804人教版八年级上册数学复习知识点总结1
(完整版)新人教版八年级数学上册知识点总结归纳,推荐文档
新人教版八年级上册数学知识点总结概括第十一章三角形1第十二章全等三角形第十三章轴对称第十四章整式乘法和因式分解第十五章分式1、三角形的观点由不在赞同直线上的三条线段首尾按序相接所构成的图形叫做三角形。
构成三角形的线段叫做三角形的边;相邻两边的公共端点叫做三角形的极点;相邻两边所构成的角叫做三角形的内角,简称三角形的角。
2、三角形中的主要线段( 1)三角形的一个角的均分线与这个角的对边订交,这个角的极点和交点间的线段叫做三角形的角均分线。
(2)在三角形中,连结一个极点和它对边的中点的线段叫做三角形的中线。
(3)从三角形一个极点向它的对边做垂线,极点和垂足之间的线段叫做三角形的高线(简称三角形的高)。
3、三角形的稳固性三角形的形状是固定的,三角形的这个性质叫做三角形的稳固性。
三角形的这个性质在生产生活中应用很广,需要稳固的东西一般都制成三角形的形状。
4、三角形的特征与表示三角形有下边三个特征:( 1)三角形有三条线段( 2)三条线段不在同向来线上三角形是关闭图形( 3)首尾按序相接三角形用符号“”表示,极点是A、B、C的三角形记作“ABC”,读作“三角形ABC”。
5、三角形的分类三角形按边的关系分类以下:不等边三角形三角形底和腰不相等的等腰三角形等腰三角形等边三角形三角形按角的关系分类以下:直角三角形(有一个角为直角的三角形)三角形锐角三角形(三个角都是锐角的三角形)斜三角形把边和角联系在一同,我们又有一种特别的三角形:等腰直角三角形。
它是两条直角边相等的直角三角形。
6、三角形的三边关系定理及推论(1)三角形三边关系定理:三角形的两边之和大于第三边。
推论:三角形的两边之差小于第三边。
(2)三角形三边关系定理及推论的作用:①判断三条已知线段可否构成三角形②当已知两边时,可确立第三边的范围。
③证明线段不等关系。
7、三角形的内角和定理及推论三角形的内角和定理:三角形三个内角和等于180°。
推论:①直角三角形的两个锐角互余。
人教版八年级上册数学知识点归纳
人教版八年级上册数学知识点归纳八年级上册数学内容是初中数学学习的重要阶段,学生通过这一阶段的学习,将打下坚实的基础,为高中数学的学习做好准备。
下面将对八年级上册数学的知识点进行归纳总结。
一、有理数有理数是整数和分数的统称。
在八年级上册数学中,学生需要掌握有理数的四则运算、有理数的绝对值、有理数的比较大小等基本运算规则。
另外,还要掌握对有理数进行加减乘除运算的方法和技巧。
二、代数基础代数基础是数学学习的重要基础,在八年级上册数学中,学生需要学习解一元一次方程、拓展一元一次方程的解集、解一元一次方程组等内容。
此外,还要学习负数的指数和等式的基本性质。
三、图形的认识与运算图形的认识与运算是八年级上册数学中的重点内容。
学生需要学习平移、旋转、翻折等几何变换,掌握图形的相似性判定与应用,并且学习解直角三角形问题。
四、数与式数与式是八年级上册数学中的基础知识,学生需要学习分数与小数的互相转换,掌握分数的加减乘除运算法则,学习化简和扩展分式等。
五、二次根式在八年级上册数学中,学生需要学习二次根式的概念和性质,掌握二次根式的化简和运算法则,以及解二次根式的应用问题。
六、函数函数是八年级上册数学中的一个重要知识点,学生需要学习函数与方程的关系,函数的特征与性质,函数图象的绘制和性质等。
七、统计与概率统计与概率是八年级上册数学的最后一个模块,学生需要学习数据的整理和分析方法,掌握统计图的绘制与解读,以及概率的计算方法和应用等。
以上是八年级上册数学的主要知识点归纳,通过对这些知识点的学习,学生将对数学有更深入的了解,掌握数学的基本方法和技巧。
在学习数学过程中,学生需要注重练习和思考,多做习题,巩固学习内容。
同时,要注意将数学知识与实际问题相结合,培养解决实际问题的能力。
通过坚持不懈的努力,相信每个学生都能在八年级上册数学学习中取得优异的成绩。
人教版八年级数学上册基础知识整理
人教版八年级数学上册基础知识整理一、数的四则运算1. 加法- 加法是将两个或多个数合并在一起的运算。
- 进行加法运算时,需要将被加数和加数对齐,然后按位相加。
- 加法满足交换律和结合律。
2. 减法- 减法是将一个数从另一个数中减去的运算。
- 进行减法运算时,将减数放在被减数上方,然后按位相减。
- 减法不能满足交换律和结合律。
3. 乘法- 乘法是将两个或多个数相乘的运算。
- 进行乘法运算时,将被乘数和乘数对齐,然后按位相乘,最后将各位的乘积相加。
- 乘法满足交换律和结合律。
4. 除法- 除法是将一个数分成若干个相等的部分的运算。
- 进行除法运算时,将被除数放在除号上方,除数放在除号下方,然后按位进行除法运算。
- 除法可分为整除和小数除两种情况。
二、有理数1. 整数- 整数是由正整数、负整数和0组成的数集。
- 整数集包括正数、负数和0。
- 整数可以进行加法、减法、乘法和除法运算。
2. 分数- 分数是由整数分子和整数分母组成的有理数。
- 分母不能为0,分子可以为0。
- 分数可以进行加法、减法、乘法和除法运算。
3. 负数- 负数是数轴上比0小的数。
- 负数可以进行加法、减法、乘法和除法运算。
4. 小数- 小数是有限小数和无限小数的统称。
- 有限小数是小数部分有限的小数。
- 无限小数是小数部分无限循环的小数。
三、平面图形1. 点- 点是平面上一个没有延伸的位置。
- 点用大写字母表示。
2. 线段- 线段是由两个端点确定的部分,是直线的有限部分。
- 线段的长度可以通过勾股定理计算。
3. 角- 角是由两条不同的射线在同一平面上公共端点形成的部分。
- 角可以用角度或弧度来表示。
4. 三角形- 三角形是由三条线段组成的图形。
- 三角形的分类可以根据边长和角度来区分。
四、直线和曲线1. 直线- 直线是只有一个方向、无限延伸的线段。
- 直线上的点都在同一直线上。
2. 曲线- 曲线是有限延伸的线段。
- 曲线上的点不在同一直线上。
(完整版)新人教版八年级数学上册知识点总结
(完整版)新人教版八年级数学上册知识点总结-CAL-FENGHAI.-(YICAI)-Company One1八年级数学上册知识点总结第十一章三角形一、知识框架:二、知识概念:1.三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形.2.三边关系:三角形任意两边的和大于第三边,任意两边的差小于第三边.3.高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形的高.(钝角三角形三条高的交点在三角形外,直角三角形的三条高的交点在三角形上,锐角三角形的三条高在三角形内)4.中线:在三角形中,连接一个顶点和它对边中点的线段叫做三角形的中线.(三条中线的交点叫重心)5.角平分线:三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线.(三角形三条角平分线的交点到三边距离相等)6.三角形的稳定性:三角形的形状是固定的,三角形的这个性质叫三角形的稳定性.(例如自行车的三角形车架利用了三角形具有稳定性)7.多边形:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形.8.多边形的内角:多边形相邻两边组成的角叫做它的内角.9.多边形的外角:多边形的一边与它的邻边的延长线组成的角叫做多边形的外角.10.多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线.11.正多边形:在平面内,各个角都相等,各条边都相等的多边形叫正多边形.12.平面镶嵌:用一些不重叠摆放的多边形把平面的一部分完全覆盖,叫做用多边形覆盖平面,13.公式与性质:⑴三角形的内角和:三角形的内角和为180°⑵三角形外角的性质:性质1:三角形的一个外角等于和它不相邻的两个内角的和.性质2:三角形的一个外角大于任何一个和它不相邻的内角.⑶多边形内角和公式:n边形的内角和等于(2)n-·180°⑷多边形的外角和:多边形的外角和为360°.⑸多边形对角线的条数:①从n边形的一个顶点出发可以引(3)n-条对角线,把多边形分成(2)n-个三角形.②n边形共有(3)2n n-条对角线.第十二章全等三角形一、知识框架:二、知识概念:1.基本定义:⑴全等形:能够完全重合的两个图形叫做全等形.⑵全等三角形:能够完全重合的两个三角形叫做全等三角形.