小学奥数圆的周长与面积
小学奥数 五年级奥数竞赛班 讲义 [第21讲]圆和扇形的周长与面积(一)
在线测试题
温馨提示:请在线作答,以便及时反馈孩子的薄弱环节!
1.一个圆的直径增加 5 米,那么该圆的周长增加(
)米。( 取 3)
A.10
B.15
C.20
D.25
2.如下图所示:一个大圆内有 3 个小圆,其直径的和等于大圆的直径。那么大圆周长与所
有小圆周长之和哪个长?(
)
B.12
C.20
D.28
4
A.相等
B.大圆周长
C.所有小圆周长之和
D.无法确定
3
3.下图中阴影部分的面积是(
)
A.0.5
B.1
C.1.5
D.2
4.如下图,一个半径为 3 厘米的半圆,以半圆的半径为边长做一个正方形,那么图中阴影
部分的面积是多少?( 取 3)(
)
A.4.5 平方厘米
B.6 平方厘米
C.6.75 平方厘米
D.9 平方厘米
圆和扇形的周长与面积(一)
圆是最美的图形 1.圆上各点到圆心的距离相等。 2.疯狂对称。
1
在一个直径为 d 米的地球仪赤道上用铁丝打一个箍,需要多长的铁丝?如果要把这个铁丝箍 向外扩张 1 米(即直径增加 2 米),需要增加多长的铁丝?地球的赤道半径约是 6370 千米, 如果我们也可以给地球的赤道上用铁丝打一个箍,再把这个铁丝箍向外扩张 1 米,需要增加 多长的铁丝?(圆周率可直接用π表示,不需要代入数值)
一个大圆内有 4 个小圆,其直径的和等于大圆的直径。 问:大圆周长与所有小圆周长之和哪个长?为什么?
如图,阴影部分的面积是多少?
如图,ABCD 是边长为 10 厘米的正方形,且 AB 是半圆的直径,则阴影部分的面积是______ 平方厘正方形 ABCD 的边长为 4 厘米,分别以 B、D 为圆心以 4 厘米为半径在正方形内画圆。 求阴影部分面积。(π取 3)
小学五年级奥数 圆和扇形的周长与面积(二)
圆和扇形的周长与面积(二)本讲主线1. 不规则图形的求解4. 其他相关扇形:2. 差不变和等积变形弓形=扇形-△弯角=正方形-扇形.r2. 圆的面积:S=πr2谷子=弓形面积×23. 扇形:在圆的基础上×360120°5 5【例2】(★★★)板块一:不规则图形的常用解法求图中阴影部分的面积。
(π取3)如图, ABCD是正方形,且 FA=AD=DE=1,求阴影部分的面积。
(π取3.14 ) 45°45°20cm1【例4】(★★★)板块二:差不变和等积变形如图,两个正方形摆放在一起,其中大正方形边长为12,那么阴影部分【例3】(★★★☆)面积是多少?(圆周率取 3.14)DE 在图中,两个四分之一圆弧的半径分别是2和4,求两个阴影部分的面积差。
(圆周率取3 )AC FB【例5】(★★★★)如图,矩形ABCD中,AB= 6厘米,BC= 4厘米,扇形ABE 半径AE =6厘米,扇形CBF 的半径CB= 4厘米,求阴影部分的面积。
(π取3)5. 圆中的直角三角形:顶点在圆上,并且经过圆心的三角形是直角三.C△ABC中,∠C=90°r B【超常大挑战】(★★★★)已知AB、AC、BC分别为3个半圆的直径. 请证明:阴影部分的面积=△ABC的面积. AB C 2知识大总结【今日讲题】1. 公式:圆=π×r2n扇形=圆×3602. 基本模型:弓形,弯角,谷子3. 不规则图形:割补、平移、旋转、对称4. 两个考点:⑴同加同减差不变⑵等积变形5. 一个模型:两个月亮换个三角A例1~超常大挑战【讲题心得】____________________________________________________________【家长评价】______________________________________________________________B C3。
六年级奥数圆
圆和组合图形 年级 班 姓名 得分一、填空题1.如图,阴影部分的面积是 .2.大圆的半径比小圆的半径长6厘米,且大圆半径是小圆半径的4倍.大圆的面积比小圆的面积大 平方厘米.3.在一个半径是4.5厘米的圆中挖去两个直径都是2厘米的圆.剩下的图形的面积是 平方厘米.(π取3.14,结果精确到1平方厘米)4.右图中三角形是等腰直角三角形,阴影部分的面积是 (平方厘米).5.如图所求,圆的周长是16.4厘米,圆的面积与长方形的面积正好相等.图中阴影部分的周长是 厘米.)14.3(=π6.如图,151=∠的圆的周长为62.8厘米,平行四边形的面积为100平方厘米.阴影部分的面积是 .7.有八个半径为1厘米的小圆,用它们的圆周的一部分连成一个花瓣图形(如图).图中黑点是这些圆的圆心.如果圆周率1416.3=π,那么花瓣图形的面积是 平方厘米.8.已知:ABC D 是正方形, ED =DA =AF =2厘米,阴影部分的面积是 .9.图中,扇形BAC 的面积是半圆ADB 的面积的311倍,那么,CAB ∠是 度.10.右图中的正方形的边长是2厘米,以圆弧为分界线的甲、乙两部分的面积差(大减小)是 平方厘米.(π取3.14)2二、解答题11.如图:阴影部分的面积是多少?四分之一大圆的半径为r .(计算时圆周率22) 取12.已知右图中大正方形边长是6厘米,中间小正方形边长是4厘米.求阴影部分的面积.13.有三个面积都是S 的圆放在桌上,桌面被圆覆盖的面积是2S +2,并且重合的两块是等面积的,直线a 过两个圆心A 、B , 如果直线a 下方被圆覆盖的面积是9,求圆面积S 的值.14.如图所示,1的位置沿线段AB 、BC 、CD 滚到2的位置,如果AB 、BC 、C D 的长都是20厘米,那么圆板的正面滚过的面积是多少平方厘米?D。
