(完整word版)二次函数专题训练(正方形的存在性问题)含答案
2022年中考数学二次函数压轴题考点大汇总专题17 正方形存在性问题含答案
2022年中考数学二次函数压轴题考点大汇总正方形存在性问题知识导航作为特殊四边形中最特殊的一位,正方形拥有更多的性质,因此坐标系中的正方形存在性问题变化更加多样,从判定的角度来说,可以有如下:(1)有一个角为直角的菱形;(2)有一组邻边相等的矩形;(3)对角线互相垂直平分且相等的四边形.依据题目给定的已知条件选择恰当的判定方法,即可确定所求的点坐标.从未知量的角度来说,正方形可以有4个“未知量”,因其点坐标满足4个等量关系,考虑对角线性质,互相平分(2个)垂直(1个)且相等(1个).比如在平面中若已知两个定点,可以在平面中确定另外两个点使得它们构成正方形,而如果要求在某条线上确定点,则可能会出现不存在的情况,即我们所说的未知量小于方程个数,可能无解.从动点角度来说,关于正方形存在性问题可分为:(1)2个定点+2个全动点;(2)1个定点+2个半动点+1个全动点;甚至可以有:(3)4个半动点.不管是哪一种类型,要明确的是一点,我们肯定不会列一个四元一次方程组求点坐标!常用处理方法:思路1:从判定出发若已知菱形,则加有一个角为直角或对角线相等;若已知矩形,则加有一组邻边相等或对角线互相垂直;若已知对角线互相垂直或平分或相等,则加上其他条件.思路2:构造三垂直全等若条件并未给关于四边形及对角线的特殊性,则考虑在构成正方形的4个顶点中任取3个,必是等腰直角三角形,若已知两定点,则可通过构造三垂直全等来求得第3个点,再求第4个点.总结:构造三垂直全等的思路仅适合已知两定点的情形,若题目给了4个动点,则考虑从矩形的判定出发,观察该四边形是否已为某特殊四边形,考证还需满足的其他关系.正方形的存在性问题在中考中出现得并不多,正方形多以小题压轴为主.方法突破例:在平面直角坐标系中,A (1,1),B (4,3),在平面中求C 、D 使得以A 、B 、C 、D 为顶点的四边形是正方形.如图,一共6个这样的点C 使得以A 、B 、C 为顶点的三角形是等腰直角三角形.至于具体求点坐标,以1C 为例,构造△AMB ≌△1C NA ,即可求得1C 坐标.至于像5C 、6C 这两个点的坐标,不难发现,5C 是3AC 或1BC 的中点,6C 是2BC 或4AC 的中点.题无定法,具体问题还需具体分析,如上仅仅是大致思路.专项训练1.如图,已知抛物线2y x bx c =++的图象经过点A (1,0),B (-3,0),与y 轴交于点C ,抛物线的顶点为D ,对称轴与x 轴相交于点E ,连接BD .(1)求抛物线的解析式.(2)若点P 在直线BD 上,当PE=PC 时,求点P 的坐标.(3)在(2)的条件下,作PF ⊥x 轴于F ,点M 为x 轴上一动点,点N 为直线PF 上一动点,G 为抛物线上一动点,当以点F 、N 、G 、M 四点为顶点的四边形为正方形时,求点M 的坐标.2.如图,在平面直角坐标系中,抛物线21322y x bx =-++与x 轴正半轴交于点A ,且点A 的坐标为(3,0),过点A 作垂直于x 轴的直线l .P 是该抛物线上的任意一点,其横坐标为m ,过点P 作PQ l ⊥于点Q ,M 是直线l 上的一点,其纵坐标为32m -+.以PQ ,QM 为边作矩形PQMN .(1)求b 的值.(2)当点Q 与点M 重合时,求m 的值.(3)当矩形PQMN 是正方形,且抛物线的顶点在该正方形内部时,求m 的值.(4)当抛物线在矩形PQMN 内的部分所对应的函数值y 随x 的增大而减小时,直接写出m 的取值范围.3.在平面直角坐标系中,抛物线213y x bx c =-++交x 轴于(3,0)A -,(4,0)B 两点,交y 轴于点C .(1)求抛物线的表达式;(2)如图,直线3944y x =+与抛物线交于A ,D 两点,与直线BC 交于点E .若(,0)M m 是线段AB 上的动点,过点M 作x 轴的垂线,交抛物线于点F ,交直线AD 于点G ,交直线BC 于点H .①当点F 在直线AD 上方的抛物线上,且59EFG OEG S S ∆∆=时,求m 的值;②在平面内是否存在点P ,使四边形EFHP 为正方形?若存在,请直接写出点P 的坐标;若不存在,请说明理由.正方形存在性问题知识导航作为特殊四边形中最特殊的一位,正方形拥有更多的性质,因此坐标系中的正方形存在性问题变化更加多样,从判定的角度来说,可以有如下:(1)有一个角为直角的菱形;(2)有一组邻边相等的矩形;(3)对角线互相垂直平分且相等的四边形.依据题目给定的已知条件选择恰当的判定方法,即可确定所求的点坐标.从未知量的角度来说,正方形可以有4个“未知量”,因其点坐标满足4个等量关系,考虑对角线性质,互相平分(2个)垂直(1个)且相等(1个).比如在平面中若已知两个定点,可以在平面中确定另外两个点使得它们构成正方形,而如果要求在某条线上确定点,则可能会出现不存在的情况,即我们所说的未知量小于方程个数,可能无解.从动点角度来说,关于正方形存在性问题可分为:(1)2个定点+2个全动点;(2)1个定点+2个半动点+1个全动点;甚至可以有:(3)4个半动点.不管是哪一种类型,要明确的是一点,我们肯定不会列一个四元一次方程组求点坐标!常用处理方法:思路1:从判定出发若已知菱形,则加有一个角为直角或对角线相等;若已知矩形,则加有一组邻边相等或对角线互相垂直;若已知对角线互相垂直或平分或相等,则加上其他条件.思路2:构造三垂直全等若条件并未给关于四边形及对角线的特殊性,则考虑在构成正方形的4个顶点中任取3个,必是等腰直角三角形,若已知两定点,则可通过构造三垂直全等来求得第3个点,再求第4个点.总结:构造三垂直全等的思路仅适合已知两定点的情形,若题目给了4个动点,则考虑从矩形的判定出发,观察该四边形是否已为某特殊四边形,考证还需满足的其他关系.正方形的存在性问题在中考中出现得并不多,正方形多以小题压轴为主.方法突破例:在平面直角坐标系中,A (1,1),B (4,3),在平面中求C 、D 使得以A 、B 、C 、D 为顶点的四边形是正方形.如图,一共6个这样的点C 使得以A 、B 、C 为顶点的三角形是等腰直角三角形.至于具体求点坐标,以1C 为例,构造△AMB ≌△1C NA ,即可求得1C 坐标.至于像5C 、6C 这两个点的坐标,不难发现,5C 是3AC 或1BC 的中点,6C 是2BC 或4AC 的中点.题无定法,具体问题还需具体分析,如上仅仅是大致思路.专项训练1.如图,已知抛物线2y x bx c =++的图象经过点A (1,0),B (-3,0),与y 轴交于点C ,抛物线的顶点为D ,对称轴与x 轴相交于点E ,连接BD .(1)求抛物线的解析式.(2)若点P 在直线BD 上,当PE=PC 时,求点P 的坐标.(3)在(2)的条件下,作PF ⊥x 轴于F ,点M 为x 轴上一动点,点N 为直线PF 上一动点,G 为抛物线上一动点,当以点F 、N 、G 、M 四点为顶点的四边形为正方形时,求点M 的坐标.【分析】(1)抛物线:223y x x =+-;(2)求CE 的直线解析式或设P 点坐标表示PE=PC ,可得P 点坐标为()2,2--.(3)考虑FN ⊥FM ,故四边形为MFNG ,若要成为正方形,则GN ∥FM ,GM ⊥x 轴,即四边形MFNG 为矩形.设FN 长度为m ,则NG=FN=m ,故G 点横坐标为m-2,代入解析式得:()22,23G m m m ---,故223GM m m m =--=,解得:1m =,2m =(舍),3m =,4m =(舍).则M 点坐标为12⎛⎫-+ ⎪ ⎪⎝⎭或12⎛⎫-+ ⎪ ⎪⎝⎭.【小结】根据题目描述可知四边形是矩形,考虑四边形的边均与坐标轴平行或垂直,故构造一组邻边相等求得点坐标.2.如图,在平面直角坐标系中,抛物线21322y x bx =-++与x 轴正半轴交于点A ,且点A 的坐标为(3,0),过点A 作垂直于x 轴的直线l .P 是该抛物线上的任意一点,其横坐标为m ,过点P 作PQ l ⊥于点Q ,M 是直线l 上的一点,其纵坐标为32m -+.以PQ ,QM 为边作矩形PQMN .(1)求b 的值.(2)当点Q 与点M 重合时,求m 的值.(3)当矩形PQMN 是正方形,且抛物线的顶点在该正方形内部时,求m 的值.(4)当抛物线在矩形PQMN 内的部分所对应的函数值y 随x 的增大而减小时,直接写出m 的取值范围.【分析】(1)利用待定系数法求解即可.(2)根据点M 与点P 的纵坐标相等构建方程求解即可.(3)根据PQ MQ =,构建方程求解即可.(3)当点P 在直线l 的左边,点M 在点Q 是下方下方时,抛物线在矩形PQMN 内的部分所对应的函数值y 随x 的增大而减小,则有2313222m m m -+<-++,解得04m <<,观察图象可知.当03m <<时,抛物线在矩形PQMN 内的部分所对应的函数值y 随x 的增大而减小,如图41-中.当4m >时,点M 在点Q 的上方,也满足条件,如图42-中.【解答】解:(1)把点(3,0)A 代入21322y x bx =-++,得到930322b =-++,解得1b =.(2) 抛物线的解析式为21322y x x =-++,213(,22P m m m ∴-++,M ,Q 重合,2313222m m m ∴-+=-++,解得0m =或4.(3)22131(1)2222y x x x =-++=--+,∴抛物线的顶点坐标为(1,2),由题意PQ MQ =,且抛物线的顶点在该正方形内部,23133()222m m m m ∴-=-+--++且322m -+>,得12m <-解得1m =1+(不合题意舍弃),1m ∴=.(4)当点P 在直线l 的左边,点M 在点Q 下方时,抛物线在矩形PQMN 内的部分所对应的函数值y 随x 的增大而减小,则有2313222m m m -+<-++,240m m ∴-<,解得04m <<,观察图象可知.当03m <<时,抛物线在矩形PQMN 内的部分所对应的函数值y 随x 的增大而减小,如图41-中,当34m <<时,抛物线不在矩形PQMN 内部,不符合题意,当4m >时,点M 在点Q 的上方,也满足条件,如图42-中,综上所述,满足条件的m 的值为03m <<或4m >.【点评】本题属于二次函数综合题,考查了二次函数的性质,待定系数法,矩形的性质等知识,解题的关键是理解题意,学会用转化的思想思考问题,属于中考压轴题.3.在平面直角坐标系中,抛物线213y x bx c =-++交x 轴于(3,0)A -,(4,0)B 两点,交y 轴于点C .(1)求抛物线的表达式;(2)如图,直线3944y x =+与抛物线交于A ,D 两点,与直线BC 交于点E .若(,0)M m 是线段AB 上的动点,过点M 作x 轴的垂线,交抛物线于点F ,交直线AD 于点G ,交直线BC 于点H .①当点F 在直线AD 上方的抛物线上,且59EFG OEG S S ∆∆=时,求m 的值;②在平面内是否存在点P ,使四边形EFHP 为正方形?若存在,请直接写出点P 的坐标;若不存在,请说明理由.【分析】(1)根据抛物线解析式中13a =-和交x 轴于(3,0)A -,(4,0)B 两点,利用交点式可得抛物线的解析式;(2)①如图1,先利用待定系数法求直线BC 的解析式,联立方程可得交点E 的坐标,根据(,0)M m ,且MH x ⊥轴,表示点39(,44G m m +,211(,4)33F m m m -++,由59EFG OEG S S ∆∆=,列方程可得结论;②存在,根据正方形的性质得:FH EF =,90EFH FHP HPE ∠=∠=∠=︒,同理根据(,0)M m ,得(,4)H m m -+,211(,4)33F m m m -++,分两种情况:F 在EP 的左侧,在EP 的右侧,根据EF FH =,列方程可得结论.【解答】解:(1) 抛物线213y x bx c =-++交x 轴于(3,0)A -,(4,0)B 两点,2111(3)(4)4333y x x x x ∴=-+-=-++;(2)①如图1,(4,0)B ,(0,4)C ,∴设BC 的解析式为:y kx n =+,则404k n n +=⎧⎨=⎩,解得14k n =-⎧⎨=⎩,BC ∴的解析式为:4y x =-+,39444x x ∴-+=+,解得:1x =,(1,3)E ∴,(,0)M m ,且MH x ⊥轴,39(,)44G m m ∴+,211(,4)33F m m m -++,59EFG OEG S S ∆∆=,∴151()()292E F E G FG x x ON x x ⨯-=⨯-,2113959[(4)()](1)(1)334494m m m m m -++-+-=⨯-,解得:134m =,22m =-;②存在,由①知:(1,3)E ,四边形EFHP 是正方形,FH EF ∴=,90EFH FHP HPE ∠=∠=∠=︒,(,0)M m ,且MH x ⊥轴,(,4)H m m ∴-+,211(,4)33F m m m -++,分两种情况:)i 当31m -< 时,如图2,点F 在EP 的左侧,221114(4)(4)3333FH m m m m m ∴=-+--++=-,EF FH = ,∴214133m m m -=-,解得:112m +=(舍),212m -=,1(2H -∴,72+,P ∴,)ii 当14m <<时,点F 在PE 的右边,如图3,同理得214133m m m -+=-,解得:11132m +=,21132m =(舍),同理得713(1,2P -;综上,点P 的坐标为:713+或713)-.