⑶对应顶点:全等三角形中互相重合的顶点叫做对应顶点.⑷对应边:全等三角形中互相重合的边叫做对应边.⑸对应角:全等三角形中互相重合的角叫做对应角.2.基本性质:⑴三角形的稳定性:三角形三边的长度确定了,这个三角形的形状、大小就全确定,这个性质叫做三角形的稳定性.⑵全等三角形的性质:全等三角形的对应边相等,对应角相等.3.全等三角形的判定定理:⑴边边边(SSS):三边对应相等的两个三角形全等.⑵边角边(SAS):两边和它们的夹角对应相等的两个三角形全等.⑶角边角(ASA):两角和它们的夹边对应相等的两个三角形全等.⑷角角边(AAS):两角和其中一个角的对边对应相等的两个三角形全等.⑸斜边、直角边(HL):斜边和一条直角边对应相等的两个直角三角形全等.4.角平分线:⑴画法:⑵性质定理:角平分线上的点到角的两边的距离相等.⑶性质定理的逆定理:角的内部到角的两边距离相等的点在角的平分线上.(三角形三条角平分线的交点到三边距离相等)5.证明的基本方法:⑴明确命题中的已知和求证.(包括隐含条件,如公共边、公共角、对顶角、角平分线、中线、高、等腰三角形等所隐含的边角关系)⑵根据题意,画出图形,并用数字符号表示已知和求证.⑶经过分析,找出由已知推出求证的途径,写出证明过程.第十三章轴对称一、知识框架:二、知识概念:1.基本概念:⑴轴对称图形:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形.⑵两个图形成轴对称:把一个图形沿某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称.⑶线段的垂直平分线:经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线.⑷等腰三角形:有两条边相等的三角形叫做等腰三角形.相等的两条边叫做腰,另一条边叫做底边,两腰所夹的角叫做顶角,底边与腰的夹角叫做底角.⑸等边三角形:三条边都相等的三角形叫做等边三角形.2.基本性质:⑴对称的性质:①不管是轴对称图形还是两个图形关于某条直线对称,对称轴都是任何一对对应点所连线段的垂直平分线.②对称的图形都全等.⑵线段垂直平分线的性质:①线段垂直平分线上的点与这条线段两个端点的距离相等.②与一条线段两个端点距离相等的点在这条线段的垂直平分线上.⑶关于坐标轴对称的点的坐标性质①点P (,)x y 关于x 轴对称的点的坐标为'P (,)x y -.②点P (,)x y 关于y 轴对称的点的坐标为"P (,)x y -.⑷等腰三角形的性质:①等腰三角形两腰相等.②等腰三角形两底角相等(等边对等角).③等腰三角形的顶角角平分线、底边上的中线,底边上的高相互重合.④等腰三角形是轴对称图形,对称轴是三线合一(1条).⑸等边三角形的性质:①等边三角形三边都相等.②等边三角形三个内角都相等,都等于60°③等边三角形每条边上都存在三线合一.④等边三角形是轴对称图形,对称轴是三线合一(3条).3.基本判定:⑴等腰三角形的判定:①有两条边相等的三角形是等腰三角形.②如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边).⑵等边三角形的判定:①三条边都相等的三角形是等边三角形.②三个角都相等的三角形是等边三角形.③有一个角是60°的等腰三角形是等边三角形.4.基本方法:⑴做已知直线的垂线:⑵做已知线段的垂直平分线:⑶作对称轴:连接两个对应点,作所连线段的垂直平分线.⑷作已知图形关于某直线的对称图形:⑸在直线上做一点,使它到该直线同侧的两个已知点的距离之和最短.第十四章 整式的乘除与分解因式一、知识框架:二、知识概念:1.基本运算:⑴同底数幂的乘法:m n m n a a a +⨯=⑵幂的乘方:()n m mn a a =⑶积的乘方:()n n n ab a b =2.整式的乘法:⑴单项式⨯单项式:系数⨯系数,同字母⨯同字母,不同字母为积的因式.⑵单项式⨯多项式:用单项式乘以多项式的每个项后相加.⑶多项式⨯多项式:用一个多项式每个项乘以另一个多项式每个项后相加.3.计算公式:⑴平方差公式:()()22a b a b a b -⨯+=-⑵完全平方公式:()2222a b a ab b +=++;()2222a b a ab b -=-+4.整式的除法:⑴同底数幂的除法:m n m n a a a -÷=⑵单项式÷单项式:系数÷系数,同字母÷同字母,不同字母作为商的因式.⑶多项式÷单项式:用多项式每个项除以单项式后相加.⑷多项式÷多项式:用竖式.5.因式分解:把一个多项式化成几个整式的积的形式,这种变形叫做把这个式子因式分解.6.因式分解方法:⑴提公因式法:找出最大公因式.⑵公式法:①平方差公式:()()22a b a b a b -=+-②完全平方公式:()2222a ab b a b ±+=±③立方和:3322()()a b a b a ab b +=+-+④立方差:3322()()a b a b a ab b -=-++⑶十字相乘法:()()()2x p q x pq x p x q +++=++⑷拆项法 ⑸添项法第十五章 分式一、知识框架 :二、知识概念:1.分式:形如A B,A B 、是整式,B 中含有字母且B 不等于0的整式叫做分式.其中A 叫做分式的分子,B 叫做分式的分母.2.分式有意义的条件:分母不等于0.3.分式的基本性质:分式的分子和分母同时乘以(或除以)同一个不为0的整式,分式的值不变.4.约分:把一个分式的分子和分母的公因式(不为1的数)约去,这种变形称为约分.5.通分:异分母的分式可以化成同分母的分式,这一过程叫做通分.6.最简分式:一个分式的分子和分母没有公因式时,这个分式称为最简分式,约分时,一般将一个分式化为最简分式.7.分式的四则运算:⑴同分母分式加减法则:同分母的分式相加减,分母不变,把分子相加减.用字母表示为:a b a b c c c±±= ⑵异分母分式加减法则:异分母的分式相加减,先通分,化为同分母的分式,然后再按同分母分式的加减法法则进行计算.用字母表示为: a c ad cb b d bd±±= ⑶分式的乘法法则:两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母.用字母表示为:a c ac b d bd⨯= ⑷分式的除法法则:两个分式相除,把除式的分子和分母颠倒位置后再与被除式相乘.用字母表示为:a c a d ad b d b c bc÷=⨯=⑸分式的乘方法则:分子、分母分别乘方.用字母表示为:nn n a a b b⎛⎫= ⎪⎝⎭ 8.整数指数幂:⑴m n m n a a a +⨯=(m n 、是正整数)⑵()n m mn a a =(m n 、是正整数)⑶()n n n ab a b =(n 是正整数)⑷m n m n a a a -÷=(0a ≠,m n 、是正整数,m n >) ⑸nn n a a b b⎛⎫= ⎪⎝⎭(n 是正整数) ⑹1n n a a -=(0a ≠,n 是正整数) 9.分式方程的意义:分母中含有未知数的方程叫做分式方程.10.分式方程的解法:①去分母(方程两边同时乘以最简公分母,将分式方程化为整式方程);②按解整式方程的步骤求出未知数的值;③检验(求出未知数的值后必须验根,因为在把分式方程化为整式方程的过程中,扩大了未知数的取值范围,可能产生增根).。
人教版八年级上册数学知识点归纳
人教版八年级上册数学知识点归纳数学是一门让很多学生头疼的学科,但只要我们能够系统地理解和掌握其中的基本知识点,就能够轻松应对各种数学题。
下面是八年级上册数学知识点的归纳总结,希望对同学们的学习有所帮助。
一、有理数有理数包括整数和分数,可以用分数形式表示,并且有以下性质:1.有理数可以相加、相减、相乘和相除。
2.有理数和0的乘积等于0。
3.有理数的加法和乘法满足交换律和结合律。
4.两个有理数之间可以通过一个有理数相乘或相除变成另一个有理数。
二、二次根式1.二次根式指的是形如√a的表达式,其中a是一个非负有理数。
2.二次根式可以进行加减乘除运算。
3.二次根式通过有理化方法可以转化为一个不含根号的有理数。
三、代数式1.代数式由数字、字母和运算符号组成。
2.代数式可以进行加减乘除运算。
3.代数式中的字母代表一个未知数,可以用来表示各种未知量。
四、一次函数1.一次函数是指具有形如y = kx + b的函数,其中k和b是常数。
2.一次函数的图像是一条直线,其斜率k表示直线的倾斜程度。
3.一次函数的常数b表示直线在y轴上的截距。
五、平面图形1.平行四边形:具有两对对边平行的四边形。
