(完整版)二次函数知识点总结和题型总结(2)
二次函数考点和题型归纳
二次函数考点和题型归纳一、基础知识1.二次函数解析式的三种形式 一般式:f (x )=ax 2+bx +c (a ≠0); 顶点式:f (x )=a (x -h )2+k (a ≠0); 两根式:f (x )=a (x -x 1)(x -x 2)(a ≠0). 2.二次函数的图象与性质二次函数系数的特征(1)二次函数y =ax 2+bx +c (a ≠0)中,系数a 的正负决定图象的开口方向及开口大小; (2)-b2a的值决定图象对称轴的位置; (3)c 的取值决定图象与y 轴的交点;(4)b 2-4ac 的正负决定图象与x 轴的交点个数. 解析式f (x )=ax 2+bx +c (a >0)f (x )=ax 2+bx +c (a <0)图象定义域 (-∞,+∞)(-∞,+∞)值域⎣⎡⎭⎫4ac -b 24a ,+∞ ⎝⎛⎦⎤-∞,4ac -b 24a单调性在⎣⎡⎭⎫-b2a ,+∞上单调递增;在⎝⎛⎦⎤-∞,-b 2a 上单调递减在⎝⎛⎦⎤-∞,-b2a 上单调递增;在⎣⎡⎭⎫-b 2a ,+∞上单调递减奇偶性 当b =0时为偶函数,当b ≠0时为非奇非偶函数顶点 ⎝⎛⎭⎫-b 2a,4ac -b 24a 对称性 图象关于直线x =-b2a成轴对称图形二、常用结论1.一元二次不等式恒成立的条件(1)“ax 2+bx +c >0(a ≠0)恒成立”的充要条件是“a >0,且Δ<0”. (2)“ax 2+bx +c <0(a ≠0)恒成立”的充要条件是“a <0,且Δ<0”. 2.二次函数在闭区间上的最值设二次函数f (x )=ax 2+bx +c (a >0),闭区间为[m ,n ]. (1)当-b2a≤m 时,最小值为f (m ),最大值为f (n );(2)当m <-b 2a ≤m +n2时,最小值为f ⎝⎛⎭⎫-b 2a ,最大值为f (n ); (3)当m +n 2<-b2a≤n 时,最小值为f ⎝⎛⎭⎫-b 2a ,最大值为f (m ); (4)当-b2a >n 时,最小值为f (n ),最大值为f (m ).考点一 求二次函数的解析式求二次函数的解析式常利用待定系数法,但由于条件不同,则所选用的解析式不同,其方法也不同.[典例] 已知二次函数f (x )满足f (2)=-1,f (-1)=-1,且f (x )的最大值是8,试确定此二次函数的解析式.[解] 法一:利用二次函数的一般式 设f (x )=ax 2+bx +c (a ≠0).由题意得⎩⎨⎧ 4a +2b +c =-1,a -b +c =-1,4ac -b24a =8,解得⎩⎪⎨⎪⎧a =-4,b =4,c =7.故所求二次函数为f (x )=-4x 2+4x +7. 法二:利用二次函数的顶点式 设f (x )=a (x -m )2+n .∵f (2)=f (-1),∴抛物线对称轴为x =2+(-1)2=12.∴m =12,又根据题意函数有最大值8,∴n =8,∴y =f (x )=a ⎝⎛⎭⎫x -122+8. ∵f (2)=-1,∴a ⎝⎛⎭⎫2-122+8=-1,解得a =-4, ∴f (x )=-4⎝⎛⎭⎫x -122+8=-4x 2+4x +7. 法三:利用零点式由已知f (x )+1=0的两根为x 1=2,x 2=-1, 故可设f (x )+1=a (x -2)(x +1), 即f (x )=ax 2-ax -2a -1.又函数有最大值y max =8,即4a (-2a -1)-a 24a =8.解得a =-4或a =0(舍去),故所求函数解析式为f (x )=-4x 2+4x +7.[题组训练]1.已知二次函数f (x )的图象的顶点坐标是(-2,-1),且图象经过点(1,0),则函数的解析式为f (x )=________.解析:法一:设所求解析式为f (x )=ax 2+bx +c (a ≠0).由已知得⎩⎪⎨⎪⎧ -b2a=-2,4ac -b24a =-1,a +b +c =0,解得⎩⎪⎨⎪⎧a =19,b =49,c =-59,所以所求解析式为f (x )=19x 2+49x -59.法二:设所求解析式为f (x )=ax 2+bx +c (a ≠0).依题意得⎩⎪⎨⎪⎧-b2a=-2,4a -2b +c =-1,a +b +c =0,解得⎩⎪⎨⎪⎧a =19,b =49,c =-59,所以所求解析式为f (x )=19x 2+49x -59.法三:设所求解析式为f (x )=a (x -h )2+k . 由已知得f (x )=a (x +2)2-1, 将点(1,0)代入,得a =19,所以f (x )=19(x +2)2-1,即f (x )=19x 2+49x -59.答案:19x 2+49x -592.已知二次函数f (x )的图象经过点(4,3),它在x 轴上截得的线段长为2,并且对任意x ∈R ,都有f (2-x )=f (2+x ),则函数的解析式f (x )=____________.解析:∵f (2-x )=f (2+x )对x ∈R 恒成立, ∴f (x )的对称轴为x =2.又∵f (x )的图象被x 轴截得的线段长为2, ∴f (x )=0的两根为1和3.设f (x )的解析式为f (x )=a (x -1)(x -3)(a ≠0). 又∵f (x )的图象经过点(4,3), ∴3a =3,a =1.∴所求f (x )的解析式为f (x )=(x -1)(x -3), 即f (x )=x 2-4x +3. 答案:x 2-4x +3考点二 二次函数的图象与性质考法(一) 二次函数图象的识别[典例]若一次函数y=ax+b的图象经过第二、三、四象限,则二次函数y=ax2+bx的图象只可能是()[解析]因为一次函数y=ax+b的图象经过第二、三、四象限,所以a<0,b<0,所以二次函数的图象开口向下,对称轴方程x=-b2a<0,只有选项C适合.[答案]C考法(二)二次函数的单调性与最值问题[典例](1)已知函数f(x)=-x2+2ax+1-a在x∈[0,1]时,有最大值2,则a的值为________.(2)设二次函数f(x)=ax2-2ax+c在区间[0,1]上单调递减,且f(m)≤f(0),则实数m的取值范围是________.[解析](1)函数f(x)=-x2+2ax+1-a=-(x-a)2+a2-a+1,对称轴方程为x=a.当a<0时,f(x)max=f(0)=1-a,所以1-a=2,所以a=-1.当0≤a≤1时,f(x)max=a2-a+1,所以a2-a+1=2,所以a2-a-1=0,所以a=1±52(舍去).当a>1时,f(x)max=f(1)=a,所以a=2.综上可知,a=-1或a=2.(2)依题意a≠0,二次函数f(x)=ax2-2ax+c图象的对称轴是直线x=1,因为函数f(x)在区间[0,1]上单调递减,所以a>0,即函数图象的开口向上,所以f(0)=f(2),则当f(m)≤f(0)时,有0≤m≤2.[答案](1)-1或2(2)[0,2][解题技法]1.二次函数最值问题的类型及解题思路 (1)类型:①对称轴、区间都是给定的; ②对称轴动、区间固定; ③对称轴定、区间变动.(2)解决这类问题的思路:抓住“三点一轴”数形结合,“三点”是指区间两个端点和中点,“一轴”指的是对称轴,结合配方法,根据函数的单调性及分类讨论的思想解决问题.2.二次函数单调性问题的求解策略(1)对于二次函数的单调性,关键是开口方向与对称轴的位置,若开口方向或对称轴的位置不确定,则需要分类讨论求解.(2)利用二次函数的单调性比较大小,一定要将待比较的两数通过二次函数的对称性转化到同一单调区间上比较.考法(三) 与二次函数有关的恒成立问题[典例] (1)已知函数f (x )=x 2+mx -1,若对于任意x ∈[m ,m +1],都有f (x )<0成立,则实数m 的取值范围是________;(2)已知函数f (x )=x 2+2x +1,f (x )>x +k 在区间[-3,-1]上恒成立,则k 的取值范围为________.[解析] (1)作出二次函数f (x )的草图如图所示,对于任意x ∈[m ,m +1],都有f (x )<0,则有⎩⎪⎨⎪⎧f (m )<0,f (m +1)<0,即⎩⎪⎨⎪⎧m 2+m 2-1<0,(m +1)2+m (m +1)-1<0,解得-22<m <0. (2)由题意得x 2+x +1>k 在区间[-3,-1]上恒成立. 设g (x )=x 2+x +1,x ∈[-3,-1], 则g (x )在[-3,-1]上递减. ∴g (x )min =g (-1)=1.∴k <1.故k 的取值范围为(-∞,1). [答案] (1)⎝⎛⎭⎫-22,0 (2)(-∞,1)[解题技法]由不等式恒成立求参数取值范围的思路及关键(1)一般有两个解题思路:一是分离参数;二是不分离参数.(2)两种思路都是将问题归结为求函数的最值,至于用哪种方法,关键是看参数是否已分离.这两个思路的依据是:a ≥f (x )恒成立⇔a ≥f (x )max ,a ≤f (x )恒成立⇔a ≤f (x )min .[题组训练]1.(2019·杭州模拟)已知f (x )=-4x 2+4ax -4a -a 2在[0,1]内的最大值为-5,则a 的值为( )A.54 B .1或54C .-1或54D .-5或54解析:选D f (x )=-4⎝⎛⎭⎫x -a 22-4a ,对称轴为直线x =a 2. ①当a2≥1,即a ≥2时,f (x )在[0,1]上单调递增,∴f (x )max =f (1)=-4-a 2.令-4-a 2=-5,得a =±1(舍去).②当0<a2<1,即0<a <2时,f (x )max =f ⎝⎛⎭⎫a 2=-4a . 令-4a =-5,得a =54.③当a2≤0,即a ≤0时,f (x )在[0,1]上单调递减,∴f (x )max =f (0)=-4a -a 2.令-4a -a 2=-5,得a =-5或a =1(舍去). 综上所述,a =54或-5.2.若函数y =x 2-3x +4的定义域为[0,m ],值域为⎣⎡⎦⎤74,4,则m 的取值范围为( ) A .(0,4] B.⎣⎡⎦⎤32,4 C.⎣⎡⎦⎤32,3D.⎣⎡⎭⎫32,+∞解析:选C y =x 2-3x +4=⎝⎛⎭⎫x -322+74的定义域为[0,m ],显然,在x =0时,y =4,又值域为⎣⎡⎦⎤74,4,根据二次函数图象的对称性知32≤m ≤3,故选C. 3.已知函数f (x )=a 2x +3a x -2(a >1),若在区间[-1,1]上f (x )≤8恒成立,则a 的最大值为________.解析:令a x =t ,因为a >1,x ∈[-1,1],所以1a ≤t ≤a ,原函数化为g (t )=t 2+3t -2,显然g (t )在⎣⎡⎦⎤1a ,a 上单调递增,所以f (x )≤8恒成立,即g (t )max =g (a )≤8恒成立,所以有a 2+3a -2≤8,解得-5≤a ≤2,又a >1,所以a 的最大值为2.答案:2[课时跟踪检测]A 级1.(2019·重庆三校联考)已知二次函数y =ax 2+bx +1的图象的对称轴方程是x =1,并且过点P (-1,7),则a ,b 的值分别是( )A .2,4B .-2,4C .2,-4D .-2,-4解析:选C ∵y =ax 2+bx +1的图象的对称轴是x =1,∴-b2a =1. ①又图象过点P (-1,7),∴a -b +1=7,即a -b =6. ② 由①②可得a =2,b =-4.2.已知函数f (x )=-x 2+4x +a ,x ∈[0,1],若f (x )有最小值-2,则a 的值为( ) A .-1 B .0 C .1D .-2解析:选D 函数f (x )=-x 2+4x +a 的对称轴为直线x =2,开口向下,f (x )=-x 2+4x +a 在[0,1]上单调递增,则当x =0时,f (x )的最小值为f (0)=a =-2.3.一次函数y =ax +b 与二次函数y =ax 2+bx +c 在同一坐标系中的图象大致是( )解析:选C 若a >0,则一次函数y =ax +b 为增函数,二次函数y =ax 2+bx +c 的图象开口向上,故可排除A ;若a <0,一次函数y =ax +b 为减函数,二次函数y =ax 2+bx +c 的图象开口向下,故可排除D ;对于选项B ,看直线可知a >0,b >0,从而-b2a <0,而二次函数的对称轴在y 轴的右侧,故可排除B.故选C.4.已知a ,b ,c ∈R ,函数f (x )=ax 2+bx +c ,若f (0)=f (4)>f (1),则( ) A .a >0,4a +b =0 B .a <0,4a +b =0 C .a >0,2a +b =0D .a <0,2a +b =0解析:选A 由f (0)=f (4),得f (x )=ax 2+bx +c 图象的对称轴为x =-b2a =2,∴4a +b =0,又f (0)>f (1),f (4)>f (1),∴f (x )先减后增,于是a >0,故选A.5.若关于x 的不等式x 2-4x -2-a >0在区间(1,4)内有解,则实数a 的取值范围是( ) A .(-∞,-2) B .(-2,+∞) C .(-6,+∞)D .(-∞,-6)解析:选A 不等式x 2-4x -2-a >0在区间(1,4)内有解等价于a <(x 2-4x -2)max , 令f (x )=x 2-4x -2,x ∈(1,4), 所以f (x )<f (4)=-2,所以a <-2.6.已知函数f (x )=x 2+2ax +3,若y =f (x )在区间[-4,6]上是单调函数,则实数a 的取值范围为________.解析:由于函数f (x )的图象开口向上,对称轴是x =-a , 所以要使f (x )在[-4,6]上是单调函数, 应有-a ≤-4或-a ≥6,即a ≤-6或a ≥4. 答案:(-∞,-6]∪[4,+∞)7.已知二次函数y =f (x )的顶点坐标为⎝⎛⎭⎫-32,49,且方程f (x )=0的两个实根之差等于7,则此二次函数的解析式是________.解析:设f (x )=a ⎝⎛⎭⎫x +322+49(a ≠0), 方程a ⎝⎛⎭⎫x +322+49=0的两个实根分别为x 1,x 2, 则|x 1-x 2|=2-49a=7, 所以a =-4,所以f (x )=-4x 2-12x +40. 答案:f (x )=-4x 2-12x +408.(2018·浙江名校协作体考试)y =2ax 2+4x +a -1的值域为[0,+∞),则a 的取值范围是________.解析:当a =0时,y =4x -1,值域为[0,+∞),满足条件;当a ≠0时,要使y =2ax 2+4x +a -1的值域为[0,+∞),只需⎩⎪⎨⎪⎧2a >0,Δ=16-8a (a -1)≥0,解得0<a ≤2.综上,0≤a ≤2.答案:[0,2]9.