竖直面内的圆周运动(解析版)

合集下载

水平面和竖直面内的圆周运动(解析版)-2023年高考物理压轴题专项训练(全国通用)

水平面和竖直面内的圆周运动(解析版)-2023年高考物理压轴题专项训练(全国通用)

压轴题03水平面和竖直面内的圆周运动考向一/选择题:有关圆盘上无绳两物体的水平面圆周运动的临界问题考向二/选择题:有关圆盘上有绳两物体的水平面圆周运动的临界问题考向三/选择题:竖直面内的绳类(轨道内侧)问题考向四/选择题:竖直面内的杆类(管类)问题考向一:水平面内圆盘类圆周运动问题①口诀:“谁远谁先飞”;②a 或b 发生相对圆盘滑动的各自临界角速度:r m mg f m 2ωμ==;rgμω=①口诀:“谁远谁先飞”;②轻绳出现拉力,先达到B 的临界角速度:Br g μω=1;③AB 一起相对圆盘滑动时,临界条件:隔离A :T =μm A g ;隔离B :T +μm B g =m B ω22r B 整体:μm A g +μm B g =m B ω22r B AB 相对圆盘滑动的临界条件:()()B A BB BB B A m m r m g r m gm m +=+=μμω2①口诀:“谁远谁先飞”;②轻绳出现拉力,先达到B 的临界角速度:Br g μω=1;③同侧背离圆心,f Amax 和f Bmax 指向圆心,一起相对圆盘滑动时,临界条件:隔离A :μm A g -T =m A ω22r A ;隔离B :T +μm B g =m B ω22r B 整体:μm A g +μm B g =m A ω22r A +m B ω22r B AB 相对圆盘滑动的临界条()()B A B B A A BB A A B A m m r m r m g r m r m gm m ++=++=μμω2①口诀:“谁远谁先飞”(r B >r A );②轻绳出现拉力临界条件:Br g μω=1;此时B 与面达到最大静摩擦力,A 与面未达到最大静摩擦力。

此时隔离A :f A +T =m A ω2r A ;隔离B :T +μm B g =m B ω2r B 消掉T :f A=μm B g-(m B r B -m A r A )ω2③当m B r B =m A r A 时,f A =μm B g ,AB 永不滑动,除非绳断;④AB 一起相对圆盘滑动时,临界条件:1)当m B r B >m A r A 时,f A ↓=μm B g-(m B r B -m A r A )ω2↑→f A =0→反向→f A 达到最大→从B 侧飞出;2)当m B r B <m A r A 时,f A ↑=μm B g+(m A r A -m B r B )ω2↑→f A 达到最大→ω↑→T ↑→f B ↓→f B =0→反向→f B 达到最大→从A 侧飞出;AB 相对圆盘滑动的临界条()()B A B B A A BB A A B A m m r m r m g r m r m gm m ++=++=μμω2临界条件:①B A μμ>,BB r gμω=;②B A μμ<,BA r gμω=临界条件:①rgm g m ABμω-=min ②rgm g m A B μω+=max 考向二:竖直面内的圆周运动问题轻绳模型轻杆模型情景图示弹力特征弹力可能向下,也可能等于零弹力可能向下,可能向上,也可能等于零受力示意图力学方程mg +F T =mv 2rmg ±F N =mv 2r临界特征F T =0,即mg =m v 2r,得v =grv =0,即F 向=0,此时F N =mg模型关键(1)“绳”只能对小球施加向下的力(2)小球通过最高点的速度至少为gr(1)“杆”对小球的作用力可以是拉力,也可以是支持力(2)小球通过最高点的速度最小可以为01.如图所示,两个可视为质点的、相同的木块A 和B 放在转盘上,两者用长为L 的细绳连接,木块与转的最大静摩擦力均为各自重力的K 倍,A 放在距离转轴L 处,整个装置能绕通过转盘中心的转轴12O O 转动,开始时,绳恰好伸直但无弹力,现让该装置从静止开始转动,使角速度缓慢增大,以下说法正确的是()A .当2KgLω>时,A 、B 相对于转盘会滑动B .当2KgLω>时,绳子一定有弹力C .ω23Kg 2KgL Lω<<B 所受摩擦力变大D .ω在032KgLω<<A 所受摩擦力一直不变【答案】B【详解】A .开始角速度较小,两木块都靠静摩擦力提供向心力,B 先到达最大静摩擦力,角速度继续增大,则绳子出现拉力,角速度继续增大,A 的静摩擦力增大,当增大到最大静摩擦力时,开始发生相对滑动,A 、B 相对于转盘会滑动,对A 有2Kmg T mL ω-=对B 有22T Kmg m L ω+=⋅解得23KgLω=A 错误;B .当B 达到最大静摩擦力时,绳子开始出现弹力22Kmg m Lω=⋅解得2KgLω=2Kg Lω>时,绳子一定有弹力,故B 正确;C .2KgLω>时B 已经达到最大静摩擦力,则ω23Kg 2Kg L L ω<<B 受到的摩擦力不变,故C 错误;D .绳子没有拉力时,对A 有2f m L ω=则随转盘角速度增大,静摩擦力增大,绳子出现拉力后,对A 有2f T mL ω-=对B 有22T Kmg m L ω-=联立有23f Kmg m L ω-=则当ω增大时,静摩擦力也增大,故D 错误。

专题 竖直面内的圆周运动 高一物理 (人教版2019)

专题 竖直面内的圆周运动 高一物理 (人教版2019)

