2020高考数学(文)二轮38空间几何体的结构及其三视图和直观图Word版含解析
高三数学空间几何体的三视图与直观图试题答案及解析
高三数学空间几何体的三视图与直观图试题答案及解析1.一个多面体的三视图如图所示,则该多面体的体积为()A.B.C.D.【答案】A【解析】由三视图可知,该多面体是由正方体截去两个正三棱锥所成的几何体,如图,正方体棱长为2,正三棱锥侧棱互相垂直,侧棱长为1,故几何体的体积为:V正方体-2V棱锥侧2×2×2−2×.故选:A.【考点】三视图求解几何体的体积.2.在长方体中割去两个小长方体后的几何体的三视图如图,则切割掉的两个小长方体的体积之和等于.【答案】24【解析】由题意割去的两个小长方体的体积为.【考点】三视图,几何体的体积..3.某几何体的三视图如图(其中侧视图中的圆弧是半圆),则该几何体的表面积为()A.92+14πB.82+14πC.92+24πD.82+24π【答案】A【解析】由几何体的三视图,知该几何体的下半部分是长方体,上半部分是半径为2,高为5的圆柱的一半.长方体中EH=4,HG=4,GK=5,所以长方体的表面积为(去掉一个上底面)2(4×4+4×5)+4×5=92.半圆柱的两个底面积为π×22=4π,半圆柱的侧面积为π×2×5=10π,所以整个组合体的表面积为92+4π+10π=92+14π,选A.4.在一个几何体的三视图中,正视图和俯视图如图所示,则相应的侧视图可以为()【答案】D【解析】由题目所给的几何体的正视图和俯视图,可知该几何体为半圆锥和三棱锥的组合体,如图所示,可知左视图为等腰三角形,且轮廓线为实线,故选D.5.一个正方体截去两个角后所得几何体的正视图、侧视图如图所示,则其俯视图为()【答案】C【解析】依题意可知该几何体的直观图如图所示,故其俯视图应为C.6.某几何体的三视图如图所示,则该几何体的体积为A.12B.18C.24D.30【答案】C【解析】由三视图可知该几何体是一个底面为直角三角形的直三棱柱的一部分,其直观图如上图所示,其中,侧面是矩形,其余两个侧面是直角梯形,由于,平面平面,所以平面,所以几何体的体积为:故选C.【考点】1、空间几何体的三视图;2、空间几何体的体积.7.一块石材表示的几何体的三视图如图2所示,将石材切削、打磨、加工成球,则能得到的最大球的半径等于()A.1B.2C.3D.4【答案】B【解析】由图可得该几何体为三棱柱,因为正视图,侧视图,俯视图的内切圆半径最小的是正视图(直角三角形)所对应的内切圆,所以最大球的半径为正视图直角三角形内切圆的半径,则,故选B.【考点】三视图内切圆球三棱柱8. [2013·四川高考]一个几何体的三视图如图所示,则该几何体可以是()A.棱柱B.棱台C.圆柱D.圆台【答案】D【解析】由正视图和侧视图可知,该几何体不可能是圆柱,排除选项C;又由俯视图可知,该几何体不可能是棱柱或棱台,排除选项A、B.故选D.9.[2013·宁波质检]如图,水平放置的三棱柱的侧棱长和底边长均为2,且侧棱AA1⊥平面A1B1C1,正视图是正方形,俯视图是正三角形,该三棱柱的侧视图面积为()A.2B.C.2D.4【答案】A【解析】由题意可知,该三棱柱的侧视图应为矩形,如图所示.在该矩形中,MM1=CC1=2,CM=C1M1=·AB=.所以侧视图的面积为S=2.10.某几何体的三视图如图所示,则该几何体的体积的最大值为 .【答案】【解析】该几何体是类似墙角的三棱锥,假设一条直角的棱长为x,则三条直角棱长分别为.所以体积为.当且仅当时取等号.【考点】1.三视图.2.函数最值问题.3.空间想象能力.11.(2012•广东)某几何体的三视图如图所示,它的体积为()A.12πB.45πC.57πD.81π【答案】C【解析】由三视图可知,此组合体上部是一个母线长为5,底面圆半径是3的圆锥,下部是一个高为5,底面半径是3的圆柱故它的体积是5×π×32+π×32×=57π故选C12. (2014·咸宁模拟)某几何体的三视图如图所示(其中侧视图中的圆弧是半圆),则该几何体的表面积为( )A.92+14πB.82+14πC.92+24πD.82+24π【答案】A【解析】由几何体的三视图知该几何体的下半部分是长方体,上半部分是半径为2,高为5的圆柱的一半.所以长方体的表面积为(去掉一个上底面)2(4×4+4×5)+4×5=92.半圆柱的两个底面积为π×22=4π,半圆柱的侧面积为π×2×5=10π,所以整个组合体的表面积为92+4π+10π=92+14π. 13.在一个几何体的三视图中,正视图和俯视图如图所示,则相应的侧视图可以为【答案】D【解析】条件对应的几何体是由底面棱长为r的正四棱锥沿底面对角线截出的部分与底面为半径为r的圆锥沿对称轴截出的部分构成的。
高中数学 空间几何体的结构及其三视图和直观图
)
自 主 落 实 · 固 基 础
菜 单
课 后 作 业
新课标 ·文科数学(安徽专用)
网 络 构 建 · 览 全 局 策 略 指 导 · 备 高 考 典 例 探 究 · 提 知 能 高 考 体 验 · 明 考 情
【解析】 能是D. 【答案】
由于该几何体的正视图和侧视图相同,且上
部分是一个矩形,矩形中间无实线和虚线,因此俯视图不可
(2013· 潍坊模拟)某四面体的三视图如图7-1-5所
示,该四面体四个面的面积中最大的是(
)
自 主 落 实 · 固 基 础
课 后 作 业
A.8
菜 单
B.6 2
C.10
D.8 2
新 导 · 备 高 考
【思路点拨】
根据几何体的三视图确定几何体的形
自 主 落 实 · 固 基 础
菜 单
课 后 作 业
新课标 ·文科数学(安徽专用)
网 络 构 建 · 览 全 局 策 略 指 导 · 备 高 考 典 例 探 究 · 提 知 能 高 考 体 验 · 明 考 情
自 主 落 实 · 固 基 础
菜 单
课 后 作 业
新课标 ·文科数学(安徽专用)
网 络 构 建 · 览 全 局 策 略 指 导 · 备 高 考 典 例 探 究 · 提 知 能 高 考 体 验 · 明 考 情
自 主 落 实 · 固 基 础
菜 单
课 后 作 业
新课标 ·文科数学(安徽专用)
网 络 构 建 · 览 全 局 策 略 指 导 · 备 高 考
第一节
空间几何体的结构及其三视图和直观图
典 例 探 究 · 提 知 能 高 考 体 验 · 明 考 情
自 主 落 实 · 固 基 础
空间几何体的结构、三视图、直观图
【答案】 B
第八章
第1课时
高三数学(· 理)
探究 4
解决这类问题的关键是准确分析出组合体
的结构特征, 发挥自己的空间想象能力, 把立体图和截面 图对照分析,有机结合,找出几何体中的数量关系,为了 增加图形的直观性,常常画一个截面圆作为衬托.
第八章
第1课时
高三数学(· 理)
思考题 4 (2011· 湖北文)设球的体积为 V1,它的内接 正方体的体积为 V2,下列说法中最合适的是( )
第八章
第1课时
高三数学(· 理)
2.棱锥的结构特征 (1)棱锥的定义:有一个面是多边形,其余各面都是有 _____________________ 一个公共顶点的三角形 ,这些面围成的几何体叫做棱锥. (2)正棱锥的定义:如果一个棱锥的底面是正多边形 , 并且顶点在底面内的射影是 底面中心 ,这样的棱锥叫做正 棱锥.
【答案】 ①√ ②× ③× ④√ ⑤√ ⑥×
第八章
第1课时
高三数学(· 理)
探究 1 深刻领会基本概念,熟练掌握基本题型的解 法,是学好立体几何的关键,本课涉及到的概念较多,应 多看、多想、多做.
第八章
第1课时
高三数学(· 理)
思考题 1 以下命题: ①若有两个侧面垂直于底面,则该四棱柱为直四棱柱; ②若有两个过相对侧棱的截面都垂直于底面, 则该四棱柱 为直四棱柱; ③圆柱、圆锥、圆台的底面都是圆; ④一个平面截圆锥,得到一个圆锥和一个圆台. 其中正确命题为________
A.V1 比 V2 大约多一半 B.V1 比 V2 大约多两倍半 C.V1 比 V2 大约多一倍 D.V1 比 V2 大约多一倍半
题型一
空间几何体的结构特征
例 1 判断正误 ①底面是平行四边形的四棱柱是平行六面体; ②底面是矩形的平行六面体是长方体; ③三棱锥的四个面中最多只有三个直角三角形; ④棱台的相对侧棱延长后必交于一点.
课件3:空间几何体的结构特征及其直观图、三视图
侧视图,可以将 D 排除,故选 B.
[答案] (1)D (2)B
第七章 第1讲
第30页
高三一轮总复习 ·新课标 ·数学
抓住3个必备考点 突破3个热点考向
破译5类高考密码
迎战2年高考模拟
限时规范特训
[奇思妙想] 已知某一几何体的正视图与侧视图均如图 2 所
示,则在下列图形中,可以是该几何体的俯视图的图形有
体都是圆锥;
第七章 第1讲
第23页
高三一轮总复习 ·新课标 ·数学
抓住3个必备考点 突破3个热点考向
破译5类高考密码
迎战2年高考模拟
限时规范特训
④棱台的上、下底面可以不相似,但侧棱长一定相等.