2.长方形:具有四个直角的平行四边形。
3.正方形:具有四个边相等且四个直角的平行四边形。
4.菱形:具有四个边相等、两对对角线相等且相交于90度的平行四边形。
5.直角三角形:具有一个直角的三角形。
6.等腰三角形:具有两边相等的三角形。
7.等边三角形:具有三边相等的三角形。
8.钝角三角形:具有一个钝角的三角形。
9.锐角三角形:三个内角都小于90度的三角形。
10.直角:两条垂直相交直线所形成的角。
六、空间图形1.空间图形包括点、线、面和体。
2.点:表示最基本的图形单位,没有大小、形状。
3.线:由无数个点构成的集合,只有长度没有宽度。
4.面:由直线构成的封闭图形,有了面积的概念。
5.体:由面构成的封闭图形,有了体积的概念。
七、平方根和立方根1.平方根:一个数的平方根就是与该数相乘等于这个数的数,用符号√表示。
初二数学上册知识点总结(人教版)
初二数学上册知识点总结(人教版)初二数学上册知识点总结(人教版)本文档总结了初二数学上册的重要知识点。
以下是每个章节的主要内容概述。
第一章:有理数- 有理数的概念和性质- 有理数的加法、减法、乘法和除法运算- 有理数的大小比较和绝对值- 有理数的混合运算第二章:平方根和立方根- 平方根和立方根的概念和性质- 求平方根和立方根的方法- 平方根和立方根的运算法则第三章:比例与相似- 比例的概念和性质- 求解比例的方法- 相似的概念和性质- 判断两个图形是否相似的方法第四章:代数式- 代数式的概念和表达方法- 代数式的加法、减法、乘法和除法运算- 多项式的概念和运算法则- 代数式的应用问题第五章:一次函数与方程- 一次函数的概念和性质- 一次函数的图像和性质- 解一元一次方程的方法- 一次函数与方程的实际应用第六章:一次不等式和不等式组- 不等式及其解集的概念- 解一元一次不等式的方法- 解不等式组的方法- 不等式和不等式组的应用第七章:平面图形的认识- 平面图形的基本概念和性质- 三角形的分类和性质- 四边形的分类和性质- 平行线和垂直线的判定方法第八章:平面图形的应用- 通过条件画图的方法- 图形的旋转、翻折和滑动变换- 图形的对称性和轴- 图形的符号表示和坐标表示第九章:数据的处理- 数据的收集和整理方法- 数据的统计和分析方法- 数据的图表表示和解读- 数据的应用问题以上是初二数学上册的知识点总结。
希望对你的学习有所帮助!。
(完整word版)人教版八年级上册数学重要知识点总结
(完整word版)人教版八年级上册数学重要知识点总结亲爱的读者:本文内容由我和我的同事精心收集整理后编辑发布到文库,发布之前我们对文中内容进行详细的校对,但难免会有错误的地方,如果有错误的地方请您评论区留言,我们予以纠正,如果本文档对您有帮助,请您下载收藏以便随时调用。
下面是本文详细内容。
最后最您生活愉快 ~O(∩_∩)O ~八年级数学上册重要知识点归纳1、三角形具有稳定性2、三角形的三边关系定理及推论(1)三角形三边关系定理:三角形的两边之和大于第三边(符号表示:a+b>c ) (2)推论:三角形的两边之差小于第三边(符号表示:a-b<c ) (3)三角形三边关系定理及推论的作用:①判断三条已知线段能否组成三角形;②当已知两边时,可确定第三边的范围; ③证明线段不等关系。
3、(1)三角形的内角和等于180°,三角形的外角和等于360°;(2)n 边形的内角和等于n -⋅(2)180,n 边形的外角和等于360°; (3)正n 边形每个内角等于n n-⋅(2)180,正n 边形每个外角等于3604、三角形全等的条件:一般三角形SSS ,SAS ,ASA ,AAS ,直角三角形HL5、角的平分线的性质:角平分线上的点到角两边的距离相等符号表示:BD 为角平分线,DA ⊥AB ,DC ⊥BC ,AD =DC.6、垂直平分线性质:垂直平分线上的点到线段两端的距离相等 符号表示:CD 为AB 的垂直平分线 AC=BC ,AE=BE.7、等腰三角形 (1)“等边对等角”和“三线合一”的性质 已知ABC ∆是等腰三角形,AB=AC,,,,B C BD CD BAD CAD AD BC ∴∠=∠=∠=∠⊥(等角对等边)(三线合一)(2)“等角对等边”的判定方法B C AB AC ∠=∠∴=∆已知(等角对等边)ABC 是等腰三角形8、等边三角形的性质和判定(性质)等边三角形的三个内角都相等,并且每一个角都等于60° (判定1)三个角都相等的三角形是等边三角形。
请整理人教版八年级数学上册总复习知识点汇总。
请整理人教版八年级数学上册总复习知识点汇总。
请整理人教版八年级数学上册总复知识点汇总本文档旨在提供人教版八年级数学上册总复的知识点汇总。
以下是各章节的重点内容:第一章四则运算- 熟练掌握加法、减法、乘法和除法的基本运算规则- 理解加法和减法的交换律、结合律和分配律- 掌握小数的加减法运算第二章整数- 了解整数的概念,包括负整数、零和正整数- 掌握整数的加减法运算- 理解整数的数轴表示法第三章分数- 了解分数的概念,包括真分数、假分数和带分数- 掌握分数的加减法运算- 理解分数的乘除法运算第四章百分数- 了解百分数的概念和表示方法- 掌握百分数的转化与应用- 熟练计算百分数的加减法运算第五章立方根- 了解立方根的概念和表示方法- 学会计算立方根的近似值- 理解立方根与立方的关系第六章平方根- 了解平方根的概念和表示方法- 学会计算平方根的近似值- 理解平方根与平方的关系第七章二次根式- 了解二次根式的概念和表示方法- 掌握二次根式的运算- 理解二次根式与平方的关系第八章代数式与简单方程- 掌握代数式的概念和运算法则- 能够解一元一次方程- 了解方程的应用第九章图形与平面图形- 了解图形的分类和特点- 熟练计算图形的周长和面积- 掌握平行线与相交线的性质第十章立体图形- 了解常见的立体图形,如长方体、正方体和棱柱等- 掌握立体图形的表面积和体积计算方法- 理解立体图形的展开与拼接以上是人教版八年级数学上册的总复习知识点汇总。
希望能对您的复习有所帮助!。
最新人教版八年级数学上册知识点总结
最新人教版八年级数学上册知识点总结
本文档是针对最新人教版八年级数学上册的知识点进行总结和概括。
以下是该教材中的重要知识点:
单元一:有理数
1. 正数、负数和零的概念及表示方法
2. 有理数的加法、减法、乘法和除法运算法则
3. 有理数的绝对值的概念及性质
单元二:代数式的认识
1. 代数式的定义和基本符号表示
2. 代数式的合并、展开和简化
单元三:一次函数方程
1. 一次函数的概念及一次函数方程的定义
2. 一次函数方程的解法和应用
单元四:图形的认识
1. 平面图形和立体图形的基本特征和性质
2. 几何图形的常见分类、基本要素和刻画方法
3. 坐标轴上的点、点的坐标以及两点之间的距离单元五:相似与全等
1. 相似图形的概念和性质
2. 全等图形的概念和性质
3. 判定两个图形是否相似或全等的充分条件
单元六:数据的集中与离散趋势
1. 数据的集中趋势包括众数、中位数和平均数
2. 数据的离散趋势包括极差、方差和标准差
单元七:线程的认识
1. 直线和曲线的定义和区别
2. 直线的性质及直线的刻画方法
3. 利用直线的性质求解简单问题
单元八:平面的认识
1. 平面的基本概念和性质
2. 利用平面的性质解决实际问题
注意:以上只是对每个单元主要知识点的简要总结,具体的内容和细节请参考最新人教版八年级数学上册教材。
八年级上册数学知识点总结人教版
八年级上册数学知识点总结人教版
勾股定理:探索勾股定理,了解直角三角形两直角边的平方和等于斜边的平方,即a²+b²=c²。
同时,理解如果三角形的三边长a、b、c满足a²+b²=c²,那么这个三角形一定是直角三角形。
实数:认识无理数和有理数,理解无理数是无限不循环小数,而有理数则总是可以用有限小数和无限循环小数表示。
此外,还要掌握平方根的概念,包括算数平方根和一般平方根。
多边形:了解多边形的外角和性质,即多边形的外角和为360°。
同时,掌握多边形内角和公式,即n边形的内角和等于(n-2)×180°。
此外,还要理解多边形的对角线的条数计算方法。
平面直角坐标系:在平面内有公共原点而且互相垂直的两条数轴,构成了平面直角坐标系。
在这个坐标系中,可以通过点的坐标来确定点的位置,也可以通过坐标来找到对应的点。
此外,还要理解各象限内点的坐标符号以及坐标轴上点的坐标符号。
以上就是八年级上册数学知识点总结(人教版)的主要内容。
希望这些内容能够帮助你更好地理解和掌握八年级上册数学的知识。
人教版八年级数学上册知识点归纳总结全册资料