六年级圆的周长奥数题
六年级圆的周长奥数题一、基础题型1. 一个圆的半径是3厘米,它的周长是多少厘米?- 解析:根据圆的周长公式C = 2π r(其中C表示周长,π通常取3.14,r为半径)。
当r = 3厘米时,C=2×3.14×3 = 18.84厘米。
2. 已知圆的直径是8分米,求这个圆的周长。
- 解析:因为圆的周长C=π d(d是直径),当d = 8分米时,C = 3.14×8=25.12分米。
3. 一个圆的半径扩大到原来的2倍,它的周长扩大到原来的几倍?- 解析:设原来圆的半径为r,则原来的周长C_1 = 2π r。
半径扩大2倍后变为2r,此时周长C_2=2π×(2r) = 4π r。
C_2div C_1=(4π r)div(2π r)=2,所以它的周长扩大到原来的2倍。
4. 有一个圆形花坛,半径是5米,在它的周围铺一条宽1米的小路,求小路的外沿周长是多少米?- 解析:小路的外沿半径为5 + 1=6米。
根据圆的周长公式C = 2π r,当r = 6米时,C=2×3.14×6 = 37.68米。
5. 一个半圆的直径是10厘米,求这个半圆的弧长(周长的一半)。
- 解析:圆的周长C=π d,半圆的弧长为(1)/(2)π d。
当d = 10厘米时,弧长=(1)/(2)×3.14×10 = 15.7厘米。
二、组合图形中的圆周长问题6. 正方形的边长为10厘米,在正方形内画一个最大的圆,求这个圆的周长。
- 解析:正方形内最大的圆的直径等于正方形的边长,即d = 10厘米。
根据圆的周长公式C=π d,C = 3.14×10 = 30.4厘米。
7. 长方形的长是12厘米,宽是8厘米,在长方形内画一个最大的半圆,求这个半圆的弧长。
- 解析:因为长方形的长是12厘米,宽是8厘米,所以这个半圆的直径最大为12厘米。
半圆的弧长=(1)/(2)π d=(1)/(2)×3.14×12 = 18.84厘米。
(完整)三年级圆形和半圆形的周长奥数题训练
(完整)三年级圆形和半圆形的周长奥数题
训练
本文档旨在提供针对三年级学生的圆形和半圆形周长奥数题训练。
通过这些题的练,学生将能够巩固和加深对圆形和半圆形周长的理解和计算能力。
1. 圆形周长练
1. 问题:一个圆的半径为4厘米,求其周长。
答案:\[8\pi\]厘米
2. 问题:一个圆的直径为10厘米,求其周长。
答案:\[10\pi\]厘米
3. 问题:一个圆的周长为18厘米,求其直径。
答案:\[6\]厘米
4. 问题:一个圆的周长为36厘米,求其半径。
答案:\[6\]厘米
5. 问题:一个圆的半径为5毫米,求其周长。
答案:\[10\pi\]毫米
2. 半圆形周长练
1. 问题:一个半圆的直径为8厘米,求其周长。
答案:\[12\pi\]厘米
2. 问题:一个半圆的半径为6厘米,求其周长。
答案:\[9\pi\]厘米
3. 问题:一个半圆的周长为12π厘米,求其半径。
答案:\[6\]厘米
4. 问题:一个半圆的周长为30π毫米,求其直径。
答案:\[15\]毫米
5. 问题:一个半圆的半径为7.5毫米,求其周长。
答案:\[11.25\pi\]毫米
以上的练题能够帮助学生巩固有关圆形和半圆形周长的知识,并提高他们的计算能力。
鼓励学生完成这些题,并在错误的解答上进行讨论和纠正。
这样他们将能够更好地理解这些概念并应用于实际问题中。
请注意,以上答案仅供参考,具体计算结果可能因计算方法不同而略有出入。
六年级上册奥数题圆的面积
小学六年级奥数教材课程圆的周长和面积一条线段绕着它固定的一端在平面内旋转一周,它的另一端在平面内画出一条封闭的曲线,这条封闭的曲线就是圆。
画圆时,固定的一点叫做圆心,从圆心到圆上任意一点的线段叫做圆的半径,在同一个圆中,所有的半径都相等。
通过圆心,并且两端在圆上的线段叫做直径。
在同一个圆中,所有的直径都相等,且等于半径的2倍。
圆心决定圆的位置,半径决定圆的大小。
任意一个圆,它的周长除以直径的商总是一个固定的数,这个数叫圆周率。
如果用C 表示圆周的长度,d 表示这个圆的直径,r 表示它的半径,π表示圆周率,就有C dπ=或2C r。
π是一个无限不循环小数,π=3.14159265358979323846…。
圆的周长:C=2πr 或C=πd,圆的面积:S=πr 2。
圆的周长和面积计算的基本方法是仔细观察,发现特点,找出内在的联系,常常通过对图形的割补、旋转、平移、等积变形等方法加以解决。
需要精巧的构思和恰当的设计,把形象思维和抽象思维结合起来。