其中正确命题的个数是( )
A. 0
B. 1
C. 2
D. 3
第七章 第1讲
第24页
高三一轮总复习 ·新课标 ·数学
高三一轮总复习 ·新课标 ·数学
抓住3个必备考点 突破3个热点考向
破译5类高考密码
迎战2年高考模拟
限时规范特训
考点 3 空间几何体的直观图
空间几何体的直观图常用 斜二测 画法来画,基本步骤是:
1.画几何体的底面
在已知图形中取互相垂直的 x 轴、y 轴,两轴相交于点 O,
画直观图时,把它们画成对应的 x′轴、y′轴,两轴相交于点 O′,且使∠x′O′y′= 45°(或 135°) ,已知图形中平行于 x 轴 的线段,在直观图中长度 不变 ,平行于 y 轴的线段,长度 减半.
第七章 第1讲
第3页
高三一轮总复习 ·新课标 ·数学
抓住3个必备考点 突破3个热点考向
破译5类高考密码
迎战2年高考模拟
限时规范特训
数学一轮复习课时规范练38空间几何体的结构及其三视图直观图理
课时规范练38 空间几何体的结构及其三视图、直观图基础巩固组1。
下列说法中正确的是()A.斜三棱柱的侧面展开图一定是平行四边形B。
水平放置的正方形的直观图有可能是梯形C.一个直四棱柱的主视图和左视图都是矩形,则该直四棱柱就是长方体D.用平行于圆锥底面的平面去截圆锥,底面与截面之间的部分形成的几何体就是圆台2.(2020浙江衢州模拟)在一个密闭透明的圆柱筒内装一定体积的水,将该圆柱筒分别竖直、水平、倾斜放置时,指出圆柱桶内的水平面可以呈现出的几何形状不可能是()A.圆B。
矩形C。
梯形 D.椭圆或部分椭圆3。
将长方体截去一个四棱锥后得到的几何体如图所示,则该几何体的左视图为()4.(2020江西南昌八一中学期中)如图,一个水平放置的面积是2+√2的平面图形的斜二测直观图是等腰梯形,其中A'D’∥B’C',则等腰梯形面积为()A.12+√22B.1+√22C。
1+√2D。
2+√25.某三棱锥的三视图如图所示,其俯视图是一个等腰直角三角形,在此三棱锥的六条棱中,最长棱的长度为()A。
2 B.2√2C.√6D.√26.(2020北京丰台一模)某三棱锥的三视图如图所示,则该三棱锥的四个面中,面积等于√3的有()A。
1个 B.2个C.3个D.4个7。
正方体被一个平面截去一部分后,所得几何体的三视图如图所示,则截面图形的形状为()A。
等腰三角形B.直角三角形C.平行四边形D。
梯形8。
(2020广东广雅中学模拟)如图正方形O’A'B’C’的边长为1 cm,它是水平放置的一个平面图形的直观图,则原图形的周长是cm.9。
(2020北京朝阳一模)已知某三棱锥的三视图如图所示,则该三棱锥的最长棱的长为.(第8题图)(第9题图)综合提升组10。
如图是某几何体的三视图,则过该几何体顶点的所有截面中,最大截面的面积是()A.2 B。
√3D.1C。
√3211.已知某长方体的三视图如图所示,在该长方体的一组相对侧面M,N上取三点A,B,P,其中P为侧面N的对角线上一点(与对角线端点不重合),A,B为侧面M的一条对角线的两个端点.若以线段AB为直径的圆过点P,则m的最小值为()A.4 B。
三视图课件
B
A. 32 B. 16 16 2 C. 48 D. 16 32 2
5.2010湖南高考
4
6. (2007宁夏理•8) 已知某个几何体的三视图 如下,根据图中标出的尺寸(单位:cm), 可得这个几何体的体积是( B)
24
柱体
夯实基础 1.棱柱 (1)定义:有两个面互相平行,而且夹在这两个平行 平面间的每相邻两个面的交线都 互相平行,由这些面所 围成的多面体叫做棱柱. 稳固根基
(如图)
1° 球面被经过球心的平面截得的圆叫做大圆. 2° 不过球心的截面截得的圆叫做球的小圆.
(3)球面距离: 1° 定义:在球面上两点之间的最短距离,就是经过这 两点的 大圆 在这两点间的一段 劣弧 的长度, 这个弧长 叫做两点的球面距离. 2° 地球上的经纬线 当把地球看作一个球时, 经线是球面上从北极到南极 的半个大圆,纬线是与地轴垂直的平面与球面的交线,其 中赤道是一个大圆,其余纬线都是一个小圆.
5.球的概念与性质 (1)定义: 半圆绕它的直径所在直线旋转所成的曲面叫 做球面,球面所围成的几何体叫做球.球面也可以看作空 间中到定点的距离等于定长的点的集合. (2)球的截面性质 ①用一个平面去截球,截面是圆面.
②球心到截面的距离 d 与球的半径 R 及截面的半径 r,有下面的关系:
r= R2-d2
空间几何体的结构、三 视图和直观图、表面积 和体积
椎体
2
2.棱锥及其分类 (1)定义: 有一个面是多边形, 其余各面是 有一个公共顶点 的三 角形.由这些面所围成的几何体叫做棱锥. (2)正棱锥 如果棱锥的底面是正多边形, 顶点在过底面中心且与 底面垂直的直线上,则这个棱锥叫做正棱锥.
正棱锥的性质: ①各侧棱相等, 各侧面都是全等的等腰三角形. 这些 等腰三角形的高叫做棱锥的斜高. ②棱锥的高、 斜高和斜高在底面内的射影组成一个直 角三角形; 棱锥的高、 侧棱和侧棱在底面内的射影也组成 一个直角三角形.
2020届高考数学理一轮复习空间几何体及其三视图、直观图文科
文数
课标版
第一节 空间几何体及其三视图、直观图
教材研读
栏目索引
1.空间几何体的结构特征
多 (1)棱柱:侧棱都① 平行且相等 ,上、下底面平行且是② 全等 的多边形. 面 (2)棱锥:底面是多边形,侧面是有一个公共顶点的三角形. 体 (3)棱台:可以由平行于棱锥底面的平面截棱锥得到,其上、下底面是③ 相似 多边形
旋 (1)圆柱:可以由④ 矩形 绕其任一边所在直线旋转得到. 转 (2)圆锥:可以由直角三角形绕其⑤ 直角边 所在直线旋转得到. 体 (3)圆台:可以由直角梯形绕其⑥ 垂直于底边的腰 所在直线或等腰梯形绕其上、下
底边中点的连线所在直线旋转得到,也可由平行于圆锥底面的平面截圆锥得到. (4)球:可以由半圆或圆绕其⑦ 直径 所在直线旋转得到
栏目索引
2.三视图与直观图
三视图 画三视图的规则:长对正,高平齐,宽相等 空间几何体的直观图常用⑧ 斜二测 画法来画,规则如下: (1)原图形中x轴、y轴、z轴两两垂直(原点为O),直观图中相应x'轴,y'轴满足∠x'O'y'=
直观图 ⑨ 45°(或135°) (O'为原点),z'轴与x'轴和y'轴所在平面垂直. (2)原图形中平行于坐标轴的线段在直观图中仍 平行于相应坐标轴 ,平行于x轴 和z轴的线段长度在直观图中保持原长度 不变 ,平行于y轴的线段长度在直观 图中长度为 原来的一半
栏目索引
2-1 (2014课标Ⅰ,8,5分)如图,网格纸的各小格都是正方形,粗实线画出 的是一个几何体的三视图,则这个几何体是 ( )
A.三棱锥 B.三棱柱 C.四棱锥 D.四棱柱 答案 B 由题中三视图可知该几何体的直观图如图所示,则这个几何 体是三棱柱,故选B.
空间几何体的结构、三视图、直观图
3.空间几何体的三视图 3.空间几何体的三视图 得到, 空间几何体的三视图是用 正投影 得到,这种投 影下与投影面平行的平面图形留下的影子与平 面图形的形状和大小是完全相同的,三视图包括 正视图 、 侧视图、 俯视图 .
1、正视图:光线自物体的前面向后投影所得 、正视图: 的投影图。 的投影图。 2、侧视图:光线自左向右投影所得的投影图。 、侧视图:光线自左向右投影所得的投影图。 3、俯视图:光线自上向下投影所得的投影图。 、俯视图:光线自上向下投影所得的投影图。
5.中心投影与平行投影 5.中心投影与平行投影 (1)平行投影的投影线 (1)平行投影的投影线 互相平行 ,而中心投影的 投影线 相交于一点 . (2)从投影的角度看, (2)从投影的角度看,三视图和用斜二测画法画 从投影的角度看 投影下画出来的图形. 出的直观图都是在 平行 投影下画出来的图形.
一个几何体的主视图和左视图的高度一样, 一个几何体的主视图和左视图的高度一样,俯视图 和主视图的的长度一样,左视图和俯视图的宽度一样. 和主视图的的长度一样,左视图和俯视图的宽度一样.
