一元一次方程,选项不符合题意;D、不是整式方程,故不是一元一次方程,选项不符合题意;故选:B.【点睛】本题主要考查了一元一次方程的一般形式,只含有一个未知数,且未知数的指数是1,一次项系数不是0,这是这类题目考查的重点.5.B解析:B【分析】利用等式的性质判断即可.【详解】解:利用等式的性质解方程-3x=2时,应在方程的两边同除以-3,故选:B.【点睛】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.6.A解析:A【分析】按照去分母、去括号、移项、合并同类项、系数化为1的步骤解方程即可得.【详解】两边同乘以6去分母,得62(23)x x -=+, 去括号,得646x x -=+, 移项,得646x x -=+, 合并同类项,得510x -=, 系数化为1,得2x =-, 故选:A . 【点睛】本题考查了解一元一次方程,熟练掌握解方程的步骤是解题关键.7.B解析:B 【分析】由已知可得4x +=2,解方程可得. 【详解】由已知可得4x +=2,解得x=-2. 故选B. 【点睛】本题考核知识点:列方程,解方程. 解题关键点:根据题意列出一元一次方程.8.A解析:A 【分析】分别求出各项中方程的解,即可作出判断. 【详解】解:A 、方程2y=-1+y , 移项合并得:y=-1,符合题意; B 、方程3-y=2, 解得:y=1,不合题意; C 、方程x-4=3,移项合并得:x=7,不合题意; D 、方程-2x-2=4, 移项合并得:-2x=6, 解得:x=-3,不合题意, 故选A . 【点睛】此题考查了方程的解,方程的解即为能使方程左右两边相等的未知数的值.9.A解析:A 【解析】试题分析:∵4a-9与3a-5互为相反数,∴4a-9+3a-5=0,解得:a=2,∴=1,故选A.考点:1.解一元一次方程;2.相反数;3.代数式求值.10.A解析:A【分析】设运动x秒后,乌龟和兔子第2020次相遇,根据路程=速度×时间,即可得出关于x的一元一次方程,解之即可得出x的值,将其代入2x中可求出乌龟运动的路程,再结合正方形的周长,即可得出乌龟和兔子第2020次相遇点.【详解】解:设运动x秒后,乌龟和兔子第2020次相遇,依题意,得:2x+6x=2×4×2020,解得:x=2020,∴2x=4040.又∵4040÷(2×4)=505,505为整数,∴乌龟和兔子第2020次相遇在点A.故选:A.【点睛】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.11.C解析:C【分析】此题等量关系为:做对题所得分-做错题所扣分数=70分,设小明做对了x道,则做错了(25-x)道,根据题意列方程求解即可.【详解】解:设小明做对了x道,则做错了(25-x)道,根据题意得:4x-(25-x)×1=70,解得:x=19,故选:C.【点睛】本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,再求解.12.A解析:A【分析】设该商品的打x折出售,根据销售价以及进价与利润和打折之间的关系,得出等式,然后解方程即可.【详解】设该商品的打x折出售,根据题意得,32002400(120%)10x ⨯=+ 解得:x=9.答:该商品的打9折出售。
2017年初中毕业生学业考试数学模拟卷(二)及答案
2017年初中毕业生学业考试数 学 试 题 模 拟 卷(2)考生须知:1.全卷共三大题,24小题,满分为120分.考试时间为120分钟,本次考试采用闭卷形式.2.全卷分为卷Ⅰ(选择题)和卷Ⅱ(非选择题)两部分,全部在答题纸上作答.卷Ⅰ的答案必须用2B 铅笔填涂;卷Ⅱ的答案必须用黑色字迹钢笔或签字笔写在答题纸相应位置上.3.请用黑色字迹钢笔或签字笔在答题纸上先填写姓名和准考证号.4.本次考试不得使用计算器.5.参考公式:二次函数2y ax bx c =++的顶点坐标是(2b a -,244ac b a-).一、仔细选一选(本题有10个小题,每小题3分,共30分)下面每小题给出四个选项中,只有一个是正确的.注意可以用多种不同的方法来选取正确的答案. D其中平均气温最低的城市是( )A . 阿勒泰B . 喀什C . 吐鲁番D . 乌鲁木齐 3.如图为小杰使用手机内的通讯软件跟小智对话的纪录.根据图中两人的对话纪录,若下列有一种走法能从邮局出发走到小杰家,则此走法为何?( )A .向北直走700公尺,再向西直走100公尺C.向北直走300公尺,再向西直走400公尺D.向北直走400公尺,再向东直走300公尺4.若(+)•w=1,则w=()(m≠O)的图象相交于A、B两点,其5.已知一次函数y1=kx+b(k<O)与反比例函数y2=x横坐标分别是-1和3,当y1>y2时,实数x的取值范围是( )A.x<-l或O<x<3 B.一1<x<O或O<x<3 C.一1<x<O或x>3 D.O<x<3 6.如图所示,把一张长方形纸片对折,折痕为AB,再以AB的中点O为顶点,把平角∠AOB 三等分,沿平角的三等分线折叠,将折叠后的图形剪出一个以O为顶点的直角三角形,那么剪出的直角三角形全部展开铺平后得到的平面图形一定是()A.正三角形B.正方形C.正五边形D.正六边形7.如图是以△ABC的边AB为直径的半圆O,点C恰好在半圆上,过C作CD⊥AB交AB 于D.已知cos∠ACD=,BC=4,则AC的长为()..8.一个不透明的袋子中有3个分别标有3,1,﹣2的球,这些球除了所标的数字不同外其他都相同,若从袋子中随机摸出两个球,则这两个球上的两个数字之和为负数的概率是().C D9.已知二次函数y=ax2+bx+c(a≠0)的图象如图,则下列说法:①c=0;②该抛物线的对称轴是直线x=﹣1;③当x=1时,y=2a;④am2+bm+a>0(m≠﹣1).其中正确的个数是()A.1 B.2 C.3 D.410.如图,矩形ABCD中,AD=3AB,O为AD中点,是半圆.甲、乙两人想在上取一点P,使得△PBC的面积等于矩形ABCD的面积其作法如下:(甲) 延长BO交于P点,则P即为所求;(乙) 以A为圆心,AB长为半径画弧,交于P点,则P即为所求.对于甲、乙两人的作法,下列判断何者正确?()A.两人皆正确B.两人皆错误C.甲正确,乙错误D.甲错误,乙正确二、认真填一填(本题有6个小题,每小题4分,共24分)要注意认真看清题目的条件和要填写的内容,尽量完整的填写答案.11.若﹣2x m﹣n y2与3x4y2m+n是同类项,则m﹣3n的立方根是.12.关于x的方程=﹣1的解是正数,则a的取值范围是.13.如图,已知函数y=2x+b与函数y=kx﹣3的图象交于点P,则不等式kx﹣3>2x+b的解集是.14.在全国初中数学竞赛中,都匀市有40名同学进入复赛,把他们的成绩分为六组,第一组一第四组的人数分别为10,5,7,6,第五组的频率是0.2,则第六组的频率是15.在平面直角坐标系中,对于平面内任一点(m,n),规定以下两种变换:(1)f(m,n)=(m,﹣n),如f(2,1)=(2,﹣1);(2)g(m,n)=(﹣m,﹣n),如g(2,1)=(﹣2,﹣1)16.已知在平面直角坐标系中放置了5个如图所示的正方形(用阴影表示),点B1在y轴上且坐标是(0,2),点C1、E1、E2、C2、E3、E4、C3在x轴上,C1的坐标是(1,0).B1C1∥B2C2∥B3C3,以此继续下去,则点A2017到x轴的距离是.三、全面答一答(本题有7个小题,共66分)解答应写出文字说明,证明过程或演算步骤.如果觉得有的题目有点困难,那么把自己能写出的解答写出一部分也可以.17.(6分)计算:(2﹣1)0+|﹣6|﹣8×4﹣1+.18.(8分)在边长为1的小正方形网格中,△AOB的顶点均在格点上,(1)B点关于y轴的对称点坐标为;(2)将△AOB向左平移3个单位长度得到△A1O1B1,请画出△A1O1B1;(3)在(2)的条件下,A1的坐标为.19.(8分)已知水银体温计的读数y(℃)与水银柱的长度x(cm)之间是一次函数关系.现有一支水银体温计,其部分刻度线不清晰(如图),表中记录的是该体温计部分清晰刻度线及其对应水银柱的长度.(1)求y关于x的函数关系式(不需要写出函数的定义域);(2)用该体温计测体温时,水银柱的长度为6.2cm,求此时体温计的读数.20.(10分)如图,将矩形ABCD沿BD对折,点A落在E处,BE与CD相交于F,若AD=3,BD=6.(1)求证:△EDF≌△CBF;(2)求∠EB C.21.(10分)为了解中考体育科目训练情况,某县从全县九年级学生中随机抽取了部分学生进行了一次中考体育科目测试(把测试结果分为四个等级:A级:优秀;B级:良好;C级:及格;D级:不及格),并将测试结果绘成了如下两幅不完整的统计图.请根据统计图中的信息解答下列问题:(1)本次抽样测试的学生人数是;(2)图1中∠α的度数是,并把图2条形统计图补充完整;(3)该县九年级有学生3500名,如果全部参加这次中考体育科目测试,请估计不及格的人数为.(4)测试老师想从4位同学(分别记为E、F、G、H,其中E为小明)中随机选择两位同学了解平时训练情况,请用列表或画树形图的方法求出选中小明的概率.22.(12分)猜想与证明:如图1摆放矩形纸片ABCD与矩形纸片ECGF,使B、C、G三点在一条直线上,CE在边CD上,连接AF,若M为AF的中点,连接DM、ME,试猜想DM与ME的关系,并证明你的结论.拓展与延伸:(1)若将”猜想与证明“中的纸片换成正方形纸片ABCD与正方形纸片ECGF,其他条件不变,则DM和ME的关系为.(2)如图2摆放正方形纸片ABCD与正方形纸片ECGF,使点F在边CD上,点M仍为AF的中点,试证明(1)中的结论仍然成立.23.(12分)若两个二次函数图象的顶点、开口方向都相同,则称这两个二次函数为“同簇二次函数”.(1)请写出两个为“同簇二次函数”的函数;(2)已知关于x的二次函数y1=2x2﹣4mx+2m2+1和y2=ax2+bx+5,其中y1的图象经过点A (1,1),若y1+y2与y1为“同簇二次函数”,求函数y2的表达式,并求出当0≤x≤3时,y2的最大值.参考答案一、仔细选一选(本题有10个小题,每小题3分,共30分)下面每小题给出四个选项中,只有一个是正确的.注意可以用多种不同的方法来选取正确的答案.D分析:根据只有符号不同的两个数互为相反数,可得一个数的相反数.解答:解:2017的相反数是﹣2017.故选B.点评:本题考查了相反数的概念,在一个数的前面加上负号就是这个数的相反数.2其中平均气温最低的城市是()3.如图为小杰使用手机内的通讯软件跟小智对话的纪录.根据图中两人的对话纪录,若下列有一种走法能从邮局出发走到小杰家,则此走法为何?()A.向北直走700公尺,再向西直走100公尺C.向北直走300公尺,再向西直走400公尺D.向北直走400公尺,再向东直走300公尺分析:根据题意先画出图形,可得出AE=400,AB=CD=300,再得出DE=100,即可得出邮局出发走到小杰家的路径为:向北直走AB+AE=700公尺,再向西直走DE=100公尺.解:依题意,OA=OC=400=AE,AB=CD=300,DE=400﹣300=100,所以邮局出发走到小杰家的路径为,向北直走AB+AE=700公尺,再向西直走DE=100公尺.故选A.点评:本题考查了坐标确定位置,根据题意画出图形是解题的关键.4.若(+)•w=1,则w=()5.已知一次函数y1=kx+b(k<O)与反比例函数y2=(m≠O)的图象相交于A、B两点,其=横坐标分别是-1和3,当y 1>y 2时,实数x 的取值范围是( )A .x <-l 或O <x <3B .一1<x <O 或O <x <3C .一1<x <O 或x >3D .O <x <3 考点:反比例函数与一次函数的交点问题.分析:画出函数图象,取反比例函数图象位于一次函数图象下方时对应的x 的取值范围即可. 解答:一次函数y 1=kx +b 与反比例函数y 2=xm的图象相交于A 、B 两点,且A ,B 两点的横坐标分别为-1,3,故满足y 2<y 1的x 的取值范围是x <-1或0<x <3. 故选A .点评:本题主要考查了反比例函数与一次函数的交点问题的知识点,熟练掌握反比例的图象性质和一次函数的图象性质,要掌握它们的性质才能灵活解题.6.如图所示,把一张长方形纸片对折,折痕为AB ,再以AB 的中点O 为顶点,把平角∠AOB 三等分,沿平角的三等分线折叠,将折叠后的图形剪出一个以O 为顶点的直角三角形,那么剪出的直角三角形全部展开铺平后得到的平面图形一定是( )A .正三角形B . 正方形C . 正五边形D . 正六边形考点: 剪纸问题.. 专题: 操作型.分析: 先求出∠O =60°,再根据直角三角形两锐角互余沿折痕展开依次进行判断即可得解.解答: 解:∵平角∠AOB 三等分, ∴∠O =60°, ∵90°﹣60°=30°,∴剪出的直角三角形沿折痕展开一次得到底角是30°的等腰三角形, 再沿另一折痕展开得到有一个角是30°的直角三角形, 最后沿折痕AB 展开得到等边三角形,即正三角形.故选A.点评:本题考查了剪纸问题,难点在于根据折痕逐层展开,动手操作会更简便.7.如图是以△ABC的边AB为直径的半圆O,点C恰好在半圆上,过C作CD⊥AB交AB 于D.已知cos∠ACD=,BC=4,则AC的长为()..,,===,.8.一个不透明的袋子中有3个分别标有3,1,﹣2的球,这些球除了所标的数字不同外其他都相同,若从袋子中随机摸出两个球,则这两个球上的两个数字之和为负数的概率是().C D=.9.已知二次函数y=ax2+bx+c(a≠0)的图象如图,则下列说法:①c=0;②该抛物线的对称轴是直线x=﹣1;③当x=1时,y=2a;④am2+bm+a>0(m≠﹣1).其中正确的个数是(),直线10.如图,矩形ABCD中,AD=3AB,O为AD中点,是半圆.甲、乙两人想在上取一点P,使得△PBC的面积等于矩形ABCD的面积其作法如下:(甲) 延长BO交于P点,则P即为所求;(乙) 以A为圆心,AB长为半径画弧,交于P点,则P即为所求.对于甲、乙两人的作法,下列判断何者正确?()A.两人皆正确B.两人皆错误C.甲正确,乙错误D.甲错误,乙正确分析:利用三角形的面积公式进而得出需P甲H=P乙K=2AB,即可得出答案.解:要使得△PBC的面积等于矩形ABCD的面积,需P甲H=P乙K=2A B.故两人皆错误.故选:B.点评:此题主要考查了三角形面积求法以及矩形的性质,利用四边形与三角形面积关系得出是解题关键.二、认真填一填(本题有6个小题,每小题4分,共24分)要注意认真看清题目的条件和要填写的内容,尽量完整的填写答案.11.若﹣2x m﹣n y2与3x4y2m+n是同类项,则m﹣3n的立方根是2.考点:立方根;合并同类项;解二元一次方程组.分析:根据同类项的定义可以得到m,n的值,继而求出m﹣3n的立方根.解答:解:若﹣2x m﹣n y2与3x4y2m+n是同类项,∴,解方程得:.∴m﹣3n=2﹣3×(﹣2)=8.8的立方根是2.故答案为2.点评:本题考查了同类项的概念以及立方根的求法,解体的关键是根据定义求出对应m、n的值.12.关于x的方程=﹣1的解是正数,则a的取值范围是a>﹣1 .==13.如图,已知函数y=2x+b与函数y=kx﹣3的图象交于点P,则不等式kx﹣3>2x+b的解集是.考点:运用一次函数的图象解不等式.分析:把P分别代入函数y=2x+b与函数y=kx﹣3求出k,b的值,再求不等式kx﹣3>2x+b的解集.解答:把P(4,﹣6)代入y=2x+b得,﹣6=2×4+b解得,b=﹣14把P(4,﹣6)代入y=kx﹣3解得,k=﹣把b=﹣14,k=﹣代入kx﹣3>2x+b得﹣x﹣3>2x﹣14解得x<4.故答案为:x<4.点评:本题主要考查一次函数和一元一次不等式,解题的关键是求出k,b的值求解集.14.在全国初中数学竞赛中,都匀市有40名同学进入复赛,把他们的成绩分为六组,第一组一第四组的人数分别为10,5,7,6,第五组的频率是0.2,则第六组的频率是0.1考点:频数与频率分析:先用数据总数乘第五组的频率得出第五组的频数,再求出第六组的频数,然后根据频率=频数÷数据总数即可求解.解答:解:∵都匀市有40名同学进入复赛,把他们的成绩分为六组,第一组一第四组的人数分别为10,5,7,6,第五组的频率是0.2,∴第五组的频数为40×0.2=8,第六组的频数为40﹣(10+5+7+6+8)=4,∴第六组的频率是4÷40=0.1.故答案为0.1.点评:本题考查了频数与频率,用到的知识点:频数=数据总数×频率,频率=频数÷数据总数,各组频数之和等于数据总数.15.在平面直角坐标系中,对于平面内任一点(m,n),规定以下两种变换:(1)f(m,n)=(m,﹣n),如f(2,1)=(2,﹣1);(2)g(m,n)=(﹣m,﹣n),如g(2,1)=(﹣2,﹣1)按照以上变换有:f=f(﹣3,﹣4)=(﹣3,4),那么g=(3,2).考点:点的坐标.专题:新定义.分析:由题意应先进行f方式的运算,再进行g方式的运算,注意运算顺序及坐标的符号变化.解答:解:∵f(﹣3,2)=(﹣3,﹣2),∴g=g(﹣3,﹣2)=(3,2),故答案为(3,2).点评:本题考查了一种新型的运算法则,考查了学生的阅读理解能力,此类题的难点是判断先进行哪个运算,关键是明白两种运算改变了哪个坐标的符号.16.已知在平面直角坐标系中放置了5个如图所示的正方形(用阴影表示),点B1在y轴上且坐标是(0,2),点C1、E1、E2、C2、E3、E4、C3在x轴上,C1的坐标是(1,0).B1C1∥B2C2∥B3C3,以此继续下去,则点A2017到x轴的距离是.考点:全等三角形的判定与性质;规律型:点的坐标;正方形的性质.分析:根据勾股定理可得正方形A1B1C1D1的边长为=,根据相似三角形的性质可得后面正方形的边长依次是前面正方形边长的,依次得到第2017个正方形和第2017个正方形的边长,进一步得到点A2017到x轴的距离.解答:解:如图,∵点C1、E1、E2、C2、E3、E4、C3在x轴上,B1C1∥B2C2∥B3C3,∴△B1OC1∽△B2E2C2∽B3E4C3…,△B1OC1≌△1CE1D1,…,∴B2E2=1,B3E4=,B4E6=,B5E8=…,∴B2017E4016=,作A1E⊥x轴,延长A1D1交x轴于F,则△C1D1F∽△C1D1E1,∴=,在Rt△OB1C1中,OB1=2,OC1=1,正方形A1B1C1D1的边长为为=,∴D1F=,∴A1F=,∵A1E∥D1E1,∴=,∴A1E=3,∴=,∴点A2017到x轴的距离是×=点评:此题主要考查了正方形的性质以及解直角三角形的知识,得出正方形各边长是解题关键.三、全面答一答(本题有7个小题,共66分)解答应写出文字说明,证明过程或演算步骤.如果觉得有的题目有点困难,那么把自己能写出的解答写出一部分也可以.17.(6分)计算:(2﹣1)0+|﹣6|﹣8×4﹣1+.8×+4=1+618.(8分)在边长为1的小正方形网格中,△AOB的顶点均在格点上,(1)B点关于y轴的对称点坐标为(﹣3,2);(2)将△AOB向左平移3个单位长度得到△A1O1B1,请画出△A1O1B1;(3)在(2)的条件下,A1的坐标为(﹣2,3).(第1题图)19.(8分)已知水银体温计的读数y(℃)与水银柱的长度x(cm)之间是一次函数关系.现有一支水银体温计,其部分刻度线不清晰(如图),表中记录的是该体温计部分清晰刻度线及其对应水银柱的长度.(1)求y关于x的函数关系式(不需要写出函数的定义域);(2)用该体温计测体温时,水银柱的长度为6.2cm,求此时体温计的读数.,解得:,=20.(10分)如图,将矩形ABCD沿BD对折,点A落在E处,BE与CD相交于F,若AD=3,BD=6.(1)求证:△EDF≌△CBF;(2)求∠EB C.21.(10分)为了解中考体育科目训练情况,某县从全县九年级学生中随机抽取了部分学生进行了一次中考体育科目测试(把测试结果分为四个等级:A级:优秀;B级:良好;C级:及格;D级:不及格),并将测试结果绘成了如下两幅不完整的统计图.请根据统计图中的信息解答下列问题:(1)本次抽样测试的学生人数是40;(2)图1中∠α的度数是54°,并把图2条形统计图补充完整;(3)该县九年级有学生3500名,如果全部参加这次中考体育科目测试,请估计不及格的人数为700.(4)测试老师想从4位同学(分别记为E、F、G、H,其中E为小明)中随机选择两位同学了解平时训练情况,请用列表或画树形图的方法求出选中小明的概率.=40×=54°3500×=.22.(12分)猜想与证明:如图1摆放矩形纸片ABCD与矩形纸片ECGF,使B、C、G三点在一条直线上,CE在边CD上,连接AF,若M为AF的中点,连接DM、ME,试猜想DM与ME的关系,并证明你的结论.拓展与延伸:(1)若将”猜想与证明“中的纸片换成正方形纸片ABCD与正方形纸片ECGF,其他条件不变,则DM和ME的关系为DM=DE.(2)如图2摆放正方形纸片ABCD与正方形纸片ECGF,使点F在边CD上,点M仍为AF的中点,试证明(1)中的结论仍然成立.23.(12分)若两个二次函数图象的顶点、开口方向都相同,则称这两个二次函数为“同簇二次函数”.(1)请写出两个为“同簇二次函数”的函数;(2)已知关于x的二次函数y1=2x2﹣4mx+2m2+1和y2=ax2+bx+5,其中y1的图象经过点A (1,1),若y1+y2与y1为“同簇二次函数”,求函数y2的表达式,并求出当0≤x≤3时,y2的最大值.考点:二次函数的性质;二次函数的最值.专题:新定义.分析:(1)只需任选一个点作为顶点,同号两数作为二次项的系数,用顶点式表示两个为“同簇二次函数”的函数表达式即可.(2)由y1的图象经过点A(1,1)可以求出m的值,然后根据y1+y2与y1为“同簇二次函数”就可以求出函数y2的表达式,然后将函数y2的表达式转化为顶点式,在利用二次函数的性质就可以解决问题.解答:解:(1)设顶点为(h,k)的二次函数的关系式为y=a(x﹣h)2+k,当a=2,h=3,k=4时,二次函数的关系式为y=2(x﹣3)2+4.∵2>0,∴该二次函数图象的开口向上.当a=3,h=3,k=4时,二次函数的关系式为y=3(x﹣3)2+4.∵3>0,∴该二次函数图象的开口向上.∵两个函数y=2(x﹣3)2+4与y=3(x﹣3)2+4顶点相同,开口都向上,∴两个函数y=2(x﹣3)2+4与y=3(x﹣3)2+4是“同簇二次函数”.∴符合要求的两个“同簇二次函数”可以为:y=2(x﹣3)2+4与y=3(x﹣3)2+4.(2)∵y1的图象经过点A(1,1),∴2×12﹣4×m×1+2m2+1=1.整理得:m2﹣2m+1=0.解得:m1=m2=1.∴y1=2x2﹣4x+3=2(x﹣1)2+1.∴y1+y2=2x2﹣4x+3+ax2+bx+5=(a+2)x2+(b﹣4)x+8∵y1+y2与y1为“同簇二次函数”,∴y1+y2=(a+2)(x﹣1)2+1=(a+2)x2﹣2(a+2)x+(a+2)+1.其中a+2>0,即a>﹣2.∴.解得:.∴函数y2的表达式为:y2=5x2﹣10x+5.∴y2=5x2﹣10x+5=5(x﹣1)2.∴函数y2的图象的对称轴为x=1.∵5>0,∴函数y2的图象开口向上.①当0≤x≤1时,∵函数y2的图象开口向上,∴y2随x的增大而减小.∴当x=0时,y2取最大值,最大值为5(0﹣1)2=5.②当1<x≤3时,∵函数y2的图象开口向上,∴y2随x的增大而增大.∴当x=3时,y2取最大值,最大值为5(3﹣1)2=20.综上所述:当0≤x≤3时,y2的最大值为20.点评:本题考查了求二次函数表达式以及二次函数一般式与顶点式之间相互转化,考查了二次函数的性质(开口方向、增减性),考查了分类讨论的思想,考查了阅读理解能力.而对新定义的正确理解和分类讨论是解决第二小题的关键.。
(必考题)人教版初中七年级数学上册第四章《几何图形初步》模拟检测题(含答案解析)(2)
一、选择题1.(0分)[ID :68653]如图所示,OA 是北偏东30°方向的一条射线,若∠AOB =90°,则OB 的方位角是( )A .北偏西30°B .北偏西60°C .北偏东30°D .北偏东60° 2.(0分)[ID :68643]点 A 、B 、C 在同一条数轴上,其中点 A 、B 表示的数分别为﹣3、1,若 BC =2,则 AC 等于( )A .3B .2C .3 或 5D .2 或 6 3.(0分)[ID :68619]如图,在ABC 中,90BAC ∠=︒,点D ,E 分别在BC ,CA 边的延长线上,EH BC ⊥于点H ,EH 与AB 交于点F .则1∠与2∠的数量关系是( ).A .12∠=∠B .1∠与2∠互余C .1∠与2∠互补D .12100∠+∠=°4.(0分)[ID :68614]如图,AD 是△ABC 的角平分线,点O 在AD 上,且OE ⊥BC 于点E ,∠BAC=60°,∠C=80°,则∠EOD 的度数为( )A .20°B .30°C .10°D .15°5.(0分)[ID :68611]如图,CD 是直角三角形ABC 的高,将直角三角形ABC 按以下方式旋转一周可以得到右侧几何体的是( ).A .绕着AC 旋转B .绕着AB 旋转C .绕着CD 旋转 D .绕着BC 旋转 6.(0分)[ID :68596]如图是正方体的展开图,则原正方体相对两个面上的数字和最小是( )A .8B .7C .6D .4 7.(0分)[ID :68594]如图,一副三角尺按不同的位置摆放,摆放位置中αβ∠=∠的图形的个数是( )A .1B .2C .3D .4 8.(0分)[ID :68592]若∠A=20°18′,∠B=20°15″,∠C=20.25°,则有( ) A .∠A >∠B >∠C B .∠B >∠A >∠C C .∠A >∠C >∠B D .∠C >∠A >∠B 9.(0分)[ID :68591]一个小立方块的六个面分别标有字母A ,B ,C ,D ,E ,F ,从三个不同的方向看形如图所示,则字母D 的对面是( )A .字母AB .字母FC .字母ED .字母B 10.(0分)[ID :68590]如图,C ,D 是线段AB 上的两点,E 是AC 的中点,F 是BD 的中点,若EF m =,CD n =,则AB =( )A .m n -B .m n +C .2m n -D .2m n + 11.(0分)[ID :68589]已知∠AOB=40°,∠BOC=20°,则∠AOC 的度数为( ) A .60° B .20° C .40° D .20°或60° 12.(0分)[ID :68570]若射线OA 与射线OB 是同一条射线,下列画图正确的是( )A.B.C.D.13.(0分)[ID:68566]两个锐角的和是()A.锐角B.直角C.钝角D.锐角或直角或钝角14.(0分)[ID:68560]把一张长方形的纸片按如图所示的方式折叠,EM,FM为折痕,C 点折叠后的C'点落在MB'的延长线上,则EMF∠的度数是()A.85°B.90°C.95°D.100°15.(0分)[ID:68558]下列说法不正确的是()A.两条直线相交,只有一个交点B.两点之间,线段最短C.两点确定一条直线D.过平面上的任意三点,一定能作三条直线二、填空题16.(0分)[ID:68718]线段AB=12cm,点C在线段AB上,且AC=13BC,M为BC的中点,则AM的长为_______cm.17.(0分)[ID:68724]某公司员工分别在A、B、C三个住宅区,A区有30人,B区有15人,C,区有10人,三个区在一直线上,位置如图所示,公司的接送车打算在此间只设一个停靠点,为要使所有员工步行到停靠点的路程总和最少,那么停靠点的位置应在_____区.18.(0分)[ID:68708]如图所示,∠BOD=45°,那么不大于90°的角有___个,它们的度数之和是____.19.(0分)[ID:68687]分别指出图中截面的形状;20.(0分)[ID :68673]把一条长为20厘米的线段分成三段,如果中间一段长为8厘米,那么第一段中点到第三段中点间的距离等于________厘米.21.(0分)[ID :68667]魏老师去农贸市场买菜时发现,若把10千克的菜放在秤上,则指针盘上的指针转了180︒,第二天魏老师请同学们回答以下两个问题:(1)若把0.5千克的菜放在秤上,则指针转过________度;(2)若指针转了243︒,则这些菜共有________千克. 22.(0分)[ID :68664]把一个棱长为1米的正方体分割成棱长为1分米的小正方体,并把它们排列成一排,则可排________米.23.(0分)[ID :68742]如图,已知直线AB 、CD 、EF 相交于点O ,∠1=95°,∠2=32°,则∠BOE=________.24.(0分)[ID :68740]在同一平面内,如果15AOB ∠=︒,75AOC ∠=︒,那么BOC ∠=_______.25.(0分)[ID :68735]如图,90AOC BOD ∠=∠=︒,70AOB ∠=︒,在∠AOB 内画一条射线OP 得到的图中有m 对互余的角,其中AOP x ∠=︒,且满足050x <<,则m =_______.26.(0分)[ID :68734]如图,::2:3:4AB BC CD =,AB 的中点M 与CD 的中点N 的距离是3cm ,则BC =______.27.(0分)[ID :68729]如图,点A ,O ,B 在同一直线上,12∠=∠,则与1∠互补的角是________.若1283235'''∠=︒,则1∠的补角为________.三、解答题28.(0分)[ID :68829]关于度、分、秒的换算.(1)5618'︒用度表示;(2)123224'''︒用度表示;(3)12.31︒用度、分、秒表示.29.(0分)[ID :68783]如图是一个去掉盖子的长方体礼品盒的展开图(单位:cm ).从A ,B 两题中任选一题作答.A .该长方体礼品盒的容积为______3cm .B .如果把这个去掉盖子的礼品盒沿某些棱重新剪开,可以得到周长最大的展开图,则周长最大为____cm .30.(0分)[ID :68794]如图,已知40AOB ∠=︒,3BOC AOB ∠=∠,OD 平分AOC ∠,求BOD ∠的度数.【参考答案】2016-2017年度第*次考试试卷 参考答案**科目模拟测试一、选择题1.B2.D3.C4.A5.B6.C7.C8.C9.D10.C11.D12.B13.D14.B15.D二、填空题16.5【分析】可先作出简单的图形进而依据图形分析求解【详解】解:如图∵点C在AB 上且AC=BC∴AC=AB=3cm∴BC=9cm又M为BC的中点∴CM=BC=45cm∴AM=AC+CM=75cm 故答案为17.A【分析】根据题意分别计算停靠点分别在ABC各点时员工步行的路程和选择最小的即可求解【详解】∵当停靠点在A区时所有员工步行到停靠点路程和是:15×100+10×300=4500m当停靠点在B区时所有18.450°【分析】(1)∠AOE=90°故图中所有的角都是不大于90°的角;(2)将所有的角相加发现有的角相加等于∠EOA即和为90°而有的角相加等于∠BOD即和为45°将这样的角凑在一起计算即可求出19.长方形;五边形;圆【解析】【分析】根据长方体各面的特点结合截面与一面平行可解第一图;根据五棱柱特点结合截面平行于底面可得第二图答案;由截面平行于圆锥的底面可得第三图解答【详解】①截面与长面平行可以得20.14【解析】【分析】先求出两边线段的长度之和第一段中点到第三段中点之间的距离等于两边线段的一半与中间线段的和【详解】根据题意第一段与第三段长度之和=20-8=12cm所以第一段中点到第三段中点之间的21.135【分析】(1)算出秤上放1千克菜转过的角度为多少乘以05即可;(2)让243°除以1千克菜转过的角度即可【详解】解:(1)=18°05×18°=9°05千克的菜放在秤上指针转过9°;(2)2422.100【解析】【分析】根据正方体的体积公式以及长度单位之间的换算正方体的体积=棱长×棱长×棱长1分米=01米即可解答【详解】棱长为1米的正方体的体积是1立方米棱长为1分米的小正方体的体积是1立方分米23.53°【解析】由∠BOE与∠AOF是对顶角可得∠BOE=∠AOF又因为∠COD是平角可得∠1+∠2+∠AOF=180°将∠1=95°∠2=32°代入即可求得∠AOF的度数即∠BOE的度数24.或【分析】分别讨论射线OBOC在射线OA同侧和异侧的情况问题可解【详解】解:如图(1)当OBOC在射线OA同侧时如图(2)当OBOC在射线OA异侧时故答案为或【点睛】本题考查了角的加减运算解答关键是25.3或4或6【分析】分三种情况下:①∠AOP=35°②∠AOP=20°③0<x<50中的其余角根据互余的定义找出图中互余的角即可求解【详解】①∠AOP=∠AOB=35°时∠BOP=35°∴互余的角有∠26.5cm【分析】运用方程的思想设AB=2xcmBC=3xcmCD=4xcm求出MB=xcmCN=2xcm得出方程x+3x+2x=3求出即可【详解】解:设AB=2xcmBC=3xcmCD=4xcm∵M是27.【分析】根据补角的性质和余角的性质解答即可【详解】∵∠1=∠2∴与∠1互补的角是∠AOD∵∠1=28°32′35″∴∠1的补角=151°27′25″故答案为:∠AOD;151°27′25″【点睛】本三、解答题28.29.30.2016-2017年度第*次考试试卷参考解析【参考解析】**科目模拟测试一、选择题1.B解析:B【分析】先求出∠COB=60°,再根据具体位置确定答案.