(本讲π均取 3.14)例1、上海外滩海关大钟钟面的直径是5.8米,钟面的面积是多少平方米?时针长2.7米,时针绕一圈时针尖端走过途径的长度是多少米?(得数保留一位小数)分析与解法:钟面的直径是5.8米这个条件是直接的,时针长指的是半径。
解:钟面的面积是:3.14×(5.8×2)2≈26.4(平方米)。
时针绕一圈时针尖端走过途径的长度是:2×3.14×2.7≈17.0(米)。
例2、如图所示,试比较大圆的面积与阴影部分的面积、大圆的周长与阴影部分的周长。
图图(1)分析与解法:本题有两问,一是比较阴影部分面积与大圆的面积;二是比较阴影部分周长与大圆的周长。
为了考虑问题方便,我们把图经过割补成图(1),在图(1)中更容易看出大圆与小圆阴影部分的关系。
学习目标总结重点AOB解:先比较大圆面积与阴影部分的面积。
设大圆半径为r,则小圆半径为r,大圆面积为S 1=πr 2。
六年级奥数培优《圆的周长》
例1.(转换):计算阴影部分的周长。
(单位:cm )例2.(扇形周长):已知半径为5厘米,求右图的周长。
(π≈3)例3.(组合图形的周长):计算阴影部分的周长。
(单位:cm )例4.(组合图形的周长)、用铁丝将两根粗细一样的圆木捆在一起(不含接头处的长度),求铁丝的长度是多少厘米?如果是3根、4根、5根、6根……呢?你发现了什么规律?例5.(圆的滚动)如图,两个2分硬币一个固定不动,另一个绕着固定硬币滚动,当转动的硬币滚动一周回到出发地点时,滚动的硬币围绕自己的圆心转了几周?例6.小明家的院内有一间边长是6m 的正方形杂物间。
他用一条长14米的绳子将狗拴在杂物间的一角。
现在狗从A 点出发,将绳子拉紧按顺时针跑,可跑多少米?B1.已知:AC =CD =DB =2,求下图阴影部分的周长。
(单位:cm )2.如图所示,这个14圆的周长是35.7厘米,求它的半径。
3.左图中三个半径相等的圆两两相交,三个圆的圆心距离正好等于半径,而且圆心都在交点上,若圆半径是8厘米,求阴影部分的周长。
4.下图是半圆ACB 旋转450所组成的图形,求阴影部分的周长(单位:厘米 π≈3)5.已知圆环的外圆周长比内圆周长多12.56厘米,求环宽。
6.用49.12厘米长的铁丝将三根粗细一样的圆木捆在一起(不含接头处的长度),求每个圆木横截面的半径是多少厘米?1.如图中等边三角形的边长是10cm ,求阴影部分的周长是多少?2.如图,有8个半径为2厘米的小圆,用它们的圆周的一部分连成一个花瓣图形,图中的正方形的边的交点为这些圆的圆心,问这个花瓣图形的周长是多少厘米?3.假如一个身高2米的人沿地球的赤道绕行1周,那么他的头顶比他的脚底多行多少米?4.如图所示,大圆的半径是小圆半径的2倍,求阴影部分的周长是大圆周长的几分之几?5.正方形ABCD 的边长正好等于1元硬币的周长,正方形不动,将硬币沿着正方形的边滚动,(如图所示),当硬币第一次回到原处,它自转了几圈?(提示:用一个硬币做一次滚动实验,注意从正方形的一边滚到另一边硬币自转了几圈)1.把一个直径10厘米圆分成两个相等的半圆,两个半圆的周长的和是( )。
二年级奥数(圆形)-附答案
二年级奥数(圆形)-附答案题目一:计算圆的周长问题:一个圆形的周长是16厘米,求该圆的半径和面积。
答案:根据圆的周长公式可知,周长等于2πr(其中r为圆的半径),所以可以得到以下方程式:16 = 2πr求解上述方程式,解得r = 8/π 厘米。
接着,我们可以使用圆的面积公式计算圆的面积。
根据公式,圆的面积等于πr²,将半径代入计算可得:面积= π * (8/π)² = 64/π 平方厘米。
所以该圆的半径为8/π 厘米,面积为64/π 平方厘米。
题目二:计算扇形的面积问题:一个扇形的半径为10米,弧长为5米,求该扇形的面积。
答案:扇形的面积可以通过使用扇形面积公式来计算。
根据公式,扇形的面积等于弧长除以圆的周长乘以圆的面积。
首先,我们需要计算圆的周长,可以使用圆的周长公式计算:周长= 2πr = 2π * 10 = 20π 米。
然后,我们可以计算扇形的面积,将已知的半径和弧长代入公式:面积= (5 / 20π) * π * 10² = 10 平方米。
所以该扇形的面积为 10 平方米。
题目三:计算圆环的面积问题:一个圆环的外半径为12厘米,内半径为8厘米,求该圆环的面积。
答案:圆环的面积可以通过使用圆环面积公式来计算。
根据公式,圆环的面积等于外圆面积减去内圆面积。
首先,我们可以计算外圆的面积和内圆的面积,使用圆的面积公式:外圆面积= π * (12²) = 144π 平方厘米。
内圆面积= π * (8²) = 64π 平方厘米。
然后,我们可以计算圆环的面积,将已知的外圆面积和内圆面积相减:面积= 144π - 64π = 80π 平方厘米。
所以该圆环的面积为80π 平方厘米。
以上是二年级奥数圆形相关问题的答案。
希望对您有帮助!。
小学圆的面积奥数题100道及答案(完整版)
小学圆的面积奥数题100道及答案(完整版)题目1一个圆的半径是3 厘米,它的面积是多少平方厘米?答案:圆的面积= π×半径×半径,即3.14×3×3 = 28.26(平方厘米)题目2圆的直径是8 分米,求面积。