主视图 主视图 左 视
左视图
c c a
长度
高度
c b a
俯视图
图
b b
宽度
a
俯视图
思考3 思考3
圆柱、圆锥、 圆柱、圆锥、圆台的三视图分别是什 么? 2r 2r 2r 2r 圆柱的三视图 圆锥的三视图 圆台的三视图
题型二
几何体的直观图
【例2 】 一个平面四边形的斜二测画法的直观图 是一个边长为a的正方形, 是一个边长为a的正方形,则原平面四边形的面
积等于( 积等于( B ) A.
2 2 a 4
思维启迪 标系将正方形A 还原, 标系将正方形A′B′C′D′还原,并利用平面
第1讲 空间几何体的结构、三视图和直观图
2.旋转体 . (1)圆柱:以 矩形 的一边所在的直线为旋转轴,其余三边旋转形成的面所 圆柱: 的一边所在的直线为旋转轴, 圆柱 围成的几何体叫做圆柱. 围成的几何体叫做圆柱. (2)圆锥:以 直角三角形的一条直角边 圆锥: 转形成的面所围成的几何体叫做圆锥. 转形成的面所围成的几何体叫做圆锥. (3)圆台:用一个 平行 于圆锥底面的平面去截 圆锥 ,底面与截面之间的部 圆台: 分,叫做圆台. 叫做圆台. (4)球:以 半圆 的直径所在的直线为旋转轴,半圆面旋转一周形成的几 球 的直径所在的直线为旋转轴, 何体叫做球体.简称球. 何体叫做球体.简称球. 所在直线为旋转轴, 所在直线为旋转轴,其余两边旋
1.多面体 . (1)棱柱:有两个面 互相平行 ,其余各面都是四边形,并且每相邻两个四边形 棱柱: 其余各面都是四边形, 棱柱 由这些面所围成的几何体叫棱柱. 的公共边都 互相平行,由这些面所围成的几何体叫棱柱. (2)棱锥:有一个面是多边形,而其余各面都是有一个公共顶点的 三角形 ,由这 (2)棱锥:有一个面是多边形, 棱锥 些面所围成的几何体叫棱锥. 些面所围成的几何体叫棱锥. (3)棱台: 于棱锥底面的平面去截棱锥,底面与截面之间的部分, (3)棱台:用一个 平行 于棱锥底面的平面去截棱锥,底面与截面之间的部分, 棱台 叫棱台. 叫棱台.
上海)如右图 上海 如右图,已知三棱锥的底面是直角三角形, 3.(2009·上海 如右图,已知三棱锥的底面是直角三角形,直 . 角边长分别为3和 ,过直角顶点的侧棱长为4, 角边长分别为 和4,过直角顶点的侧棱长为 ,且垂直于 底面,该三棱锥的主视图是 底面,该三棱锥的主视图是( )
解析:根据“长对正、高平齐、宽相等” 可得其主视图为选项 解析:根据“长对正、高平齐、宽相等”,可得其主视图为选项B. 答案: 答案:B
第七章 第一节 空间几何体的结构及三视图和直观图
解:①错误,因为棱柱的底面不 错误, 一定是正多边形; 错误, 一定是正多边形;②错误,必须 用平行于底面的平面去截棱锥, 用平行于底面的平面去截棱锥, 才能得到棱台;③正确,因为三 才能得到棱台; 正确, 个侧面构成的三个平面的二面角都是直二面角; 正确, 个侧面构成的三个平面的二面角都是直二面角;④正确, 因为两个过相对侧棱的截面的交线平行于侧棱, 因为两个过相对侧棱的截面的交线平行于侧棱,又垂直 于底面; 正确,正方体 中的四棱锥C 于底面;⑤正确,正方体AC1中的四棱锥 1-ABC,四个 , 面都是直角三角形; 正确,由棱台的概念可知. 面都是直角三角形;⑥正确,由棱台的概念可知.
答案: 答案:C
2. 如图 , 几何体的正 主 )视图和侧 左 )视图都正确的是 . 如图, 几何体的正(主 视图和侧 视图和侧(左 视图都正确的是 ( )
答案: 答案:B
3.某几何体的三视图如图所示,那么这个几何体是( .某几何体的三视图如图所示,那么这个几何体是
)
A.三棱锥 . C.四棱台 .
B.四棱锥 . D.三棱台 .
解析: 解析:由所给三视图与直观图的关 系,可以判定对应的几何体为如图 所示的四棱锥,且PA⊥面ABCD, 所示的四棱锥, ⊥ , AB⊥BC,BC∥AD. ⊥ , ∥ 答案: 答案:B
4.(2010·北京高考 一个长方体去掉一个小长方体,所得 . 北京高考)一个长方体去掉一个小长方体 北京高考 一个长方体去掉一个小长方体, 几何体的正(主 视图与侧 视图与侧(左 视图分别如图所示 视图分别如图所示, 几何体的正 主)视图与侧 左)视图分别如图所示,则该 几何体的俯视图为 ( 主)视图 、 侧(左)视图 、 俯视图 ,分别是从几何体的正前方 、正左方 、 正上方 观察几何体画出的轮廓线. 观察几何体画出的轮廓线.
-空间几何体的结构、三视图和直观图
§8.1 空间几何体的结构、三视图和直观图2014高考会这样考 1.几何体作为线面关系的载体,其结构特征是必考内容;2.考查三视图、直观图及其应用.复习备考要这样做 1.重点掌握以三视图为命题背景,研究空间几何体的结构特征的题型;2.熟悉一些典型的几何体模型,如三棱柱、长(正)方体、三棱锥等几何体的三视图.1.多面体的结构特征(1)棱柱的上下底面平行,侧棱都平行且长度相等,上底面和下底面是全等的多边形. (2)棱锥的底面是任意多边形,侧面是有一个公共顶点的三角形.(3)棱台可由平行于棱锥底面的平面截棱锥得到,其上下底面的两个多边形相似. 2.旋转体的结构特征(1)圆柱可以由矩形绕其一边所在直线旋转得到.(2)圆锥可以由直角三角形绕其一条直角边所在直线旋转得到.(3)圆台可以由直角梯形绕直角腰所在直线或等腰梯形绕上下底中点的连线旋转得到,也可由平行于圆锥底面的平面截圆锥得到. (4)球可以由半圆或圆绕其直径旋转得到. 3.空间几何体的三视图空间几何体的三视图是用正投影得到,这种投影下与投影面平行的平面图形留下的影子与平面图形的形状和大小是完全相同的,三视图包括主视图、左视图、俯视图. 4.空间几何体的直观图(1)在已知图形中建立直角坐标系xOy .画直观图时,它们分别对应x ′轴和y ′轴,两轴交于点O ′,使∠x ′O ′y ′=45°,它们确定的平面表示水平平面;(2)已知图形中平行于x 轴或y 轴的线段,在直观图中分别画成平行于x ′轴和y ′轴的线段;(3)已知图形中平行于x 轴的线段,在直观图中保持原长度不变;平行于y 轴的线段,长度为原来的12.[难点正本 疑点清源]1.正棱柱:侧棱垂直于底面的棱柱叫作直棱柱,底面是正多边形的直棱柱叫作正棱柱.反之,正棱柱的底面是正多边形,侧棱垂直于底面,侧面是矩形.2.正棱锥:底面是正多边形,顶点在底面的射影是底面正多边形的中心的棱锥叫作正棱锥.特别地,各棱均相等的正三棱锥叫正四面体.反过来,正棱锥的底面是正多边形,且顶点在底面的射影是底面正多边形的中心.3.空间几何体的数量关系也体现在三视图中,主视图和左视图的“高平齐”,主视图和俯视图的“长对正”,左视图和俯视图的“宽相等”.其中,主视图、左视图的高就是空间几何体的高,主视图、俯视图中的长就是空间几何体的最大长度,左视图、俯视图中的宽就是空间几何体的最大宽度.要尽量按照这个规则画空间几何体的三视图.1.利用斜二测画法得到的以下结论,正确的是__________.(写出所有正确的序号)①三角形的直观图是三角形;②平行四边形的直观图是平行四边形;③正方形的直观图是正方形;④圆的直观图是椭圆;⑤菱形的直观图是菱形.2.一个几何体的主视图为一个三角形,则这个几何体可能是下列几何体中的________(填入所有可能的几何体前的编号).①三棱锥;②四棱锥;③三棱柱;④四棱柱;⑤圆锥;⑥圆柱.3.用任意一个平面截一个几何体,各个截面都是圆面,则这个几何体一定是() A.圆柱B.圆锥C.球体D.圆柱、圆锥、球体的组合体4.(2012·湖南)某几何体的主视图和左视图均如图所示,则该几何体的俯视图不可能...是()5.如图,已知三棱锥的底面是直角三角形,直角边边长分别为3和4,过直角顶点的侧棱长为4,且垂直于底面,该三棱锥的主视图是()题型一 空间几何体的结构特征 例1 设有以下四个命题:①底面是平行四边形的四棱柱是平行六面体; ②底面是矩形的平行六面体是长方体;③直四棱柱是直平行六面体; ④棱台的相对侧棱延长后必交于一点. 其中真命题的序号是________.以下命题:①以直角三角形的一边为轴旋转一周所得的旋转体是圆锥; ②以直角梯形的一腰为轴旋转一周所得的旋转体是圆台; ③圆柱、圆锥、圆台的底面都是圆;④一个平面截圆锥,得到一个圆锥和一个圆台. 其中正确命题的个数为( ) A .0 B .1 C .2 D .3 题型二 几何体的三视图例2 如图,某几何体的主视图与左视图都是边长为1的正方形,且体积为12,则该几何体的俯视图可以是( )一个长方体去掉一个小长方体,所得几何体的主视图与左视图分别如图所示,则该几何体的俯视图为( )题型三 空间几何体的直观图例3 已知△ABC 的直观图A ′B ′C ′是边长为a 的正三角形,求原△ABC 的面积.