人教版八年级数学上册知识点归纳总结全册资料目录1. 单元一:有理数2. 单元二:平方根与立方根3. 单元三:一元一次方程4. 单元四:图形的平移与旋转5. 单元五:函数的概念与性质6. 单元六:方程与不等式7. 单元七:统计与概率8. 单元八:相交线与平行线9. 单元九:锐角与三角函数10. 单元十:三角恒等变换单元一:有理数- 有理数的定义与相反数- 有理数的大小比较- 有理数的加减法运算- 有理数的乘法运算- 有理数的除法运算- 近似数和有效数字单元二:平方根与立方根- 平方根的定义与性质- 平方根的计算- 平方根的应用- 立方根的定义与性质- 立方根的计算- 立方根的应用单元三:一元一次方程- 一元一次方程的定义与解的概念- 一元一次方程的解法与检验- 一元一次方程的应用单元四:图形的平移与旋转- 图形的平移与平移变换- 图形的旋转与旋转变换- 图形的轴对称与轴对称变换- 图形的合同与合同变换单元五:函数的概念与性质- 函数的定义与表示- 函数的自变量与因变量- 函数的图像与对应关系- 函数的单调性与奇偶性- 函数的性质与判断单元六:方程与不等式- 一元二次方程- 一元二次方程的解法与应用- 一元二次方程的判别式与根的关系- 一元二次不等式与解的概念- 一元二次不等式的解法与应用单元七:统计与概率- 统计图表的应用与分析- 统计调查与样本估计- 概率的基本概念与计算- 概率的应用与分析单元八:相交线与平行线- 平行线的定义、性质与判定- 平行线的性质与应用- 相交线的性质与应用- 平行线与相交线综合应用单元九:锐角与三角函数- 锐角的概念与性质- 三角函数的定义与计算- 锐角三角函数的应用与计算- 锐角三角函数的图像与性质单元十:三角恒等变换- 三角恒等式的等价性与证明- 三角恒等式的应用与计算- 三角恒等式的证明技巧与方法以上为人教版八年级数学上册的知识点归纳总结,希望对您有所帮助。
需要更详细的内容和解释,请参考教材或向老师咨询。
八年级上册数学知识点总结人教版
八年级上册数学知识点总结人教版八年级上册数学知识点总结(人教版)数学是一门基础学科,对于学生的学习能力和逻辑思维有着极大的影响。
在八年级上册数学教材中,包含了许多重要的数学知识点,下面将对其中的重点进行总结。
一、代数运算1. 整数运算:整数的加减乘除运算,主要包括整数加法、减法、乘法和除法的运算法则。
2. 小数运算:小数的加减乘除运算,要掌握小数的进位、退位和与整数的运算。
3. 代数式的加减运算:同类项的合并与系数的分配律,要掌握多项式的加减运算,如将同类项合并并进行运算。
4. 括号的运算:通过运用括号进行运算,要掌握括号的展开与因式分解。
二、图形与几何1. 平面图形:包括直线、线段、射线、角、三角形、四边形等常见平面图形,并要理解其性质和分类。
2. 长度、面积和体积:要掌握常见图形的长度计算、面积计算和体积计算方法,包括直角三角形、矩形、正方形等的周长、面积计算。
3. 相似三角形:了解相似三角形的定义,掌握相似三角形的判定方法和性质。
4. 坐标系与图形的位置关系:了解二维直角坐标系的建立和坐标点的表示,掌握图形在坐标系中的位置关系和平移、旋转、翻转等基本变换。
三、函数与方程1. 函数的概念:了解函数的定义、自变量、因变量和函数值的概念,能够根据给定函数的定义域和值域等信息,求解函数值。
2. 线性函数:了解线性函数的定义,能够根据函数的自变量和因变量之间的关系,确定线性函数的解析式。
3. 一元一次方程:掌握一元一次方程的解法,包括等式的简化、移项和消元法等。
4. 反比例函数:了解反比例函数的概念和性质,能够根据给定条件确定反比例函数的解析式。
四、统计与概率1. 数据的收集和整理:了解数据的收集、整理和表示方法,包括频数表、频率表、折线图、直方图等。
2. 统计指标:掌握常见的统计指标,如平均数、中位数、众数和极差等,能够进行数据的分析和比较。
3. 概率的概念:了解随机事件和概率的概念,能够计算简单事件的概率,并掌握事件的排列组合方法。
804人教版八年级上册数学复习知识点总结(全)
1 全等三角形的对应边、对应角相等2边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等3 角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等4 推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等5 边边边公理(SSS) 有三边对应相等的两个三角形全等6 斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等7 定理1 在角的平分线上的点到这个角的两边的距离相等8 定理2 到一个角的两边的距离相同的点,在这个角的平分线上9 角的平分线是到角的两边距离相等的所有点的集合10 等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角)21 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边22 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合23 推论3 等边三角形的各角都相等,并且每一个角都等于60°24 等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)25 推论1 三个角都相等的三角形是等边三角形26 推论2 有一个角等于60°的等腰三角形是等边三角形27 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半28 直角三角形斜边上的中线等于斜边上的一半29 定理线段垂直平分线上的点和这条线段两个端点的距离相等30 逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上31 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合32 定理1 关于某条直线对称的两个图形是全等形33 定理2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线34定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上35逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称36勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^237勾股定理的逆定理如果三角形的三边长a、b、c有关系a^2+b^2=c^2 ,那么这个三角形是直角三角形38定理四边形的内角和等于360°39四边形的外角和等于360°40多边形内角和定理n边形的内角的和等于(n-2)×180°41推论任意多边的外角和等于360°42平行四边形性质定理1 平行四边形的对角相等43平行四边形性质定理2 平行四边形的对边相等44推论夹在两条平行线间的平行线段相等45平行四边形性质定理3 平行四边形的对角线互相平分46平行四边形判定定理1 两组对角分别相等的四边形是平行四边形47平行四边形判定定理2 两组对边分别相等的四边形是平行四边形48平行四边形判定定理3 对角线互相平分的四边形是平行四边形49平行四边形判定定理4 一组对边平行相等的四边形是平行四边形50矩形性质定理1 矩形的四个角都是直角51矩形性质定理2 矩形的对角线相等52矩形判定定理1 有三个角是直角的四边形是矩形53矩形判定定理2 对角线相等的平行四边形是矩形54菱形性质定理1 菱形的四条边都相等55菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角56菱形面积=对角线乘积的一半,即S=(a×b)÷257菱形判定定理1 四边都相等的四边形是菱形58菱形判定定理2 对角线互相垂直的平行四边形是菱形59正方形性质定理1 正方形的四个角都是直角,四条边都相等60正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角61定理1 