【详解】如图,∵∠AOB=90°,∠AOC=30°,∴∠COB=60°,∴OB的方位角是北偏西60°,故选:B..【点睛】此题考查方位角,已知一个角求其余角,正确理解方位角的确定方法及表示方法是解题的关键.2.D解析:D【解析】试题此题画图时会出现两种情况,即点C在线段AB内,点C在线段AB外,所以要分两种情况计算.∵点A、B表示的数分别为﹣3、1,∴AB=4.第一种情况:在AB外,如答图1,AC=4+2=6;第二种情况:在AB内,如答图2,AC=4﹣2=2.故选D.3.C解析:C【分析】先根据同角的余角相等得出∠1=∠BCE,再根据∠BCE+∠2=180°,得出∠1+∠2=180°即可.【详解】∵EH⊥BC,∴∠1+∠B=90°,∵∠BAC=90°,∴∠BCE+∠B=90°,∴∠1=∠BCE.∵∠BCE+∠2=180°,∴∠1+∠2=180°,即∠1与∠2互补,故选:C.【点睛】本题考查了余角和补角.解题的关键是掌握余角和补角的定义,同角的余角相等的性质.4.A解析:A【分析】首先根据三角形的内角和定理求得∠B,再根据角平分线的定义求得∠BAD,再根据三角形的一个外角等于和它不相邻的两个内角和求得∠ADC,最后根据直角三角形的两个锐角互余即可求解.【详解】∵∠BAC=60°,∠C=80°,∴∠B=180°-∠BAC-∠C=40°,又∵AD是∠BAC的角平分线,∠BAC=30°,∴∠BAD=12∴∠ADE=∠B+∠BAD=70°,又∵OE⊥BC,∴∠EOD=90°-∠ODE=90°-70°=20°.故选:A.【点睛】本题考查了三角形的内角和定理及其推论、角平分线的定义等知识,此类题要首先明确解题思路,再利用相关知识解答.5.B解析:B【分析】根据直角三角形的性质,只有绕斜边旋转一周,才可以得出组合体的圆锥,进而解答即可.【详解】将直角三角形ABC绕斜边AB所在直线旋转一周得到的几何体是:故选:B.【点睛】本题考查了点、线、面、体,培养学生的空间想象能力及几何体的三视图.6.C解析:C【分析】确定原正方体相对两个面上的数字,即可求出和的最小值.【详解】解:由题意,2和6是相对的两个面;3和4是相对两个面;1和5是相对的2个面,因为2+6=8,3+4=7,1+5=6,所以原正方体相对两个面上的数字和最小的是6.故选:C.【点睛】本题考查了正方体相对两个面上的文字,解决本题的关键是根据相对的面的特点得到相对的两个面上的数字.7.C解析:C【分析】根据直角三角板可得第一个图形∠β=45°,进而可得∠α=45°;根据余角和补角的性质可得第二个图形、第四个图形中∠α=∠β,第三个图形∠α和∠β互补.【详解】根据角的和差关系可得第一个图形∠α=∠β=45°,根据等角的补角相等可得第二个图形∠α=∠β,第三个图形∠α+∠β=180°,不相等,根据同角的余角相等可得第四个图形∠α=∠β,因此∠α=∠β的图形个数共有3个,故选:C.【点睛】此题主要考查了余角和补角,关键是掌握余角和补角的性质:等角的补角相等.等角的余角相等.8.C解析:C【分析】根据度分秒之间的换算,先把∠C的度数化成度、分、秒的形式,再根据角的大小比较的法则进行比较,即可得出答案.【详解】解:∵∠C=20.25°=20°15′,∴∠A>∠C>∠B,故选:C.【点睛】此题考查了角的大小比较,先把∠C的度数化成度、分、秒的形式,再进行比较是本题的关键.9.D解析:D【分析】根据与A相邻的四个面上的数字确定即可.【详解】由图可知,A相邻的四个面上的字母是B、D、E、F,所以,字母D的对面是字母B.故选:D.【点睛】本题考查了正方体相对两个面上的文字,仔细观察图形从相邻面考虑求解是解题的关键.10.C解析:C【分析】由条件可知EC+DF=m-n,又因为E,F分别是AC,BD的中点,所以AE+BF=EC+DF=m-n,利用线段和差AB=AE+BF+EF求解.【详解】解:由题意得,EC+DF=EF-CD=m-n∵E是AC的中点,F是BD的中点,∴AE=EC,DF=BF,∴AE+BF=EC+DF=m-n,∵AB=AE+EF+FB,∴AB=m-n+m=2m-n故选:C【点睛】本题考查中点性质及线段和差问题,利用中点性质转化线段之间的倍分关系和灵活运用线段的和、差转化线段之间的数量关系是解答此题的关键.11.D解析:D【分析】考虑两种情形①当OC在∠AOB内部时,∠AOC=∠AOB-∠BOC=40°-20°=20°,②当OC’在∠AOB外部时,∠AOC’=∠AOB+∠BOC=40°+20°=60°.【详解】解:如图当OC在∠AOB内部时,∠AOC=∠AOB-∠BOC=40°-20°=20°,当OC’在∠AOB外部时,∠AOC’=∠AOB+∠BOC=40°+20°=60°,故答案为20°或60°,故选D.【点睛】本题考查角的计算,解决本题的关键是学会正确画出图形,根据角的和差关系进行计算. 12.B解析:B【解析】【分析】根据射线的表示法即可确定.【详解】A、射线OA与OB不是同一条射线,选项错误;B、射线OA与OB是同一条射线,选项正确;C、射线OA与OB不是同一条射线,选项错误;D、射线OA与OB不是同一条射线,选项错误.故选B.【点睛】本题考查了射线的表示法,射线的端点写在第一个位置,第二个字母是射线上除端点以外任意一点.13.D解析:D【分析】在0度到90度之间的叫锐角,可以用赋值法讨论.【详解】解:当∠A=10°,∠B=20°时,∠A+∠B=30°,即两锐角的和为锐角;当∠A=30°,∠B=60°时,∠A+∠B=90°,即两锐角的和为直角;当∠A=50°,∠B=60°时,∠A+∠B=110°,即两锐角的和为钝角;综上所述,两锐角的和可能是锐角,可能是直角,也可能是钝角故选D.【点睛】利用赋值法解题,可以使一些难以直接证明的问题简单易解.14.B解析:B【解析】【分析】根据折叠的性质:对应角相等,对应的线段相等,可得.【详解】解:根据图形,可得:∠EMB′=∠EMB,∠FMB′=∠FMC,∵∠FMC+∠FMB′+∠EMB′+∠BME=180°,∴2(∠EMB′+∠FMB′)=180°,∵∠EMB′+∠FMB′=∠FME,∴∠EMF=90°,故选B.【点睛】本题主要考查图形翻折的性质,解决本题的关键是要熟练掌握图形翻折的性质.15.D解析:D【解析】【分析】根据直线公理、线段公理进行逐一分析判断.【详解】A. 根据直线公理“两点确定一条直线”,则两条直线相交,只有一个交点,故该选项正确;B.两点之间,线段最短,是线段公理,故该选项正确;C. 两点确定一条直线,是直线公理,故该选项正确;D. 当三点共线时,则只能确定一条直线,故该选项错误.故选 D.【点睛】此题考查直线、射线、线段,直线的性质:两点确定一条直线,线段的性质:两点之间线段最短,解题关键在于掌握各性质定义.二、填空题16.5【分析】可先作出简单的图形进而依据图形分析求解【详解】解:如图∵点C在AB 上且AC=BC∴AC=AB=3cm∴BC=9cm又M为BC的中点∴CM=BC=45cm∴AM=AC+CM=75cm 故答案为解析:5【分析】可先作出简单的图形,进而依据图形分析求解.【详解】解:如图,∵点C在AB上,且AC=13 BC,∴AC=14AB=3cm,∴BC=9cm,又M为BC的中点,∴CM=12BC=4.5cm,∴AM=AC+CM=7.5cm.故答案为7.5.【点睛】本题考查的是两点间的距离的计算,掌握线段中点的定义、灵活运用数形结合思想是解题的关键.17.A【分析】根据题意分别计算停靠点分别在ABC各点时员工步行的路程和选择最小的即可求解【详解】∵当停靠点在A区时所有员工步行到停靠点路程和是:15×100+10×300=4500m当停靠点在B区时所有解析:A【分析】根据题意分别计算停靠点分别在A、B、C各点时员工步行的路程和,选择最小的即可求解.【详解】∵当停靠点在A区时,所有员工步行到停靠点路程和是:15×100+10×300=4500m,当停靠点在B区时,所有员工步行到停靠点路程和是:30×100+10×200=5000m,当停靠点在C区时,所有员工步行到停靠点路程和是:30×300+15×200=12000m,∴当停靠点在A区时,所有员工步行到停靠点路程和最小,那么停靠点的位置应该在A 区.故答案为A.【点睛】此题考查比较线段的长短,正确理解题意是解题的关键,要能把线段的概念在现实中进行应用,比较简单.18.450°【分析】(1)∠AOE=90°故图中所有的角都是不大于90°的角;(2)将所有的角相加发现有的角相加等于∠EOA即和为90°而有的角相加等于∠BOD即和为45°将这样的角凑在一起计算即可求出解析:450°【分析】(1)∠AOE=90°,故图中所有的角都是不大于90°的角;(2)将所有的角相加,发现有的角相加等于∠EOA,即和为90°,而有的角相加等于∠BOD,即和为45°,将这样的角凑在一起计算,即可求出所有角的度数.【详解】不大于 90°的角有∠EOD,∠EOC,∠EOB,∠EOA,∠DOC,∠DOB,∠DOA,∠COB,∠COA,∠BOA共10个;它们的度数之和是(∠EOD+∠DOA)+(∠EOC+∠COA)+(∠ EOB+∠BOA)+[(∠DOC+∠COB)+∠DOB]+∠EOA=90°+90°+90°+(45°+45°)+90°=450°.故答案为10;450°.【点睛】此题主要考查角的表示与和差关系,解题的关键是熟知角的定义运算法则.19.长方形;五边形;圆【解析】【分析】根据长方体各面的特点结合截面与一面平行可解第一图;根据五棱柱特点结合截面平行于底面可得第二图答案;由截面平行于圆锥的底面可得第三图解答【详解】①截面与长面平行可以得解析:长方形;五边形;圆.【解析】【分析】根据长方体各面的特点,结合截面与一面平行可解第一图;根据五棱柱特点结合截面平行于底面可得第二图答案;由截面平行于圆锥的底面可得第三图解答.【详解】①截面与长面平行,可以得到长方形形截面;②截面与棱柱的底面平行,可得到五边形截面;③截面与圆锥底平行,可以得到圆形截面.故答案为:长方形、五边形、圆.【点睛】此题考查截一个几何体,解题的关键是要掌握截面的形状既与被截的几何体有关,还与截面的角度和方向有关.20.14【解析】【分析】先求出两边线段的长度之和第一段中点到第三段中点之间的距离等于两边线段的一半与中间线段的和【详解】根据题意第一段与第三段长度之和=20-8=12cm所以第一段中点到第三段中点之间的解析:14【解析】【分析】先求出两边线段的长度之和,第一段中点到第三段中点之间的距离等于两边线段的一半与中间线段的和.【详解】根据题意,第一段与第三段长度之和=20-8=12cm,所以第一段中点到第三段中点之间的距离=12÷2+8=6+8=14cm.【点睛】能正确找出“第一段中点到第三段中点之间的距离等于两边线段的一半与中间线段的和”是解本题的关键.21.135【分析】(1)算出秤上放1千克菜转过的角度为多少乘以05即可;(2)让243°除以1千克菜转过的角度即可【详解】解:(1)=18°05×18°=9°05千克的菜放在秤上指针转过9°;(2)24解析:13.5【分析】(1)算出秤上放1千克菜转过的角度为多少,乘以0.5即可;(2)让243°除以1千克菜转过的角度即可.【详解】解:(1)18010=18°,0.5×18°=9°,0.5千克的菜放在秤上,指针转过9°;(2)243°÷18°=13.5(千克),答:共有菜13.5千克.故答案为9,13.5【点睛】本题考查了角度计算的应用,解决本题的关键是得到秤上放1千克菜转过的角度为多少.22.100【解析】【分析】根据正方体的体积公式以及长度单位之间的换算正方体的体积=棱长×棱长×棱长1分米=01米即可解答【详解】棱长为1米的正方体的体积是1立方米棱长为1分米的小正方体的体积是1立方分米解析:100【解析】【分析】根据正方体的体积公式以及长度单位之间的换算,正方体的体积=棱长×棱长×棱长,1分米=0.1米,即可解答【详解】棱长为1米的正方体的体积是1立方米,棱长为1分米的小正方体的体积是1立方分米,1立方米=1000立方分米,所以1000÷1=1000(个),则总长度是1×1000=1000(分米)=100(米).【点睛】此题考查正方体的体积公式以及长度单位之间的换算,掌握换算法则是解题关键23.53°【解析】由∠BOE与∠AOF是对顶角可得∠BOE=∠AOF又因为∠COD是平角可得∠1+∠2+∠AOF=180°将∠1=95°∠2=32°代入即可求得∠AOF的度数即∠BOE的度数【解析】由∠BOE与∠AOF是对顶角,可得∠BOE=∠AOF,又因为∠COD是平角,可得∠1+∠2+∠AOF=180°,将∠1=95°,∠2=32°代入,即可求得∠AOF的度数,即∠BOE的度数.24.或【分析】分别讨论射线OBOC在射线OA同侧和异侧的情况问题可解【详解】解:如图(1)当OBOC在射线OA同侧时如图(2)当OBOC在射线OA异侧时故答案为或【点睛】本题考查了角的加减运算解答关键是解析:60︒或90︒【分析】分别讨论射线OB、OC在射线OA同侧和异侧的情况,问题可解【详解】解:如图(1)当OB、OC在射线OA同侧时,∠=∠-∠=︒-︒=︒701560BOC AOB AOC如图(2)当OB、OC在射线OA异侧时,∠=∠+∠=︒+︒=︒701590BOC AOB AOC故答案为60︒或90︒【点睛】本题考查了角的加减运算,解答关键是应用分类讨论思想,找到不同情况分别求解. 25.3或4或6【分析】分三种情况下:①∠AOP=35°②∠AOP=20°③0<x <50中的其余角根据互余的定义找出图中互余的角即可求解【详解】①∠AOP =∠AOB=35°时∠BOP=35°∴互余的角有∠解析:3或4或6分三种情况下:①∠AOP=35°,②∠AOP=20°,③0<x<50中的其余角,根据互余的定义找出图中互余的角即可求解.【详解】①∠AOP=12∠AOB =35°时,∠BOP=35°∴互余的角有∠AOP与∠COP,∠BOP与∠COP,∠AOB与∠COB,∠COD与∠COB,一共4对;②∠AOP=90°-∠AOB =20°时,∴互余的角有∠AOP与∠COP,∠AOP与∠AOB,∠AOP与∠COD,∠COD与∠COB,∠AOB与∠COB,∠COP与∠COB,一共6对;③0<x<50中35°与20°的其余角,互余的角有∠AOP与∠COP,∠AOB与∠COB,∠COD 与∠COB,一共3对.则m=3或4或6.故答案为:3或4或6.【点睛】本题考查了余角和补角:如果两个角的和等于90°(直角),就说这两个角互为余角.即其中一个角是另一个角的余角.26.5cm【分析】运用方程的思想设AB=2xcmBC=3xcmCD=4xcm求出MB=xcmCN=2xcm得出方程x+3x+2x=3求出即可【详解】解:设AB=2xcmBC=3xcmCD=4xcm∵M是解析:5cm【分析】运用方程的思想,设AB=2xcm,BC=3xcm,CD=4xcm,求出MB=xcm,CN=2xcm,得出方程x+3x+2x=3,求出即可.【详解】解:设AB=2xcm,BC=3xcm,CD=4xcm,∵M是AB的中点,N是CD的中点,∴MB=xcm,CN=2xcm,∴MB+BC+CN=x+3x+2x=3,∴x=0.5,∴3x=1.5,即BC=1.5cm.故答案为:1.5cm.【点睛】本题考查了求两点之间的距离的应用,关键是能根据题意得出关于x的方程.27.【分析】根据补角的性质和余角的性质解答即可【详解】∵∠1=∠2∴与∠1互补的角是∠AOD∵∠1=28°32′35″∴∠1的补角=151°27′25″故答案为:∠AOD ;151°27′25″【点睛】本解析:AOD ∠ 2512517'''︒【分析】根据补角的性质和余角的性质解答即可.【详解】∵∠1=∠2,∴与∠1互补的角是∠AOD ,∵∠1=28°32′35″,∴∠1的补角=151°27′25″,故答案为:∠AOD ;151°27′25″.【点睛】本题考查了余角和补角,两个角的和为90°,则这两个角互余;若两个角的和等于180°,则这两个角互补.三、解答题28.(1)56.3︒.(2)12.54︒.(3)121836'''︒.【分析】(1)将18'转化为118()0.360⨯︒=︒即可得到答案; (2)将24''转化为124()0.460''⨯=,32.4'转化为132.4()0.5460⨯︒=︒即可得到答案; (3)将0.31︒转化为0.316018.6''⨯=,将0.6'转化为0.66036''''⨯=即可得到答案.【详解】 (1)1561856185618()56.360''︒=︒+=︒+⨯︒=︒; (2)123224︒''' 123224'''=︒++1123224()60''=︒++⨯ 1232.4'=︒+11232.4()60=︒+⨯︒ 12.54=︒;(3)12.31120.31︒=︒+︒120.3160'=︒+⨯1218.6'=︒+12180.6''=︒++12180.660'''=︒++⨯121836'''=︒++121836'''=︒.【点睛】本题主要考查了度分秒的换算,关键是掌握将高级单位化为低级单位时,乘以60,反之,将低级单位转化为高级单位时除以60.29.A:800;B:146【分析】A:根据题意可以得到长方体的长为16宽为10高为5,即可求出体积.B:依据题意展开,计算即可.【详解】解:A:根据题意 高为20-15=5 宽为15-5=10 长为 26-10=16V=16×10×5=800B:依据题意展开如图周长=5×2+16×6+10×4=146【点睛】此题主要考查了立体图形体积计算及最大展开周长,注意最大展开周长一定是最长棱长最多的.30.40°【分析】根据3BOC AOB ∠=∠,40AOB ∠=︒求出120BOC ∠=︒,得到∠AOC 的度数,利用OD 平分AOC ∠,求出∠AOD 的度数,即可求出BOD ∠的度数.【详解】解:∵3BOC AOB ∠=∠,40AOB ∠=︒,∴120BOC ∠=︒.∵AOC AOB BOC ∠=∠+∠, 40120=︒+︒, 160=︒,又∵OD 平分AOC ∠, ∴1802AOD AOC ∠=∠=︒, ∴BOD AOD AOB ∠=∠-∠, 8040=︒-︒, 40=︒.【点睛】此题考查角度的和差计算,会看图明确各角之间的大小关系,注意角平分线的运用.。
2017年中考数学试题分项版解析汇编第02期专题01实数含解析20170816117
专题1:实数一、选择题1.(2017北京第4题)实数a,b,c,d在数轴上的对应点的位置如图所示,则正确的结论是()A.a4B.bd0 C. a b D.b c0【答案】C.考点:实数与数轴2.(2017天津第1题)计算(3)5的结果等于()A.2 B.2C.8 D.8【答案】A.【解析】试题分析:根据有理数的加法法则即可得原式-2,故选A.3.(2017天津第4题)据《天津日报》报道,天津市社会保障制度更加成熟完善,截止2017年4月末,累计发放社会保障卡12630000张.将12630000用科学记数法表示为()A.0.1263108B.1.263107C.12.63106D.126.3105【答案】B.【解析】试题分析:学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,n的值为这个数的整数位数减1,所以12630000=1.263107.故选B.4.(2017福建第1题)3的相反数是()A.-3 B.1C.133D.3【解析】只有符号不同的两个数互为相反数,因此3的相反数是-3;故选A.5.(2017福建第3题)用科学计数法表示136 000,其结果是()A.0.136106B.1.36105C.136103D.136106【答案】B【解析】13600=1.36×105,故选B.6.(2017河南第1题)下列各数中比1大的数是()A.2 B.0 C.-1 D.-3【答案】A,【解析】试题分析:根据正数大于0,0大于负数,两个负数,绝对值大的反而小可得题目选项中的各数中比1大的数是2,故选A.考点:有理数的大小比较.7.(2017河南第2题)2016年,我国国内生产总值达到74.4万亿元.数据“74.4万亿”用科学计数法表示为()A.74.41012B.7.441013C.74.41013D.7.441014【答案】B.考点:科学记数法.8.(2017湖南长沙第1题)下列实数中,为有理数的是()A.3B.C.32D.1【答案】D【解析】试题分析:根据实数的意义,有理数为有限小数和有限循环小数,无理数为无限不循环小数,可知1是有理数.故选:D9.(2017广东广州第1题)如图1,数轴上两点A,B表示的数互为相反数,则点B表示的()A.-6 B.6 C.0 D.无法确定【答案】B【解析】试题分析:-6的相反数是6,A点表示-6,所以,B点表示6.故选答案B.考点:相反数的定义10.(2017湖南长沙第3题)据国家旅游局统计,2017年端午小长假全国各大景点共接待游客约为82600000人次,数据82600000用科学记数法表示为()A.0.826106B.8.26107C.82.6106D.8.26108【答案】B考点:科学记数法的表示较大的数111.(2017山东临沂第1题)的相反数是()2007 11A.B.C.2017 D.201720072007【答案】A【解析】试题分析:根据只有符号不同的两数互为相反数,可知的相反数为.1120072007故选:A112.(2017山东青岛第1题)的相反数是().8A.8 B.8 C.18D.18【答案】C 【解析】试题分析:根据只有符号不同的两个数是互为相反数,知:1的相反数是818.故选:C考点:相反数定义13. (2017四川泸州第1题)7的绝对值为()A.7B.7C.17D.17【答案】A.【解析】试题分析:根据绝对值的性质可得-7的绝对值为7,故选A.14. (2017四川泸州第2题) “五一”期间,某市共接待海内外游客约567000人次,将567000用科学记数法表示为()A.567103B.56.7104C.5.67105D.0.567106【答案】C.15.(2017山东滨州第1题)计算-(-1)+|-1|,结果为()A.-2 B.2 C.0 D.-1【答案】B.【解析】原式=1+1=2,故选B.16. (2017江苏宿迁第1题)5的相反数是11A.5B.C.D.555【答案】D.【解析】试题分析:根据只有符号不同的两个数互为相反数可得5的相反数是-5,故选D.17. .(2017山东日照第1题)﹣3的绝对值是()A.﹣3 B.3 C.±3 D.【答案】B.试题分析:当a是负有理数时,a的绝对值是它的相反数﹣a,所以﹣3的绝对值是3.故选B.考点:绝对值.18. (2017辽宁沈阳第1题)7的相反数是()A.-7B.C.D.74177【答案】A.【解析】试题分析:根据“只有符号不同的两个数互为相反数”可得7的相反数是-7,故选A.考点:相反数.19.(2017山东日照第3题)铁路部门消息:2017年“端午节”小长假期间,全国铁路客流量达到4640万人次.4640万用科学记数法表示为()A.4.64×105B.4.64×106C.4.64×107D.4.64×108【答案】C.考点:科学记数法—表示较大的数.20. (2017辽宁沈阳第3题) “弘扬雷锋精神,共建幸福沈阳”幸福沈阳需要830万沈阳人共同缔造。
(常考题)人教版初中七年级数学上册第三章《一元一次方程》模拟测试题(包含答案解析)(2)
一、选择题1.(0分)[ID :68204]某校社团活动课中,手工制作社的同学用一种彩色硬纸板制作某种长方体小礼品的包装盒,每张硬纸板可制作盒身12个,或制作盒底18个,1个盒身与2个盒底配成一套.现有28张这种彩色硬纸板,要使盒身和盒底刚好配套,若设需要x 张做盒身,则下列所列方程正确的是( ) A .()182812x x -= B .()1828212x x -=⨯ C .()181412x x -= D .()2182812x x ⨯-=2.(0分)[ID :68196]把方程13124x x -+=-去分母,得( ) A .2(1)1(3)x x -=-+ B .2(1)4(3)x x -=++C .2(1)43x x -=-+D .2(1)4(3)x x -=-+3.(0分)[ID :68195]定义运算“*”,其规则为2*3a ba b +=,则方程4*4x =的解为( ) A .3x =-B .3x =C .2x =D .4x =4.(0分)[ID :68161]某种商品每件的标价是330元,按标价的8折销售时,仍可获利10%,则这种商品每件的进价为( )A .300元B .250元C .240元D .200元5.(0分)[ID :68159]古代有这样一个寓言故事:驴子和骡子一同走,它们驮着不同袋数的货物,每袋货物都是一样重的.驴子抱怨负担太重,骡子说:“你抱怨干嘛?如果你给我一袋,那我所负担的就是你的两倍;如果我给你一袋,我们才恰好驮的一样多!”那么驴子原来所驮货物的袋数是( ) A .5袋 B .6袋 C .7袋 D .8袋 6.(0分)[ID :68251]解方程-3x=2时,应在方程两边( ) A .同乘以-3 B .同除以-3 C .同乘以3 D .同除以3 7.(0分)[ID :68249]方程6x+12x-9x=10-12-16的解为( )A .x=2B .x=1C .x=3D .x=-28.(0分)[ID :68245]互联网“微商”经营已成为大众创业新途径,某微信平台上一件商品标价为200元,按标价的五折销售,仍可获利20元,则这件商品的进价为( ) A .120元B .100元C .80元D .60元9.(0分)[ID :68243]一个两位数,十位上的数比个位上的数的3倍大1,个位上的数与十位上的数的和等于9,这个两位数是( ) A .54 B .72 C .45 D .62 10.(0分)[ID :68241]若代数式4x +的值是2,则x 等于( )A .2B .2-C .6D .6-11.(0分)[ID :68238]某种商品进价为800元,标价1 200元,由于该商品积压,商店准备打折销售,但要保证利润率不低于20%,则至少可以打 ( )A .6折B .7折C .8折D .9折12.(0分)[ID :68231]解方程32282323x x x----=的步骤如下,错误的是( ) ①2(3x ﹣2)﹣3(x ﹣2)=2(8﹣2x ); ②6x ﹣4﹣3x ﹣6=16﹣4x ; ③3x +4x =16+10;④x =267.A .①B .②C .③D .④13.(0分)[ID :68212]把方程112x =变形为2x =,其依据是( ) A .等式的性质1B .等式的性质2C .乘法结合律D .乘法分配律14.(0分)[ID :68173]若代数式的值为,则的值为( )A .B .C .D .15.(0分)[ID :68171]下列判断错误的是 ( ) A .若,则 B .若,则C .若,则D .若,则二、填空题16.(0分)[ID :68342]请阅读下面的诗句:“栖树一群鸦,鸦树不知数,四只栖一树,五只没处去,五只栖一树,闲了一棵树,请你仔细数,鸦树各几何?”诗中谈到的鸦为_____只,树为_____棵.17.(0分)[ID :68335]如图,折线AC -CB 是一条公路的示意图,8km AC =,甲骑摩托车从A 地沿这条公路到B 地,速度为40km/h ,乙骑自行车从C 地沿这条公路到B 地,速度为10km/h ,两人同时出发,结果甲比乙早到6分钟.则这条公路的长为________.18.(0分)[ID :68328]如图所示,天平中放有苹果、香蕉、砝码,且两架天平都平衡,则一个苹果的质量是一个香蕉的质量的________.(填分数)19.(0分)[ID :68322]若x 取一切有理数时,(23)(3)251m x m n x +--=+均成立,则m n +的值是_________.20.(0分)[ID :68317]若2a +1与212a +互为相反数,则a =_____.21.(0分)[ID :68301]开学初,小明到某商场购物,发现商场正在进行购物返券活动,活动规则如下:购物每满100元,返购物券50元,此购物券在本商场通用,且用购物券购买商品不再返券,也不得找零. 小明只购物买了单价别为60元,80元和120元的物品各一件,使用购物券后,他的实际花费为_________元.22.(0分)[ID :68292]若方程()||110a a x --=是关于x 的一元一次方程,则a =____________.23.(0分)[ID :68282]一个圆柱形铁块,底面半径是20cm ,高16cm .若将其锻造成为长、宽分别是20cm 、8cm 的长方体,如果设长方体的高为cm x .根据题意,列出方程为___________.24.(0分)[ID :68281]完成下面的填空:一家商店将某种服装按成本价提高40%后标价,又以八折(即按标价的80%)优惠卖出,结果每件仍获利15元,这种服装每件的成本是多少元?我们知道,每件商品的利润是商品售价与商品成本价的差,如果设每件服装的成本价为x 元,那么每件服装的标价为_________元;每件服装的实际售价为___________元; 每件服装的利润为____________元. 由此,列出方程_________________. 解这个方程,得x =______________. 因此每件服装的成本价是___________元.25.(0分)[ID :68280]某商店有两种进价不同的计算器都卖了64元,其中一种盈利60%,另一种亏本20%,在这次买卖中,这家商店的盈亏情况为____________.26.(0分)[ID :68271]用5个同样大小的小长方形恰好可以拼成如图所示的大长方形,若大长方形的周长是14,则小长方形的长是_______,宽是________.27.(0分)[ID :68279]甲、乙两队开展足球对抗赛,规定每队胜一场得3分,平一场得1分,负一场得0分.若甲队胜场是平场的2倍,平场比负场多一场,共得了21分,则甲队胜了______场,平了______场,负了______场.三、解答题28.(0分)[ID :68422]大明共有4800元,他将一部分钱按活期存了一年,剩下的钱买了企业债券,一年后共获利24.8元,知活期储蓄的年利率是0.35%,企业债券的年利率是0.6%,则大明存活期和买债券各用了多少元?29.(0分)[ID :68375]某市百货商店元月1日搞促销活动,购物不超200元不予优惠;购物超过200元而不足500元的按全价的90%优惠;超过500元,其中500元按9折优惠,超过部分按8折优惠,某人两次购物分别用了134元和466元. 问:(1)列方程求出此人两次购物若其物品不打折共值多少钱?(2)若此人将这两次购物合为一次购买是否更节省?为什么?30.(0分)[ID:68370]学校要购入两种记录本,预计花费460元,其中A种记录本每本3元,B种记录本每本2元,且购买A种记录本的数量比B种记录本的2倍还多20本.(1)求购买A和B两种记录本的数量;(2)某商店搞促销活动,A种记录本按8折销售,B种记录本按9折销售,则学校此次可以节省多少钱?【参考答案】2016-2017年度第*次考试试卷参考答案**科目模拟测试一、选择题1.B2.D3.D4.C5.A6.B7.D8.C9.B10.B11.C12.B13.B14.A15.D二、填空题16.10【分析】本题涉及两种分配方法关键是不管怎么分配鸦的总数是不变的可设树有x 棵即可列方程:4x+5=5(x﹣1)求解【详解】解:设树有x棵依题意列方程:4x+5=5(x﹣1)解得:x=10所以树有117.12km【分析】首先设这条公路的长为xkm由题意得等量关系:乙骑自行车行驶(x-8)千米的时间-6分钟=甲骑摩托车从A地沿这条公路到B地的时间根据等量关系列出方程即可【详解】解:设这条公路的长为xk18.【分析】设一个苹果的重量为x一个香蕉的重量为y一个砝码的重量为z分别用含z 的代数式表示xy再求即可【详解】设一个苹果的质量为x一个香蕉的质量为y一个砝码的质量为z由题意得则即则故故答案为:【点睛】此19.45【分析】取一切有理数时均成立则化简以后方程的一次项系数以及常熟项都是0分别求出mn的值即可【详解】解:取一切有理数时均成立则化简以后方程的一次项系数以及常熟项都是0移项得:合并同类项得:∴∴m=20.﹣1【分析】利用相反数的性质列出方程求出方程的解即可得到a的值【详解】根据题意得:去分母得:a+2+2a+1=0移项合并得:3a=﹣3解得:a=﹣1故答案为:﹣1【点睛】本题考查了解一元一次方程的应21.200元或210元【分析】根据购物顺序不同分类讨论即可【详解】①若先买单价为120元的物品赠送一张50元购物券再去买单价为60元和80元的物品实际花费为:120+60+80-50=210元;②若先买22.【解析】【分析】先根据一元一次方程的定义列出关于a的不等式组求出a的值即可【详解】∵是关于x的一元一次方程∴且解得a=-1故答案为:-1【点睛】本题考查的是一元一次方程的定义熟知只含有一个未知数(元23.【解析】【分析】等量关系为:圆柱体的体积=长方体的体积把相关数值代入即可求解【详解】设长方体的高为xcm故答案为:【点睛】此题考查一元一次方程的应用解题关键在于找到等量关系24.【解析】【分析】根据题意可得每件衣服的标价售价利润关于x的代数式根据售价-标价=利润列出方程求解即可【详解】每件服装的标价为:(1+40)x每件服装的实际售价为:(1+40)x×80每件服装的利润为25.