正三角形AOB的边长为a,建立如图所示的直角坐标系xOy,则它的直观图的面积是________.三视图识图不准确致误典例:(5分)一个空间几何体的三视图,如图所示,则这个空间几何体的表面积是________.方法与技巧1.棱柱、棱锥要掌握各部分的结构特征,计算问题往往转化到一个三角形中进行解决.2.旋转体要抓住“旋转”特点,弄清底面、侧面及展开图形状.3.三视图画法:(1)实虚线的画法:分界线和可见轮廓线用实线,看不见的轮廓线用虚线;(2)理解“长对正、宽平齐、高相等”.4.直观图画法:平行性、长度两个要素.失误与防范1.台体可以看成是由锥体截得的,但一定强调截面与底面平行.2.注意空间几何体的不同放置对三视图的影响.3.能够由空间几何体的三视图得到它的直观图;也能够由空间几何体的直观图得到它的三视图,提升空间想象能力.A 组 专项基础训练 (时间:35分钟,满分:57分)一、选择题(每小题5分,共20分)1.给出四个命题:①各侧面都是全等四边形的棱柱一定是正棱柱;②对角面是全等矩形的六面体一定是长方体;③有两侧面垂直于底面的棱柱一定是直棱柱;④长方体一定是正四棱柱. 其中正确的命题个数是( )A .0B .1C .2D .32.(2012·福建)一个几何体的三视图形状都相同、大小均相等,那么这个几何体不可以是( )A .球B .三棱锥C .正方体D .圆柱 3.(2011·课标全国)在一个几何体的三视图中,主视图和俯视图如图所示,则相应的左视图可以为( )4.如图是一个物体的三视图,则此三视图所描述物体的直观图是( )二、填空题(每小题5分,共15分)5.一个三角形在其直观图中对应一个边长为1的正三角形,原三角形的面积为________.答案 626.如图所示,E 、F 分别为正方体ABCD —A1B 1C 1D 1的面ADD 1A 1、面 BCC 1B 1的中心,则四边形BFD 1E 在该正方体的面DCC 1D 1上的投影是 ________.(填序号)7.图中的三个直角三角形是一个体积为20 cm3的几何体的三视图,则h=________cm.三、解答题(共22分)8.(10分)一个几何体的三视图及其相关数据如图所示,求这个几何体的表面积.9.(12分)已知一个正三棱台的两底面边长分别为30 cm和20 cm,且其侧面积等于两底面面积之和,求棱台的高.B组专项能力提升(时间:25分钟,满分:43分)一、选择题(每小题5分,共15分)1.(2011·山东)右图是长和宽分别相等的两个矩形,给定下列三个命题:①存在三棱柱,其主视图、俯视图如右图;②存在四棱柱,其主视图、俯视图如右图;③存在圆柱,其主视图、俯视图如右图.其中真命题的个数是()A.3 B.2C.1 D.02.一个正方体截去两个角后所得几何体的主视图、左视图如图所示,则其俯视图为()3.在棱长为1的正方体ABCD—A1B1C1D1中,过对角线BD1的一个平面交AA1于E,交CC1于F,得四边形BFD1E,给出下列结论:①四边形BFD1E有可能为梯形;②四边形BFD1E有可能为菱形;③四边形BFD1E在底面ABCD内的投影一定是正方形;④四边形BFD1E有可能垂直于平面BB1D1D;⑤四边形BFD1E面积的最小值为6 2.其中正确的是() A.①②③④B.②③④⑤C.①③④⑤D.①②④⑤二、填空题(每小题5分,共15分)4.在直观图(如图所示)中,四边形O′A′B′C′为菱形且边长为2 cm,则在xOy坐标系中,四边形ABCO为________,面积为________ cm2.5.用半径为r的半圆形铁皮卷成一个圆锥筒,那么这个圆锥筒的高是________.6.如图,点O为正方体ABCD—A′B′C′D′的中心,点E为面B′BCC′的中心,点F为B′C′的中点,则空间四边形D′OEF在该正方体的各个面上的投影可能是________(填出所有可能的序号).三、解答题7.(13分)已知正三棱锥V—ABC的主视图、左视图和俯视图如图所示.(1)画出该三棱锥的直观图;(2)求出左视图的面积.。
高中数学复习:空间几何体及其三视图、直观图
教材研读 栏目索引
答案 B 该几何体是组合体,上面的几何体是一个五面体,下面是一个 长方体,且五面体的一个面即为长方体的一个面,五面体最上面的棱的 两端点在底面的射影距左右两边距离相等,因此选B.
6.利用斜二测画法得到的
①三角形的直观图一定是三角形;
②正方形的直观图一定是菱形;
③等腰梯形的直观图可以是平行四边形;
4
教材研读 栏目索引
1.判断正误(正确的打“√”,错误的打“✕”) (1)有两个面平行,其余各面都是平行四边形的几何体是棱柱. ( ✕ ) (2)有一个面是多边形,其余各面都是三角形的几何体是棱锥. ( ✕ ) (3)夹在两个平行的平面之间,其余的面都是梯形,这样的几何体一定是 棱台. ( ✕ )
A.棱台 B.四棱柱 答案 C
C.五棱柱
D.简单组合体
教材研读 栏目索引
3.(教材习题改编)如图所示,在三棱台A'B'C'-ABC中,沿A'BC截去三棱锥 A'-ABC,则剩余的部分是 ( B )
A.三棱锥 B.四棱锥 C.三棱柱 D.组合体
答案 B 如图所示,
教材研读 栏目索引
在三棱台A'B'C'-ABC中,沿A'BC截去三棱锥A'-ABC,剩余部分是四棱锥A' -BCC'B'.
多面体 结构特征
棱柱
棱锥 棱台
有两个面① 互相平行 ,其余各面都是四边形且每相邻的两个四边形的公共边都 互相平行 有一个面是多边形,而其余各面都是有一个② 公共顶点 的三角形 棱锥被③ 平行于 底面的平面所截,截面和底面之间的部分叫做棱台
(2)旋转体的形成
几何体 旋转图形
知识讲解-空间几何体结构及其三视图(答案)
空间几何体结构及其三视图【学习目标】(1)认识柱、锥、台、球及其简单组合体的结构特征,并能运用这些特征描述现实生活中简单物体的结构.(2)能画出简单空间图形(长方体、球、圆柱、圆锥、棱柱等的简易组合)的三视图,能识别上述三视图表示的立体模型,会用材料(如纸板)制作模型,并会用斜二测法画出它们的直观图.(3)通过观察用平行投影与中心投影这两种方法画出的视图与直观图,了解空间图形的不同表示形式.(4)了解球、棱柱、棱锥、台的表面积和体积的计算公式.【知识网络】【要点梳理】要点一.空间几何体的结构及其三视图和直观图1.多面体的结构特征(1)棱柱(以三棱柱为例)如图:平面ABC与平面A1B1C1间的关系是平行,ΔABC与ΔA1B1C1的关系是全等.各侧棱之间的关系是:A1A∥B1B∥C1C,且A1A=B1B=C1C.(2)棱锥(以四棱锥为例)如图:一个面是四边形,四个侧面是有一个公共顶点的三角形.(3)棱台棱台可以由棱锥截得,其方法是用平行于棱锥底面的平面截棱锥,截面和底面之间的部分为棱台.旋转体都可以由平面图形旋转得到,画出旋转出下列几何体的平面图形及旋转轴.要点二.空间几何体的三视图和直观图1.空间几何体的三视图空间几何体的三视图是用正投影得到,在这种投影下,与投影面平行的平面图形留下的影子与平面图形的开关和大小是完全相同的,三视图包括正视图、侧视图、俯视图.2.空间几何体的直观图空间几何体的直观图常用斜二测画法来画,其规则是:(1)原图形中x轴.y轴.z轴两两垂直,直观图中,x’轴.y’轴的夹角为45o(或135o),z’轴与x’轴和y’轴所在平面垂直;(2)原图形中平行于坐标轴的线段,直观图中仍平行、平行于x轴和z轴的线段长度在直观图不变,平行于y 轴的线段长度在直观图中减半.3.平行投影与中心投影平行投影的投影线互相平行,而中心投影的投影线相交于一点.要点诠释:空间几何体的三视图和直观图在观察角度和投影效果上的区别是:(1)观察角度:三视图是从三个不同位置观察几何体而画出的图形;直观图是从某一点观察几何体而画出的图形;(2)投影效果:三视图是正投影下的平面图形,直观图是在平行投影下画出的空间图形.要点三.空间几何体的表面积和体积2.几何体的体积公式(1)设棱(圆)柱的底面积为S,高为h,则体积V=Sh;(2)设棱(圆)锥的底面积为S,高为h,则体积V=13 Sh;(3)设棱(圆)台的上.下底面积分别为S',S,高为h,则体积V=13('SS)h;(4)设球半径为R,则球的体积V=43π3R.要点诠释:1.对于求一些不规则几何体的体积常用割补的方法,转化成已知体积公式的几何体进行解决.2.重点掌握以三视图为命题背景,研究空间几何体的结构特征的题型.3.要熟悉一些典型的几何体模型,如三棱柱、长(正)方体、三棱锥等几何体的三视图.【典型例题】类型一.空间几何体的结构特征例1.若沿△ABC三条边的中位线折起能拼成一个三棱锥,则△ABC()A.