专题5 竖直面内的圆周运动(解析版)一、目标要求目标要求重、难点向心力的来源分析重难点水平面内的圆周运动重难点火车转弯模型难点二、知识点解析1.汽车过桥模型(单轨,有支撑)汽车在过拱形桥或者凹形桥时,桥身只能给物体提供弹力,而且只能向上(如以下两图所示).(1)拱形桥(失重)汽车在拱形桥上行驶到最高点时的向心力由重力和桥面对汽车的弹力提供,方向竖直向下,在这种情况下,汽车对桥的压力小于汽车的重力:mg-F=2mvR,F ≤ mg,汽车的速度越大,汽车对桥的压力就越小,当汽车的速度达到v max=gR,此时物体恰好离开桥面,做平抛运动.(2)凹形路(超重)汽车在凹形路上行驶通过最低点的向心力也是由重力和桥面对汽车的弹力提供,但是方向向上,在这种情况下,汽车对路面的压力大于汽车的重力:2-=mvF mgR,由公式可以看出汽车的速度越大,汽车对路面的压力也就越大.说明:汽车过桥模型是典型的变速圆周运动.一般情况下,只讨论最高点和最低点的情况,常涉及过最高点时的临界问题.2.绳模型(外管,无支撑,水流星模型)(1)受力条件:轻绳对小球只能产生沿绳收缩方向的拉力,圆形轨道对小球只能产生垂直于轨道向内的弹力,故这两种模型可归结为一种情况,即只能对物体施加指向轨迹圆心的力.(2)临界问题:①临界条件:小球在最高点时绳子的拉力(或轨道的弹力)如果刚好等于零,小球的重力充当圆周运动所需的向心力,这是小球能通过最高点的最小速度,则:2=v mg m R,解得:0=v gR说明:如果是处在斜面上,则向心力公式应为:20sin v mg m R α=,解得:0sin v gR α=②能过最高点的条件:v ≥0v .③不能过最高点的条件:v <0v ,实际上小球在到0v 达最高点之前就已经脱离了圆轨道,做斜上抛运动.3.杆模型(双管,有支撑)(1)受力条件:轻杆对小球既能产生拉力又能产生支持力,圆形管道对其内部的小球能产生垂直于轨道用长为L 的轻绳拴着质量为m 的小球 使小球在竖直平面内作圆周运动 质量为m 的小球在半径为R 的光滑竖直外管内侧做圆周运动用长为L 的轻杆拴着质量为m 的小球使小球在竖直平面内作圆周运动 质量为m 的小球在半径为R 的光滑竖直双管内做圆周运动向内和向外的弹力.故这两种模型可归结为一种情况,即能对物体施加沿轨道半径向内和向外的力.(2)临界问题:①临界条件:由于硬杆或管壁的支撑作用,小球能到达最高点的临界速度0=v 临,此时轻杆或轨道内侧对小球有向上的支持力:0-=N F mg .②当0<v gR N F .由-mg N F 2=v m R 得:N F 2=-v mg m R.支持力N F 随v 的增大而减小,其取值范围是0<N F <mg .③当=v gR 时,重力刚好提供向心力,即2=v mg m R,轻杆或轨道对小球无作用力.④当v gR F 或轨道外侧对小球施加向下的弹力N F 弥补不足,由2+=v mg F m R 得:2=-v F m mg R,且v 越大F (或N F )越大.说明:如果是在斜面上:则以上各式中的mg 都要改成sin mg α. 4.离心运动做匀速圆周运动的物体,在合外力突然消失或者减小的情况下,就做逐渐远离圆心的运动,这种运动叫做离心运动.(1)离心运动的成因做圆周运动的物体,由于本身的惯性,总有沿着圆周切线方向飞去的倾向.当2F mr ω=时,物体做匀速圆周运动;当0F =时,物体沿切线方向飞出;当2F mr ω<时,物体逐渐远离圆心.F 为实际提供的向心力.如图所示.(2)离心运动的应用离心运动可以给我们的生活、工作带来方便,如离心干燥器、洗衣机的脱水筒等就是利用离心运动而设计的.离心干燥器:将湿物体放在离心干燥器的金属网笼里,当网笼转得较快时,水滴所受的附着力不足以提供其维持圆周运动所需的向心力,水滴就做离心运动,穿过网孔,飞离物体,使物体甩去多余的水分.(3)离心运动的防止有时离心运动也会给人们带来危害,如汽车、摩托车、火车转弯时若做离心运动则易造成交通事故;砂轮转动时发生部分砂块做离心运动而造成人身伤害.因此应对它们进行限速,这样所需向心力mvr2较小,不易出现向心力不足的情况,从而避免离心运动的产生.(4)几种常见的离心运动物理情景实物图原理图现象及结论洗衣机脱水筒当水滴跟物体之间的附着力F不能提供足够的向心力(即2ω<F m r))时,水滴做离心运动汽车在水平路面上转弯当最大静摩擦力不足以提供向心力(即2max<vF mr))时,汽车做离心运动三、考查方向题型1:汽车过桥模型典例一:如图所示,质量为m的滑块与轨道间的动摩擦因数为μ,当滑块从A滑到B的过程中,受到的摩擦力的最大值为Fμ,则( )A.Fμ=μmg B.Fμ<μmgC.Fμ>μmg D.无法确定Fμ的值【答案】:C【解析】在四分之一圆弧底端,根据牛顿第二定律得:2vN mg mR-=,解得:N=mg+ 2vmR,此时摩擦力最大,有:2>v F N mg m mg R μμμμ⎛⎫==+ ⎪⎝⎭.故C 正确确,ABD 错误.题型2:绳模型典例二:如图所示,杂技演员表演水流星节目.一根长为L 的细绳两端系着盛水的杯子,演员握住绳中间,随着演员的抡动,杯子在竖直平面内做圆周运动,杯子运动中水始终不会从杯子洒出,设重力加速度为g ,则杯子运动到最高点的角速度ω至少为( )A gLB 2g LC 5gLD 10gL【答案】:B【解析】:据题知,杯子圆周运动的半径2=Lr ,杯子运动到最高点时,水恰好不流出,由水的重力刚好提供其做圆周运动的向心力,根据牛顿第二定律得:22Lmg m ω= 解得:2g L ω=题型3:杆模型典例三:一轻杆一端固定质量为m 的小球,以另一端O 为圆心,使小球在竖直面内做半径为R 的圆周运动,如图所示,则下列说法正确的是( )A .小球过最高点时,杆所受到的弹力可以等于零B gRC .小球过最高点时,杆对球的作用力一定随速度增大而增大D .小球过最高点时,杆对球的作用力一定随速度增大而减小 【答案】:A【解析】:轻杆可对小球产生向上的支持力,小球经过最高点的速度可以为零,当小球过最高点的速度v gR A正确,B错误;若v gR最高点对小球的弹力竖直向上,mg-F=m2vR,随v增大,F减小,若v gR高点对小球的弹力竖直向下,mg+F=m2vR,随v增大,F增大,故C、D均错误。

水平面、竖直面内的圆周运动(含解析)

水平面、竖直面内的圆周运动(含解析)

水平面、竖直面内的圆周运动类型一水平面内圆周运动的临界问题知识回望1.运动特点(1)运动轨迹是水平面内的圆.(2)合外力沿水平方向指向圆心,提供向心力,竖直方向合力为零,物体在水平面内做匀速圆周运动.2.几种常见的临界条件(1)水平转盘上的物体恰好不发生相对滑动的临界条件是物体与盘间恰好达到最大静摩擦力.(2)物体间恰好分离的临界条件是物体间的弹力恰好为零.(3)绳的拉力出现临界条件的情形有:绳恰好拉直意味着绳上无弹力;绳上拉力恰好为最大承受力等.例1(多选)如图所示,两个质量均为m的小木块a和b(可视为质点)放在水平圆盘上,a 与转轴OO′的距离为l,b与转轴的距离为2l.木块与圆盘的最大静摩擦力为木块所受重力的k倍,重力加速度大小为g.若圆盘从静止开始绕转轴缓慢地加速转动,用ω表示圆盘转动的角速度,下列说法正确的是()A.b一定比a先开始滑动B.a、b所受的摩擦力始终相等C.ω=kg2l是b开始滑动的临界角速度D.当ω=2kg3l时,a所受摩擦力的大小为kmg【答案】AC【解析】小木块a、b做圆周运动时,由静摩擦力提供向心力,即F f=mω2R.当角速度增加时,静摩擦力增大,当增大到最大静摩擦力时,发生相对滑动,对木块a:F f a=mωa2l,当F f a=kmg时,kmg=mωa2l,ωa=kgl;对木块b:F f b=mωb2·2l,当F f b=kmg时,kmg=mωb2·2l,ωb =kg2l,所以b 先达到最大静摩擦力,选项A 正确;两木块滑动前转动的角速度相同,则F f a =mω2l ,F f b =mω2·2l ,F f a <F f b ,选项B 错误;当ω=kg2l时,b 刚开始滑动,选项C 正确;ω=2kg3l<ωa =kg l ,a 没有滑动,则F f a =mω2l =23kmg ,选项D 错误. 故选AC 。

变式训练1 (汽车在水平地面上转弯)(多选)如图所示为赛车场的一个水平“U ”形弯道,转弯处为圆心在O 点的半圆,内、外半径分别为r 和2r .一辆质量为m 的赛车通过AB 线经弯道到达A ′B ′线,有如图所示的①、②、③三条路线,其中路线③是以O ′为圆心的半圆,OO ′=r .赛车沿圆弧路线行驶时,路面对轮胎的最大径向静摩擦力为F max ,选择路线,赛车以不打滑的最大速率通过弯道(所选路线内赛车速率不变,发动机功率足够大),则( )A.选择路线①,赛车经过的路程最短B.选择路线②,赛车的速率最小C.选择路线③,赛车所用时间最短D.①、②、③三条路线的圆弧上,赛车的向心加速度大小相等 【答案】ACD【解析】由题图及几何关系知:路线①的路程为s 1=2r +πr ,路线②的路程为s 2=2r +2πr ,路线③的路程为s 3=2πr ,A 正确;赛车以不打滑的最大速率通过弯道,有F max =ma n =m v 2R ,速度v =F max Rm,即半径越大,速率越大,选择路线①赛车的速率最小,B 错误,D 正确;根据t =sv ,代入数据解得,选择路线③,赛车所用时间最短,C 正确. 故选ACD 。

高考物理(热点+题型全突破)专题4.6 竖直面内的圆周运动问题(含解析)

高考物理(热点+题型全突破)专题4.6 竖直面内的圆周运动问题(含解析)

专题4.6 竖直面内的圆周运动问题1. 轻绳模型绳或光滑圆轨道的内侧,如图所示,它的特点是:在运动到最高点时均没有物体支撑着小球。

下面讨论小球(质量为m )在竖直平面内做圆周运动(半径为R )通过最高点时的情况:(1) 临界条件小球到达最高点时受到绳子的拉力恰好等于零,这时小球做圆周运动所需要的向心力仅由小球的重力来提供。

根据牛顿第二定律得,mg =m v 2临界R,即v 临界=Rg .这个速度可理解为小球恰好通过最高点或恰好通不过最高点时的速度,也可认为是小球通过最高点时的最小速度,通常叫临界速度。

(2) 小球能通过最高点的条件:当v >Rg 时,小球能通过最高点,这时绳子对球有作用力,为拉力。

当v =Rg 时,小球刚好能通过最高点,此时绳子对球不产生作用力。

(3) 小球不能通过最高点的条件:当v <Rg 时,小球不能通过最高点,实际上小球还没有到达最高点就已经脱离了轨道。

(如图)2. 轻杆模型杆和光滑管道,如图所示,它的特点是:在运动到最高点时有物体支撑着小球。

下面讨论小球(质量为m )在竖直平面内做圆周运动(半径为R )通过最高点时的情况:(1) 临界条件由于硬杆的支撑作用,小球恰能到达最高点的临界速度是:v 临界=0。