求函数f (x )=-x (x -a )在x ∈[-1,1]上的最大值.解:函数f (x )=-⎝⎛⎭⎫x -a 22+a 24的图象的对称轴为x =a 2,应分a 2<-1,-1≤a 2≤1,a2>1,即a <-2,-2≤a ≤2和a >2三种情形讨论.(1)当a <-2时,由图①可知f (x )在[-1,1]上的最大值为f (-1)=-1-a =-(a +1). (2)当-2≤a ≤2时,由图②可知f (x )在[-1,1]上的最大值为f ⎝⎛⎭⎫a 2=a24.(3)当a >2时,由图③可知f (x )在[-1,1]上的最大值为f (1)=a -1.综上可知,f (x )max=⎩⎪⎨⎪⎧-(a +1),a <-2,a24,-2≤a ≤2,a -1,a >2.10.已知二次函数f (x )满足f (x +1)-f (x )=2x ,且f (0)=1. (1)求f (x )的解析式;(2)当x ∈[-1,1]时,函数y =f (x )的图象恒在函数y =2x +m 的图象的上方,求实数m 的取值范围.解:(1)设f (x )=ax 2+bx +1(a ≠0), 由f (x +1)-f (x )=2x ,得2ax +a +b =2x . 所以,2a =2且a +b =0,解得a =1,b =-1,因此f (x )的解析式为f (x )=x 2-x +1.(2)因为当x ∈[-1,1]时,y =f (x )的图象恒在y =2x +m 的图象上方, 所以在[-1,1]上,x 2-x +1>2x +m 恒成立;即x 2-3x +1>m 在区间[-1,1]上恒成立.所以令g (x )=x 2-3x +1=⎝⎛⎭⎫x -322-54, 因为g (x )在[-1,1]上的最小值为g (1)=-1,所以m <-1.故实数m 的取值范围为(-∞,-1).B 级1.如图是二次函数y =ax 2+bx +c 图象的一部分,图象过点A (-3,0),对称轴为x =-1.给出下面四个结论:①b 2>4ac ;②2a -b =1;③a -b +c =0;④5a <b .其中正确的是( )A .②④B .①④C .②③D .①③解析:选B 因为图象与x 轴交于两点,所以b 2-4ac >0,即b 2>4ac ,①正确;对称轴为x =-1,即-b 2a=-1,2a -b =0,②错误; 结合图象,当x =-1时,y >0,即a -b +c >0,③错误;由对称轴为x =-1知,b =2a .又函数图象开口向下,所以a <0,所以5a <2a ,即5a <b ,④正确.2.已知y =f (x )是偶函数,当x >0时,f (x )=(x -1)2,若当x ∈⎣⎡⎦⎤-2,-12时,n ≤f (x )≤m 恒成立,则m -n 的最小值为( )A.13B.12C.34D .1解析:选D 当x <0时,-x >0,f (x )=f (-x )=(x +1)2,因为x ∈⎣⎡⎦⎤-2,-12,所以f (x )min =f (-1)=0,f (x )max =f (-2)=1,所以m ≥1,n ≤0,m -n ≥1.所以m -n 的最小值是1.3.已知函数f (x )=x 2+(2a -1)x -3.(1)当a =2,x ∈[-2,3]时,求函数f (x )的值域;(2)若函数f (x )在[-1,3]上的最大值为1,求实数a 的值.解:(1)当a =2时,f (x )=x 2+3x -3,x ∈[-2,3],对称轴为x =-32∈[-2,3], ∴f (x )min =f ⎝⎛⎭⎫-32=94-92-3=-214, f (x )max =f (3)=15,∴函数f (x )的值域为⎣⎡⎦⎤-214,15. (2)∵函数f (x )的对称轴为x =-2a -12. ①当-2a -12≤1,即a ≥-12时, f (x )max =f (3)=6a +3,∴6a +3=1,即a =-13,满足题意; ②当-2a -12>1,即a <-12时, f (x )max =f (-1)=-2a -1,∴-2a -1=1,即a =-1,满足题意.综上可知,a =-13或-1. 4.求函数y =x 2-2x -1在区间[t ,t +1](t ∈R)上的最大值.解:函数y =x 2-2x -1=(x -1)2-2的图象的对称轴是直线x =1,顶点坐标是(1,-2),函数图象如图所示,对t 进行讨论如下:(1)当对称轴在闭区间右边,即当t +1<1,即t <0时,函数在区间[t ,t +1]上单调递减,f (x )max =f (t )=t 2-2t -1.(2)当对称轴在闭区间内时,0≤t ≤1,有两种情况:①当t +1-1≤1-t ,即0≤t ≤12时, f (x )max =f (t )=t 2-2t -1;②当t +1-1>1-t ,即12<t ≤1时, f (x )max =f (t +1)=(t +1)2-2(t +1)-1=t 2-2.(3)当对称轴在闭区间左侧,即当t >1时,函数在区间[t ,t +1]上单调递增, f (x )max =f (t +1)=(t +1)2-2(t +1)-1=t 2-2.综上所述,t ≤12时,所求最大值为t 2-2t -1;t >12时,所求最大值为t 2-2.。
二次函数知识点及题型归纳总结
二次函数知识点及题型归纳总结知识点精讲一、二次函数解析式的三种形式及图像 1. 二次函数解析式的三种形式(1)一般式:2()(0)f x ax bx c a =++≠;(2)顶点式:2()()(0)f x a x m n a =-+≠;其中,(,)m n 为抛物线顶点坐标,x m =为对称轴方程. (3)零点式:12()()()(0)f x a x x x x a =--≠,其中,12,x x 是抛物线与x 轴交点的横坐标. 2.二次函数的图像二次函数2()(0)f x ax bx c a =++≠的图像是一条抛物线,对称轴方程为2bx a=-,顶点坐标为24(,)24b ac b a a--. (1) 单调性与最值①当0a >时,如图2-8所示,抛物线开口向上,函数在(,]2b a -∞-上递减,在[,)2ba-+∞上递增,当2b x a =-时, 2min 4()4ac b f x a -=;②当0a <时,如图2-9所示,抛物线开口向下,函数在(,]2ba -∞-上递增,在[,)b -+∞上递减,当bx =-时,;24()4ac b f x a -=.(2) 当240b ac ∆=->时,二次函数2()(0)f x ax bx c a =++≠的图像与x 轴有两个交点11(,0)M x 和22(,0)M x ,1212||||||M M x x a =-==. 二、二次函数在闭区间上的最值闭区间上二次函数最值的取得一定是在区间端点或顶点处.对二次函数2()(0)f x ax bx c a =++≠,当0a >时,()f x 在区间[,]p q 上的最大值是M ,最小值是m ,图2-9令02p qx +=: (1) 若2bp a-≤,则(),()m f p M f q ==;(2) 若02b p x a <-<,则(),()2bm f M f q a =-=;(3) 若02b x q a ≤-<,则(),()2bm f M f p a =-=;(4) 若2bq a-≥,则(),()m f q M f p ==.三、一元二次方程与二次函数的转化1.实系数一元二次方程20(0)ax bx c a ++=≠的实根符号与系数之间的关系(1)方程有两个不等正根12,x x ⇔212124000b ac b x x a c x x a ⎧⎪∆=->⎪⎪+=->⎨⎪⎪=>⎪⎩(2)方程有两个不等负根12,x x ⇔212124000b ac b x x a c x x a ⎧⎪∆=->⎪⎪+=-<⎨⎪⎪=>⎪⎩(3)方程有一正根和一负根,设两根为12,x x ⇔120c x x a=< 2.一元二次方程20(0)ax bx c a ++=≠的根的分布问题一般情况下需要从以下4个方面考虑:(1) 开口方向;(2)判别式;(3)对称轴2bx a=-与区间端点的关系;(4)区间端点函数值的正负. 设12,x x 为实系数方程20(0)ax bx c a ++=>的两根,则一元二次20(0)ax bx c a ++=>的根的分布与其限定条件如表2-5所示.四、二次不等式转化策略1. 二次不等式的解集与系数的关系若二次不等式2()0f x ax bx c =++≤的解集是0(,][,)a b a c a αβαβαβ⎧⎪<⎪⎪-∞+∞⇔+=-⎨⎪⎪⋅=⎪⎩二次不等式解集的构成是与二次函数图像的开口方向及与x 轴交点横坐标有关的.2. 二次函数恒大于零或恒小于零的转化策略已知二次函数2()(0)f x ax bx c a =++≠.()0f x >恒成立00a >⎧⇔⎨∆<⎩;()0f x <恒成立00a <⎧⇔⎨∆<⎩.注 若表述为“已知函数2()f x ax bx c =++”,并未限制为二次函数,则应有()0f x >恒成立00a >⎧⇔⎨∆<⎩或00a b c ==⎧⎨>⎩;()0f x <恒成立00a <⎧⇔⎨∆<⎩或00a b c ==⎧⎨<⎩. 五、二次函数有关问题的求解方法与技巧有关二次函数的问题,关键是利用图像.(1) 要熟练掌握二次函数在某区间上的最值或值域的求法,特别是含参数的两类问 题——动轴定区间和定轴动区间,解法是抓住“三点一轴”,三点指的是区间两个端点和区间中点,一轴指对称轴.即注意对对称轴与区间的不同位置关系加以分类讨论,往往分成:①轴处在区间的左侧;②轴处在区间的右侧;③轴穿过区间内部(部分题目还需讨论轴与区间中点的位置关系),从而对参数值的范围进行讨论.(2) 对于二次方程实根分布问题,要抓住四点,即开口方向、判别式、对称轴位置及区间端点函数值正负.题型归纳及思路提示题型1 二次函数、一元二次方程、二次不等式的关系思路提示 二次函数、二次方程、二次不等式都是利用二次函数的图像及性质进行解答,利用数形结合思想进行分析.例2.41 “0a <”是“方程2210ax x ++=至少有一个负数根”的( )A.必要不充分条件 B.充分不必要条件 C.充要条件 D.既不充分也不必要条件解析 由于0a <,则方程2210ax x ++=的判别式440a ∆=->,设12,x x 为方程的两根,则12122010x x ax x a ⎧+=->⎪⎪⎨⎪=<⎪⎩,故12,x x 异号,因此方程有一个负数根;但反之,若方程2210ax x ++=有负数根,当0a =时,即210x +=有负数根12x =-,那么方程2210ax x ++=有负数根⇒0a <.因此“0a <”是方程“2210ax x ++=至少有一个负数根”的充分不必要条件.故选B.变式1 已知函数2()f x ax bx c =++,且a b c >>,0a b c ++=,集合{|()0}A m f m =<,则( ). A. m A ∀∈ ,都有(3)0f m +> B. m A ∀∈ ,都有(3)0f m +<C. 0m A ∃∈,使得0(3)0f m +=D. 0m A ∃∈,使得0(3)0f m +<变式2 已知函数2()24(03)f x ax ax a =++<<,若12x x <,121x x a +=-,则( ).A. 12()()f x f x <B. 12()()f x f x =C. 12()()f x f x >D. 1()f x 与2()f x 的大小不能确定例 2.42 (2012江苏13)已知函数2()(,)f x x ax b a b R =++∈的值域为[0,)+∞,若关于x 的不等式()f x c <的解集为(,6)m m +,则实数c 的值为_____________. 解析 将二次不等式转化为二次方程求解.由题意知2()f x x ax b =++的值域为[0,)+∞,得240a b ∆=-=.不等式()f x c < ()0f x c ⇔-<,即20x ax b c ++-<的解集为(,6)m m +,设方程20x ax b c ++-=的两根为12,x x ,则1212x x ax x b c +=-⎧⎨=-⎩,12||x x -==6==,得9c =.评注 本题的关键在于将二次不等式转化为二次方程求解.即不等式2x ax b c ++<的解集为(,6)m m +与方程2x ax b c ++=的实根12,x x 之间的联系,即12||6x x -=.变式1 (2012浙江理17)设a R ∈,若0x >时均有2[(1)1](1)0a x x ax ----≥,则______a =. 变式2 (2012北京理14)已知()(2)(3),()22x f x m x m x m g x =-++=-,若同时满足条件:①,()0x R f x ∀∈<或()0g x <;②(,4),()()0x f x g x ∃∈-∞-<,则m 的取值范围是________. 题型2 二次方程20(0)ax bx c a ++=≠的实根分布及条件思路提示 结合二次函数2()f x ax bx c =++的图像分析实根分布,得到其限定条件,列出关于参数的不等式,从而解不等式求参数的范围.例2.43 已知,αβ是方程2(21)420x m x m +-+-=的两个根,且2αβ<<,求实数m 的取值范围. 分析 根据二次方程根的分布结合图像求解.解析 根据题意,如图2-10所示,对于2()(21)42f x x m x m =+-+-,由图像知2αβ<<,得(2)0f <,故2(2)2(21)2420f m m =+-⨯+-<,解得3m <-,所以m 的取值范围是(,3)-∞-.图2-10评注 利用图像法研究二次方程根的分布问题,会起到事半功倍的效果.变式1 关于x 的方程22(1)210m x mx -+-=的两个根,一个小于0,一个大于1.求实数m 的取值范围. 变式2 已知二次函数2()2(,)f x x bx c b c R =++∈满足(1)0f =,且关于x 的方程()0f x x b ++=的两个实数根分别在区间(3,2)--和(0,1)内,求实数b 的取值范围.例2.44 已知方程32230(,,)x ax bx c a b cR +++=∈的三个实根可分别作为一个椭圆、一个双曲线、一个).A. )+∞ B.)+∞ C.)+∞ D. )+∞ 解析 由方程32230(,,)x ax bx c a b c R +++=∈有三个实根123,,x x x ,且满足12301,1,1x x x <<=>.则231a b c ++=-,得123c a b =---.32232310x ax bx a b ++---=, (*)由1x =是方程的根,可知方程(*)可写成:2(1)[(231)]0x x mx a b -++++=,展开并与方程(*)对照系数可得21m a =+.所以2(21)(231)0x a x a b +++++=. 