一定是等边三角形B.一定是锐角三角形C.可以是直角三角形D.可以是钝角三角形【思路点拨】在三棱锥的展开图中:过底面任意一个顶点的三个角,应满足∠1+∠2>∠3,其中∠3为底面三角形的内角,进而逐一分析△ABC为不同形状时沿△ABC三条边的中位线能否拼成一个三棱锥,最后结合讨论结果,可得答案.【答案】B【解析】在三棱锥的展开图中:过底面任意一个顶点的三个角,应满足∠1+∠2>∠3,当△ABC为锐角三角形时,三个顶点处均满足此条件,故能拼成一个三棱锥,当△ABC为为直角三角形时,在斜边中点E处不满足条件,故不能拼成一个三棱锥,同理当△ABC为钝角三角形时,在钝角所对边中点处不满足条件,故不能拼成一个三棱锥,综上可得:△ABC一定是锐角三角形,故选B.【总结升华】本题考查的知识点是棱锥的结构特征,三角形形状的判断,其中正确理解:三棱锥的展开图中,过底面任意一个顶点的三个角,应满足∠1+∠2>∠3,其中∠3为底面三角形的内角,是解答的关键.举一反三:【变式】如图是长方体被一平面所截得到的几何体,四边形EFGH为截面,长方形ABCD为底面,则四边形EFGH 的形状为()A.梯形B.平行四边形C.可能是梯形也可能是平行四边形D.不确定【思路点拨】根据平面ABFE∥平面DCGH和面面平行的限制定理得EF∥GH,再由FG∥EH得四边形EFGH为平行四边形【答案】B【解析】∵平面ABFE∥平面DCGH,且平面EFGH分别截平面ABFE与平面DCGH得直线EF与GH,∴EF∥GH.同理,FG∥EH,∴四边形EFGH为平行四边形.故答案为B例2.如图所示的几何体,关于其结构特征,下列说法不正确的是()A.该几何体是由两个同底的四棱锥组成的几何体B.该几何体有12条棱、6个顶点C.该几何体有8个面,并且各面均为三角形D.该几何体有9个面,其中一个面是四边形,其余均为三角形【思路点拨】根据几何体的直观图,得出该几何体的结构特征,由此判断选项A、B、C正确,选项D错误.【答案】D【解析】根据几何体的直观图,得该几何体是由两个同底的四棱锥组成的几何体,且有棱MA、MB、MC、MD、AB、BC、CD、DA、NA、NB、NC和ND,共12条;顶点是M、A、B、C、D和N共6个;且有面MAB、面MBC、面MCD、面MDA、面NAB、面NBC、面NCD和面NDA共8个,且每个面都是三角形.所以选项A、B、C正确,选项D错误.故选D.【总结升华】本题考查了利用空间几何体的直观图判断几何体结构特征的应用问题.举一反三:【变式】用一个平面去截正面体,使它成为形状,大小都相同的两个几何体,则这样的平面的个数有()A.6个B.7个C.10个D.无数个【思路点拨】根据几何体的性质判断正四面体是中心对称几何体,利用中心对称几何体的性质判断即可.【答案】D【解析】∵正四面体是中心对称图形,∴平面过正四面体的中心,则分成为形状,大小都相同的两个几何体,可判断这样的平面有无数个,故选D.类型二.空间几何体的三视图例3.在一个几何体的三视图中,正视图和俯视图如图所示,则相应的侧视图可以为().【思路点拨】由正视图和俯视图想到三棱锥和圆锥.【解析】由几何体的正视图和俯视图可知,该几何体应为一个半圆锥和一个有一侧面(与半圆锥的轴截面为同一三角形)垂直于底面的三棱锥的组合体,故其侧视图应为D.【总结升华】(1)空间几何体的三视图是该几何体在三个两两垂直的平面上的正投影,并不是从三个方向看到的该几何体的侧面表示的图形.(2)在画三视图时,重叠的线只画一条,能看见的轮廓线和棱用实线表示,挡住的线要画成虚线.举一反三:【变式】若某几何体的三视图如图所示,则此几何体的直观图是()【答案】A【解析】A中,的三视图:,满足条件;B中,的侧视图为:,与已知中三视图不符,不满足条件;C中,的侧视图和俯图为:,与已知中三视图不符,不满足条件;D中,的三视图为:,与已知中三视图不符,不满足条件;故选A例4.将一个长方体沿相邻三个面的对角线截去一个棱锥,得到的几何体的正视图与俯视图如图所示,则该几何体的侧(左)视图为()【思路点拨】根据主视图和俯视图作出几何体的直观图,找出所切棱锥的位置,得出答案.【解析】由主视图和俯视图可知切去的棱锥为1D AD C -,棱1CD 在左侧面的投影为1BA ,故选B .举一反三:【变式1】某几何体的三视图如图所示,其中俯视图是半圆,则该几何体的表面积为( )A.332π+ B .3π+ C .32π D .532π+【思路点拨】三视图复原可知几何体是圆锥的一半,根据三视图数据,求出几何体的表面积. 【答案】A【解析】由题目所给三视图可得,该几何体为圆锥的一半,那么该几何体的表面积为该圆锥表面积的一半与轴截面面积的和.又该半圆锥的侧面展开图为扇形,所以侧面积为1122ππ⨯⨯⨯=,底面积为12π,观察三视图可知,轴截面为边长为2的正三角形,所以轴截面面积为1222⨯⨯=32πA .【变式2】一个四棱锥的底面为正方形,其三视图如图所示,则这个四棱锥的体积是( )A .1B .2C .3D .4【思路点拨】由三视图及题设条件知,此几何体为一个四棱锥,其较长的侧棱长已知,底面是一个正方形,对角线长度已知,故先求出底面积,再求出此四棱锥的高,由体积公式求解其体积即可. 【答案】B【解析】由题设及图知,此几何体为一个四棱锥,其底面为一个对角线长为2的正方形,故其底面积为141122⨯⨯⨯=由三视图知其中一个侧棱为棱锥的高,其相对的侧棱与高及底面正方形的对角线组成一个直角三角形23=此棱锥的体积为12323⨯⨯=故选B【总结升华】本题考点是由三视图求几何体的面积、体积,考查对三视图的理解与应用,主要考查三视图与实物图之间的关系,用三视图中的数据还原出实物图的数据,再根据相关的公式求表面积与体积,本题求的是四棱锥的体积,其公式为13×底面积×高.三视图的投影规则是:“主视、俯视长对正;主视、左视高平齐,左视、俯视宽相等”三视图是新课标的新增内容,在以后的高考中有加强的可能.类型三.几何体的直观图例5.如图所示,正方形OABC的边长为1,它是水平放置的一个平面图形的直观图,则原图形的周长是()A.6 B.8C.2+3 2 D.2+23【思路点拨】由斜二测画法的规则知在已知图形平行于x轴的线段,在直观图中画成平行于x'轴,长度保持不变,已知图形平行于y轴的线段,在直观图中画成平行于y'轴,且长度为原来一半.【答案】B【解析】根据水平放置平面图形的直观图的画法,可得原图形是一个平行四边形,如图,对角线OB=22,OA=1,∴AB=3,所以周长为8.故选B【总结升华】本题考查的知识点是平面图形的直观图,其中斜二测画法的规则,能够帮助我们快速的在直观图面积和原图面积之间进行转化.举一反三:【变式】对于一个底边在x轴上的正三角形ABC,边长AB=2,采用斜二测画法做出其直观图,则其直观图的面积是________.【思路点拨】如图所示,A'B'=AB=2,13''22O C OC==,作C'D'⊥x',可得26''''24C D O C==.因此其直观图的面积1'''' 2C D A B=⋅⋅.【答案】6 4【解析】如图所示,A 'B '=AB =2,13''22OC OC ==,作C 'D '⊥x ',则26''''24C D O C ==. ∴其直观图的面积1166''''222C D A B =⋅⋅=⨯⨯=.故答案为:6.类型四.空间几何体的表面积与体积例6.有一根长为3πcm ,底面半径为1cm 的圆柱形铁管,用一段铁丝在铁管上缠绕2圈,并使铁丝的两个端点落在圆柱的同一母线的两端,则铁丝的最短长度为多少?【思路点拨】把圆柱沿这条母线展开,将问题转化为平面上两点间的最短距离. 【解析】把圆柱侧面及缠绕其上的铁丝展开,在平面上得到矩形ABCD (如图),由题意知BC =3πcm ,AB =4πcm ,点A 与点C 分别是铁丝的起.止位置,故线段AC 的长度即为铁丝的最短长度.AC =22AB BC +5πcm ,故铁丝的最短长度为5πcm .【总结升华】把一个平面图形折叠成一个几何体,再研究其性质,是考查空间想象能力的常用方法,所以几何体的展开与折叠是高考的一个热点. 举一反三:【变式】如图是某个圆锥的三视图,请根据正视图中所标尺寸,则俯视图中圆的面积为__________,圆锥母线长为______.【答案】圆半径r =10,面积S =100π,圆锥母线2230101010l =+=.例7.某几何体的三视图如图所示(单位:cm ),则该几何体的表面积是________cm 2,体积是________cm 3.【思路点拨】由三视图可得,原几何体为由四个棱长为2 cm 的小正方体所构成的,代入体积公式和面积公式计算即可.