此时,硬杆对物体的支持力恰等于小球的重力mg。

(2) 如上图所示的小球通过最高点时,硬杆对小球的弹力情况为:当v=0时,硬杆对小球有竖直向上的支持力F N,其大小等于小球的重力,即F N=mg.当0<v<Rg时,杆对小球的支持力竖直向上,大小随速度的增加而减小,其取值范围为0<F N<mg.当v=Rg时,F N=0.这时小球的重力恰好提供小球做圆周运动的向心力。

当v>Rg时,硬杆对小球有指向圆心(即方向向下)的拉力,其大小随速度的增大而增大。

3. 两种模型分析比较如下:轻杆模型均是没有支撑的小球均是有支撑的小球4. 分析物体在竖直平面内做圆周运动时的易错易混点(1)绳模型和杆模型过最高点的临界条件不同,其原因是绳不能有支撑力,而杆可有支撑力。

竖直面内的圆周运动模型(解析版)--2024届新课标高中物理模型与方法

竖直面内的圆周运动模型(解析版)--2024届新课标高中物理模型与方法

2024版新课标高中物理模型与方法竖直面内的圆周运动模型目录一.一般圆周运动的动力学分析二.竖直面内“绳、杆(单、双轨道)”模型对比分析三.竖直面内圆周运动常见问题与二级结论三.过拱凹形桥模型一.一般圆周运动的动力学分析如图所示,做圆周运动的物体,所受合外力与速度成一般夹角时,可将合外力沿速度和垂直速度分解,则由牛顿第二定律,有:Fτ=maτ,aτ改变速度v的大小F n=ma n,a n改变速度v的方向,a n=v2r作一般曲线运动的物体,处理轨迹线上某一点的动力学时,可先以该点附近的一小段曲线为圆周的一部分作曲率圆,然后即可按一般圆周运动动力学处理。

Fτ=maτ,aτ改变速度v的大小F n=ma n,a n改变速度v的方向,a n=v2ρ,ρ为曲率圆半径。

二.竖直面内“绳、杆(单、双轨道)”模型对比分析轻绳模型(没有支撑)轻杆模型(有支撑)常见类型过最高点的临界条件由mg=mv2r得v临=gr由小球能运动即可得v临=0对应最低点速度v低≥5gr对应最低点速度v低≥4gr绳不松不脱轨条件v低≥5gr或v低≤2gr不脱轨最低点弹力F低-mg=mv低2/rF低=mg+mv低2/r,向上拉力F低-mg=mv低2/rF低=mg+mv低2/r,向上拉力最高点弹力过最高点时,v≥gr,F N+mg=mv2r,绳、轨道对球产生弹力F N=mv2r-mg向下压力(1)当v=0时,F N=mg,F N为向上支持力(2)当0<v<gr时,-F N+mg=m v2r,F N向上支持力,随v的增大而减小(3)当v=gr时,F N=0(4)当v>gr时,F N+mg=m v2r,F N为向下压力并随v的增大而增大在最高点的F N 图线取竖直向下为正方向取竖直向下为正方向三.竖直面内圆周运动常见问题与二级结论【问题1】一个小球沿一竖直放置的光滑圆轨道内侧做完整的圆周运动,轨道的最高点记为A 和最低点记为C ,与原点等高的位置记为B 。

2025年新高考物理-圆周运动(解析版)

2025年新高考物理-圆周运动(解析版)

圆周运动1.高考真题考点分布题型考点考查考题统计选择题描述圆周运动的基本物理量2024年辽宁卷计算题圆锥摆模型2024年江西卷实验题水平圆盘模型2024年海南卷2.命题规律及备考策略【命题规律】高考对圆周运动基本规律的考查较为频繁,大多联系实际生活。

圆周运动的临界问题的单独考查不是太常见,大多在综合性的计算题中出现的比较频繁,并且会结合有关的功能关系。

【备考策略】1.掌握圆周运动各个物理量之间的关系。

2.能够分析圆周运动的向心力的来源,并会处理有关锥摆模型、转弯模型、圆盘模型的动力学问题。

3.掌握水平面内圆盘模型的动力学分析及临界条件。

4.掌握竖直面内圆周运动的基本规律,并能够联系实际问题做出相应问题的分析。

【命题预测】重点关注竖直面内圆周运动规律在综合性问题中的应用。

一、匀速圆周运动及其描述1.匀速圆周运动(1)定义:做圆周运动的物体,若在相等的时间内通过的圆弧长相等,就是匀速圆周运动。

(2)特点:加速度大小不变,方向始终指向圆心,是变加速运动。

(3)条件:合外力大小不变、方向始终与速度方向垂直且指向圆心。

2.描述匀速圆周运动的物理量及其关系(1)线速度:v=ΔsΔt =2πrT,描述物体圆周运动快慢的物理量。

(2)角速度:ω=ΔθΔt =2πT,描述物体绕圆心转动快慢的物理量。

(3)周期和频率:T=2πrv,T=1f,描述物体绕圆心转动快慢的物理量。

(4)向心加速度:a n=rω2=v2r =ωv=4π2T2r,描述速度方向变化快慢的物理量。

二、匀速圆周运动的向心力1.向心力的来源向心力是按力的作用效果命名的,可以是重力、弹力、摩擦力等各种力,也可以是几个力的合力或某个力的分力,因此在受力分析中要避免再另外添加一个向心力。

2.向心力的确定(1)确定圆周运动的轨道所在的平面,确定圆心的位置。

(2)分析物体的受力情况,所有的力沿半径方向指向圆心的合力,就是向心力。

3.向心力的公式:F n=ma n=m v2r =mω2r=m4π2T2r。

三大力场中竖直面内圆周运动模型(解析版)

三大力场中竖直面内圆周运动模型(解析版)

三大力场中竖直面内圆周运动模型特训目标特训内容目标1重力场中的竖直面内圆周运动的绳(或轨道内侧)模型(1T -6T )目标2重力场中的竖直面内圆周运动的杆(或管)模型(7T -12T )目标3电磁场中的竖直面内圆周运动模型(13T -18T )【特训典例】一、重力场中的竖直面内圆周运动的绳(或轨道内侧)模型1如图a ,在竖直平面内固定一光滑的半圆形轨道ABC ,小球以一定的初速度从最低点A 冲上轨道,图b 是小球在半圆形轨道上从A 运动到C 的过程中,其速度平方与其对应高度的关系图像。

已知小球在最高点C 受到轨道的作用力为2.5N ,空气阻力不计,B 点为AC 轨道中点,重力加速度g 取10m/s 2,下列说法正确的是()A.图b 中x =25m 2/s 2B.小球质量为0.2kgC.小球在A 点时重力的功率为5WD.小球在B 点受到轨道作用力为8.5N【答案】ABD【详解】A .小球在光滑轨道上运动,只有重力做功,故机械能守恒,有12mv 2A =12mv 2h +mgh 解得v 2A =v 2h +2gh 即x =9+2×10×0.8 m 2/s 2=25m 2/s 2,A 正确;B .依题意小球在C 点,有F +mg =m v 2C R 又v 2C =9m 2/s 2,2R =0.8m 解得m =0.2kg ,B 正确;C .小球在A 点时重力方向竖直向下,速度水平向右,二者夹角为90°,根据P =mgv cos θ可知重力的瞬时功率为零,C 错误;D .由机械能守恒,可得12mv 2A =12mv 2B +mgR 又因为小球在B 点受到的在水平方向上的合外力提供向心力,可得F B =mv 2BR联立,可得F B =8.5N ,D 正确。

故选ABD 。

2如图甲所示,一长为R 的轻绳,一端系在过O 点的水平转轴上,另一端固定一质量未知的小球,整个装置绕O 点在竖直面内转动,小球通过最高点时,绳对小球的拉力F 与其速度平方v 2的关系图像如图乙所示,图线与纵轴的交点坐标为a ,下列判断正确的是()A.利用该装置可以得出重力加速度,且g =RaB.绳长不变,用质量较大的球做实验,得到的图线斜率更大C.绳长不变,用质量较小的球做实验,得到的图线斜率更大D.绳长不变,用质量较小的球做实验,图线与纵轴的交点坐标不变【答案】CD【详解】A .由图乙知当F =0时,v 2=a ,则有mg =mv 2R =ma R 解得g =a R 故A 错误;BC .在最高点,根据牛顿第二定律得F +mg =m v 2R整理得v 2=R m F +gR 图线的斜率为k =Rm 可知绳长不变,小球的质量越小,斜率越大,故B 错误,C 正确;D .由表达式v 2=RmF +gR 可知,当F =0时,有v 2=gR =a 可知图线与纵轴的交点坐标与小球质量无关,故D 正确。