【点评】本题考查的是二次函数综合运用,涉及到一次函数,正方形的性质,二次函数,两函数的交点,图形的面积计算等,与方程相结合,求解点的坐标,难度适中.相似三角形存在性问题知识导航在坐标系中确定点,使得由该点及其他点构成的三角形与其他三角形相似,即为“相似三角形存在性问题”.【相似判定】判定1:三边对应成比例的两个三角形是相似三角形;判定2:两边对应成比例且夹角相等的两个三角形是相似三角形;判定3:有两组角对应相等的三角形是相似三角形.以上也是坐标系中相似三角形存在性问题的方法来源,根据题目给的已知条件选择恰当的判定方法,解决问题.【题型分析】通常相似的两三角形有一个是已知的,而另一三角形中有1或2个动点,即可分为“单动点”类、“双动点”两类问题.【思路总结】根据相似三角形的做题经验,可以发现,判定1基本是不会用的,这里也一样不怎么用,对比判定2、3可以发现,都有角相等!所以,要证相似的两个三角形必然有相等角,关键点也是先找到一组相等角.然后再找:思路1:两相等角的两边对应成比例;思路2:还存在另一组角相等.事实上,坐标系中在已知点的情况下,线段长度比角的大小更容易表示,因此选择方法可优先考虑思路1.一、如何得到相等角?二、如何构造两边成比例或者得到第二组角?搞定这两个问题就可以了.方法突破例一、如图,抛物线2y ax bx c =++与x 轴交于点A (-1,0),点B (3,0),与y 轴交于点C ,且过点D (2,-3).点Q 是抛物线2y ax bx c =++上的动点.(1)求抛物线的解析式;(2)如图2,直线OQ 与线段BC 相交于点E ,当△OBE 与△ABC 相似时,求点Q 的坐标.【分析】(1)抛物线:223y x x =--;(2)思路:考虑到△ABC 和△BOE 有一组公共角,公共角必是对应角.∠ABC 的两边BA 、BC 与∠OBE 的两边BO 、BE 成比例即可,故可得:BE BA BO BC =或BE BC BO BA=.解得:BE =或BE =E 点坐标为()1,2-或39,44⎛⎫- ⎪⎝⎭.当E 点坐标为()1,2-时,直线OE 解析式为2y x =-,联立方程:2223x x x -=--,解得:1x ,2x =,此时Q 点坐标为-或(;当E 点坐标为39,44⎛⎫- ⎪⎝⎭时,直线OE 解析式为3y x =-,联立方程:2323x x x -=--,解得:112x -+=,212x --=,此时Q 点坐标为⎝⎭或⎝⎭.综上所述,Q 点坐标为-或(或⎝⎭或⎝⎭.说明:过程应详细分类讨论两种情况,分别求出结果.例二、如图1,在平面直角坐标系中,直线y =x -1与抛物线2y x bx c =-++交于A 、B 两点,其中A (m ,0)、B (4,n ),该抛物线与y 轴交于点C ,与x 轴交于另一点D .(1)求m 、n 的值及该抛物线的解析式;(2)如图2,连接BD 、CD ,在线段CD 上是否存在点Q ,使得以A 、D 、Q 为顶点的三角形与△ABD 相似,若存在,请直接写出点Q 的坐标;若不存在,请说明理由.【分析】(1)m =1,n =3,抛物线解析式为265y x x =-+-;(2)思路:平行得相等角,构造两边成比例由题意得D (5,0),故直线CD 解析式为:y =x -5,∴CD ∥AB ,∴∠CDA =∠BAD ,考虑到点Q 在线段CD上,∴DA AB DQ AD =或DA AD DQ AB =,解得:DQ =或DQ =Q 点坐标为78,33⎛⎫- ⎪⎝⎭或()2,3-.专项训练1.已知抛物线2:L y x bx c =-++过点(3,3)-和(1,5)-,与x 轴的交点为A ,B (点A 在点B 的左侧).(1)求抛物线L 的表达式;(2)若点P 在抛物线L 上,点E 、F 在抛物线L 的对称轴上,D 是抛物线L 的顶点,要使(PEF DAB P ∆∆∽的对应点是)D ,且:1:4PE DA =,求满足条件的点P 的坐标.2.在平面直角坐标系xOy 中,已知抛物线2y ax bx c =++与x 轴交于(1,0)A -,(4,0)B 两点,与y 轴交于点(0,2)C -.(1)求抛物线的函数表达式;(2)如图1,点D 为第四象限抛物线上一点,连接AD ,BC 交于点E ,连接BD ,记BDE ∆的面积为1S ,ABE ∆的面积为2S ,求12S S 的最大值;(3)如图2,连接AC ,BC ,过点O 作直线//l BC ,点P ,Q 分别为直线l 和抛物线上的点.试探究:在第一象限是否存在这样的点P ,Q ,使PQB CAB ∆∆∽.若存在,请求出所有符合条件的点P 的坐标;若不存在,请说明理由.3.在平面直角坐标系xOy 中,把与x 轴交点相同的二次函数图象称为“共根抛物线”.如图,抛物线2113:222L y x x =--的顶点为D ,交x 轴于点A 、B (点A 在点B 左侧),交y 轴于点C .抛物线2L 与1L 是“共根抛物线”,其顶点为P .(1)若抛物线2L 经过点(2,12)-,求2L 对应的函数表达式;(2)当BP CP -的值最大时,求点P 的坐标;(3)设点Q 是抛物线1L 上的一个动点,且位于其对称轴的右侧.若DPQ ∆与ABC ∆相似,求其“共根抛物线”2L 的顶点P 的坐标.4.如图,抛物线2y x bx c =++经过点(3,12)和(2,3)--,与两坐标轴的交点分别为A ,B ,C ,它的对称轴为直线l .(1)求该抛物线的表达式;(2)P 是该抛物线上的点,过点P 作l 的垂线,垂足为D ,E 是l 上的点.要使以P 、D 、E 为顶点的三角形与AOC ∆全等,求满足条件的点P ,点E 的坐标.5.如图1,抛物线21(2)62y x =-++与抛物线21122y x tx t =-++-相交y 轴于点C ,抛物线1y 与x 轴交于A 、B 两点(点B 在点A 的右侧),直线23y kx =+交x 轴负半轴于点N ,交y 轴于点M ,且OC ON =.(1)求抛物线1y 的解析式与k 的值;(2)抛物线1y 的对称轴交x 轴于点D ,连接AC ,在x 轴上方的对称轴上找一点E ,使以点A ,D ,E 为顶点的三角形与AOC ∆相似,求出DE 的长;(3)如图2,过抛物线1y 上的动点G 作GH x ⊥轴于点H ,交直线23y kx =+于点Q ,若点Q '是点Q 关于直线MG 的对称点,是否存在点G (不与点C 重合),使点Q '落在y 轴上?若存在,请直接写出点G 的横坐标,若不存在,请说明理由.6.如图,抛物线28(0)y ax bx a =++≠与x 轴交于点(2,0)A -和点(8,0)B ,与y 轴交于点C ,顶点为D ,连接AC ,BC ,BC 与抛物线的对称轴l 交于点E .(1)求抛物线的表达式;(2)点P 是第一象限内抛物线上的动点,连接PB ,PC ,当35PBC ABC S S ∆∆=时,求点P 的坐标;(3)点N 是对称轴l 右侧抛物线上的动点,在射线ED 上是否存在点M ,使得以点M ,N ,E 为顶点的三角形与OBC ∆相似?若存在,求点M 的坐标;若不存在,请说明理由.7.如图,抛物线22y ax bx =++与x 轴交于A ,B 两点,且2OA OB =,与y 轴交于点C ,连接BC ,抛物线对称轴为直线12x =,D 为第一象限内抛物线上一动点,过点D 作DE OA ⊥于点E ,与AC 交于点F ,设点D 的横坐标为m .(1)求抛物线的表达式;(2)当线段DF 的长度最大时,求D 点的坐标;(3)抛物线上是否存在点D ,使得以点O ,D ,E 为顶点的三角形与BOC ∆相似?若存在,求出m 的值;若不存在,请说明理由.8.如图,抛物线2336y bx c +=++与x 轴交于A ,B 两点,点A ,B 分别位于原点的左、右两侧,33BO AO ==,过点B 的直线与y 轴正半轴和抛物线的交点分别为C ,D ,3BC CD =.(1)求b ,c 的值;(2)求直线BD 的函数解析式;(3)点P 在抛物线的对称轴上且在x 轴下方,点Q 在射线BA 上.当ABD ∆与BPQ ∆相似时,请直接写出所有满足条件的点Q 的坐标.9.如图,抛物线212y x bx c =++与x 轴交于A 、B 两点(点A 在点B 左边),与y 轴交于点C .直线122y x =-经过B 、C 两点.(1)求抛物线的解析式;(2)点P 是抛物线上的一动点,过点P 且垂直于x 轴的直线与直线BC 及x 轴分别交于点D 、M .PN BC ⊥,垂足为N .设(,0)M m .①点P 在抛物线上运动,若P 、D 、M 三点中恰有一点是其它两点所连线段的中点(三点重合除外).请直接写出符合条件的m 的值;②当点P 在直线BC 下方的抛物线上运动时,是否存在一点P ,使PNC ∆与AOC ∆相似.若存在,求出点P 的坐标;若不存在,请说明理由.10.如图,在平面直角坐标系中,抛物线21y ax bx =++的对称轴为直线32x =,其图象与x 轴交于点A 和点(4,0)B ,与y 轴交于点C .(1)直接写出抛物线的解析式和CAO ∠的度数;(2)动点M ,N 同时从A 点出发,点M 以每秒3个单位的速度在线段AB 上运动,点N 个单位的速度在线段AC 上运动,当其中一个点到达终点时,另一个点也随之停止运动.设运动的时间为(0)t t >秒,连接MN ,再将线段MN 绕点M 顺时针旋转90︒,设点N 落在点D 的位置,若点D 恰好落在抛物线上,求t 的值及此时点D 的坐标;(3)在(2)的条件下,设P 为抛物线上一动点,Q 为y 轴上一动点,当以点C ,P ,Q 为顶点的三角形与MDB ∆相似时,请直接写出点P 及其对应的点Q 的坐标.(每写出一组正确的结果得1分,至多得4分)相似三角形存在性问题知识导航在坐标系中确定点,使得由该点及其他点构成的三角形与其他三角形相似,即为“相似三角形存在性问题”.【相似判定】判定1:三边对应成比例的两个三角形是相似三角形;判定2:两边对应成比例且夹角相等的两个三角形是相似三角形;判定3:有两组角对应相等的三角形是相似三角形.以上也是坐标系中相似三角形存在性问题的方法来源,根据题目给的已知条件选择恰当的判定方法,解决问题.【题型分析】通常相似的两三角形有一个是已知的,而另一三角形中有1或2个动点,即可分为“单动点”类、“双动点”两类问题.【思路总结】根据相似三角形的做题经验,可以发现,判定1基本是不会用的,这里也一样不怎么用,对比判定2、3可以发现,都有角相等!所以,要证相似的两个三角形必然有相等角,关键点也是先找到一组相等角.然后再找:思路1:两相等角的两边对应成比例;思路2:还存在另一组角相等.事实上,坐标系中在已知点的情况下,线段长度比角的大小更容易表示,因此选择方法可优先考虑思路1.一、如何得到相等角?二、如何构造两边成比例或者得到第二组角?搞定这两个问题就可以了.方法突破例一、如图,抛物线2y ax bx c =++与x 轴交于点A (-1,0),点B (3,0),与y 轴交于点C ,且过点D (2,-3).点Q 是抛物线2y ax bx c =++上的动点.(1)求抛物线的解析式;(2)如图2,直线OQ 与线段BC 相交于点E ,当△OBE 与△ABC 相似时,求点Q 的坐标.【分析】(1)抛物线:223y x x =--;(2)思路:考虑到△ABC 和△BOE 有一组公共角,公共角必是对应角.∠ABC 的两边BA 、BC 与∠OBE 的两边BO 、BE 成比例即可,故可得:BE BA BO BC =或BE BC BO BA=.解得:BE =或BE =故E 点坐标为()1,2-或39,44⎛⎫- ⎪⎝⎭.当E 点坐标为()1,2-时,直线OE 解析式为2y x =-,联立方程:2223x x x -=--,解得:1x ,2x =此时Q 点坐标为-或(;当E 点坐标为39,44⎛⎫- ⎪⎝⎭时,直线OE 解析式为3y x =-,联立方程:2323x x x -=--,解得:1x =2x =此时Q 点坐标为⎝⎭或⎝⎭.综上所述,Q 点坐标为-或(或⎝⎭或⎝⎭.说明:过程应详细分类讨论两种情况,分别求出结果.例二、如图1,在平面直角坐标系中,直线y =x -1与抛物线2y x bx c =-++交于A 、B 两点,其中A (m ,0)、B (4,n ),该抛物线与y 轴交于点C ,与x 轴交于另一点D .(1)求m 、n 的值及该抛物线的解析式;(2)如图2,连接BD 、CD ,在线段CD 上是否存在点Q ,使得以A 、D 、Q 为顶点的三角形与△ABD 相似,若存在,请直接写出点Q 的坐标;若不存在,请说明理由.【分析】(1)m =1,n =3,抛物线解析式为265y x x =-+-;(2)思路:平行得相等角,构造两边成比例由题意得D (5,0),故直线CD 解析式为:y =x -5,∴CD ∥AB ,∴∠CDA =∠BAD ,考虑到点Q 在线段CD 上,∴DAABDQ AD =或DAADDQ AB =,解得:823DQ =或32DQ =故Q 点坐标为78,33⎛⎫- ⎪⎝⎭或()2,3-.专项训练1.已知抛物线2:L y x bx c =-++过点(3,3)-和(1,5)-,与x 轴的交点为A ,B (点A 在点B 的左侧).(1)求抛物线L 的表达式;(2)若点P 在抛物线L 上,点E 、F 在抛物线L 的对称轴上,D 是抛物线L 的顶点,要使(PEF DAB P ∆∆∽的对应点是)D ,且:1:4PE DA =,求满足条件的点P 的坐标.