赚了8元【解析】【分析】根据题意设一个价钱为x元另一个价钱为y元列出方程求出未知数的值再计算即可【详解】解:设两种计算器进价分别为x元y元则x解得(元)所以赚了8元【点睛】本题主要考查列一元一次方程26.1【解析】【分析】观察图形找出大长方形与小长方形的关系设小长方形的宽为x列出方程即可求出其长和宽的值【详解】解:设小长方形的宽为x则长=(14-10x)=2x解得x=1即小长方形的宽为1长为2;故答27.632【解析】【分析】设甲队胜了x场则平了场负了场根据一场得3分平一场得1分负一场得0分共得了21分可列方程求解【详解】设甲队胜了x场则平了场负了场根据题意可得:解得:x=6所以故答案为:632【点三、解答题28.29.30.2016-2017年度第*次考试试卷参考解析【参考解析】**科目模拟测试一、选择题1.B解析:B【分析】若设需要x张硬纸板制作盒身,则(28-x)张硬纸板制作盒底,然后根据1个盒身与2个盒底配成一套列出方程即可.【详解】解:若设需要x张硬纸板制作盒身,则(28-x)张硬纸板制作盒底,由题意可得,18(28-x)=2×12x,故选:B.【点睛】本题考查由实际问题抽象出一元一次方程,解答本题的关键是明确题意,找出题目中的等量关系,列出相应的方程.2.D【分析】根据解一元一次方程去分母的相关要求,结合等式的基本性质2,对等式两边同时乘以分数的最小公倍数4即可求解. 【详解】等式两边同乘4得:2(1)4(3)x x -=-+, 故选:D. 【点睛】本题主要考查了一元一次方程求解中的去分母,熟练掌握使用等式的基本性质2进行去分母是解决本题的关键.3.D解析:D 【分析】根据新定义列出关于x 的方程,解之可得. 【详解】 ∵4*x=4,∴234x⨯+=4, 解得x=4, 故选:D . 【点睛】本题主要考查解一元一次方程,去分母、去括号、移项、合并同类项、系数化为1,这仅是解一元一次方程的一般步骤,针对方程的特点,灵活应用,各种步骤都是为使方程逐渐向x=a 形式转化.4.C解析:C 【分析】设这种商品每件的进价为x 元,根据题意列出关于x 的方程,求出方程的解即可得到结果. 【详解】设这种商品每件的进价为x 元, 根据题意得:330×80%−x=10%x , 解得:x=240,则这种商品每件的进价为240元. 故选C. 【点睛】此题考查一元一次方程的应用,找准题目中的等量关系是解题的关键.5.A解析:A【分析】要求驴子原来所托货物的袋数,要先设出未知数,通过理解题意可知本题的等量关系,即驴子减去一袋时的两倍减1(即骡子原来驮的袋数)再减1(我给你一袋,才恰好驮的一样多)=驴子原来所托货物的袋数加上1,据这个等量关系列方程求解.【详解】解:设驴子原来驮x袋,根据题意,得到方程:2(x-1)-1-1=x+1,解得:x=5, 答:驴子原来所托货物的袋数是5, 故选A.【点睛】本题主要考查列方程解决实际问题,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.6.B解析:B【分析】利用等式的性质判断即可.【详解】解:利用等式的性质解方程-3x=2时,应在方程的两边同除以-3,故选:B.【点睛】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.7.D解析:D【分析】根据合并同类项,系数化为1可得方程的解.【详解】合并同类项,得9x=-18,系数化为1,得x=-2,故选D.【点睛】此题主要考查了解一元一次方程,熟练掌握运算法则解答此题的关键.8.C解析:C【详解】解:设该商品的进价为x元/件,依题意得:(x+20)÷510=200,解得:x=80.∴该商品的进价为80元/件.故选C.9.B解析:B 【分析】首先设个位上的数为x ,则十位数字为()31x +,根据题意可得等量关系:十位上的数与个位上的数的和=9,列出方程,再解方程即可. 【详解】设个位上的数为x ,则十位数字为()31x +,由题意得: x +(3x +1)=9, 解得:x =2, 十位数字为:6+1=7, 这个两位数是:72. 故选:B. 【点睛】考查一元一次方程的应用,读懂题目,找出题目中的等量关系是解题的关键.10.B解析:B 【分析】由已知可得4x +=2,解方程可得. 【详解】由已知可得4x +=2,解得x=-2. 故选B. 【点睛】本题考核知识点:列方程,解方程. 解题关键点:根据题意列出一元一次方程.11.C解析:C 【分析】设打折x 折,利用利润率=100%⨯-⨯标价折扣进价进价的数量关系, 根据利润率不低于20%可得:12000.1x 80020%800⨯-≥,解不等式可得:8x ≥.【详解】设打折x 折,由题意可得: 12000.1x 80020%800⨯-≥,解得:8x ≥. 故选C. 【点睛】本题主要考查不等式解决商品利润率问题,解决本题的关键是要熟练掌握利润率的数量关系,列不等式进行求解.12.B解析:B【分析】根据解一元一次方程的基本步骤依次计算可得.【详解】①去分母,得:2(3x﹣2)﹣3(x﹣2)=2(8﹣2x);②6x﹣4﹣3x+6=16﹣4x,③6x﹣3x+4x=16+4﹣6,④x=2,错误的步骤是第②步,故选:B.【点睛】本题主要考查解一元一次方程,解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、系数化为1,这仅是解一元一次方程的一般步骤,针对方程的特点,灵活应用,各种步骤都是为使方程逐渐向x=a形式转化.13.B解析:B【分析】根据等式的基本性质,对原式进行分析即可.【详解】x ,这是依据等式的性质2.将原方程两边都乘2,得2故选B.【点睛】本题主要考查了等式的基本性质,等式性质:1、等式的两边同时加上或减去同一个数或字母,等式仍成立;2、等式的两边同时乘以或除以同一个不为0数或字母,等式仍成立.14.A解析:A【解析】【分析】根据题意列出方程,求出方程的解即可得到x的值.【详解】根据题意得:2x+3=6,移项合并得:2x=3,解得:x=,故选:A.【点睛】此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,将未知数系数化为1,求出解.15.D解析:D【解析】【分析】根据等式的基本性质分别对每一项进行分析,即可得出答案.【详解】A. 若a=b,则a−3=b−3,正确;B. 若a=b,则7a−1=7b−1,正确;C. 若a=b,则,正确;D. 当c=0时,若,a就不一定等于b,故本选项错误;故选D.【点睛】此题考查等式的性质,解题关键在于掌握其性质定义.二、填空题16.10【分析】本题涉及两种分配方法关键是不管怎么分配鸦的总数是不变的可设树有x 棵即可列方程:4x+5=5(x﹣1)求解【详解】解:设树有x棵依题意列方程:4x+5=5(x﹣1)解得:x=10所以树有1解析:10【分析】本题涉及两种分配方法,关键是不管怎么分配鸦的总数是不变的,可设树有x棵,即可列方程:4x+5=5(x﹣1)求解.【详解】解:设树有x棵依题意列方程:4x+5=5(x﹣1)解得:x=10所以树有10棵,鸦的个数为:10×4+5=45故答案为45,10【点睛】本题是典型的分配问题.不管怎么分配鸦的个数是不变的是解题关键.17.12km【分析】首先设这条公路的长为xkm由题意得等量关系:乙骑自行车行驶(x-8)千米的时间-6分钟=甲骑摩托车从A地沿这条公路到B地的时间根据等量关系列出方程即可【详解】解:设这条公路的长为xk解析:12km【分析】首先设这条公路的长为xkm,由题意得等量关系:乙骑自行车行驶(x-8)千米的时间-6分钟=甲骑摩托车从A地沿这条公路到B地的时间,根据等量关系列出方程即可.【详解】解:设这条公路的长为xkm .由题意,得86401060x x -=-. 解得:12x =.故答案为:12km .【点睛】此题主要考查了一元一次方程的应用,关键是正确理解题意,找出题目中的等量关系,列出方程.18.【分析】设一个苹果的重量为x 一个香蕉的重量为y 一个砝码的重量为z 分别用含z 的代数式表示xy 再求即可【详解】设一个苹果的质量为x 一个香蕉的质量为y 一个砝码的质量为z 由题意得则即则故故答案为:【点睛】此 解析:32【分析】设一个苹果的重量为x 、一个香蕉的重量为y 、一个砝码的重量为z ,分别用含z 的代数式表示x ,y ,再求x y 即可. 【详解】设一个苹果的质量为x ,一个香蕉的质量为y ,一个砝码的质量为z .由题意得24x z =,则2x z =,32y z x =+,即3224y z z z =+=,则43y z =, 故23423x z y z ==. 故答案为:32 【点睛】此题主要考查了等式的性质,本题先通过用z 表示x ,y ,后通过求比值而求解. 19.45【分析】取一切有理数时均成立则化简以后方程的一次项系数以及常熟项都是0分别求出mn 的值即可【详解】解:取一切有理数时均成立则化简以后方程的一次项系数以及常熟项都是0移项得:合并同类项得:∴∴m= 解析:45【分析】x 取一切有理数时,(23)(3)251m x m n x +--=+均成立,则化简以后方程的一次项系数以及常熟项都是0,分别求出m ,n 的值即可.【详解】解:x 取一切有理数时,(23)(3)251m x m n x +--=+均成立,则化简以后方程的一次项系数以及常熟项都是0,移项得:(23)251(3)+-=+-m x x m n ,合并同类项得:(222)13-=+-m x m n ,∴222=0-m ,13=0+-m n ,∴m=11,n=34,∴m+n=45,故答案为:45.【点睛】本题考查了解一元一次方程,理解若x 取一切有理数时,(23)(3)251m x m n x +--=+均成立的条件是解决本题的关键.20.﹣1【分析】利用相反数的性质列出方程求出方程的解即可得到a 的值【详解】根据题意得:去分母得:a+2+2a+1=0移项合并得:3a=﹣3解得:a=﹣1故答案为:﹣1【点睛】本题考查了解一元一次方程的应解析:﹣1【分析】利用相反数的性质列出方程,求出方程的解即可得到a 的值.【详解】根据题意得:a 2a 11022+++= 去分母得:a+2+2a+1=0,移项合并得:3a=﹣3,解得:a=﹣1,故答案为:﹣1【点睛】 本题考查了解一元一次方程的应用、解一元一次方程,掌握解一元一次方程的一般步骤是:去分母、去括号、移项、合并同类项、化系数为1,是解题的关键,此外还需注意移项要变号.21.200元或210元【分析】根据购物顺序不同分类讨论即可【详解】①若先买单价为120元的物品赠送一张50元购物券再去买单价为60元和80元的物品实际花费为:120+60+80-50=210元;②若先买解析:200元或210元【分析】根据购物顺序不同分类讨论即可.【详解】①若先买单价为120元的物品,赠送一张50元购物券,再去买单价为60元和80元的物品,实际花费为:120+60+80-50=210元;②若先买60元和80元的物品,赠送一张50元购物券,再去买120元的物品,实际花费为:60+80+120-50=210元;③若先买60元和120元的物品,赠送一张50元购物券,再去买80元的物品,实际花费为:60+120+80-50=210元;④若先买80元和120元的物品,赠送两张50元购物券,再去买60元的物品,此时购物券可抵扣60元,实际花费为:120+80=200元;故答案为200元或210元.【点睛】此题考查的是分类讨论的数学思想.22.【解析】【分析】先根据一元一次方程的定义列出关于a 的不等式组求出a 的值即可【详解】∵是关于x 的一元一次方程∴且解得a=-1故答案为:-1【点睛】本题考查的是一元一次方程的定义熟知只含有一个未知数(元 解析:1-【解析】【分析】先根据一元一次方程的定义列出关于a 的不等式组,求出a 的值即可.【详解】∵()||110a a x --=是关于x 的一元一次方程, ∴1=a 且10a -≠,解得a=-1.故答案为:-1【点睛】本题考查的是一元一次方程的定义,熟知只含有一个未知数(元),且未知数的次数是1,这样的方程叫一元一次方程是解答此题的关键.23.【解析】【分析】等量关系为:圆柱体的体积=长方体的体积把相关数值代入即可求解【详解】设长方体的高为xcm 故答案为:【点睛】此题考查一元一次方程的应用解题关键在于找到等量关系解析:2π2016208x ⨯⨯=⨯【解析】【分析】等量关系为:圆柱体的体积=长方体的体积,把相关数值代入即可求解.【详解】设长方体的高为xcm ,2π2016208x ⨯⨯=⨯,故答案为:2π2016208x ⨯⨯=⨯.【点睛】此题考查一元一次方程的应用,解题关键在于找到等量关系.24.【解析】【分析】根据题意可得每件衣服的标价售价利润关于x 的代数式根据售价-标价=利润列出方程求解即可【详解】每件服装的标价为:(1+40)x 每件服装的实际售价为:(1+40)x×80每件服装的利润为解析:(140%)x + (140%)80%x +⋅ (140%)80%x x +⋅-(140%)80%15x x +⋅-= 125 125【解析】【分析】根据题意可得每件衣服的标价、售价、利润关于x 的代数式,根据售价-标价=利润列出方程求解即可.【详解】每件服装的标价为:(1+40%)x ,每件服装的实际售价为:(1+40%)x×80%,每件服装的利润为:(1+40%)x×80%−x ,列出方程:(1+40%)x×80%−x=15,解方程得:x=125,因此每件服装的成本价是125元.【点睛】此题考查一元一次方程的应用,解题关键在于理解题意找出等量关系.25.赚了8元【解析】【分析】根据题意设一个价钱为x 元另一个价钱为y 元列出方程求出未知数的值再计算即可【详解】解:设两种计算器进价分别为x 元y 元则x 解得(元)所以赚了8元【点睛】本题主要考查列一元一次方程 解析:赚了8元【解析】【分析】根据题意设一个价钱为x 元,另一个价钱为y 元,列出方程,求出未知数的值,再计算即可.【详解】解:设两种计算器进价分别为x 元,y 元,则x (160%)=64+,(120%)64y -=.解得40x =,80y =.4080120x y +=+=. 6421201281208⨯-=-=(元), 所以赚了8元.【点睛】本题主要考查列一元一次方程解决实际问题,解决本题的关键是要熟练掌握根据进价、售价与利润率之间的关系分别求出两种计算机的进价.26.1【解析】【分析】观察图形找出大长方形与小长方形的关系设小长方形的宽为x 列出方程即可求出其长和宽的值【详解】解:设小长方形的宽为x 则长=(14-10x )=2x 解得x=1即小长方形的宽为1长为2;故答解析:1【解析】【分析】观察图形找出大长方形与小长方形的关系,设小长方形的宽为x ,列出方程即可求出其长和宽的值.【详解】解:设小长方形的宽为x,则长=12(14-10x)=2x,解得x=1,即小长方形的宽为1,长为2;故答案为:2;1.【点睛】本题考查了一元一次方程的应用,准确识图并列出方程是解题的关键.27.632【解析】【分析】设甲队胜了x场则平了场负了场根据一场得3分平一场得1分负一场得0分共得了21分可列方程求解【详解】设甲队胜了x场则平了场负了场根据题意可得:解得:x=6所以故答案为:632【点解析:6, 3, 2【解析】【分析】设甲队胜了x场,则平了12x场,负了112x-场,根据一场得3分,平一场得1分,负一场得0分,共得了21分,可列方程求解.【详解】设甲队胜了x场,则平了12x场,负了112x-场,根据题意可得:11311021 22x x x⎛⎫+⨯+-⨯=⎪⎝⎭,解得:x=6,所以132x=,1122x-=,故答案为:6,3,2.【点睛】本题考查了一元一次方程的应用,解答本题的关键是读懂题意,设出未知数,找出等量关系.三、解答题28.存活期用了1600元,买债券用了3200元【分析】设存活期用了x元,则买债券用了(4800)x-元,由题意列式求解即可.【详解】解:设存活期用了x 元,则买债券用了(4800)x -元由题意,得0.35%0.6%(4800)24.8x x +-=.解得1600x =.48003200x -=.答:大明存活期用了1600元,买债券用了3200元.【点睛】本题主要考查了实际问题与一元一次方程,根据题意找出未知量,列方程是解题的关键. 29.(1)654元钱;(2)将这两次购物合为一次购买更节省,理由见解析.【分析】(1)根据“超过200元而不足500元的按9折优惠”可得:200×90%=180元,由于第一次购物134元<180元,故不享受任何优惠;由“超过500元,其中500元按9折优惠,超过部分8折优惠”可知500×90%=450元,466>450元,故此人购物享受“超过500元,其中500元按9折优惠,超过部分8折优惠”,设他所购价值x 元的货物,首先享受500元钱时的9折优惠,再享受超过500元的8折优惠,把两次的花费加起来即可得出此人第二次购物不打折的花费,最后将两次购物不打折的花费相加即可;(2)计算出两次购物合为一次购买实际应付的费用,再与他两次购物所花的费用进行比较即可.【详解】解:(1)①因为134元<200×90%=180元,所以该人此次购物不享受优惠; ②因为第二次付了466元>500×90%=450元,所以该人享受超过500元,其中500元按9折优惠,超过部分8折优惠.设他所购货物价值x 元,则90%×500+(x ﹣500)×80%=466,解得x =520,520+134=654(元).答:此人两次购物若其物品不打折共值654元钱;(2)500×90%+(654﹣500)×80%=573.2(元),134+466=600(元),∵573.2<600,∴此人将这两次购物合为一次购买更节省.【点睛】此题主要考查了一元一次方程的应用,关键是分析清楚付款打折的情况,找出合适的等量关系列出方程.30.(1)购买A 种记录本120本,B 种记录本50本;(2)学校此次可以节省82元钱.【分析】根据两种记录本一共花费460元即可列出方程【详解】(1)设购买B 种记录本x 本,则购买A 种记录表(2x +20)本,依题意,得:3(2x +20)+2x =460,解得:x=50,∴2x+20=120.答:购买A种记录本120本,B种记录本50本.(2)460﹣3×120×0.8﹣2×50×0.9=82(元).答:学校此次可以节省82元钱.【点睛】根据题意中的等量关系列出方程是解决问题的关键。
富丽中学2017年数学学科初中毕业生学业考试模拟试题(问卷)
富丽中学2017年数学学科初中毕业生学业考试模拟试题(问卷)命题者:富丽中学数学初三备学组(方龙珠,张梓文,王芳,林赞娟,罗晓欢,)本试卷分选择题和非选择题两部分,共三大题25小题,满分150分.考试时间为120分钟.第一部分 选择题(共30分)一、选择题(本大题共10小题,每小题3分,满分30分.在每小题给出的四个选项中)* )A .176×104B .17.×105C .1.76×106 D.0.176×1073. 一个几何体的三视图如图所示,那么这个几何体是( * )4. 如图,AB //CD ,∠CDE =140︒,则∠A 的度数为( * )A .140︒B .60︒C .50︒D .40︒5.一个三角形的两边长分别为3和6,第三边的边长是方程0862=+-x x 的根,则这个三角形的周长是( * ).A .11 B. 13 C. 11或13 D.无法确定6.实数a 在数轴上的位置如图4所示,则 2.5a -=( * )A. 2.5a -B. 2.5a - C . 2.5a + D. 2.5a --7.数据5,7,5,8,6,13,5的中位数是( * )A . 5B . 6C . 7D .88.圆锥底面圆的半径为1cm ,母线长为6cm ,则圆锥侧面展开图的圆心角是( * )A .30°B .60°C .90°D .120°9. 下列命题中是假命题的是(* )A .平行四边形的对边相等 B.菱形的四边相等C.矩形的对边平行且相等D.等腰梯形的对边相等.10.如图,在△ABC 中,AB=AC=5,CB=8,分别以AB 、AC 为直径作半圆,则图中阴影部分面积是( ) A B C D第二部分 非选择题 (共120分)二、填空题(本大题共6小题,每小题3分,满分18分.)11.分式方程321+=x x 的解是 * . 12. 函数11-=x y 中自变量x 的取值范围是_____ *_____. 13. 分解因式:22x x -= _____ *_____.14.已知等腰三角形的一个内角是80°,则它的底角是_ *_____°15.如果一元二次方程mx 2-4x+1=0有两个不相等的实数根,则m_ *_____°16. 如图,在△ABC 中,AD 、CE 分别是BC 、AB 边上的高,DE=3,BE=4,BC=6,则AC= .三、解答题(本大题共9小题,满分102分,解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分9分)(1)计算﹣|﹣2|+(﹣2)0; (2)解不等式组:()21213x x x -≥⎧⎪⎨-<+⎪⎩18.(本小题满分9分).如图,AC 是平行四边形ABCD 的对角线.(1)利用尺规作出AC 的垂直平分线(要求保留作图痕迹,不写作法);(2)设AC 的垂直平分线分别与AB 、AC 、CD 交于点E 、O 、F ,求证:OE=OF .如图,小敏同学想测量一棵大树的高度.她站在B 处仰望树顶,测得仰角为30°,再往大树的方向前进4m ,测得仰角为60°,已知小敏同学身高(AB )为1.6m ,求这棵树的高度(结果精确到0.1m )20. (本小题满分10分)如图,一次函数b kx y +=的图象与反比例函数xm y =图象交于A (-2,1)、B (1,n )两点。
上海市黄浦区中考数学二模试卷(含解析)-人教版初中九年级全册数学试题
2017年某某市黄浦区中考数学二模试卷一、选择题(本大题共6小题,每小题4分,共24分)1.单项式4xy2z3的次数是()A.3 B.4 C.5 D.62.下列方程中,无实数解的是()A.2+x=0 B.2﹣x=0 C.2x=0 D. =03.下列各组数据中,平均数和中位数相等的是()A.1,2,3,4,5 B.1,3,4,5,6 C.1,2,4,5,6 D.1,2,3,5,6 4.二次函数y=﹣(x﹣2)2﹣3的图象的顶点坐标是()A.(2,3) B.(2,﹣3)C.(﹣2,3)D.(﹣2,﹣3)5.以一个面积为1的三角形的三条中位线为三边的三角形的面积为()A.4 B.2 C.D.6.已知点A(4,0),B(0,3),如果⊙A的半径为1,⊙B的半径为6,则⊙A与⊙B的位置关系是()A.内切 B.相交 C.外切 D.外离二、填空题(本大题共12小题,每小题4分,共48分)7.计算:(x2)3=.8.因式分解:x2﹣4y2=.9.不等式组的解集是.10.方程=2的解是.11.关于x的一元二次方程2x2﹣3x+m=0有两个相等的实数根,则实数m=.12.某个工人要完成3000个零件的加工,如果该工人每小时能加工x个零件,那么完成这批零件的加工需要的时间是小时.13.已知二次函数的图象经过点(1,3)和(3,3),则此函数图象的对称轴与x轴的交点坐标是.14.从1到10这10个正整数中任取一个,该正整数恰好是3的倍数的概率是.15.正八边形一个内角的度数为.16.在平面直角坐标系中,点A(2,0),B(0,﹣3),若=,则点C的坐标为.17.如图,梯形ABCD中,AD∥BC,∠A=90°,它恰好能按图示方式被分割成四个全等的直角梯形,则AB:BC=.18.如图,矩形ABCD,将它分别沿AE和AF折叠,恰好使点B,C落到对角线AC上点M,N 处,已知MN=2,NC=1,则矩形ABCD的面积是.三、解答题(本大题共7小题,共78分)19.(10分)计算:(﹣1)0+|﹣2|+()﹣1﹣2sin30°.20.(10分)解分式方程:.21.(10分)如图,在△ABC中,∠ACB=90°,∠A=15°,D是边AB的中点,DE⊥AB交AC 于点E.(1)求∠CDE的度数;(2)求CE:EA.22.(10分)小明家买了一台充电式自动扫地机,每次完成充电后,在使用时扫地机会自动根据设定扫地时间,来确定扫地的速度(以使每次扫地结束时尽量把所储存的电量用完),如图是“设定扫地时间”与“扫地速度”之间的函数图象(线段AB),其中设定扫地时间为x分钟,扫地速度为y平方分米/分钟.(1)求y关于x的函数解析式;(2)现在小明需要扫地机完成180平方米的扫地任务,他应该设定的扫地时间为多少分钟?23.(12分)如图,菱形ABCD,以A为圆心,AC长为半径的圆分别交边BC,DC,AB,AD 于点E,F,G,H.(1)求证:CE=CF;(2)当E为弧中点时,求证:BE2=CE•CB.24.(12分)如图,点A在函数y=(x>0)图象上,过点A作x轴和y轴的平行线分别交函数y=图象于点B,C,直线BC与坐标轴的交点为D,E.(1)当点C的横坐标为1时,求点B的坐标;(2)试问:当点A在函数y=(x>0)图象上运动时,△ABC的面积是否发生变化?若不变,请求出△ABC的面积,若变化,请说明理由.(3)试说明:当点A在函数y=(x>0)图象上运动时,线段BD与CE的长始终相等.25.(14分)已知:Rt△ABC斜边AB上点D,E,满足∠DCE=45°.(1)如图1,当AC=1,BC=,且点D与A重合时,求线段BE的长;(2)如图2,当△ABC是等腰直角三角形时,求证:AD2+BE2=DE2;(3)如图3,当AC=3,BC=4时,设AD=x,BE=y,求y关于x的函数关系式,并写出定义域.2017年某某市黄浦区中考数学二模试卷参考答案与试题解析一、选择题(本大题共6小题,每小题4分,共24分)1.单项式4xy2z3的次数是()A.3 B.4 C.5 D.6【考点】42:单项式.【分析】单项式的次数是指各字母的指数之和【解答】解:该单项式的次数为:1+2+3=6,故选(D)【点评】本题考查单项式的概念,解题的关键是正确理解单项式的次数概念,本题属于基础题型.2.下列方程中,无实数解的是()A.2+x=0 B.2﹣x=0 C.2x=0 D. =0【考点】B2:分式方程的解.【分析】根据解方程,可得答案.【解答】解:A、x+2=0,解得x=﹣2,故A正确;B、2﹣x=0,解得x=2,故B正确;C、2x=0,解得x=2,故C正确;D、=0方程无解,故D错误;故选:D.【点评】本题考查了分式方程的解,解方程是解题关键.3.下列各组数据中,平均数和中位数相等的是()A.1,2,3,4,5 B.1,3,4,5,6 C.1,2,4,5,6 D.1,2,3,5,6 【考点】W4:中位数;W1:算术平均数.【分析】根据平均数和中位数的概念列出算式,再进行计算即可.【解答】解:A、平均数=(1+2+3+4+5)÷5=3;把数据按从小到大的顺序排列:1,2,3,4,5,中位数是3,故选项正确;B、平均数=(1+3+4+5+6)÷5=3.8;把数据按从小到大的顺序排列:1,3,4,5,6,中位数是4,故选项错误;C、平均数=(1+2+4+5+6)÷5=3.6;把数据按从小到大的顺序排列:1,2,4,5,6,中位数是4,故选项错误;D、平均数=(1+2+3+5+6)÷5=3.4;把数据按从小到大的顺序排列:1,2,3,5,6,中位数是3,故选项错误.故选:A.【点评】此题考查了中位数与平均数,平均数是指在一组数据中所有数据之和再除以数据的个数.找中位数的时候一定要先按大小排好顺序,然后再根据奇数和偶数个来确定中位数.如果数据有奇数个,则正中间的数字即为所求;如果是偶数个,则找中间两位数的平均数.4.二次函数y=﹣(x﹣2)2﹣3的图象的顶点坐标是()A.(2,3) B.(2,﹣3)C.(﹣2,3)D.(﹣2,﹣3)【考点】H3:二次函数的性质.【分析】根据题目中函数的解析式直接得到此二次函数的顶点坐标.【解答】解:∵y=﹣(x﹣2)2﹣3,∴二次函数y=﹣(x﹣2)2﹣3的图象的顶点坐标是(2,﹣3)故选B.【点评】本题考查二次函数的性质,解题的关键是明确题意,找出所求问题需要的条件.5.以一个面积为1的三角形的三条中位线为三边的三角形的面积为()A.4 B.2 C.D.【考点】KX:三角形中位线定理.【分析】根据三角形的中位线定理得出两个三角形相似,即可得出结果.【解答】解:根据三角形中位线定理得:两个三角形相似,相似比为,面积比为,∴一个面积为1的三角形的三条中位线为三边的三角形的面积为;故选:C.【点评】本题主要考查了三角形中位线定理、相似三角形的判定与性质;熟练掌握三角形中位线定理是解决问题的关键.6.已知点A(4,0),B(0,3),如果⊙A的半径为1,⊙B的半径为6,则⊙A与⊙B的位置关系是()A.内切 B.相交 C.外切 D.外离【考点】MJ:圆与圆的位置关系;D5:坐标与图形性质.【分析】由点A(4,0),B(0,3),可求得AB的长,又由⊙A与⊙B的半径分别为:1与6,即可根据两圆位置关系与圆心距d,两圆半径R,r的数量关系间的联系得出两圆位置关系.【解答】解:∵点A(4,0),B,0,3),∴AB==5,∵⊙A与⊙B的半径分别为:1与6,∴半径差为:6﹣1=5,∴这两圆的位置关系是:内切.故选A.【点评】此题考查了圆与圆的位置关系.注意掌握两圆位置关系与圆心距d,两圆半径R,r 的数量关系间的联系是解此题的关键.二、填空题(本大题共12小题,每小题4分,共48分)7.计算:(x2)3= x6.【考点】47:幂的乘方与积的乘方.【分析】根据幂的乘方,底数不变,指数相乘,进行计算.【解答】解:原式=x2×3=x6.故答案为x6.【点评】此题考查了幂的乘方的性质.8.因式分解:x2﹣4y2= (x+2y)(x﹣2y).【考点】54:因式分解﹣运用公式法.【分析】直接运用平方差公式进行因式分解.【解答】解:x2﹣4y2=(x+2y)(x﹣2y).【点评】本题考查了平方差公式分解因式,熟记公式结构是解题的关键.平方差公式:a2﹣b2=(a+b)(a﹣b).9.不等式组的解集是﹣≤x<2 .【考点】CB:解一元一次不等式组.【分析】先求出不等式组中每一个不等式的解集,再求出它们的公共部分就是不等式组的解集.【解答】解:解不等式x﹣2<0,得:x<2,解不等式2x+1≥0,得:x≥﹣,∴不等式组的解集为﹣≤x<2,故答案为:﹣≤x<2.【点评】本题考查的是一元一次不等式组的解,解此类题目常常要结合数轴来判断.还可以观察不等式的解,若x>较小的数、<较大的数,那么解集为x介于两数之间.10.方程=2的解是x=或x=﹣.【考点】AG:无理方程.【分析】方程两边平方,整理后开方即可求出解.【解答】解:两边平方得:x2﹣2=4,解得:x=或x=﹣,经检验x=或x=﹣是原方程的解.故答案为:x=或x=﹣【点评】此题考查了无理方程,无理方程注意要检验.11.关于x的一元二次方程2x2﹣3x+m=0有两个相等的实数根,则实数m=.【考点】AA:根的判别式.【分析】直接利用根的判别式得出b2﹣4ac=9﹣8m=0,即可得出答案.【解答】解:∵关于x的一元二次方程2x2﹣3x+m=0有两个相等的实数根,∴b2﹣4ac=9﹣8m=0,解得:m=.故答案为:.【点评】此题主要考查了根的判别式,正确掌握判别式的符号是解题关键.12.某个工人要完成3000个零件的加工,如果该工人每小时能加工x个零件,那么完成这批零件的加工需要的时间是小时.【考点】32:列代数式.【分析】根据工作总量=工作时间×工作效率,计算即可得到结果.【解答】解:根据题意得:完成这批零件的加工需要的时间是小时,故答案为:【点评】此题考查了列代数式,弄清题意是解本题的关键.13.已知二次函数的图象经过点(1,3)和(3,3),则此函数图象的对称轴与x轴的交点坐标是(2,0).【考点】HA:抛物线与x轴的交点.【分析】直接利用二次函数的图象经过点(1,3)和(3,3),得出二次函数的对称轴,进而得出此函数图象的对称轴与x轴的交点坐标.【解答】解:∵二次函数的图象经过点(1,3)和(3,3),∴抛物线的对称轴为:x==2,故此函数图象的对称轴与x轴的交点坐标是:(2,0).故答案为:(2,0).【点评】此题主要考查了抛物线与x轴的交点,正确得出对称轴是解题关键.14.从1到10这10个正整数中任取一个,该正整数恰好是3的倍数的概率是.【考点】X4:概率公式.【分析】让1到10中3的倍数的个数除以数的总个数即为所求的概率.【解答】解:1到10中,3的倍数有3,6,9三个,所以正整数恰好是3的倍数的概率是,故答案为:.【点评】本题主要考查了概率公式,用到的知识点为:概率等于所求情况数与总情况数之比.15.正八边形一个内角的度数为135°.【考点】L3:多边形内角与外角.【分析】首先根据多边形内角和定理:(n﹣2)•180°(n≥3且n为正整数)求出内角和,然后再计算一个内角的度数.【解答】解:正八边形的内角和为:(8﹣2)×180°=1080°,每一个内角的度数为×1080°=135°.故答案为:135°.【点评】此题主要考查了多边形内角和定理,关键是熟练掌握计算公式:(n﹣2)•180 (n ≥3)且n为整数).16.在平面直角坐标系中,点A(2,0),B(0,﹣3),若=,则点C的坐标为(2,﹣3).【考点】LM:*平面向量;D1:点的坐标.【分析】根据平面向量的平行四边形的法则解答即可得.【解答】解:如图,∵=,∴过点A作y轴的平行线,过点B作x中的平行线,交于点C,则点C(2,﹣3),故答案为:(2,﹣3).【点评】本题主要考查平面向量,熟练掌握平面向量的平行四边形法则是解题的关键.17.如图,梯形ABCD中,AD∥BC,∠A=90°,它恰好能按图示方式被分割成四个全等的直角梯形,则AB:BC=:1 .【考点】LI:直角梯形;LH:梯形.【分析】如图连接EC,设AB=a,BC=b则CD=2b.只要证明∠D=60°,根据sin60°=,即可解决问题.