第19讲 竖直面内圆周运动之绳”模型和“杆”模型及其临界问题(解析版)

第19讲 竖直面内圆周运动之绳”模型和“杆”模型及其临界问题(解析版)

第19讲竖直面内圆周运动之绳”模型和“杆”模型及其临界问题1.(2022·江苏)在轨空间站中物体处于完全失重状态,对空间站的影响可忽略.空间站上操控货物的机械臂可简化为两根相连的等长轻质臂杆,每根臂杆长为L.如图1所示,机械臂一端固定在空间站上的O点,另一端抓住质量为m的货物.在机械臂的操控下,货物先绕O点做半径为2L、角速度为ω的匀速圆周运动,运动到A点停下.然后在机械臂操控下,货物从A点由静止开始做匀加速直线运动,经时间t到达B点,A、B间的距离为L。

(1)求货物做匀速圆周运动时受到的向心力大小F n。

(2)求货物运动到B点时机械臂对其做功的瞬时功率P。

(3)在机械臂作用下,货物、空间站和地球的位置如图2所示,它们在同一直线上.货物与空间站同步做匀速圆周运动.已知空间站轨道半径为r,货物与空间站中心的距离为d,忽略空间站对货物的引力,求货物所受的机械臂作用力与所受的地球引力之比F1:F2。

【解答】解:(1)货物做匀速圆周运动,向心力F n=m⋅2Lω2=2mLω2(2)设货物到达B点的速度为v,根据匀变速规律L=v2t,得v=2L t货物的加速度a=vt=2Ltt=2Lt2根据牛顿第二定律,机械臂对货物的作用力F=ma=2mL t2机械臂对货物做功的瞬时功率P=Fv=2mLt2×2L t=4mL2t3(3)设地球质量为M,空间站的质量为m0,地球对空间站的万有引力为F,根据万有引力定律F=GMm 0r 2① 地球对货物的万有引力F 2=G Mm (r−d)2②联立①②得m 0m=Fr 2F 2(r−d)2③设空间站做匀速圆周运动的角速度为ω0,根据牛顿第二定律对空间站F =m 0rω02④ 对货物F 2−F 1=m(r −d)ω02⑤联立③④⑤解得F 1F 2=r 3−(r−d)3r 3答:(1)货物做匀速圆周运动时受到的向心力大小为2m ω2L ; (2)货物运动到B 点时机械臂对其做功的瞬时功率为4mL 2t 3;(3)货物所受的机械臂作用力与所受的地球引力之比为r 3−(r−d)3r 3。

专题 生活中的圆周运动、水平面内和竖直面内的圆周运动 高一物理 (人教版2019)(解析版)

专题 生活中的圆周运动、水平面内和竖直面内的圆周运动 高一物理 (人教版2019)(解析版)

专题06 生活中的圆周运动、水平面内和竖直面内的圆周运动一、火车、自行车、汽车转弯问题1.高铁项目的建设加速了国民经济了发展,铁路转弯处的弯道半径r 是根据高速列车的速度决定的。

弯道处要求外轨比内轨高,其内外轨高度差h 的设计与r 和速率v 有关。

当火车以规定速度通过弯道时,内低外高的轨道均不受挤压,则下列说法正确的是( )A .当火车以规定速度转弯时,火车受重力、支持力、向心力B .若要降低火车转弯时的规定速度,可减小火车的质量C .若要增加火车转弯时的规定速度,可适当增大弯道的坡度D .当火车的速度大于规定速度时,火车将挤压内轨 【答案】C【解析】A. 当火车以规定速度转弯时,火车受重力、支持力作用,二者的合力提供向心力,故A 错误;B.合力提供向心力,即2tan v mg m rθ=则tan v gr θ故B 错误;C.根据公式tan v gr θ=θ增大时,规定速度也增大,故C 正确;D.当火车的速度大于规定速度时,则受到外轨弹力与重力和支持力的合力一起提供向心力,使火车继续做圆周运动,所以火车将挤压外轨,故D 错误。

故选C 。

2.列车转弯时的受力分析如图所示,铁路转弯处的圆弧半径为R ,两铁轨之间的距离为d ,内外轨的高度差为h ,铁轨平面和水平面间的夹角为α(α很小,可近似认为tan sin αα≈),下列说法正确的是()A.列车转弯时受到重力、支持力和向心力的作用B.列车过转弯处的速度gRh vd =C.列车过转弯处的速度gRh vd <D.若减小α角,可提高列车安全过转弯处的速度【答案】B【解析】A.列车转弯时受到重力、支持力,重力和支持力的合力提供向心力,A错误;B.当重力和支持力的合力提供向心力时,则2tanv hm mg mgR dα==解得gRhvd=不会挤压内轨和外轨,B正确;C.列车过转弯处的速度gRhvd<转弯所需的合力tanF mgα<故此时列车内轨受挤压,C错误;D.若要提高列车速度,则列车所需的向心力增大,故需要增大α,D错误。

竖直面内的圆周运动(解析版)

竖直面内的圆周运动(解析版)

点,由机械能守恒定律,
1 2
mvt2
1 2
mv2
mg
2R
;小物块从最高点飞出做平抛运动,x=vtt,2R=
1 2
gt2,联
立解得,x=2
v2 R 4R2 =4 g
R
v2 8g
2
v4 16g
2
v2
.当 R=
8g
时,x 最大,选项 B 正确。
【2 年模拟再现】
1.(4 分)(2019 山东济南期末)如图所示,固定在水平地面上的圆弧形容器,容器两端 A、C 在同一高
专题 4.9 竖直面内的圆周运动
【考纲解读与考频分析】 竖直面内的圆周运动主要有两种模型:绳模型和杆模型,高考对这两种模型都有考查。 【高频考点定位】: 绳模型 杆模型
考点一:绳模型 【3 年真题链接】 1.(2017·江苏卷·5)如图所示,一小物块被夹子夹紧,夹子通过轻绳悬挂在小环上,小环套在水平光滑细 杆上,物块质量为 M,到小环的距离为 L,其两侧面与夹子间的最大静摩擦力均为 F.小环和物块以速度 v 向右匀速运动,小环碰到杆上的钉子 P 后立刻停止,物块向上摆动.整个过程中,物块在夹子中没有滑动. 小环和夹子的质量均不计,重力加速度为 g.下列说法正确的是( )
解得:v= (2F Mg)L ,选项 D 正确。 M
【名师点睛】在分析问题时,要细心。题中给的力 F 是夹子与重物间的最大静摩擦力,而在物体运动的过
程中,没有信息表明夹子与物体间静摩擦力达到最大。另小环碰到钉子后,重物绕钉子做圆周运动,夹子
与重物间的静摩擦力会突然增大。
2.(2017 全国 II 卷·17)如图,半圆形光滑轨道固定在水平地面上,半圆的直径与地面垂直,一小物块以速

高中物理模型11 竖直平面圆周运动(解析版)

高中物理模型11 竖直平面圆周运动(解析版)

高中物理模型11 竖直平面圆周运动(原卷版)竖直平面内两类典型模型分析轻绳模型轻杆模型实例如球与绳连接、沿内轨道运动的球等如球与杆连接、球在内壁光滑的圆管内运动等图示最高点无支撑最高点有支撑最高点受力特征重力、弹力,弹力方向指向圆心重力、弹力,弹力方向指向圆心或背离圆心受力示意图力学方程mg+F N=m mg±F N=m临界特征F N=0,v min=竖直向上的F N=mg,v=0过最高点条件v≥v≥0速度和弹力关①能过最高点①当v=0时,F N=mg,F N为支持力,沿半径背离圆心系讨论分析时,v≥,F N+mg=m,绳、轨道对球产生弹力F N②不能过最高点时,v<,在到达最高点前小球已经脱离了圆轨道做斜抛运动②当0<v<时,-F N+mg=m,F N背离圆心,随v的增大而减小③当v=时,F N=0④当v>时,F N+mg=m,F N指向圆心并随v的增大而增大【典例1】“水流星”是一个经典的杂技表演项目,杂技演员将装水的杯子(可视为质点)用细绳系着让杯子在竖直平面内做圆周运动。