关于中心对称的两个图形是全等的62定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分63逆定理如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称64等腰梯形性质定理等腰梯形在同一底上的两个角相等65等腰梯形的两条对角线相等66等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形67对角线相等的梯形是等腰梯形68平行线等分线段定理如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等69 推论1 经过梯形一腰的中点与底平行的直线,必平分另一腰70 推论2 经过三角形一边的中点与另一边平行的直线,必平分第三边71 三角形中位线定理三角形的中位线平行于第三边,并且等于它的一半72 梯形中位线定理梯形的中位线平行于两底,并且等于两底和的一半L=(a+b)÷2 S=L×h73 (1)比例的基本性质如果a:b=c:d,那么ad=bc如果ad=bc,那么a:b=c:d74 (2)合比性质如果a/b=c/d,那么(a±b)/b=(c±d)/d75 (3)等比性质如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b76 平行线分线段成比例定理三条平行线截两条直线,所得的对应线段成比例77 推论平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例78 定理如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边79 平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例80 定理平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似81 相似三角形判定定理1 两角对应相等,两三角形相似(ASA)82 直角三角形被斜边上的高分成的两个直角三角形和原三角形相似83 判定定理2 两边对应成比例且夹角相等,两三角形相似(SAS)84 判定定理3 三边对应成比例,两三角形相似(SSS)85 定理如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似86 性质定理1 相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比87 性质定理2 相似三角形周长的比等于相似比88 性质定理3 相似三角形面积的比等于相似比的平方89 任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值90任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值91圆是定点的距离等于定长的点的集合92圆的内部可以看作是圆心的距离小于半径的点的集合93圆的外部可以看作是圆心的距离大于半径的点的集合94同圆或等圆的半径相等95到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆96和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线97到已知角的两边距离相等的点的轨迹,是这个角的平分线98到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线99定理不在同一直线上的三点确定一个圆。
人教版八年级数学上册知识点总结
人教版八年级数学上册知识点总结第一章相似和几何变换1. 相似•定义:形状相同,大小不同的两个图形互为相似图形。
•判定条件:1.对应角相等2.对应边成比例•相似比:两个相似图形中对应边的比值。
2. 直角三角形•直角三角形的性质:1.斜边长等于两直角边长的平方和的平方根。
2.勾股定理:直角三角形的两直角边的平方和等于斜边的平方。
3. 几何变换•平移:保持形状和大小,相对位置不变。
•旋转:相对位置和形状不变,大小不变。
•翻转:相对位置和形状不变,大小不变。
第二章分式与方程1. 分式•定义:形如$\\frac{a}{b}$ 的表达式,其中a和b都是整数,b eq0。
•分式的四则运算:1.加减法:通分,分子相加或相减,分母不变。
2.乘法:分子相乘,分母相乘。
3.除法:将除数取倒数,再乘以被除数。
2. 方程•方程的定义:将两个代数式连接起来,成为一条含有等号的数学陈述式。
•解方程的方法:1.消元法:将未知数的系数化为1,常数项为0。
2.代入法:用已知量代入方程,求出未知数。
3.等式法:将方程两边同时化为同一形式的代数式,得到相等的代数式。
第三章数据的收集和分析1. 数据的分类•按性质分类:1.数量性数据2.质量性数据•按来源分类:1.实际调查数据2.二手数据2. 数据的统计描述•平均数:1.算术平均数2.中位数3.众数•集中趋势指标:1.极差2.方差3.标准差第四章数学语言和数学符号1. 数学语言•数学语言中的常用词汇:1.和2.差3.积4.商5.等于6.不等于2. 数学符号•常用数学符号:1.$\\times$ 乘号2.$\\div$ 除号3.$\\pm$ 正负号4.$\\sqrt{x}$ 平方根5.$\\frac{a}{b}$ 分式符号结语以上是人教版八年级数学上册的知识点总结,希望能对你有所帮助。
人教版八年级数学上册知识点
人教版八年级数学上册知识点期末考也可能会用得上,实际上,真的不会有十分复杂的问题,不过你们也要大概地了解一下,这个关于((八班级)数学)数学的知识点。
下面是为大家精心整理的人教版八班级数学上册知识点,仅供参考。
人教版八班级数学上册知识点(一)整式的除法(1)同底数幂的除法:amanamn(a0 , m , n都是正整数,并且mn)即:同底数幂相除,底数不变,指数相减;(2)规定:a01(a0)即:任何不等于0的数的0次幂都等于1;(3)整式的除法:①单项式相除,把系数与同底数幂分别相除作为商的因式,对于只在被除式里含有的字母,则把连同它的指数作为商的一个因式;②多项式除以单项式,先把这个多项式的每一项除以这个单项式,再把所得商相加;人教版八班级数学上册知识点(二)等腰三角形(1)等腰三角形的性质:①等腰三角形的两个底角相等("等边对等角');②等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合;(2)等腰三角形是轴对称图形,三线合一所在直线是其对称轴;(只有1条对称轴)(3)等腰三角形的判定:①如果一个三角形有两条边相等;②如果一个三角形有两个角相等,那么这两个角所对的边也相等;(等角对等边)(4)等边三角形:三条边都相等的三角形;(等边三角形是特殊的等腰三角形)(5)等边三角形的性质:①等边三角形的三个内角都是60②等边三角形的每条边都存在三线合一;(6)等边三角形是轴对称图形,对称轴是三线合一所在直线;(有3条对称轴)(7)等边三角形的判定:①三条边都相等的三角形是等边三角形;②三个角都相等的三角形是等边三角形;③有一个角是60的等腰三角形是等边三角形;(8)在直角三角形中,如果一个锐角等于30,那么它所对的直角边等于斜边的一半;人教版八班级数学上册知识点(三)因式分解(1)因式分解:把一个多项式化成几个整式的积的形式的变形叫做因式分解;(也叫做把这个多项式分解因式);(2)公因式:多项式的各项都有的一个公共因式;(3)因式分解的(方法):提公因式法:关键在于找出最大公因式平方差公式:a -b =(a + b)(a - b)因式分解:公式法完全平方公式:(a + b) = a + 2ab +b(a - b) = a + 2ab +b人教版八班级数学上册知识点。
人教版初二数学上册知识点总结
人教版初二数学上册知识点总结初中数学是学生数学学习的一个重要阶段,对于初二学生来说,数学知识点的掌握和理解对于以后的学习起着至关重要的作用。
本文将对人教版初二数学上册的知识点进行总结,希望能够帮助学生更好地理解和掌握相关知识。
一、代数部分。
1. 代数基础知识。
代数是数学的一个重要分支,初二数学代数部分主要包括有理数、整式、一元一次方程等内容。
学生需要掌握有理数的加减乘除运算规则,整式的加减乘除运算法则,以及一元一次方程的解法等基础知识。
2. 一元一次方程。
一元一次方程是初中数学中的重要内容,学生需要掌握用方程解决实际问题的能力,包括列方程、解方程、检验解等步骤。
3. 不等式。
不等式是代数中的重要内容,学生需要理解不等式的意义和性质,掌握不等式的解法和应用。
二、几何部分。