【答案】72,32【解析】由三视图可得,原几何体为由四个棱长为2 cm 的小正方体所构成的,则其表面积为22×(24-6)=72 cm 2,其体积为4×23=32,故答案为:72,32 举一反三:【变式】如图是某简单组合体的三视图,则该组合体的体积为( )A .363(2)π+B .363(2)π+C .1083πD .108(32)π+【思路点拨】几何体是一个简单的空间组合体,前面是半个圆锥,圆锥的底面是半径为6的圆,母线长是12,后面是一个三棱锥,三棱锥的底边长是12、高为6的等腰三角形,三棱锥的高是12,求出两个几何体的体积,求和得到结果. 【答案】B【解析】由三视图知,几何体是一个简单的空间组合体,前面是半个圆锥,圆锥的底面是半径为6的圆,母线长是12,∴根据勾股定理知圆锥的高是63,∴半个圆锥的体积是21166336323ππ⨯⨯⨯⨯=, 后面是一个三棱锥,三棱锥的底是边长12、高为6的等腰三角形,三棱锥的高是63,∴三棱锥的体积是111266372332⨯⨯⨯⨯=,∴几何体的体积是363723363(2)ππ+=+, 故选B .巩固练习1.1.1 柱、锥、台、球的结构特征1.下列命题中正确的是( )A.以直角三角形的一直角边为轴旋转所得的旋转体是圆锥B.以直角梯形的一腰为轴旋转所得的旋转体是圆台C.圆柱、圆锥、圆台都有两个底面D.圆锥的侧面展开图为扇形,这个扇形所在圆的半径等于圆锥底面圆的半径2.长方体AC 1的长、宽、高分别为3、2、1,从A 到C 1沿长方体的表面的最短距离为( ) A.31+ B.102+ C.23 D.323.下面几何体中,过轴的截面一定是圆面的是( )A.圆柱B.圆锥C.球D.圆台4.一个无盖的正方体盒子展开后的平面图,如图14所示,A 、B 、C 是展开图上的三点,则在正方体盒子中∠ABC=____________.图145.有一粒正方体的骰子每一个面有一个英文字母,如图16所示.从3种不同角度看同一粒骰子的情况,请问H反面的字母是___________.图166.圆台的一个底面周长是另一个底面周长的3倍,轴截面的面积等于392 cm2,母线与轴的夹角是45°,求这个圆台的高、母线长和底面半径.1.1.2 简单组合体的结构特征1 如图3所示,一个圆环绕着同一个平面内过圆心的直线l旋转180°,想象并说出它形成的几何体的结构特征.图3.2 已知如图5所示,梯形ABCD中,AD∥BC,且AD<BC,当梯形ABCD绕BC所在直线旋转一周时,其他各边旋转围成的一个几何体,试描述该几何体的结构特征.3.若干个棱长为2、3、5的长方体,依相同方向拼成棱长为90的正方体,则正方体的一条对角线贯穿的小长方体的个数是()A.64B.66C.68D.701.2.3 空间几何体的直观图1. 关于“斜二测画法”,下列说法不正确的是()A.原图形中平行于x轴的线段,其对应线段平行于x′轴,长度不变1B.原图形中平行于y轴的线段,其对应线段平行于y′轴,长度变为原来的2C.在画与直角坐标系xOy对应的x′O′y′时,∠x′O′y′必须是45°D.在画直观图时,由于选轴的不同,所得的直观图可能不同2.已知一个正方形的直观图是一个平行四边形,其中有一边长为4,则此正方形的面积是( )A.16B.64C.16或64D.都不对3.一个三角形用斜二测画法画出来的直观图是边长为2的正三角形,则原三角形的面积是( ) A.62 B.64 C.3 D.都不对4.一个水平放置的平面图形的直观图是一个底角为45°,腰和上底长均为1的等腰梯形,则该平面图形的面积等于( ) A.2221+ B.221+ C.21+ D.22+ 1.1.1 柱、锥、台、球的结构特征1.下列几个命题中,①两个面平行且相似,其余各面都是梯形的多面体是棱台;②有两个面互相平行,其余四个面都是等腰梯形的六面体是棱台;③各侧面都是正方形的四棱柱一定是正方体;④分别以矩形两条不等的边所在直线为旋转轴,将矩形旋转,所得到的两个圆柱是两个不同的圆柱. 其中正确的有__________个.( )A.1B.2C.3D.4分析:①中两个底面平行且相似,其余各面都是梯形,并不能保证侧棱会交于一点,所以①是错误的;②中两个底面互相平行,其余四个面都是等腰梯形,也有可能两底面根本就不相似,所以②不正确;③中底面不一定是正方形,所以③不正确;很明显④是正确的.答案:A1.下列命题中正确的是( )A.以直角三角形的一直角边为轴旋转所得的旋转体是圆锥B.以直角梯形的一腰为轴旋转所得的旋转体是圆台C.圆柱、圆锥、圆台都有两个底面D.圆锥的侧面展开图为扇形,这个扇形所在圆的半径等于圆锥底面圆的半径分析:以直角梯形垂直于底的腰为轴,旋转所得的旋转体才是圆台,所以B 不正确;圆锥仅有一个底面,所以C 不正确;圆锥的侧面展开图为扇形,这个扇形所在圆的半径等于圆锥的母线长,所以D 不正确.很明显A 正确.答案:A2 长方体AC 1的长、宽、高分别为3、2、1,从A 到C 1沿长方体的表面的最短距离为( )A.31+B.102+C.23D.32答案:C3.下面几何体中,过轴的截面一定是圆面的是( )A.圆柱B.圆锥C.球D.圆台分析:圆柱的轴截面是矩形,圆锥的轴截面是等腰三角形,圆台的轴截面是等腰梯形,球的轴截面是圆面,所以A 、B 、D 均不正确.答案:C4.(2007山东菏泽二模,文13)一个无盖的正方体盒子展开后的平面图,如图14所示,A 、B 、C 是展开图上的三点,则在正方体盒子中∠ABC=____________.图14分析:如图15所示,折成正方体,很明显点A 、B 、C 是上底面正方形的三个顶点,则∠ABC=90°.图15答案:90°5.有一粒正方体的骰子每一个面有一个英文字母,如图16所示.从3种不同角度看同一粒骰子的情况,请问H 反面的字母是___________.图16分析:正方体的骰子共有6个面,每个面都有一个字母,从每一个图中都看到有公共顶点的三个面,与标有S 的面相邻的面共有四个,由这三个图,知这四个面分别标有字母H 、E 、O 、p 、d ,因此只能是标有“p”与“d”的面是同一个面,p 与d 是一个字母;翻转图②,使S 面调整到正前面,使p 转成d ,则O 为正下面,所以H 的反面是O. 答案:O6.圆台的一个底面周长是另一个底面周长的3倍,轴截面的面积等于392 cm 2,母线与轴的夹角是45°,求这个圆台的高、母线长和底面半径.分析:这类题目应该选取轴截面研究几何关系.解:圆台的轴截面如图17,图17设圆台上、下底面半径分别为x cm 和3x cm ,延长AA 1交OO 1的延长线于S.在Rt △SOA 中,∠ASO=45°,则∠SAO=45°.所以SO=AO=3x.所以OO 1=2x. 又21(6x+2x )·2x=392,解得x=7,所以圆台的高OO 1=14 cm ,母线长l=2OO 1=214cm ,而底面半径分别为7 cm 和21 cm,即圆台的高14 cm ,母线长214cm ,底面半径分别为7 cm 和21 cm.1.1.2 简单组合体的结构特征1 如图3所示,一个圆环绕着同一个平面内过圆心的直线l 旋转180°,想象并说出它形成的几何体的结构特征.图3答案:一个大球内部挖去一个同球心且半径较小的球.2 已知如图5所示,梯形ABCD 中,AD ∥BC ,且AD <BC ,当梯形ABCD 绕BC 所在直线旋转一周时,其他各边旋转围成的一个几何体,试描述该几何体的结构特征.图5 图6 解:如图6所示,旋转所得的几何体是两个圆锥和一个圆柱拼接成的组合体.3.若干个棱长为2、3、5的长方体,依相同方向拼成棱长为90的正方体,则正方体的一条对角线贯穿的小长方体的个数是( )A.64B.66C.68D.70分析:由2、3、5的最小公倍数为30,由2、3、5组成的棱长为30的正方体的一条对角线穿过的长方体为整数个,所以由2、3、5组成棱长为90的正方体的一条对角线穿过的小长方体的个数应为3的倍数.答案:B1.2.3 空间几何体的直观图1.画水平放置的等边三角形的直观图.2.如图7所示,梯形ABCD 中,AB ∥CD ,AB=4 cm ,CD=2 cm ,∠DAB=30°,AD=3 cm ,试画出它的直观图.图7解:步骤是:(1)如图8所示,在梯形ABCD 中,以边AB 所在的直线为x 轴,点A 为原点,建立平面直角坐标系xOy.如图9所示,画出对应的x′轴,y′轴,使∠x′A′y′=45°.(2)如图8所示,过D 点作DE ⊥x 轴,垂足为E.在x′轴上取A′B′=AB=4 cm ,A′E′=AE=323cm ≈2.598 cm ;过E′作E′D′∥y′轴,使E′D′=ED 21,再过点D′作D′C′∥x′轴,且使D′C′=CD=2 cm.