杯子到最高点时杯口向下,水也不会从杯中流出,如图所示。

若杯子质量为m,所装水的质量为M,杯子运动到圆周的最高点时,水对杯底刚好无压力,重力加速度为g,则杯子运动到圆周最高点时,杂技演员对细绳的拉力大小为()。

A.0B.mgC.MgD.(M+m)g【变式训练1a】如图3所示为模拟过山车的实验装置,小球从左侧的最高点释放后能够通过竖直圆轨道而到达右侧.若竖直圆轨道的半径为R,要使小球能顺利通过竖直圆轨道,则小球通过竖直圆轨道的最高点时的角速度最小为()图3A.gR B.2gR C.gR D.Rg【变式训练1b】一细绳与水桶相连,水桶中装有水,水桶与细绳一起在竖直平面内做圆周运动,如图2所示,水的质量m=0.5 kg,水的重心到转轴的距离l=50 cm.(g取10 m/s2)图2(1)若在最高点水不流出来,求桶的最小速率;(结果保留三位有效数字)(2)若在最高点水桶的速率v=3 m/s,求水对桶底的压力大小.【典例2】长度为0.5 m的轻杆OA绕O点在竖直平面内做圆周运动,A端连着一个质量m=2 kg的小球.求在下述的两种情况下,通过最高点时小球对杆的作用力的大小和方向.(g取10 m/s2)(1)杆做匀速圆周运动的转速为2.0 r/s;(2)杆做匀速圆周运动的转速为0.5 r/s.【变式训练1a】(多选)如图所示,一个固定在竖直平面上的光滑圆形管道,管道里有一个直径略小于管道内径的小球,小球在管道内做圆周运动,下列说法中正确的是()A.小球通过管道最低点时,小球对管道的压力向下B.小球通过管道最低点时,小球对管道的压力向上C.小球通过管道最高点时,小球对管道的压力可能向上D.小球通过管道最高点时,小球对管道可能无压力【变式训练2b】(多选)如图5所示,有一个半径为R的光滑圆轨道,现给小球一个初速度,使小球在竖直面内做圆周运动,则关于小球在过最高点的速度v,下列叙述中正确的是()图5A.v的极小值为gRB.v由零逐渐增大,轨道对球的弹力逐渐增大C.当v由gR值逐渐增大时,轨道对小球的弹力也逐渐增大D.当v由gR值逐渐减小时,轨道对小球的弹力逐渐增大【典例3】(多选)如图所示,半径为R的光滑细圆环轨道被固定在竖直平面上,轨道正上方和正下方分别有质量为2m 和m的静止小球A、B,它们由长为2R的轻杆固定连接,圆环轨道内壁开有环形小槽,可使细杆无摩擦、无障碍地绕其中心点转动。

2022年新高考物理一轮复习练习:专题34 竖直面内的圆周运动 (含解析)

2022年新高考物理一轮复习练习:专题34 竖直面内的圆周运动 (含解析)

专题34竖直面内的圆周运动1.如图所示,轻质且不可伸长的细绳一端系一质量为m的小球,另一端固定在天花板上的O点.则小球在竖直平面内摆动的过程中,以下说法正确的是()A.小球在摆动过程中受到的外力的合力即为向心力B.在最高点A、B,因小球的速度为零,所以小球受到的合力为零C.小球在最低点C所受的合力,即为向心力D.小球在摆动过程中绳子的拉力使其速率发生变化2.[2021·石家庄联考]球P和Q用不可伸长的轻绳悬挂在天花板上,P球的质量大于Q球的质量,悬挂P球的绳比悬挂Q球的绳短.将两球拉起,使两绳均被水平拉直,如图所示,将两球由静止释放.在各自轨迹的最低点()A.P球的速度一定大于Q球的速度B.P球的动能一定小于Q球的动能C.P球所受绳的拉力一定大于Q球所受绳的拉力D.P球的向心加速度一定小于Q球的向心加速度3.如图所示,在粗糙水平木板上放一个物块,使水平板和物块一起在竖直平面内沿逆时针方向做匀速圆周运动,ab为水平直径,cd为竖直直径.在运动过程中木板始终保持水平,物块相对木板始终静止,则()A.物块始终受到两个力作用B.只有在a、b、c、d四点,物块受到的合外力才指向圆心C.从a到b,物块所受的摩擦力先增大后减小D.从b到a,物块处于超重状态4.[2021·厦门双十中学测试](多选)在竖直平面内的光滑管状轨道中,有一可视为质点的质量为m=1kg的小球在管状轨道内部做圆周运动,当以2m/s和6m/s通过最高点时,小球对轨道的压力大小相等,g=10m/s2,管的直径远小于轨道半径,则根据题中的信息可以求出() A.在最高点时轨道受到小球的压力大小为8NB.在最高点时轨道受到小球的压力大小为16NC .轨道半径R =2mD .轨道半径R =1m5.(多选)如图所示,摩天轮悬挂的座舱在竖直平面内做匀速圆周运动.座舱的质量为m ,运动半径为R ,角速度大小为ω,重力加速度为g ,则座舱( )A .运动周期为2πR ωB .线速度的大小为ωRC .受摩天轮作用力的大小始终为mgD .所受合力的大小始终为mω2R6.[2021·山东淄博实验中学一诊](多选)如图甲所示,一长为l 的轻绳,一端固定在过O 点的水平转轴上,另一端固定一质量未知的小球,整个装置绕O 点在竖直面内转动.小球通过最高点时,绳对小球的拉力与其速度平方的关系如图乙所示,重力加速度为g ,下列判断正确的是( )A .F 与v 2的关系式为F =m v 2l+mg B .重力加速度g =b lC .绳长不变,用质量较小的球做实验,得到的图线斜率变大D .绳长不变,用质量较小的球做实验,图乙中b 点的位置不变7.[2021·全国甲卷]“旋转纽扣”是一种传统游戏.如图,先将纽扣绕几圈,使穿过纽扣的两股细绳拧在一起,然后用力反复拉绳的两端,纽扣正转和反转会交替出现.拉动多次后,纽扣绕其中心的转速可达50r /s ,此时纽扣上距离中心1cm 处的点向心加速度大小约为( )A .10m /s 2B .100m /s 2C .1000m /s 2D .10000m /s 2 8.[2021·哈六中测试](多选)如图所示,质量为3m 的竖直光滑圆环A 的半径为r ,固定在质量为2m 的木板B 上,B 的左右两侧各有一表面光滑的竖直挡板固定在地上,B 不能左右运动.在环的最低点静止放有一质量为m 的小球C.现给C 一个水平向右的初速度v 0,C 会在环A 内侧做圆周运动.为保证C 能通过环的最高点,且不会使环在竖直方向上跳起,下面关于初速度v 0的最大值和最小值,其中正确的是( )A .最小值为4grB .最大值为3grC .最小值为5grD .最大值为10gr9.[2021·荆州中学测试](多选)如图甲所示,轻杆一端固定在O 点,另一端固定一小球,现让小球在竖直平面内做半径为R 的圆周运动.小球运动到最高点时,杆与小球间弹力大小为F ,小球在最高点的速度大小为v ,其F -v 2图像如图乙所示,则( )A .小球的质量为aR bB .v 2=2b 时,小球受到的弹力与重力大小相等C .v 2=c 时,小球对杆的弹力方向向上D .当地的重力加速度大小为R b10.[2021·江西省吉安市段考]如图所示,一倾斜的匀质圆盘绕垂直于盘面的固定对称轴以恒定角速度ω转动,盘面上离转轴距离2.5m 处有一小物体与圆盘始终保持相对静止,物体与盘面间的动摩擦因数为32(设最大静摩擦力等于滑动摩擦力),盘面与水平面的夹角为30°,g 取10m /s 2,则ω的最大值是( ) A .5rad /sB .3rad /sC .1.0rad /sD .0.5rad /s11.(多选)如图,在一半径为R 的球面顶端放一质量为m 的物块,现给物块一初速度v 0,则( )A .若v 0=gR ,则物块落地点离A 点2RB .若球面是粗糙的,当v 0<gR 时,物块可能会沿球面下滑一段,再斜抛离球面C .若v 0<gR ,则物块落地点离A 点为RD .若v 0≥gR ,则物块落地点离A 点至少为2R专题34 竖直面内的圆周运动1.C 小球摆动过程中速率大小始终变化向心力为合力的一个分力,A 错误;在最高点A 和B ,小球速率为零,向心力为零,重力沿切向的分力为合外力,不为零,B 错误;小球在最低点拉力和重力的合力提供向心力,C 正确;小球在摆动过程中,由于绳子的拉力与速度方向垂直,不做功,拉力不会致使小球速率变化,D 错误.2.C 小球从水平位置摆动至最低点,由动能定理得,mgL =12m v 2, 解得v =2gL ,因L P <L Q ,故v P <v Q ,选项A 错误;因为E k =mgL ,又m P >m Q ,L P <L Q ,则两小球的动能大小无法比较,选项B 错误;对小球在最低点受力分析得,F T -mg =m v 2L,可得F T =3mg ,选项C 正确;由a n =v 2L=2g 可知,两球的向心加速度相等,选C. 3.D 在c 、d 两点,物块只受重力和支持力,在其他位置物块受到重力、支持力、静摩擦力三个力作用,故A 错误;物块做匀速圆周运动,合外力提供向心力,所以合外力始终指向圆心,故B 错误;从a 运动到b ,物块的加速度的方向始终指向圆心,水平方向的加速度先减小后反向增大,根据牛顿第二定律可得,物块所受木板的静摩擦力先减小后增大,故C 错误;从b 运动到a ,向心加速度有向上的分量物块处于超重状态,故D 正确.4.AC 当v 1=2m/s 时有mg -F N =m v 21 R ,若v 2=6m/s 时有mg +F N =m v 22 R,解得R =2m ,C 正确;把R =2m 代入方程解得F N =8N ,A 正确.5.BD 本题考查匀速圆周运动的角速度、周期、线速度、向心力等知识点,意在考查了考生的理解能力和推理能力.由题意可知座舱运动周期为T =2πω、线速度为v =ωR 、受到的合力为F =mω2R ,选项BD 正确,A 错误;座舱的重力为mg ,座舱做匀速圆周运动受到的向心力(即合力)大小不变,方向时刻变化,故座舱受摩天轮的作用力大小时刻在改变,选项C 错误.6.BD 当小球运动到最高点时,合力提供向心力,F +mg =m v 2l,因此F -v 2的关系式为F =m v 2l -mg ,故A 项错误.当F =0,v 2=b 时,m b l =mg ,解得g =b l,故B 项正确.图像的斜率为m l,绳长l 不变,质量m 变小时,得到图线的斜率变小,故C 项错误.b =gl ,因此绳长不变,只改变小球的质量,题图乙中b 点的位置不变,故D 项正确.7.C 由题目所给条件可知纽扣上各点的角速度ω=2πn =100πrad/s ,则纽扣上距离中心1cm 处的点向心加速度大小a =ω2r =(100π)2×0.01m/s 2≈1000m/s 2,故选项A 、B 、D 错误,选项C 正确.8.CD 9.ABC 10.C 11.BD。