答案:半径= 8÷2 = 4 分米,面积= 3.14×4×4 = 50.24(平方分米)题目3一个圆的周长是18.84 米,求其面积。
答案:周长= 2×π×半径,所以半径= 18.84÷(2×3.14)= 3 米,面积= 3.14×3×3 = 28.26(平方米)题目4圆的面积是12.56 平方厘米,求半径。
答案:3.14×半径×半径= 12.56,半径×半径= 4,半径= 2 厘米题目5直径为10 厘米的圆,面积比半径为6 厘米的圆的面积小多少?答案:直径10 厘米的圆半径为5 厘米,面积为 3.14×5×5 = 78.5 平方厘米;半径6 厘米的圆面积为3.14×6×6 = 113.04 平方厘米,小113.04 - 78.5 = 34.54 平方厘米题目6一个圆的半径扩大3 倍,面积扩大多少倍?答案:原来面积= π×半径×半径,半径扩大3 倍后,面积= π×(3×半径)×(3×半径)= 9×π×半径×半径,面积扩大9 倍题目7两个圆的半径分别是2 厘米和3 厘米,它们面积的和是多少?答案:面积分别为3.14×2×2 = 12.56 平方厘米,3.14×3×3 = 28.26 平方厘米,和为12.56 + 28.26 = 40.82 平方厘米题目8一个圆的面积是50.24 平方分米,在里面画一个最大的正方形,正方形的面积是多少?答案:圆的半径= √(50.24÷3.14)= 4 分米,正方形的对角线是圆的直径为8 分米,正方形面积= 对角线×对角线÷2 = 8×8÷2 = 32 平方分米题目9圆的半径由4 厘米增加到6 厘米,面积增加了多少平方厘米?答案:原来面积= 3.14×4×4 = 50.24 平方厘米,新面积= 3.14×6×6 = 113.04 平方厘米,增加了113.04 - 50.24 = 62.8 平方厘米题目10在一个边长为8 厘米的正方形中画一个最大的圆,圆的面积是多少?答案:圆的直径= 8 厘米,半径= 4 厘米,面积= 3.14×4×4 = 50.24 平方厘米题目11已知圆的面积是28.26 平方米,求周长。
六年级奥数6
圆的周长和面积【典型例题】如图所示,A圆的半径为3厘米,B圆的半径为4厘米,如果A圆不动,B圆沿A 圆的圆周滚动,当B圆滚动到原处时,B圆自身滚动了多少圈B【举一反三】1.如图所示,圆的面积等于长方形的面积,圆的周长是30厘米. 求图中阴影部分的周长是多少厘米?2.圆的面积计算公式是通过把圆转化成长方形推导出来的,把一个圆转化成长方形,长方形的周长比圆的周长多8厘米,原来长方形的周长是多少厘米?7.如图所示,半圆内有一个直角三角形,AB长4厘米,AC长3厘米,求阴影部分的面积。
分数应用题【题型概述】我们知道:知道一个数的几分之几是多少,应该列方程计算,今天,我们就学习这种类型的应用题。
【典型例题】41,第二小组做了13多10个4.晶晶有一些邮票,她把其中的16 多6张送给小芳,把其中的15少8张送给小青,自己还留下40张。
晶晶原来有多少张邮票?5.一只空水缸,早晨放满了水,白天用去其中的15,傍晚又用去29升,这时,水缸中的水比半缸多1升。
求早晨放入水缸多少升水?16只123第二小时行了余下路程的821,8.某人从甲城到乙城需要2小时,第一小时走全程的13多50千米,第二小时的行程等于第一小时的910.求甲乙两城的距离。
【题型概述】记得在学习分数乘法巧算的时候,我们曾拆分分数,运用乘法分配律进行巧算,这样的方法在分数除法中同样适用。
【典型例题】458(14 +0.75) ÷(212 ×0.4+145÷1.8)【题型概述】今天,我们学习在分数除法中如何灵活使用乘法分配律。
【典型例题】414 ÷5+212 ×0.2+514 ×156. (212003 ×958 +720022003 ×9.625)÷9614。
奥数专题 圆的周长和面积
奥数专题 圆的周长和面积1. 圆是平面上的曲线图形,它具有相对性。
2. 圆的周长=2r π=πd 圆的面积=2r π3. 计算圆的周长与面积常用割补法、旋转法、平移法等方法将不规则图形转化为规则图形求解。
在计算圆与其他平面图形组合而成的图形时,还可以用加减法,将不规则部分增加或减少一部分来求解。
4. 扇形是圆的一部分,它是由圆心角的两条半径和圆心角所对的弧围成的图形,其面积公式020=360n S r π⨯扇形,弧长公式0000=2360360n n L r d ππ⨯=⨯扇形。
一、 教材回顾1.把一个边长是6分米的正方形铁皮加工成一个最大的圆,这个圆的周长是( )分米,面积是( )平方分米。
2.一种汽车的车轮直径是1米。
如果它每分钟转动400圈,那么它通过一座长2.512千米的大桥需要多少分钟?3.两个大小不等的圆形仓库,小粮仓的底面周长是12.56米,它的占地面积是大粮仓的13。
大粮仓占地面积是多少平方米?4. 求下面图形的周长。
(单位:厘米)5. 已知圆的周长为6.28厘米,求这个圆的面积是多少?二、基础强化例1如图,已知一个大圆中紧紧地排列着两个不同的小圆,并且这三个圆的圆心恰好在直径上。