【分析】(1)利用待定系数法可求解析式;(2)先求出点A ,点B ,点D 坐标,由相似三角形的性质可求解.【解答】解:(1) 抛物线2y x bx c =-++过点(3,3)-和(1,5)-,∴51393b c b c -=-++⎧⎨=--+⎩,解得:40b c =-⎧⎨=⎩,∴抛物线解析式为24y x x =--;(2)令0y =,则204x x =--,14x ∴=-,20x =,∴点(4,0)A -,点(0,0)B ,∴对称轴为2x =-,∴点(2,4)D -,如图,设对称轴与x 轴的交点为H ,过点P 作PQ DH ⊥于Q ,设点2(,4)P m m m --,PEF DAB ∆∆ ∽,∴14PE PQ AD DH ==,1414PQ ∴=⨯=,|2|1m ∴+=,1m ∴=-或3-,∴点(1,3)P -或(3,3)-.【点评】本题是二次函数综合题,考查了二次函数的性质,相似三角形的判定和性质,灵活运用相似三角形的性质是本题的关键.2.在平面直角坐标系xOy 中,已知抛物线2y ax bx c =++与x 轴交于(1,0)A -,(4,0)B 两点,与y 轴交于点(0,2)C -.(1)求抛物线的函数表达式;(2)如图1,点D 为第四象限抛物线上一点,连接AD ,BC 交于点E ,连接BD ,记BDE ∆的面积为1S ,ABE ∆的面积为2S ,求12S S 的最大值;(3)如图2,连接AC ,BC ,过点O 作直线//l BC ,点P ,Q 分别为直线l 和抛物线上的点.试探究:在第一象限是否存在这样的点P ,Q ,使PQB CAB ∆∆∽.若存在,请求出所有符合条件的点P 的坐标;若不存在,请说明理由.【分析】(1)设抛物线的解析式为(1)(4)y a x x =--,将点C 的坐标代入可求得a 的值,从而得到抛物线的解析式;(2)过点D 作DG x ⊥轴于点G ,交BC 于点F ,过点A 作AK x ⊥轴交BC 的延长线于点K ,证明AKE DFE ∆∆∽,得出DF DE AK AE =,则12BDE ABE S S DE DF S S AE AK∆∆===,求出直线BC 的解析式为122y x =-,设213(,2)22D m m m --,则1(,2)2F m m -,可得出12S S 的关系式,由二次函数的性质可得出结论;(3)设1(P a ,12a ,①当点P 在直线BQ 右侧时,如图2,过点P 作PN x ⊥轴于点N ,过点Q 作QM ⊥直线PN 于点M ,得出13(4Q a ,12)a -,将点Q 的坐标代入抛物线的解析式求得a 的值即可,②当点P 在直线BQ 左侧时,由①的方法同理可得点Q 的坐标为15(4a ,2),代入抛物线的解析可得出答案.【解答】解:(1)设抛物线的解析式为(1)(4)y a x x =+-.将(0,2)C -代入得:42a =,解得12a =,∴抛物线的解析式为1(1)(4)2y x x =+-,即213222y x x =--.(2)过点D 作DG x ⊥轴于点G ,交BC 于点F ,过点A 作AK x ⊥轴交BC 的延长线于点K,//AK DG ∴,AKE DFE ∴∆∆∽,∴DF DE AK AE=,∴12BDE ABE S S DE DF S S AE AK ∆∆===,设直线BC 的解析式为1y kx b =+,∴11402k b b +=⎧⎨=-⎩,解得1122k b ⎧=⎪⎨⎪=-⎩,∴直线BC 的解析式为122y x =-,(1,0)A - ,15222y ∴=--=-,52AK ∴=,设213(,2)22D m m m --,则1(,2)2F m m -,2211312222222DF m m m m m ∴=--++=-+.∴222121214142(2)555552m m S m m m S -+==-+=--+.∴当2m =时,12S S 有最大值,最大值是45.(3)符合条件的点P 的坐标为6834(,99或63()55++.//l BC ,∴直线l 的解析式为12y x =,设1(P a ,1)2a ,①当点P 在直线BQ 右侧时,如图2,过点P 作PN x ⊥轴于点N ,过点Q 作QM ⊥直线PN 于点M ,(1,0)A - ,(0,2)C -,(4,0)B ,5AC ∴=5AB =,5BC =,222AC BC AB += ,90ACB ∴∠=︒,PQB CAB ∆∆ ∽,∴12PQ AC PB BC ==,90QMP BNP ∠=∠=︒ ,90MQP MPQ ∴∠+∠=︒,90MPQ BPN ∠+∠=︒,MQP BPN ∴∠=∠,QPM PBN ∴∆∆∽,∴12QM PM PQ PN BN PB ===,14a QM ∴=,1111(4)222PM a a =-=-,12MN a ∴=-,1134444a BN QM a a -=--=-,13(4Q a ∴,12)a -,将点Q 的坐标代入抛物线的解析式得21111333()222424a a a ⨯-⨯-=-,解得10a =(舍去)或1689a =.6834(,)99P ∴.②当点P 在直线BQ 左侧时,由①的方法同理可得点Q 的坐标为15(4a ,2).此时点P 的坐标为63()55++.【点评】本题是二次函数综合题,考查了待定系数法求一次函数和二次函数的解析式,相似三角形的性质和判定,勾股定理的应用,二次函数的性质,三角形的面积等知识,熟练掌握相似三角形的判定与性质是解题的关键.3.在平面直角坐标系xOy 中,把与x 轴交点相同的二次函数图象称为“共根抛物线”.如图,抛物线2113:222L y x x =--的顶点为D ,交x 轴于点A 、B (点A 在点B 左侧),交y 轴于点C .抛物线2L 与1L 是“共根抛物线”,其顶点为P .(1)若抛物线2L 经过点(2,12)-,求2L 对应的函数表达式;(2)当BP CP -的值最大时,求点P 的坐标;(3)设点Q 是抛物线1L 上的一个动点,且位于其对称轴的右侧.若DPQ ∆与ABC ∆相似,求其“共根抛物线”2L 的顶点P 的坐标.【分析】(1)由题意设抛物线2L 的解析式为(1)(4)y a x x =+-,利用待定系数法求出a 即可解决问题.(2)由题意BP AP =,如图1中,当A ,C ,P 共线时,BP PC -的值最大,此时点P 为直线AC 与直线32x =的交点.(3)由题意,顶点3(2D ,258-,PDQ ∠不可能是直角,第一种情形:当90DPQ ∠=︒时,①如图31-中,当QDP ABC ∆∆∽时.②如图32-中,当DQP ABC ∆∆∽时.第二种情形:当90DQP ∠=︒.①如图33-中,。
二次函数单元综合测试(Word版 含答案)
二次函数单元综合测试(Word版含答案)一、初三数学二次函数易错题压轴题(难)1.如图,二次函数y=ax2+bx+c交x轴于点A(1,0)和点B(3,0),交y轴于点C,抛物线上一点D的坐标为(4,3)(1)求该二次函数所对应的函数解析式;(2)如图1,点P是直线BC下方抛物线上的一个动点,PE//x轴,PF//y轴,求线段EF的最大值;(3)如图2,点M是线段CD上的一个动点,过点M作x轴的垂线,交抛物线于点N,当△CBN是直角三角形时,请直接写出所有满足条件的点M的坐标.【答案】(1)y=x2﹣4x+3;(2)EF的最大值为24;(3)M点坐标为可以为(2,3),(552+,3),(552-,3).【解析】【分析】(1)根据题意由A、B两点坐标在二次函数图象上,设二次函数解析式的交点式,将D点坐标代入求出a的值,最后将二次函数的交点式转化成一般式形式.(2)由题意可知点P在二次函数图象上,坐标为(p,p2﹣4p+3).又因为PF//y轴,点F 在直线BC上,P的坐标为(p,﹣p+3),在Rt△FPE中,可得FE2PF,用纵坐标差的绝对值可求线段EF的最大值.(3)根据题意求△CBN是直角三角形,分为∠CBN=90°和∠CNB=90°两类情况计算,利用三角形相似知识进行分析求解.【详解】解:(1)设二次函数的解析式为y=a(x﹣b)(x﹣c),∵y=ax2+bx+与x轴r的两个交点A、B的坐标分别为(1,0)和(3,0),∴二次函数解析式:y=a(x﹣1)(x﹣3).又∵点D(4,3)在二次函数上,∴(4﹣3)×(4﹣1)a=3,∴解得:a=1.∴二次函数的解析式:y=(x﹣1)(x﹣3),即y=x2﹣4x+3.(2)如图1所示.因点P 在二次函数图象上,设P (p ,p 2﹣4p+3).∵y =x 2﹣4x+3与y 轴相交于点C ,∴点C 的坐标为(0,3).又∵点B 的坐标为B (3,0),∴OB =OC∴△COB 为等腰直角三角形.又∵PF//y 轴,PE//x 轴,∴△PEF 为等腰直角三角形.∴EF 2PF .设一次函数的l BC 的表达式为y =kx+b ,又∵B (3,0)和C (0,3)在直线BC 上,303k b b +=⎧⎨=⎩, 解得:13k b =-⎧⎨=⎩, ∴直线BC 的解析式为y =﹣x+3.∴y F =﹣p+3.FP =﹣p+3﹣(p 2﹣4p+3)=﹣p 2+3p .∴EF 2p 22.∴线段EF 的最大值为,EF max 42-24. (3)①如图2所示:若∠CNB =90°时,点N 在抛物线上,作MN//y 轴,l//x 轴交y 轴于点E ,BF ⊥l 交l 于点F .设点N 的坐标为(m ,m 2﹣4m+3),则点M 的坐标为(m ,3),∵C 、D 两点的坐标为(0,3)和(4,3),∴CD ∥x 轴.又∵∠CNE =∠NBF ,∠CEN =∠NFB =90°,∴△CNE ∽△NBF .∴CE NE =NF BF, 又∵CE =﹣m 2+4m ,NE =m ;NF =3﹣m ,BF =﹣m 2+4m ﹣3,∴24m m m-+=2343m m m --+-, 化简得:m 2﹣5m+5=0.解得:m 1=552+,m 2=552-. ∴M 点坐标为(55+,3)或(55-,3) ②如图3所示:当∠CBN =90°时,过B 作BG ⊥CD ,∵∠NBF =∠CBG ,∠NFB =∠BGC =90°,∴△BFN ∽△CGB .∵△BFN 为等腰直角三角形,∴BF =FN ,∴0﹣(m 2﹣4m+3)=3﹣m .∴化简得,m 2﹣5m+6=0.解得,m =2或m =3(舍去)∴M 点坐标为,(2,3). 综上所述,满足题意的M 点坐标为可以为(2,3),(552+,3),(552-,3). 【点睛】本题考查待定系数法求解函数解析式,二次函数和三角函数求值,三角形相似等相关知识点;同时运用数形结合和分类讨论的思想探究点在几何图形上的位置关系.2.在平面直角坐标系中,抛物线22(0)y ax bx a =++≠经过点(2,4)A --和点(2,0)C ,与y 轴交于点D ,与x 轴的另一交点为点B .(1)求抛物线的解析式;(2)如图1,连接BD ,在抛物线上是否存在点P ,使得2PBC BDO ∠=∠?若存在,请求出点P 的坐标;若不存在,请说明理由;(3)如图2,连接AC ,交y 轴于点E ,点M 是线段AD 上的动点(不与点A ,点D 重合),将CME △沿ME 所在直线翻折,得到FME ,当FME 与AME △重叠部分的面积是AMC 面积的14时,请直接写出线段AM 的长. 【答案】(1)22y x x =-++;(2)存在,(23,209)或(103,529-);(3)5或 【解析】【分析】(1)根据点A 和点C 的坐标,利用待定系数法求解;(2)在x 轴正半轴上取点E ,使OB=OE ,过点E 作EF ⊥BD ,垂足为F ,构造出∠PBC=∠BDE ,分点P 在第三象限时,点P 在x 轴上方时,点P 在第四象限时,共三种情况分别求解;(3)设EF 与AD 交于点N ,分点F 在直线AC 上方和点F 在直线AC 下方时两种情况,利用题中所给面积关系和中线的性质可得MN=AN ,FN=NE ,从而证明四边形FMEA 为平行四边形,继而求解.