2020年高考物理专题精准突破 竖直面内的圆周运动(解析版)

2020年高考物理专题精准突破  竖直面内的圆周运动(解析版)

2020年高考物理专题精准突破专题竖直面内的圆周运动【专题诠释】均是没有支撑的小球均是有支撑的小球【高考领航】【2019·江苏卷】如图所示,摩天轮悬挂的座舱在竖直平面内做匀速圆周运动.座舱的质量为m,运动半径为R,角速度大小为ω,重力加速度为g,则座舱()A.运动周期为2πRB.线速度的大小为ωRC.受摩天轮作用力的大小始终为mg D.所受合力的大小始终为mω2R【答案】BD【解析】由于座舱做匀速圆周运动,由公式2πTω=,解得:2πT ω=,故A 错误;由圆周运动的线速度与角速度的关系可知,v R ω=,故B 正确;由于座舱做匀速圆周运动,所以座舱受到摩天轮的作用力是变力,不可能始终为mg ,故C 错误;由匀速圆周运动的合力提供向心力可得:2F m R ω=合,故D 正确。

【2018·天津卷】滑雪运动深受人民群众的喜爱,某滑雪运动员(可视为质点)由坡道进入竖直面内的圆弧 形滑道AB ,从滑道的A 点滑行到最低点B 的过程中,由于摩擦力的存在,运动员的速率不变,则运动员沿 AB 下滑过程中( )A .所受合外力始终为零B .所受摩擦力大小不变C .合外力做功一定为零D .机械能始终保持不变 【答案】C【解析】根据曲线运动的特点分析物体受力情况,根据牛顿第二定律求解出运动员与曲面间的正压力变化情况,从而分析运动员所受摩擦力变化;根据运动员的动能变化情况,结合动能定理分析合外力做功;根据运动过程中,是否只有重力做功来判断运动员的机械能是否守恒;因为运动员做曲线运动,所以合力一定不为零,A 错误;运动员受力如图所示,重力垂直曲面的分力与曲面对运动员的支持力的合力充当向心力,故有22cos cos N N v v F mg m F m mg R Rθθ-=⇒=+,运动过程中速率恒定,且θ在减小,所以曲面对运动员的支持力越来越大,根据N f F μ=可知摩擦力越来越大,B 错误;运动员运动过程中速率不变,质量不变,即动能不变,动能变化量为零,根据动能定理可知合力做功为零,C 正确;因为克服摩擦力做功,机械能不守恒,D 错误。

高中物理必修二64专题:竖直面内的圆周运动及圆周运动的临界问题(解析版)

高中物理必修二64专题:竖直面内的圆周运动及圆周运动的临界问题(解析版)

6.4 专题:竖直面内的圆周运动及圆周运动的临界问题一、基础篇1.如图所示,可视为质点的木块A、B叠放在一起,放在水平转台上随转台一起绕固定转轴OO′匀速转动,木块A、B与转轴OO′的距离为1 m,A的质量为5 kg,B的质量为10 kg。

已知A与B间的动摩擦因数为0.2,B与转台间的动摩擦因数为0.3,若木块A、B与转台始终保持相对静止,则转台角速度ω的最大值为(最大静摩擦力等于滑动摩擦力,g取10 m/s2)()A.1 rad/s B. 2 rad/sC. 3 rad/s D.3 rad/s解析:选B对A有μ1m A g≥m Aω2r,对A、B整体有(m A+m B)ω2r≤μ2(m A+m B)g,代入数据解得ω≤ 2 rad/s,故B正确。

2.如图所示,内壁光滑的竖直圆桶绕中心轴做匀速圆周运动,一物块用细绳系着,绳的另一端系于圆桶上表面圆心,且物块贴着圆桶内表面随圆桶一起转动,则()A.绳的拉力可能为零B.桶对物块的弹力不可能为零C.若它们以更大的角速度一起转动,绳的张力一定增大D.若它们以更大的角速度一起转动,绳的张力仍保持不变解析:选D由于桶的内壁光滑,所以桶不能提供给物块竖直向上的摩擦力,所以绳子的拉力一定不能等于零,故A错误。

绳子沿竖直方向的分力与物块重力大小相等,若绳子沿水平方向的分力恰好提供向心力,则桶对物块的弹力为零,故B错误。

由题图可知,绳子与竖直方向的夹角不会随桶的角速度的增大而增大,所以绳子的拉力也不会随角速度的增大而增大,故C 错误,D 正确。

3.如图所示,杂技演员在表演节目时,用细绳系着的盛水的杯子可以在竖直平面内做圆周运动,甚至当杯子运动到最高点时杯里的水也不会流出来。

下列说法中正确的是( )A .在最高点时,水对杯底一定有压力B .在最高点时,盛水杯子的速度可能为零C .在最低点时,细绳对杯子的拉力充当向心力D .在最低点时,杯和水受到的拉力大于重力解析:选D 水和杯子恰好能通过最高点时,在最高点细绳的拉力为零,由它们的重力提供向心力,它们的加速度为g ,此时水对杯底恰好没有压力。

专题06 水平面及竖直面内圆周运动的临界问题(解析版)

专题06 水平面及竖直面内圆周运动的临界问题(解析版)

专题06 水平面及竖直面内圆周运动的临界问题一.选择题1.(2020-2021学年·四川棠湖中学高一月考)如图所示,长为l 的轻杆,一端固定一个小球;另一端固定在光滑的水平轴上,使小球在竖直平面内做圆周运动,小球过最高点的速度为v ,下列叙述中不正确的是( )A.v 的值可以小于glB.当v 由零逐渐增大时,小球在最高点所需向心力也逐渐增大C.当v 由gl 值逐渐增大时,杆对小球的弹力逐渐增大D.当v 由gl 值逐渐减小时,杆对小球的弹力逐渐减小【答案】 D【解析】 细杆拉着小球在竖直平面内做圆周运动,在最高点的最小速度为零,故A 正确;根据F 向=m v 2l 知,速度增大,向心力增大,故B 正确;当v =gl ,杆的作用力为零,当v >gl 时,杆子表现为拉力,速度增大,拉力增大,故C 正确;当v <gl 时,杆子表现为支持力,速度减小,支持力增大,故D 错误。