试比较外面的一个大圆的周长与两个小圆的周长的和哪个长?为什么?例2一个半圆的周长是10.28分米,这个半圆的的直径是多少厘米?当堂模拟1.如图,从点A到点C沿着大圆周走和沿着中小圆的圆周走,走的路程相同吗?2. 画一个周长12.56厘米的圆,圆规两脚间的距离是()厘米。
三、能力提升例1求右图阴影部分的面积。
(单位:厘米)例2 如图所示,两圆半径都是1厘米,且图中两个阴影部分的面积相等。
求长方形ABO1O的面积。
你还有其他方法吗?当堂模拟1. 一个环形铁片,内圆直径是14厘米,外圆直径是18厘米,这个环形铁片的面积是多少?2.下图正方形边长为8厘米,求中间阴影部分的面积。
四、走进名校例1三角形的边长都为6厘米,现将三角形ABC沿着一条直线翻滚三次(如图),求A点经过的路程的长。
六年级奥数-圆与扇形
六年级奥数圆与扇形知识要点:五年级已经学习过三角形、矩形、平行四边形、梯形以及由它们形成的组合图形的相关问题,这一讲学习与圆有关的周长、面积等问题。
圆的面积=πr2,圆的周长=2πr,本书中如无特殊说明,圆周率都取π=。
例1如下图所示,200米赛跑的起点和终点都在直跑道上,中间的弯道是一个半圆。
已知每条跑道宽米,那么外道的起点在内道起点前面多少米(精确到米)'例2有七根直径5厘米的塑料管,用一根橡皮筋把它们勒紧成一捆(如左下图),此时橡皮筋的长度是多少厘米(例3左下图中四个圆的半径都是5厘米,求阴影部分的面积。
257例4 草场上有一个长20米、宽10米的关闭着的羊圈,在羊圈的一角用长30米的绳子拴着一只羊(见左下图)。
问:这只羊能够活动的范围有多大2512m2$例5 右图中阴影部分的面积是厘米2,求扇形的半径。
4cm例6 右图中的圆是以O为圆心,半径是10厘米的圆,求阴影部分的面积。
100cm2!课堂练习:1.直角三角形ABC放在一条直线上,斜边AC长20厘米,直角边BC长10厘米。
如下图所示,三角形由位置Ⅰ绕A点转动,到达位置Ⅱ,此时B,C点分别到达B1,C1点;再绕B1点转动,到达位置Ⅲ,此时A,C1点分别到达A2,C2点。
求C点经C1到C2走过的路径的长。
68厘米2.下左图中每个小圆的半径是1厘米,阴影部分的周长是多少厘米厘米)3.一只狗被拴在一个边长为3米的等边三角形建筑物的墙角上(见右上图),绳长是4米,求狗所能到的地方的总面积。
60°《5.右上图是一个400米的跑道,两头是两个半圆,每一半圆的弧长是100米,中间是一个长方形,长为100米。
求两个半圆的面积之和与跑道所围成的面积之比。
1:36.左下图中,正方形周长是圆环周长的2倍,当圆环绕正方形无滑动地滚动一周又回到原来位置时,这个圆环转了几圈3圈7.右上图中,圆的半径是4厘米,阴影部分的面积是14π厘米2 ,求图中三角形的面积。
六年级奥数-圆与扇形
六年级奥数圆与扇形知识要点:五年级已经学习过三角形、矩形、平行四边形、梯形以及由它们形成的组合图形的相关问题,这一讲学习与圆有关的周长、面积等问题。
圆的面积=πr2,圆的周长=2πr,本书中如无特殊说明,圆周率都取π=。
例1如下图所示,200米赛跑的起点和终点都在直跑道上,中间的弯道是一个半圆。
已知每条跑道宽米,那么外道的起点在内道起点前面多少米(精确到米)例2有七根直径5厘米的塑料管,用一根橡皮筋把它们勒紧成一捆(如左下图),此时橡皮筋的长度是多少厘米例3左下图中四个圆的半径都是5厘米,求阴影部分的面积。
257例4 草场上有一个长20米、宽10米的关闭着的羊圈,在羊圈的一角用长30米的绳子拴着一只羊(见左下图)。
问:这只羊能够活动的范围有多大2512m2例5 右图中阴影部分的面积是厘米2,求扇形的半径。
4cm例6 右图中的圆是以O为圆心,半径是10厘米的圆,求阴影部分的面积。
100cm2课堂练习:1.直角三角形ABC放在一条直线上,斜边AC长20厘米,直角边BC长10厘米。
如下图所示,三角形由位置Ⅰ绕A点转动,到达位置Ⅱ,此时B,C点分别到达B1,C1点;再绕B1点转动,到达位置Ⅲ,此时A,C1点分别到达A2,C2点。
求C点经C1到C2走过的路径的长。
68厘米2.下左图中每个小圆的半径是1厘米,阴影部分的周长是多少厘米厘米3.一只狗被拴在一个边长为3米的等边三角形建筑物的墙角上(见右上图),绳长是4米,求狗所能到的地方的总面积。
60°5.右上图是一个400米的跑道,两头是两个半圆,每一半圆的弧长是100米,中间是一个长方形,长为100米。
求两个半圆的面积之和与跑道所围成的面积之比。
1:36.左下图中,正方形周长是圆环周长的2倍,当圆环绕正方形无滑动地滚动一周又回到原来位置时,这个圆环转了几圈3圈7.右上图中,圆的半径是4厘米,阴影部分的面积是14π厘米2 ,求图中三角形的面积。
8cm 28、如图,阴影部分的面积是25平方厘米,求圆环的面积。
小学奥数 圆的周长和面积
第七章圆的周长和面积
一、典型例题
1、一个半径10米的圆形花坛,它的占地面积是多少?在它的一周围一圈篱笆,篱笆长多少米?