图8 图9 图10(3)连接A′D′、B′C′、C′D′,并擦去x′轴与y′轴及其他一些辅助线,如图10所示,则四边形A′B′C′D′就是所求作的直观图.3.关于“斜二测画法”,下列说法不正确的是( )A.原图形中平行于x 轴的线段,其对应线段平行于x′轴,长度不变B.原图形中平行于y 轴的线段,其对应线段平行于y′轴,长度变为原来的21 C.在画与直角坐标系xOy 对应的x′O′y′时,∠x′O′y′必须是45°D.在画直观图时,由于选轴的不同,所得的直观图可能不同分析:在画与直角坐标系xOy 对应的x′O′y′时,∠x′O′y′也可以是135°,所以C 不正确. 答案:C4.已知一个正方形的直观图是一个平行四边形,其中有一边长为4,则此正方形的面积是( )A.16B.64C.16或64D.都不对分析:根据直观图的画法,平行于x 轴的线段长度不变,平行于y 轴的线段变为原来的一半,于是长为4的边如果平行于x 轴,则正方形边长为4,面积为16,边长为4的边如果平行于y 轴,则正方形边长为8,面积是64. 答案:C5.一个三角形用斜二测画法画出来的直观图是边长为2的正三角形,则原三角形的面积是( ) A.62 B.64 C.3 D.都不对分析:根据斜二测画法的规则,正三角形的边长是原三角形的底边长,原三角形的高是正三角形高的22倍,而正三角形的高是3,所以原三角形的高为62,于是其面积为21×2×62=62. 答案:A6.一个水平放置的平面图形的直观图是一个底角为45°,腰和上底长均为1的等腰梯形,则该平面图形的面积等于( ) A.2221+ B.221+ C.21+ D.22+ 分析:平面图形是上底长为1,下底长为21+,高为2的直角梯形.计算得面积为22+. 答案:D。
三视图和直观图(含答案)
空间几何体的三视图和直观图一、探究 探究一:直观图1.如图,这是长方体、圆柱等四个几何体的直观图。
把空间图形(平面图形和立体图形的统称)画在平面内,使得既富有立体感,又能表达出主要部分的位置关系和度量关系的图形叫做直观图.空间几何体的直观图通常是在 投影下把空间图形展现在平面上,用平面的图形表示空间几何体。
探究二:斜二测画法 1.斜二测画法的方法步骤:①在已知图形中建立直角坐标系xOy ,画直观图时,把x 轴、y 轴画成对应的x '轴和y '轴,两轴交于点O ',使 ,它们确定的平面表示水平面.②已知图形中平行于x 轴或y轴的线段,在直观图中分别画成 于x '轴和y '轴的线段.③已知图形中平行于x 轴的线段,在直观图中 ,平行于y 轴的线段, . 2.空间几何体直观图的画法:立体图形与平面图形相比多了一个z 轴,90xoz ∠=o 。
其直观图中对应于z 轴的是z '轴,''90x oz ∠=o,平行于z 轴的线段,在直观图中画成 于z '轴,长度 . 二、自我检测1.下列结论正确的有 ①相等的线段在直观图中仍然相等。
②若两条线段平行,则在直观图中对应的两条线段仍然平行。
③矩形的直观图是矩形。
④圆的直观图一定是圆。
⑤角的水平放置的直观图一定是角。
2.直角坐标系中一个平面图形上的一条线段AB 的实际长度为4cm ,若AB//x 轴,则画出直观图后对应的线段=''B A ,若y AB //轴,则画出直观图后对应的线段B A ''= 。
3.根据斜二测画法的规则画直观图时,把Ox 、Oy 、Oz 轴画成对应的x O ''、y O ''、z O '',作y O x '''∠与z O x '''∠的度数分别为( )A .οο90,90 B .οο90,45 C .οο90,135D .ο45或οο90,1354.如图,A B C '''△是ABC △的直观图,那么ABC △是( ) A .等腰三角形 B .直角三角形C .等腰直角三角形D .锐角三角形 三、应用示例例1.用斜二测画法画水平放置的正六边形、任意三角形的直观图。
空间几何体的结构特征及三视图和直观图 经典课件(最新)
图 12
高中数学课件
【反思·升华】 三视图的正(主)视图、侧(左)视图、俯视图分别是从几何体的正前方、 正左方、正上方观察几何体画出的轮廓线,主视图反映了物体的长度和高度;俯视图反 映了物体的长度和宽度;左视图反映了物体的宽度和高度,由此得到:主俯长对正,主 左高平齐,俯左宽相等.
(1)由几何体的直观图画三视图需注意的事项:①注意正视图、侧视图和俯视图对应 的观察方向;②注意能看到的线用实线画,被挡住的线用虚线画;③画出的三视图要符 合“长对正、高平齐、宽相等”的基本特征;
高中数学课件
空间几何体的结构特征及三视图和直观图 课件
高中数学课件
1.空间几何体
【最新考纲】
(1)认识柱、锥、台、球及其简单组合体的结构特征,并能运用这些特征描述现实生
活中简单物体的结构.
Hale Waihona Puke (2)能画出简单空间图形(长方体、球、圆柱、圆锥、棱柱等的简易组合)的三视图,
能识别上述三视图所表示的立体模型,会用斜二侧画法画出它们的直观图.
高中数学课件
(3)旋转体的展开图 ①圆柱的侧面展开图是矩形,矩形的长(或宽)是底面圆周长,宽(或长)是圆柱的母线 长; ②圆锥的侧面展开图是扇形,扇形的半径长是圆锥的母线长,弧长是圆锥的底面周 长; ③圆台的侧面展开图是扇环,扇环的上、下弧长分别为圆台的上、下底面周长.
注:圆锥和圆台的侧面积公式 S 圆锥侧=21cl 和 S 圆台侧=21(c′+c)l 与三角形和梯形的面积 公式在形式上相同,可将二者联系起来记忆.
答案:D
高中数学课件
高频考点 2 空间几何体的三视图 【例 2.1】 (2018 年高考·课标全国卷Ⅲ)中国古建筑借助榫卯将木构件连接起来,构 件的凸出部分叫榫头,凹进部分叫卯眼,图 8 中木构件右边的小长方体是榫头.若如图 摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图 可以是( )
1.2空间几何体的三视图和直观图
1 V ( S S S S )h 3
柱体、锥体、台体的体积公式之间有什么关系?
上底扩大
上底缩小
V Sh
S 0
S S V 1 Sh 1 V ( S S S S )h 3 3
S为底面面积, h为锥体高
S , S 分别为上、下
底面面积,h 为台体 高
柱体(棱柱、圆柱)的体积公式:
V Sh
(其中S为底面面积,h为柱体的高)
锥体体积
h
椎体(圆锥、棱锥)的体积公式:
1 V Sh 3
(其中S为底面面积,h为高)
由此可知, 棱柱与圆柱的体积公式类似,都是 底面面积乘高; 棱锥与圆锥的体积公式类似,都是 1 底面面积乘高的 . 3
台体体积
台体(棱台、圆台)的体积公式
考向二 空间几何体的三视图
【例2 】►(2012·湖南) 某几何体的正视图和侧视图均如图 所 示 , 则 该 几 何 体 的 俯 视 图 不 可 能 是 ( ).
[审题视点] 根据正视图和侧视图相同逐一判断.
正视图
侧视图
圆台
俯视图
根据三视图想象它们表示的几何体的结构特征
正视图
侧视图
正四棱台 俯视图
简单组合体的三视图
水平直观图
正方形的水平直观图
y y
0 0
x
x
1. 水平方向线段长度不变;
变化 规则
2. 竖直方向的线段向右倾斜450,长度减半;
3. 平行线段仍然平行.
水平直观图
正三角形的水平直观图
由三视图求几何体的相关量
若一个正三棱柱的三视图如图所示, 求这个三棱 柱的高和底面边长以及左视图的面积.
第7章-第1节-空间几何体的结构特征及其三视图和直观图
(2)由题目所给旳几何体旳正视图和俯视图,可知该几何体 为半圆锥和三棱锥旳组合体,如图所示.
进而可知侧视图为等腰三角形,且轮廓线为实线,故选D. 答案:D
(3)由正视图、侧视图可知,当体积最小时,底层有3个小正 方体,上面有2个,共5个;当体积最大时,底层有9个小正方 体,上面有2个,共11个.故这个几何体旳最大致积与最小体积 旳差是6.
一、空间几何体旳构造特征
名称
构造特征
(1)棱柱旳侧棱都平行且相等
全等
旳多边形,而且相平互 行
,上下底面是 .
多面体
(2)棱锥旳底面是任意多边形,侧面是有一种
公共顶点
旳三角形.
(3)棱台可由平行于底面
旳平面截棱锥得
到,其上下底面是相同 多边形.
名称
构造特征
(1)圆柱能够由矩形
绕其任一边旋转得到.
答案:A
(2)因为EH∥A1D1,A1D1∥B1C1,所以EH∥B1C1,又EH⊄平 面BCC1B1,所以EH∥平面BCC1B1,又EH⊂平面EFGH,平面 EFGH∩平面BCC1B1=FG,所以EH∥FG,故EH∥FG∥B1C1,所 以选项A,C正确;因为A1D1⊥平面ABB1A1,EH∥A1D1,所以 EH⊥平面ABB1A1,又EF⊂平面ABB1A1,故EH⊥EF,所以选项B 也正确.故选D.