【详解】解:(1)∵抛物线22(0)y ax bx a =++≠经过点A (-2,-4)和点C (2,0),则44220422a b a b -=-+⎧⎨=++⎩,解得:11a b =-⎧⎨=⎩, ∴抛物线的解析式为22y x x =-++;(2)存在,理由是:在x 轴正半轴上取点E ,使OB=OE ,过点E 作EF ⊥BD ,垂足为F ,在22y x x =-++中,令y=0,解得:x=2或-1,∴点B 坐标为(-1,0),∴点E 坐标为(1,0),可知:点B 和点E 关于y 轴对称,∴∠BDO=∠EDO ,即∠BDE=2∠BDO ,∵D (0,2),∴=,在△BDE 中,有12×BE ×OD=12×BD ×EF ,即2×EF ,解得:,∴,∴tan ∠BDE=EF DF =55÷=43, 若∠PBC=2∠BDO ,则∠PBC=∠BDE ,∵BE=2,则BD 2+DE 2>BE 2,∴∠BDE 为锐角,当点P 在第三象限时,∠PBC 为钝角,不符合;当点P 在x 轴上方时,∵∠PBC=∠BDE ,设点P 坐标为(c ,22c c -++),过点P 作x 轴的垂线,垂足为G ,则BG=c+1,PG=22c c -++,∴tan ∠PBC=PG BG =221c c c -+++=43, 解得:c=23, ∴22c c -++=209, ∴点P 的坐标为(23,209);当点P 在第四象限时,同理可得:PG=22c c --,BG=c+1,tan ∠PBC=PG BG =221c c c --+=43, 解得:c=103, ∴22c c -++=529-, ∴点P 的坐标为(103,529-), 综上:点P 的坐标为(23,209)或(103,529-);(3)设EF 与AD 交于点N ,∵A (-2,-4),D (0,2),设直线AD 表达式为y=mx+n ,则422m n n -=-+⎧⎨=⎩,解得:32m n =⎧⎨=⎩, ∴直线AD 表达式为y=3x+2,设点M 的坐标为(s ,3s+2),∵A (-2,-4),C (2,0),设直线AC 表达式为y=m 1x+n 1,则11114202m n m n -=-+⎧⎨=+⎩,解得:1112m n =⎧⎨=-⎩, ∴直线AC 表达式为y=x-2,令x=0,则y=-2,∴点E 坐标为(0,-2),可得:点E 是线段AC 中点,∴△AME 和△CME 的面积相等,由于折叠,∴△CME ≌△FME ,即S △CME =S △FME ,由题意可得:当点F 在直线AC 上方时,∴S △MNE =14S △AMC =12S △AME =12S △FME , 即S △MNE = S △ANE = S △MNF ,∴MN=AN ,FN=NE ,∴四边形FMEA 为平行四边形, ∴CM=FM=AE=12AC=221442+22 ∵M (s ,3s+2), ()()2223222s s -++=解得:s=45-或0(舍),∴M (45-,25-), ∴AM=22422455⎛⎫⎛⎫-++-+ ⎪ ⎪⎝⎭⎝⎭=6105,当点F 在直线AC 下方时,如图,同理可得:四边形AFEM 为平行四边形,∴AM=EF ,由于折叠可得:CE=EF ,∴AM=EF=CE=22,综上:AM 的长度为105或22 【点睛】 本题是二次函数综合题,涉及到待定系数法,二次函数的图像和性质,折叠问题,平行四边形的判定和性质,中线的性质,题目的综合性很强.难度很大,对学生的解题能力要求较高.3.如图,抛物线()250y ax bx a =+-≠经过x 轴上的点1,0A 和点B 及y 轴上的点C ,经过B C 、两点的直线为y x n =+.(1)求抛物线的解析式.(2)点P 从A 出发,在线段AB 上以每秒1个单位的速度向B 运动,同时点E 从B 出发,在线段BC 上以每秒2个单位的速度向C 运动.当其中一个点到达终点时,另一点也停止运动.设运动时间为t 秒,求t 为何值时,PBE △的面积最大并求出最大值. (3)过点A 作AM BC ⊥于点M ,过抛物线上一动点N (不与点B C 、重合)作直线AM 的平行线交直线BC 于点Q .若点A M N Q 、、、为顶点的四边形是平行四边形,求点N 的横坐标.【答案】(1)265y x x =-+- (2)2t =;2(3)5412或4或5412【解析】【分析】(1)先确定A 、B 、C 三点的坐标,然后用待定系数法解答即可;(2)先求出AB 、BC 的长并说明△BOC 是等腰直角三角形,再求出点P 到BC 的高d 为()24542d BP sin t =⋅︒=-,则12PBE S BE d =⨯⨯)()122244222t t t =⨯⨯-=-,再根据二次函数的性质即可确定最大值; (3)先求出2454222AM AB sin =⋅︒=⨯=N 作直线AM 的平行线交直线BC 于点,Q 则,再说明四边形AMNQ 是平行四边形,得到22NQ AM ==;再过点N 作NH x ⊥轴,交x 轴于点,G 交BC 于点,H 结合题意说明NQH 为等腰直角三角形,求得22884NH NQ HQ =+=+=;设()2,65N m m m -+-,则(),0G m , (),5H m m -,最后分点N 在x 轴上方时、点N 在x 轴下方且5m >时和1m <三种情况解答即可.【详解】解:()1因为直线y x n =+经过B C 、两点,且点B 在x 轴上,点C 在y 轴上, ∵()(),,00,B n C n -∴抛物线25y ax bx =+-经过点1,0A ,点(),0B n -,点()0,C n ,∴250505a b an bn n +-=⎧⎪--=⎨⎪-=⎩,解得51,6n a b =-⎧⎪=-⎨⎪=⎩所以抛物线的解析式为265y x x =-+-.()2∵()()()1,05,0,0,,5,A B C -∴4,AB BC BOC ==为等腰直角三角形,∴45,ABC ∠=由题意得4,2,02BP t BE t t =-=<≤点P 到BE的距离()4542d BP sin t =⋅︒=- 所以12PBE S BE d =⨯⨯)()1244222t t t t =⨯⨯-=-; ∵二次函数()()42f t t =-的函数图象开口向下,零点为0和4, ∴0422t +==时, ∴()()()22422maxf t f ==⨯⨯-=即2t =时,PBE △的面积最大,且最大值为()3由题意得454AM AB sin =⋅︒== 过点N 作直线AM 的平行线交直线BC 于点,Q 则,NQ BC ⊥ ∵点,A M N Q 、、为顶点的四边形是平行四边形,∴NQ AM ==过点N 作NH x ⊥轴,交x 轴于点,G 交BC 于点,H∵:5BC l y x =-,∴NQH 为等腰直角三角形,∴22884,NH NQ HQ =+=+=设()2,65N m m m -+-, 则(),0G m ,(),5H m m -,①点N 在x 轴上方时,此时()()2655,NH m m m =-+---∴()()26554m m m -+---=,即()()140,m m --=解得1m =(舍,因为此时点N 与点A 重合)或4m =;②点N 在x 轴下方且5m >时,此时()()2565,NH m m m =---+- ∴()()25654m m m ---+-=,即2540,m m --=解得54152m -=<(舍)或5412m +=③点N 在x 轴下方且1m <时,此时()()2565,NH m m m =---+- ∴()()25654m m m ---+-=,即2540,m m --=解得5412m -=或5412m +=(舍)综上所述,5414,2m m +==,5412m -=符合题意, 即若点,A M N Q 、、为顶点的四边形是平行四边形, 点N 的横坐标为541-或4或541+.【点睛】本题主要考查了二次函数的性质、平行四边形的判定与性质,掌握二次函数的性质以及分类讨论思想是解答本题的关键4.对于函数y =ax 2+(b+1)x+b ﹣2(a ≠0),若存在实数x0,使得a 20x +(b+1)x 0+b ﹣2=x0成立,则称x 0为函数y =ax 2+(b+1)x+b ﹣2(a ≠0)的不动点. (1)当a =2,b =﹣2时,求y =ax 2+(b+1)x+b ﹣2(a ≠0)的不动点;(2)若对于任何实数b ,函数y =ax 2+(b+1)x+b ﹣2(a ≠0)恒有两相异的不动点,求实数a 的取值范围;(3)在(2)的条件下,若y =ax 2+(b+1)x+b ﹣2(a ≠0)的图象上A ,B 两点的横坐标是函数y =ax 2+(b+1)x+b ﹣2(a ≠0)的不动点,且直线y =﹣x+2121a +是线段AB 的垂直平分线,求实数b 的取值范围.【答案】(1)不动点是﹣1或2;(2)a 的取值范围是0<a <2;(3)b 的取值范围是﹣4≤b <0. 【解析】 【分析】(1)将a =2,b =﹣2代入函数y =ax 2+(b+1)x+b ﹣2(a ≠0),得y =2x 2﹣x ﹣4,然后令x =2x 2﹣x ﹣4,求出x 的值,即y =ax 2+(b+1)x+b ﹣2(a ≠0)的不动点;(2)对于任何实数b ,函数y =ax 2+(b+1)x+b ﹣2(a ≠0)恒有两相异的不动点,可以得到x =ax 2+(b+1)x+b ﹣2(a ≠0)时,对于任何实数b 都有△>0,然后再设t =△,即可求得a 的取值范围;(3)根据y =ax 2+(b+1)x+b ﹣2(a ≠0)的图象上A ,B 两点的横坐标是函数y =ax 2+(b+1)x+b ﹣2(a ≠0)的不动点,可知点A 和点B 均在直线y =x 上,然后设出点A 和点B 的坐标,从而可以得到线段AB 的中点坐标,再根据直线y =﹣x+2121a +是线段AB 的垂直平分线,从而可以求得b 的取值范围. 【详解】解:(1)当a =2,b =﹣2时, 函数y =2x 2﹣x ﹣4, 令x =2x 2﹣x ﹣4, 化简,得x 2﹣x ﹣2=0 解得,x 1=2,x 2=﹣1,即y =ax 2+(b+1)x+b ﹣2(a ≠0)的不动点是﹣1或2; (2)令x =ax 2+(b+1)x+b ﹣2, 整理,得 ax 2+bx+b ﹣2=0,∵对于任何实数b ,函数y =ax 2+(b+1)x+b ﹣2(a ≠0)恒有两相异的不动点,∴△=b 2﹣4a (b ﹣2)>0,设t =b 2﹣4a (b ﹣2)=b 2﹣4ab+8a ,对于任何实数b ,t >0, 故(﹣4a )2﹣4×1×8a <0, 解得,0<a <2,即a 的取值范围是0<a <2; (3)由题意可得, 点A 和点B 在直线y =x 上, 设点A (x 1,x 1),点B (x 2,x 2),∵A ,B 两点的横坐标是函数y =ax 2+(b+1)x+b ﹣2(a ≠0)的不动点, ∴x 1,x 2是方程ax 2+bx+b ﹣2=0的两个根, ∴x 1+x 2=﹣b a, ∵线段AB 中点坐标为(122x x +,122x x+), ∴该中点的坐标为(2b a -,2b a-), ∵直线y =﹣x+2121a +是线段AB 的垂直平分线,∴点(2b a -,2ba -)在直线y =﹣x+2121a +上, ∴2ba -=21221b a a ++∴﹣b =221a a ≤+4,(当a =2时取等号)∴0<﹣b∴﹣4≤b <0,即b 的取值范围是﹣4≤b <0. 【点睛】本题是一道二次函数综合题、主要考查新定义、二次函数的性质、二次函数图象上点的坐标特征、一次函数的性质,解答本题的关键是明确题意,利用二次函数的性质解答.5.在平面直角坐标系中,二次函数22y ax bx =+-的图象与x 轴交于点(4,0)A -,(1,0)B ,与y 轴交于点C .(1)求此抛物线的解析式;(2)点P 是抛物线22y ax bx =+-上的任意一点,过点P 作x 轴的垂线PD ,直线PD交直线AC 于点D .①是否存在点P ,使得PAC ∆的面积是ABC ∆面积的45?若存在,求出点P 的坐标;若不存在,请说明理由.②点Q 是坐标平面内的任意一点,若以O ,C ,Q ,D 为顶点的四边形是菱形时,请直接写出点Q 的坐标. 【答案】(1)213222y x x =+- (2)①存在,点P 的坐标为(22,12)-+-,(222,12)--+,(2,3)--②1816,55Q ⎫⎛-- ⎪⎝⎭,2(2,1)Q -,34525Q ⎝⎭,44525Q ⎛ ⎝⎭【解析】 【分析】(1)将(4,0)A -,(1,0)B 两点坐标代入解析式中求解即可; (2)①先求出△PAC 的面积为4,再求出直线AC 的解析式为122y x =--.设点P 的横坐标为(t ,213222t t +-),利用21442∆∆∆=-=⋅=+=PAC PDC PDA S S S OA PD t t 即可求解; ②先设出D 点坐标,然后再按对角线分成三种情况讨论即可求解. 【详解】解:(1)由题意得,将(4,0)A -,(1,0)B 两点坐标代入解析式中:1642020a b a b --=⎧⎨+-=⎩,解得:1232a b ⎧=⎪⎪⎨⎪=⎪⎩. ∴此抛物线的解析式为213222y x x =+-, 故答案为213222y x x =+-. (2)①存在点P ,使得PAC ∆的面积是ABC ∆面积的45.理由如下: 作出如下所示示意图:∵点(4,0)A -,(1,0)B , ∴4OA =,5AB =, 令0x =,则2y =-, ∴(0,2)C -,∴2OC =, ∴1152522ABC S AB OC ∆=⋅=⨯⨯=, ∴445545PAC ABC S S ∆∆==⨯=, 设直线AC 的解析式为y mx n =+,则有402m n n -+=⎧⎨=-⎩,解得:122m n ⎧=-⎪⎨⎪=-⎩,∴直线AC 的解析式为122y x =--.设点P 的横坐标为t ,则其纵坐标为213222t t +-, 即213,222P t t t ⎫⎛+- ⎪⎝⎭. ∵PD x ⊥轴,则点D 的坐标为1,22t t ⎫⎛-- ⎪⎝⎭. ∴2213112222222PD t t t t t ⎫⎛=+----=+ ⎪⎝⎭. ∵22111424222PAC PDC PDA S S S OA PD t t t t ∆∆∆=-=⋅=⨯⨯+=+. ∴244t t +=,即2440t t +-=或2440t t ++=, 解得:1222t =-+,2222t =--,32t =-.