思路点拨:圆的面积公式:S=πr2,圆的周长公式:C=2πr,根据公式可以做出来。
解答:
S=π102C=2πr
=3.14×100 =2×3.14×10
=314(平方米) =62.8(米)
答:它的占地面积是314平方米,篱笆长62.8米。
二、知识运用
1、一根长5米的绳子系着一只羊,栓在草地中央的树桩上,羊吃草的面积最多是多少平方米?
2、一种麦田的自动旋转喷灌器的射程是10米,它能喷灌的面积多少平方米?
3、求右图阴影部分面积:(单位:厘米)
4、一元硬币的半径是1.2厘米,求它的周长和面积。
5、用一块边长6分米的正方形纸剪一个最大的圆,圆的面积是多少?
6、用26米长的篱笆围成一个圆形苗圃,篱笆接头处用去0.88米。
苗圃的面积多少?
7、在长6分米,宽4分米的长方形中画一个最大的圆,圆的周长和面积各是多少?
8、求各图的周长和面积:(单位:米)。
小学六年级奥数-第一讲-圆的周长和面积
圆的周长和面积 姓名:知识要点π是一个无限不循环小数:π=3.14159265358979323846…圆的周长:C =2πr 或C =πd圆的面积:S =πr 2=π(2d )2=π(2C π)2=24C π 扇形是由圆心角的两条半径和圆心角所对的弧围成的图形。
如果扇形的圆心角是n ,那么当圆周长C =2πr 时,扇形的弧长计算方法: L =360n ×2πr =180n ×πr S 扇形=360n ×πr 2 例1 (第五届“希望杯”邀请赛试题)如图,ABCD 是边长为10厘米的正方形,且AB 是半圆的直径,则阴影部分的面积是 平方厘米。
(π取3.14)解答:阴影部分的面积是73.875平方厘米。
例2 将半径分别是4厘米和3厘米的两个半圆,如图放置。
求阴影部分的周长。
解 (1)两个半圆的弧长是:(2)两条线段的长:(3)阴影部分的周长为:答:阴影部分的周长是( )厘米。
例3 直径均为1分米的四根管子被一根金属带紧紧地捆在一起,如下图。
试求金属带的长度和阴影部分的面积。
解答:阴影部分的周长是( )分米。
阴影部分的面积是( )平方分米。
例4 如图,圆的周长是12.56厘米,圆的面积是长方形面积的2,5求阴影部分的周长。
解半圆的弧长:长方形的面积:长方形的长:阴影部分的周长:答:阴影部分的周长为()厘米。
竞赛能级训练A级1.(第十一届“华罗庚金杯”邀请赛试题)如下左图,圆O中直径AB 与CD互相垂直,AB=10厘米,CA=50厘米。
以C为圆心,CA为半径画弧AEB。
求月牙ADBEA(阴影部分)的面积。
2.(第五届“希望杯”邀请赛试题)如上右图,大圆直径上的黑点是五等分点,则A、B、C三部分的面积比为。
3.如下左图所示,正方形的边长为10厘米,在正方形中画了两个四分之一圆,试求图中阴影面积。
4.如上右图,三角形ABC是直角三角形,阴影工的面积比阴影Ⅱ的面积小23平方厘米。
2.1圆的周长和面积
B
d1
d2 d3
d4
A
圆 周 d 的 长
例2 一个半圆形纸片的周长是20.56
厘米,它的直径是多少厘米?
半 的 长 (2 ) r 5.14r 圆 周
C
A
例2 一个半圆形纸片的直径是20厘米,
它的周长是多少厘米?
半 的 长 (2 ) r 5.14r 圆 周
练习3
一条直线上放着一个长方形1, 它的长与宽分别是8cm和6cm,对 角线长10cm。
A
1
A
2
A
3
4
5
A
求A点所经过的总路程
练习4
一条直线上放着一个长方形1, 它的长与宽分别是4cm和3cm,对 角线长5cm。
A
1
A
2
A
3
4
5
A
求:如果这样经过8次,A点 所经过的总路程。
练习3
等边三角形的边长是3厘米, 再将三角形ABC沿一条直线翻滚 30次,如下图,求A点经过的距离。C来自45°BA
练习 求图中外圆的周长(单位:
厘米)
10
10
练习 求图中阴影的周长(单位:
厘米)
10 20
练习 求图中阴影的周长(单位:
厘米)
10
4
练习 求图中阴影的周长(单位:
厘米)
5 5
练习3 地球赤道是个近似的圆形,赤道的
半径约6371千米,假设有一根绳子沿地 球赤道贴紧地面绕一周,现在将绳子长 增加6.28米,使绳子与地面之间有均匀 的缝隙,请问缝隙有多宽?一只高4厘 米的蜗牛能否从该缝隙间爬过?