【典例剖析】 (1)(2023·湖南高考)某几何体旳正视图和侧视图均
如图所示,则该几何体旳俯视图不可能是
(2)在一个几何体旳三视图中,正视图和俯视图如图所示, 则相应旳侧视图可觉得
(3)(2023·广州模拟)用若干个体积为1旳正方体搭成一种几何
体,其正视图、侧视图都是如图所示旳图形,则这个几何体旳
答案:C
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课时作业38
空间几何体的结构及其三视图和直观图
[基础达标]
一、选择题
1.下列命题中,正确的是()
A.有两个侧面是矩形的棱柱是直棱柱
B.侧面都是等腰三角形的棱锥是正棱锥
C.侧面都是矩形的四棱柱是长方体
D.底面为正多边形,且有相邻两个侧面与底面垂直的棱柱是正棱柱
解析:认识棱柱一般要从侧棱与底面的垂直与否和底面多边形的形状两方面去分析,故A,C都不够准确,B中对等腰三角形的腰是否为侧棱未作说明,故也不正确.
答案:D
2.[2019·河南郑州质量检测]一个锥体的正视图和侧视图如图所示,下面选项中,不可能是该锥体的俯视图的是()
解析:若俯视图为选项C,侧视图的宽应为俯视图中三角形的高3
2,所以俯视图不可能是选项C.
答案:C
3.[2019·东北四市联考]如图,在正方体ABCD-A1B1C1D1中,P 是线段CD的中点,则三棱锥P-A1B1A的侧视图为()
解析:
如图,画出原正方体的侧视图,显然对于三棱锥P-A1B1A,B(C)点均消失了,其余各点均在,从而其侧视图为D.
答案:D
4.
如图,矩形O′A′B′C是水平放置的一个平面图形的直观图,其中O′A′=6 cm,O′C′=2 cm,则原图形是()
A.正方形B.矩形
C.菱形D.一般的平行四边形
解析:如图,在原图形OABC中,
应有OD=2O′D′=2×22=42(cm),
CD=C′D′=2 cm,
所以OC=OD2+CD2=(42)2+22=6(cm),所以OA=OC,故四边形OABC是菱形,因此选C.
答案:C
5.如图所示是一个物体的三视图,则此三视图所描述物体的直观图是()
解析:先观察俯视图,由俯视图可知选项B和D中的一个正确,由正视图和侧视图可知选项D正确,故选D.
答案:D
6.[2019·济南模拟]我国古代数学家刘徽在学术研究中,不迷信古人,坚持实事求是.他对《九章算术》中“开立圆术”给出的公式
产生质疑,为了证实自己的猜测,他引入了一种新的几何体“牟合方盖”:以正方体相邻的两个侧面为底做两次内切圆柱切割,然后剔除外部,剩下的内核部分.如果“牟合方盖”的主视图和左视图都是圆,则其俯视图形状为()
解析:本题考查几何体的三视图.由题意得在正方体内做两次内切圆柱切割,得到的几何体的直观图如图所示,由图易得其俯视图为B,故选B.
答案:B
7.[2019·河北模拟]某几何体的三视图如图所示,记A为此几何体所有棱的长度构成的集合,则()
A.3∈A B.5∈A
C.26∈A D.43∈A
解析:由三视图可得,该几何体的直观图如图所示,其中底面是边长为4的正方形,AF⊥平面ABCD,AF∥DE,AF=2,DE=4,可求得BE的长为43,BF的长为25,EF的长为25,EC的长为42,故选D.
答案:D
8.[2019·河南百校联考]如图,网格纸上小正方形的边长为1,图中粗线画出的是某多面体的三视图,则该多面体的各条棱中,最长的棱的长度为()
A.2 3 B.3
C. 6
D. 5
解析:根据三视图,利用棱长为2的正方体分析知,该多面体是一个三棱锥,即三棱锥A1-MNP,如图所示,其中M,N,P是棱长
为2的正方体相应棱的中点,可得棱A 1M 最长,A 1M =22+22+12=3,故最长的棱的长度为3,选B.
答案:B
9.[2019·江西南昌月考]一个几何体的三视图如图所示,在该几何体的各个面中,面积最小的面的面积为( )
A .8
B .4
C .4 3
D .4 2
解析:由三视图可知该几何体的直观图如图所示,由三视图特征可知,P A ⊥平面ABC ,DB ⊥平面ABC ,AB ⊥AC ,P A =AB =AC =4,DB =2,则易知S △P AC =S △ABC =8,S △CPD =12,S 梯形
ABDP =12,S △BCD
=1
2×42×2=42,故选D.
答案:D
10.[2019·江西南昌模拟]如图,在正四棱柱ABCD-A1B1C1D1中,点P是平面A1B1C1D1内一点,则三棱锥P-BCD的正视图与侧视图的面积之比为()
A.1:1 B.2:1
C.2:3 D.3:2
解析:根据题意,三棱锥P-BCD的正视图是三角形,且底边为正四棱柱的底面边长、高为正四棱柱的高;侧视图是三角形,且底边为正四棱柱的底面边长、高为正四棱柱的高.故三棱锥P-BCD的正视图与侧视图的面积之比为1:1.
答案:A
二、填空题
11.下列说法正确的有________个.
(1)有一个面是多边形,其余各面都是三角形的几何体是棱锥.
(2)正棱锥的侧面是等边三角形.
(3)底面是等边三角形,侧面都是等腰三角形的三棱锥是正三棱锥.
解析:(1)错误.棱锥的定义是:有一个面是多边形,其余各面
都是有一个公共顶点的三角形,由这些面所围成的多面体叫做棱锥.而“其余各面都是三角形”并不等价于“其余各面都是有一个公共顶点的三角形”,故此说法是错误的.如图所示的几何体满足此说法,但它不是棱锥,理由是△ADE和△BCF无公共顶点.
(2)错误.正棱锥的侧面都是等腰三角形,不一定是等边三角形.
(3)错误.由已知条件知,此三棱锥的三个侧面未必全等,所以不一定是正三棱锥.如图所示的三棱锥中有AB=AD=BD=BC=CD.满足底面△BCD为等边三角形.三个侧面△ABD,△ABC,△ACD 都是等腰三角形,但AC长度不一定,三个侧面不一定全等.答案:0
12.[2019·山东安丘模拟]一个几何体的三视图如图所示,其中正视图是边长为2的正三角形,俯视图是正方形,那么该几何体的侧视图的面积是________.
解析:根据三视图可知该几何体是一个四棱锥,其底面是正方形,侧棱相等,所以这是一个正四棱锥.其侧视图与正视图是完全一样的
正三角形.故其面积为34×22
= 3.
答案: 3
13.如图,E ,F 分别为正方体的面ADD 1A 1,面BCC 1B 1的中心,则四边形BFD 1E 在该正方体的面上的射影可能是________.
解析:分别作出在六个面上的射影可知选②③. 答案:②③
14.[2019·洛阳高三统考]在半径为4的球面上有不同的四点A ,B ,C ,D ,若AB =AC =AD =4,则平面BCD 被球所截得图形的面积为________.
解析:因为A ,B ,C ,D 为球面上不同的四点,所以B ,C ,D 不共线,由AB =AC =AD 知A 在平面BCD 内的射影为△BCD 外接圆的圆心,记圆心为O 1.设O 为球的球心,则OB =OC =OD ,故O 在平面BCD 内的投影也为△BCD 外接圆的圆心O 1,故有OA ⊥平面BCD .又AB =AC =AD =4,所以平面BCD 垂直平分线段OA .记△BCD
外接圆的半径为r ,由勾股定理得r 2
+⎝ ⎛⎭
⎪⎫12OA 2
=42,即r 2=16-4=12.从而平面BCD 被球所截得的图形即△BCD 的外接圆,其面积为πr 2=12π.
答案:12π [能力挑战]
15.[2019·惠州调研]某三棱锥的三视图如图所示,且图中的三个三角形均为直角三角形,则xy 的最大值为( )
A .32
B .327
C .64
D .647
解析:将三视图还原为如图所示的三棱锥P -ABC ,其中底面ABC 是直角三角形,AB ⊥BC ,P A ⊥平面ABC ,BC =27,P A 2+y 2=102,(27)2+P A 2=x 2,所以xy =x
102-[x 2-(27)2]=x 128-x 2
≤x 2+(128-x 2)2=64,当且仅当x 2=128-x 2
,即x =8时取等号,因此xy 的最大值是64.选C.
答案:C
16.如图所示是水平放置三角形的直观图,点D 是△ABC 的BC 边中点,AB ,BC 分别与y ′轴、x ′轴平行,则三条线段AB ,AD ,AC 中( )
A .最长的是A
B ,最短的是AC
B .最长的是A
C ,最短的是AB
C .最长的是AB ,最短的是AD
D .最长的是AC ,最短的是AD
解析:由条件知,原平面图形中AB ⊥BC ,从而AB <AD <AC .
答案:B
17.[2019·广州毕业班测试]在棱长为2的正方体ABCD -A 1B 1C 1D 1中,M 是棱A 1D 1的中点,过C 1,B ,M 作正方体的截面,则这个截面的面积为________.
解析:本题考查正方体的性质.设AA 1的中点为N ,连接MN ,NB ,BC 1,MC 1,AD 1,则MN ∥AD 1∥BC 1,平面MNBC 1就是过正方体中C 1,B ,M 三点的截面,因为正方体的棱长为2,所以A 1M =A 1N =1,所以MN =2,同理BC 1=2 2.又MC 1=BN =22+12=5,所以梯形MNBC 1的高h =(5)2
-⎝ ⎛⎭⎪⎫22-222=322,所以所求截面的面积为S 梯形MNBC 1=12×(2+22)×322=92.
答案:92。