2.(2020-2021学年·吉林东北师大附中高一月考)如图所示,长为L 的轻质细长物体一端与小球(可视为质点)相连,另一端可绕O 点使小球在竖直平面内运动。

设小球在最高点的速度为v ,重力加速度为g ,不计空气阻力,则下列说法正确的是( )A.v 最小值为gLB.v 若增大,此时小球所需的向心力将减小C.若物体为轻杆,则当v 逐渐增大时,杆对球的弹力也逐渐增大D.若物体为细绳,则当v 由gL 逐渐增大时,绳对球的弹力从0开始逐渐增大【答案】D【解析】 若物体为轻杆,通过最高点的速度的最小值为0,物体所受重力和支持力相等,A 错误;v 增大,根据F 向=m v 2r 可知向心力将增大,B 错误;若物体为轻杆,在最高点重力提供向心力mg =m v 20L ,解得v 0=gL ,当速度小于gL 时,根据牛顿第二定律mg -F N =m v 2L ,随着速度v 增大,杆对球的弹力在逐渐减小,C 错误;若物体为细绳,速度为gL 时,重力提供向心力,所以绳子拉力为0,当v 由gL 逐渐增大时,根据牛顿第二定律F T +mg =m v 2L 可知绳子对球的拉力从0开始逐渐增大,D 正确。

竖直面内的圆周运动(解析版)

竖直面内的圆周运动(解析版)

竖直面内的圆周运动一、竖直平面内圆周运动的临界问题——“轻绳、轻杆”模型1.“轻绳”模型和“轻杆”模型不同的原因在于“轻绳”只能对小球产生拉力,而“轻杆”既可对小球产生拉力也可对小球产生支持力。

2.有关临界问题出现在变速圆周运动中,竖直平面内的圆周运动是典型的变速圆周运动,一般情况下,只讨论最高点和最低点的情况。

物理情景最高点无支撑最高点有支撑实例球与绳连接、水流星、沿内轨道的“过山车”等球与杆连接、球在光滑管道中运动等图示\异同点受力特征除重力外,物体受到的弹力方向:向下或等于零除重力外,物体受到的弹力方向:向下、等于零或向上受力示意图-力学方程mg+F N=mv2Rmg±F N=mv2R临界特征F N=0mg=mv2minR即v min=gRv=0*即F向=0F N=mg过最高点的条件在最高点的速度v≥gR v≥0【典例1】如图甲所示,轻杆一端固定在O点,另一端固定一小球,现让小球在竖直平面内做半径为R 的圆周运动。

小球运动到最高点时,杆与小球间弹力大小为F,小球在最高点的速度大小为v,其F-v2图象如图乙所示,则( )A .小球的质量为aR bB .当地的重力加速度大小为R bC .v 2=c 时,小球对杆的弹力方向向上&D .v 2=2b 时,小球受到的弹力与重力大小相等 【答案】: ACD【典例2】用长L = m 的绳系着装有m = kg 水的小桶,在竖直平面内做圆周运动,成为“水流星”。

G =10 m/s 2。

求:(1) 最高点水不流出的最小速度为多少(2) 若过最高点时速度为3 m/s ,此时水对桶底的压力多大 【答案】 (1) m/s (2) N 方向竖直向上【解析】(1) 水做圆周运动,在最高点水不流出的条件是:水的重力不大于水所需要的向心力。

这是最小速度即是过最高点的临界速度v 0。

以水为研究对象, mg =m v 20L解得v 0=Lg =错误! m/s ≈ m/s((2) 因为 v = 3 m/s>v 0,故重力不足以提供向心力,要由桶底对水向下的压力补充,此时所需向心力由以上两力的合力提供。

高考物理计算题复习《竖直平面内的圆周运动》(解析版)

高考物理计算题复习《竖直平面内的圆周运动》(解析版)

《竖直平面内的圆周运动》一、计算题1.如图所示,小球A质量为m,固定在长为L的轻细直杆一端,并随杆一起绕杆的另一端O点在竖直平面内做圆周运动,已知重力加速度为g.(1)若小球经过最低点时速度为√6gL,求此时杆对球的作用力大小;(2)若小球经过最高点时,杆对球的作用力大小等于0.5mg,求小球经过最高点时的速度大小。

2.一质量为0.5kg的小球,用长为0.4m细绳拴住,在竖直平面内做圆周运动(g取10m/s2)。

求(1)若过最低点时的速度为6m/s,此时绳的拉力大小F1?(2)若过最高点时的速度为4m/s,此时绳的拉力大小F2?(3)若过最高点时绳的拉力刚好为零,此时小球速度大小?3.如图所示,有一长为L的细线,细线的一端固定在O点,另一端拴一质量为m的小球。

现使小球恰好能在竖直面内做完整的圆周运动。

已知水平地面上的C点位于O点正下方,且到O点的距离为1.9L。

不计空气阻力。

(1)求小球通过最高点A时的速度v A的大小;(2)若小球通过最低点B时,细线对小球的拉力F T恰好为小球重力的6倍,且小球经过B点的瞬间细线断裂,求小球的落地点到C点的距离。

4.一细杆与水桶相连,水桶中装有水,水桶与细杆一起在竖直平面内做圆周运动,如图所示,水的质量m=0.5kg,水的重心到转轴的距离l=50cm.(取g=10m/s2,不计空气阻力)(1)若在最高点水不流出来,求桶的最小速率;(2)若在最高点水桶的速率v=3m/s,求水对桶底的压力.5.小明站在水平地面上,手握不可伸长的轻绳一端,绳的另一端系有质量为m的小球,甩动手腕,使球在竖直平面内做圆周运动.当球某次运动到最低点时,绳突然断掉,球飞离水平距离d后落地,如图所示.已知握绳的手离地面高度为d,手与球之间d,重力加速度为g.忽略手的运动半径和空气阻力.求:的绳长为34(1)绳断时小球速度的大小;(2)绳断前瞬间绳对小球拉力的大小;(3)小球落地时速度的大小;(4)改变绳长,使球重复上述运动.若绳仍在球运动到最低点时断掉,要使球抛出的水平距离最大,绳长应为多少?最大水平距离为多少?6.如图所示,沿半径为R的半球型碗的光滑内表面,质量为m的小球正在虚线所示的水平面内作匀速圆周运动,小球离碗底的高度ℎ=R,试求(结果可用根号表示):2(1)此时小球对碗壁的压力大小;(2)小球做匀速圆周运动的线速度大小.(3)小球做匀速圆周运动的周期大小.7.长L=0.5m的轻杆,其一端连接着一个零件A,A的质量m=2kg.现让A在竖直平面内绕O点做匀速圆周运动,如图所示.在A通过最高点时,求下列两种情况下:(1)A的速率为多大时,对轻杆无作用力;(2)当A的速率为4m/s时,A对轻杆的作用力大小和方向.(g=10m/s2)8.如图所示,长L的轻杆两端分别固定有质量均为m的A、B两小铁球,杆的三等分点O处有光滑的水平固定转轴,使轻杆可绕转轴在竖直面内无摩擦转动.用手将该装置固定在杆恰好水平的位置,然后由静止释放.重力加速度为g.求(结论可以用根号表示):(1)当杆到达竖直位置时,小球A、B的速度v A、v B各多大?(2)从释放轻杆到轻杆竖直时,该过程轻杆对小球A做的功.9.用一根长为l的轻质不可伸长的细绳把一个质量为m的小球悬挂在点O,将小球拉至与悬点等高处由静止释放,如图所示.求:(1)小球经过最低点时,速度大小及细绳的拉力大小.(2)小球经过最低点左边与竖直方向成60°角位置时,速度大小.10.如图所示,一个圆锥摆,摆线长为1米,小球质量为0.5kg,当小球水平方向做匀速圆周运动时,摆线恰与竖直方向成θ=37°角,g=10m/s2。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

竖直面内的圆周运动
一、竖直平面内圆周运动的临界问题——“轻绳、轻杆”模型
1.“轻绳”模型和“轻杆”模型不同的原因在于“轻绳”只能对小球产生拉力,而“轻杆”既可对小球产生拉力也可对小球产生支持力。

2.有关临界问题出现在变速圆周运动中,竖直平面内的圆周运动是典型的变速圆周运动,一般情况下,只讨论最高点和最低点的情况。

物理情景最高点无支撑最高点有支撑
实例球与绳连接、水流星、沿内轨道
的“过山车”等
球与杆连接、球在光滑管道中运动等
图示
异同点受力
特征
除重力外,物体受到的弹力方
向:向下或等于零
除重力外,物体受到的弹力方向:向
下、等于零或向上
受力
示意