令2()(21)(231)f x x a x a b =+++++,(0)2310(1)4330f a b f a b =++>⎧⎨=++<⎩,如图2-11,(,)a b 所在的区域如阴影部分所示,点1(1,)3A -)+∞.故选A.图2-11变式1 设直线2y x m =-+与y 轴相交于点P ,与曲线22:33(1)C x y x -=≥相交于Q ,R ,且|PQ|<|PR |,求||||PR PQ 的取值范围. 题型3 二次函数“动轴定区间”、“定轴动区间”问题思路提示 根据二次函数图像,分析对称轴与区间的位置关系.例2.45 函数2()23f x x ax =--在区间[1,2]上是单调函数,则( ). A. (,1)a ∈-∞ B. (2,)a ∈+∞ C. [1,2) D. (,1][2,)a ∈-∞+∞ 分析 利用区间[1,2]在对称轴的左侧和右侧分别作图.解析 作出函数在[1,2]上符合单调区间的图像,如图2-12(a ),(b)所示的情况均满足要求.故选D.图2-12(b)(a)x评注 在处理“动轴定区间”问题时,首先应确定不定量,即区间一定,然后根据题目要求分类讨论对称轴与区间的相对位置关系,求解参数的范围.变式1 函数2()23f x x kx =-+在[1,)-+∞上是增函数,求实数k 的取值范围. 例2.46 求函数2()21f x x ax =--在[0,2]上的值域.分析 解答本题可结合二次函数的图像及对称轴与区间的位置关系. 解析 2()21f x x ax =--,抛物线()y f x =开口向上,对称轴x a =.(1) 当0a ≤时,函数在区间[0,2]上为增函数,故min max (0)1,(2)34y f y f a ==-==-,所以函数的值域为[1,34]a --.(2) 当2a ≥时,函数在区间[0,2]上为减函数,故min max (2)34,(0)1y f a y f ==-==-,所以函数的值域为[34,1]a --.(3) 当01a <≤时,函数在区间[0,]a 上为减函数,在区间[,2]a 上为增函数,故2min max ()(1),(2)34y f a a y f a ==-+==-,所以函数的值域为2[(1),34]a a -+-.(4) 当12a <≤时,函数在区间[0,]a 上为减函数,在区间[,2]a 上为增函数,故2min max ()(1),(0)1y f a a y f ==-+==-,所以函数的值域为2[(1),1]a -+-.评注 在求二次函数的最值时,要注意定义域是R 还是区间[,]m n ,若是区间[,]m n ,最大(小)值不一定在对称轴处取得,而应该看对称轴是在区间[,]m n 内还是在 区间的左边或右边.在区间的某一边时,应该利用函数的单调性求解,最值不在对称轴处取得,而在区间的端点处取得.变式1 已知函数22()4422f x x ax a a =-+-+在区间[0,2]上有最小值3,求实数a 的值.例2.47 已知二次函数2()23f x x x =--,若()f x 在[,1]t t +上的最小值为()g t ,求()g t 的表达式. 分析 本题考查“定轴动区间”问题,求给定的二次函数在动区间上的最值,利用数形结合及分类讨论思想求解.解析 根据二次函数的解析式知1x =为其对称轴,分析对称轴与区间的位置关系,如图2-13所示.(b)(c)图2-13(a )x(1) 当1t >时,如图2-13(a )所示,2()()23g t f t t t ==--;(2) 当11t +<,即0t <时,如图2-13(b )所示,2()(1)4g t f t t =+=-; (3) 当11t t ≤≤+,即01t ≤≤时,如图2-13(c )所示,()(1)4g t f ==-.因此224(0)()4(01)23(1)t t g t t t t t ⎧-<⎪=-≤≤⎨⎪-->⎩.变式1 已知二次函数()f x 满足(1)(1)f x f x +=-,且(0)0,(1)1f f ==,若()f x 在区间[,]m n 上的值域是[,]m n ,求,m n 的值.变式2 (2012北京东城期末理8)已知函数2()1f x x =+的定义域为[,]()a b a b <,值域为[1,5],则在平面直角坐标系内,点(,)a b 的运动轨迹与两坐标轴围成的图形面积为A.8B.6C.4D.2最有效训练1.函数2263,[1,1]y x x x =-+∈-,则y 的最小值是( ).A. 32-B. 3C. 1-D.不存在 2.已知,,a b c 成等比数列,则函数2y ax bx c =++的图像与x 轴的交点个数为( ). A. 0 B. 1 C. 2 D. 0或13. 函数y =x 2+mx +1的图像关于直线x =1对称的充要条件是( ). A. m =-2 B. m =2 C. m =-1 D. m =14. 已知函数ƒ(x )=ax 2+bx +c ,且a >b >c ,a +b +c =0,则( ). A. ∀x ∈(0,1),都有ƒ(x )>0 B. ∀x ∈(0,1),都有ƒ(x )<0 C. ∃x 0∈(0,1),都有ƒ(x 0)=0 D. ∃x 0∈(0,1),都有ƒ(x 0)>05. 已知点A(0,2),B(2,0),若点C在函数y=x2的图像上,则使得∆ABC的面积为2的点C的个数为( ).A. 4B. 3C. 2D. 16. 已知函数ƒ(x)=2x2+(4-m)x+4-m,g(x)=mx,若对于任意实数x,ƒ(x)与g(x)的值至少有一个为正数,则实数m的取值范围是( ).A. [-4,4]B. (-4,4)C. (-∞,4)D. (-∞,-4)7. 若函数ƒ(x)=x2+(a+2)x+b(x∈[a,b])的图像关于直线x=1对称,则ƒ(x)max=________.8. 关于x的方程2x2+ax-5-2a=0的两实根可分别作为一个椭圆与一个双曲线的离心率,则实数a的取值范围是________.9. 当x∈[0,2]时,函数ƒ(x)=ax2+4(a-1)x-3在x=2时取得最大值,则a的取值范围是________.10.已知二次函数ƒ(x)=ax2-x+c(x∈R)的值域为[0,+∞),则c aa c+++22的最小值为________.11.已知定义域为R的函数ƒ(x)满足ƒ(ƒ(x)-x2+x)=ƒ(x)-x2+x.(1)若ƒ(2)=3,求ƒ(1),又若ƒ(0)=a,求ƒ(a);(2)设有且仅有一个实数x0,使得ƒ(x0)=x0,求函数ƒ(x)的解析式.12.已知二次函数ƒ(x)=x2+mx+1(x∈Z),且关于x的方程ƒ(x)=2在区间(-3,12)内有两个不同的实根.(1)求ƒ(x)的解析式;(2)若x∈[1,t](t>1)时,总有ƒ(x-4)≤4x成立,求t的最大值.。
最新二次函数知识点总结和题型总结
二次函数知识点总结和题型总结一、二次函数概念:1.二次函数的概念:一般地,形如2y ax bx c =++(a b c ,,是常数,0a ≠)的函 数,叫做二次函数。
这里需要强调:①a ≠ 0 ②最高次数为2 ③代数式一定是整式2. 二次函数2y ax bx c =++的结构特征: ⑴ 等号左边是函数,右边是关于自变量x 的二次式,x 的最高次数是2.⑵ a b c ,,是常数,a 是二次项系数,b 是一次项系数,c 是常数项. 例题:例1、已知函数y=(m -1)x m2 +1+5x -3是二次函数,求m 的值。
练习、若函数y=(m 2+2m -7)x 2+4x+5是关于x 的二次函数,则m 的取值范围 为 。
二、二次函数的基本形式1. 二次函数基本形式:2y ax =的性质:a 的绝对值越大,抛物线的开口越小。
2. 2y ax c =+的性质: 上加下减。
3. ()2y a x h =-的性质:左加右减。
4. ()2y a x h k =-+的性质:(技法:如果解析式为顶点式y=a(x -h)2+k ,则最值为k ;如果解析式为一般式y=ax 2+bx+c 则最值为4ac-b24a )1.抛物线y=2x 2+4x+m 2-m 经过坐标原点,则m 的值为 。
2.抛物y=x 2+bx+c 线的顶点坐标为(1,3),则b = ,c = . 3.抛物线y =x 2+3x 的顶点在( )A.第一象限B.第二象限C.第三象限D.第四象限4.若抛物线y =ax 2-6x 经过点(2,0),则抛物线顶点到坐标原点的距离为( )5.若直线y =ax +b 不经过二、四象限,则抛物线y =ax 2+bx +c( ) A.开口向上,对称轴是y 轴 B.开口向下,对称轴是y 轴 C.开口向下,对称轴平行于y 轴 D.开口向上,对称轴平行于y 轴 6.已知二次函数y=mx 2+(m -1)x+m -1有最小值为0,则m = 。
(完整版)二次函数知识点与题型总结.doc
二次函数知识点一、平面直角坐标系1、平面直角坐标系在平面内画两条互相垂直且有公共原点的数轴,就组成了平面直角坐标系。
注意: x 轴和y轴上的点,不属于任何象限。
2、点的坐标的概念点的坐标用a, b 表示,其顺序是横坐标在前,纵坐标在后,中间有“,”分开,横、纵坐标的位置不能颠倒。
平面内点的坐标是有序实数对,当 a b 时,a,b和b, a是两个不同点的坐标。
知识点二、函数及其相关概念1、变量与常量在某一变化过程中,可以取不同数值的量叫做变量,数值保持不变的量叫做常量。
一般地,在某一变化过程中有两个变量x 与y,如果对于 x 的每一个值,y都有唯一确定的值与它对应,那么就说 x 是自变量,y 是x的函数。
2、函数解析式用来表示函数关系的数学式子叫做函数解析式或函数关系式。
使函数有意义的自变量的取值的全体,叫做自变量的取值范围。
3、函数的三种表示法及其优缺点(1)解析法两个变量间的函数关系,有时可以用一个含有这两个变量及数字运算符号的等式表示,这种表示法叫做解析法。
(2)列表法把自变量 x 的一系列值和函数y 的对应值列成一个表来表示函数关系,这种表示法叫做列表法。
(3)图像法用图像表示函数关系的方法叫做图像法。
4、由函数解析式画其图像的一般步骤(1)列表:列表给出自变量与函数的一些对应值(2)描点:以表中每对对应值为坐标,在坐标平面内描出相应的点(3)连线:按照自变量由小到大的顺序,把所描各点用平滑的曲线连接起来。
知识点三、概念总结及基本性质1、二次函数的概念:一般地,形如y ax2bx c( a ,b ,c 是常数, a 0 )的函数,叫做二次函数。
二次函数的定义域是全体实数.2. 、二次函数y ax2bx c 的结构特征:⑴ 等号左边是函数,右边是关于自变量⑵ a ,b ,c 是常数, a 是二次项系数,x 的二次式,x 的最高次数是b 是一次项系数,c 是常数项.2.3、二次函数的基本形式(平移规律:左加右减,上加下减)(1) y ax2的性质: a 的绝对值越大,抛物线的开口越小。
初中二次函数最全知识点总结
初中二次函数最全知识点总结二次函数是初中数学中的重要内容,以下是二次函数的最全知识点总结:一、基本概念1. 二次函数的定义:y=ax^2+bx+c(a≠0)。
2. 求解二次函数的根:当y=0时,求解二次方程ax^2+bx+c=0的解。
3.二次函数的图像:二次函数的图像为抛物线,开口方向由a的正负决定。
4.抛物线的顶点:二次函数的图像的顶点坐标为(-b/2a,f(-b/2a))。
5.抛物线的对称轴:二次函数图像的对称轴是直线x=-b/2a。
二、图像与相关性质1.拉平方法:将一般式的二次函数化为顶点形式的二次函数。
2.抛物线的开口方向:若二次函数的a>0,则抛物线开口向上;若二次函数的a<0,则抛物线开口向下。
3.抛物线的最值:若抛物线开口向上,则函数有最小值(最小值为f(-b/2a));若抛物线开口向下,则函数有最大值。
4.抛物线的轴对称性:抛物线关于对称轴对称。
5.零点存在性:若一元二次方程有实数根,则抛物线与x轴有交点;若一元二次方程无实数根,则抛物线与x轴无交点。
6.抛物线的轨迹:当抛物线的开口向上时,抛物线图像在x轴上方;当抛物线的开口向下时,抛物线图像在x轴下方。
三、解二次方程1. 提取公因式法:ax^2+bx+c=0,公因式为a,即a(x^2+(b/a)x+c/a)=0,再由零因积性质解得x的值。
2. 公式法:对于一元二次方程ax^2+bx+c=0,解的公式为x=[-b±(b^2-4ac)^(1/2)]/(2a)。
3. 完全平方式:对于一元二次方程ax^2+bx+c=0,通过变形将方程化为完全平方式(x﹦d)^2=0,再解出x的值。
四、因式分解1. 根与系数关系:若x1和x2是一元二次方程ax^2+bx+c=0的两个解,则方程可以分解为a(x-x1)(x-x2)=0。
2. 判别式与因式分解:一元二次方程ax^2+bx+c=0,其中b^2-4ac 被称为判别式,当判别式大于0时,方程有两个不等实数根,即方程可因式分解为a(x-p)(x-q)=0,其中p和q是方程的两个根;当判别式等于0时,方程有两个相等实数根,即方程可因式分解为a(x-r)^2=0,其中r 是方程的根;当判别式小于0时,方程无实数根,即方程不可因式分解。
2021二次函数知识点总结及中考题型总结(精华版)
二次函数知识点总结及中考题型 ,易错题总结(一)二次函数知识点总结一、二次函数概念:1.二次函数的概念:一般地,形如2y axbx c ( a ,b ,c 是常数, a 0 )的函数,叫做二次函数。
这里需要强调: 和一元二次方程类似, 二次项系数 0 ,而b ,c a 可以为零.二次函数的定义域是全体实数. 2. 二次函数 bx c 的结构特征:2yax⑴ 等号左边是函数,右边是关于自变量x 的二次式, x 的最高次数是2.⑵ a ,b ,c 是常数, a 是二次项系数, b 是一次项系数, c 是常数项. 二、二次函数的基本形式 1. 二次函数基本形式:2ax的性质:y a 的绝对值越大,抛物线的开口越小。
开口方 顶点坐 对称a 的符 性质号向标轴x 0 时, y 随x 的增大而增大; x 0 时, y 随 x 的增大而减小; 0 时,向上0 ,0y 轴 a 0xy 有最小值 0 .x 0 时, y 随x 的增大而减小; x 0 时, y 随 x 的增大而增大; 0 时,y 轴 向下0 ,0a 0x2.y 有最大值 0 .2y axc的性质: 上加下减。
开口方 顶点坐 对称a 的符性质号向标轴0 时, y 随x 的增大而增大; x x 0 向上时, y 随 x 的增大而减小; 0 时,0 ,cy 轴a 0x y 有最小值 c .x 0 时, y 随x 的增大而减小; x 0 时, y 随 x 的增大而增大; 0 时,向下0 ,cy 轴 a 0x3.y 有最大值 c .2y a x h的性质:左加右减。