【解答】解:如图连接EC,设AB=a,BC=b则CD=2b.由题意四边形ABCE是矩形,∴CE=AB=a,∠A=∠AEC=∠CED=90°,∵∠BCF=∠DCF=∠D,又∵∠BCF+∠DCF+∠D=180°,∴∠D=60°,∴sinD==,∴=,∴==,∴AB:BC=:1故答案为:1.【点评】本题考查直角梯形的性质,锐角三角函数等知识,解题的关键是理解题意,利用角相等这个信息解决问题,发现特殊角是解题的突破口,属于中考常考题型.18.如图,矩形ABCD,将它分别沿AE和AF折叠,恰好使点B,C落到对角线AC上点M,N 处,已知MN=2,NC=1,则矩形ABCD的面积是9+2.【考点】PB:翻折变换(折叠问题);LB:矩形的性质.【分析】由折叠的性质得,AB=AM,AN=AD,设AB=x,则AD=x+2,AC=x+3,根据勾股定理列方程即可得到结论.【解答】解:由折叠的性质得,AB=AM,AN=AD,∴AD﹣AB=AN﹣AM=MN=2,设AB=x,则AD=x+2,AC=x+3,∵四边形ABCD是矩形,∴∠D=90°,CD=AB,∴AD2+CD2=AC2,即(x+2)2+x2=(x+3)2,∴x=1+(负值舍去),∴AB=1+,AD=3+,∴S矩形ABCD=(1+)(3+)=9+2;故答案为:9+2.【点评】本题主要考查了折叠的性质、矩形的性质、勾股定理等,综合运用各定理是解答此题的关键.三、解答题(本大题共7小题,共78分)19.(10分)(2017•黄浦区二模)计算:(﹣1)0+|﹣2|+()﹣1﹣2sin30°.【考点】79:二次根式的混合运算;6E:零指数幂;6F:负整数指数幂;T5:特殊角的三角函数值.【分析】利用零指数幂、负整数指数幂和特殊角的三角函数值进行计算.【解答】解:原式=1+2﹣+﹣2×=2﹣++1﹣1=2.【点评】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.20.(10分)(2017•黄浦区二模)解分式方程:.【考点】B3:解分式方程.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:(x+2)2﹣16=x﹣2,整理得:x2+3x﹣10=0,即(x﹣2)(x+5)=0,解得:x=2或x=﹣5,经检验x=2是增根,分式方程的解为x=﹣5.【点评】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.21.(10分)(2017•黄浦区二模)如图,在△ABC中,∠ACB=90°,∠A=15°,D是边AB 的中点,DE⊥AB交AC于点E.(1)求∠CDE的度数;(2)求CE:EA.【考点】KO:含30度角的直角三角形;KP:直角三角形斜边上的中线.【分析】(1)根据直角三角形斜边上中线得出CD=AD=BD,求出∠DCA=∠A=15°,求出∠BDC=∠A+∠DCA=30°,即可得出答案;(2)根据线段垂直平分线性质求出BE=AE,求出CE和BE的比,即可得出答案.【解答】解:(1)∵在△ABC中,∠ACB=90°,D是边AB的中点,∴CD=AD=BD,∴∠DCA=∠A,∵∠A=15°,∴∠DCA=15°,∴∠BDC=∠A+∠DCA=30°,∵ED⊥AB,∴∠EDB=90°,∴∠CDE=90°﹣30°=60°;(2)连接BE,∵D为AB中点,DE⊥AB,∴BE=AE,∴∠EBA=∠A=15•,∴∠BEC=15°+15°=30°,∴cos30°=,∵AE=BE,∴=.【点评】本题考查了直角三角形斜边上中线性质,线段垂直平分线性质,解直角三角形等知识点,能综合运用知识点进行推理是解此题的关键.22.(10分)(2017•黄浦区二模)小明家买了一台充电式自动扫地机,每次完成充电后,在使用时扫地机会自动根据设定扫地时间,来确定扫地的速度(以使每次扫地结束时尽量把所储存的电量用完),如图是“设定扫地时间”与“扫地速度”之间的函数图象(线段AB),其中设定扫地时间为x分钟,扫地速度为y平方分米/分钟.(1)求y关于x的函数解析式;(2)现在小明需要扫地机完成180平方米的扫地任务,他应该设定的扫地时间为多少分钟?【考点】FH:一次函数的应用.【分析】(1)设AB的解析式为y=kx+b,把A(20,500),B(100,100)代入解方程组即可.(2)设他应该设定的扫地时间为x分钟.由题意=﹣5x+600,解方程即可.【解答】解:(1)设AB的解析式为y=kx+b,把A(20,500),B(100,100)代入得到,解得,∴y=﹣5x+600.(2)设他应该设定的扫地时间为x分钟.由题意=﹣5x+600,整理得x2﹣120x+3600=0,∴x=60,经检验x=60是分式方程的解.∴他应该设定的扫地时间为60分钟.【点评】本题考查一次函数的应用、分式方程的解等知识,解题的关键是熟练掌握待定系数法确定函数解析式,学会构建方程解决实际问题,注意解分式方程必须检验.23.(12分)(2017•黄浦区二模)如图,菱形ABCD,以A为圆心,AC长为半径的圆分别交边BC,DC,AB,AD于点E,F,G,H.(1)求证:CE=CF;(2)当E为弧中点时,求证:BE2=CE•CB.【考点】S9:相似三角形的判定与性质;L8:菱形的性质;M5:圆周角定理.【分析】(1)连接AE,AF,由四边形ABCD是菱形,得到∠ACB=∠ACF,根据等腰三角形的性质得到∠AEC=∠ACE=∠ACF=∠AFC,推出∠EAC=∠FAC,即可得到结论;(2)由E为弧中点,得到∠CAE=∠BAE,根据等腰三角形的性质和三角形的外角的性质得到∠ACE=∠AEC=∠BAC=∠B+∠BAE,得到BE=AE=AC,根据相似三角形的性质即可得到结论.【解答】(1)证明:连接AE,AF,∵四边形ABCD是菱形,∴∠ACB=∠ACF,∵AE=AC=AF,∴∠AEC=∠ACE=∠ACF=∠AFC,∴∠EAC=180°﹣∠AEC﹣∠ACE,∠CAF=180°﹣∠ACF﹣∠AFC,∴∠EAC=∠FAC,∴,∴CE=CF;(2)解:∵E为弧中点,∴∠CAE=∠BAE,∵AB=BC,AE=AC,∴∠ACE=∠AEC=∠BAC=∠B+∠BAE,∴∠B=∠BAE,∴BE=AE=AC,∴△ABC∽△CAE,∴,∴AC2=BC•CE,即BE2=CE•CB.【点评】本题考查了相似三角形的判定和性质,菱形的性质,圆心角,弧,弦的关系,正确的作出辅助线是解题的关键.24.(12分)(2017•黄浦区二模)如图,点A在函数y=(x>0)图象上,过点A作x轴和y轴的平行线分别交函数y=图象于点B,C,直线BC与坐标轴的交点为D,E.(1)当点C的横坐标为1时,求点B的坐标;(2)试问:当点A在函数y=(x>0)图象上运动时,△ABC的面积是否发生变化?若不变,请求出△ABC的面积,若变化,请说明理由.(3)试说明:当点A在函数y=(x>0)图象上运动时,线段BD与CE的长始终相等.【考点】GB:反比例函数综合题.【分析】(1)由条件可先求得A点坐标,从而可求得B点纵坐标,再代入y=可求得B点坐标;(2)可设出A点坐标,从而可表示出C、B的坐标,则可表示出AB和AC的长,可求得△ABC 的面积;(3)可证明△ABC∽△EFC,利用(2)中,AB和AC的长可表示出EF,可得到BG=EF,从而可证明△DBG≌△CFE,可得到DB=CF.【解答】解:(1)∵点C在y=的图象上,且C点横坐标为1,∴C(1,1),∵AC∥y轴,AB∥x轴,∴A点横坐标为1,∵A点在函数y=(x>0)图象上,∴A(1,4),∴B点纵坐标为4,∵点B在y=的图象上,∴B点坐标为(,4);(2)设A(a,),则C(a,),B(,),∴AB=a﹣=a,AC=﹣=,∴S△ABC=AB•AC=××=,即△ABC的面积不发生变化,其面积为;(3)如图,设AB的延长线交y轴于点G,AC的延长线交x轴于点F,∵AB∥x轴,∴△ABC∽△EFC,∴=,即=,∴EF=a,由(2)可知BG=a,∴BG=EF,∵AE∥y轴,∴∠BDG=∠FCE,在△DBG和△CFE中∴△DBG≌△CEF(AAS),∴BD=EF.【点评】本题为反比例函数的综合应用,涉及函数图象的交点、平行线的性质、三角形的面积、相似三角形的判定和性质、全等三角形的判定和性质等知识.要(1)中求得A点坐标是解题的关键,在(2)中用a表示出AB、AC的长是解题的关键,在(3)中证得BG=EF,构造三角形全等是解题的关键.本题考查知识点较多,综合性较强,难度适中.25.(14分)(2017•黄浦区二模)已知:Rt△ABC斜边AB上点D,E,满足∠DCE=45°.(1)如图1,当AC=1,BC=,且点D与A重合时,求线段BE的长;(2)如图2,当△ABC是等腰直角三角形时,求证:AD2+BE2=DE2;(3)如图3,当AC=3,BC=4时,设AD=x,BE=y,求y关于x的函数关系式,并写出定义域.【考点】KY:三角形综合题.【分析】(1)如图1,根据勾股定理得到AB=2,过B作BF∥AC交CE的延长线于F,得到∠F=∠ACE,根据相似三角形的性质即可得到结论;(2)作AF⊥AB,使AF=BE,连接DF,根据SAS证得△CAF≌△CBE和△CDF≌△CDE,再由勾股定理和等量代换即可解答;(3)如图3,作△BCE≌△FCE,△GCD≌△ACD,延长DG交EF于H,由∠HFG=∠B,∠HGF=∠CGD=∠A,∠A+∠B=90°,得到∠DHF=90°,根据勾股定理即可得到结论.【解答】解:(1)如图1,∵∠ACB=90°,BC=,AC=1,∴AB=2,过B作BF∥AC交CE的延长线于F,∴∠F=∠ACE,∵∠BCA=90°,∠DCE=45°,∴∠BCE=∠DCE,∴∠BCE=∠F,∴BF=BC=,∵△BEF∽△AEC,∴=,∴BE=2﹣;(2)证明:过点A作AF⊥AB,使AF=BE,连接DF,CF,∵在△ABC中,AC=BC,∠ACB=90°,∴∠CAB=∠B=45°,∴∠FAC=45°,∴△CAF≌△CBE(SAS),∴CF=CE,∠ACF=∠BCE,∵∠ACB=90°,∠DCE=45°,∴∠ACD+∠BCE=∠ACB﹣∠DCE=90°﹣45°=45°,∵∠ACF=∠BCE,∴∠ACD+∠ACF=45°,即∠DCF=45°,∴∠DCF=∠DCE,又∵CD=CD,∴△CDF≌△CDE(SAS),∴DF=DE,∵AD2+AF2=DF2,∴AD2+BE2=DE2;(3)如图3,作△BCE≌△FCE,△GCD≌△ACD,延长DG交EF于H,∵∠HFG=∠B,∠HGF=∠CGD=∠A,∠A+∠B=90°,∴∠DHF=90°,∵FG=1,∠B=∠F,∴HF=,HG=,∵EH2+HD2=ED2,∴(y﹣)2+(x+)2=(5﹣x﹣y)2,∴y=(0≤x≤).【点评】本题属于三角形综合题,主要考查了相似三角形的判定与性质,等腰三角形的性质,勾股定理以及解直角三角形的综合应用,解决问题的关键是中辅助线构造直角三角形,根据勾股定理以及面积法进行求解.。
《易错题》人教版初中七年级数学上册第三章《一元一次方程》模拟测试题(有答案解析)(2)
一、选择题1.(0分)[ID :68191]某地为了打造千年古镇旅游景点,将修建一条长为3600m 的旅游大道.此项工程由A 、B 两个工程队接力完成,共用时20天.若A 、B 两个工程队每天分别能修建240m 、160m ,设A 工程队修建此项工程xm ,则可列方程为( ) A .360020240160x x -+= B .360020160240x x-+= C .360020160240x x+-=D .360020160240x x--= 2.(0分)[ID :68190]从甲地到乙地,某人步行比乘公交车多用3.6小时,已知步行速度为每小时8千米,公交车的速度为每小时40千米,设甲乙两地相距x 千米,可列方程( ) A .408 3.6x x -= B .4083.6x=- C .3.6840x x -= D .3.6408x x-= 3.(0分)[ID :68183]某商贩在一次买卖中,以每件135元的价格卖出两件衣服,其中一件盈利25%,另一件亏损25%,在这次买卖中,该商贩( )A .不赔不赚B .赚9元C .赔18元D .赚18元4.(0分)[ID :68168]下列变形中,正确的是( )A .变形为B .变形为C .变形为D .变形为5.(0分)[ID :68256]下列各题正确的是( ) A .由743x x =-移项得743x x -= B .由213132x x --=+去分母得()()221133x x -=+- C .由()()221331x x ---=去括号得42391x x ---= D .由()217x x +=+去括号、移项、合并同类项得5x = 6.(0分)[ID :68244]已知a=2b ,则下列选项错误的是( ) A .a+c=c+2bB .a ﹣m=2b ﹣mC .2ab = D .2ab= 7.(0分)[ID :68243]一个两位数,十位上的数比个位上的数的3倍大1,个位上的数与十位上的数的和等于9,这个两位数是( ) A .54B .72C .45D .628.(0分)[ID :68234]如图,长方形ABCD 中,AB 3cm =,BC 2cm =,点P 从A 出发,以1cm/s的速度沿A B C→→运动,最终到达点C,在点P运动了3秒后点Q开始以2cm/s的速度从D运动到A,在运动过程中,设点P的运动时间为t,则当APQ△的面积为22cm时,t的值为()A.2或103B.2或113C.1或103D.1或1339.(0分)[ID:68225]我国古代名著《九章算术》中有一题“今有凫起南海,七日至北海;雁起北海,九日至南海.今凫雁俱起,问何日相逢?”(凫:野鸭)设野鸭与大雁从北海和南海同时起飞,经过x天相遇,可列方程为()A.(9﹣7)x=1 B.(9+7)x=1 C.11()179x-=D.11()179x+=10.(0分)[ID:68219]如图,正方ABCD形的边长是2个单位,一只乌龟从A点出发以2个单位/秒的速度顺时针绕正方形运动,另有一只兔子也从A点出发以6个单位/秒的速度逆时针绕正方形运动,则第2020次相遇在()A.点A B.点B C.点C D.点D11.(0分)[ID:68214]某种高端品牌的家用电器,若按标价打八折销售该电器一件,则可获纯利润500元,其利润率为20%,则该电器的标价为()A.3750元B.4000元C.4250元D.3500元12.(0分)[ID:68213]佳佳的压岁钱由爸爸存入某村镇银行,当年年利率为1.5%,一年后取出时得到本息和为4060元,则佳佳的压岁钱是()A.2060元B.3500元C.4000元D.4100元13.(0分)[ID:68211]下列方程的变形,符合等式的性质的是()A.由2x﹣3=7,得2x=7﹣3B.由3x﹣2=x+1,得3x﹣x=1﹣2C.由﹣2x=5,得x=﹣3D.由﹣13x=1,得x=﹣314.(0分)[ID:68209]某个体商贩在一次买卖中同时卖出两件上衣,每件售价均为135元,若按成本计算,其中一件盈利25%,一件亏本25%,则在这次买卖中他( )A.不赚不赔B.赚9元C.赔18元D.赚18元15.(0分)[ID:68177]已知代数式2x-6与3+4x的值互为相反数,那么x的值等于()A.2 B.12C.-2 D.1-2二、填空题16.(0分)[ID:68352]学校组织一次数学知识竞赛,共有20道题,每一题答对得5分,答错或不答都倒扣1分,小明最终得到76分,那么他答对了______道题.17.(0分)[ID:68348]若关于x的方程2x+a=9﹣a(x﹣1)的解是x=3,则a的值为_____.18.(0分)[ID:68332]购买某原料有如下优惠方案:①一次性购买金额不超过1万元不享受优惠;②一次性购买金额超过1万元但不超过3万元给予9折优惠;③一次性购买金额超过3万元,其中3万元给予9折优惠,超过部分给予7折优惠.(1)若某人购该原料付款9900元,则他购买的原料原价是________元;(2)某人分两次购买该原料,第1次付款8000元,第2次付款25200元,若他一次性购买同样数量的原料,可比分两次购买少付________元.19.(0分)[ID:68326]一条船顺流航行,每小时行驶20千米;逆流航行,每小时行驶16千米若水的流速与船在静水中的速度都是不变的,则轮船在静水中的速度为______________千米/小时.20.(0分)[ID:68304]日历中同一竖列相邻三个数的和是63,则这三个数分别是______________.21.(0分)[ID:68299]有一旅客携带了30公斤行李从重庆江北国际机场乘飞机去武汉,按民航规定,旅客最多可免费携带20公斤行李,超重部分每公斤按飞机票价格的1.5%购买行李票,现该旅客购买了120元的行李票,则他的飞机票价格是______.22.(0分)[ID:68298]一批玩具,如果3个小朋友玩1个,还剩2个玩具;如果2个小朋友玩1个,还有9人没有分到玩具.若设有x个玩具,根据题意可列方程______.23.(0分)[ID:68288]解方程:12 25y y-+=.解:去分母,得____________.去括号,得______________.移项,得_______________.合并同类项,得______________.方程两边同除以3,得_______________.24.(0分)[ID:68281]完成下面的填空:一家商店将某种服装按成本价提高40%后标价,又以八折(即按标价的80%)优惠卖出,结果每件仍获利15元,这种服装每件的成本是多少元?我们知道,每件商品的利润是商品售价与商品成本价的差,如果设每件服装的成本价为x 元,那么每件服装的标价为_________元;每件服装的实际售价为___________元;每件服装的利润为____________元.由此,列出方程_________________.解这个方程,得x=______________.因此每件服装的成本价是___________元.25.(0分)[ID :68277]把方程|21|5x -=化成两个一元一次方程是___________________. 26.(0分)[ID :68264]有一位工人师傅要锻造底面直径为40cm 的“矮胖”形圆柱,可他手上只有底面直径是10cm 、高为80cm 的“瘦长”形圆柱,若不计损耗,则锻造出的“矮胖”形圆柱的高为________.27.(0分)[ID :68261]某商品按标价八折出售仍能盈利b 元,若此商品的进价为a 元,则该商品的标价为_________元.(用含a ,b 的代数式表示).三、解答题28.(0分)[ID :68423]解方程: (1)3(26)17x x +=--; (2)4(2)13(1)x x --=-; (3)4(1)5(3)11x x +--=; (4)14(1)(26)112x x --+=. 29.(0分)[ID :68409]阅读下列解题过程,指出它错在哪一步?为什么?2(1)13(1)1x x --=--.两边同时加上1,得2(1)3(1)x x -=-.第一步 两边同时除以(1)x -,得23=.第二步 所以原方程无解.第三步30.(0分)[ID :68377]一种商品每件成本a 元,按成本增加22%标价. (1)每件标价多少元?(2)由于库存积压,实际按标价的九折出售,每件是盈利还是亏损?盈利或亏损多少元?【参考答案】2016-2017年度第*次考试试卷 参考答案**科目模拟测试一、选择题 1.A 2.C 3.C 4.B5.D6.D7.B8.A9.D10.A11.A12.C13.D14.C15.B二、填空题16.16【分析】由题意可知小明的得分=答对题目的得分-答错或不答所扣的分据此列方程求解即可【详解】解:设小明答对了x道题则答错或没答的题有(20-x)道由题意得5x-(20-x)=76解得x=16故答案17.【分析】把x=3代入方程即可二次一个关于a的方程求出方程的解即可【详解】解:将x=3代入方程2x+a=9-a(x-1)得:6+a=9-2a解得:a=1故答案为:1【点睛】本题考查了解一元一次方程和一18.9900或110002000【分析】(1)分两种情况讨论可求解;(2)设第2次原料款为x 元列出方程可求x的值可求两次原料款总额由③方案可求一次性购买同样数量的原料的付款金额即可求解【详解】(1)9919.18【分析】设轮船在静水中的速度为千米小时则水流速度为千米小时由逆水速度静水速度水流速度列出方程可求解【详解】解:设轮船在静水中的速度为千米小时则水流速度为千米小时由题意可得:解得:轮船在静水中的速20.142128【分析】根据日历同一竖列相邻三个数依次相差7的关系设中间的数为x则上面的为x-7下面的是x+7然后根据题意列出方程求解进一步计算即可【详解】设中间的数为x则上面的为x-7下面的是x+7则21.800元【分析】该题目中的等量关系:该旅客购买的行李票=飞机票价格×15×超重公斤数根据题意列方程求解【详解】设他的飞机票价格是x元可列方程x⋅15×(30−20)=120解得:x=800则他的飞机22.【解析】【分析】依据题意分析可得等量关系:两总分法实际上球的个数不变【详解】解:若设有个玩具由题意得【点睛】本题考查了一元一次方程的应用解答本题的关键是读懂题意找出等量关系列方程求解23.Y=3【解析】【分析】根据解一元一次方程的法则对应各个步骤即可【详解】去分母得5(y-1)=2(y+2)去括号得5y-5=2y+4移项得5y-2y=5+4合并同类项得3y=9系数化为1得y=3;【点24.【解析】【分析】根据题意可得每件衣服的标价售价利润关于x的代数式根据售价-标价=利润列出方程求解即可【详解】每件服装的标价为:(1+40)x每件服装的实际售价为:(1+40)x×80每件服装的利润为25.【解析】【分析】数轴上表示数的点到原点的距离叫做这个数的绝对值根据绝对值的性质可得一个数的绝对值是5则这个数是5或-5【详解】根据绝对值的性质将方程方程化成两个一元一次方程是故答案为:【点睛】本题主26.5cm【分析】设矮胖形圆柱的高是xcm根据锻造前后圆柱体积相等建立方程求解即可【详解】解:设矮胖形圆柱的高是xcm由题意得π×80=πx解得:x=5故答案为5cm【点睛】本题考查一元一次方程的应用熟27.【解析】【分析】首先设标价x元由题意得等量关系:标价×打折﹣利润=进价代入相应数值再求出x的值【详解】设标价x元由题意得:80x﹣b=a解得:x=故答案为:【点睛】此题主要考查了列代数式解决问题的关三、解答题28.29.30.2016-2017年度第*次考试试卷参考解析【参考解析】**科目模拟测试一、选择题 1.A 解析:A 【分析】根据A 工程队修建此项工程xm ÷修建速度+B 工程队修建此项工程(3600-x )m÷修建速度= 20天.列出方程即可. 【详解】设A 工程队修建此项工程xm ,则B 工程队修建此项工程(3600-x )m ,由题意,得360020240160x x -+= 故选:A . 【点睛】此题考查一元一次方程的应用,找出合适的等量关系是解题的关键.2.C解析:C 【分析】本题中的相等关系是:步行从甲地到乙地所用时间-乘车从甲地到乙地的时间=3.6小时,据此列方程即可. 【详解】解:设甲乙两地相距x 千米,根据等量关系列方程得: 3.6840x x -= 故选:C. 【点睛】列方程解应用题的关键是找出题目中的相等关系.3.C解析:C 【分析】设盈利上衣成本x 元,亏本上衣成本y 元,由题意得:135-x=25%x;y-135=25%y ;求出成本可得. 【详解】设盈利上衣成本x 元,亏本上衣成本y 元,由题意得 135-x=25%x y-135=25%y解方程组,得x=108元,y=180元 135+135-108-180=-18 亏本18元 故选:C 【点睛】考核知识点:一元一次方程的运用.理解题意,列出方程是关键.4.B解析:B 【解析】 【分析】利用等式的性质对每个等式进行变形即可找出答案. 【详解】A. 根据等式性质1,2x+6=0两边同时减去6,即可得到2x=−6;故选项错误.B. 根据等式性质2, 两边同时乘以2,即可得到x+3=4+2x ;故选项正确.C. 根据等式性质2, 两边都除以−2,应得到x−4=−1,故选项错误;D. 根据等式性质2, 两边同时乘以2,即可得到−x−1=1;故选项错误.故选B. 【点睛】本题考查解一元一次方程,熟练掌握计算法则是解题关键.5.D解析:D 【分析】根据解一元一次方程的步骤计算,并判断. 【详解】A 、由743x x =-移项得743x x -=-,故错误;B 、由213132x x --=+去分母得()()221633x x -=+-,故错误; C 、由()()221331x x ---=去括号得42391x x --+=,故错误; D 、由()217x x +=+去括号得:227x x +=+, 移项、合并同类项得5x =,故正确. 故选:D . 【点睛】本题主要考查了一元一次方程的解法,注意移项要变号,但没移的不变;去分母时,常数项也要乘以分母的最小公倍数;去括号时,括号前是“-”号的,括号里各项都要变号.6.D解析:D 【分析】根据等式的性质判断即可. 【详解】解:A 、因为a=2b ,所以a+c=c+2b ,正确; B 、因为a=2b ,所以a-m=2b-m ,正确;C 、因为a=2b ,所以2a=b ,正确; D 、因为a=2b ,当b≠0,所以ab=2,错误; 故选D . 【点睛】此题考查比例的性质,关键是根据等式的性质解答.7.B解析:B 【分析】首先设个位上的数为x ,则十位数字为()31x +,根据题意可得等量关系:十位上的数与个位上的数的和=9,列出方程,再解方程即可. 【详解】设个位上的数为x ,则十位数字为()31x +,由题意得: x +(3x +1)=9, 解得:x =2, 十位数字为:6+1=7, 这个两位数是:72. 故选:B. 【点睛】考查一元一次方程的应用,读懂题目,找出题目中的等量关系是解题的关键.8.A解析:A 【分析】首先分P 运动了3秒以内和3秒以后两种情况,分别结合速度和距离的关系列出等式,从而完成求解. 【详解】四边形ABCD 是矩形AD BC 2cm ∴==, 当点P 在AB 边时 AB 3cm =∴此时点Q 还在点D 处,AP t =∴APQ 12t 22S =⨯⨯=△ ∴t 2=;3秒后,点P 在BC 上 ∴()AQ 22t 3=--∴()APQ 1322t 322S ⎡⎤=⨯⨯--=⎣⎦△ ∴10t 3=∴当APQ △的面积为22cm 时,t 的值为2或103. 故选A . 【点睛】本题考察了矩形、一元一次方程、三角形面积计算等知识;求解的关键是熟练掌握矩形、一元一次方程的性质,并运用到实际问题的求解过程中,即可得到答案.9.D解析:D 【分析】直接根据题意得出野鸭和大雁的飞行速度,进而利用它们相向而行何时相逢进而得出等式. 【详解】解:设野鸭大雁与从北海和南海同时起飞,经过x 天相遇, 可列方程为:11()179x +=. 故选D . 【点睛】此题主要考查了由实际问题抽象出一元一次方程,正确表示出每天飞行的距离是解题关键.10.A解析:A 【分析】设运动x 秒后,乌龟和兔子第2020次相遇,根据路程=速度×时间,即可得出关于x 的一元一次方程,解之即可得出x 的值,将其代入2x 中可求出乌龟运动的路程,再结合正方形的周长,即可得出乌龟和兔子第2020次相遇点. 【详解】解:设运动x 秒后,乌龟和兔子第2020次相遇, 依题意,得:2x +6x =2×4×2020,解得:x =2020, ∴2x =4040.又∵4040÷(2×4)=505,505为整数, ∴乌龟和兔子第2020次相遇在点A . 故选:A . 【点睛】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.11.A【分析】先根据利润=20%×成本,设未知数解方程求出成本,再用售价÷8折=标价解答即可.【详解】解:设该电器的成本为x 元.依题意,得50020%x =,解得2500x =.所以该电器的标价为(2500500)0.83750+÷=(元).故选:A .【点睛】本题考查了一元一次方程的应用,属于常考题型,正确理解题意、找准相等关系是解题的关键.12.C解析:C【分析】设佳佳的压岁钱是x 元,根据利息本金之和为4120元,列方程求解即可.【详解】设佳佳的压岁钱是x 元.根据题意,得(1 1.5%)4060x +=,解得4000x =.故选C .【点睛】本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.13.D解析:D【分析】根据等式的基本性质对各选项进行逐一分析即可.【详解】A .∵2x ﹣3=7,∴2x=7+3,故本选项错误;B .∵3x ﹣2=x+1,∴3x ﹣x=1+2,故本选项错误;C .∵﹣2x=5,∴x=﹣52,故本选项错误; D .∵﹣13x=1,∴x=﹣3,故本选项正确. 故选D .【点睛】考核知识点:等式基本性质.理解等式基本性质的内容是关键.14.C解析:C【分析】要知道赔赚,就要先算出两件衣服的原价,要算出原价就要先设出未知数,然后根据题中的等量关系列方程求解.解:设在这次买卖中原价都是x,则可列方程:(1+25%)x=135,解得:x=108,比较可知,第一件赚了27元;第二件可列方程:(1﹣25%)x=135,解得:x=180,比较可知亏了45元,两件相比则一共亏了45﹣27=18元.故选:C.【点睛】此题考查了一元一次方程的应用,解题的关键是明白盈利与亏本的含义,准确列出计算式,计算结果,难度一般.15.B解析:B【分析】根据题意列出方程,求出方程的解即可得到x的值.【详解】解:根据题意得:2x-6+3+4x=0移项合并得:6x=3,解得:x=12,故选:B.【点睛】本题考查解一元一次方程,以及相反数,熟练掌握运算法则是解本题的关键.二、填空题16.16【分析】由题意可知小明的得分=答对题目的得分-答错或不答所扣的分据此列方程求解即可【详解】解:设小明答对了x道题则答错或没答的题有(20-x)道由题意得5x-(20-x)=76解得x=16故答案解析:16【分析】由题意可知,小明的得分=答对题目的得分-答错或不答所扣的分,据此列方程求解即可.【详解】解:设小明答对了x道题,则答错或没答的题有(20-x)道,由题意得5x-(20-x)=76,解得x=16.故答案为:16.本题考查了一元一次方程的应用,解答本题的关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.17.【分析】把x=3代入方程即可二次一个关于a 的方程求出方程的解即可【详解】解:将x=3代入方程2x+a=9-a (x-1)得:6+a=9-2a 解得:a=1故答案为:1【点睛】本题考查了解一元一次方程和一解析:【分析】把x=3代入方程,即可二次一个关于a 的方程,求出方程的解即可.【详解】解:将x=3代入方程2x+a=9-a (x-1),得:6+a=9-2a ,解得:a=1,故答案为:1.【点睛】本题考查了解一元一次方程和一元一次方程的解的应用,能得出关于a 的一元一次方程是解此题的关键.18.9900或110002000【分析】(1)分两种情况讨论可求解;(2)设第2次原料款为x 元列出方程可求x 的值可求两次原料款总额由③方案可求一次性购买同样数量的原料的付款金额即可求解【详解】(1)99解析:9900或11000 2000.【分析】(1)分两种情况讨论,可求解;(2)设第2次原料款为x 元,列出方程可求x 的值,可求两次原料款总额,由③方案可求一次性购买同样数量的原料的付款金额,即可求解.【详解】(1)9900或11000若购买金额不超过1万元,则购买的原料原价为9900元;若购买金额超过1万元但不超过3万元,则99000.911000÷=(元).故答案为:9900或11000.(2)2000设第2次原料原价为x 元.根据题意,可得0.925200x =,解得28000x =.所以两次原料总价为28000800036000+=(元),按照方案③,一次性购买同样数量的原料付款为(3000090%)600070%31200⨯+⨯=(元),所以一次性购买同样数量的原料可比分两次购买少付800025200312002000+-=(元)【点睛】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键. 19.18【分析】设轮船在静水中的速度为千米小时则水流速度为千米小时由逆水速度静水速度水流速度列出方程可求解【详解】解:设轮船在静水中的速度为千米小时则水流速度为千米小时由题意可得:解得:轮船在静水中的速 解析:18【分析】设轮船在静水中的速度为x 千米/小时,则水流速度为(20)x -千米/小时,由逆水速度=静水速度-水流速度,列出方程,可求解.【详解】解:设轮船在静水中的速度为x 千米/小时,则水流速度为(20)x -千米/小时, 由题意可得:(20)16x x --=,解得:18x =,∴轮船在静水中的速度为18千米/小时,故答案为:18.【点睛】本题考查了一元一次方程的应用,解答本题的关键是读懂题意,设出未知数,掌握公式:顺水速度=静水速度+水流速度,逆水速度=静水速度-水流速度.20.142128【分析】根据日历同一竖列相邻三个数依次相差7的关系设中间的数为x 则上面的为x-7下面的是x+7然后根据题意列出方程求解进一步计算即可【详解】设中间的数为x 则上面的为x-7下面的是x+7则解析:14,21,28【分析】根据日历同一竖列相邻三个数依次相差7的关系设中间的数为x ,则上面的为x-7,下面的是x+7,然后根据题意列出方程求解进一步计算即可.