∴点P 的坐标为(222,12)-+-,(222,12)--+,(2,3)--, 故答案为:(222,12)-+-或(222,12)--+或(2,3)--. ②分类讨论:情况一:当OC 为菱形的对角线时,此时DO=DC ,即D 点在线段OC 的垂直平分线, ∴D 点坐标(-2,-1),将△OCD 沿y 轴翻折,此时四边形ODCQ 为菱形,故此时Q 点坐标为(2,-1),如下图一所示,情况二:当OQ 为对角线时,DO=DQ ,如下图二所示,DQ=OC=OD=2,设D 点坐标1,22⎛⎫-- ⎪⎝⎭x x ,则EO=-x ,DE=122x +,在Rt △EDO 中,由勾股定理可知:EO²+ED²=DO², 故221(2)42++=x x ,解得80(),5舍==-x x ,此时Q 点坐标为816,55⎛⎫-- ⎪⎝⎭,情况三:当OD 为对角线时,OC=OQ=2,如下图三所示:设D 点坐标1,22⎛⎫-- ⎪⎝⎭m m ,则EO=|m|,DE=122m +,QE=2-(122m +)=12m , 在Rt △QDO 中,由勾股定理可知:QE²+EO²=QO², 故221()()42+=m m ,解得124545,==-m m ,此时Q 点坐标为4525,⎛⎫- ⎪ ⎪⎝⎭或4525,55⎛⎫- ⎪ ⎪⎝⎭, 综上所述,Q 点的坐标为1816,55Q ⎫⎛-- ⎪⎝⎭,2(2,1)Q -,34525,55Q ⎫⎛-⎪ ⎝⎭,44525,Q ⎫⎛-⎪ ⎝⎭.故答案为1816,55Q ⎫⎛-- ⎪⎝⎭,2(2,1)Q -,34525,Q ⎫⎛-⎪ ⎝⎭,44525,Q ⎫⎛-⎪ ⎝⎭.【点睛】本题考查了待定系数法求二次函数解析式,三角形的面积问题,菱形的存在性问题等,属于综合题,具有一定的难度,熟练掌握二次函数的图形及性质是解决本题的关键.6.如图,已知点()1,2A 、()()5,0B n n >,点P 为线段AB 上的一个动点,反比例函数()0ky x x=>的图像经过点P .小明说:“点P 从点A 运动至点B 的过程中,k 值逐渐增大,当点P 在点A 位置时k 值最小,在点B 位置时k 值最大.”(1)当1n =时.①求线段AB 所在直线的函数表达式.②你完全同意小明的说法吗?若完全同意,请说明理由;若不完全同意,也请说明理由,并求出正确的k 的最小值和最大值.(2)若小明的说法完全正确,求n 的取值范围.【答案】(1)①1944y x =-+;②不完全同意小明的说法;理由见详解;当92x =时,k 有最大值8116;当1x =时,k 有最小值2;(2)109n ≥;【解析】 【分析】(1)①直接利用待定系数法,即可求出函数的表达式; ②由①得直线AB 为1944y x =-+,则21944k x x =-+,利用二次函数的性质,即可求出答案;(2)根据题意,求出直线AB 的直线为21044n n y x --=+,设点P 为(x ,kx),则得到221044n n k x x --=-,讨论最高项的系数,再由一次函数及二次函数的性质,得到对称轴52ba -≥,即可求出n 的取值范围. 【详解】解:(1)当1n =时,点B 为(5,1), ①设直线AB 为y ax b =+,则251a b a b +=⎧⎨+=⎩,解得:1494a b ⎧=-⎪⎪⎨⎪=⎪⎩, ∴1944y x =-+; ②不完全同意小明的说法;理由如下: 由①得1944y x =-+, 设点P 为(x ,kx),由点P 在线段AB 上则 1944k x x =-+, ∴22191981()444216k x x x =-+=--+; ∵104-<,∴当92x =时,k 有最大值8116; 当1x =时,k 有最小值2;∴点P 从点A 运动至点B 的过程中,k 值先增大后减小,当点P 在点A 位置时k 值最小,在92x =的位置时k 值最大. (2)∵()1,2A 、()5,B n , 设直线AB 为y ax b =+,则25a b a b n +=⎧⎨+=⎩,解得:24104n a n b -⎧=⎪⎪⎨-⎪=⎪⎩, ∴21044n ny x --=+, 设点P 为(x ,kx),由点P 在线段AB 上则 221044n n k x x --=-, 当204n -=,即n=2时,2k x =,则k 随x 的增大而增大,如何题意; 当n≠2时,则对称轴为:101042242n n x n n --==--;∵点P 从点A 运动至点B 的过程中,k 值逐渐增大,当点P 在点A 位置时k 值最小,在点B 位置时k 值最大.即k 在15x ≤≤中,k 随x 的增大而增大; 当204n ->时,有 ∴20410124n n n -⎧>⎪⎪⎨-⎪≤⎪-⎩,解得:26n n >⎧⎨≥-⎩,∴不等式组的解集为:2n >; 当204n -<时,有∴2410524nnn-⎧<⎪⎪⎨-⎪≥⎪-⎩,解得:1029n≤<,∴综合上述,n的取值范围为:109n≥.【点睛】本题考查了二次函数的性质,反比例函数的性质,一次函数的性质,以及解不等式组,解题的关键是熟练掌握所学的知识,掌握所学函数的性质进行解题,注意利用分类讨论的思想进行分析.7.定义:函数l与l'的图象关于y轴对称,点(),0P t是x轴上一点,将函数l'的图象位于直线x t=左侧的部分,以x轴为对称轴翻折,得到新的函数w的图象,我们称函数w是函数l的对称折函数,函数w的图象记作1F,函数l的图象位于直线x t=上以及右侧的部分记作2F,图象1F和2F合起来记作图象F.例如:如图,函数l的解析式为1y x=+,当1t=时,它的对称折函数w的解析式为()11y x x=-<.(1)函数l的解析式为21y x=-,当2t=-时,它的对称折函数w的解析式为_______;(2)函数l的解析式为1²12y x x=--,当42x-≤≤且0t=时,求图象F上点的纵坐标的最大值和最小值;(3)函数l的解析式为()2230y ax ax a a=--≠.若1a=,直线1y t=-与图象F有两个公共点,求t的取值范围.【答案】(1)()212y x x=+<-;(2)F的解析式为2211(0)211(0)2y x x xy x x x⎧=--≥⎪⎪⎨⎪=--+<⎪⎩;图象F上的点的纵坐标的最大值为32y=,最小值为3y=-;(3)当3t=-,312t<≤,352t+<<时,直线1y t=-与图象F有两个公共点.【解析】【分析】(1)根据对折函数的定义直接写出函数解析式即可;(2)先根据题意确定F的解析式,然后根据二次函数的性质确定函数的最大值和最小值即可;(3)先求出当a=1时图像F的解析式,然后分14t-=-、点(),1t t-落在223()y x x x t=--≥上和点(),1t t-落在()223y x x x t=--+<上三种情况解答,最后根据图像即可解答.【详解】解:(1)()212y x x=+<-(2)F的解析式为2211(0)211(0)2y x x xy x x x⎧=--≥⎪⎪⎨⎪=--+<⎪⎩当4x=-时,3y=-,当1x=-时,32y=,当1x=时,32y=-,当2x=时,1y=,∴图象F上的点的纵坐标的最大值为32y=,最小值为3y=-.(3)当1a=时,图象F的解析式为2223()23()y x x x ty x x x t⎧=--≥⎨=--+<⎩∴该函数的最大值和最小值分别为4和-4;a:当14t-=-时,3t=-,∴当3t=-时直线1y t=-与图象F有两个公共点;b:当点(),1t t-落在223()y x x x t=--≥上时,2123t t t-=--,解得1t=232t=c:当点(),1t t-落在()223y x x x t=--+<上时,2123t t t-=--+,解得34t=-(舍),41t=14t-=,∴55t=∴当31712t -<≤或31752t +<<时,直线1y t =-与图象F 有两个公共点; 综上所述:当3t =-,3171t -<≤,3175t +<<时,直线1y t =-与图象F 有两个公共点.【点睛】 本题属于二次函数综合题,考查了“称折函数”的定义、二次函数的性质、解二元一次方程等知识,弄清题意、灵活运用所学知识是解答本题的关键.8.如图,在平面直角坐标系中,抛物线2(0)y ax bx c a =++≠交x 轴于点(2,0),(3,0)A B -,交y 轴于点C ,且经过点(6,6)D --,连接,AD BD .(1)求该抛物线的函数关系式;(2)△ANM 与ABD ∆是否相似?若相似,请求出此时点M 、点N 的坐标;若不存在,请说明理由;(3)若点P 是直线AD 上方的抛物线上一动点(不与点,A D 重合),过P 作//PQ y 轴交直线AD 于点Q ,以PQ 为直径作⊙E ,则⊙E 在直线AD 上所截得的线段长度的最大值等于 .(直接写出答案)【答案】(1)2113442y x x =--+;(2)点M (0,32)、点N (34,0)或点M (0,32),N (-3,0)或点M (-1,32)、点N (-3,0)或N (14-,0)、M (-1,32);(3)QH 有最大值,当x=2-时,其最大值为125. 【解析】【分析】(1)用交点式函数表达式得:y=a (x-2)(x+3),将点D 坐标代入上式即可求解; (2)分∠MAB=∠BAD 、∠MAB=∠BDA ,两种大情况、四种小情况,分别求解即可; (3)根据题意,利用二次函数的性质和三角函数,QH=PQcos ∠PQH=35PQ=352113(442x x --+33)42x -+=23392055x x --+,即可求解.【详解】解:(1)用交点式函数表达式得:y=a (x-2)(x+3),将点D 坐标代入上式并解得:14a =-, 故函数的表达式为:2113442y x x =--+…①, 则点C (0,32);(2)由题意得:AB=5,AD=10,BD=,①∠MAN=∠ABD 时,(Ⅰ)当△ANM ∽△ABD 时,直线AD 所在直线的k 值为34,则直线AM 表达式中的k 值为34-, 则直线AM 的表达式为:3(2)4y x =--,故点M (0,32), AD AB AM AN =,则AN=54,则点N (34,0); (Ⅱ)当△AMN ∽△ABD 时,同理可得:点N (-3,0),点M (0,32), 故点M (0,32)、点N (34,0)或点M (0,32),N (-3,0); ②∠MAN=∠BDA 时,(Ⅰ)△ABD ∽△NMA 时, ∵AD ∥MN ,则tan ∠MAN=tan ∠BDA=12, AM :y=12-(x-2),则点M (-1,32)、点N (-3,0); (Ⅱ)当△ABD ∽△MNA 时,AD BDAM AN ==, 解得:AN=94, 故点N (14-,0)、M (-1,32); 故:点M (-1,32)、点N (-3,0)或N (14-,0)、M (-1,32);综上,点M (0,32)、点N (34,0)或点M (0,32),N (-3,0)或点M (-1,32)、点N (-3,0)或N (14-,0)、M (-1,32); (3)如图所示,连接PH ,由题意得:tan ∠PQH=43,则cos ∠PQH=35, 则直线AD 的表达式为:y=3342x -, 设点P (x ,2113442x x --+),则点Q (x ,3342x -), 则QH=PQcos ∠PQH=35PQ=352113(442x x --+33)42x -+ =23392055x x --+ =2312(2)205x -++, ∵3020-<, 故QH 有最大值,当x=2-时,其最大值为125. 【点睛】本题考查的是二次函数综合应用,涉及到一次函数、圆的基本知识,解直角三角形,相似三角形的判定和性质,其中(2)需要分类求解共四种情况,避免遗漏.9.如图,直线3y x 与x 轴、y 轴分别交于点A ,C ,经过A ,C 两点的抛物线2y ax bx c =++与x 轴的负半轴的另一交点为B ,且tan 3CBO ∠=(1)求该抛物线的解析式及抛物线顶点D 的坐标;(2)点P 是射线BD 上一点,问是否存在以点P ,A ,B 为顶点的三角形,与ABC 相似,若存在,请求出点P 的坐标;若不存在,请说明理由【答案】(1)243y x x =++,顶点(2,1)D --;(2)存在,52,33P ⎛⎫-- ⎪⎝⎭或(4,3)-- 【解析】【分析】(1)利用直线解析式求出点A 、C 的坐标,从而得到OA 、OC ,再根据tan ∠CBO=3求出OB ,从而得到点B 的坐标,然后利用待定系数法求出二次函数解析式,整理成顶点式形式,然后写出点D 的坐标;(2)根据点A 、B 的坐标求出AB ,判断出△AOC 是等腰直角三角形,根据等腰直角三角形的性质求出AC ,∠BAC=45°,再根据点B 、D 的坐标求出∠ABD=45°,然后分①AB 和BP 是对应边时,△ABC 和△BPA 相似,利用相似三角形对应边成比例列式求出BP ,过点P 作PE ⊥x 轴于E ,求出BE 、PE ,再求出OE 的长度,然后写出点P 的坐标即可;②AB 和BA 是对应边时,△ABC 和△BAP 相似,利用相似三角形对应边成比例列式求出BP ,过点P 作PE ⊥x 轴于E ,求出BE 、PE ,再求出OE 的长度,然后写出点P 的坐标即可.