a 的符开口方 顶点坐 对称性质号向标轴h 时,y 随 x 的增大而增大; x x h y 随向上时, x 的增大而减小; h 时,h ,0x X=ha 0y有最小值 0 .h 时,y 随 x 的增大而减小; x x h y 随向下h ,0X=h时, x 的增大而增大; h 时,x a 0y 有最大值 0.2y a x hk的性质 :4.a 的符 开口方 顶点坐 对称性质号 向 标 轴h 时, y 随x 的增大而增大; x x h y 随向上时, x 的增大而减小; h 时,h ,kX=hx a 0y 有最小值 k.h 时,y 随 x 的增大而减小; x x h y 随向下时, x 的增大而增大; h 时,h ,kX=hx a 0y有最大值 k .三、二次函数图象的平移 1. 平移步骤:2y a x hk方法一:⑴ 将抛物线解析式转化成顶点式,确定其顶点坐标h ,k;2h ,ky ax ⑵ 保持抛物线 的形状不变,将其顶点平移到处,具体平移方法如下:向上 (k>0)【或向下 (k<0)】平移 |k|个单位y=ax 2y=ax 2+k向右 ( h>0) 【或左 ( h<0) 】平移 |k|个单位向右 (h>0)【或左 (h<0)】平移 |k| 个单位向右 (h>0)【或左 (h<0)】平移 |k| 个单位向上 ( k>0) 【或下 ( k<0) 】 平移 |k|个单位2 y=a( x-h)y=a (x-h)2+k向上 (k>0) 【或下 (k<0)】平移 |k|个单位2. 平移规律h 值正右移,负左移; k 值正上移,负下移”. 在原有函数的基础上“ 概括成八个字“左加右减,上加下减” .方法二:22c 沿 y 轴平移 :向上(下)平移 y ax bx y axbx c 变成m 个单位, ⑴y ax 2ax2bx c m (或 y bx c m )22y ax bx c 沿轴平移:向左(右)平移 y axbx c 变成m 个单位, ⑵22y a( x m)b(x m) c (或 y a(x m)b( x m) c )22y a x hky ax bx c 的比较 四、二次函数与22y a x h ky axbx c 是两种不同的表达形式, 从解析式上看,与后者通过222b 2 a4ac 4ab b 2a4ac 4ab y a x,kh配方可以得到前者,即 ,其中.2yaxbx c 图象的画法五、二次函数 22y ax bx c 化为顶点式 y a(x h)k五点绘图法: 利用配方法将二次函数 ,确 定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画0,c 0 ,c 顶点、与 y 轴的交点 图.一般我们选取的五点为:、以及 关于对称轴 2h ,c x 1 ,0 x 2 ,0 对称的点 、与 x 轴的交点 , (若与 x 轴没有交点,则取两组关于对称轴对称的点) .y 轴 画草图时应抓住以下几点: 的交点 . 开口方向, 对称轴, 顶点,与 x 轴的交点, 与2yaxbx c 的性质六、二次函数 2b ,4ac b b2a ,顶点坐标为x2a 4a0 时,抛物线开口向上,对称轴为.当a 1. b2a b2 a 时,y 随 b 2axxx时,y 随 x 的增大而减小; 当当x 的增大而增大; 当24ac 4aby 有最小值时, .2b4ac b b2a ,顶点坐标为, x2a 4a 0 时,抛物线开口向下, 对称轴为.当当a 2. b2 a 时,b2a b2 a 时,xx x y 随 x 的增大而增大;当 y 随x 的增大而减小;当 时, 24ac 4 aby 有最大值.七、二次函数解析式的表示方法 2y axbx c ( a , b , c 为常数, 0 );0 );1. 一般式:2. 顶点式:3. 两根式: a 2ya( x h) k(a , h , k 为常数, a ya( x x 1)( x x 2) (a 0 , x 1 , x 2 是抛物线与 x 轴两交点的横坐标) . 注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次2函数都可以写成交点式,只有抛物线与 x 轴有交点,即 0 时,抛物 b 4ac 线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互 化.八、二次函数的图象与各项系数之间的关系 1. 二次项系数 a2y axbx c 中, a 作为二次项系数,显然 二次函数 a 0 .0 时,抛物线开口向上, a 的值越大,开口越小,反之 a 的值越小,⑴ 当 a开口越大;0 时,抛物线开口向下, a 的值越小,开口越小,反之 a 的值越大,⑵ 当 a开口越大.a 总结起来, a 决定了抛物线开口的大小和方向, a 的正负决定开口方向,的大小决定开口的大小. 一次项系数 b2. a 确定的前提下, b 决定了抛物线的对称轴. 在二次项系数 0 的前提下,⑴ 在 ab2a 0y 轴左侧;当b 0时,,即抛物线的对称轴在 b2a 0,即抛物线的对称轴就是y 轴;当b 0时,b2a,即抛物线对称轴在 y 轴的右侧.当b 0时, ⑵ 在 a 0 的前提下,结论刚好与上述相反,即b2a 0y轴右侧;当b 0时,,即抛物线的对称轴在 b2a 0,即抛物线的对称轴就是y 轴;当b 0时,b2a,即抛物线对称轴在 y 轴的左侧.当b 0时,总结起来,在 a 确定的前提下, b 决定了抛物线对称轴的位置.b2a 在 y 轴左边则 x0 ,在 y 轴的右侧则 ab 的符号的判定: 对称轴ab ab 0 ,概括的说就是“左同右异” 总结: 3. 常数项 c0 时,抛物线与 y 轴的交点在 x 轴上方, 即抛物线与 y 轴交点的纵坐⑴ 当 c标为正;0 时,抛物线与 y 轴的交点为坐标原点,即抛物线与y 轴交点的纵⑵ 当 c坐标为 0 ;0 时,抛物线与 y 轴的交点在 x 轴下方, 即抛物线与 y 轴交点的纵坐 ⑶ 当 c标为负.c 决定了抛物线与 y 轴交点的位置. 总结起来,a ,b ,c 都确定,那么这条抛物线就是唯一确定的.总之,只要二次函数解析式的确定 :根据已知条件确定二次函数解析式,通常利用待定系数法.用待定系数法求 二次函数的解析式必须根据题目的特点, 选择适当的形式, 才能使解题简便. 一 般来说,有如下几种情况:1. 已知抛物线上三点的坐标,一般选用一般式;2. 已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式; x 轴的两个交点的横坐标,一般选用两根式;3. 已知抛物线与4. 已知抛物线上纵坐标相同的两点,常选用顶点式.九、二次函数图象的对称二次函数图象的对称一般有五种情况,可以用一般式或顶点式表达x 轴对称 1. 关于 22ya xb x关cyaxbx c; x 轴对称后,得到的解析式是 22y a x hk ya x h k关于x 轴对称后,得到的解析式是 ;y 轴对称2. 关于 22ya xb x关cy 轴对称后,得到的解析式是 y axbx c; 22y a x hky a x h ky 轴对称后,得到的解析式是关于 ;3. 关于原点对称22y a xb x关c于原点对称后,得到的解析式是y ax bx c ;22h y a x 关k 于原点对称后,得到的解析式是y a x h k ; 4. 关于顶点对称(即:抛物线绕顶点旋转 180°)2b2y axbx c2y a xb x 关c 于顶点对称后,得到的解析式是 ;2a 22y a x hky a x hk关于顶点对称后,得到的解析式是.m ,n 对称5. 关于点22m ,n y a x hk关于点 ya x h 2m2n k对称后,得到的解析式是根据对称的性质,显然无论作何种对称变换,抛物线的形状一定不会发生 a 变化,因此 永远不变.求抛物线的对称抛物线的表达式时,可以依据题意或 方便运算的原则,选择合适的形式,习惯上是先确定原抛物线(或表达式已知的抛物线)的顶点坐标及开口方向,再确定其对称抛物线的顶点坐标及开口方 向,然后再写出其对称抛物线的表达式. 十、二次函数与一元二次方程:1. 二次函数与一元二次方程的关系(二次函数与 x 轴交点情况):2ax2y bx c y 0一元二次方程 0 是二次函数 当函数值 时的特殊情况 .axbx c 图象与 x 轴的交点个数: A x 1 ,0 ,B x 2 ,0 2x 1 ,x 2(x 1x 2 ) ,其中的 ① 当0 时,图象与 x 轴交于两点 b4ac 2axbx c 0 a 0是一元二次方程的两根.这两点间的距离2b4ac aABx 2x 1.② 当 0 时,图象与 x 轴只有一个交点; ③ 当0 时,图象与 x 轴没有交点 .y 0 ; 0 时,图象落在 x 轴的上方,无论 x 为任何实数,都有 当 a 1' y 0 .0 时,图象落在 x 轴的下方,无论 x 为任何实数,都有 当 a 2'2y axbx c 的图象与 y 轴一定相交,交点坐标为(0, c) ;2. 抛物线3. 二次函数常用解题方法总结:⑴ 求二次函数的图象与 x 轴的交点坐标,需转化为一元二次方程; ⑵ 求二次函数的最大(小)值需要利用配方法将二次函数由一般式转化为顶 点式;2y axbx c中⑶ 根据图象的位置判断二次函数a ,b ,c 的符号,或由二次函 数中a ,b ,c 的符号判断图象的位置,要数形结合; ⑷ 二次函数的图象关于对称轴对称,可利用这一性质,求和已知一点对称的点坐标,或已知与 x 轴的一个交点坐标,可由对称性求出另一个交点坐标 .2axbx c(a 0) 本身就是所⑸ 与二次函数有关的还有二次三项式,二次三项式 含字母 x 的二次函数;下面以0 时为例,揭示二次函数、二次三项式和一元a二次方程之间的内在联系:抛物线与x 轴二次三项式的值一元二次方程有两个不相等实根有两个交点可正、可零、可负0抛物线与x 轴二次三项式的值一元二次方程有两个相等的实数根只有一个交为非负点抛物线与x 轴二次三项式的值一元二次方程无实数根.无交点恒为正二次函数图像参考:y=2x 2y=x 2x 2 22y=2x 2y=2(x-4)y=y=2(x-4) 2-3y=2 x 2 +22y=3(x+4)2y=3x x2y=2y=3(x-2) 2 y=2 x 2-4x22y= -y=-2(x+3) 2y= -x 2y=-2(x-3) 2y=-2x 22y=-2x刹车距离 何时获得最大利润最大面积是多少十一、函数的应用(二) 二次函数考查重点与常见题型1. 考查二次函数的定义、性质,有关试题常出现在选择题中 ,如:22y (m 2) x mm 2 的图像经过原点,已知以 x 为自变量的二次函数 则m 的值 是2. 综合考查正比例、反比例、一次函数、二次函数的图像,习题的特点是 在同一直角坐标系内考查两个函数的图像,试题类型为选择题, 如:kx y(k 0)2y kx k 如图,函数 和在同一直角坐标系中图象可能是图中的()3.考查用待定系数法求二次函数的解析式, 有关习题出现的频率很高, 习题类型 有中档解答题和选拔性的综合题,如:53 ,求这条抛物线的解析式。
二次函数知识点总结和题型总结(2),推荐文档
二次函数知识点总结和题型总结一、 二次函数概念:1. 二次函数的概念:一般地,形如y aX bx c( a,b,c是常数,a 0)的函 数,叫做二次函数。
这里需要强调:①a 工0 ②最高次数为2 ③代数式一定是整式2. 二次函数y aX bx c的结构特征:⑴ 等号左边是函数,右边是关于自变量 X 的二次式,X 的最高次数是2. ⑵a,b ,c是常数,a 是二次项系数,b 是一次项系数,c是常数项.例题:例1、已知函数y=(m —1)x m2 +1+5x — 3是二次函数,求m 的值。
练习、若函数y=(m 2+2m- 7)x 2+4x+5是关于x 的二次函数,贝U m 的取值范围 为 。
二、 二次函数的基本形式21. 二次函数基本形式:y ax的性质: a 的绝对值越大,抛物线的开口越小。
2. y ax 2 c 的性质: 上加下减。
3. y a x h的性质:左加右减。
4. y a x h k的性质:二次函数的对称轴、顶点、最值(技法:如果解析式为顶点式y=a(x -h)2+k,贝愎值为k;如果解析式为一般式4ac_b 2y=ax2+bx+c 贝U最值为一4^ )4.若抛物线y = ax 2 — 6x 经过点(2 , 0),则抛物线顶点到坐标原点的距离为()A.,13B. 10C. ,15D. .145 .若直线y = ax + b 不经过二、四象限,则抛物线 y = ax 2 + bx + c()A.开口向上,对称轴是y 轴B. 开口向下,对称轴是y 轴C.开口向下,对称轴平行于y 轴D.开口向上,对称轴平行于y 轴6.已知二次函数y=mx+(m — 1)x+m — 1有最小值为0,贝U m= _______ 。
三、二次函数图象的平移 1. 平移步骤:方法一:⑴ 将抛物线解析式转化成顶点式y ax h 2 k ,确定其顶点坐标⑵ 保持抛物线y ax 2的形状不变,将其顶点平移到h , 如下:y a(x m) b(x m) c (或 y a(x m) b(x m) c )函数y=ax 2+bx+c 的图象和性质例题:1. ___________________________________ 抛物线y=x 2+4x+9的对称轴是 。
二次函数知识点梳理及经典练习超详细
2【知识点梳理】一、基本概念:二次函数知识点梳理及经典练习1. 二次函数的概念:一般地,形如y axbx c ( a ,b ,c 是常数, a 0 )的函数,叫做二次函数。