【详解】设中间的数为x ,则上面的为x-7,下面的是x+7,则:77x x x -+++=63,解得:21x =,∴其余两个数为:14,28.所以答案为14,21,28.【点睛】本题主要考查了一元一次方程的实际运用,掌握日历中竖列相邻数的排列关系是解题关键. 21.800元【分析】该题目中的等量关系:该旅客购买的行李票=飞机票价格×15×超重公斤数根据题意列方程求解【详解】设他的飞机票价格是x 元可列方程x ⋅15×(30−20)=120解得:x=800则他的飞机解析:800元【分析】该题目中的等量关系:该旅客购买的行李票=飞机票价格×1.5%×超重公斤数,根据题意列方程求解.【详解】设他的飞机票价格是x 元,可列方程x ⋅1.5%×(30−20)=120解得:x=800则他的飞机票价格是800元.故答案为:800.【点睛】此题考查一元一次方程的应用,解题关键在于理解题意列出方程.22.【解析】【分析】依据题意分析可得等量关系:两总分法实际上球的个数不变【详解】解:若设有个玩具由题意得【点睛】本题考查了一元一次方程的应用解答本题的关键是读懂题意找出等量关系列方程求解解析:3(2)29x x -=+【解析】【分析】依据题意分析,可得等量关系: 两总分法实际上球的个数不变.【详解】解:若设有x 个玩具,由题意得,3(2)29x x -=+【点睛】本题考查了一元一次方程的应用,解答本题的关键是读懂题意,找出等量关系,列方程求解.23.Y=3【解析】【分析】根据解一元一次方程的法则对应各个步骤即可【详解】去分母得5(y-1)=2(y+2)去括号得5y-5=2y+4移项得5y-2y=5+4合并同类项得3y=9系数化为1得y=3;【点解析:5(1)2(2)y y -=+, 5524y y -=+, 5254y y -=+, 39y =, Y=3【解析】【分析】根据解一元一次方程的法则,对应各个步骤即可.【详解】去分母,得5(y-1)=2(y+2),去括号,得5y-5=2y+4,移项,得5y-2y=5+4,合并同类项,得3y=9,系数化为1,得y=3;【点睛】本题考查解一元一次方程,熟练掌握计算法则是解题关键.24.【解析】【分析】根据题意可得每件衣服的标价售价利润关于x 的代数式根据售价-标价=利润列出方程求解即可【详解】每件服装的标价为:(1+40)x 每件服装的实际售价为:(1+40)x×80每件服装的利润为解析:(140%)x + (140%)80%x +⋅ (140%)80%x x +⋅-(140%)80%15x x +⋅-= 125 125【解析】【分析】根据题意可得每件衣服的标价、售价、利润关于x 的代数式,根据售价-标价=利润列出方程求解即可.【详解】每件服装的标价为:(1+40%)x ,每件服装的实际售价为:(1+40%)x×80%,每件服装的利润为:(1+40%)x×80%−x ,列出方程:(1+40%)x×80%−x=15,解方程得:x=125,因此每件服装的成本价是125元.【点睛】此题考查一元一次方程的应用,解题关键在于理解题意找出等量关系.25.【解析】【分析】数轴上表示数的点到原点的距离叫做这个数的绝对值根据绝对值的性质可得一个数的绝对值是5则这个数是5或-5【详解】根据绝对值的性质将方程方程化成两个一元一次方程是故答案为:【点睛】本题主 解析:215x -=,215x -=-【解析】【分析】数轴上表示数的点到原点的距离叫做这个数的绝对值,根据绝对值的性质可得,一个数的绝对值是5,则这个数是5或-5.【详解】根据绝对值的性质,将方程方程|21|5x -=化成两个一元一次方程是215x -=,215x -=-,故答案为: 215x -=,215x -=-.【点睛】本题主要考查绝对值的基本性质,解决本题的关键是要熟练掌握绝对值的基本性质. 26.5cm 【分析】设矮胖形圆柱的高是xcm 根据锻造前后圆柱体积相等建立方程求解即可【详解】解:设矮胖形圆柱的高是xcm 由题意得π×80=πx 解得:x=5故答案为5cm 【点睛】本题考查一元一次方程的应用熟解析:5cm【分析】设“矮胖”形圆柱的高是xcm ,根据锻造前后圆柱体积相等建立方程求解即可.【详解】解:设“矮胖”形圆柱的高是xcm ,由题意得,210()2π×80=240()2πx , 解得:x=5.故答案为5cm .【点睛】本题考查一元一次方程的应用,熟练掌握并准确计算是解题的关键.27.【解析】【分析】首先设标价x 元由题意得等量关系:标价×打折﹣利润=进价代入相应数值再求出x 的值【详解】设标价x 元由题意得:80x ﹣b=a 解得:x=故答案为:【点睛】此题主要考查了列代数式解决问题的关 解析:5()4a b + 【解析】【分析】首先设标价x 元,由题意得等量关系:标价×打折﹣利润=进价,代入相应数值,再求出x 的值.【详解】设标价x 元,由题意得:80%x ﹣b=a ,解得:x=5()4a b +, 故答案为:5()4a b +. 【点睛】此题主要考查了列代数式,解决问题的关键是读懂题意,找到所求的量的等量关系,标价×打折﹣利润=进价.三、解答题28.(1)5x =-;(2)6x =;(3)8x =;(4)6x =【分析】(1)去括号,移项及合并同类项,系数化为1即可求解.(2)去括号,移项及合并同类项,系数化为1即可求解.(3)去括号,移项及合并同类项,系数化为1即可求解.(4)去括号,移项及合并同类项,系数化为1即可求解.【详解】(1)去括号,得61817x x +=--.移项及合并同类项,得735x =-.系数化为1,得5x =-.(2)去括号,得48133x x --=-.移项,得43381x x -=-++.合并同类项,得6x =.(3)去括号,得4451511x x +-+=.移项,得4511415x x -=--.合并同类项,得8x -=-.系数化为1,得8x =.(4)去括号,得44311x x ---=.移项,得41143x x -=++.合并同类项,得318x =.系数化为1,得6x =.【点睛】本题考查了解一元一次方程的问题,掌握解一元一次方程的方法是解题的关键. 29.第二步出错,见解析【分析】根据等式的基本性质判断即可.【详解】解题过程在第二步出错理由如下:等式两边不能同时除以1x -,1x -可能为0.【点睛】此题考查了等式的性质,熟练掌握等式的性质是解本题的关键.利用等式的性质2进行化简时,一定要注意等式两边不能同时除以一个可能为0的式子,否则容易导致类似本题中出现的错解.30.(1)1.22a ;(2)盈利0.098a【分析】(1)根据:标价=成本()122%⨯+,列出代数式,再进行整理即可;(2)根据:售价=标价0.9⨯,利润=售价-成本,列出代数式,即可得出答案.【详解】(1)∵每件成本a 元,原来按成本增加22%定出价格,∴每件售价为()122% 1.22a a +=(元);(2)现在售价:1.220.9 1.098a a ⨯=(元);每件还能盈利:1.0980.098a a a -=(元);∴实际按标价的九折出售,盈利0.098a (元)【点睛】本题考查了列代数式,解决问题的关键是读懂题意,找到等量关系,注意把列出的式子进行整理.。
《易错题》人教版初中七年级数学上册第四章《几何图形初步》模拟测试卷(有答案解析)(2)
一、选择题1.(0分)[ID :68656]给出下列各说法:①圆柱由3个面围成,这3个面都是平的;②圆锥由2个面围成,这2个面中,1个是平的,1个是曲的;③球仅由1个面围成,这个面是平的;④正方体由6个面围成,这6个面都是平的.其中正确的为( )A .①②B .②③C .②④D .③④ 2.(0分)[ID :68650]如图所示的四个几何体中,从正面、上面、左面看得到的平面图形都相同的有( )A .1个B .2个C .3个D .4个3.(0分)[ID :68646]有3块积木,每一块的各面都涂上不同的颜色,3块的涂法完全相同.现把它们摆放成不同的位置(如图),请你根据图形判断涂成绿色一面的对面涂的颜色是( )A .白B .红C .黄D .黑4.(0分)[ID :68630]如图,工作流程线上A 、B 、C 、D 处各有一名工人,且AB=BC=CD=1,现在工作流程线上安放一个工具箱,使4个人到工具箱的距离之和为最短,则工具箱安放的位置( )A .线段BC 的任意一点处B .只能是A 或D 处C .只能是线段BC 的中点E 处D .线段AB 或CD 内的任意一点处5.(0分)[ID :68605]已知柱体的体积V =S•h ,其中S 表示柱体的底面面积,h 表示柱体的高.现将矩形ABCD 绕轴l 旋转一周,则形成的几何体的体积等于( )A .2 r h πB .22?r h πC .23?r h πD .24?r h π6.(0分)[ID:68599]如果∠1的余角是∠2,并且∠1=2∠2,则∠1的补角为()A.30°B.60°C.120°D.150°7.(0分)[ID:68596]如图是正方体的展开图,则原正方体相对两个面上的数字和最小是()A.8B.7C.6D.48.(0分)[ID:68587]对于线段的中点,有以下几种说法:①若AM=MB,则M是AB的中点;②若AM=MB=12AB,则M是AB的中点;③若AM=12AB,则M是AB的中点;④若A,M,B在一条直线上,且AM=MB,则M是AB的中点.其中正确的是()A.①④B.②④C.①②④D.①②③④9.(0分)[ID:68584]一根直木棒长10厘米,棒上有刻度如图,若把它作为尺子,只测量一次,能测量的长度共有()A.7种B.6种C.5种D.4种10.(0分)[ID:68581]22°20′×8等于( ).A.178°20′B.178°40′C.176°16′D.178°30′11.(0分)[ID:68575]高速公路的建设带动我国经济的快速发展.在高速公路的建设中,通常要从大山中开挖隧道穿过,把道路取直,以缩短路程.这样做包含的数学道理是()A.两点确定一条直线B.两点之间,线段最短C.两条直线相交,只有一个交点D.直线是向两个方向无限延伸的12.(0分)[ID:68572]下列图形中,不可以作为一个正方体的展开图的是()A.B.C.D.13.(0分)[ID:68570]若射线OA与射线OB是同一条射线,下列画图正确的是()A.B.C.D.14.(0分)[ID:68560]把一张长方形的纸片按如图所示的方式折叠,EM,FM为折痕,C 点折叠后的C'点落在MB'的延长线上,则EMF∠的度数是()A .85°B .90°C .95°D .100°15.(0分)[ID :68558]下列说法不正确的是( )A .两条直线相交,只有一个交点B .两点之间,线段最短C .两点确定一条直线D .过平面上的任意三点,一定能作三条直线二、填空题16.(0分)[ID :68715]长为4,宽为2的矩形绕其一边旋转构成一个圆柱的最大体积为___ (结果保留π).17.(0分)[ID :68714]硬币在桌面上快速地转动时,看上去象球,这说明了_________________.18.(0分)[ID :68699]如图,直线AB ,CD 交于点O ,射线OM 平分,若,则等于________.19.(0分)[ID :68698]如图,共有_________条直线,_________条射线,_________条线段.20.(0分)[ID :68696]下午3:40时,时钟上分针与时针的夹角是_________度.21.(0分)[ID :68705]若A ,B ,C 三点在同一直线上,线段AB =21cm ,BC =10cm ,则A ,C 两点之间的距离是________.22.(0分)[ID :68683]把棱长为1cm 的四个正方体拼接成一个长方体,则在所得长方体中,表面积最大等于________2cm .23.(0分)[ID :68679]36.275︒=_____度______分______秒.24.(0分)[ID :68662]8点15分,时针与分针的夹角是______________。
甘肃省白银市靖远县中考数学二模试卷(含解析)-人教版初中九年级全册数学试题
2017年某某省某某市靖远县中考数学二模试卷一、选择题(本大题共10个小题,每小题3分,共30分)1.﹣的相反数是()A.2 B.﹣2 C.D.﹣2.宇宙现在的年龄约为200亿年,200亿用科学记数法表示为()×1011B.2×1010C.200×108D.2×1093.下列计算正确的是()A.x4+x4=x16B.(﹣2a)2=﹣4a2C.x7÷x5=x2D.m2•m3=m64.如图,直线a、b被直线c、d所截,若∠1=∠2,∠3=125°,则∠4的度数为()A.55° B.60° C.70° D.75°5.一个几何体的三视图如图所示,那么这个几何体是()A.圆锥 B.圆柱 C.长方体D.三棱柱6.沅江市近年来大力发展芦笋产业,某芦笋生产企业在两年内的销售额从20万元增加到80万元.设这两年的销售额的年平均增长率为x,根据题意可列方程为()A.20(1+2x)=80 B.2×20(1+x)=80 C.20(1+x2)=80 D.20(1+x)2=807.一元二次方程2x2+3x+1=0的根的情况是()A.有两个不相等的实数根 B.有两个相等的实数根C.没有实数根D.无法确定8.如图是二次函数y=ax2+bx+c(a≠0)图象的一部分,对称轴是直线x=﹣2.关于下列结论:①ab<0;②b2﹣4ac>0;③9a﹣3b+c<0;④b﹣4a=0;⑤方程ax2+bx=0的两个根为x1=0,x2=﹣4,其中正确的结论有()A.①③④B.②④⑤C.①②⑤D.②③⑤9.一个多边形的每个外角都等于60°,则这个多边形的边数为()A.8 B.7 C.6 D.510.如图,边长为1的正方形ABCD,点M从点A出发以每秒1个单位长度的速度向点B运动,点N从点A出发以每秒3个单位长度的速度沿A→D→C→B的路径向点B运动,当一个点到达点B时,另一个点也随之停止运动,设△AMN的面积为s,运动时间为t秒,则能大致反映s与t的函数关系的图象是()A. B. C. D.二、填空题(本大题共8小题,每小题4分,共32分)11.分解因式a2﹣9的结果是.12.如图,△ABC中,DE是BC的垂直平分线,DE交AC于点E,连接BE.若BE=9,BC=12,则cosC=.13.如果单项式﹣xy b+1与x a﹣2y3是同类项,那么(a﹣b)2015=.14.化简:(1﹣x)2+2x=.15.一个等腰三角形的两条边长分别是方程x2﹣7x+10=0的两根,则该等腰三角形的周长是.16.如图,⊙O的内接四边形ABCD中,∠A=115°,则∠BOD等于.17.如下图,在矩形ABCD中,BC=6,CD=3,将△BCD沿对角线BD翻折,点C落在点C′处,BC′交AD于点E,则线段DE的长为.18.如图是由火柴棒搭成的几何图案,则第n个图案中有根火柴棒.(用含n的代数式表示)三、解答题(本大题共5小题,共38分)19.计算:+(π﹣3.14)0﹣tan60°+|1﹣|.20.如图,在平面直角坐标系中,已知△ABC的三个顶点的坐标分别为A(﹣1,1),B(﹣3,1),C(﹣1,4).(1)画出△ABC关于y轴对称的△A1B1C1;(2)将△ABC绕着点B顺时针旋转90°后得到△A2BC2,请在图中画出△A2BC2,并求出线段BC旋转过程中所扫过的面积(结果保留π).21.如图,某农场有一块长40m,宽32m的矩形种植地,为方便管理,准备沿平行于两边的方向纵、横各修建一条等宽的小路,要使种植面积为1140m2,求小路的宽.22.如图,在一笔直的海岸线l上有A、B两个码头,A在B的正东方向,一艘小船从A码头沿它的北偏西60°的方向行驶了20海里到达点P处,此时从B码头测得小船在它的北偏东45°的方向.求此时小船到B码头的距离(即BP的长)和A、B两个码头间的距离(结果都保留根号).23.在一只不透明的袋中,装着标有数字3,4,5,7的质地、大小均相同的小球,小明和小东同时从袋中随机各摸出1个球,并计算这两个球上的数字之和,当和小于9时小明获胜,反之小东获胜.(1)请用树状图或列表的方法,求小明获胜的概率;(2)这个游戏公平吗?请说明理由.四、解答题(二)本大题共5小题,共50分24.为了了解市民“获取新闻的最主要途径”某市记者开展了一次抽样调查,根据调查结果绘制了如下尚不完整的统计图.根据以上信息解答下列问题:(1)这次接受调查的市民总人数是;(2)扇形统计图中,“电视”所对应的圆心角的度数是;(3)请补全条形统计图;(4)若该市约有80万人,请你估计其中将“电脑和手机上网”作为“获取新闻的最主要途径”的总人数.25.如图,一次函数y=kx+b的图象与反比例函数y=的图象相交于点A(1,5)和点B,与y轴相交于点C(0,6).(1)求一次函数和反比例函数的解析式;(2)现有一直线l与直线y=kx+b平行,且与反比例函数y=的图象在第一象限有且只有一个交点,求直线l的函数解析式.26.如图,已知点D在△ABC的BC边上,DE∥AC交AB于E,DF∥AB交AC于F.(1)求证:AE=DF;(2)若AD平分∠BAC,试判断四边形AEDF的形状,并说明理由.27.如图,已知等腰三角形ABC的底角为30°,以BC为直径的⊙O与底边AB交于点D,过D作DE⊥AC,垂足为E.(1)证明:DE为⊙O的切线;(2)连接OE,若BC=4,求△OEC的面积.28.如图所示,抛物线y=ax2+bx+c的顶点为M(﹣2,﹣4),与x轴交于A、B两点,且A(﹣6,0),与y轴交于点C.(1)求抛物线的函数解析式;(2)求△ABC的面积;(3)能否在抛物线第三象限的图象上找到一点P,使△APC的面积最大?若能,请求出点P的坐标;若不能,请说明理由.2017年某某省某某市靖远县中考数学二模试卷参考答案与试题解析一、选择题(本大题共10个小题,每小题3分,共30分)1.﹣的相反数是()A.2 B.﹣2 C.D.﹣【考点】14:相反数.【分析】根据只有符号不同的两个数叫做互为相反数解答.【解答】解:﹣的相反数是.故选C.2.宇宙现在的年龄约为200亿年,200亿用科学记数法表示为()×1011B.2×1010C.200×108D.2×109【考点】1I:科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将200亿用科学记数法表示为:2×1010.故选:B.3.下列计算正确的是()A.x4+x4=x16B.(﹣2a)2=﹣4a2C.x7÷x5=x2D.m2•m3=m6【考点】48:同底数幂的除法;35:合并同类项;46:同底数幂的乘法;47:幂的乘方与积的乘方.【分析】根据合并同类项法则,积的乘方和幂的乘方,同底数幂的除法、乘法分别求出每个式子的值,再判断即可.【解答】解:A、结果是2x4,故本选项错误;B、结果是4a2,故本选项错误;C、结果是x2,故本选项正确;D、结果是x5,故本选项错误;故选C.4.如图,直线a、b被直线c、d所截,若∠1=∠2,∠3=125°,则∠4的度数为()A.55° B.60° C.70° D.75°【考点】:平行线的判定与性质.【分析】利用平行线的性质定理和判定定理,即可解答.【解答】解:如图,∵∠1=∠2,∴a∥b,∴∠3=∠5=125°,∴∠4=180°﹣∠5=180°﹣125°=55°,故选:A.5.一个几何体的三视图如图所示,那么这个几何体是()A.圆锥 B.圆柱 C.长方体D.三棱柱【考点】U3:由三视图判断几何体.【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.【解答】解:由于俯视图为三角形.主视图为两个长方形和左视图为长方形可得此几何体为三棱柱.故选:D.6.沅江市近年来大力发展芦笋产业,某芦笋生产企业在两年内的销售额从20万元增加到80万元.设这两年的销售额的年平均增长率为x,根据题意可列方程为()A.20(1+2x)=80 B.2×20(1+x)=80 C.20(1+x2)=80 D.20(1+x)2=80【考点】AC:由实际问题抽象出一元二次方程.【分析】根据第一年的销售额×(1+平均年增长率)2=第三年的销售额,列出方程即可.【解答】解:设增长率为x,根据题意得20(1+x)2=80,故选D.7.一元二次方程2x2+3x+1=0的根的情况是()A.有两个不相等的实数根 B.有两个相等的实数根C.没有实数根D.无法确定【考点】AA:根的判别式.【分析】先求出△的值,再判断出其符号即可.【解答】解:∵△=32﹣4×2×1=1>0,∴方程有两个不相等的实数根.故选A.8.如图是二次函数y=ax2+bx+c(a≠0)图象的一部分,对称轴是直线x=﹣2.关于下列结论:①ab<0;②b2﹣4ac>0;③9a﹣3b+c<0;④b﹣4a=0;⑤方程ax2+bx=0的两个根为x1=0,x2=﹣4,其中正确的结论有()A.①③④B.②④⑤C.①②⑤D.②③⑤【考点】H4:二次函数图象与系数的关系.【分析】由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.【解答】解:∵抛物线开口向下,∴a<0,∵﹣=﹣2,∴b=4a,ab>0,∴①错误,④正确,∵抛物线与x轴交于﹣4,0处两点,∴b2﹣4ac>0,方程ax2+bx=0的两个根为x1=0,x2=﹣4,∴②⑤正确,∵当x=﹣3时y>0,即9a﹣3b+c>0,∴③错误,故正确的有②④⑤.故选:B.9.一个多边形的每个外角都等于60°,则这个多边形的边数为()A.8 B.7 C.6 D.5【考点】L3:多边形内角与外角.【分析】根据多边形的边数等于360°除以每一个外角的度数列式计算即可得解.【解答】解:360°÷60°=6.故这个多边形是六边形.故选C.10.如图,边长为1的正方形ABCD,点M从点A出发以每秒1个单位长度的速度向点B运动,点N从点A出发以每秒3个单位长度的速度沿A→D→C→B的路径向点B运动,当一个点到达点B时,另一个点也随之停止运动,设△AMN的面积为s,运动时间为t秒,则能大致反映s与t的函数关系的图象是()A. B. C. D.【考点】E7:动点问题的函数图象.【分析】根据题意,分3种情况:(1)当点N在AD上运动时;(2)当点N在CD上运动时;(3)当点N在BC上运动时;求出△AMN的面积s关于t的解析式,进而判断出能大致反映s与t的函数关系的图象是哪个即可.【解答】解:(1)如图1,当点N在AD上运动时,s=AM•AN=×t×3t=t2.(2)如图2,当点N在CD上运动时,s=AM•AD=t×1=t.(3)如图3,当点N在BC上运动时,s=AM•BN=×t×(3﹣3t)=﹣t2+t综上可得,能大致反映s与t的函数关系的图象是选项D中的图象.故选:D.二、填空题(本大题共8小题,每小题4分,共32分)11.分解因式a2﹣9的结果是(a+3)(a﹣3).【考点】54:因式分解﹣运用公式法.【分析】直接运用平方差公式分解即可.【解答】解:a2﹣9=(a+3)(a﹣3).故答案为:(a+3)(a﹣3).12.如图,△ABC中,DE是BC的垂直平分线,DE交AC于点E,连接BE.若BE=9,BC=12,则cosC=.【考点】KG:线段垂直平分线的性质;T7:解直角三角形.【分析】根据线段垂直平分线的性质,可得出CE=BE,再根据等腰三角形的性质可得出CD=BD,从而得出CD:CE,即为cosC.【解答】解:∵DE是BC的垂直平分线,∴CE=BE,∴CD=BD,∵BE=9,BC=12,∴CD=6,CE=9,∴cosC===,故答案为.13.如果单项式﹣xy b+1与x a﹣2y3是同类项,那么(a﹣b)2015= 1 .【考点】34:同类项.【分析】根据同类项的定义(所含字母相同,相同字母的指数相同)可得:a﹣2=1,b+1=3,解方程即可求得a、b的值,再代入(a﹣b)2015即可求解.【解答】解:由同类项的定义可知a﹣2=1,解得a=3,b+1=3,解得b=2,所以(a﹣b)2015=1.故答案为:1.14.化简:(1﹣x)2+2x= x2+1 .【考点】4I:整式的混合运算.【分析】原式第一项利用完全平方公式展开,去括号合并即可得到结果.【解答】解:原式=x2﹣2x+1+2x=x2+1.故答案为:x2+1.15.一个等腰三角形的两条边长分别是方程x2﹣7x+10=0的两根,则该等腰三角形的周长是12 .【考点】A8:解一元二次方程﹣因式分解法;K6:三角形三边关系;KH:等腰三角形的性质.【分析】首先利用因式分解法解方程,再利用三角形三边关系得出各边长,进而得出答案.【解答】解:x2﹣7x+10=0(x﹣2)(x﹣5)=0,解得:x1=2(不合题意舍去),x2=5,故等腰三角形的腰长只能为5,5,底边长为2,则其周长为:5+5+2=12.故答案为:12.16.如图,⊙O的内接四边形ABCD中,∠A=115°,则∠BOD等于130°.【考点】M6:圆内接四边形的性质;M5:圆周角定理.【分析】根据圆内接四边形的对角互补求得∠C的度数,再根据圆周角定理求解即可.【解答】解:∵∠A=115°∴∠C=180°﹣∠A=65°∴∠BOD=2∠C=130°.故答案为:130°.17.如下图,在矩形ABCD中,BC=6,CD=3,将△BCD沿对角线BD翻折,点C落在点C′处,BC′交AD于点E,则线段DE的长为 3.75 .【考点】PB:翻折变换(折叠问题).【分析】首先根据题意得到BE=DE,然后根据勾股定理得到关于线段AB、AE、BE的方程,解方程即可解决问题.【解答】解:设ED=x,则AE=6﹣x,∵四边形ABCD为矩形,∴AD∥BC,∴∠EDB=∠DBC;由题意得:∠EBD=∠DBC,∴∠EDB=∠EBD,∴EB=ED=x;由勾股定理得:BE2=AB2+AE2,即x2=9+(6﹣x)2,解得:x=3.75,∴ED=3.75.故答案为:3.75.18.如图是由火柴棒搭成的几何图案,则第n个图案中有2n(n+1)根火柴棒.(用含n 的代数式表示)【考点】38:规律型:图形的变化类.【分析】本题可分别写出n=1,2,3,…,所对应的火柴棒的根数.然后进行归纳即可得出最终答案.【解答】解:依题意得:n=1,根数为:4=2×1×(1+1);n=2,根数为:12=2×2×(2+1);n=3,根数为:24=2×3×(3+1);…n=n时,根数为:2n(n+1).故答案为:2n(n+1).三、解答题(本大题共5小题,共38分)19.计算:+(π﹣3.14)0﹣tan60°+|1﹣|.【考点】2C:实数的运算;6E:零指数幂;6F:负整数指数幂;T5:特殊角的三角函数值.【分析】原式第一项利用负指数幂法则计算,第二项利用零指数幂法则计算,第三项利用特殊角的三角函数值计算,最后一项利用绝对值的代数意义化简,计算即可得到结果.【解答】解:原式=+1﹣+﹣1=.20.如图,在平面直角坐标系中,已知△ABC的三个顶点的坐标分别为A(﹣1,1),B(﹣3,1),C(﹣1,4).(1)画出△ABC关于y轴对称的△A1B1C1;(2)将△ABC绕着点B顺时针旋转90°后得到△A2BC2,请在图中画出△A2BC2,并求出线段BC旋转过程中所扫过的面积(结果保留π).【考点】R8:作图﹣旋转变换;P7:作图﹣轴对称变换.【分析】(1)根据题意画出△ABC关于y轴对称的△A1B1C1即可;(2)根据题意画出△ABC绕着点B顺时针旋转90°后得到△A2BC2,线段BC旋转过程中扫过的面积为扇形BCC2的面积,求出即可.【解答】解:(1)如图所示,画出△ABC关于y轴对称的△A1B1C1;(2)如图所示,画出△ABC绕着点B顺时针旋转90°后得到△A2BC2,线段BC旋转过程中所扫过得面积S==.21.如图,某农场有一块长40m,宽32m的矩形种植地,为方便管理,准备沿平行于两边的方向纵、横各修建一条等宽的小路,要使种植面积为1140m2,求小路的宽.【考点】AD:一元二次方程的应用.【分析】本题可设小路的宽为xm,将4块种植地平移为一个长方形,长为(40﹣x)m,宽为(32﹣x)m.根据长方形面积公式即可求出小路的宽.【解答】解:设小路的宽为xm,依题意有(40﹣x)(32﹣x)=1140,整理,得x2﹣72x+140=0.解得x1=2,x2=70(不合题意,舍去).答:小路的宽应是2m.22.如图,在一笔直的海岸线l上有A、B两个码头,A在B的正东方向,一艘小船从A码头沿它的北偏西60°的方向行驶了20海里到达点P处,此时从B码头测得小船在它的北偏东45°的方向.求此时小船到B码头的距离(即BP的长)和A、B两个码头间的距离(结果都保留根号).【考点】TB:解直角三角形的应用﹣方向角问题.【分析】过P作PM⊥AB于M,求出∠PBM=45°,∠PAM=30°,求出PM,即可求出BM、BP.【解答】解:如图:过P作PM⊥AB于M,则∠PMB=∠PMA=90°,∵∠PBM=90°﹣45°=45°,∠PAM=90°﹣60°=30°,AP=20海里,∴PM=AP=10海里,AM=cos30°AP=10海里,∴∠BPM=∠PBM=45°,∴PM=BM=10海里,∴AB=AM+BM=(10+10)海里,∴BP==10海里,即小船到B码头的距离是10海里,A、B两个码头间的距离是(10+10)海里.23.在一只不透明的袋中,装着标有数字3,4,5,7的质地、大小均相同的小球,小明和小东同时从袋中随机各摸出1个球,并计算这两个球上的数字之和,当和小于9时小明获胜,反之小东获胜.(1)请用树状图或列表的方法,求小明获胜的概率;(2)这个游戏公平吗?请说明理由.【考点】X7:游戏公平性;X6:列表法与树状图法.【分析】(1)先根据题意画出树状图,再根据概率公式即可得出答案;(2)先分别求出小明和小东的概率,再进行比较即可得出答案.【解答】解:(1)根据题意画图如下:∵从表中可以看出所有可能结果共有12种,其中数字之和小于9的有4种,∴P(小明获胜)==;(2)∵P(小明获胜)=,∴P(小东获胜)=1﹣=,∴这个游戏不公平.四、解答题(二)本大题共5小题,共50分24.为了了解市民“获取新闻的最主要途径”某市记者开展了一次抽样调查,根据调查结果绘制了如下尚不完整的统计图.根据以上信息解答下列问题:(1)这次接受调查的市民总人数是1000 ;(2)扇形统计图中,“电视”所对应的圆心角的度数是54°;(3)请补全条形统计图;(4)若该市约有80万人,请你估计其中将“电脑和手机上网”作为“获取新闻的最主要途径”的总人数.【考点】VC:条形统计图;V5:用样本估计总体;VB:扇形统计图.【分析】(1)根据“电脑上网”的人数和所占的百分比求出总人数;(2)用“电视”所占的百分比乘以360°,即可得出答案;(3)用总人数乘以“报纸”所占百分比,求出“报纸”的人数,从而补全统计图;(4)用全市的总人数乘以“电脑和手机上网”所占的百分比,即可得出答案.【解答】解:(1)这次接受调查的市民总人数是:260÷26%=1000;(2)扇形统计图中,“电视”所对应的圆心角的度数为:(1﹣40%﹣26%﹣9%﹣10%)×360°=54°;(3)“报纸”的人数为:1000×10%=100.补全图形如图所示:(4)估计将“电脑和手机上网”作为“获取新闻的最主要途径”的总人数为:80×(26%+40%)=80×66%=52.8(万人).25.如图,一次函数y=kx+b的图象与反比例函数y=的图象相交于点A(1,5)和点B,与y轴相交于点C(0,6).(1)求一次函数和反比例函数的解析式;(2)现有一直线l与直线y=kx+b平行,且与反比例函数y=的图象在第一象限有且只有一个交点,求直线l的函数解析式.【考点】G8:反比例函数与一次函数的交点问题.【分析】(1)由点A(1,5)在y=的图象上,得到5=,解得:m=5,于是求得反比例函数的解析式为y=,由于一次函数y=kx+b的图象经过A(1,5)和点C(0,6),列,解得,于是得到一次函数的解析式y=﹣x+6;(2)设直线l的函数解析式为:y=﹣x+t,由于反比例函数y=的图象在第一象限有且只有一个交点,联立方程组,化简得:x2﹣tx+5=0,得到△=t2﹣20=0,同时解得t=2,求得结果.【解答】解:(1)∵点A(1,5)在y=的图象上,∴5=,解得:m=5,∴反比例函数的解析式为:y=,∵一次函数y=kx+b的图象经过A(1,5)和点C(0,6),∴,解得:,∴一次函数的解析式为:y=﹣x+6;(2)设直线l的函数解析式为:y=﹣x+t,∵反比例函数y=的图象在第一象限有且只有一个交点,∴,化简得:x2﹣tx+5=0,∴△=t2﹣20=0,解得:t=±2,∵t=﹣2不合题意,∴直线l的函数解析式为:y=﹣x+2.26.如图,已知点D在△ABC的BC边上,DE∥AC交AB于E,DF∥AB交AC于F.(1)求证:AE=DF;(2)若AD平分∠BAC,试判断四边形AEDF的形状,并说明理由.【考点】KD:全等三角形的判定与性质;L9:菱形的判定.【分析】(1)利用AAS推出△ADE≌△DAF,再根据全等三角形的对应边相等得出AE=DF;(2)先根据已知中的两组平行线,可证四边形DEFA是▱,再利用AD是角平分线,结合AE ∥DF,易证∠DAF=∠FDA,利用等角对等边,可得AE=DF,从而可证▱AEDF实菱形.【解答】证明:(1)∵DE∥AC,∠ADE=∠DAF,同理∠DAE=∠FDA,∵AD=DA,∴△ADE≌△DAF,∴AE=DF;(2)若AD平分∠BAC,四边形AEDF是菱形,∵DE∥AC,DF∥AB,∴四边形AEDF是平行四边形,∴∠DAF=∠FDA.∴AF=DF.∴平行四边形AEDF为菱形.27.如图,已知等腰三角形ABC的底角为30°,以BC为直径的⊙O与底边AB交于点D,过D作DE⊥AC,垂足为E.(1)证明:DE为⊙O的切线;(2)连接OE,若BC=4,求△OEC的面积.【考点】MD:切线的判定;KH:等腰三角形的性质;KX:三角形中位线定理;M5:圆周角定理.【分析】(1)首先连接OD,CD,由以BC为直径的⊙O,可得CD⊥AB,又由等腰三角形ABC 的底角为30°,可得AD=BD,即可证得OD∥AC,继而可证得结论;(2)首先根据三角函数的性质,求得BD,DE,AE的长,然后求得△BOD,△ODE,△ADE以及△ABC的面积,继而求得答案.【解答】(1)证明:连接OD,CD,∵BC为⊙O直径,∴∠BDC=90°,即CD⊥AB,∵△ABC是等腰三角形,∴AD=BD,∵OB=OC,∴OD是△ABC的中位线,∴OD∥AC,∵DE⊥AC,∴OD⊥DE,∵D点在⊙O上,∴DE为⊙O的切线;(2)解:∵∠A=∠B=30°,BC=4,∴CD=BC=2,BD=BC•cos30°=2,∴AD=BD=2,AB=2BD=4,∴S△ABC=AB•CD=×4×2=4,∵DE⊥AC,∴DE=AD=×2=,AE=AD•cos30°=3,∴S△ODE=OD•DE=×2×=,S△ADE=AE•DE=××3=,∵S△BOD=S△BCD=×S△ABC=×4=,∴S△OEC=S△ABC﹣S△BOD﹣S△ODE﹣S△ADE=4﹣﹣﹣=.28.如图所示,抛物线y=ax2+bx+c的顶点为M(﹣2,﹣4),与x轴交于A、B两点,且A(﹣6,0),与y轴交于点C.(1)求抛物线的函数解析式;(2)求△ABC的面积;(3)能否在抛物线第三象限的图象上找到一点P,使△APC的面积最大?若能,请求出点P 的坐标;若不能,请说明理由.【考点】HF:二次函数综合题.【分析】(1)根据顶点坐标公式即可求得a、b、c的值,即可解题;(2)易求得点B、C的坐标,即可求得OC的长,即可求得△ABC的面积,即可解题;(3)作PE⊥x轴于点E,交AC于点F,可将△APC的面积转化为△AFP和△CFP的面积之和,而这两个三角形有共同的底PF,这一个底上的高的和又恰好是A、C两点间的距离,因此若设设E(x,0),则可用x来表示△APC的面积,得到关于x的一个二次函数,求得该二次函数最大值,即可解题.【解答】解:(1)设此函数的解析式为y=a(x+h)2+k,∵函数图象顶点为M(﹣2,﹣4),∴y=a(x+2)2﹣4,又∵函数图象经过点A(﹣6,0),∴0=a(﹣6+2)2﹣4解得a=,∴此函数的解析式为y=(x+2)2﹣4,即y=x2+x﹣3;(2)∵点C是函数y=x2+x﹣3的图象与y轴的交点,∴点C的坐标是(0,﹣3),又当y=0时,有y=x2+x﹣3=0,解得x1=﹣6,x2=2,∴点B的坐标是(2,0),则S△ABC=|AB|•|OC|=×8×3=12;(3)假设存在这样的点,过点P作PE⊥x轴于点E,交AC于点F.设E(x,0),则P(x,x2+x﹣3),设直线AC的解析式为y=kx+b,∵直线AC过点A(﹣6,0),C(0,﹣3),∴,解得,∴直线AC的解析式为y=﹣x﹣3,∴点F的坐标为F(x,﹣x﹣3),则|PF|=﹣x﹣3﹣(x2+x﹣3)=﹣x2﹣x,∴S△APC=S△APF+S△CPF=|PF|•|AE|+|PF|•|OE|=|PF|•|OA|=(﹣x2﹣x)×6=﹣x2﹣x=﹣(x+3)2+,∴当x=﹣3时,S△APC有最大值,此时点P的坐标是P(﹣3,﹣).。