【详解】解:(1)令y=0,则x+3=0,解得x=-3,令x=0,则y=3,∴点A (-3,0),C (0,3),∴OA=OC=3,∵tan ∠CBO=3OC OB=, ∴OB=1,∴点B (-1,0),把点A 、B 、C 的坐标代入抛物线解析式得, 93003a b c a b c c -+=⎧⎪-+=⎨⎪=⎩,解得:143a b c =⎧⎪=⎨⎪=⎩,∴该抛物线的解析式为:243y x x =++,∵y=x 2+4x+3=(x+2)2-1,∴顶点(2,1)D --;(2)∵A (-3,0),B (-1,0),∴AB=-1-(-3)=2,∵OA=OC,∠AOC=90°,∴△AOC是等腰直角三角形,∴AC=2OA=32,∠BAC=45°,∵B(-1,0),D(-2,-1),∴∠ABD=45°,①AB和BP是对应边时,△ABC∽△BPA,∴AB ACBP BA=,即2322BP=,解得BP=223,过点P作PE⊥x轴于E,则BE=PE=23×22=23,∴OE=1+23=53,∴点P的坐标为(-53,-23);②AB和BA是对应边时,△ABC∽△BAP,∴AB ACBA BP=,即2322=,解得BP=32过点P作PE⊥x轴于E,则BE=PE=32×22=3, ∴OE=1+3=4, ∴点P 的坐标为(-4,-3);综合上述,当52,33P ⎛⎫--⎪⎝⎭或(4,3)--时,以点P ,A ,B 为顶点的三角形与ABC ∆相似;【点睛】本题是二次函数综合题型,主要利用了直线与坐标轴交点的求解,待定系数法求二次函数解析式,等腰直角三角形的判定与性质,相似三角形的判定与性质,难点在于(2)要分情况讨论.10.在平面直角坐标系中,二次函数y =ax 2+bx +2的图象与x 轴交于A (﹣3,0),B (1,0)两点,与y 轴交于点C .(1)求这个二次函数的关系解析式;(2)点P 是直线AC 上方的抛物线上一动点,是否存在点P ,使△ACP 的面积最大?若存在,求出点P 的坐标;若不存在,说明理由;(3)在平面直角坐标系中,是否存在点Q ,使△BCQ 是以BC 为腰的等腰直角三角形?若存在,直接写出点Q 的坐标;若不存在,说明理由;【答案】(1)224233y x x =--+;(2)存在,点P 35,22⎛⎫- ⎪⎝⎭,使△PAC 的面积最大;(3)存在点Q ,使△BCQ 是以BC 为腰的等腰直角三角形.Q 点坐标为:Q 1(2,3),Q 2(3,1),Q 3(﹣1,﹣1),Q 4(﹣2,1).【解析】【分析】(1)直接把点A (﹣3,0),B (1,0)代入二次函数y =ax 2+bx+2求出a 、b 的值即可得出抛物线的解析式;(2)设点P 坐标为(m ,n ),则n =﹣23m 2﹣43m+2,连接PO ,作PM ⊥x 轴于M ,PN ⊥y 轴于N .根据三角形的面积公式得出△PAC 的表达式,再根据二次函数求最大值的方法得出其顶点坐标即可;(3)以BC 为边,在线段BC 两侧分别作正方形,正方形的其他四个顶点均可以使得“△BCQ 是以BC 为腰的等腰直角三角形”,因此有四个点符合题意要求,再过Q 1点作Q 1D ⊥y 轴于点D ,过点Q 2作Q 2E ⊥x 轴于点E ,根据全等三角形的判定定理得出△Q 1CD ≌△CBO ,△CBO ≌△BQ 2E ,故可得出各点坐标.【详解】(1)∵抛物线y =ax 2+bx+2过点A (﹣3,0),B (1,0),∴093202a b a b =-+⎧⎨=++⎩ 2343a b ⎧=-⎪⎪⎨⎪=-⎪⎩解得 ∴二次函数的关系解析式为y =﹣23x 2﹣43x+2; (2)存在.∵如图1所示,设点P 坐标为(m ,n ),则n =﹣23m 2﹣43m+2. 连接PO ,作PM ⊥x 轴于M ,PN ⊥y 轴于N .则PM =﹣23m 2﹣43m+2.,PN =﹣m ,AO =3. ∵当x =0时,y =﹣23×0﹣43×0+2=2, ∴OC =2,∴S △PAC =S △PAO +S △PCO ﹣S △ACO =12AO•PM+12CO•PN ﹣12AO•CO =12×3×(﹣23m 2﹣43m+2)+12×2×(﹣m )﹣12×3×2 =﹣m 2﹣3m∵a =﹣1<0∴函数S △PAC =﹣m 2﹣3m 有最大值∴当m =﹣2b a =﹣32时,S △PAC 有最大值. ∴n =﹣23m 2﹣43m+2=﹣23×(﹣32)2﹣43×(﹣32)+2=52, ∴存在点P (﹣32,52),使△PAC 的面积最大.(3)如图2所示,以BC 为边在两侧作正方形BCQ 1Q 2、正方形BCQ 4Q 3,则点Q 1,Q 2,Q 3,Q 4为符合题意要求的点.过Q 1点作Q 1D ⊥y 轴于点D ,过点Q 2作Q 2E ⊥x 轴于点E , ∵∠1+∠2=90°,∠2+∠3=90°,∠3+∠4=90°,∴∠1=∠3,∠2=∠4,在△Q 1CD 与△CBO 中,∵11324Q C BC ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△Q 1CD ≌△CBO ,∴Q 1D =OC =2,CD =OB =1,∴OD =OC+CD =3,∴Q 1(2,3);同理可得Q 4(﹣2,1);同理可证△CBO ≌△BQ 2E ,∴BE =OC =2,Q 2E =OB =1,∴OE =OB+BE =1+2=3,∴Q 2(3,1),同理,Q 3(﹣1,﹣1),∴存在点Q ,使△BCQ 是以BC 为腰的等腰直角三角形.Q 点坐标为:Q 1(2,3),Q 2(3,1),Q 3(﹣1,﹣1),Q 4(﹣2,1).【点睛】本题考查的是二次函数综合题,涉及到用待定系数法求二次函数解析式,二次函数极值、全等三角形的判定与性质,正方形及等腰直角三角形的性质等知识,涉及面较广,难度较大.。
(完整word版)二次函数精选练习题及答案
二次函数练习题及答案一、选择题1. 将抛物线23y x =先向左平移2个单位,再向下平移1个单位后得到新的抛物线,则新抛物线的解析式是 ( )A 23(2)1y x =++B 。
23(2)1y x =+-C 。
23(2)1y x =-+ D.23(2)1y x =-- 2.将抛物线22+=x y 向右平移1个单位后所得抛物线的解析式是………………( ) A.32+=x y ; B.12+=x y ;C.2)1(2++=x y ; D.2)1(2+-=x y .3.将抛物线y= (x —1)2+3向左平移1个单位,再向下平移3个单位后所得抛物线的解析式为( )A .y=(x —2)2B .y=(x —2)2+6C .y=x 2+6D .y=x 24.由二次函数1)3(22+-=x y ,可知( )A .其图象的开口向下B .其图象的对称轴为直线3x =-C .其最小值为1D .当x<3时,y 随x 的增大而增大5.如图,抛物线的顶点P 的坐标是(1,﹣3),则此抛物线对应的二次函数有( )A .最大值1B .最小值﹣3C .最大值﹣3D .最小值16.把函数()y f x ==246x x -+的图象向左平移1个单位,再向上平移1个单位,所得图象对应的函数的解析式是( )A .2(3)3y x =-+B .2(3)1y x =-+C .2(1)3y x =-+D .2(1)1y x =-+7.抛物线c bx x y ++=2图像向右平移2个单位再向下平移3个单位,所得图像的解析式为322--=x x y ,则b 、c 的值为A . b=2, c=2 B. b=2,c=0 C 。
b= -2,c=-1 D 。
b= -3, c=2二、填空题8.二次函数y=-2(x -5)2+3的顶点坐标是 .9.已知二次函数2y x bx c =-++中函数y 与自变量x 之间的部分对应值如下表所示,点11(,)A x y 、22(,)B x y 在函数图象上,当1201,23x x <<<<时,则1y 2y (填“>”或“<”).x 0 1 2 3 y1- 2 3 210.在平面直角坐标系中,将抛物线223y x x =++绕着它与y 轴的交点旋转180°,所得抛物线的解析式为 .11.求二次函数2245y x x =--的顶点坐标(___)对称轴____。
二次函数压轴题之正方形存在性
正方形存在性问题作为特殊四边形中最特殊的一位,正方形拥有更多的性质,因此坐标系中的正方形存在性问题变化更加多样,从判定的角度来说,可以有如下:(1)有一个角为直角的菱形;(2)有一组邻边相等的矩形;(3)对角线互相垂直平分且相等的四边形.依据题目给定的已知条件选择恰当的判定方法,即可确定所求的点坐标.从未知量的角度来说,正方形可以有4个“未知量”,因其点坐标满足4个等量关系,考虑对角线性质,互相平分(2个)垂直(1个)且相等(1个).比如在平面中若已知两个定点,可以在平面中确定另外两个点使得它们构成正方形,而如果要求在某条线上确定点,则可能会出现不存在的情况,即我们所说的未知量小于方程个数,可能无解.从动点角度来说,关于正方形存在性问题可分为:(1)2个定点+2个全动点;(2)1个定点+2个半动点+1个全动点;甚至可以有:(3)4个半动点.不管是哪一种类型,要明确的是一点,我们肯定不会列一个四元一次方程组求点坐标!常用处理方法:思路1:从判定出发若已知菱形,则加有一个角为直角或对角线相等;若已知矩形,则加有一组邻边相等或对角线互相垂直;若已知对角线互相垂直或平分或相等,则加上其他条件.思路2:构造三垂直全等若条件并未给关于四边形及对角线的特殊性,则考虑在构成正方形的4个顶点中任取3个,必是等腰直角三角形,若已知两定点,则可通过构造三垂直全等来求得第3个点,再求第4个点.总结:构造三垂直全等的思路仅适合已知两定点的情形,若题目给了4个动点,则考虑从矩形的判定出发,观察该四边形是否已为某特殊四边形,考证还需满足的其他关系.正方形的存在性问题在中考中出现得并不多,正方形多以小题压轴为主.例:在平面直角坐标系中,A (1,1),B (4,3),在平面中求C 、D 使得以A 、B 、C 、D 为顶点的四边形是正方形.如图,一共6个这样的点C 使得以A 、B 、C 为顶点的三角形是等腰直角三角形. 至于具体求点坐标,以1C 为例,构造△AMB ≌△1C NA ,即可求得1C 坐标.至于像5C 、6C 这两个点的坐标,不难发现,5C 是3AC 或1BC 的中点,6C 是2BC 或4AC 的中点.题无定法,具体问题还需具体分析,如上仅仅是大致思路.两动点:构造等腰直角定第3点(2015·毕节)如图,抛物线2y x bx c =++与x 轴交于A (-1,0),B (3,0)两点. (1)求抛物线的解析式;(2)是否存在过A 、B 两点的抛物线,其顶点P 关于x 轴的对称点为Q ,使得四边形APBQ 为正方形?若存在,求出此抛物线的解析式;若不存在,请说明理由.【分析】(1)抛物线:223y x x =--;(2)已知A (-1,0)、B (3,0),故构造以AB 为斜边的等腰直角△APB ,如下:若四边形APBQ 是正方形,易得P 点坐标为(1,2)或(1,-2), 当P 点坐标为(1,2)时,易得抛物线解析式为()21122y x =--+; 当P 点坐标为(1,-2)时,易得抛物线解析式为()21122y x =--. 综上所述,抛物线解析式为()21122y x =--+或()21122y x =--. 【小结】看到两个定点,不管题目如何描述第3个点的位置,均可通过构造等腰直角三角形确定第3个点,再求得第4个点.两定两动:抛物线+抛物线(2012·通辽)如图,在平面直角坐标系中,将一个正方形ABCD 放在第一象限斜靠在两坐标轴上,且点A (0,2)、点B (1,0),抛物线22y ax ax =--经过点C . (1)求点C 的坐标; (2)求抛物线的解析式;(3)在抛物线上是否存在点P 与点Q (点C 、D 除外)使四边形ABPQ 为正方形?若存在求出点P 、Q 两点坐标,若不存在说明理由.【分析】 (1)C (3,1); (2)抛物线:211222y x x =--; (3)考虑A 、B 、P 构成等腰直角三角形且∠B 为直角,故可作出点P 如下:构造三垂直全等:△AMB ≌△BNP ,即可求得P 点坐标为(-1,-1),将点P 代入抛物线解析式,成立, 即点P 在抛物线上.根据点P 构造点Q ,通过点的平移易得点Q 坐标为(-2,1), 代入抛物线解析式,成立,即点Q 也在抛物线上, 故存在,点P 坐标为(-1,-1),点Q 坐标为(-2,1).【小结】本题数据设计得巧妙,由A、B确定的点P恰好在抛物线上,由A、B、P确定的点D恰好也在抛物线上,故存在这样的一组P、Q,当然若适当调整数据,则答案完全可以变成不存在.4动点:已知矩形构造邻边相等(2017·雅安)如图,已知抛物线2y x bx c =++的图象经过点A (1,0),B (-3,0),与y 轴交于点C ,抛物线的顶点为D ,对称轴与x 轴相交于点E ,连接BD . (1)求抛物线的解析式.(2)若点P 在直线BD 上,当PE=PC 时,求点P 的坐标.(3)在(2)的条件下,作PF ⊥x 轴于F ,点M 为x 轴上一动点,点N 为直线PF 上一动点,G 为抛物线上一动点,当以点F 、N 、G 、M 四点为顶点的四边形为正方形时,求点M 的坐标.【分析】(1)抛物线:223y x x =+-;(2)求CE 的直线解析式或设P 点坐标表示PE=PC , 可得P 点坐标为()2,2--.(3)考虑FN ⊥FM ,故四边形为MFNG ,若要成为正方形,则GN ∥FM ,GM ⊥x 轴,即四边形MFNG 为矩形. 设FN 长度为m ,则NG=FN=m ,故G 点横坐标为m-2, 代入解析式得:()22,23G m m m ---, 故223GM m m m =--=, 解得:1m =2m =,3m =,4m (舍).则M 点坐标为⎫⎪⎪⎝⎭或⎫⎪⎪⎝⎭.【小结】根据题目描述可知四边形是矩形,考虑四边形的边均与坐标轴平行或垂直,故构造一组邻边相等求得点坐标.四动点:考虑对角线垂直平分且相等(2017·枣庄)如图,抛物线212y x bx c =-++与x 轴交于点A 和点B ,与y 轴交于点C ,点B 坐标为(6,0),点C 坐标为(0,6),点D 是抛物线的顶点,过点D 作x 轴的垂线,垂足为E ,连接BD .