这里需要强调: 和一元二次方程类似, 二次项系数 a 次函数的定义域是全体实数.0 ,而 b ,c 可以为零. 二2. 二次函数 y axbx c 的结构特征:⑴ 等号左边是函数,右边是关于自变量x 的二次式, x 的最高次数是 2.⑵ a ,b ,c 是常数, a 是二次项系数, b 是一次项系数, c 是常数项.二、二次函数基本形式1. 二次函数基本形式:y ax 的性质:a 的绝对值越大,抛物线的开口越小a 的符号开口方向 顶点坐标 对称轴 性质a 0向上0 ,0x 0 时, y 随 x 的增大而增大; x y 轴0 时, y 随x 的增大而减小; x 0 时, y 有最小值 0 .a 0向下0 ,0x 0 时, y 随 x 的增大而减小; x y 轴0 时, y 随x 的增大而增大; x 0 时, y 有最大值 0 .2. y ax2c 的性质:(上加下减)a 的符号开口方向 顶点坐标 对称轴 性质a 0向上0 ,cx 0 时, y 随 x 的增大而增大; x y 轴0 时, y 随x 的增大而减小; x 0 时, y 有最小值 c .a 0向下0 ,c x 0 时, y 随 x 的增大而减小; x y 轴0 时, y 随x 的增大而增大; x 0 时, y 有最大值 c .223. y a x h 2 的性质:(左加右减)a 的符号开口方向顶点坐标对称轴性质x h 时,y 随x 的增大而增大;x h 时,y 随a 0 向上a 0 向下h,0h,0X=hX=hx 的增大而减小;x h 时,y 有最小值0 .x h 时,y 随x 的增大而减小;x h 时,y 随x 的增大而增大;x h 时,y 有最大值0 .24. y a x h k 的性质:a 的符号开口方向顶点坐标对称轴性质x h 时,y 随x 的增大而增大;x h 时,y 随a 0 向上h,k a 0 向下h,k X=hX=hx 的增大而减小;x h 时,y 有最小值k .x h 时,y 随x 的增大而减小;x h 时,y 随x 的增大而增大;x h 时,y 有最大值k .三、二次函数图象的平移1. 平移步骤:方法1:⑴将抛物线解析式转化成顶点式 2y a x h k ,确定其顶点坐标h ,k ;⑵ 保持抛物线y ax2 的形状不变,将其顶点平移到h,k处,具体平移方法如下:y=ax2向上(k >0)【或向下(k<0)】平移|k|个单位y=ax 2+k向右(h>0)【或左(h<0)】平移|k|个单位y=a(x-h)2向右(h>0)【或左( h<0)】平移|k| 个单位向上(k>0)【或下(k<0)】平移|k|个单位向上(k>0)【或下( k<0)】平移|k|个单位向右(h>0)【或左( h<0)】平移|k|个单位y=a(x-h)2+k方法2:⑴y ax 2bx c 沿y 轴平移: 向上(下)平移m 个单位,y ax 2bx c 变成y ax 2 bx c m (或y ax 2bx c m )⑵y ax 2 bx c 沿轴平移:向左(右)平移m 个单位,y ax 2bx c 变成y a( x m) 2b( x m) c(或y a( x m) 2b( x m) c )2. 平移规律:“h值正右移,负左移;k 值正上移,负下移”.即“左加右减,上加下减”.四、二次函数 2y a x h k 与y ax2bx c 的比较从解析式上看, 2y a x h k 与y ax2bx c是两种不同的表达形式,后者通过配方可以得到前者,即y a x2 2b 4ac b2a 4a,其中h b ,k2a24ac b.4a五、二次函数y ax2bx c 图象的画法五点绘图法:利用配方法将二次函数y ax2bx c 化为顶点式y a(x h) 2k ,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们选取的五点为:顶点、与y 轴的交点0 ,c、以及0,c 关于对称轴对称的点2 h,c点).、与x 轴的交点x1,0 、x2,0(若与x 轴没有交点,则取两组关于对称轴对称的画草图时应抓住以下几点:开口方向,对称轴,顶点,与x 轴的交点,与y 轴的交点.六、二次函数y ax2bx c 的性质1.当a0 时,抛物线开口向上,对称轴为x b,顶点坐标为2ab 4 ac b,.2a 4a当x b 2a当xb2a 时,y 随x 的增大而减小;时,y 随x 的增大而增大;2当x b2a 时,y 有最小值4ac b .4a2.当a0 时,抛物线开口向下,对称轴为x b2a,顶点坐标为b 4 ac b,.2a 4a当x b 2a当x b2a 时,y 随x 的增大而增大;时,y 随x 的增大而减小;2当xb2a 时,y 有最大值4ac b.4a222七、二次函数解析式的表示方法 1. 二次函数解析式表示方法: ( 1)一般式 : y ax 2bx c ( a , b , c 为常数, a 0 );( 2)顶点式 : y a(x h)k ( a , h , k 为常数, a 0 );( 3)两根式 : y a(x x 1)( x x 2 ) ( a 0, x 1 , x 2 是抛物线与 x 轴两交点的横坐标) . 注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线与 x 轴有交点,即 b4 ac 0 时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化.2. 二次函数解析式的确定:根据已知条件确定二次函数解析式,通常利用 待定系数法 .用待定系数法求二次函数的解析式必须根据题目的特点,选择适当的形式,才能使解题简便.一般有如下几种情况:( 1) 已知抛物线上三点的坐标,一般选用一般式 ;( 2)已知抛物线顶点或对称轴或最大(小)值,一般选用 顶点式 ; ( 3)已知抛物线与 x 轴的两个交点的横坐标,一般选用 两根式 ;( 4)已知抛物线上纵坐标相同的两点,常选用顶点式 .八、二次函数的图象与各项系数之间的关系1. 二次项系数 a :a 0 .⑴ 当 a ⑵ 当 a 0 时,抛物线开口向上, a 的值越大,开口越小,反之 a 的值越小,开口越大; 0 时,抛物线开口向下, a 的值越小,开口越小,反之 a 的值越大,开口越大.总结: a 决定了抛物线开口的大小和方向, a 的正负决定开口方向, a 的大小决定开口大小.2. 一次项系数 b : 在二次项系数 a 确定的前提下, b 决定了抛物线的对称轴.⑴ 在 a 0 的前提下,当 b 0 时, 当 b 0 时, 当 b 0 时,b 0 ,即抛物线的对称轴在 y 轴左侧; 2a b 0 ,即抛物线的对称轴就是y 轴;2a b 0 ,即抛物线对称轴在 y 轴的右侧.2a⑵ 在 a 0 的前提下,结论刚好与上述相反,即当 b 0 时, 当 b 0 时, 当 b 0 时,b 0 ,即抛物线的对称轴在 y 轴右侧; 2ab 0 ,即抛物线的对称轴就是y 轴;2a b 0 ,即抛物线对称轴在 y 轴的左侧.2a总结:在 a 确定的前提下, b 决定了抛物线对称轴的位置.▲ ab 符号判定: 对称轴 xb 在 y 轴左边则 ab 2a0 ,在 y 轴的右侧则 ab 0,即“左同右异” . 23. 常数项 c⑴ 当 c ⑵ 当 c ⑶ 当 c0 时,抛物线与 y 轴的交点在 x 轴上方,即抛物线与 y 轴交点的纵坐标为正; 0 时,抛物线与 y 轴的交点为坐标原点,即抛物线与y 轴交点的纵坐标为 0 ;0 时,抛物线与 y 轴的交点在 x 轴下方,即抛物线与 y 轴交点的纵坐标为负.总结: c 决定了抛物线与 y 轴交点的位置.总之,只要 a ,b ,c 都确定,那么这条抛物线就是唯一确定的.九、二次函数图象的对称二次函数图象的对称一般有五种情况,可以用一般式或顶点式表达 1. 关于 x 轴对称:y ax 2 bx c 关于 x 轴对称后,得到的解析式是yax 2 bx c ;2y a x hk 关于 x 轴对称后,得到的解析式是2y a x h k ;2. 关于 y 轴对称:y ax 2 bx c 关于 y 轴对称后,得到的解析式是y ax 2bx c ;2 y a x hk 关于 y 轴对称后,得到的解析式是2y a x h k ;3. 关于原点对称:2y axbx c 关于原点对称后,得到的解析式是2yaxbx c ;2y a x hk 关于原点对称后,得到的解析式是2y a x h k ;4. 关于顶点对称 :(即:抛物线绕顶点旋转180°)2y ax 2bx c 关于顶点对称后,得到的解析式是2y axbx cb;2a2y a x hk 关于顶点对称后,得到的解析式是2ya x hk .5. 关于点 m ,n 对称:2y a x hk 关于点 m ,n 对称后,得到的解析式是2y a x h 2m2n k根据对称的性质, 显然无论作何种对称变换, 抛物线的形状一定不会发生变化, 因此 永远不变. 求抛物线的对称抛物线的表达式时,习惯上先确定原抛物线 (或表达式已知的抛物线)的顶点坐标及开口方向, 再确定其对称抛物线的顶点坐标及开口方向, 然后再写出其对称抛物线的表达式.12 1 2 1 22十、二次函数与一元二次方程:1. 二次函数与一元二次方程的关系(二次函数与 x 轴交点情况):一元二次方程 axbx c 0 是二次函数 y ax 2bx c 当函数值 y 0 时的特殊情况 .图像与 x 轴的交点个数:( 1) 当2b4ac 0 时,图像与 x 轴交于两点 A x ,0 ,B x ,0 (x x ) ,其中的 x ,x 是一元二次方程 ax 2bx c 0 a 0 的两根.这两点间的距离ABx 2 x 1b4ac .a( 2)当 0 时,图像与 x 轴只有一个交点; ( 3)当0 时,图像与 x 轴没有交点 .①当 a②当 a 0 时,图像落在 x 轴的上方,无论 x 为任何实数, 都有 y 0 ;0 时,图像落在 x 轴的下方, 无论 x 为任何实数, 都有 y 0 .2. 抛物线 y ax 2 bx c 的图像与 y 轴一定相交,交点坐标为(0 , c) ;3. 二次函数常用解题方法总结: ⑴ 求二次函数的图像与x 轴的交点坐标,需转化为一元二次方程;⑵ 求二次函数的最大(小)值需要利用 配方法 将二次函数由一般式转化为顶点式;⑶ 根据图像的位置判断二次函数y ax 2bx c 中 a ,b , c 的符号, 或由二次函数中 a ,b ,c 的符号判断图象的位置,要 数形结合 ; ⑷ 二次函数的图像关于对称轴对称,可利用这一性质,求和已知一点对称的点坐标,或已知与 x 轴的一个交点坐标,可由对称性求出另一个交点坐标.⑸ 与二次函数有关的还有二次三项式,二次三项式 ax2bx c(a 0) 本身就是所含字母 x 的二次函数;下面以 a 0 时为例,揭示二次函数、二次三项式和一元二次方程之间的内在联系:0 抛物线与 x 轴有两个交点 二次三项式的值可正、 可零、可负一元二次方程有两个不相等实根0 抛物线与 x 轴只有一个交点 二次三项式的值为非负一元二次方程有两个相 等的实数根0 抛物线与 x 轴无交点 二次三项式的值恒为正 一元二次方程无实数根 .222 2【基础题型概览】一、二次函数的基本概念m2+3m+21、y=mx是二次函数,则 m 的值为()A 、0,-3B 、0, 3C 、0D 、-32、关于二次函数 y=ax +b ,命题正确的是()A 、若 a>0, 则 y 随 x 增大而增大B 、x>0 时 y 随 x 增大而增大。
(完整)二次函数知识点总结——题型分类总结,推荐文档
二次函数知识点总结——题型分类总结一、二次函数的定义(考点:二次函数的二次项系数不为0,且二次函数的表达式必须为整式)1、下列函数中,是二次函数的是 .①y=x 2-4x+1; ②y=2x 2; ③y=2x 2+4x ; ④y=-3x ;⑤y=-2x -1; ⑥y=mx 2+nx+p ; ⑦y =错误!未定义书签。
; ⑧y=-5x 。
F (4)2、在一定条件下,若物体运动的路程s (米)与时间t (秒)的关系式为s=5t 2+2t ,则t =4秒时,该物体所经过的路程为 。
3、若函数y=(m 2+2m -7)x 2+4x+5是关于x 的二次函数,则m 的取值范围为 。
4、若函数y=(m -2)x m -2+5x+1是关于的二次函数,则m 的值为 。
x 6、已知函数y=(m -1)x m2 +1+5x -3是二次函数,求m 的值。
二、二次函数的对称轴、顶点、最值记忆:如果解析式为顶点式:y=a(x -h)2+k ,则对称轴为: ,最值为: ;如果解析式为一般式:y=ax 2+bx+c ,则对称轴为: ,最值为: ;如果解析式为交点式:y=(x-x 1)(x-x 2), 则对称轴为: ,最值为: 。
1.抛物线y=2x 2+4x+m 2-m 经过坐标原点,则m 的值为 。
2.抛物y=x 2+bx+c 线的顶点坐标为(1,3),则b = ,c = .3.抛物线y =x 2+3x 的顶点在( )A.第一象限B.第二象限C.第三象限D.第四象限4.若抛物线y =ax 2-6x 经过点(2,0),则抛物线顶点到坐标原点的距离为( )5.若直线y =ax +b 不经过二、四象限,则抛物线y =ax 2+bx +c( )A.开口向上,对称轴是y 轴B.开口向下,对称轴是y 轴C.开口向下,对称轴平行于y 轴D.开口向上,对称轴平行于y 轴6.已知抛物线y =x 2+(m -1)x -的顶点的横坐标是2,则m 的值是_ .147.抛物线y=x 2+2x -3的对称轴是 。
(完整版),初中二次函数知识点及经典题型,文档
二次函数的解析式二次函数的解析式有三种形式:2 bx c a b c a y ax 是常数,〔1〕一般一般式:( , , 0)2〔2〕两根当抛物线y ax bx c 与x轴有交点时,即对应二次好方程 2 bx c ax x1 x2有实根和存在时,依照二次三项式的分解因式2 bx c a x x x x 2ax y ax bx c( 1)( 2 ),二次函数可转变为两根式y a( x x1 x x2)( ) 。
若是没有交点,那么不能够这样表示。
a 的绝对值越大,抛物线的张口越小。
2 k a h k a y a x h是常数,〔3〕极点式:( ) ( , , 0)知识点八、二次函数的最值若是自变量的取值范围是全体实数,那么函数在极点处获取最大值〔或最小值〕2b 4ac bx y,即当时,。
最值2a 4ab 若是自变量的取值范围是x1 x x2 ,那么,第一要看可否在自变量取值范2a2b 4ac b围x1 x x2 内,假设在此范围内,那么当 x= 时,;假设不在此范围y最值2a 4a内,那么需要考虑函数在x1 x x2 范围内的增减性,若是在此范围内, y随x的增大而2 2增大,那么当x x2 时,y最大ax bx c,当x x1时,y ax bx1 c;如最小2 2 12果在此范围内, y随x的增大而减小,那么当x x1时,y ax bx1 c,当最大x x212时,y ax bx2 c。
最小2知识点九、二次函数的性质1 、二次函数的性质二次函数函数 2 bx c a b c ay ax ( , , 是常数,0)a>0 a<0yy图像0 x 0 x〔1〕抛物线张口向上,并向上无量延伸;〔1〕抛物线张口向下,并向下无量延伸;b b〔2〕对称轴是 x= ,极点坐标是〔2a 2ab〔2〕对称轴是 x= ,极点坐标是〔2a24ac b ,〕;4a2 b 4ac b,〕;2a 4a性b〔3〕在对称轴的左侧,即当 x< 时,y随2ab〔3〕在对称轴的左侧,即当 x< 时,y2a x的增大而减小;在对称轴的右侧,即当 x随x的增大而增大;在对称轴的右侧,质b b> 时,y随x的增大而增大,简记左即当x> 时,y随x的增大而减小,2a 2a减右增;简记左增右减;b 〔4〕抛物线有最低点,当 x= 时,y有最2ab 〔4〕抛物线有最高点,当 x= 时,y有2a小值,y最小值4ac4ab 2最大值,y最大值4ac4ab 22 bx c a b c a2、二次函数y ax ( , , 是常数, 0) 中,a、b、c 的含义:a a表示张口方向: >0 时,抛物线张口向上a <0 时,抛物线张口向下b b 与对称轴有关:对称轴为 x=2ac c表示抛物线与 y轴的交点坐标:〔 0,〕3、二次函数与一元二次方程的关系一元二次方程的解是其对应的二次函数的图像与 x轴的交点坐标。
二次函数知识点总结大全
二次函数知识点总结大全二次函数是高中数学中的重要内容之一,掌握了二次函数的相关知识,能够解决很多与实际问题相关的数学计算。