(常考题)人教版初中七年级数学上册第三章《一元一次方程》模拟测试题(答案解析)(2)
一、选择题1.(0分)[ID :68205]某车间有22名工人每人每天可以生产1200个螺钉或2000个螺母,1个螺钉需要配2个螺母,为使每天生产的螺钉和螺母刚好配套 ,设有x 名工人生产螺钉,其他工人生产螺母,根据题意列出方程( )A .20001200(22)x x =-B .212002000(22)x x ⨯=-C .220001200(22)x x ⨯=-D .12002000(22)x x =-2.(0分)[ID :68201]已知,每本练习本比每根水性笔便宜2元,小刚买了6本练习本和4根水性笔正好用去18元,设水性笔的单价为x 元,下列方程正确的是( )A .6(x+2)+4x =18B .6(x ﹣2)+4x =18C .6x+4(x+2)=18D .6x+4(x ﹣2)=183.(0分)[ID :68195]定义运算“*”,其规则为2*3a b a b +=,则方程4*4x =的解为( ) A .3x =- B .3x = C .2x =D .4x = 4.(0分)[ID :68194]小淇在某月的日历中圈出相邻的三个数,算出它们的和是19,那么这三个数的位置可能是( )A .B .C .D .5.(0分)[ID :68161]某种商品每件的标价是330元,按标价的8折销售时,仍可获利10%,则这种商品每件的进价为( )A .300元B .250元C .240元D .200元 6.(0分)[ID :68159]古代有这样一个寓言故事:驴子和骡子一同走,它们驮着不同袋数的货物,每袋货物都是一样重的.驴子抱怨负担太重,骡子说:“你抱怨干嘛?如果你给我一袋,那我所负担的就是你的两倍;如果我给你一袋,我们才恰好驮的一样多!”那么驴子原来所驮货物的袋数是( )A .5袋B .6袋C .7袋D .8袋 7.(0分)[ID :68250]若三个连续偶数的和是24,则它们的积为( )A .48B .240C .480D .120 8.(0分)[ID :68246]已知方程16x -1=233x + ,那么这个方程的解是( ) A .x =-2 B .x =2 C .x =-12 D .x =129.(0分)[ID :68243]一个两位数,十位上的数比个位上的数的3倍大1,个位上的数与十位上的数的和等于9,这个两位数是( )A .54B .72C .45D .62 10.(0分)[ID :68241]若代数式4x +的值是2,则x 等于( )A .2B .2-C .6D .6- 11.(0分)[ID :68232]关于y 的方程331y k +=与350y +=的解相同,则k 的值为( ) A .-2 B .34 C .2 D .43- 12.(0分)[ID :68228]已知方程(1)30m m x -+=是关于x 的一元一次方程,则m 的值是( )A .±1B .1C .-1D .0或113.(0分)[ID :68223]对于ax+b=0(a ,b 为常数),表述正确的是( )A .当a≠0时,方程的解是x=b aB .当a=0,b≠0时,方程有无数解C .当a=0,b=0,方程无解D .以上都不正确.14.(0分)[ID :68217]如图,将长和宽分别是 a ,b 的长方形纸片的四个角都剪去一个边长为 x 的正方形.用含 a ,b ,x 的代数式表示纸片剩余部分的面积为( )A .ab+2x 2B .ab ﹣2x 2C .ab+4x 2D .ab ﹣4x 2 15.(0分)[ID :68212]把方程112x =变形为2x =,其依据是( )A .等式的性质1B .等式的性质2C .乘法结合律D .乘法分配律二、填空题16.(0分)[ID :68353]已知三个数的比是2:4:7,这三个数的和是169,这三个数分别是____,____,____17.(0分)[ID :68344]方程 2243x -=的解是__________ 18.(0分)[ID :68337]一条河的水流速度为3km/h ,船在静水中的速度为xkm/h ,则船在这条河中顺水行驶的速度是____km/h ;19.(0分)[ID :68323]若关于x 的方程1253n ax bx x x +-+=+是一元一次方程,则a n +=_________ ,b_________.20.(0分)[ID :68319]对于实数a ,b ,c ,d ,规定一种运算 a bc d =ad -bc ,如102(2)-=1×(-2)-0×2=-2,那么当(1)(2)(3)(1)x x x x ++--=27时,则x =_____.21.(0分)[ID :68316]对任意四个有理数a ,b ,c ,d ,定义:a bad bc c d =-,已知24181-=x x ,则x =_____.22.(0分)[ID :68308]一列火车匀速行驶,经过一条长600米的隧道需要45秒的时间,隧道的顶部一盏固定灯,在火车上垂直照射的时间为15秒,则火车的长为_____. 23.(0分)[ID :68303]一般情况下2323m n m n ++=+不成立,但也有数可以使得它成立,例如:m =n =0.使得2323m n m n ++=+成立的一对数m 、n 我们称为“相伴数对”,记为(m ,n ).若(x ,1)是“相伴数对”,则x 的值为_____.24.(0分)[ID :68270]将一个底面直径是10cm 、高为40cm 的圆柱锻压成底面直径为16cm 的圆柱,则锻压后圆柱的高为________cm.25.(0分)[ID :68268]已知关于x 的方程3223x m -=+的解是x m =,则m 的值为_________.26.(0分)[ID :68266]校园足球联赛规则规定:胜一场得3分,平一场得1分,负一场得0分.某队比赛8场保持不败,得18分,则该队共胜几场?若设该队胜了x 场,则可列方程为__________________.27.(0分)[ID :68275]小亮用40元钱买了5千克苹果和2千克香蕉,找回4元.已知每千克香蕉的售价是每千克苹果售价的2倍,则每千克苹果的售价是________元.三、解答题28.(0分)[ID :68427]解方程:(1)36156x x -=--;(2)45173x x +=-;(3) 2.57.5516y y y --=-;(4)11481.5533z z +=-. 29.(0分)[ID :68397]一项工程,由甲队独做需12个月完工,由乙队独做需15个月完工.现决定由两队合作,且为了加快进度,甲、乙两队都将提高工作效率.若甲队的工作效率提高40%,乙队的工作效率提高25%,,则两队合作,几个月可以完工?30.(0分)[ID :68455]已知16y x =-,227y x =+,解析下列问题:(1)当122y y =时,求x 的值;(2)当x 取何值时,1y 比2y 小3-.【参考答案】2016-2017年度第*次考试试卷 参考答案**科目模拟测试一、选择题1.B2.B3.D4.B5.C6.A7.C8.A9.B10.B11.C12.C13.D14.D15.B二、填空题16.5291【分析】根据比例设这三个数分别为2x4x7x再根据这三个数的和是169列方程即可求解【详解】设这三个数分别为2x4x7x则2x+4x+7x=169解得x=13所以这三个数分别为265291故17.x=9【分析】根据解一元一次方程的步骤先去分母再移项合并同类项系数化为1即可求解;【详解】解:2x-6=122x=12+62x=18x=9故答案为x=9【点睛】本题考查解一元一次方程的步骤解题关键是18.x+3【分析】根据顺水速度=静水中的速度+水速即可列出代数式【详解】解:船在这条河中的顺水速度是(x+3)km/h;故答案为:x+3;【点睛】本题考查了行程问题解决问题的关键是读懂题意找到所求的量之19.4或0≠-1【分析】根据一元一次方程的定义可知二次项系数为0则求出n的值再根据二次项系数为0一次项系数不等于0求出a的值即可【详解】解:根据一元一次方程的定义可知二次项系数为0则解得n=1或-3把代20.22【分析】由题中的新定义可知此种运算为对角线乘积相减的运算化简所求的式子得到关于x的方程然后解方程即可求出x的值【详解】解:∵=27∴(x+1)(x-1)-(x+2)(x-3)=27∴x2-1-(21.3【分析】首先看清这种运算规则将转化为一元一次方程2x-(﹣4x)=18然后通过去括号移项合并同类项系数化为1解方程即可【详解】由题意得2x-(﹣4x)=186x=18解得:x =3故答案为:3【点睛22.【分析】设火车的长度为x米则火车的速度为根据列车的速度×时间=列车长度+隧道长度列方程求解即可【详解】设火车的长度为x米则火车的速度为依题意得:45×=600+x解得:x=300故答案为:300【点23.﹣【分析】利用新定义相伴数对列出方程解方程即可求出x的值【详解】解:根据题意得:去分母得:15x+10=6x+6移项合并得:9x=﹣4解得:x=﹣故答案为:﹣【点睛】本题考查解一元一次方程正确理解相24.625【解析】【分析】利用等量关系:锻压前的圆柱的体积=锻压后的圆柱的体积根据圆柱的体积计算公式表示出体积列出方程解答即可【详解】解:设锻压后圆柱的高为x厘米由题意得:解得:x=15625答:锻压后25.5【解析】【分析】此题用m替换x解关于m的一元一次方程即可【详解】∵x=m∴3m−2=2m+3解得:m=5故答案为:5【点睛】本题考查一元一次方程的解的定义方程的解就是能够使方程左右两边相等的未知数26.3x+(8-x)=18【解析】【分析】根据题意列出相应的方程即可【详解】根据题意得:3x+(8-x)=18故答案为:3x+(8-x)=18【点睛】此题考查了由实际问题抽象出一元一次方程弄清题意是解本27.4【解析】【分析】直接设每千克苹果的售价是x元则每千克香蕉售价2x元利用40元钱买了5千克苹果和2千克香蕉找回4元得出方程求出答案【详解】设每千克苹果的售价是x元则每千克香蕉售价2x元根据题意可得:三、解答题28.29.30.2016-2017年度第*次考试试卷参考解析【参考解析】**科目模拟测试一、选择题1.B解析:B【分析】首先根据题目中已经设出每天安排x个工人生产螺钉,则(22-x)个工人生产螺母,由1个螺钉需要配2个螺母可知螺母的个数是螺钉个数的2倍从而得出等量关系,就可以列出方程【详解】设每天安排x个工人生产螺钉,则(22-x)个工人生产螺母,利用一个螺钉配两个螺母.由题意得:2×1200x=2000(22-x),故选:B.【点睛】此题考查由实际问题抽象出一元一次方程,解题关键在于根据题意列出方程.2.B解析:B【分析】等量关系为:6本练习本总价+4支水性笔总价钱=18.【详解】解:水性笔的单价为x 元,那么练习本的单价为(x ﹣2)元,则6(x ﹣2)+4x =18,故选B .【点睛】本题主要考查了由实际问题抽象出一元一次方程,列方程解应用题的关键是找出题目中的相等关系.3.D解析:D【分析】根据新定义列出关于x 的方程,解之可得.【详解】∵4*x=4, ∴234x ⨯+=4, 解得x=4,故选:D .【点睛】 本题主要考查解一元一次方程,去分母、去括号、移项、合并同类项、系数化为1,这仅是解一元一次方程的一般步骤,针对方程的特点,灵活应用,各种步骤都是为使方程逐渐向x=a 形式转化.4.B解析:B【分析】日历中的每个数都是整数且上下相邻是7,左右相邻相差是1.根据题意可列方程求解.【详解】解:A 、设最小的数是x .x+x+7+x+7+1=19∴x=43,故本选项错误; B 、设最小的数是x .x+x+6+x+7=19,∴x=2,故本选项正确.C 、设最小的数是x .x+x+1+x+7=19,∴x=11,故本选项错误.3D、设最小的数是x.x+x+1+x+8=19,∴x=10,故本选项错误.3故选:B.【点睛】本题考查一元一次方程的应用,需要学生具备理解题意能力,关键知道日历中的每个数都是整数且上下相邻是7,左右相邻相差是1.5.C解析:C【分析】设这种商品每件的进价为x元,根据题意列出关于x的方程,求出方程的解即可得到结果.【详解】设这种商品每件的进价为x元,根据题意得:330×80%−x=10%x,解得:x=240,则这种商品每件的进价为240元.故选C.【点睛】此题考查一元一次方程的应用,找准题目中的等量关系是解题的关键.6.A解析:A【解析】【分析】要求驴子原来所托货物的袋数,要先设出未知数,通过理解题意可知本题的等量关系,即驴子减去一袋时的两倍减1(即骡子原来驮的袋数)再减1(我给你一袋,才恰好驮的一样多)=驴子原来所托货物的袋数加上1,据这个等量关系列方程求解.【详解】解:设驴子原来驮x袋,根据题意,得到方程:2(x-1)-1-1=x+1,解得:x=5, 答:驴子原来所托货物的袋数是5, 故选A.【点睛】本题主要考查列方程解决实际问题,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.7.C解析:C【分析】设出一个偶数,表示出另外两个数,列出方程解出这三个数,再计算它们的积.【详解】解:设中间的偶数为m ,则(m-2)+m+(m+2)=24,解得m=8.故三个偶数分别为6,8,10.故它们的积为:6×8×10=480.故选:C .【点睛】本题考查了一元一次方程的应用.找到三个连续偶数间的数量关系是解题的关键. 8.A解析:A【分析】按照去分母、去括号、移项、合并同类项、系数化为1的步骤解方程即可得.【详解】两边同乘以6去分母,得62(23)x x -=+,去括号,得646x x -=+,移项,得646x x -=+,合并同类项,得510x -=,系数化为1,得2x =-,故选:A .【点睛】本题考查了解一元一次方程,熟练掌握解方程的步骤是解题关键.9.B解析:B【分析】首先设个位上的数为x ,则十位数字为()31x +,根据题意可得等量关系:十位上的数与个位上的数的和=9,列出方程,再解方程即可.【详解】设个位上的数为x ,则十位数字为()31x +,由题意得:x +(3x +1)=9,解得:x =2,十位数字为:6+1=7,这个两位数是:72.故选:B.【点睛】考查一元一次方程的应用,读懂题目,找出题目中的等量关系是解题的关键. 10.B解析:B【分析】由已知可得4x +=2,解方程可得.【详解】由已知可得4x +=2,解得x=-2.故选B.【点睛】本题考核知识点:列方程,解方程. 解题关键点:根据题意列出一元一次方程. 11.C解析:C【分析】分别解出两方程的解,两解相等,就得到关于k 的方程,从而可以求出k 的值.【详解】 解第一个方程得:133k y -=, 解第二个方程得:53y =-, ∴133k -=53-, 解得:k=2.故选C .【点睛】 本题解决的关键是能够求解关于y 的方程,要正确理解方程解的含义. 12.C解析:C【分析】直接利用一元一次方程的定义进而分析得出答案.【详解】∵方程(1)30m m x -+=是关于x 的一元一次方程, ∴1m =,10m -≠,解得:1m =-.故选:C .【点睛】本题主要考查了一元一次方程的定义,正确把握一元一次方程的定义是解题关键. 13.D解析:Dax+b=0(a,b为常数),当a=0时,就不是一元一次方程,当a=0时,是一元一次方程.分两种情况进行讨论.【详解】A、当a≠0时,方程的解是x=-ba,故错误;B、当a=0,b≠0时,方程无解,故错误;C、当a=0,b=0,方程有无数解,故错误;D、以上都不正确.故选D.【点睛】此题很简单,解答此题的关键是:正确记忆一元一次方程的一般形式中,一次项系数不等于0.14.D解析:D【分析】用长方形的面积减去四周四个小正方形的面积列式即可.【详解】∵长方形的面积为ab,4个小正方形的面积为4x2,∴剩余部分的面积为:ab-4x2,故选D.【点睛】本题考查了列代数式,根据题意用字母表示长长方形和正方形的面积是解题关键.15.B解析:B【分析】根据等式的基本性质,对原式进行分析即可.【详解】将原方程两边都乘2,得2x ,这是依据等式的性质2.故选B.【点睛】本题主要考查了等式的基本性质,等式性质:1、等式的两边同时加上或减去同一个数或字母,等式仍成立;2、等式的两边同时乘以或除以同一个不为0数或字母,等式仍成立.二、填空题16.5291【分析】根据比例设这三个数分别为2x4x7x再根据这三个数的和是169列方程即可求解【详解】设这三个数分别为2x4x7x则2x+4x+7x=169解得x=13所以这三个数分别为265291故解析:52 91根据比例设这三个数分别为2x,4x,7x,再根据这三个数的和是169列方程即可求解.【详解】设这三个数分别为2x,4x,7x,则2x+4x+7x=169,解得x=13,所以这三个数分别为26,52,91.故答案为:26,52,91.【点睛】此题主要考查列一元一次方程解应用题,根据比例设未知数是解题关键.17.x=9【分析】根据解一元一次方程的步骤先去分母再移项合并同类项系数化为1即可求解;【详解】解:2x-6=122x=12+62x=18x=9故答案为x=9【点睛】本题考查解一元一次方程的步骤解题关键是解析:x=9【分析】根据解一元一次方程的步骤先去分母,再移项,合并同类项,系数化为1即可求解;【详解】解:224 3x-=2x-6=122x=12+62x=18x=9故答案为x=9.【点睛】本题考查解一元一次方程的步骤,解题关键是:移项变号.18.x+3【分析】根据顺水速度=静水中的速度+水速即可列出代数式【详解】解:船在这条河中的顺水速度是(x+3)km/h;故答案为:x+3;【点睛】本题考查了行程问题解决问题的关键是读懂题意找到所求的量之解析:x+3【分析】根据顺水速度=静水中的速度+水速,即可列出代数式.【详解】解:船在这条河中的顺水速度是(x+3)km/h;故答案为:x+3;【点睛】本题考查了行程问题,解决问题的关键是读懂题意,找到所求的量之间的关系.19.4或0≠-1【分析】根据一元一次方程的定义可知二次项系数为0则求出n 的值再根据二次项系数为0一次项系数不等于0求出a的值即可【详解】解:根据一元一次方程的定义可知二次项系数为0则解得n=1或-3把代解析:4或0 ≠-1【分析】根据一元一次方程的定义可知,二次项系数为0,则12+=n ,求出n 的值,再根据二次项系数为0,一次项系数不等于0,求出a 的值即可.【详解】解:根据一元一次方程的定义可知,二次项系数为0,则12+=n ,解得n=1或-3, 把12+=n 代入方程得:2253-+=+ax bx x x ,整理得:()()23150-+--+=a x b x , ∴a-3=0,-b-1≠0,解得:a=3,b≠-1,∴a+n=4或0,故答案为:4或0;≠,-1.【点睛】本题是对一元一次方程定义的考查,熟练掌握一元一次方程是解决本题的关键. 20.22【分析】由题中的新定义可知此种运算为对角线乘积相减的运算化简所求的式子得到关于x 的方程然后解方程即可求出x 的值【详解】解:∵=27∴(x+1)(x-1)-(x+2)(x-3)=27∴x2-1-(解析:22【分析】由题中的新定义可知,此种运算为对角线乘积相减的运算,化简所求的式子得到关于x 的方程,然后解方程即可求出x 的值.【详解】解:∵(1)(2)(3)(1)x x x x ++--=27,∴(x +1)(x -1)-(x +2)(x -3)=27,∴x 2-1-(x 2-x -6)=27,∴x 2-1-x 2+x +6=27,∴x =22;故答案为:22.【点睛】本题考查了新定义运算,及灵活运用新定义的能力,根据新定义把所给算式转化为一元一次方程是解答本题的关键.21.3【分析】首先看清这种运算规则将转化为一元一次方程2x -(﹣4x)=18然后通过去括号移项合并同类项系数化为1解方程即可【详解】由题意得2x -(﹣4x)=186x =18解得:x =3故答案为:3【点睛解析:3【分析】 首先看清这种运算规则,将24181-=x x 转化为一元一次方程2x -(﹣4x) =18,然后通过去括号、移项、合并同类项、系数化为1,解方程即可.【详解】由题意得,2x -(﹣4x) =186x =18解得:x =3故答案为:3【点睛】本题主要考查解一元一次方程,关键是掌握解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、系数化为1.22.【分析】设火车的长度为x 米则火车的速度为根据列车的速度×时间=列车长度+隧道长度列方程求解即可【详解】设火车的长度为x 米则火车的速度为依题意得:45×=600+x 解得:x=300故答案为:300【点解析:【分析】设火车的长度为x 米,则火车的速度为15x ,根据列车的速度×时间=列车长度+隧道长度列方程,求解即可.【详解】设火车的长度为x 米,则火车的速度为15x ,依题意得: 45×15x =600+x 解得:x =300.故答案为:300.【点睛】本题考查了一元一次方程的应用,学生理解题意的能力,根据隧道顶部一盏固定灯在火车上垂直照射的时间为15秒钟,可知火车的速度为15x ,根据题意可列方程求解. 23.﹣【分析】利用新定义相伴数对列出方程解方程即可求出x 的值【详解】解:根据题意得:去分母得:15x+10=6x+6移项合并得:9x =﹣4解得:x =﹣故答案为:﹣【点睛】本题考查解一元一次方程正确理解相解析:﹣49. 【分析】 利用新定义“相伴数对”列出方程,解方程即可求出x 的值.【详解】解:根据题意得:11235x x , 去分母得:15x+10=6x+6,移项合并得:9x =﹣4, 解得:x =﹣49. 故答案为:﹣49. 【点睛】 本题考查解一元一次方程,正确理解“相伴数对”的定义是解本题的关键.24.625【解析】【分析】利用等量关系:锻压前的圆柱的体积=锻压后的圆柱的体积根据圆柱的体积计算公式表示出体积列出方程解答即可【详解】解:设锻压后圆柱的高为x 厘米由题意得:解得:x=15625答:锻压后解析:625【解析】【分析】利用等量关系:锻压前的圆柱的体积=锻压后的圆柱的体积,根据圆柱的体积计算公式表示出体积列出方程解答即可.【详解】解:设锻压后圆柱的高为x 厘米,由题意得:221016()40()22x ππ⨯=解得:x=15.625.答:锻压后圆柱的高为15.625厘米.故答案为:15.625.【点睛】此题考查一元一次方程的实际运用,关键是掌握体积公式,并找准题中的等量关系. 25.5【解析】【分析】此题用m 替换x 解关于m 的一元一次方程即可【详解】∵x =m ∴3m−2=2m+3解得:m =5故答案为:5【点睛】本题考查一元一次方程的解的定义方程的解就是能够使方程左右两边相等的未知数解析:5【解析】【分析】此题用m 替换x ,解关于m 的一元一次方程即可.【详解】∵x =m ,∴3m−2=2m+3,解得:m =5.故答案为:5.【点睛】本题考查一元一次方程的解的定义.方程的解就是能够使方程左右两边相等的未知数的值.26.3x+(8-x )=18【解析】【分析】根据题意列出相应的方程即可【详解】根据题意得:3x+(8-x )=18故答案为:3x+(8-x )=18【点睛】此题考查了由实际问题抽象出一元一次方程弄清题意是解本解析:3x+(8-x )=18【解析】【分析】根据题意列出相应的方程即可.【详解】根据题意得:3x+(8-x )=18,故答案为:3x+(8-x )=18,【点睛】此题考查了由实际问题抽象出一元一次方程,弄清题意是解本题的关键.27.4【解析】【分析】直接设每千克苹果的售价是x 元则每千克香蕉售价2x 元利用40元钱买了5千克苹果和2千克香蕉找回4元得出方程求出答案【详解】设每千克苹果的售价是x 元则每千克香蕉售价2x 元根据题意可得: 解析:4【解析】【分析】直接设每千克苹果的售价是x 元,则每千克香蕉售价2x 元,利用40元钱买了5千克苹果和2千克香蕉,找回4元得出方程求出答案.【详解】设每千克苹果的售价是x 元,则每千克香蕉售价2x 元,,根据题意可得:5×x+2×2x=40-4,解得:x=4.即:每千克香蕉售价4元.故答案为:4.【点睛】此题主要考查了一元一次方程的应用,正确表示出两种水果的价格是解题关键.三、解答题28.(1)1x =-;(2)66x =-;(3)56y =;(4)407z =- 【分析】(1)先移项,再合并同类项,最后系数化为1即可.(2)先移项,再合并同类项,最后系数化为1即可.(3)先移项,再合并同类项,最后系数化为1即可.(4)先移项,再合并同类项,最后系数化为1即可.【详解】(1)移项,得36156x x +=-+.合并同类项,得99x =-.系数化为1,得1x =-.(2)移项,得41753x x -=--. 合并同类项,得1223x =-. 系数化为1,得66x =-.(3)移项,得 2.57.5165y y y --+=. 合并同类项,得65y =.系数化为1,得56y =. (4)移项,得11841.5533z z -=--. 合并同类项,得7410z =-. 系数化为1,得407z =-. 【点睛】 本题考查了解一元一次方程的问题,掌握解一元一次方程的方法是解题的关键. 29.5【分析】设两队合作x 个月完成,甲队原来的工作效率为112,将工作效率提高40%以后为112(1+40%),乙队原来的工作效率为115,将工作效率提高25%以后为115(1+25%),根据工作效率×工作时间=工作总量1,列出方程,解方程即可【详解】 解:设两队合作x 个月完成,由题意,得[112(1+40%)+115(1+25%)]x =1, 解得x =5.答:两队合作,5个月可以完工.【点睛】本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程.30.(1)215x =;(2)18x 【分析】(1)根据题意列出等式,然后解一元一次方程即可;(2)根据题意得到213y y -=-,然后代入x ,解一元一次方程即可求解.【详解】(1)由题意得:62(27)x x -=+解得215x = 215x ∴=. (2)由题意得:27(6)3x x +--=-解得18x 18x ∴=. 【点睛】本题考查了解一元一次方程,重点是熟练掌握移项、合并同类项、去括号、去分母的法则,细心求解即可.。
(必考题)人教版初中七年级数学上册第一章《有理数》模拟检测题(答案解析)(2)