1. 几何基本概念。
初二数学几何部分主要包括角的概念、直线、射影、平行线、相交线等内容。
学生需要理解这些基本概念,掌握相关性质和定理。
2. 图形的性质。
学生需要了解和掌握各种图形的性质,如三角形的性质、四边形的性质等,能够运用相关性质解决实际问题。
3. 相似与全等。
相似与全等是几何中的重要内容,学生需要理解相似与全等的概念,掌握相似三角形的判定和性质,以及全等三角形的判定和性质。
三、实数部分。
1. 实数的性质。
学生需要了解实数的性质,包括有理数和无理数的性质,实数的大小比较,实数的运算性质等内容。
2. 实数的应用。
实数的应用是初二数学的重要内容,学生需要掌握实数在实际问题中的应用,包括利用实数解决实际问题、实数在坐标系中的应用等。
四、统计与概率部分。
1. 统计。
统计是数学中的一门重要学科,学生需要了解统计的基本概念,包括频数、频率、中位数、众数等内容,能够进行简单的统计分析。
2. 概率。
概率是数学中的一门重要学科,学生需要了解概率的基本概念,包括随机事件、概率的计算、概率的性质等内容,能够运用概率解决实际问题。
总结,人教版初二数学上册的知识点涵盖了代数、几何、实数、统计与概率等内容,学生需要认真学习和掌握这些知识点,能够灵活运用于实际问题的解决中。
八年级上册数学知识点(最新)
八年级上册数学知识点(最新)人教版八年级上册数学知识点篇一一、分式※1、两个整数不能整除时,出现了分数;类似地,当两个整式不能整除时,就出现了分式。
整式A除以整式B,可以表示成的形式。
如果除式B中含有字母,那么称为分式,对于任意一个分式,分母都不能为零。
※2、整式和分式统称为有理式,即有:※3、进行分数的化简与运算时,常要进行约分和通分,其主要依据是分数的基本性质:分式的分子与分母都乘以(或除以)同一个不等于零的整式,分式的值不变。
※4、一个分式的分子、分母有公因式时,可以运用分式的基本性质,把这个分式的分子、分母同时除以它的们的公因式,也就是把分子、分母的公因式约去,这叫做约分。
二、分式的乘除法※1、分式乘以分式,用分子的积做积的分子,分母的积做积的分母;分式除以以分式,把除式的分子、分母颠倒位置后,与被除式相乘。
※2、分式乘方,把分子、分母分别乘方。
逆向运用 ,当n为整数时,仍然有成立。
※3、分子与分母没有公因式的分式,叫做最简分式。
三、分式的加减法※1、分式与分数类似,也可以通分。
根据分式的基本性质,把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫做分式的通分。
※2、分式的加减法:分式的。
加减法与分数的加减法一样,分为同分母的分式相加减与异分母的分式相加减。
(1)同分母的分式相加减,分母不变,把分子相加减;上述法则用式子表示是:(2)异号分母的分式相加减,先通分,变为同分母的分式,然后再加减;上述法则用式子表示是:※3、概念内涵:通分的关键是确定最简分母,其方法如下:最简公分母的系数,取各分母系数的最小公倍数;最简公分母的字母,取各分母所有字母的次幂的积,如果分母是多项式,则首先对多项式进行因式分解。
四、分式方程※1、解分式方程的一般步骤:①在方程的两边都乘最简公分母,约去分母,化成整式方程;②解这个整式方程;③把整式方程的根代入最简公分母,看结果是不是零,使最简公母为零的根是原方程的增根,必须舍去。
八年级上册人教版数学知识点总结归纳
八年级上册人教版数学知识点总结归纳数学是一门理科学科,是数的科学,它是以数量为对象,以数量关系为研究内容的科学。
八年级上册的数学课程主要包括了整式、方程与不等式、平面几何、数据与统计等内容。
下面将对这些内容进行详细总结归纳。
一、整式整式是由常数或变量(包括整数、有理数和无理数)通过有限次加减乘除和次数为非负整数的整数乘积构成的代数表达式。
1.整式的基本运算:整式的加减乘运算。
2.单项式与多项式:单项式是只包含一个变量或常数的整式,多项式是由单项式相加或相减得到的整式。
3.整式的倍法公式:如(a + b)(c + d) = ac + ad + bc + bd,可以通过展开括号和合并同类项的方式进行计算。
4.因式分解:将一个多项式表示成几个单项式的乘积,称为因式分解。
二、方程与不等式方程和不等式是描述由代数式关联的数之间的关系的数学语句。
1.方程的解:一个方程有解,表示存在一组值可以使方程等号成立。
2.一次方程:方程中变量的最高次数为1的方程,如ax + b = 0,可以通过移项和消元等方式求解。
3.二次方程:方程中变量的最高次数为2的方程,如ax^2 + bx +c = 0,可以通过配方法、公式法和因式分解法求解。
4.不等式:描述数之间大小关系的关系式,如ax + b > 0,可以通过移项和分析法求解。
三、平面几何平面几何是研究平面上的点、线、面及其相互关系的数学学科。
1.直线与角:直线是具有无限延伸的线段,角是由两条直线或线段所夹的部分。
2.三角形:三角形是由三条线段组成的封闭图形,常见的三角形有等边三角形、等腰三角形和直角三角形等。
3.四边形:四边形是由四条线段组成的封闭图形,常见的四边形有矩形、正方形和平行四边形等。
4.几何变换:涉及到图形的平移、旋转、翻转等几何变化的方法。
四、数据与统计数据与统计是研究数据收集、整理、分析和描述的数学领域。
1.数据的收集与整理:通过调查、观察和实验等方式获取数据,并对数据进行整理和分类。
(完整版)新人教版八年级数学上册知识点总结(最新整理)
八年级数学上册知识点总结第十一章三角形一、知识框架:二、知识概念:1.三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形.2.三边关系:三角形任意两边的和大于第三边,任意两边的差小于第三边.3.高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形的高.(钝角三角形三条高的交点在三角形外,直角三角形的三条高的交点在三角形上,锐角三角形的三条高在三角形内)4.中线:在三角形中,连接一个顶点和它对边中点的线段叫做三角形的中线.(三条中线的交点叫重心)5.角平分线:三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线.(三角形三条角平分线的交点到三边距离相等)6.三角形的稳定性:三角形的形状是固定的,三角形的这个性质叫三角形的稳定性.(例如自行车的三角形车架利用了三角形具有稳定性)7.多边形:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形.8.多边形的内角:多边形相邻两边组成的角叫做它的内角.9.多边形的外角:多边形的一边与它的邻边的延长线组成的角叫做多边形的外角.10.多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线.11.正多边形:在平面内,各个角都相等,各条边都相等的多边形叫正多边形.12.平面镶嵌:用一些不重叠摆放的多边形把平面的一部分完全覆盖,叫做用多边形覆盖平面,13.公式与性质:二、知识概念:基本定义:⑴全等形:能够完全重合的两个图形叫做全等形.⑵全等三角形:能够完全重合的两个三角形叫做全等三角形⑶对应顶点:全等三角形中互相重合的顶点叫做对应顶点⑷对应边:全等三角形中互相重合的边叫做对应边.⑸对应角:全等三角形中互相重合的角叫做对应角.基本性质:⑴三角形的稳定性:三角形三边的长度确定了,这个三角形的形状、大小就全确定,这个性质叫做三角形的稳定性.⑵全等三角形的性质:全等三角形的对应边相等,对应角相等⑷角角边():两角和其中一个角的对边对应相等的两个三角形全等.AAS⑸斜边、直角边():斜边和一条直角边对应相等的两个直角三角形HL全等.4.角平分线:⑴画法:⑵性质定理:角平分线上的点到角的两边的距离相等.⑶性质定理的逆定理:角的内部到角的两边距离相等的点在角的平分线上.(三角形三条角平分线的交点到三边距离相等)5.证明的基本方法:⑴明确命题中的已知和求证.(包括隐含条件,如公共边、公共角、对顶角、角平分线、中线、高、等腰三角形等所隐含的边角关系)⑵根据题意,画出图形,并用数字符号表示已知和求证.⑶经过分析,找出由已知推出求证的途径,写出证明过程.第十三章轴对称一、知识框架:二、知识概念:1.基本概念:⑴轴对称图形:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形.