下面是二次函数的知识点总结。
一、基本概念1. 二次函数的定义:一个二次函数是指形如y=ax²+bx+c(a≠0)的函数,其中a、b、c为常数,且a表示二次项的系数。
2.二次函数的图像:二次函数的图像是一个开口朝上或朝下的抛物线。
3.二次函数的顶点:二次函数的图像的最高点或最低点称为顶点,记为(Vx,Vy)。
4.二次函数的轴对称性:二次函数的图像关于顶点所在的直线对称。
5.二次函数的零点:二次函数的图像与x轴交点的横坐标称为零点。
6.二次函数的平移:二次函数的图像在平面上的平移。
二、二次函数的图像1.抛物线开口的方向:当a>0时,抛物线开口朝上;当a<0时,抛物线开口朝下。
2. 求顶点:对于形如y=ax²+bx+c的二次函数,顶点坐标为(Vx, Vy),其中Vx=-b/2a,Vy=f(Vx)。
3.确定抛物线的图像:已知顶点和另一点,可以确定一个抛物线的图像。
4.求零点:二次函数的零点可以通过解一元二次方程求得。
三、二次函数的性质1. 平移性质:对于二次函数y=ax²+bx+c,平移后的函数是y=a(x-h)²+k,其中(h,k)为平移后的抛物线的顶点。
2.对称性质:二次函数的图像关于顶点对称。
3.零点性质:一个二次函数最多有两个零点,可以通过求解一元二次方程求得。
4.范围性质:对于抛物线开口朝上的二次函数,其值域为[y,+∞);对于抛物线开口朝下的二次函数,其值域为(-∞,y]。
四、二次函数的解析式1. 标准型:形如y=ax²+bx+c的二次函数。
2.顶点式:形如y=a(x-h)²+k的二次函数。
3.概率型:形如y=a(x-p)(x-q)的二次函数。
五、二次函数的应用1.最值问题:二次函数的最值可以通过求顶点得到。
初中数学二次函数最全知识点总结
初中数学二次函数最全知识点总结二次函数是初中数学的重点内容之一,掌握二次函数的知识对于解决实际问题和提高数学能力都具有重要意义。
以下是二次函数的最全知识点总结:一、基本概念1.函数:函数是一种特殊的关系,它可以用来描述自变量和因变量之间的对应关系。
2. 二次函数:二次函数是形如y = ax² + bx + c的函数,其中a、b、c为常数,a ≠ 0。
二、图像和性质1.基本图像:二次函数的基本图像是抛物线,开口方向由常数a的正负决定。
2. 零点:二次函数的零点即为方程ax² + bx + c = 0的解,可以用求根公式或配方法求出。
3.对称轴:二次函数的对称轴是抛物线的轴线,其方程为x=-b/(2a)。
4.最值:二次函数的最值可以通过对称轴得到,最值为抛物线的顶点。
5.单调性:当抛物线开口向上时,二次函数是增函数;开口向下时,二次函数是减函数。
6.平移:二次函数的图像可以通过上下平移、左右平移和扩大缩小来获得新图像。
三、二次函数的解析式1. 标准形式:当a = 1时,二次函数的标准形式是y = x² + px + q。
2.顶点式:二次函数的顶点式是y=a(x-h)²+k,其中(h,k)为顶点的坐标。
3. 一般形式:二次函数的一般形式是y = ax² + bx + c,实际问题中常用。
四、二次函数的变形1. 增长量:二次函数y = ax² + bx + c中,增长量即为b。
2.曲线方向:二次函数的曲线方向由a的正负决定,a>0时,开口向上;a<0时,开口向下。
3.平移:二次函数的图像可以通过上下平移、左右平移和扩大缩小进行变形。
4.翻折:二次函数的图像可以进行关于x轴或y轴的翻折,得到新的图像。
五、二次函数的性质1.零点性质:二次函数的零点个数最多为2个。
2.对称性质:二次函数关于对称轴具有对称性。
3.成立范围:二次函数在全体实数范围内都成立。
二次函数知识点归纳总结
二次函数知识点归纳总结一、基本概念:1. 二次函数的定义:二次函数是指具有形式f(x) = ax^2 + bx + c 的函数,其中a、b、c为常数,且a不等于零。
2.二次函数图像的一般特征:二次函数的图像为抛物线,开口方向由a的正负确定。
3.二次函数的平面坐标系:二次函数的图像在平面直角坐标系中的形状、位置以及与坐标轴的焦点有关。
二、顶点坐标与开口方向:1.顶点坐标:二次函数的顶点坐标可通过化简函数式得到,即x=-b/(2a)得到x坐标,再代入函数式计算得到y坐标。
2.开口方向:二次函数开口向上当且仅当a大于零,开口向下当且仅当a小于零。
三、对称轴与焦点:1.对称轴:二次函数的对称轴是垂直于x轴的直线,其方程为x=-b/(2a)。
2.焦点:二次函数的焦点与平面坐标系画图时的焦点位置有关。
四、性质与变化规律:1.奇偶性:二次函数的奇偶性由二次项的系数a的奇偶性决定,即,若a为奇数,则函数为奇函数;若a为偶数,则函数为偶函数。
2.正负性:二次函数的正负性由函数值的正负决定,其函数值与x的值、a的符号以及顶点坐标的y值正负有关。
3.单调性与极值:二次函数的单调性与开口方向有关,开口向上的二次函数在对称轴两侧单调递增,开口向下的二次函数在对称轴两侧单调递减。
二次函数的极值即为顶点值。
4.过点性质:给定两点,可以通过这两点在函数上的坐标计算出唯一确定的二次函数的函数式。
5.零点求解:二次函数的零点即为函数与x轴的交点,可以使用因式分解、配方法、求根公式等方法求解。
五、两点式与标准式:1.两点式:已知二次函数经过两点,可以利用两点式直接写出函数的函数式。
2.标准式:将二次函数的一般式化简成标准式,即f(x)=a(x-h)^2+k 的形式,能够直接得到函数的顶点坐标。
六、函数图像:1.函数图像绘制:根据顶点坐标、对称轴方程、开口方向以及函数值的正负性,可以绘制出二次函数的图像。
2.辅助判断:利用辅助判断函数的图像与坐标轴的交点,确定函数的变化规律。
二次函数知识点及题型归纳总结
二次函数知识点及题型归纳总结知识点精讲一、二次函数解析式的三种形式及图像 1. 二次函数解析式的三种形式(1)一般式:2()(0)f x ax bx c a =++≠;(2)顶点式:2()()(0)f x a x m n a =-+≠;其中,(,)m n 为抛物线顶点坐标,x m =为对称轴方程. (3)零点式:12()()()(0)f x a x x x x a =--≠,其中,12,x x 是抛物线与x 轴交点的横坐标. 2.二次函数的图像二次函数2()(0)f x ax bx c a =++≠的图像是一条抛物线,对称轴方程为2bx a=-,顶点坐标为24(,)24b ac b a a--. (1) 单调性与最值①当0a >时,如图2-8所示,抛物线开口向上,函数在(,]2b a -∞-上递减,在[,)2ba-+∞上递增,当2b x a =-时, 2min 4()4ac b f x a -=;②当0a <时,如图2-9所示,抛物线开口向下,函数在(,]2ba -∞-上递增,在[,)b -+∞上递减,当bx =-时,;24()4ac b f x a -=.(2) 当240b ac ∆=->时,二次函数2()(0)f x ax bx c a =++≠的图像与x 轴有两个交点11(,0)M x 和22(,0)M x ,1212||||||M M x x a =-==. 二、二次函数在闭区间上的最值闭区间上二次函数最值的取得一定是在区间端点或顶点处.对二次函数2()(0)f x ax bx c a =++≠,当0a >时,()f x 在区间[,]p q 上的最大值是M ,最小值是m ,图2-9令02p qx +=: (1) 若2bp a-≤,则(),()m f p M f q ==;(2) 若02b p x a <-<,则(),()2bm f M f q a =-=;(3) 若02b x q a ≤-<,则(),()2bm f M f p a =-=;(4) 若2bq a-≥,则(),()m f q M f p ==.三、一元二次方程与二次函数的转化1.实系数一元二次方程20(0)ax bx c a ++=≠的实根符号与系数之间的关系(1)方程有两个不等正根12,x x ⇔212124000b ac b x x a c x x a ⎧⎪∆=->⎪⎪+=->⎨⎪⎪=>⎪⎩(2)方程有两个不等负根12,x x ⇔212124000b ac b x x a c x x a ⎧⎪∆=->⎪⎪+=-<⎨⎪⎪=>⎪⎩(3)方程有一正根和一负根,设两根为12,x x ⇔120c x x a=< 2.一元二次方程20(0)ax bx c a ++=≠的根的分布问题一般情况下需要从以下4个方面考虑:(1) 开口方向;(2)判别式;(3)对称轴2bx a=-与区间端点的关系;(4)区间端点函数值的正负. 设12,x x 为实系数方程20(0)ax bx c a ++=>的两根,则一元二次20(0)ax bx c a ++=>的根的分布与其限定条件如表2-5所示.四、二次不等式转化策略1. 二次不等式的解集与系数的关系若二次不等式2()0f x ax bx c =++≤的解集是0(,][,)a b a c a αβαβαβ⎧⎪<⎪⎪-∞+∞⇔+=-⎨⎪⎪⋅=⎪⎩二次不等式解集的构成是与二次函数图像的开口方向及与x 轴交点横坐标有关的.2. 二次函数恒大于零或恒小于零的转化策略已知二次函数2()(0)f x ax bx c a =++≠.()0f x >恒成立00a >⎧⇔⎨∆<⎩;()0f x <恒成立00a <⎧⇔⎨∆<⎩.注 若表述为“已知函数2()f x ax bx c =++”,并未限制为二次函数,则应有()0f x >恒成立00a >⎧⇔⎨∆<⎩或00a b c ==⎧⎨>⎩;()0f x <恒成立00a <⎧⇔⎨∆<⎩或00a b c ==⎧⎨<⎩. 五、二次函数有关问题的求解方法与技巧有关二次函数的问题,关键是利用图像.(1) 要熟练掌握二次函数在某区间上的最值或值域的求法,特别是含参数的两类问 题——动轴定区间和定轴动区间,解法是抓住“三点一轴”,三点指的是区间两个端点和区间中点,一轴指对称轴.即注意对对称轴与区间的不同位置关系加以分类讨论,往往分成:①轴处在区间的左侧;②轴处在区间的右侧;③轴穿过区间内部(部分题目还需讨论轴与区间中点的位置关系),从而对参数值的范围进行讨论.(2) 对于二次方程实根分布问题,要抓住四点,即开口方向、判别式、对称轴位置及区间端点函数值正负.题型归纳及思路提示题型1 二次函数、一元二次方程、二次不等式的关系思路提示 二次函数、二次方程、二次不等式都是利用二次函数的图像及性质进行解答,利用数形结合思想进行分析.例2.41 “0a <”是“方程2210ax x ++=至少有一个负数根”的( )A.必要不充分条件 B.充分不必要条件 C.充要条件 D.既不充分也不必要条件解析 由于0a <,则方程2210ax x ++=的判别式440a ∆=->,设12,x x 为方程的两根,则12122010x x ax x a ⎧+=->⎪⎪⎨⎪=<⎪⎩,故12,x x 异号,因此方程有一个负数根;但反之,若方程2210ax x ++=有负数根,当0a =时,即210x +=有负数根12x =-,那么方程2210ax x ++=有负数根⇒0a <.因此“0a <”是方程“2210ax x ++=至少有一个负数根”的充分不必要条件.故选B.变式1 已知函数2()f x ax bx c =++,且a b c >>,0a b c ++=,集合{|()0}A m f m =<,则( ). A. m A ∀∈ ,都有(3)0f m +> B. m A ∀∈ ,都有(3)0f m +<C. 0m A ∃∈,使得0(3)0f m +=D. 0m A ∃∈,使得0(3)0f m +<变式2 已知函数2()24(03)f x ax ax a =++<<,若12x x <,121x x a +=-,则( ).A. 12()()f x f x <B. 12()()f x f x =C. 12()()f x f x >D. 1()f x 与2()f x 的大小不能确定例 2.42 (2012江苏13)已知函数2()(,)f x x ax b a b R =++∈的值域为[0,)+∞,若关于x 的不等式()f x c <的解集为(,6)m m +,则实数c 的值为_____________. 解析 将二次不等式转化为二次方程求解.由题意知2()f x x ax b =++的值域为[0,)+∞,得240a b ∆=-=.不等式()f x c < ()0f x c ⇔-<,即20x ax b c ++-<的解集为(,6)m m +,设方程20x ax b c ++-=的两根为12,x x ,则1212x x ax x b c +=-⎧⎨=-⎩,12||x x -==6==,得9c =.评注 本题的关键在于将二次不等式转化为二次方程求解.即不等式2x ax b c ++<的解集为(,6)m m +与方程2x ax b c ++=的实根12,x x 之间的联系,即12||6x x -=.变式1 (2012浙江理17)设a R ∈,若0x >时均有2[(1)1](1)0a x x ax ----≥,则______a =. 变式2 (2012北京理14)已知()(2)(3),()22x f x m x m x m g x =-++=-,若同时满足条件:①,()0x R f x ∀∈<或()0g x <;②(,4),()()0x f x g x ∃∈-∞-<,则m 的取值范围是________. 题型2 二次方程20(0)ax bx c a ++=≠的实根分布及条件思路提示 结合二次函数2()f x ax bx c =++的图像分析实根分布,得到其限定条件,列出关于参数的不等式,从而解不等式求参数的范围.例2.43 已知,αβ是方程2(21)420x m x m +-+-=的两个根,且2αβ<<,求实数m 的取值范围. 分析 根据二次方程根的分布结合图像求解.解析 根据题意,如图2-10所示,对于2()(21)42f x x m x m =+-+-,由图像知2αβ<<,得(2)0f <,故2(2)2(21)2420f m m =+-⨯+-<,解得3m <-,所以m 的取值范围是(,3)-∞-.图2-10评注 利用图像法研究二次方程根的分布问题,会起到事半功倍的效果.变式1 关于x 的方程22(1)210m x mx -+-=的两个根,一个小于0,一个大于1.求实数m 的取值范围. 变式2 已知二次函数2()2(,)f x x bx c b c R =++∈满足(1)0f =,且关于x 的方程()0f x x b ++=的两个实数根分别在区间(3,2)--和(0,1)内,求实数b 的取值范围.例2.44 已知方程32230(,,)x ax bx c a b cR +++=∈的三个实根可分别作为一个椭圆、一个双曲线、一个).A. )+∞ B.)+∞ C.)+∞ D. )+∞ 解析 由方程32230(,,)x ax bx c a b c R +++=∈有三个实根123,,x x x ,且满足12301,1,1x x x <<=>.