智力故事
2.5R
B
3.14R
奥数训练——圆的周长和面积附答案
奥数训练 圆的周长和面积附答案 A m 阪文 第4题 O A A 第5题 图中阴影部分 的面积等于 平方厘 米 平 16平方厘平方厘米(取 C 第8题 C 点•那么 20厘米为直径画一个半圆,阴影部分①的面积比②的面积小 厘米,其中,圆弧BD 的圆心是 6 .两个半径为2厘米的二圆如右图摆放 第2题 则阴影部分的面积是 其中四边形 OABC 是正方形,图中阴影部分的面积是 如果圆的半径为1厘米,那么,阴影部分的面积是 5 •如图,ABCD 是正方形,边长是 a 厘米 10•如图,以直角三角形的直角边长 米.BC= ___________ . B 点移动到B'点,则阴影 第3题 _____ 平方厘米 3•如图,ABCD 是边长为10厘米的正方形,且AB 是半圆的直径,则阴影部分的面积是 取 3.14 ) 4.如图是半径为6厘米的半圆,让这个半圆绕 A 点按顺时针方向旋转 30°,此时 部分的面积是 _______________________ 平方厘米. 2.如图是 第1题 个边长为 4厘米的正方形 ,吟 n =3). 7.如右图,正方形DEOF 在四分之一圆中 方厘米.(n 取3.14 .) &如图,ABC 是等腰直角三角形,D 是半圆周的中点,BC 是半圆的直径•已知 AB=BC=10厘米,那么阴影部分 的面积是 _______________ 平方厘米.(n 的值取3.14 ) 9.如图,其中AB=10厘米,C 点是半圆的中点.那么,阴影部分的面积是 平方厘米.(n 取3.14 ) 平方厘米.(n 其中 P 点是半圆的中点,点 Q 是正方形一 (取 n =3.14) (共 11小题) 10厘米的正方形和直径是 10厘米的半圆组成如图所示 则阴影部分的面积为 __________________ 平方厘米 一.填空题 1 .边长是 边的中点, A I c 第6题 B E 9 第7题第9题 第10题第11题 11 •如图,阴影部分的面积是 _ _ 平方厘米. 二•解答题(共7小题)12•如图是一个圆心为 0,半径是10厘米的圆•以C 为圆心,CA 为半径画一圆弧,求阴影部分的面积.13•求下列各图中阴影部分的周长.(1) 图1中,两个小半圆的半径均为 3厘米.(2)图2中,四边形为平行四边形圆弧形对的圆心角为 60°,半径为6厘米.(3)图3中,正方形内有一个以正方形的边长为半径的 二圆弧和两个以正方形边长为直径的 二圆弧,已知正 4 215・如图,有一只狗被缚在一建筑物的墙角上,这个建筑物是边长都等于6米的等边三角形,绳长是 8米•求绳被狗拉紧时,狗运动后所围成的总面积. 方形边长为4厘米.(4)图4中,在半径为14•下面是由一个平行四边形和一个半圆形组成的图形,已知半圆的半径是 10厘米,计算图中阴影部分的面16.左图正方形边长为2厘米.以顶点A为圆心边长AB为半径作二圆弧,再分别以ABAC为直径作半圆弧.求阴影部分面积.17•如图三角形ABC是直角三角形,阴影部分①的面积比阴影部分②的面积小14.88平方厘米,直径AB长8厘米,BC长多少厘米?18•如图所示,正方形ABCD等腰三角形ADE及半圆CAE若AB=2厘米,则阴影部分的面积是多少平方厘米?B A10x - 314* 2=16, x=17.3 ;答: 10x -157=16, BC 的长度是17.3厘米.故答案为: 10x=173 17.3厘米. 参考答案与试题解析一•填空题(共11小题)一 2 解:正方形和半圆的面积之和:10X 10+3.14 X ( 10*2) -2, =100+39.25=139.25 (平方厘米),三 角形PAB 的面积是:10X 15*2=75 (平方厘米),三角形PBQ 的面积是5X 5*2=12.5 (平方厘米), 则阴影部分的面积是:139.25 - 75 - 12.5=51.75 (平方厘米);答:阴影部分的面积是51.75平方厘米. 故答案为:51.75 . 此题考查了三角形、正方形和圆的面积公式的综合应用;连接 BP,找出这两个白色三角形的高,求出 空白部分的面积是解决本题的关键. 解:如图,4X 4X 1+3.14 X ( % 2*2=4X 4x2+3.14 X2 2*2=4+6.28=10.28 (平方厘米), 4 図 4 答:阴影部分的面积是 10.28平方厘米;故答案为:10.28 . 2 解:连接BE,如图:半圆面积:3.14 x ( 10*2) *2=39.25 (平方厘米), 2 三角形ABE 面积:10 *2*2=25 (平方厘米),月牙面积:(39.25 - 25)* 2=7.125 (平方厘米), 阴影面积: 25 - 7.125=17.875 (平方厘米).故答案为:17.875 . 解: S 阴影=S 扇形ABB'+S 半圆ADB'- S 半圆ADB',又S 半圆ACB=S^圆ADB', 所以S 阴影=S 扇形ABB'.扇形部分应该半径为 6X 2=12 (厘米),二X 3.14 X22-二x 2X 上x 2, =3.14 - 2=1.14 (平方厘米), 4 2 2 答:阴影部分的面积是 1.14平方厘米.故答案为:1.14 . 解:如图,正方形的面积=对角线x 对角线x 弊1U (平方厘米)四分之一圆的面积 -X 3.14 XI 2=0.785 (平方厘米)阴影部分的面积 =0.785 - -=0.285 (平方厘米)故填 0.285 . 