力学
方程
mg+F N=m
v2
R mg±F N=m
v2
R
临界
特征
F N=0
mg=m
v2min
R
即v min=gR
v=0
即F向=0
F N=mg
过最高点的条

在最高点的速度v≥gR v≥0
【典例1】如图甲所示,轻杆一端固定在O点,另一端固定一小球,现让小球在竖直平面内做半径为R 的圆周运动。

小球运动到最高点时,杆与小球间弹力大小为F,小球在最高点的速度大小为v,其F-v2图象如图乙所示,则()
A .小球的质量为aR
b
B .当地的重力加速度大小为R
b
C .v 2=c 时,小球对杆的弹力方向向上
D .v 2=2b 时,小球受到的弹力与重力大小相等 【答案】: ACD
【典例2】用长L = 0.6 m 的绳系着装有m = 0.5 kg 水的小桶,在竖直平面内做圆周运动,成为“水流星”。

G =10 m/s 2。

求:
(1) 最高点水不流出的最小速度为多少?
(2) 若过最高点时速度为3 m/s ,此时水对桶底的压力多大? 【答案】 (1) 2.45 m/s (2) 2.5 N 方向竖直向上
【解析】(1) 水做圆周运动,在最高点水不流出的条件是:水的重力不大于水所需要的向心力。

这是最小速度即是过最高点的临界速度v 0。

以水为研究对象, mg =m v 20L
解得v 0=Lg =0.6×10 m/s ≈ 2.45 m/s
(2) 因为 v = 3 m/s>v 0,故重力不足以提供向心力,要由桶底对水向下的压力补充,此时所需向心力由以上两力的合力提供。

V = 3 m/s>v 0,水不会流出。

设桶底对水的压力为F ,则由牛顿第二定律有:mg +F =m v 2L
解得F =m v 2L -mg =0.5×(32
0.6
-10)N =2.5N
根据牛顿第三定律F ′=-F
所以水对桶底的压力F ′=2.5N ,方向竖直向上。

【跟踪短训】
1. 如图所示,一内壁光滑、质量为m 、半径为r 的环形细圆管,用硬杆竖直固定在天花板上.有一质量为m 的小球(可看做质点)在圆管中运动.小球以速率v 0经过圆管最低点时,杆对圆管的作用力大小为( )
A .m v 20r
B .mg +m v 2
r
C .2mg +m v 2
r
D .2mg -m v 20
r
【答案】C
2. (多选)如图所示,半径为R 的光滑圆形轨道竖直固定放置,小球m 在圆形轨道内侧做圆周运动.对于半径R 不同的圆形轨道,小球m 通过轨道最高点时都恰好与轨道间没有相互作用力.下列说法中正确的
有( ).
A .半径R 越大,小球通过轨道最高点时的速度越大
B .半径R 越大,小球通过轨道最高点时的速度越小
C .半径R 越大,小球通过轨道最低点时的角速度越大
D .半径R 越大,小球通过轨道最低点时的角速度越小 【答案】 AD
【解析】 在最高点时,由mg =m v 2
R 可得v =gR ,所以半径R 越大,小球通过轨道最高点时的速度越
大,A 正确;由机械能守恒可知12mv 2+mg ×2R =12mv 20,所以v 0=5gR ,由ω=v
R =5g
R
,故半径R 越大,小球通过轨道最低点时的角速度越小,D 正确.
3.(多选)如图所示,长为L 的轻杆一端固定质量为m 的小球,另一端固定转轴O ,现使小球在竖直平面内做圆周运动.P 为圆周轨道的最高点.若小球通过圆周轨道最低点时的速度大小为9
2
gL ,则以下判断正确的是( ).
A .小球不能到达P 点
B .小球到达P 点时的速度小于gL
C .小球能到达P 点,但在P 点不会受到轻杆的弹力
D .小球能到达P 点,且在P 点受到轻杆向上的弹力 【答案】 BD
4. 如图所示,轻杆长为3L ,在杆两端分别固定质量均为m 的球A 和B ,光滑水平转轴穿过杆上距球A 为L 处的O 点,外界给系统一定能量后,杆和球在竖直平面内转动,球B 运动到最高点时,杆对球B 恰好无作用力。

忽略空气阻力。

则球B 在最高点时( )
A .球
B 的速度为零 B .球A 的速度大小为2gL
C .水平转轴对杆的作用力为1.5mg
D .水平转轴对杆的作用力为2.5mg 【答案】 C
【解析】 球B 运动到最高点时,杆对球B 恰好无作用力,即重力恰好提供向心力,有mg =m v B 2
2L ,解
得v B =2gL ,故A 错误;由于球A 、B 的角速度相等,则球A 的速度大小v A =1
22gL ,故B 错误;球B 在
最高点时,对杆无作用力,此时球A 所受重力和杆的作用力的合力提供向心力,有F -mg =m v A 2
L ,解得:F
=1.5mg ,则水平转轴对杆的作用力为1.5mg ,故C 正确,D 错误。

二、竖直面内圆周运动与平抛运动组合
物体有时先做竖直面内的变速圆周运动,后做平抛运动;有时先做平抛运动,后做竖直面内的变速圆周运动,往往要结合能量关系求解,多以计算题形式考查。

解题技巧
(1)竖直面内的圆周运动首先要明确是“轻杆模型”还是“轻绳模型”,然后分析物体能够到达圆周最高点的临界条件。

(2)速度是联系前后两个过程的关键物理量。

【典例1】如图所示,一条不可伸长的轻绳上端悬挂于O点,下端系一质量m=1.0 kg的小球。

现将小球拉到A点(保持轻绳绷直)由静止释放,当它经过B点时轻绳恰好被拉断,小球平抛后落在水平地面上的C点,地面上的D点与OB在同一竖直线上,已知轻绳长L=1.0 m,B点离地高度H=1.0 m,A、B两点的高度差h=0.5 m,重力加速度g取10 m/s2,不计空气阻力,求:
(1)地面上D、C两点间的距离s;
(2)轻绳所受的最大拉力大小。

【答案】(1)1.41 m(2)20 N
【典例2】为了研究过山车的原理,某物理小组提出了下列的设想:取一个与水平方向夹角为θ=60°,
长为L1=2 3 m的倾斜轨道AB,通过微小圆弧与长为L2=
3
2m的水平轨道BC 相连,然后在C 处设计
一个竖直完整的光滑圆轨道,出口为水平轨道D,如图所示。

现将一个小球从距A 点高为h =0.9 m 的水平台面上以一定的初速度v0 水平弹出,到A 点时速度方向恰沿AB 方向,并沿倾斜轨道滑下。

已知小球与
AB和BC 间的动摩擦因数均为μ=
3
3。

g取10 m/s
2,求:
(1) 小球初速度v 0的大小; (2) 小球滑过C 点时的速率v C ;
(3) 要使小球不离开轨道,则竖直圆弧轨道的半径R 应该满足什么条件。

【答案】 (1) 6 m/s (2)3 6 m/s (3)0<R ≤1.08 m
【解析】(1) 小球做平抛运动到达A 点,由平抛运动规律知竖直方向有:v 2y =2gh ,即:v y =3 2 m/s 因为在A 点的速度恰好沿AB 方向,所以小球初速度:v 0=v y tan 30°= 6 m/s
(2)从水平抛出到C 点的过程中,由动能定理得:mg (h +L 1sin θ)-μmgL 1cos θ-μmgL 2=12mv 2C -12mv 20
当圆轨道与AB 相切时:R 3=L 2tan 60°=1.5 m ,即圆轨道的半径不能超过1.5 m 综上所述,要使小球不离开轨道,R 应该满足的条件是:0<R ≤1.08 m 。

【典例3】如图所示,一个固定在竖直平面上的光滑半圆形管道,管道里有一个直径略小于管道内径的小球,小球在管道内做圆周运动,从B 点脱离后做平抛运动,经过0.3 s 后又恰好垂直与倾角为45° 的斜面相撞.已知半圆形管道的半径为R =1 m ,小球可看作质点且其质量为m =1 kg ,g 取10 m /s 2.则( )
A .小球在斜面上的相碰点C 与
B 点的水平距离是0.9 m B .小球在斜面上的相碰点
C 与B 点的水平距离是1.9 m C .小球经过管道的B 点时,受到管道的作用力F N B 的大小是1 N
D .小球经过管道的B 点时,受到管道的作用力F N B 的大小是2 N 【答案】AC。

相关文档
最新文档