则231a b c ++=-,得123c a b =---.32232310x ax bx a b ++---=, (*)由1x =是方程的根,可知方程(*)可写成:2(1)[(231)]0x x mx a b -++++=,展开并与方程(*)对照系数可得21m a =+.所以2(21)(231)0x a x a b +++++=. 令2()(21)(231)f x x a x a b =+++++,(0)2310(1)4330f a b f a b =++>⎧⎨=++<⎩,如图2-11,(,)a b 所在的区域如阴影部分所示,点1(1,)3A -)+∞.故选A.图2-11变式1 设直线2y x m =-+与y 轴相交于点P ,与曲线22:33(1)C x y x -=≥相交于Q ,R ,且|PQ|<|PR |,求||||PR PQ 的取值范围. 题型3 二次函数“动轴定区间”、“定轴动区间”问题思路提示 根据二次函数图像,分析对称轴与区间的位置关系.例2.45 函数2()23f x x ax =--在区间[1,2]上是单调函数,则( ). A. (,1)a ∈-∞ B. (2,)a ∈+∞ C. [1,2) D. (,1][2,)a ∈-∞+∞ 分析 利用区间[1,2]在对称轴的左侧和右侧分别作图.解析 作出函数在[1,2]上符合单调区间的图像,如图2-12(a ),(b)所示的情况均满足要求.故选D.图2-12(b)(a)x评注 在处理“动轴定区间”问题时,首先应确定不定量,即区间一定,然后根据题目要求分类讨论对称轴与区间的相对位置关系,求解参数的范围.变式1 函数2()23f x x kx =-+在[1,)-+∞上是增函数,求实数k 的取值范围. 例2.46 求函数2()21f x x ax =--在[0,2]上的值域.分析 解答本题可结合二次函数的图像及对称轴与区间的位置关系. 解析 2()21f x x ax =--,抛物线()y f x =开口向上,对称轴x a =.(1) 当0a ≤时,函数在区间[0,2]上为增函数,故min max (0)1,(2)34y f y f a ==-==-,所以函数的值域为[1,34]a --.(2) 当2a ≥时,函数在区间[0,2]上为减函数,故min max (2)34,(0)1y f a y f ==-==-,所以函数的值域为[34,1]a --.(3) 当01a <≤时,函数在区间[0,]a 上为减函数,在区间[,2]a 上为增函数,故2min max ()(1),(2)34y f a a y f a ==-+==-,所以函数的值域为2[(1),34]a a -+-.(4) 当12a <≤时,函数在区间[0,]a 上为减函数,在区间[,2]a 上为增函数,故2min max ()(1),(0)1y f a a y f ==-+==-,所以函数的值域为2[(1),1]a -+-.评注 在求二次函数的最值时,要注意定义域是R 还是区间[,]m n ,若是区间[,]m n ,最大(小)值不一定在对称轴处取得,而应该看对称轴是在区间[,]m n 内还是在 区间的左边或右边.在区间的某一边时,应该利用函数的单调性求解,最值不在对称轴处取得,而在区间的端点处取得.变式1 已知函数22()4422f x x ax a a =-+-+在区间[0,2]上有最小值3,求实数a 的值.例2.47 已知二次函数2()23f x x x =--,若()f x 在[,1]t t +上的最小值为()g t ,求()g t 的表达式. 分析 本题考查“定轴动区间”问题,求给定的二次函数在动区间上的最值,利用数形结合及分类讨论思想求解.解析 根据二次函数的解析式知1x =为其对称轴,分析对称轴与区间的位置关系,如图2-13所示.(b)(c)图2-13(a )x(1) 当1t >时,如图2-13(a )所示,2()()23g t f t t t ==--;(2) 当11t +<,即0t <时,如图2-13(b )所示,2()(1)4g t f t t =+=-; (3) 当11t t ≤≤+,即01t ≤≤时,如图2-13(c )所示,()(1)4g t f ==-.因此224(0)()4(01)23(1)t t g t t t t t ⎧-<⎪=-≤≤⎨⎪-->⎩.变式1 已知二次函数()f x 满足(1)(1)f x f x +=-,且(0)0,(1)1f f ==,若()f x 在区间[,]m n 上的值域是[,]m n ,求,m n 的值.变式2 (2012北京东城期末理8)已知函数2()1f x x =+的定义域为[,]()a b a b <,值域为[1,5],则在平面直角坐标系内,点(,)a b 的运动轨迹与两坐标轴围成的图形面积为A.8B.6C.4D.2最有效训练1.函数2263,[1,1]y x x x =-+∈-,则y 的最小值是( ).A. 32-B. 3C. 1-D.不存在 2.已知,,a b c 成等比数列,则函数2y ax bx c =++的图像与x 轴的交点个数为( ). A. 0 B. 1 C. 2 D. 0或13. 函数y =x 2+mx +1的图像关于直线x =1对称的充要条件是( ). A. m =-2 B. m =2 C. m =-1 D. m =14. 已知函数ƒ(x )=ax 2+bx +c ,且a >b >c ,a +b +c =0,则( ). A. ∀x ∈(0,1),都有ƒ(x )>0 B. ∀x ∈(0,1),都有ƒ(x )<0 C. ∃x 0∈(0,1),都有ƒ(x 0)=0 D. ∃x 0∈(0,1),都有ƒ(x 0)>05. 已知点A(0,2),B(2,0),若点C在函数y=x2的图像上,则使得∆ABC的面积为2的点C的个数为( ).A. 4B. 3C. 2D. 16. 已知函数ƒ(x)=2x2+(4-m)x+4-m,g(x)=mx,若对于任意实数x,ƒ(x)与g(x)的值至少有一个为正数,则实数m的取值范围是( ).A. [-4,4]B. (-4,4)C. (-∞,4)D. (-∞,-4)7. 若函数ƒ(x)=x2+(a+2)x+b(x∈[a,b])的图像关于直线x=1对称,则ƒ(x)max=________.8. 关于x的方程2x2+ax-5-2a=0的两实根可分别作为一个椭圆与一个双曲线的离心率,则实数a的取值范围是________.9. 当x∈[0,2]时,函数ƒ(x)=ax2+4(a-1)x-3在x=2时取得最大值,则a的取值范围是________.10.已知二次函数ƒ(x)=ax2-x+c(x∈R)的值域为[0,+∞),则c aa c+++22的最小值为________.11.已知定义域为R的函数ƒ(x)满足ƒ(ƒ(x)-x2+x)=ƒ(x)-x2+x.(1)若ƒ(2)=3,求ƒ(1),又若ƒ(0)=a,求ƒ(a);(2)设有且仅有一个实数x0,使得ƒ(x0)=x0,求函数ƒ(x)的解析式.12.已知二次函数ƒ(x)=x2+mx+1(x∈Z),且关于x的方程ƒ(x)=2在区间(-3,12)内有两个不同的实根.(1)求ƒ(x)的解析式;(2)若x∈[1,t](t>1)时,总有ƒ(x-4)≤4x成立,求t的最大值.。
(完整版)二次函数知识点总结及典型例题,推荐文档
浙教版九年级上册二次函数知识点总结及典型例题知识点一、二次函数的概念和图像 1、二次函数的概念一般地,如果,特别注意a 不为零,那么y 叫做x的二次函数。
)0,,(2≠++=a c b a c bx ax y 是常数,叫做二次函数的一般式。
)0,,(2≠++=a c b a c bx ax y 是常数,2、二次函数的图像二次函数的图像是一条关于对称的曲线,这条曲线叫抛物线。
abx 2-=抛物线的主要特征:①有开口方向;②有对称轴;③有顶点。
3、二次函数图像的画法--------五点作图法:(1)先根据函数解析式,求出顶点坐标,在平面直角坐标系中描出顶点M ,并用虚线画出对称轴(2)求抛物线与坐标轴的交点:c bx ax y ++=2当抛物线与x 轴有两个交点时,描出这两个交点A,B 及抛物线与y 轴的交点C ,再找到点C 的对称点D 。
将这五个点按从左到右的顺序连接起来,并向上或向下延伸,就得到二次函数的图像。
当抛物线与x 轴只有一个交点或无交点时,描出抛物线与y 轴的交点C 及对称点D 。
由C 、M 、D 三点可粗略地画出二次函数的草图。
如果需要画出比较精确的图像,可再描出一对对称点A 、B ,然后顺次连接五点,画出二次函数的图像。
【例1】、已知函数y=x 2-2x-3,(1)写出函数图象的顶点、图象与坐标轴的交点,以及图象与 y 轴的交点关于图象对称轴的对称点。
然后画出函数图象的草图;(2)求图象与坐标轴交点构成的三角形的面积:(3)根据第(1)题的图象草图,说 出 x 取哪些值时,① y=0;② y<0;③ y>0知识点二、二次函数的解析式二次函数的解析式有三种形式:口诀-----一般 两根 三顶点(1)一般 一般式:)0,,(2≠++=a c b a c bx ax y 是常数,(2)两根当抛物线与x 轴有交点时,即对应的一元二次方程有实根c bx ax y ++=202=++c bx ax 和存在时,根据二次三项式的分解因式,二次函数可转化为1x 2x ))((212x x x x a c bx ax --=++c bx ax y ++=2两根式。
(完整word版)二次函数知识点总结及相关典型题目(良心出品必属精品)
二次函数知识点总结及相关典型题目第一部分 二次函数基础知识 ✧ 相关概念及定义二次函数的概念:一般地,形如2y ax bx c =++(a b c ,,是常数,0a ≠)的函数,叫做二次函数。
这里需要强调:和一元二次方程类似,二次项系数0a ≠,而b c ,可以为零.二次函数的定义域是全体实数.二次函数2y ax bx c =++的结构特征:⑴ 等号左边是函数,右边是关于自变量x 的二次式,x 的最高次数是2.⑵ a b c ,,是常数,a 是二次项系数,b 是一次项系数,c 是常数项.✧ 二次函数各种形式之间的变换二次函数c bx ax y ++=2用配方法可化成:()k h x a y +-=2的形式,其中ab ac k a b h 4422-=-=,.二次函数由特殊到一般,可分为以下几种形式:①2ax y =;②k ax y +=2;③()2h x a y -=;④()k h x a y +-=2;⑤c bx ax y ++=2.✧ 二次函数解析式的表示方法一般式:2y ax bx c =++(a ,b ,c 为常数,0a ≠); 顶点式:2()y a x h k =-+(a ,h ,k 为常数,0a ≠);两根式:12()()y a x x x x =--(0a ≠,1x ,2x 是抛物线与x 轴两交点的横坐标).注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线与x 轴有交点,即240b ac -≥时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化. 二次函数2ax y =的性质✧二次函数2=+的性质y ax c✧二次函数()2=-的性质:y a x h Array✧二次函数()2y a x h k=-+的性质✧ 抛物线2y ax bx c =++的三要素:开口方向、对称轴、顶点.a 的符号决定抛物线的开口方向:当0>a 时,开口向上;当0<a 时,开口向下;a 相等,抛物线的开口大小、形状相同.对称轴:平行于y 轴(或重合)的直线记作2bx a=-.特别地,y 轴记作直线0=x .顶点坐标坐标:),(ab ac a b 4422--顶点决定抛物线的位置.几个不同的二次函数,如果二次项系数a 相同,那么抛物线的开口方向、开口大小完全相同,只是顶点的位置不同.✧ 抛物线c bx ax y ++=2中,c b a ,,与函数图像的关系 二次项系数a二次函数2y ax bx c =++中,a 作为二次项系数,显然0a ≠.⑴ 当0a >时,抛物线开口向上,a 越大,开口越小,反之a 的值越小,开口越大;⑵ 当0a <时,抛物线开口向下,a 越小,开口越小,反之a 的值越大,开口越大.总结起来,a 决定了抛物线开口的大小和方向,a 的正负决定开口方向,a 的大小决定开口的大小.一次项系数b在二次项系数a 确定的前提下,b 决定了抛物线的对称轴. ⑴ 在0a >的前提下,当0b >时,02b a-<,即抛物线的对称轴在y 轴左侧;当0b =时,02b a-=,即抛物线的对称轴就是y 轴;当0b <时,02b a ->,即抛物线对称轴在y 轴的右侧.⑵ 在0a <的前提下,结论刚好与上述相反,即 当0b >时,02ba->,即抛物线的对称轴在y 轴右侧; 当0b =时,02b a-=,即抛物线的对称轴就是y 轴;当0b <时,02b a-<,即抛物线对称轴在y 轴的左侧.总结起来,在a 确定的前提下,b 决定了抛物线对称轴的位置. 总结:常数项c⑴ 当0c >时,抛物线与y 轴的交点在x 轴上方,即抛物线与y 轴交点的纵坐标为正; ⑵ 当0c =时,抛物线与y 轴的交点为坐标原点,即抛物线与y 轴交点的纵坐标为0;⑶ 当0c <时,抛物线与y 轴的交点在x 轴下方,即抛物线与y 轴交点的纵坐标为负.总结起来,c 决定了抛物线与y 轴交点的位置. 总之,只要a b c ,,都确定,那么这条抛物线就是唯一确定的. ✧ 求抛物线的顶点、对称轴的方法公式法:a b ac a b x a c bx ax y 442222-+⎪⎭⎫ ⎝⎛+=++=,∴顶点是),(a b ac a b 4422--,对称轴是直线ab x 2-=.配方法:运用配方的方法,将抛物线的解析式化为()k h x a y +-=2的形式,得到顶点为(h ,k ),对称轴是直线h x =.运用抛物线的对称性:由于抛物线是以对称轴为轴的轴对称图形,所以对称轴的连线的垂直平分线是抛物线的对称轴,对称轴与抛物线的交点是顶点.用配方法求得的顶点,再用公式法或对称性进行验证,才能做到万无一失.✧ 用待定系数法求二次函数的解析式一般式:c bx ax y ++=2.已知图像上三点或三对x 、y 的值,通常选择一般式.顶点式:()k h x a y +-=2.已知图像的顶点或对称轴,通常选择顶点式.交点式:已知图像与x 轴的交点坐标1x 、2x ,通常选用交点式:()()21x x x x a y --=.✧ 直线与抛物线的交点y 轴与抛物线c bx ax y ++=2得交点为(0, c ).与y 轴平行的直线h x =与抛物线c bx ax y ++=2有且只有一个交点(h ,c bh ah ++2).抛物线与x 轴的交点:二次函数c bx ax y ++=2的图像与x 轴的两个交点的横坐标1x 、2x ,是对应一元二次方程02=++c bx ax 的两个实数根.