(1)求抛物线的解析式及点D 的坐标;(2)若点M 是抛物线上的动点,过点M 作MN ∥x 轴与抛物线交于点N ,点P 在x 轴上,点Q 在坐标平面内,以线段MN 为对角线作正方形MPNQ ,请写出点Q 的坐标. 【分析】(1)抛物线:21262y x x =-++;(2)考虑MN ∥x 轴且MN 为对角线,故MN 与PQ 互相垂直平分且相等,根据垂直可知:PQ ⊥x 轴; 根据平分可知:22M NP x x x +==; 根据相等可知:设MN 与PQ 交于H 点,则MN=2PH .设M 点坐标为21,262m m m ⎛⎫-++ ⎪⎝⎭,则N 点坐标为214,262m m m ⎛⎫--++ ⎪⎝⎭,42MN m =-,21262PH m m =-++,由MN=2PH ,可得21422262m m m -=-++,解得:1m =±3m =±当1m =3-1M y ,此时Q 点坐标为()2;当1m =3+1M y =,此时Q 点坐标为()2,2-.综上所述,Q 点坐标为()2或()2,2-.【小结】考虑到本题对角线是与坐标轴平行或垂直,故构造对角线垂直平分且相等,4动点:已知矩形:构造对角线互相垂直或有一组邻边相等(2018·南充删减)如图,抛物线顶点P (1,4),与y 轴交于点C (0,3),与x 轴交于点A ,B .(1)求抛物线的解析式.(2)若M 、N 为抛物线上两个动点,分别过点M 、N 作直线BC 的垂线段,垂足分别为D 、E .是否存在点M 、N 使四边形MNED 为正方形?如果存在,求正方形MNED 的边长;如果不存在,请说明理由.【分析】(1)抛物线:223y x x =-++;(2)由题意可得:MN ∥BC ,四边形MNED 是矩形,若要变为正方形,可考虑①对角线互相垂直;②有一组邻边相等. 思路1:考虑对角线连接ME ,则△MDN 为等腰直角三角形,∠MED=45°, 即ME ⊥x 轴,设M 点坐标为()2,23m m m -++, 则E 点坐标为(),3m m -+,①当M 点在E 点上方时,可推得N 点坐标为2256,22m m m m ⎛⎫-+-++ ⎪⎝⎭,将点N 坐标代入抛物线:()()13y x x =-+-, 得:22252566222m m m m m m ⎛⎫⎛⎫-++-+--++-= ⎪⎪⎝⎭⎝⎭, 化简得:()()()()()215223322m m m m m m ----=-+ ()32178422m m m m -++=+, 解得:11m =,26m =(舍)此时ME=2②当M 点在E 点下方时,同理可解:m=6.此时ME=18,正方形边长为思路2:考虑邻边相等考虑M 、N 两点均未知,但MN ∥BC ,故可设直线MN 解析式为y=-x+b ,联立方程:223x x x b -++=-+,化简为:()2330x x b -+-=,12x -=3MD ==- ∵MN=MD ,3=- 解得:15b =,215b =-或【小结】其实只要能将计算进行下去,在已知矩形的前提下,无论选边还是选对角线,都能解决问题.。
九年级数学二次函数专项训练含答案-精选5篇
九年级数学二次函数专题精练含答案一、单选题1.关于二次函数22(4)6y x =-+的最大值或最小值,下列说法正确的是( ) A .有最大值4 B .有最小值4 C .有最大值6 D .有最小值6 2.已知抛物线24y x x c =-++经过点(4,3),那么下列各点中,该抛物线必经过的点是( )A .(0,2)B .(0,3)C .(0,4)D .(0,5) 3.在平面直角坐标系中,已知抛物线245y x x =-+,将该抛物线沿y 轴翻折所得的抛物线的表达式为( )A .245y x x =--+B .245y x x =++C .245y x x =-+-D .245y x x =--- 4.正方形的边长为4,若边长增加x ,那么面积增加y ,则y 关于x 的函数表达式为( ) A .216y x =+ B .2(4)y x =+ C .28y x x =+ D .2164y x =- 5.把抛物线22y x =向右平移2个单位,然后向下平移1个单位,则平移后得到的抛物线解析式是( )A .22(2)1y x =-+-B .22(2)1y x =--+C .22(2)1y x =++D .22(2)1y x =--6.如图,二次函数2y ax bx c =++的图象关于直线1x =对称,与x 轴交于1(,0)A x ,2(,0)B x 两点,若121x -<<-,则下列四个结论:①234x <<,①320a b +>,①24b a c ac >++,①a c b >>.正确结论的个数为( )A .1个B .2个C .3个D .4个7.对于抛物线23(1)2y x =-+-,下列说法正确的是( )A .抛物线开口向上B .当1x >-时,y 随x 增大而减小C .函数最小值为﹣2D .顶点坐标为(1,﹣2)8.关于二次函数()215y x =-+,下列说法正确的是( )A .函数图象的开口向下B .函数图象的顶点坐标是()1,5-C .该函数有最大值,是大值是5D .当1x >时,y 随x 的增大而增大 9.已知A (−3,−2) ,B (1,−2),抛物线y =ax 2+bx +c (a >0)顶点在线段AB 上运动,形状保持不变,与x 轴交于C ,D 两点(C 在D 的右侧),下列结论:①c ≥−2 ;①当x >0时,一定有y 随x 的增大而增大;①若点D 横坐标的最小值为−5,点C 横坐标的最大值为3;①当四边形ABCD 为平行四边形时,a =12. 其中正确的是( )A .①①B .①①C .①①D .①①① 10.已知二次函数2243y mx m x =--(m 为常数,0m ≠),点(),p p P x y 是该函数图象上一点,当04p x ≤≤时,3p y ≤-,则m 的取值范围是( )A .m 1≥或0m <B .m 1≥C .1m ≤-或0m >D .1m ≤-11.已知函数()211y ax a x =-++,则下列说法不正确的个数是( )①若该函数图像与x 轴只有一个交点,则1a =①方程()2110ax a x -++=至少有一个整数根①若11x a<<,则()211y ax a x =-++的函数值都是负数 ①不存在实数a ,使得()2110ax a x -++≤对任意实数x 都成立A .0B .1C .2D .312.如图,在正方形ABCD 中,4AB =,点P 从点A 出发沿路径A B C →→向终点C 运动,连接DP ,作DP 的垂直平分线MN 与正方形ABCD 的边交于M ,N 两点,设点P 的运动路程为x ,PMN 的面积为y ,则下列图象能大致反映y 与x 函数关系的是( )A .B .C .D .二、填空题13.已知点(3,a )在抛物线y =-2x 2+2x 上,则=a ______.14.如图是二次函数21y ax bx c =++ 和一次函数y 2=kx +t 的图象,当y 1≥y 2时,x 的取值范围是_____.15.小亮同学在探究一元二次方程2ax bx c 0++=的近似解时,填好了下面的表格:根据以上信息请你确定方程2ax bx c 0++=的一个解的范围是________.16.已知二次函数223y x x =--+,当12a x时,函数值y 的最小值为1,则a 的值为_______.17.已知抛物线2122y x bx =+-与x 轴交于A ,B 两点,与y 轴交于C 点.(1)若(1,0)A -,则b =______.(2)若(1,0)M -,(1,0)N ,抛物线2122y x bx =+-与线段MN 没有交点,则b 的取值范围为______.三、解答题18.已知抛物线经过点()1,0A -,()5,0B ,()0,5C ,求该抛物线的函数关系式 19.如图,抛物线212y x bx c =++与直线132y x =+分别相交于A 、B 两点,其中点A 在y 轴上,且此抛物线与x 轴的一个交点为()3,0C -.(1)求抛物线的解析式(2)在抛物线对称轴l 上找一点M ,使MBC ∆的周长最小,请求出这个周长的最小值.20.如图,一次函数y A 、B ,二次函数2y bx c ++图象过A 、B 两点.(1)求二次函数解析式;(2)点B 关于抛物线对称轴的对称点为点C ,点P 是对称轴上一动点,在抛物线上是否存在点Q ,使得以B 、C 、P 、Q 为顶点的四边形是菱形?若存在,求出Q 点坐标;若不存在,请说明理由.21.如图,二次函数y =ax 2+bx +c 的图象与x 轴交于点A (﹣2,0)和点B (8,0),与y 轴交于点C (0,﹣8),连接AC ,D 是抛物线对称轴上一动点,连接AD ,CD ,得到①ACD .(1)求该抛物线的函数解析式.(2)①ACD 周长能否取得最小值,如果能,请求出D 点的坐标;如果不能,请说明理由.(3)在(2)的条件下,在抛物线上是否存在点E ,使得①ACE 与①ACD 面积相等,如果存在,请求出点的坐标;如果不存在,请说明理由.参考答案1--10DBCCD BBDDA 11--12CA13.-1214.﹣1≤x ≤215.3.24x 3.25<<16.1-17. 32- 3322b -<< 18.解:①抛物线经过点()1,0A -,()5,0B ,()0,5C ,①设抛物线的表达式为()()15y a x x =+-,将点()0,5C 代入得:55a =-,解得:1a =-,①()()21545y x x x x =-+-=-++.①该抛物线的函数关系式为245y x x =-++.19..解:(1)抛物线212y x bx c =++与直线132y x =+交于y 轴上一点A , 令0,x = 则3,y = ∴ 点()0,3A把()0,3A ,()3,0C -代入212y x bx c =++得: 39302c b c =⎧⎪⎨-+=⎪⎩, 解得:523b c ⎧=⎪⎨⎪=⎩, ∴抛物线的解析式是215322y x x =++; (2)将直线132y x =+与二次函数215322y x x =++联立得方程组: 213215322y x y x x ⎧=+⎪⎪⎨⎪=++⎪⎩ 215133,222x x x ∴++=+ 240,x x ∴-=解得:0x =或4x =-,04,,31x x y y ==-⎧⎧∴⎨⎨==⎩⎩()0,3A ,()4,1B ∴-BC ∴==如图,要使MBC △的周长最小,则MB MC +最小,设二次函数215322y x x =++与x 轴的另一交点为D ,抛物线的对称轴为:552,1222x=-=-⨯()3,0C-∴点()2,0D-,连接,BD交对称轴于,MMD MC∴=,此时,MB MC MB MD BD+=+=最小,此时:BD=MBC∴20.解:(1)对于y x=x=0时,y=当y=0时,03x-=,妥得,x=3①A(3,0),B(0,把A(3,0),B(0,2y bx c++得:+=0b cc⎧⎪⎨=⎪⎩解得,bc⎧=⎪⎨⎪=⎩①抛物线的解析式为:2y x x=-(2)抛物线的对称轴为直线12bxa=-==故设P(1,p),Q(m,n)①当BC为菱形对角线时,如图,①B ,C 关于对称没对称,且对称轴与x 轴垂直,①①BC 与对称轴垂直,且BC //x 轴①在菱形BQCP 中,BC ①PQ①PQ ①x 轴①点P 在x =1上,①点Q 也在x =1上,当x =1时,211y①Q (1,); ①当BC 为菱形一边时,若点Q 在点P 右侧时,如图,①BC //PQ ,且BC =PQ①BC //x 轴,①令y =2y 解得,120,2x x ==①(2,C①PQ=BC=22①PB=BC=2①迠P在x轴上,①P(1,0)①Q(3,0);若点Q在点P的左侧,如图,同理可得,Q(-1,0)综上所述,Q点坐标为(1,)或(3,0)或(-1,0)21.解:(1)由题意可得:0=4206488a b ca b cc-+⎧⎪=++⎨⎪=-⎩,解得:1238abc⎧=⎪⎪=-⎨⎪=-⎪⎩,①抛物线的解析式为:y=12x2﹣3x﹣8;(2)△ACD周长能取得最小值,①点A(﹣2,0),点B(8,0),①对称轴为直线x=3,①①ACD周长=AD+AC+CD,AC是定值,①当AD+CD取最小值时,△ACD周长能取得最小值,①点A,点B关于对称轴直线x=3对称,①连接BC交对称轴直线x=3于点D,此时AD+CD有最小值,设直线BC 解析式为:y =kx ﹣8,①0=8k ﹣8,①k =1,①直线BC 解析式为:y =x ﹣8,当x =3,y =﹣5,①点D (3,﹣5);(3)存在,①点A (﹣2,0),点C (0,﹣8),①直线AC 解析式为y =﹣4x ﹣8,如图,①①ACE 与①ACD 面积相等,①DE ①AC ,①设DE 解析式为:y =﹣4x +n ,①﹣5=﹣4×3+n ,①n =7,①DE 解析式为:y =﹣4x +7, 联立方程组可得:2471382y x y x x =-+⎧⎪⎨=--⎪⎩,解得:12111x y ⎧=⎪⎨=-⎪⎩,22111x y ⎧=⎪⎨=⎪⎩, ①点E1,﹣1,).九年级上册数学二次函数同步练习一、单选题1.下列函数中,是二次函数的是( ) A .y =(2x ﹣1)2 B .y =(x +1)2﹣x 2 C .y =ax 2D .y =2x +32.