⑵两个图形成轴对称:把一个图形沿某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称.⑶线段的垂直平分线:经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线.⑷等腰三角形:有两条边相等的三角形叫做等腰三角形.相等的两条边叫做腰,另一条边叫做底边,两腰所夹的角叫做顶角,底边与腰的夹角叫做底角.⑸等边三角形:三条边都相等的三角形叫做等边三角形.2.基本性质:⑴对称的性质:①不管是轴对称图形还是两个图形关于某条直线对称,对称轴都是任何一对对应点所连线段的垂直平分线.②对称的图形都全等.⑵线段垂直平分线的性质:①线段垂直平分线上的点与这条线段两个端点的距离相等.②与一条线段两个端点距离相等的点在这条线段的垂直平分线上.⑶关于坐标轴对称的点的坐标性质①点关于轴对称的点的坐标为.P (,)x y x 'P (,)x y -②点关于轴对称的点的坐标为.P (,)x y y "P (,)x y -⑷等腰三角形的性质:①等腰三角形两腰相等.②等腰三角形两底角相等(等边对等角).③等腰三角形的顶角角平分线、底边上的中线,底边上的高相互重合.④等腰三角形是轴对称图形,对称轴是三线合一(1条).⑸等边三角形的性质:①等边三角形三边都相等.②等边三角形三个内角都相等,都等于60°③等边三角形每条边上都存在三线合一.④等边三角形是轴对称图形,对称轴是三线合一(3条).3.基本判定:⑴等腰三角形的判定:①有两条边相等的三角形是等腰三角形.②如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边).⑵等边三角形的判定:①三条边都相等的三角形是等边三角形.②三个角都相等的三角形是等边三角形.③有一个角是60°的等腰三角形是等边三角形.二、知识概念:1.分式:形如,是整式,中含有字母且不等于A BA B 、B B 分子,叫做分式的分母.B 2.分式有意义的条件:分母不等于0.3.分式的基本性质:分式的分子和分母同时乘以(或除以)同一个不为4.约分:把一个分式的分子和分母的公因式(不为1的数)约去,这种变形称为约分“”“”At the end, Xiao Bian gives you a passage. Minand once said, "people who learn to learn are very happy people.". In every wonderful life, learning is an eternal theme. As a professional clerical and teaching position, I understand the importance of continuous learning, "life is diligent, nothing can be gained", only continuous learning can achieve better self. Only by constantly learning and mastering the latest relevant knowledge, can employees from all walks of life keep up with the pace of enterprise development and innovate to meet the needs of the market. This document is also edited by my studio professionals, there may be errors in the document, if there are errors, please correct, thank you!。
(完整版)人教版八年级数学上册知识点总结
(完整版)人教版八年级数学上册知识点总
结
人教版八年级数学上册知识点总结
本文档总结了人教版八年级数学上册的知识点,旨在帮助学生复和掌握这一学期的数学内容。
1. 数与式
- 自然数、整数、有理数、无理数的概念和区别
- 分数与小数的相互转化及其应用
- 相反数和绝对值的概念和计算方法
- 科学记数法和约数、倍数的概念
2. 代数初步
- 代数式的概念和基本性质
- 代数式的运算:加减乘除、合并同类项、提取公因式等
- 一元一次方程的解法和实际应用
- 描述和解决问题中的代数问题
3. 几何初步
- 点、线、面及其相互关系的认识
- 基本图形的性质和计算
- 三角形的分类及其性质
- 直角三角形的勾股定理和应用
4. 相似和全等
- 图形的相似性质和判定方法
- 相似三角形的性质和计算
- 全等图形的性质和判定方法
5. 平面直角坐标系
- 平面直角坐标系的建立和使用
- 点的坐标及其运算
- 点在平面直角坐标系中的位置关系和性质
6. 数据与概率
- 统计图表的表示和读取
- 中心倾向与离散程度的度量
- 概率的基本概念和计算方法
- 利用概率解决问题
以上是人教版八年级数学上册的知识点总结,希望对同学们的学习有所帮助。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 全等三角形的对应边、对应角相等2边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等3 角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等4 推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等5 边边边公理(SSS) 有三边对应相等的两个三角形全等6 斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等7 定理1 在角的平分线上的点到这个角的两边的距离相等8 定理2 到一个角的两边的距离相同的点,在这个角的平分线上9 角的平分线是到角的两边距离相等的所有点的集合10 等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角)21 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边22 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合23 推论3 等边三角形的各角都相等,并且每一个角都等于60°24 等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)25 推论1 三个角都相等的三角形是等边三角形26 推论2 有一个角等于60°的等腰三角形是等边三角形27 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半28 直角三角形斜边上的中线等于斜边上的一半29 定理线段垂直平分线上的点和这条线段两个端点的距离相等30 逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上31 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合32 定理1 关于某条直线对称的两个图形是全等形33 定理2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线34定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上35逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称36勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^2 37勾股定理的逆定理如果三角形的三边长a、b、c有关系a^2+b^2=c^2 ,那么这个三角形是直角三角形38定理四边形的内角和等于360°39四边形的外角和等于360°40多边形内角和定理n边形的内角的和等于(n-2)×180°41推论任意多边的外角和等于360°42平行四边形性质定理1 平行四边形的对角相等43平行四边形性质定理2 平行四边形的对边相等44推论夹在两条平行线间的平行线段相等45平行四边形性质定理3 平行四边形的对角线互相平分46平行四边形判定定理1 两组对角分别相等的四边形是平行四边形47平行四边形判定定理2 