抛物线与x 轴的交点情况可以由对应的一元二次方程的根的判别式判定:①有两个交点⇔0>∆⇔抛物线与x 轴相交;②有一个交点(顶点在x 轴上)⇔0=∆⇔抛物线与x 轴相切; ③没有交点⇔0<∆⇔抛物线与x 轴相离. 平行于x 轴的直线与抛物线的交点可能有0个交点、1个交点、2个交点.当有2个交点时,两交点的纵坐标相等,设纵坐标为k ,则横坐标是k c bx ax =++2的两个实数根.一次函数()0≠+=k n kx y 的图像l 与二次函数()02≠++=a c bx ax y 的图像G 的交点,由方程组 2y kx ny ax bx c =+⎧⎨=++⎩的解的数目来确定:①方程组有两组不同的解时⇔l 与G 有两个交点; ②方程组只有一组解时⇔l 与G 只有一个交点;③方程组无解时⇔l 与G 没有交点.抛物线与x 轴两交点之间的距离:若抛物线c bx ax y ++=2与x轴两交点为()()0021,,,x B x A ,由于1x 、2x 是方程02=++c bx ax 的两个根,故acx x a b x x =⋅-=+2121,()()a a acb ac a b x x x x x x x x AB ∆=-=-⎪⎭⎫⎝⎛-=--=-=-=444222122122121✧ 二次函数图象的对称:二次函数图象的对称一般有五种情况,可以用一般式或顶点式表达 关于x 轴对称2y ax bx c =++关于x 轴对称后,得到的解析式是2y ax bx c =---;()2y a x h k =-+关于x 轴对称后,得到的解析式是()2y a x h k =---; 关于y 轴对称2y ax bx c =++关于y 轴对称后,得到的解析式是2y ax bx c =-+;()2y a x h k =-+关于y 轴对称后,得到的解析式是()2y a x h k =++; 关于原点对称2y ax bx c =++关于原点对称后,得到的解析式是2y ax bx c =-+-; ()2y a x h k =-+关于原点对称后,得到的解析式是()2y a x h k =-+-; 关于顶点对称2y ax bx c =++关于顶点对称后,得到的解析式是222b y ax bx c a=--+-;()2y a x h k=-+关于顶点对称后,得到的解析式是()2y a x h k =--+.关于点()m n ,对称()2y a x h k =-+关于点()m n ,对称后,得到的解析式是()222y a x h m n k =-+-+-总结:根据对称的性质,显然无论作何种对称变换,抛物线的形状一定不会发生变化,因此a 永远不变.求抛物线的对称抛物线的表达式时,可以依据题意或方便运算的原则,选择合适的形式,习惯上是先确定原抛物线(或表达式已知的抛物线)的顶点坐标及开口方向,再确定其对称抛物线的顶点坐标及开口方向,然后再写出其对称抛物线的表达式. ✧ 二次函数图象的平移 平移步骤:⑴ 将抛物线解析式转化成顶点式()2y a x h k =-+,确定其顶点坐标()h k ,;⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法如下:【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位平移规律在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”.概括成八个字“左加右减,上加下减”.✧ 根据条件确定二次函数表达式的几种基本思路。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二次函数知识点总结和题型总结一、二次函数概念:1.二次函数的概念:一般地,形如2y ax bx c =++(a b c ,,是常数,0a ≠)的函 数,叫做二次函数。
这里需要强调:①a ≠ 0 ②最高次数为2 ③代数式一定是整式2. 二次函数2y ax bx c =++的结构特征: ⑴ 等号左边是函数,右边是关于自变量x 的二次式,x 的最高次数是2.⑵ a b c ,,是常数,a 是二次项系数,b 是一次项系数,c 是常数项. 例题:例1、已知函数y=(m -1)x m2 +1+5x -3是二次函数,求m 的值。
练习、若函数y=(m 2+2m -7)x 2+4x+5是关于x 的二次函数,则m 的取值范围 为 。
二、二次函数的基本形式1. 二次函数基本形式:2y ax =的性质: a 的绝对值越大,抛物线的开口越小。
2. 2y ax c =+的性质: 上加下减。
3. ()2y a x h =-的性质:左加右减。
4. ()2y a x h k =-+的性质:(技法:如果解析式为顶点式y=a(x -h)2+k ,则最值为k ;如果解析式为一般式y=ax 2+bx+c 则最值为4ac-b 24a)1.抛物线y=2x 2+4x+m 2-m 经过坐标原点,则m 的值为 。
2.抛物y=x 2+bx+c 线的顶点坐标为(1,3),则b = ,c = . 3.抛物线y =x 2+3x 的顶点在( )A.第一象限B.第二象限C.第三象限D.第四象限4.若抛物线y =ax 2-6x 经过点(2,0),则抛物线顶点到坐标原点的距离为( )5.若直线y =ax +b 不经过二、四象限,则抛物线y =ax 2+bx +c( ) A.开口向上,对称轴是y 轴 B.开口向下,对称轴是y 轴 C.开口向下,对称轴平行于y 轴 D.开口向上,对称轴平行于y 轴 6.已知二次函数y=mx 2+(m -1)x+m -1有最小值为0,则m = 。
三、二次函数图象的平移 1. 平移步骤:方法一:⑴ 将抛物线解析式转化成顶点式()2y a x h k =-+,确定其顶点坐标()h k ,;⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法如下:2. 平移规律在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”. 概括成八个字“左加右减,上加下减”. 方法二:⑴c bx ax y ++=2沿y 轴平移:向上(下)平移m 个单位,c bx ax y ++=2变成m c bx ax y +++=2(或m c bx ax y -++=2)⑵c bx ax y ++=2沿轴平移:向左(右)平移m 个单位,c bx ax y ++=2变成c m x b m x a y ++++=)()(2(或c m x b m x a y +-+-=)()(2)函数y=ax 2+bx+c 的图象和性质例题:1.抛物线y=x 2+4x+9的对称轴是 。
2.抛物线y=2x 2-12x+25的开口方向是 ,顶点坐标是 。
3.通过配方,写出下列函数的开口方向、对称轴和顶点坐标:(1)y=12 x 2-2x+1 ; (2)y=-3x 2+8x -2; (3)y=-14x 2+x -4【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位4、把抛物线y=x 2+bx+c 的图象向右平移3个单位,在向下平移2个单位,所得 图象的解析式是y=x 2-3x+5,试求b 、c 的值。
5、把抛物线y=-2x 2+4x+1沿坐标轴先向左平移2个单位,再向上平移3个单位, 问所得的抛物线有没有最大值,若有,求出该最大值;若没有,说明理由。
四、二次函数()2y a x h k =-+与2y ax bx c =++的比较从解析式上看,()2y a x h k =-+与2y ax bx c =++是两种不同的表达形式,后者通过配方可以得到前者,即22424b ac b y a x a a -⎛⎫=++ ⎪⎝⎭,其中2424b ac b h k a a -=-=,. 五、二次函数2y ax bx c =++图象的画法五点绘图法:利用配方法将二次函数2y ax bx c =++化为顶点式2()y a x h k =-+,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们选取的五点为:顶点、与y 轴的交点()0c ,、以及()0c ,关于对称轴对称的点()2h c ,、与x 轴的交点()10x ,,()20x ,(若与x 轴没有交点,则取两组关于对称轴对称的点).画草图时应抓住以下几点:开口方向,对称轴,顶点,与x 轴的交点,与y 轴的交点.六、二次函数2y ax bx c =++的性质1. 当0a >时,抛物线开口向上,对称轴为2bx a =-,顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,. 当2b x a <-时,y 随x 的增大而减小;当2bx a>-时,y 随x 的增大而增大;当2bx a=-时,y 有最小值244ac b a -. 2. 当0a <时,抛物线开口向下,对称轴为2bx a=-,顶点坐标为2424b ac b aa ⎛⎫-- ⎪⎝⎭,.当2b x a <-时,y 随x 的增大而增大;当2bx a >-时,y 随x 的增大而减小;当2bx a=-时,y 有最大值244ac b a -.例题:函数y=a(x -h)2的图象与性质 1.填表:抛物线开口方向 对称轴 顶点坐标 ()223--=x y()2321+=x y2.试说明函数y=12(x -3)2 的图象特点及性质(开口、对称轴、顶点坐标、增减性、最值)。
3.二次函数y=a(x -h)2的图象如图:已知a = 12,OA =OC ,试求该抛物线的解析式。
二次函数的增减性1.二次函数y=3x 2-6x+5,当x>1时,y 随x 的增大而 ;当x<1时,y 随x 的增大而 ;当x=1时,函数有最 值是 。
2.已知函数y=4x 2-mx+5,当x> -2时,y 随x 的增大而增大;当x< -2时,y 随x 的增大而减少;则x =1时,y 的值为 。
3.已知二次函数y=x 2-(m+1)x+1,当x ≥1时,y 随x 的增大而增大,则m 的取值范围是 .4.已知二次函数y=-12 x 2+3x+52 的图象上有三点A(x 1,y 1),B(x 2,y 2),C(x 3,y 3)且3<x 1<x 2<x 3,则y 1,y 2,y 3的大小关系为 .七、二次函数解析式的表示方法1. 一般式:2y ax bx c =++(a ,b ,c 为常数,0a ≠);2. 顶点式:2()y a x h k =-+(a ,h ,k 为常数,0a ≠);3. 两根式:12()()y a x x x x =--(0a ≠,1x ,2x 是抛物线与x 轴两交点的横坐标). 注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线与x 轴有交点,即240b ac -≥时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化. 八、二次函数的图象与各项系数之间的关系 1. 二次项系数a二次函数2y ax bx c =++中,a 作为二次项系数,显然0a ≠.⑴ 当0a >时,抛物线开口向上,a 的值越大,开口越小,反之a 的值越小,开口越大;⑵ 当0a <时,抛物线开口向下,a 的值越小,开口越小,反之a 的值越大,开口越大.总结起来,a 决定了抛物线开口的大小和方向,a 的正负决定开口方向,a 的大小决定开口的大小. 2. 一次项系数b在二次项系数a 确定的前提下,b 决定了抛物线的对称轴. ⑴ 在0a >的前提下,当0b >时,02ba-<,即抛物线的对称轴在y 轴左侧; 当0b =时,02ba-=,即抛物线的对称轴就是y 轴; 当0b <时,02ba->,即抛物线对称轴在y 轴的右侧. ⑵ 在0a <的前提下,结论刚好与上述相反,即 当0b >时,02ba->,即抛物线的对称轴在y 轴右侧; 当0b =时,02ba-=,即抛物线的对称轴就是y 轴; 当0b <时,02ba-<,即抛物线对称轴在y 轴的左侧. 总结起来,在a 确定的前提下,b 决定了抛物线对称轴的位置.ab 的符号的判定:对称轴abx 2-=在y 轴左边则0>ab ,在y 轴的右侧则0<ab ,概括的说就是“左同右异” 总结:3. 常数项c⑴ 当0c >时,抛物线与y 轴的交点在x 轴上方,即抛物线与y 轴交点的纵坐标为正;⑵ 当0c =时,抛物线与y 轴的交点为坐标原点,即抛物线与y 轴交点的纵坐标为0;⑶ 当0c <时,抛物线与y 轴的交点在x 轴下方,即抛物线与y 轴交点的纵坐标为负.总结起来,c 决定了抛物线与y 轴交点的位置.总之,只要a b c,,都确定,那么这条抛物线就是唯一确定的.例题:函数的图象特征与a、b、c的关系1.已知抛物线y=ax2+bx+c的图象如右图所示,则a、b、c的符号为()A.a>0,b>0,c>0B.a>0,b>0,c=0C.a>0,b<0,c=0D.a>0,b<0,c<02.已知抛物线y=ax2+bx+c的图象2如图所示,则下列结论正确的是()A.a+b+c> 0 B.b> -2aC.a-b+c> 0 D.c< 03.抛物线y=ax2+bx+c中,b=4a,它的图象如图3,有以下结论:①c>0;②a+b+c> 0 ③a-b+c> 0 ④b2-4ac<0 ⑤abc< 0 ;其中正确的为()A.①②B.①④C.①②③D.①③⑤4.当b<0是一次函数y=ax+b与二次函数y=ax2+bx+c在同一坐标系内的图象可能是()5.已知二次函数y=ax2+bx+c,如果a>b>c,且a+b+c=0,则它的图象可能是图所示的( )6.二次函数y=ax2+bx+c的图象如图5所示,那么abc,b2-4ac, 2a+b, a+b+c 四个代数式中,值为正数的有( )A.4个B.3个C.2个D.1个1xyO1xyO1xCyO1xyO7.在同一坐标系中,函数y= ax2+c与y= cx(a<c)图象可能是图所示的( )A B C D8.反比例函数y= kx的图象在一、三象限,则二次函数y=kx2-k2x-1c的图象大致为图中的()A BC D9.反比例函数y= kx中,当x> 0时,y随x的增大而增大,则二次函数y=kx2+2kx的图象大致为图中的()A B C D 二次函数解析式的确定:根据已知条件确定二次函数解析式,通常利用待定系数法.用待定系数法求二次函数的解析式必须根据题目的特点,选择适当的形式,才能使解题简便.一般来说,有如下几种情况:1. 已知抛物线上三点的坐标,一般选用一般式;2. 已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式;3. 已知抛物线与x轴的两个交点的横坐标,一般选用两根式;4. 已知抛物线上纵坐标相同的两点,常选用顶点式.例题:函数解析式的求法一、已知抛物线上任意三点时,通常设解析式为一般式y=ax2+bx+c,然后解三元方程组求解;1.已知二次函数的图象经过A(0,3)、B(1,3)、C(-1,1)三点,求该二次函数的解析式。