一、选择题1.(0分)[ID:67646]一个因数扩大到原来的10倍,另一个因数缩小到原来的120,积()A.缩小到原来的12B.扩大到原来的10倍C.缩小到原来的110D.扩大到原来的2倍2.(0分)[ID:67643]在-1,2,-3,4,这四个数中,任意三数之积的最大值是()A.6 B.12 C.8 D.243.(0分)[ID:67626]已知a、b在数轴上的位置如图所示,将a、b、-a、-b从小到排列正确的一组是()A.-a<-b<a<b B.-b<-a<a<bC.-b<a<b<-a D.a<-b<b<-a4.(0分)[ID:67611]下列说法:①a-一定是负数;②||a一定是正数;③倒数等于它本身的数是±1;④绝对值等于它本身的数是l;⑤平方等于它本身的数是1.其中正确的个数是()A.1个B.2个C.3个D.4个5.(0分)[ID:67601]下列结论错误的是( )A.若a,b异号,则a·b<0,ab<0B.若a,b同号,则a·b>0,ab>0C.ab-=ab-=-abD.ab--=-ab6.(0分)[ID:67600]计算2136⎛⎫---⎪⎝⎭的结果为()A.-12B.12C.56D.567.(0分)[ID:67598]绝对值大于1且小于4的所有整数的和是()A.6 B.–6 C.0 D.4 8.(0分)[ID:67595]若a,b互为相反数,则下面四个等式中一定成立的是()A.a+b=0 B.a+b=1C .|a|+|b|=0D .|a|+b=09.(0分)[ID :67584]下列四个式子,正确的是( ) ①33.834⎛⎫->-+ ⎪⎝⎭;②3345⎛⎫⎛⎫-->-- ⎪ ⎪⎝⎭⎝⎭;③ 2.5 2.5->-;④125523⎛⎫-->+ ⎪⎝⎭. A .③④B .①C .①②D .②③ 10.(0分)[ID :67566]按键顺序是的算式是( )A .(0.8+3.2)÷45= B .0.8+3.2÷45= C .(0.8+3.2)÷45= D .0.8+3.2÷45= 11.(0分)[ID :67578]把实数36.1210-⨯用小数表示为() A .0.0612B .6120C .0.00612D .61200012.(0分)[ID :67577]下面说法中正确的是 ( ) A .两数之和为正,则两数均为正 B .两数之和为负,则两数均为负 C .两数之和为0,则这两数互为相反数 D .两数之和一定大于每一个加数13.(0分)[ID :67573]有理数a ,b 在数轴上表示如图所示,则下列各式中正确的是( )A .0ab >B .b a >C .a b ->D .b a <14.(0分)[ID :67568]下列各式计算正确的是( ) A .826(82)6--⨯=--⨯ B .434322()3434÷⨯=÷⨯ C .20012002(1)(1)11-+-=-+D .-(-22)=-415.(0分)[ID :67567]若2020M M +-=+,则M 一定是( ) A .任意一个有理数B .任意一个非负数C .任意一个非正数D .任意一个负数二、填空题16.(0分)[ID :67758]把67.758精确到0.01位得到的近似数是__.17.(0分)[ID :67757]若a 、b 、c 、d 、e 都是大于1、且是不全相等的五个整数,它们的乘积2000abcde =,则它们的和a b c d e ++++的最小值为__. 18.(0分)[ID :67726]已知|a |=3,|b |=2,且ab <0,则a ﹣b =_____. 19.(0分)[ID :67725]数轴上表示 1 的点和表示﹣2 的点的距离是_____.20.(0分)[ID :67712]截至格林尼治标准时间2020年6月7日10时,全球累计报告新冠肺炎确诊病例达7000000例;其中累计死亡病例超过40万例,数据7000000科学记数法表示为_____.21.(0分)[ID :67710]在如图所示的运算流程中,若输出的数y=5,则输入的数x=_____.22.(0分)[ID :67692]计算3253.1410.31431.40.284⨯+⨯-⨯=__. 23.(0分)[ID :67680]有下列数据:我国约有14亿人口;第一中学有68个教学班;直径10 cm 的圆,它的周长约31.4 cm ,其中是准确数的有_____,是近似数的有_____. 24.(0分)[ID :67676]定义一种正整数的“H 运算”:①当它是奇数时,则该数乘3加13;②当它是偶数时,则取该数的一半,一直取到结果为奇数停止.如:数3经过1次“H 运算”的结果是22,经过2次“H 运算”的结果为11,经过3次“H 运算”的结果为46,那么数28经过2020次“H 运算”得到的结果是_________.25.(0分)[ID :67748]A ,B ,C 三地的海拔高度分别是50-米,70-米,20米,则最高点比最低点高______米.26.(0分)[ID :67746]点A ,B 表示数轴上互为相反数的两个数,且点A 向左平移8个单位长度到达点B ,则这两点所表示的数分别是____________和___________. 27.(0分)[ID :67732]给下面的计算过程标明运算依据: (+16)+(-22)+(+34)+(-78) =(+16)+(+34)+(-22)+(-78)① =[(+16)+(+34)]+[(-22)+(-78)]② =(+50)+(-100)③ =-50.④①______________;②______________;③______________;④______________.三、解答题28.(0分)[ID :67956]计算:2334[28(2)]--⨯-÷- 29.(0分)[ID :67861]计算:(1)()2411(10.5)2--23⎡⎤---⨯⨯⎣⎦(2)6÷(-2)3-|-22×3|+3÷2×12+1; 30.(0分)[ID :67921]如图,在数轴上有三个点,,A B C ,回答下列问题:(1)若将点B 向右移动5个单位长度后,三个点所表示的数中最小的数是多少? (2)在数轴上找一点D ,使点D 到,A C 两点的距离相等,写出点D 表示的数;(3)在数轴上找出点E,使点E到点A的距离等于点E到点B的距离的2倍,写出点E 表示的数.【参考答案】2016-2017年度第*次考试试卷参考答案**科目模拟测试一、选择题1.A2.B3.D4.A5.D6.A7.C8.A9.D10.B11.C12.C13.C14.C15.B二、填空题16.76【分析】根据要求进行四舍五入即可【详解】解:把67758精确到001位得到的近似数是6776故答案是:6776【点睛】本题考查了近似数:经过四舍五入得到的数称为近似数17.【分析】先把abcde=2000化为abcde=2000=24×53的形式再根据整数abcde都大于1得到使a+b+c+d+e尽可能小时各未知数的取值求出最小值即可【详解】解:abcde=2000=18.5或﹣5【分析】先根据绝对值的定义求出ab的值然后根据ab<0确定ab的值最后代入a﹣b中求值即可【详解】解:∵|a|=3|b|=2∴a=±3b=±2;∵ab<0∴当a=3时b=﹣2;当a=﹣3时b19.3【分析】直接根据数轴上两点间的距离公式求解即可【详解】∵|1-(-2)|=3∴数轴上表示-2的点与表示1的点的距离是3故答案为3【点睛】本题考查的是数轴熟知数轴上两点间的距离公式是解答此题的关键20.7×106【分析】根据科学记数法形式:a×10n其中1≤a<10n为正整数即可求解【详解】解:7000000科学记数法表示为:7×106故答案为:7×106【点睛】本题考查科学记数法解决本题的关键是21.910【详解】试题分析:由运算流程可以得出有两种情况当输入的x为偶数时就有y=x 当输入的x为奇数就有y=(x+1)把y=5分别代入解析式就可以求出x的值而得出结论解:由题意得当输入的数x是偶数时则y22.0【分析】先把0314314都转化为314然后逆运用乘法分配律进行计算即可得解【详解】解:故答案为:0【点睛】本题考查了有理数的乘法运算把算式进行转化逆运用乘法分配律运算更加简便23.68和1014亿和314【分析】准确数是指对事物进行计数时能确切表示一个量的真正值的数;近似数是指跟一个数量的准确值相接近并且用来代替准确值的数值;据此直接进行判断【详解】我国约有14亿人口;第一中24.16【分析】从28开始分别按照偶数和奇数的计算法则依次计算直到出现循环即可得解【详解】解:第1次:;第2次:;第3次:;第4次:;第5次:;第6次:;第7次:等于第5次所以从第5次开始奇数次等于1偶25.90【分析】先根据有理数的大小比较法则得出最高点和最低点再列出运算式子计算有理数的减法即可得【详解】因为所以最高点的海拔高度为20米最低点的海拔高度米则(米)即最高点比最低点高90米故答案为:90【26.-4【解析】试题27.①加法互换律;②加法结合律;③有理数的加法法则;④有理数的加法法则【分析】根据有理数加法法则相关运算律:交换律:a+b=b+a;结合律(a+b)+c=a+(b+c)依此即可求解【详解】第①步交换了加三、解答题28.29.30.2016-2017年度第*次考试试卷参考解析【参考解析】**科目模拟测试一、选择题1.A解析:A【分析】根据题意列出乘法算式,计算即可.【详解】设一个因数为a,另一个因数为b∴两数乘积为ab根据题意,得11 10202a b ab故选A.【点睛】本题考查了有理数乘法运算,根据有理数乘法运算法则计算即可.2.B解析:B【分析】三个数乘积最大时一定为正数,二2和4的积为8,因此一定要根据-1和-3相乘,积为3,然后和4相乘,此时三数积最大.【详解】∵乘积最大时一定为正数∴-1,-3,4的乘积最大为12故选B.【点睛】本题考查了有理数的乘法,两个负数相乘积为正数,先将两个负数化为正数是本题的关键.3.D解析:D【解析】【分析】根据数轴表示数的方法得到a<0<b,且|a|>b,则-a>b,-b>a,然后把a,b,-a,-b从大到小排列.【详解】∵a<0<b,且|a|>b,∴a<-b<b<-a,故选D.【点睛】本题考查了数轴、有理数大小比较,解题的关键是熟知正数大于0,负数小于0;负数的绝对值越大,这个数越小.4.A解析:A【分析】根据正数与负数的意义对①进行判断即可;根据绝对值的性质对②与④进行判断即可;根据倒数的意义对③进行判断即可;根据平方的意义对⑤进行判断即可.【详解】①a-不一定是负数,故该说法错误;②||a一定是非负数,故该说法错误;③倒数等于它本身的数是±1,故该说法正确;④绝对值等于它本身的数是非负数,故该说法错误;⑤平方等于它本身的数是0或1,故该说法错误.综上所述,共1个正确,故选:A.【点睛】本题主要考查了有理数的性质,熟练掌握相关概念是解题关键.5.D解析:D【解析】根据有理数的乘法和除法法则可得选项A、B正确;根据有理数的除法法则可得选项C正确;根据有理数的除法法则可得选项D原式=ab,选项D错误,故选D.6.A解析:A 【分析】根据有理数加减法法则计算即可得答案. 【详解】2136⎛⎫--- ⎪⎝⎭=2136-+ =12-. 故选:A . 【点睛】本题考查有理数的加减,有理数加法法则:同号两数相加,取相同的符号,并把绝对值相加;绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值,一个数同零相加,仍得这个数,有理数减法法则:减去一个数,等于加上这个数的相反数.7.C解析:C 【解析】绝对值大于1且小于4的整数有:±2;±3,–2+2+3+(–3)=0.故选C .8.A解析:A 【解析】a ,b 互为相反数0a b ⇔+= ,易选B. 9.D解析:D 【分析】利用绝对值的性质去掉绝对值符号,再根据正数大于负数,两个负数比较大小,大的数反而小,可得答案. 【详解】①∵33 3.754⎛⎫-+=- ⎪⎝⎭,33.833.754>=, ∴33.834⎛⎫-<-+ ⎪⎝⎭,故①错误;②∵33154420⎛⎫--==⎪⎝⎭,21335502⎛⎫--==⎪⎝⎭,1512 2020>,∴3345⎛⎫⎛⎫-->--⎪ ⎪⎝⎭⎝⎭,故②正确;③∵ 2.5 2.5-=,2.5 2.5>-,∴ 2.5 2.5->-,故③正确;④∵111523623⎛⎫--==⎪⎝⎭,217533346+==,3334 66<,∴125523⎛⎫-->+⎪⎝⎭,故④错误.综上,正确的有:②③.故选:D.【点睛】本题考查了绝对值的化简以及有理数大小比较,两个负数比较大小,绝对值大的数反而小.10.B解析:B【分析】根据计算器的使用方法,结合各项进行判断即可.【详解】解:按下列按键顺序输入:则它表达的算式是0.8+3.2÷45=,故选:B.【点睛】此题主要考查了计算器的应用,根据有理数的输入方法正确输入数据是解题关键.11.C解析:C【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10−n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定. 【详解】6.12×10−3=0.00612, 故选C . 【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10−n ,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.12.C解析:C 【详解】A. 两数之和为正,则两数均为正,错误,如-2+3=1;B. 两数之和为负,则两数均为负,错误,如-3+1=-2;C. 两数之和为0,则这两数互为相反数,正确;D. 两数之和一定大于每一个加数,错误,如-1+0=-1, 故选C. 【点睛】根据有理数加法法则:绝对值不相等的异号两数相加,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值;互为相反数的两个数相加得0.可得出结果.13.C解析:C 【分析】根据数轴可得0a b <<且a b >,再逐一分析即可. 【详解】由题意得0a <,0b >,a b >,A 、0ab <,故本选项错误;B 、a b >,故本选项错误;C 、a b ->,故本选项正确;D 、b a >,故本选项错误. 故选:C . 【点睛】本题考查数轴,由数轴观察出0a b <<且a b >是解题的关键.14.C解析:C 【分析】原式各项根据有理数的运算法则计算得到结果,即可作出判断. 【详解】A 、82681220--⨯=--=-,错误,不符合题意;B 、433392234448÷⨯=⨯⨯=,错误,不符合题意;C 、20012002(1)(1)110-+-=-+=,正确,符合题意;D 、-(-22)=4,错误,不符合题意;故选:C .【点睛】本题考查了有理数的混合运算,熟练掌握运算法则是解答本题的关键.15.B解析:B【分析】直接利用绝对值的性质即可解答.【详解】解:∵M +|-20|=|M |+|20|,∴M≥0,为非负数.故答案为B .【点睛】本题考查了绝对值的应用,灵活应用绝对值的性质是正确解答本题的关键.二、填空题16.76【分析】根据要求进行四舍五入即可【详解】解:把67758精确到001位得到的近似数是6776故答案是:6776【点睛】本题考查了近似数:经过四舍五入得到的数称为近似数解析:76.【分析】根据要求进行四舍五入即可.【详解】解:把67.758精确到0.01位得到的近似数是67.76.故答案是:67.76.【点睛】本题考查了近似数:经过四舍五入得到的数称为近似数.17.【分析】先把abcde=2000化为abcde=2000=24×53的形式再根据整数abcde 都大于1得到使a+b+c+d+e 尽可能小时各未知数的取值求出最小值即可【详解】解:abcde=2000=解析:【分析】先把abcde=2000化为abcde=2000=24×53的形式,再根据整数a ,b ,c ,d ,e 都大于1,得到使a+b+c+d+e 尽可能小时各未知数的取值,求出最小值即可.【详解】解:abcde=2000=24×53,为使a+b+c+d+e 尽可能小,显然应取a=23,b=2,c=d=e=5或a=22,b=22,c=d=e=5,前者S=8+2+15=25,后者S=4+4+15=23,故最小值S=23.故答案为:23.【点睛】本题考查的是质因数分解,能把原式化为abcde=2000=24×53的形式是解答此题的关键.18.5或﹣5【分析】先根据绝对值的定义求出ab的值然后根据ab<0确定ab 的值最后代入a﹣b中求值即可【详解】解:∵|a|=3|b|=2∴a=±3b=±2;∵ab<0∴当a=3时b=﹣2;当a=﹣3时b解析:5或﹣5【分析】先根据绝对值的定义,求出a、b的值,然后根据ab<0确定a、b的值,最后代入a﹣b中求值即可.【详解】解:∵|a|=3,|b|=2,∴a=±3,b=±2;∵ab<0,∴当a=3时b=﹣2;当a=﹣3时b=2,∴a﹣b=3﹣(﹣2)=5或a﹣b=﹣3﹣2=﹣5.故填5或﹣5.【点睛】本题主要考查的是有理数的乘法、绝对值、有理数的减法,熟练掌握相关法则是解题的关键.19.3【分析】直接根据数轴上两点间的距离公式求解即可【详解】∵|1-(-2)|=3∴数轴上表示-2的点与表示1的点的距离是3故答案为3【点睛】本题考查的是数轴熟知数轴上两点间的距离公式是解答此题的关键解析:3【分析】直接根据数轴上两点间的距离公式求解即可.【详解】∵|1-(-2)|=3,∴数轴上表示-2的点与表示1的点的距离是3.故答案为3.【点睛】本题考查的是数轴,熟知数轴上两点间的距离公式是解答此题的关键.20.7×106【分析】根据科学记数法形式:a×10n其中1≤a<10n为正整数即可求解【详解】解:7000000科学记数法表示为:7×106故答案为:7×106【点睛】本题考查科学记数法解决本题的关键是解析:7×106【分析】根据科学记数法形式:a×10n,其中1≤a<10,n为正整数,即可求解.【详解】解:7000000科学记数法表示为:7×106.故答案为:7×106.【点睛】本题考查科学记数法,解决本题的关键是把一个大于10的数记成a×10n的形式,其中a是整数数位只有一位的数,n是正整数,这种记数法叫做科学记数法.[科学记数法形式:a×10n,其中1≤a<10,n为正整数.21.910【详解】试题分析:由运算流程可以得出有两种情况当输入的x为偶数时就有y=x当输入的x为奇数就有y=(x+1)把y=5分别代入解析式就可以求出x的值而得出结论解:由题意得当输入的数x是偶数时则y解析:9,10【详解】试题分析:由运算流程可以得出有两种情况,当输入的x为偶数时就有y=12x,当输入的x为奇数就有y=12(x+1),把y=5分别代入解析式就可以求出x的值而得出结论.解:由题意,得当输入的数x是偶数时,则y=12x,当输入的x为奇数时,则y=12(x+1).当y=5时,∴5=12x或5=12(x+1).∴x=10或9故答案为9,10考点:一元一次方程的应用;代数式求值.22.0【分析】先把0314314都转化为314然后逆运用乘法分配律进行计算即可得解【详解】解:故答案为:0【点睛】本题考查了有理数的乘法运算把算式进行转化逆运用乘法分配律运算更加简便解析:0【分析】先把0.314,31.4都转化为3.14,然后逆运用乘法分配律进行计算即可得解.【详解】解:3253.1410.31431.40.284⨯+⨯-⨯,353.141 3.14 3.14288=⨯+⨯-⨯,353.14(12)88=⨯+-,3.140=⨯,=.故答案为:0.本题考查了有理数的乘法运算,把算式进行转化,逆运用乘法分配律运算更加简便.23.68和1014亿和314【分析】准确数是指对事物进行计数时能确切表示一个量的真正值的数;近似数是指跟一个数量的准确值相接近并且用来代替准确值的数值;据此直接进行判断【详解】我国约有14亿人口;第一中解析:68和10 14亿和31.4【分析】准确数是指对事物进行计数时,能确切表示一个量的真正值的数;近似数是指跟一个数量的准确值相接近,并且用来代替准确值的数值;据此直接进行判断.【详解】我国约有14亿人口;第一中学有68个教学班;直径10 cm的圆,它的周长约31.4 cm,其中准确数的有68和10;近似数的有14亿和31.4故答案为:68和10;14亿和31.4【点睛】理解“准确数”和“近似数”的意义是解决此题的关键.24.16【分析】从28开始分别按照偶数和奇数的计算法则依次计算直到出现循环即可得解【详解】解:第1次:;第2次:;第3次:;第4次:;第5次:;第6次:;第7次:等于第5次所以从第5次开始奇数次等于1偶解析:16【分析】从28开始,分别按照偶数和奇数的计算法则依次计算,直到出现循环即可得解.【详解】⨯⨯=;解:第1次:280.50.57⨯+=;第2次:371334⨯=;第3次:340.517⨯+=;第4次:3171364⨯⨯⨯⨯⨯⨯=;第5次:640.50.50.50.50.50.51⨯+=;第6次:311316⨯⨯⨯⨯=,等于第5次.第7次:160.50.50.50.51所以从第5次开始,奇数次等于1,偶数次等于16.因为2020是偶数,所以数28经过2020次“H运算”得到的结果是16.故答案为16.【点睛】本题考查了有理数的乘法,发现循环规律,是解题的关键.25.90【分析】先根据有理数的大小比较法则得出最高点和最低点再列出运算式子计算有理数的减法即可得【详解】因为所以最高点的海拔高度为20米最低点的海拔高度米则(米)即最高点比最低点高90米故答案为:90【【分析】先根据有理数的大小比较法则得出最高点和最低点,再列出运算式子,计算有理数的减法即可得.【详解】>->-,因为205070-米,所以最高点的海拔高度为20米,最低点的海拔高度70--=+=(米),则20(70)207090即最高点比最低点高90米,故答案为:90.【点睛】本题考查了有理数的大小比较法则、有理数减法的实际应用,依据题意,正确列出运算式子是解题关键.26.-4【解析】试题解析:-4【解析】试题两点的距离为8,则点A、B距离原点的距离是4,∵点A,B互为相反数,A在B的右侧,∴A、B表示的数是4,-4.27.①加法互换律;②加法结合律;③有理数的加法法则;④有理数的加法法则【分析】根据有理数加法法则相关运算律:交换律:a+b=b+a;结合律(a+b)+c=a+(b+c)依此即可求解【详解】第①步交换了加解析:①加法互换律;②加法结合律;③有理数的加法法则;④有理数的加法法则【分析】根据有理数加法法则,相关运算律:交换律:a+b=b+a;结合律(a+b)+c=a+(b+c).依此即可求解.【详解】第①步,交换了加数的位置;第②步,将符号相同的两个数结合在一起;第③步,利用了有理数加法法则;第④步,同样应用了有理数的加法法则.故答案为加法交换律;加法结合律;有理数加法法则;有理数加法法则.【点睛】考查了有理数的加法,关键是熟练掌握计算法则,灵活运用运算律简便计算.三、解答题28.【分析】先计算有理数的乘方,再计算括号内的除法与减法,然后计算有理数的乘法,最后计算有理数的减法即可得.【详解】解:原式[]9428(8)=--⨯-÷-, []942(1)=--⨯--, 943=--⨯,912=--,21=-.【点睛】本题考查了含乘方的有理数混合运算,熟练掌握各运算法则是解题关键.29.(1)23-;(2)-11 【分析】(1)先计算乘方及括号,再计算乘法,最后计算加减法;(2)先计算乘方和绝对值,再计算乘除法,最后计算加减法.【详解】(1)()2411(10.5)2--23⎡⎤---⨯⨯⎣⎦=111(2)23--⨯⨯- =113-+=23-; (2)6÷(-2)3-|-22×3|+3÷2×12+1 =116(8)123122÷--+⨯⨯+ =3312144--++ =-11.【点睛】此题考查含乘方的有理数的混合运算,掌握运算顺序及运算法则是解题的关键. 30.(1)1- (2)0.5 (3)3-或7-(1)根据移动的方向和距离结合数轴即可回答;(2)根据题意可知点D是线段AC的中点;(3)在点B左侧找一点E,点E到点A的距离是到点B的距离的2倍,依此即可求解.【详解】解:(1)点B表示的数为-4+5=1,∵-1<1<2,∴三个点所表示的数最小的数是-1;(2)点D表示的数为(-1+2)÷2=1÷2=0.5;(3)点E在点B的左侧时,根据题意可知点B是AE的中点,AB=|-1+4|=3则点E表示的数是-4-3=-7.点E在点B的右侧时,即点E在AB上,则点E表示的数为-3.【点睛】本题主要考查的是有理数大小比较,数轴的认识,找出各点在数轴上的位置是解题的关键.。
(好题)人教版初中七年级数学上册第三章《一元一次方程》模拟测试题(有答案解析)(2)
一、选择题1.(0分)[ID :68205]某车间有22名工人每人每天可以生产1200个螺钉或2000个螺母,1个螺钉需要配2个螺母,为使每天生产的螺钉和螺母刚好配套 ,设有x 名工人生产螺钉,其他工人生产螺母,根据题意列出方程( )A .20001200(22)x x =-B .212002000(22)x x ⨯=-C .220001200(22)x x ⨯=-D .12002000(22)x x =-2.(0分)[ID :68192]小丽买了20支铅笔,店主给她8折优惠(即按标价的80%出售),结果共便宜了1.6元,则每支铅笔的标价是( )A .0.20元B .0.40元C .0.60元D .0.80元 3.(0分)[ID :68164]如图,方格中的格子被填上了数,每一行、每一列以及两条对角线中所填的数字之和均相等,则的值为( )A .B .C .D .4.(0分)[ID :68160]某人连续休假4天,这四天的日期之和是74,他休假第一天的日期是( )A .17号B .18号C .19号D .20号5.(0分)[ID :68257]一家商店将某种服装按成本提高40%标价,又以8折优惠卖出,结果每件服装仍可获利15元,则这种服装每件的成本价是( )A .120元B .125元C .135元D .140元 6.(0分)[ID :68248]下列变形不正确的是( )A .由2x-3=5得:2x=8B .由-23x=2得:x=-3C .由2x=5得:x=25D .由x+5 =3x-2得:7=2x7.(0分)[ID :68244]已知a=2b ,则下列选项错误的是( )A .a+c=c+2bB .a ﹣m=2b ﹣mC .2a b =D .2a b= 8.(0分)[ID :68242]图①为一正面白色、反面灰色的长方形纸片.今沿虚线剪下分成甲、乙两长方形纸片,并将甲纸片反面朝上粘贴于乙纸片上,形成一张白、灰相间的长方形纸片,如图②所示.若图②中白色与灰色区域的面积比为8∶3,图②纸片的面积为33,则图①纸片的面积为( )A .2314B .3638C .42D .44 9.(0分)[ID :68241]若代数式4x +的值是2,则x 等于( )A .2B .2-C .6D .6-10.(0分)[ID :68228]已知方程(1)30m m x -+=是关于x 的一元一次方程,则m 的值是( )A .±1B .1C .-1D .0或1 11.(0分)[ID :68222]两年前,李叔叔在银行存了一笔两年的定期存款,年利率是2.75%.到期后取出,得到本金和利息总共21100元.设李叔叔存入的本金为x 元,则下列方程正确的是( )A .2 2.75%21100x ⨯=B . 2.75%21100x x +=C .2 2.75%21100x x +⨯=D .2( 2.75%)21100x x +=12.(0分)[ID :68220]下列说法正确的是( )A .若a c =b c ,则a=bB .若-12x=4y ,则x=-2y C .若ax=bx ,则a=b D .若a 2=b 2,则a=b13.(0分)[ID :68209]某个体商贩在一次买卖中同时卖出两件上衣,每件售价均为135元,若按成本计算,其中一件盈利25%,一件亏本25%,则在这次买卖中他( )A .不赚不赔B .赚9元C .赔18元D .赚18元 14.(0分)[ID :68179]一游泳池计划注入一定体积的水,按每小时500立方米的速度注水,注水2小时,注水口发生故障,停止注水,经20分钟抢修后,注水速度比原来提高了20%,结果比预定的时间提前了10分钟完成注水任务,则计划注入水的体积为( ) A .34000mB .32500mC .32000mD .3500m 15.(0分)[ID :68175]甲、乙、丙三辆卡车所运货物的质量之比为,已知甲车比乙车少运货物吨,则三辆卡车共运货物( ) A .吨 B .吨 C .吨D .吨 二、填空题16.(0分)[ID :68333]若方程2(2)3m m x x ---=是一元一次方程,则m =________. 17.(0分)[ID :68330]用等式的性质解方程:155x -=,两边同时________,得x =________;245y =,两边同时________,得y =________.18.(0分)[ID :68323]若关于x 的方程1253n ax bx x x +-+=+是一元一次方程,则a n +=_________ ,b_________.19.(0分)[ID :68321]小石在解关于x 的方程225a x x -=时,误将等号前的“2x -”看作“3x -”,得出解为1x =-,则a 的值是_________,原方程的解为__________ . 20.(0分)[ID :68301]开学初,小明到某商场购物,发现商场正在进行购物返券活动,活动规则如下:购物每满100元,返购物券50元,此购物券在本商场通用,且用购物券购买商品不再返券,也不得找零. 小明只购物买了单价别为60元,80元和120元的物品各一件,使用购物券后,他的实际花费为_________元.21.(0分)[ID :68295]在方程431=-x 的两边同时_________,得x =___________. 22.(0分)[ID :68292]若方程()||110a a x --=是关于x 的一元一次方程,则a =____________.23.(0分)[ID :68288]解方程:1225y y -+=. 解:去分母,得____________.去括号,得______________.移项,得_______________.合并同类项,得______________.方程两边同除以3,得_______________.24.(0分)[ID :68283]在某张月历表上,若前三个星期日的数字之和是42,则第一个星期_______号.25.(0分)[ID :68269]如果ma mb =,那么下列等式一定成立的是_______.①a b =;②66ma mb -=-;③1122ma mb -=-;④88ma mb +=+;⑤3131ma mb -=-;⑥33ma mb -=+.26.(0分)[ID :68265]已知21535a x y -和2547a x y +是同类项,则可得关于a 的方程为________.27.(0分)[ID :68274]某次数学测验中有16道选择题,评分办法:答对一道得6分,答错一道扣2分,不答得0分.某学生有一道题未答,那么这个同学至少要答对________道题,成绩才能在60分以上. 三、解答题28.(0分)[ID :68399]依据下列解方程0.30.5210.23x x +-=的过程,请在前面的括号内填写变形步骤,在后面的括号内填写变形依据。
河北省邯郸市2017年中考第6次模拟考试数学试卷(有答案)
初三第六次模拟考试数学试卷一、 选择题(本大题共16小题,1~10小题每题3分;11~16小题每题2分,共42分。
在每小题给出的四个选项中,只有一项是符合题目要求的)1. 4的平方根是( )A.2B. 2C. ±2D. ±22. 函数11+=x y 的自变量x 的取值范围是( ) A. 1->x B. 1-<x C. 1-≠xD. 1≠x3. 一个几何体的主视图、左视图、俯视图的图形完全相同,它可能是( )A. 三棱锥B. 长方体C. 球体D. 三棱柱4. H7N9病毒直径为30纳米(1纳米=10﹣9米),用科学记数法表示这个病毒直径的大小,正确的是( ) A. 91030-⨯米 B. 8100.3-⨯米 C. 10100.3-⨯米D. 9103.0-⨯米5. 下列计算正确的是( )A. 4222a a a =+B. a a 4)2(2=C. 333=⨯D. 2312=÷6. 如图,点A 的坐标为(﹣1,0),点B 在直线y =x 上运动,当线段AB 最短时,点B 的坐标为( )A.(0,0)B.(22,22) C.(21-,21-) D. (22-,22-)7. 如图,在⊙O 中,AC ∥OB ,∠BAO =25°,则∠BOC 的度数为( ) A. 25° B. 50° C. 60° D. 80°8. 如图所示,将矩形ABCD 沿直线AE 折叠,顶点D 恰好落在BC边上F 点处,已知AB =6,AD =10,则tan ∠EFC =( )A.43 B.34 C.53 D.54 9. 如图,小东用长为3.2m 的竹竿做测量工具测量学校旗杆的高度,移动竹竿,使竹竿、旗杆顶点的影子恰好落在地面的同一点。
此时,竹竿与这一点相距8m 、与旗杆相距22m ,则旗杆的高为( ) A. 12m B. 10m C. 8m D. 7m 10. 用直尺和圆规作一个以线段AB 为边的菱形,作图痕迹如图所示,能得到四边形ABCD 是菱形的依据是( ) A.一组邻边相等的四边形是菱形 B.四边相等的四边形是菱形 C.对角线互相垂直的平行四边形是菱形D.每条对角线平分一组对角的平行四边形是菱形 11. 如图,已知直线AB ∥CD ,∠GEB 的平分线EF 交CD 于点F ,∠1=42°,则∠2=( )A. 138°B. 142°C. 148°D. 159°12. 如图,AB 是⊙O 的直径,C 、D 是⊙O 上的点,∠CDB =20°,过点C 作⊙O 的切线交AB的延长线于点E ,则∠E =( ) A. 70° B. 50° C. 40° D. 20°13. 已知点P (a -1,a +2)在平面直角坐标系的第二象限内,则a 的取值范围在数轴上可表示为( )A. B.C. D.14. 化简:444)2(22+--⋅-a a a a 的结果是( )A. a -2B. a +2C. 22-+a aD. 22+-a a15. 如图,圆O 与直线m 相切于点A ,P 、Q 两点同时从A 点以相同的速度出发,点P 沿直线向右运动,点Q 沿圆O 逆时针方向运动,连结OP 、OQ ,图中阴影部分面积分别为S 1,S 2,则S 1,S 2之间的关系是( ) A. S 1> S 2 B. S 1< S 2 C. S 1= S 2 D. 不能确定16. 平面直角坐标系中,有线段MN ,M (1,1),N (2,2),若抛物线2ax y =与线段MN 没有公共点,则a 的取值范围是( ) A.0<aB.1>a 或210<<a C. 0<a 或1>a 或210<<a D.121<<a 二、 填空题(本大题共4小题,每小题3分,共12分)17. 计算=-+0)12(9___________。
山西省阳泉市盂县中考数学二模试卷(含解析)-人教版初中九年级全册数学试题