两组对边分别相等的四边形是平行四边形48平行四边形判定定理3 对角线互相平分的四边形是平行四边形49平行四边形判定定理4 一组对边平行相等的四边形是平行四边形50矩形性质定理1 矩形的四个角都是直角51矩形性质定理2 矩形的对角线相等52矩形判定定理1 有三个角是直角的四边形是矩形53矩形判定定理2 对角线相等的平行四边形是矩形54菱形性质定理1 菱形的四条边都相等55菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角56菱形面积=对角线乘积的一半,即S=(a×b)÷257菱形判定定理1 四边都相等的四边形是菱形58菱形判定定理2 对角线互相垂直的平行四边形是菱形59正方形性质定理1 正方形的四个角都是直角,四条边都相等60正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角61定理1 关于中心对称的两个图形是全等的62定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分63逆定理如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称64等腰梯形性质定理等腰梯形在同一底上的两个角相等65等腰梯形的两条对角线相等66等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形67对角线相等的梯形是等腰梯形68平行线等分线段定理如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等69 推论1 经过梯形一腰的中点与底平行的直线,必平分另一腰70 推论2 经过三角形一边的中点与另一边平行的直线,必平分第三边71 三角形中位线定理三角形的中位线平行于第三边,并且等于它的一半72 梯形中位线定理梯形的中位线平行于两底,并且等于两底和的一半L=(a+b)÷2 S=L ×h73 (1)比例的基本性质如果a:b=c:d,那么ad=bc如果ad=bc,那么a:b=c:d74 (2)合比性质如果a/b=c/d,那么(a±b)/b=(c±d)/d75 (3)等比性质如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a /b76 平行线分线段成比例定理三条平行线截两条直线,所得的对应线段成比例77 推论平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例78 定理如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边79 平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例80 定理平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似81 相似三角形判定定理1 两角对应相等,两三角形相似(ASA)82 直角三角形被斜边上的高分成的两个直角三角形和原三角形相似83 判定定理2 两边对应成比例且夹角相等,两三角形相似(SAS)84 判定定理3 三边对应成比例,两三角形相似(SSS)85 定理如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似86 性质定理1 相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比87 性质定理2 相似三角形周长的比等于相似比88 性质定理3 相似三角形面积的比等于相似比的平方89 任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值90任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值91圆是定点的距离等于定长的点的集合92圆的内部可以看作是圆心的距离小于半径的点的集合93圆的外部可以看作是圆心的距离大于半径的点的集合94同圆或等圆的半径相等95到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆96和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线97到已知角的两边距离相等的点的轨迹,是这个角的平分线98到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线99定理不在同一直线上的三点确定一个圆。
100垂径定理垂直于弦的直径平分这条弦并且平分弦所对的两条弧101推论1 ①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧②弦的垂直平分线经过圆心,并且平分弦所对的两条弧③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧102推论2 圆的两条平行弦所夹的弧相等103圆是以圆心为对称中心的中心对称图形104定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等105推论在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等106定理一条弧所对的圆周角等于它所对的圆心角的一半107推论1 同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等-108推论2 半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径109推论3 如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形110定理圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角111①直线L和⊙O相交d<r②直线L和⊙O相切d=r③直线L和⊙O相离d>r112切线的判定定理经过半径的外端并且垂直于这条半径的直线是圆的切线113切线的性质定理圆的切线垂直于经过切点的半径114推论1 经过圆心且垂直于切线的直线必经过切点115推论2 经过切点且垂直于切线的直线必经过圆心116切线长定理从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角117圆的外切四边形的两组对边的和相等118弦切角定理弦切角等于它所夹的弧对的圆周角119推论如果两个弦切角所夹的弧相等,那么这两个弦切角也相等120相交弦定理圆内的两条相交弦,被交点分成的两条线段长的积相等121推论如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项122切割线定理从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项123推论从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等124如果两个圆相切,那么切点一定在连心线上125①两圆外离d>R+r ②两圆外切d=R+r③两圆相交R-r<d<R+r(R>r)④两圆内切d=R-r(R>r) ⑤两圆内含d<R-r(R>r)126定理相交两圆的连心线垂直平分两圆的公共弦127定理把圆分成n(n≥3):⑴依次连结各分点所得的多边形是这个圆的内接正n边形⑵经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形128定理任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆129正n边形的每个内角都等于(n-2)×180°/n130定理正n边形的半径和边心距把正n边形分成2n个全等的直角三角形131正n边形的面积Sn=pnrn/2 p表示正n边形的周长132正三角形面积√3a/4 a表示边长133如果在一个顶点周围有k个正n边形的角,由于这些角的和应为360°,因此k×(n-2)180°/n=360°化为(n-2)(k-2)=4134弧长计算公式:L=n兀R/180135扇形面积公式:S扇形=n兀R^2/360=LR/2136内公切线长= d-(R-r) 外公切线长= d-(R+r)。