4 2 =25 (平方厘米),SAFDB 梯形ABEF 的面积+半圆BDE 的面积, 梯形ABEF 的面积=(10* 2+10)X ( 10* 2)* 2= (平方厘米),半圆BDE 的面积=扌/哼冗 阴影部分的面积=AFDB 的面积-三角形 AFD 的面积,=(—+二n )- 25, =32.125 (平方厘米). 答:阴影部分的面积是 32.125平方厘米.故答案为:32.125 . 解: : 3.14 X 102 - 10X 」*2,=二X 3.14 X 100- 10X 5*2, =39.25 - 25, =14.25 (平方厘米) 360 2 S 答:阴影部分的面积是 14.25 (平方厘米).故答案为:14.25 . 1 九? 解: BC 的长度为 x 厘米,-X 20X x -3.14 X *2=16 2 1.解答:点评:2.解答:3.解答:4.解答:5.解答:6.解答:7.解答:8.解答:9.解答:10.解答: 即: 解: 360 1 2 5a x 3a 2+a x 卫 360 -2(吩a ) =37.68 (平方厘米).故答案为:37.68 . (平方厘米). 答: 图中阴影部分的面积等于 0.45a 平方厘米.故答案为: 2 0.45a . 解:阴影部分的面积是: 2 Xnr 解:因为 AFD=X 10x ( 10*2) 10x - 3.14 X 100* 2=16, a= 2 2 a =0.45aX 3.14 X2 2 - 2X 2-2, =3.14 - 2 , =1.14 (平方厘米);阴影部分的面积是 1.14平方厘米•故答案为:1.14 . (共 7小题)2 三角形 ABC 的面积为:所以 AC -2=ABK OO2=10X 2X 10*2=100 (平方厘米),2由上面计算可得: AC=100X 2=200,所以阴影部分的面积是:3.14 X 10X 10-2-( -X 3.14 X 200- 100) =157-( 157 - 100),4=157 - 57, =100 (平方厘米),答:阴影部分的面积是 100平方厘米.13. 解答:解:(1)大半圆的圆弧长:2X 3.14 X ( 3+3)* 2=18.84 (厘米);小半圆的圆弧长:2X 3.14 X 3-2=9.42 (厘米);阴影部分周长:18.84+9.42 X 2=37.68 (厘米).(2) 圆弧长:2X 3.14 X 6X 一=6.28 (厘米);平行四边形周长:6X 4=24 (厘米);360 阴影部分周长:6.28+24=30.28 (厘米).(3) 一个以正方形的边长为半径的丄圆弧长:2X 3.14 X 4X 二=6.28 (厘米); 4 4 两个以正方形边长为直径的丄圆弧长:3.14 X 4=12.56 (厘米);阴影部分周长:6.28+12.56=18.84 (厘米).(4) 阴影部分周长:2X 3.14 X 4=25.12 (厘米). 14. 解:如图,解答:把半圆内的阴影部分从左边割下补到左边,阴影部分即成为一个底为半圆半径的2倍,高是半圆半径-X 10X 2X 10=100(平方厘米);答:图中阴影部分的面积是 100平方厘米 215. 解:根据图可知:解答:大扇形的圆心角为:360 - 60=300 (度), 小扇形的圆心角为:180 - 60=120 (度),故总面积为: ^ . (平方米),360 360 答:狗运动后所围成的总面积为 175.84平方米.点评:此题考查如何求扇形的面积,还要注意圆心角度数的求法.11解: •解答: 答: •解答题 12.解答: 解:16. 左图正方形边长为2厘米.以顶点A为圆心边长AB为半径作一圆弧,再分别以AB AC为直径作半圆弧.求考点:组合图形的面积.专题:压轴题;平面图形的认识与计算.分析:如图所示,作出辅助线,则4个小弓形的面积相等,将①、②经过旋转、平移到③、④的位置,贝V阴影部分的面积=以正方形的边长为半径的丄乙的面积-三角形ABC的面积,代入数据即可求解.解答•丹2解答解:3.14 X2 X 2X 2-2,4=3.14 - 2,=1.14 (平方厘米);答:阴影部分的面积是1.14平方厘米.点评:此题主要考查了正方形的性质以及旋转的性质,难度适中,关键是将所求的阴影部分的面积转化为与圆和正方形的面积有关的图形的面积.17•如图三角形ABC是直角三角形,阴影部分①的面积比阴影部分②的面积小14.88平方厘米,直径AB长8厘米,BC长多少厘米?考占: P 八、、•组合图形的面积.专题:平面图形的认识与计算.分析:从图中可以看出阴影部分①加上空白部分的面积是半圆的面积,阴影部分②加上空白部分的面积是三角形ABC的面积.又已知①的面积比②的面积小14.88平方厘米,故半圆面积比三角形ABC的面积小14.88平方厘米•求出半圆面积,再加上14.88即为三角形的面积,再根据三角形的面积公式解答即可.阴影部分面积.解答:2解:半圆面积为3.14 X(8—2)*2=25.12 (平方厘米),三角形ABC的面积为:25.12+14.88=40 (平方厘米).BC的长为:40X 2* 8=10 (厘米).答:BC长10厘米.点评:此题考查了学生三角形以及圆的面积公式及其应用,同时考查了学生观察图形的能力.18. 如图所示,正方形ABCD等腰三角形ADE及半圆CAE若AB=2厘米,贝V阴影部分的面积是多少平方厘米?考占: p 八、、•组合图形的面积.专题:平面图形的认识与计算.分析:把原图ADE以及圆弧AE移补到ADC以及圆弧AC,那么阴影部分的面积就是正方形的面积的一半,然后再进一步解答.解答:解:正方形的面积:2X 2=4 (平方厘米);阴影部分的面积:4-2=2 (平方厘米). 答:阴影部分的面积是2平方厘米.点评:分析图形,根据图形特点进行割补,寻求问题突破点.。