2017年某某省某某市盂县中考数学二模试卷一、仔细选一选(本题有10个小题,每小题3分,共30分)下面每个小题给出的四个选项中,只有一个是正确的,请将正确的选项的字母标号填入答题卡表格相应的空格内,注意可用多种不同的方法来选取正确答案1.﹣2的绝对值是()A.﹣2 B.C.±2 D.22.三角形的内角和等于()A.90° B.180°C.300°D.360°3.下列计算中,正确的是()A.a0=1 B.a﹣1=﹣a C.a3•a2=a5D.2a2+3a3=5a54.点A,B在数轴上的位置如图所示,其对应的数分别是a和b.对于以下结论:甲:b﹣a<0乙:a+b>0丙:|a|<|b|丁:>0其中正确的是()A.甲乙 B.丙丁 C.甲丙 D.乙丁5.下面用数轴上的点P表示实数﹣2,正确的是()A.B.C.D.6.把多项式x2+ax+b分解因式,得(x+1)(x﹣3),则a,b的值分别是()A.a=﹣2,b=﹣3 B.a=2,b=3 C.a=﹣2,b=3 D.a=2,b=﹣37.如图是由几个小立方块所搭几何体的俯视图,小正方形的数字表示在该位置的小立方块的个数,这个几何体的主视图是()A.B. C.D.8.如图,矩形OABC上,点A、C分别在x、y轴上,点B在反比例y=位于第二象限的图象上,矩形面积为6,则k的值是()A.3 B.6 C.﹣6 D.﹣39.我国古代《易经》一书中记载,远古时期,人们通过在绳子上打结来记录数量,即“结绳计数”.如图,一位母亲在从右到左依次排列的绳子上打结,满七进一,用来记录孩子自出生后的天数,由图可知,孩子自出生后的天数是()A.517 B.84 C.336 D.132610.现有甲、以两支解放军小分队将救灾物资送往某灾区小镇,从部队基地到该小镇只有唯一通道,且路程长为24km,甲小队先出发,如图是他们行走的路程与时间的函数图象,四位同学观察此函数图象得出有关信息,其中正确的个数为()A.1 B.2 C.3 D.4二、认真填一填(本题有5个小题,每小题3分,共15分)要注意认真看清题目的条件和要填写的内容,尽量完整地填写答案11.据报道,目前我国“天河二号”超级计算机的运算速度位居全球第一,其运算速度达到了每秒338 600 000亿次,数字338 600 000用科学记数法可简洁表示为.12.某工厂去年的产值是a万元,今年比去年增加10%,今年的产值是万元.13.《九章算术》中记载:“今有竹高一丈,未折抵地,去根三尺,问折者高几何?”译文:有一根竹子原高一丈(1丈=10尺),中部有一处折断,竹梢触地面处离竹根3尺,试问折断处离地面多高?我们用线段OA和线段AB来表示竹子,其中线段AB表示竹子折断部分,用线段OB表示竹梢触地处离竹根的距离,则竹子折断处离地面的高度OA是尺.14.如图,在边长为a的正方形中剪去一个边长为b的小正方形(a>b),把剩下的部分拼成一个梯形,分别计算这两个图形阴影部分的面积,验证了公式.15.在求1+3+32+33+34+35+36+37+38的值时,X红发现:从第二个加数起每一个加数都是前一个加数的3倍,于是她假设:S=1+3+32+33+34+35+36+37+38①,然后在①式的两边都乘以3,得:3S=3+32+33+34+35+36+37+38+39②,②﹣①得,3S﹣S=39﹣1,即2S=39﹣1,所以S=.得出答案后,爱动脑筋的X红想:如果把“3”换成字母m(m≠0且m≠1),能否求出1+m+m2+m3+m4+…+m2016的值?如能求出,其正确答案是.三、全面答一答(本题有8个小题,共75分)解答应写出文字说明、证明过程或推演步骤,如果觉得有的题目优点困难,那么把自己能写出的解答写出一部分也可以16.(1)计算:+20170﹣|﹣2|+1(2)计算:÷(2x﹣)17.某班“数学兴趣小组”对函数y=x2﹣2|x|的图象和性质进行了探究,探究过程如下,请补充完整.(1)自变量x的取值X围是全体实数,x 与y的几组对应值列表:x …﹣3 ﹣2﹣1 0 1 2 3 …y … 3 m ﹣1 0 ﹣1 0 3 …其中m=.(2)根据上表数据,在如图所示的平面直角坐标系中描点,并画出了函数图象的一部分,请画出该函数图象的另一部分;(3)观察函数图象,写出2条函数的性质;(4)进一步探究函数图象发现:①函数图象与x轴有个交点,所对应的方程x2﹣2|x|=0有个实数根;②方程x2﹣2|x|=2有个实数根.18.两会期间,记者随机抽取参会的部分代表,对他们某天发言的次数进行了统计,其结果如表,并绘制了如图所示的两幅不完整的统计图,请结合图中相关数据回答下列问题:发言次数nA 0≤n<3B 3≤n<6C 6≤n<9D 9≤n<12E 12≤n<15F 15≤n<18(1)求得样本容量为,并补全直方图;(2)如果会议期间组织1700名代表参会,请估计在这一天里发言次数不少于12次的人数;(3)已知A组发表提议的代表中恰有1为女士,E组发表提议的代表中只有2位男士,现从A组与E组中分别抽一位代表写报告,请用列表法或画树状图的方法,求所抽的两位代表恰好都是男士的概率.19.如图,△ABC中,AB=AC,点D是BC上一点,DE⊥AB于E,FD⊥BC于D,G是FC的中点,连接GD.求证:GD⊥DE.20.阅读下面材料:小腾遇到这样一个问题:如图1,在△ABC中,点D在线段BC上,∠BAD=75°,∠CAD=30°,AD=2,BD=2DC,求AC的长.小腾发现,过点C作CE∥AB,交AD的延长线于点E,通过构造△ACE,经过推理和计算能够使问题得到解决(如图 2).请回答:∠ACE的度数为,AC的长为.参考小腾思考问题的方法,解决问题:如图 3,在四边形 ABCD中,∠BAC=90°,∠CAD=30°,∠ADC=75°,AC与BD交于点E,AE=2,BE=2ED,求BC的长.21.某某新闻网讯:2016年2月21日,某某市首条绿道免费公共自行车租赁系统正式启用.市政府今年投资了112万元,建成40个公共自行车站点、配置720辆公共自行车.今后将逐年增加投资,用于建设新站点、配置公共自行车.预计2018年将投资340.5万元,新建120个公共自行车站点、配置2205辆公共自行车.(1)请问每个站点的造价和公共自行车的单价分别是多少万元?(2)请你求出2016年到2018年市政府配置公共自行车数量的年平均增长率.22.A、B两城相距600千米,一辆客车从A城开往B城,车速为每小时80千米,同时一辆出租车从B城开往A城,车速为毎小时100千米,设客车出时间为t.探究若客车、出租车距B城的距离分别为y1、y2,写出y1、y2关于t的函数关系式,并计算当y1=200千米时y2的値.发现设点C是A城与B城的中点,(1)哪个车会先到达C?该车到达C后再经过多少小时,另一个车会到达C?(2)若两车扣相距100千米时,求时间t.决策己知客车和出租车正好在A,B之间的服务站D处相遇,此时出租车乘客小王突然接到开会通知,需要立即返回,此时小王有两种选择返回B城的方案:方案一:继续乘坐出租车,到达A城后立刻返回B城(设出租车调头时间忽略不计);方案二:乘坐客车返回城.试通过计算,分析小王选择哪种方式能更快到达B城?23.如图,抛物线y=ax2+bx过A(4,0),B(1,3)两点,点C,B关于抛物线的对称轴对称,过点B作直线BH⊥x轴,交x轴于点H.(1)求抛物线的表达式;(2)直接写出点C的坐标,并求出△ABC的面积;(3)点P是抛物线上一动点,且位于第四象限,当△ABP的面积为6时,求出点P的坐标;(4)若点M在直线BH上运动,点N在x轴上运动,当CM=MN,且∠CMN=90°时,求此时△CMN的面积.2017年某某省某某市盂县中考数学二模试卷参考答案与试题解析一、仔细选一选(本题有10个小题,每小题3分,共30分)下面每个小题给出的四个选项中,只有一个是正确的,请将正确的选项的字母标号填入答题卡表格相应的空格内,注意可用多种不同的方法来选取正确答案1.﹣2的绝对值是()A.﹣2 B.C.±2 D.2【分析】根据负数的绝对值是它的相反数,可得答案.【解答】解:﹣2的绝对值是2.故选:D.【点评】本题主要考查绝对值的定义,规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.2.三角形的内角和等于()A.90° B.180°C.300°D.360°【分析】利用三角形的内角和定理:三角形的内角和为180°即可解本题【解答】解:因为三角形的内角和为180度.所以B正确.故选B.【点评】此题主要考查了三角形的内角和定理:三角形的内角和为180°.3.下列计算中,正确的是()A.a0=1 B.a﹣1=﹣a C.a3•a2=a5D.2a2+3a3=5a5【分析】直接利用负整数指数幂的性质以及零指数幂的性质和合并同类项法则以及同底数幂的乘法运算法则化简求出答案.【解答】解:A、a0=1(a≠0),故此选项错误;B、a﹣1=(a≠0),故此选项错误;C、a3•a2=a5,正确;D、2a2+3a3,无法计算,故此选项错误;故选:C.【点评】此题主要考查了负整数指数幂的性质以及零指数幂的性质和合并同类项以及同底数幂的乘法运算等知识,正确掌握相关运算法则是解题关键.4.点A,B在数轴上的位置如图所示,其对应的数分别是a和b.对于以下结论:甲:b﹣a<0乙:a+b>0丙:|a|<|b|丁:>0其中正确的是()A.甲乙 B.丙丁 C.甲丙 D.乙丁【分析】根据有理数的加法法则判断两数的和、差及积的符号,用两个负数比较大小的方法判断.【解答】解:甲:由数轴有,0<a<3,b<﹣3,∴b﹣a<0,甲的说法正确,乙:∵0<a<3,b<﹣3,∴a+b<0乙的说法错误,丙:∵0<a<3,b<﹣3,∴|a|<|b|,丙的说法正确,丁:∵0<a<3,b<﹣3,∴<0,丁的说法错误.故选C【点评】此题考查了绝对值意义,比较两个负数大小的方法,有理数的运算,解本题的关键是掌握有理数的运算.5.下面用数轴上的点P表示实数﹣2,正确的是()A.B.C.D.【分析】先估算出的大小,再利用不等式的性质得出﹣2的大小,然后结合选择项分析即可求解.【解答】解:∵2<<3,∴0<﹣2<1,故选B.【点评】此题主要考查了实数与数轴,估算无理数的大小,解决本题的关键是得到﹣2的取值X围.6.把多项式x2+ax+b分解因式,得(x+1)(x﹣3),则a,b的值分别是()A.a=﹣2,b=﹣3 B.a=2,b=3 C.a=﹣2,b=3 D.a=2,b=﹣3【分析】因式分解的结果利用多项式乘以多项式法则计算,再利用多项式相等的条件求出a 与b的值即可.【解答】解:根据题意得:x2+ax+b=(x+1)(x﹣3)=x2﹣2x﹣3,则a=﹣2,b=﹣3,故选A【点评】此题考查了因式分解﹣十字相乘法,以及多项式乘以多项式,熟练掌握运算法则是解本题的关键.7.如图是由几个小立方块所搭几何体的俯视图,小正方形的数字表示在该位置的小立方块的个数,这个几何体的主视图是()A.B. C.D.【分析】找到从正面看所得到的图形即可.【解答】解:从正面可看到,左边2个正方形,中间1个正方形,右边1个正方形.故选D.【点评】本题考查了三视图的知识,主视图是从物体的正面看得到的视图.8.如图,矩形OABC上,点A、C分别在x、y轴上,点B在反比例y=位于第二象限的图象上,矩形面积为6,则k的值是()A.3 B.6 C.﹣6 D.﹣3【分析】由反比例函数系数k的几何意义结合矩形面积为6即可得出k=±6,再由反比例函数在第二象限内有图象即可得出k=﹣6,此题得解.【解答】解:∵四边形OABC为矩形,且点B在反比例y=的图象上,∴S矩形OABC=|k|=6,∴k=±6.又∵反比例函数在第二象限有图象,∴k=﹣6.故选C.【点评】本题考查了反比例函数系数k的几何意义,熟练掌握“在反比例函数y=图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.”是解题的关键.9.我国古代《易经》一书中记载,远古时期,人们通过在绳子上打结来记录数量,即“结绳计数”.如图,一位母亲在从右到左依次排列的绳子上打结,满七进一,用来记录孩子自出生后的天数,由图可知,孩子自出生后的天数是()A.517 B.84 C.336 D.1326【分析】由于从右到左依次排列的绳子上打结,满七进一,所以从右到左的数分别为6,3×7,3×7×7和1×7×7×7,然后把它们相加即可.【解答】解:6+3×7+3×7×7+1×7×7×7=517.所以孩子自出生后的天数是517.故选A.【点评】本题考查了用数字表示事件:用数字表示事件简洁明了.10.现有甲、以两支解放军小分队将救灾物资送往某灾区小镇,从部队基地到该小镇只有唯一通道,且路程长为24km,甲小队先出发,如图是他们行走的路程与时间的函数图象,四位同学观察此函数图象得出有关信息,其中正确的个数为()A.1 B.2 C.3 D.4【分析】根据图象上特殊点的坐标和实际意义即可求出答案.【解答】解:两个图象的交点处即为两队相遇,时间为4.5小时,此时乙走了4.5﹣2=2.5小时,故(1)的说法正确,其定②③④也都对,故选D【点评】本题主要考查了函数图象的读图能力.要能根据函数图象的性质和图象上的数据分析得出函数的类型和所需要的条件,结合实际意义得到正确的结论.二、认真填一填(本题有5个小题,每小题3分,共15分)要注意认真看清题目的条件和要填写的内容,尽量完整地填写答案11.据报道,目前我国“天河二号”超级计算机的运算速度位居全球第一,其运算速度达到了每秒338 600 000亿次,数字338 600 000用科学记数法可简洁表示为×108.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.【解答】×108,×108.【点评】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.某工厂去年的产值是a万元,今年比去年增加10%,今年的产值是(1+10%)a 万元.【分析】今年产值=(1+10%)×去年产值,根据关系列式即可.【解答】解:根据题意可得今年产值=(1+10%)a万元,故答案为:(1+10%)a.【点评】本题考查了增长率的知识,增长后的收入=(1+10%)×增长前的收入.13.《九章算术》中记载:“今有竹高一丈,未折抵地,去根三尺,问折者高几何?”译文:有一根竹子原高一丈(1丈=10尺),中部有一处折断,竹梢触地面处离竹根3尺,试问折断处离地面多高?我们用线段OA和线段AB来表示竹子,其中线段AB表示竹子折断部分,用线段OB表示竹梢触地处离竹根的距离,则竹子折断处离地面的高度OA是 4.55 尺.【分析】根据题意结合勾股定理得出折断处离地面的长度即可.【解答】解:设折断处离地面的高度OA是x尺,根据题意可得:x2+32=(10﹣x)2,解得:x=4.55,答:折断处离地面的高度OA是4.55尺.故答案为:4.55.【点评】此题主要考查了勾股定理的应用,根据题意正确应用勾股定理是解题关键.14.如图,在边长为a的正方形中剪去一个边长为b的小正方形(a>b),把剩下的部分拼成一个梯形,分别计算这两个图形阴影部分的面积,验证了公式a2﹣b2=(a+b)(a﹣b).【分析】左图中阴影部分的面积是a2﹣b2,右图中梯形的面积是(2a+2b)(a﹣b)=(a+b)(a﹣b),根据面积相等即可解答.【解答】解:a2﹣b2=(a+b)(a﹣b).【点评】此题主要考查的是平方差公式的几何表示,运用不同方法表示阴影部分面积是解题的关键.15.在求1+3+32+33+34+35+36+37+38的值时,X红发现:从第二个加数起每一个加数都是前一个加数的3倍,于是她假设:S=1+3+32+33+34+35+36+37+38①,然后在①式的两边都乘以3,得:3S=3+32+33+34+35+36+37+38+39②,②﹣①得,3S﹣S=39﹣1,即2S=39﹣1,所以S=.得出答案后,爱动脑筋的X红想:如果把“3”换成字母m(m≠0且m≠1),能否求出1+m+m2+m3+m4+…+m2016的值?如能求出,其正确答案是(m≠0且m≠1).【分析】仿照例子,将3换成m,设S=1+m+m2+m3+m4+…+m2016(m≠0且m≠1),则有mS=m+m2+m3+m4+…+m2017,二者做差后两边同时除以m﹣1,即可得出结论.【解答】解:设S=1+m+m2+m3+m4+…+m2016(m≠0且m≠1)①,将①×m得:mS=m+m2+m3+m4+…+m2017②,由②﹣①得:mS﹣S=m2017﹣1,即S=,∴1+m+m2+m3+m4+…+m2016=(m≠0且m≠1).故答案为:(m≠0且m≠1).【点评】本题考查了规律型中的数字的变化类,解题的关键是仿照例子计算1+m+m2+m3+m4+…+m2016.本题属于基础题,难度不大,本题其实是等比数列的求和公式,但初中未接触过该方面的知识,需要借助于错位相减法来求出结论,此题中尤其要注意m的取值X围.三、全面答一答(本题有8个小题,共75分)解答应写出文字说明、证明过程或推演步骤,如果觉得有的题目优点困难,那么把自己能写出的解答写出一部分也可以16.(1)计算:+20170﹣|﹣2|+1(2)计算:÷(2x﹣)【分析】(1)注意零次幂和绝对值的运算;(2)先把括号内通分,再把分子分母因式分解,接着把除法运算化为乘法运算后约分得到结果.【解答】解:(1)计算:+20170﹣|﹣2|+1,=2+1﹣(2﹣)+1,=3﹣2++1,=2+;(2)计算:÷(2x﹣),=÷,=÷,=,=.【点评】本题考查了实数和分式的混合运算,解答本题的关键在于熟练掌握混合运算的运算法则.17.某班“数学兴趣小组”对函数y=x2﹣2|x|的图象和性质进行了探究,探究过程如下,请补充完整.(1)自变量x的取值X围是全体实数,x与y的几组对应值列表:x …﹣3 ﹣2﹣1 0 1 2 3 …y … 3 m ﹣1 0 ﹣1 0 3 …其中m= 0 .(2)根据上表数据,在如图所示的平面直角坐标系中描点,并画出了函数图象的一部分,请画出该函数图象的另一部分;(3)观察函数图象,写出2条函数的性质;(4)进一步探究函数图象发现:①函数图象与x轴有 3 个交点,所对应的方程x2﹣2|x|=0有 3 个实数根;②方程x2﹣2|x|=2有 2 个实数根.【分析】(1)将x=﹣2代入函数解析式中求出y值,即可得出结论;(2)根据表格数据,描点补充完图形;(3)根据函数图象,寻找出对称轴以及函数的单调区间,此题得解;(4)①观察函数图象,根据函数图象与x轴有3个交点,即可得出结论;②画出直线y=2,观察图形,可得出函数y=x2﹣2|x|的图象与y=2只有2个交点,此题得解.【解答】解:(1)当x=﹣2时,y=(﹣2)2﹣2×|﹣2|=0,∴m=0,故答案为:0.(2)根据给定的表格中数据描点画出图形,如图1所示.(3)观察函数图象,可得出:①函数图象关于y轴对称,②当x>1时,y随x的增大而增大.(4)①观察函数图象可知:当x=﹣2、0、2时,y=0,∴该函数图象与x轴有3个交点,即对应的方程x2﹣2|x|=0有3个实数根.故答案为:3;3.②在图中作直线y=2,如图2所示.观察函数图象可知:函数y=x2﹣2|x|的图象与y=2只有2个交点.故答案为:2.【点评】本题考查了抛物线与x轴的交点以及二次函数的性质,根据题意画出图形,利用数形结合解决问题是解题的关键.18.两会期间,记者随机抽取参会的部分代表,对他们某天发言的次数进行了统计,其结果如表,并绘制了如图所示的两幅不完整的统计图,请结合图中相关数据回答下列问题:发言次数nA 0≤n<3B 3≤n<6C 6≤n<9D 9≤n<12E 12≤n<15F 15≤n<18(1)求得样本容量为50 ,并补全直方图;(2)如果会议期间组织1700名代表参会,请估计在这一天里发言次数不少于12次的人数;(3)已知A组发表提议的代表中恰有1为女士,E组发表提议的代表中只有2位男士,现从A组与E组中分别抽一位代表写报告,请用列表法或画树状图的方法,求所抽的两位代表恰好都是男士的概率.【分析】(1)根据统计图可以求得本次调查的人数以及发言为C和F的人数,从而可以将直方图补充完整;(2)根据统计图中的数据可以估计在这一天里发言次数不少于12次的人数;(3)根据题意可以求得发言次数为A和E的人数,从而可以画出树状图,得到所抽的两位代表恰好都是男士的概率.【解答】解:(1)由统计图可得,本次调查的人数为:10÷20%=50,发言次数为C的人数为:50×30%=15,发言次数为F的人数为:50×(1﹣6%﹣20%﹣30%﹣26%﹣8%)=50×10%=5,故答案为:50,补全的直方图如右图所示,(2)1700×(8%+10%)=306,即会议期间组织1700名代表参会,在这一天里发言次数不少于12次的人数是306;(3)由统计图可知,发言次数为A的人数有:50×6%=3,发言次数为E的人数有:50×8%=4,由题意可得,故所抽的两位代表恰好都是男士的概率是=,即所抽的两位代表恰好都是男士的概率是.【点评】本题考查列表法与树状图法、总体、个体、样本、样本容量、频数分布直方图、扇形统计图、用样本估计总体,解题的关键是明确题意,利用数形结合的思想解答问题.19.如图,△ABC中,AB=AC,点D是BC上一点,DE⊥AB于E,FD⊥BC于D,G是FC的中点,连接GD.求证:GD⊥DE.【分析】由∠1+∠EDF=90°可知,只要证明∠1=∠3,∠2=∠3,推出∠1=∠2即可解决问题.【解答】证明:∵AB=AC,∴∠B=∠C,∵DE⊥AB,FD⊥BC,∴∠BED=∠FDC=90°,∴∠1+∠B=90°,∠3+∠C=90°,∴∠1=∠3,∵G是直角三角形FDC的斜边中点,∴GD=GF,∴∠2=∠3,∴∠1=∠2,∵∠FDC=∠2+∠4=90°,∴∠1+∠4=90°,∴∠2+∠FDE=90°,∴GD⊥DE.【点评】本题考查等腰三角形的性质、直角三角形斜边中线性质、等角的余角相等等知识,解题的关键是灵活应用这些知识解决问题,属于基础题,中考常考题型.20.阅读下面材料:小腾遇到这样一个问题:如图1,在△ABC中,点D在线段BC上,∠BAD=75°,∠CAD=30°,AD=2,BD=2DC,求AC的长.小腾发现,过点C作CE∥AB,交AD的延长线于点E,通过构造△ACE,经过推理和计算能够使问题得到解决(如图 2).请回答:∠ACE的度数为75°,AC的长为 3 .参考小腾思考问题的方法,解决问题:如图 3,在四边形 ABCD中,∠BAC=90°,∠CAD=30°,∠ADC=75°,AC与BD交于点E,AE=2,BE=2ED,求BC的长.【分析】根据相似的三角形的判定与性质,可得=2,根据等腰三角形的判定,可得AE=AC,根据正切函数,可得DF的长,根据直角三角形的性质,可得AB与DF的关系,根据勾股定理,可得答案.【解答】解:∠ABC+∠ACB=∠ECD+∠ACB=∠ACE=180°﹣75°﹣30°=75°,∠E=75°,BD=2DC,∴AD=2DE,AE=AD+DE=3,∴AC=AE=3,∠ACE=75°,AC的长为3.过点D作DF⊥AC于点F.∵∠BAC=90°=∠DFA,∴AB∥DF,∴△ABE∽△FDE,∴=2,∴EF=1,AB=2DF.在△ACD中,∠CAD=30°,∠ADC=75°,∴∠ACD=75°,AC=AD.∵DF⊥AC,∴∠AFD=90°,在△AFD中,AF=2+1=3,∠FAD=30°,∴DF=AFtan30°=,AD=2DF=2.∴AC=AD=2,AB=2DF=2.∴BC==2.【点评】本题考查了相似三角形的判定与性质,利用了相似三角形的判定与性质,直角三角形的性质,勾股定理.21.某某新闻网讯:2016年2月21日,某某市首条绿道免费公共自行车租赁系统正式启用.市政府今年投资了112万元,建成40个公共自行车站点、配置720辆公共自行车.今后将逐年增加投资,用于建设新站点、配置公共自行车.预计2018年将投资340.5万元,新建120个公共自行车站点、配置2205辆公共自行车.(1)请问每个站点的造价和公共自行车的单价分别是多少万元?(2)请你求出2016年到2018年市政府配置公共自行车数量的年平均增长率.【分析】(1)分别利用投资了112万元,建成40个公共自行车站点、配置720辆公共自行车以及投资340.5万元,新建120个公共自行车站点、配置2205辆公共自行车进而得出等式求出答案;(2)利用2016年配置720辆公共自行车,结合增长率为x,进而表示出2018年配置公共自行车数量,得出等式求出答案.【解答】解:(1)设每个站点造价x万元,自行车单价为y万元.根据题意可得:解得:答:每个站点造价为1万元,自行车单价为0.1万元.(2)设2016年到2018年市政府配置公共自行车数量的年平均增长率为a.根据题意可得:720(1+a)2=2205解此方程:(1+a)2=,即:a1==75%,a2=﹣(不符合题意,舍去)答:2016年到2018年市政府配置公共自行车数量的年平均增长率为75%.【点评】此题主要考查了二元一次方程的应用以及一元二次方程的应用,正确得出等式是解题关键.22.A、B两城相距600千米,一辆客车从A城开往B城,车速为每小时80千米,同时一辆出租车从B城开往A城,车速为毎小时100千米,设客车出时间为t.探究若客车、出租车距B城的距离分别为y1、y2,写出y1、y2关于t的函数关系式,并计算当y1=200千米时y2的値.发现设点C是A城与B城的中点,(1)哪个车会先到达C?该车到达C后再经过多少小时,另一个车会到达C?(2)若两车扣相距100千米时,求时间t.决策己知客车和出租车正好在A,B之间的服务站D处相遇,此时出租车乘客小王突然接到开会通知,需要立即返回,此时小王有两种选择返回B城的方案:方案一:继续乘坐出租车,到达A城后立刻返回B城(设出租车调头时间忽略不计);方案二:乘坐客车返回城.试通过计算,分析小王选择哪种方式能更快到达B城?【分析】探究:根据路程=速度×时间,即可得出y1、y2关于t的函数关系式,根据关系式算出y1=200千米时的时间t,将t代入y2的解析式中即可得出结论;发现:(1)根据出租车的速度大于客车的速度可得出出租车先到达C点,套用(1)中的函数关系式,令y=300即可分别算出时间t1和t2,二者做差即可得出结论;(2)两车相距100千米,分两种情况考虑,解关于t的一元一次方程即可得出结论;决策:根据时间=路程÷速度和,算出到达点D的时间,再根据路程=速度×时间算出AD、BD的长度,结合时间=路程÷速度,即可求出两种方案各需的时间,两者进行比较即可得出结论.【解答】解:探究:由已知,得y1=﹣80t+600,令y1=0,即﹣80t+600=0,解得t=,故y1=﹣80t+600(0≤t≤).y2=100t,令y2=600,即100t=600,解得t=6,故y2=100t(0≤t≤6).当y1=200时,即200=﹣80t+600,解得t=5,当t=5时,y2=100×5=500.故当y1=200千米时y2的値为500.发现:(1)∵100>60,∴出租车先到达C.客车到达C点需要的时间:600﹣80t1=,解得t1=;出租车到达C点需要的时间:100t2=,解得t2=3.﹣3=(小时).所以出租车到达C后再经过小时,客车会到达C.(2)两车相距100千米,分两种情况:①y1﹣y2=100,即600﹣80t﹣100t=100,解得:t=;②y2﹣y1=100,即100t﹣=100,解得:t=.综上可知:两车相距100千米时,时间t为或小时.决策:两车相遇,即80t+100t=600,解得t=,此时AD=80×=(千米),BD=600﹣=(千米).方案一:t1=(+600)÷100=(小时);方案二:t2=÷80=(小时).∵t1>t2,∴方案二更快.【点评】本题考查了一元一次方程的应用以及一次函数的应用,解题的关键根据数量关系找出方程(或函数关系式).本题属于中档题,难度不大,但较繁琐,解决此类型题目时,根据数量关系列出方程(或函数关系式),再一步步的进行计算即可.23.如图,抛物线y=ax2+bx过A(4,0),B(1,3)两点,点C,B关于抛物线的对称轴对称,过点B作直线BH⊥x轴,交x轴于点H.(1)求抛物线的表达式;(2)直接写出点C的坐标,并求出△ABC的面积;(3)点P是抛物线上一动点,且位于第四象限,当△ABP的面积为6时,求出点P的坐标;(4)若点M在直线BH上运动,点N在x轴上运动,当CM=MN,且∠CMN=90°时,求此时△CMN的面积.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017年初中学业水平自测
数学模拟试题(2)
2017.4
(时间120分钟,满分120分)
注意事项:
1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
2.答卷前,考生务必将自己的姓名、准考证号等填涂在答题纸上。
3.考生务必用黑色中性笔或签字笔(铅笔)将答案填(涂)在答题纸上。
一、选择题(每小题3分,共36分.)
1. 下列运算正确的是()
A.x2+x3=x5 B.(x+y)2=x2+y2 C.(2xy2)3=6x3y6 D.﹣(x-y)=﹣x+y
2.观察下列
图形,既是
轴对称图形又是中心对称图形的有
A. 1个
B. 2个
C. 3个
D. 4个
3.如图所示的是三通管的立体图,则这个几何体的俯视图是()
A B C D
4. 2017年4月20日晚,中国首艘货运飞船天舟一号顺利发射升空。
其在太空飞行速度是子弹飞行速度8倍,已知子弹的速度约为每秒300米,那么天舟一号的飞行速度用科
学记数法(精确到千位)表示为()厘米/秒.
A.2.40×106B.2.4×105C.2.40×105D.2.4×103
5.小明用图中所示的扇形纸片作一个圆锥的侧面,已知扇形的半径
为5cm,弧长是6πcm,那么这个的圆锥的高是()
A.4cm B.6cm C.8cm
D.2cm
6.如图,点A,B的坐标分别为(1,4)和(4,4),抛物线
y=a(x-m)2+n的顶点在线段AB上运动,与x轴交于C.D两点
(C在D的左侧),点C的横坐标最小值为-3,则点D的横坐标
最大值为( )
A.-3
B.1
C.5
D.8
7.一次函数y=ax+b在直角坐标系中的图象如图所示,则化简
a b
+的结果是 ( )
||
A. 2a
B.-2a
C.2b
D.-2b
8.某班抽取6名同学参加体能测试,成绩如下:85,95,85,80,80,85.下列表述错误是()
A.众数是85
B.平均数是85
C.方差是20
D.极差是15
9. 如图,菱形OABC的顶点O在坐标原点,顶点A在x轴上,
∠ B=120°,OA=2,将菱形OABC绕原点顺时针旋转105°至
OA′B′C′的位置,则点B′的坐标为()
A.B.(
C.( 2, D.
11.用直尺和圆规作Rt△ABC斜边AB上的高线CD,以下四个作图中,作法错误的是()
A B C D
12.已知α是锐角,且点A(
1
2
,a),B(sin30°+cos30°,b), C(-m2+2m-2,c)都在二次函数y
=-x2+x+3的图象上,那么a、b、c的大小关系是()
A.a<b<c
B.a<c<b
C.b<c<a
D.c<b<a
二、填空题(每小题3分,共18分)
13.2x﹣4)2互为相反数,那么2x﹣y的平方根是.
14.若不等式组
1
240
x a
x
+>
⎧
⎨
-≤
⎩
有解,则a的取值范围是___________.
15. 若整式22
x ky
+(k为不等于零的常数)能在有理数范围内因式分解,则k的值可以是(写出一个即可)
16.若关于x的方程
2
2
22
x m m
x x
+
+=
--
的解是正数,则m的取
值范围是
17. 如图所示,在等腰梯形ABCD中,AD∥BC,AD=4,AB=5,
BC=7,
且AB∥DE,则三角形DEC的周长是
18.如图,△A1B1C1是边长为1的等边三角形,A2为等边
A
B
D
△A1B1C1的中心,连接A2B1并延长到点B2,使A2B1=B1B2 ,
以A2B2为边作等边△A2B2C2,A3为等边△A2B2C2的中心,连接A3B2并延长到点B3,使A3B2=B2B3,以A3B3为边作等边△A3B3C3,
依次作下去得到等边△A n B n C n,则等边△A6B6C6的边长为________.
三、解答题(6+8+12+6+12+10+12=66分)
提示:计算过程要完整、书写规范,证明过程尽量写清证明依据,规范、条理。
19. 已知关于x的方程x2﹣2(k﹣1)x+k2=0有两个实数根x1、x2
(1)求k的取值范围;
(2)若|x1+x2|=x1x2﹣1,求k的值
20. 某超市计划经销一些特产,经销前,围绕“A:王高虎头鸡,B:羊口咸蟹子,C:桂河芹菜,D:巨淀湖咸鸭蛋”四种特产,在全市范围内随机抽取了部分市民进行问卷调查:“我最喜欢的特产是什么?”(必选且只选一种).现将调查结果整理后,绘制成如图所示的不完整的扇形统计图和条形统计图.
(1)请补全扇形统计图和条形统计图;
(2)若全市有110万市民,估计全市最喜欢“羊口咸蟹子”的市民约有多少万人? (3)在一个不透明的口袋中有四个分别写上四种特产标记A 、B 、C 、D 的小球(除标记外完全相同),随机摸出一个小球然后放回,混合摇匀后,再随机摸出一个小球,则两次都摸到A 的概率是多少?写出分析计算过程.
21. 已知,如图,AB 是⊙ O 的直径,点C 为⊙ O 上一点,OF ⊥BC 于点F ,交⊙ O 于点E ,AE 与BC 交于点H ,点D 为OE 的延长线上一
点,且∠ ODB=∠ AEC .
(1)求证:BD 是⊙ O 的切线; (2)求证:CE 2
= EH•EA; (3)若⊙ O 的半径为52,sinA=3
5
,求BH 的长。
22.如图,某塔观光层的最外沿点E 为蹦极项目的起跳点.已知点E 离塔的中轴
线AB 的距离OE 为10米,塔高AB 为123米(AB 垂直地面BC),在地面C 处测得点E 的仰角α=45°,从点C 沿CB 方向前行40米到达D 点,在D 处测得塔尖A 的仰角β=60°,求点E 离地面的高度EF.(结果精确到0.1米)
23. 某文具零售店准备从批发市场选购A 、B 两种文具,批发价A 种为12元/件,B 种为8元/件.若该店零售A 、B 两种文具的日销售量y (件)与零售价x (元/件)均成一次函数关系.(如图)
(1)求y 与x 的函数关系式;
(2)该店计划这次选购A 、B 两种文具的数量共100件,所花资金不超过1000元,并希望全部售完获利不低于296元,若按A 种文具每件可获利4元和B 种文具每件可获利2元计算,则该店这次有哪几种进货方案?
(3)若A 种文具的零售价比B 种文具的零售价高2元/件,求两种文具每天的销售利润W (元)与A 种文具零售价x
(元/件)之间的函数关系式,并说明A 、B 两种文具零售价分别为多少时,每天销售的利润最大?
24. 已知如图1菱形ABCD ,∠ABC=60o ,边长为 3 ,在菱形内作等边三角形△AEF ,边长为22,点E ,点F ,分别在AB ,AC 上,以A 为旋转中心将△AEF 顺时针转动,旋转角为α,如图2
(1)在图2中证明BE=CF
(2)若∠BAE=45o ,求CF 的长度
(3)当CF=17时,直接写出旋转角α的度数。
图1
B
图2
25. 如图,已知二次函数y=﹣x2+bx+c(b,c为常数)的图象经过点A(3,1),点C(0,4),顶点为点M,过点A作AB∥ x轴,交y轴于点D,交该二次函数图象于点B,连结BC.
(1)求该二次函数的解析式及点M的坐标;
(2)若将该二次函数图象向下平移m(m>0)个单位,使平移后得到的二次函数图象的顶点落在△ ABC的内部(不包括△ ABC的边界),求m的取值范围;
(3)点P是直线AC上的动点,若点P,点C,点M所构成的三角形与△ BCD相似,请直接写出所有点P的坐标
(直接写出结果,不必写
过程).。