若抛物线258(3)23m m y m x x -+=-+-是关于x 的二次函数,那么m 的值是( )A .3B .2-C .2D .2或33.若抛物线y =x 2-x -2经过点A (3,a ),则a 的值是( ) A .2B .4C .6D .84.已知二次函数2135y x x =-+,则其二次项系数a ,一次项系数b ,常数项c 分别是( ) A .1,3,5a b c ==-= B .1,3,5a b c ===C .5,3,1a b c ===D .5,3,1a b c ==-=5.如果函数2(2)25y a x x =-+-是二次函数,则a 的取值范围是( ) A .2a ≠ B .a≥0C .a=2D .a>06.下列函数中①31y x ;①243y x x =-;①1y x=;①225=-+y x ,是二次函数的有() A .①①B .①①C .①①D .①①7.若抛物线2y x bx c =-++经过点()2,3-,则247c b --的值是( ) A .6B .7C .8D .208.函数y=ax2+bx+c(a ,b ,c 是常数)是二次函数的条件是( ) A .a≠0,b≠0,c≠0 B .a<0,b≠0,c≠0 C .a>0,b≠0,c≠0 D .a≠0二、填空题 9.若()2321m m y m x --=+是二次函数,则m 的值为______.10.若22ay x -=是二次函数,则=a ________.11.在二次函数21y x =-+中,二次项系数、一次项系数、常数项的和为_____. 12.下列函数一定是二次函数的是__________.①2y ax bx c =++;①3y x =-;①2431y x x =-+;①2(1)y m x bx c =-++;①y =(x -3)2-x 213.当常数m ≠______时,函数y =(m 2﹣2m ﹣8)x 2+(m +2)x +2是二次函数;当常数m =___时,这个函数是一次函数. 14.已知函数2135m y x -=-① 当m = _________时,y 是关于x 的一次函数; ① 当m =_________时,y 是关于x 的二次函数 .15.二次函数()22339y m x x m =+++-的图象经过原点,则m =__________.16.已知二次函数2y x bx 3=-++,当x 2=时,y 3=.则这个二次函数的表达式是________. 三、解答题17.下列函数中(x ,t 是自变量),哪些是二次函数? 22322113,25,22,1522y x y x x y x s t t =-+=-+=+=++.18.已知函数y =(m 2-2)x 2+(m x +8. (1)若这个函数是一次函数,求m 的值; (2)若这个函数是二次函数,求m 的取值范围.19.若函数y=(a -1)x b+1+x 2+1是二次函数,试讨论a 、b 的取值范围.20.篱笆墙长30m ,靠墙围成一个矩形花坛,写出花坛面积y(m 2)与长x 之间的函数关系式,并指出自变量的取值范围.参考答案:1.A 2.C 3.B 4.D 5.A 6.B 7.B 8.D 9.4 10.2± 11.0 12.①13. 4,-2 4 14. 1 3215.316.2y x 2x 3=-++17.2132y x =-+和215s t t =++是二次函数18.(1)m (2)m ≠m ≠19.①a≠0;①b=0或-1,a 取全体实数①当a=1,b 为全体实数时,y=x 2+1是二次函数 20.y= 21152x x -+, x 的取值范围为0<x<30.九年级数学上册二次函数的图象与性质练习题(附答案)一.选择题1.如果在二次函数的表达式y =ax 2+bx +c 中,a >0,b <0,c <0,那么这个二次函数的图象可能是( )A.B.C.D.2.已知y=(m+2)x|m|+2是关于x的二次函数,那么m的值为()A.﹣2B.2C.±2D.03.已知A(,y1),B(2,y2),C(﹣,y3)是二次函数y=3(x﹣1)2+k图象上三点,则y1、y2、y3的大小关系为()A.y1>y2>y3B.y2>y1>y3C.y3>y2>y1D.y2>y3>y14.二次函数的部分图象如图所示,对称轴是直线x=﹣1,则这个二次函数的表达式为()A.y=﹣x2+2x+3B.y=x2+2x+3C.y=﹣x2+2x﹣3D.y=﹣x2﹣2x+3 5.在同一平面直角坐标系中,一次函数y=ax+b和二次函数y=ax2+bx+c的图象可能为()A.B.C.D.6.关于抛物线y=﹣x2+2x﹣3的判断,下列说法正确的是()A.抛物线的开口方向向上B.抛物线的对称轴是直线x=﹣1C.抛物线对称轴左侧部分是下降的D.抛物线顶点到x轴的距离是27.已知二次函数y=x2﹣4x+5(0≤x≤3),则它的最大值是()A.1B.2C.3D.58.如图为二次函数y=ax2+bx+c的图象,给出下列说法:①ab<0;②方程ax2+bx+c=0的根为x1=﹣1,x2=3;③a+b+c>0;④当x<1时,y随x值的增大而增大;⑤当y>0时,x<﹣1或x>3.其中,正确的说法有()A.①②④B.①②⑤C.①③⑤D.②④⑤9.已知函数y=2(x+1)2+1,则()A.当x<1 时,y随x的增大而增大B.当x<1 时,y随x的增大而减小C.当x<﹣1 时,y随x的增大而增大D.当x<﹣1 时,y随x的增大而减小10.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列结论中不正确的有()个.①abc>0;②2a+b=0;③9a+3b+c<0;④4ac﹣b2<0;⑤a+b≥m(am+b)(m为任意实数).A.3B.2C.1D.0二.填空题11.已知四个二次函数的图象如图所示,那么a1,a2,a3,a4的大小关系是.(请用“>”连接排序)12.抛物线y=3x2+6x+11的顶点坐标为.13.二次函数y=3(x﹣1)2+5的最小值为.14.已知二次函数y=2x2+bx+4顶点在x轴上,则b=.15.二次函数y=x2﹣2x+1在2≤x≤5范围内的最小值为.16.二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论:①2a+b=0;②a+c>b;③抛物线与x轴的另一个交点为(3,0);④abc>0.其中正确的结论是(填写序号).三.解答题17.已知二次函数的顶点坐标为A(1,﹣4),且经过点B(3,0).(1)求该二次函数的解析式;(2)判断点C(2,﹣3)是否在该函数图象上,并说明理由.18.如图,已知直线l过点A(4,0),B(0,4)两点,它与二次函数y=ax2的图象在第一象限内交于点P,若S△AOP=4,试求二次函数的表达式.19.如图,直线L1:y=bx+c与抛物线L2:y=ax2的两个交点坐标分别为A(m,4),B(1,1).(1)求m的值;(2)过动点P(n,0)且垂直于x轴的直线与L1,L2的交点分别为C,D,当点C位于点D上方时,请直接写出n的取值范围.20.已知二次函数y=a(x+a)(x+a﹣1).(1)当a=2时,求该二次函数图象的对称轴.(2)当a<0时,判断该二次函数图象的顶点所在的象限,并说明理由.(3)当0<x<3时,y随着x增大而增大,求a的取值范围.21.已知二次函数y=ax2(a≠0)与一次函数y=kx﹣2的图象相交于A、B两点,如图所示,其中A(﹣1,﹣1),求△OAB的面积.22.抛物线y=﹣x2+bx+c经过点A(3,0)和点B(0,3),且这个抛物线的对称轴为直线l,顶点为C.(1)求抛物线的解析式;(2)连接AB、AC、BC,求△ABC的面积.23.如图,在平面直角坐标系中,直线AB与抛物线y=﹣x2+bx+c交于A(﹣1,0)和B(2,3)两点,抛物线与y轴交于点C.(1)求一次函数和二次函数的解析式;(2)求△ABC的面积.参考答案一.选择题1.解:∵a>0,b<0,c<0,∴﹣>0,∴抛物线的图象开口向上,对称轴在y轴的右边,交y轴于负半轴,故选:C.2.解:∵y=(m+2)x|m|+2是y关于x的二次函数,∴|m|=2且m+2≠0.解得m=2.故选:B.3.解:∵二次函数y=3(x﹣1)2+k图象的对称轴为直线x=1,而A(,y1)到直线x=1的距离最近,C(﹣,y3)到直线x=1的距离最远,∴y3>y2>y1.故选:C.4.解:由图象知抛物线的对称轴为直线x=﹣1,设抛物线解析式为y=a(x+1)2+k,将(﹣3,0)、(0,3)代入,得:,解得:,则抛物线解析式为y=﹣(x+1)2+4=﹣x2﹣2x+3,故选:D.5.解:A、由抛物线可知,a<0,x=﹣<0,得b<0,由直线可知,a<0,b<0,故本选项正确;B、由抛物线可知,a>0,由直线可知,a<0,故本选项错误;C、由抛物线可知,a>0,x=﹣>0,得b<0,由直线可知,a>0,b>0,故本选项错误;D、由抛物线可知,a>0,由直线可知,a<0,故本选项错误.故选:A.6.解:∵y=﹣x2+2x﹣3=﹣(x﹣1)2﹣2,∴抛物线开口向下,对称轴为x=1,顶点坐标为(1,﹣2),在对称轴左侧,y随x的增大而增大,∴A、B、C不正确;∵抛物线顶点到x轴的距离是|﹣2|=2,∴D正确,故选:D.7.解:y=x2﹣4x+5=(x﹣2)2+1,由于0≤x≤3,所以当x=2时,y有最小值1,当x=0时,y有最大值5.故选:D.8.解:根据图象可知:①对称轴﹣>0,故ab<0,正确;②方程ax2+bx+c=0的根为x1=﹣1,x2=3,正确;③x=1时,y=a+b+c<0,错误;④当x<1时,y随x值的增大而减小,错误;⑤当y>0时,x<﹣1或x>3,正确.正确的有①②⑤.故选:B.9.解:∵y=2(x+1)2+1,∴当x>﹣1时,y随x的增大而增大,故选项A错误,当x<﹣1时,y随x的增大而减小,故选项B错误、选项C错误、选项D正确;故选:D.10.解:∵抛物线开口向下,∴a<0,∵抛物线的对称轴为直线x=﹣=1,∴b=﹣2a>0,∵抛物线与y轴的交点坐标在x轴上方,∴c>0,∴abc<0,所以①错误;∵b=﹣2a,∴2a+b=0,所以②正确;∵x=3时,y<0,∴9a+3b+c<0,所以③正确.∵抛物线与x轴有2个交点,∴Δ=b2﹣4ac>0,即4ac﹣b2<0,所以④正确;∵抛物线的对称轴为直线x=1,∴函数的最大值为a+b+c,∴a+b+c≥am2+bm+c(m为任意实数),即a+b≥m(am+b),所以⑤正确.故选:C.二.填空题11.解:如图所示:①y=a1x2的开口小于②y=a2x2的开口,则a1>a2>0,③y=a3x2的开口大于④y=a4x2的开口,开口向下,则a4<a3<0,故a1>a2>a3>a4.故答案为:a1>a2>a3>a412.解:∵y=3x2+6x+11=3(x+1)2+8,∴抛物线y=3x2+6x+11的顶点坐标为(﹣1,8),故答案为(﹣1,8).13.解:由于二次函数y=3(x﹣1)2+5中,a=3>0,所以当x=1时,函数取得最小值为5,故答案为5.14.解:∵二次函数y=2x2+bx+4顶点在x轴上,∴=0,解得b=,故答案为:±4.15.解:∵二次函数y=x2﹣2x+1=(x﹣1)2,∴当x>1时,y随x的增大而增大,∴在2≤x≤5范围内,当x=2时,y取得最小值,此时y=(2﹣1)2=1,故答案为:1.16.解:∵抛物线的对称轴为直线x=﹣=1,∴2a+b=0,所以①正确;∵x=﹣1时,y<0,∴a﹣b+c<0,即a+c<b,所以②错误;∵抛物线与x轴的一个交点为(﹣2,0)而抛物线的对称轴为直线x=1,∴抛物线与x轴的另一个交点为(4,0),所以③错误;∵抛物线开口向上,∴a>0,∴b=﹣2a<0,∵抛物线与y轴的交点在x轴下方,∴c<0,∴abc>0,所以④正确.故答案为①④.三.解答题17.解:(1)设二次函数的解析式是y=a(x﹣h)2+k,∵二次函数的顶点坐标为A(1,﹣4),∴y=a(x﹣1)2﹣4,∵经过点B(3,0),∴代入得:0=a(3﹣1)2﹣4,解得:a=1,∴y=(x﹣1)2﹣4,即二次函数的解析式为y=x2﹣2x﹣3;(2)点C(2,﹣3)在该函数图象上,理由是:把C(2,﹣3)代入y=x2﹣2x﹣3得:左边=﹣3,右边=4﹣4﹣3=﹣3,即左边=右边,所以点C在该函数的图象上.18.解:设直线l的解析式为y=kx+b,把A(4,0),B(0,4)分别代入得,解得,∴直线l的关系式为y=﹣x+4,设P(t,﹣t+4),∵S△AOP=4,∴×4×(﹣t+4)=4,解得t=2,∴P(2,2),把P(2,2)代入y=ax2得4a=2,解得a=,∴二次函数的表达式为y=x2.19.解:(1)把B(1,1)代入y=ax2得:a=1,∴抛物线解析式为y=x2.把A(m,4)代入y=x2得:4=m2,∴m=±2.∵点A在二象限,∴m=﹣2.(2)观察函数图象可知:当﹣2<x<1时,直线在抛物线的上方,∴n的取值范围为:﹣2<n<1.20.解:(1)当a=2时,y=2(x+2)(x+1),∴二次函数的对称轴为x=.(2)由题知二次函数与x轴的交点坐标为(﹣a,0),(1﹣a,0);∵a<0,∴二次函数的开口方向向下;又﹣a>0,1﹣a>0,所以对称轴所在直线为x==>0,当x=时,y=﹣>0,所以顶点坐标(,﹣)在第一象限.(3)由(2)知,二次函数的对称轴为直线x=,∵当0<x<3时,y随着x增大而增大,∴当a>0时,≤0,解得a≥;当a<0,≥3,解得a≤﹣.∴a的取值范围为a≥或a≤﹣.21.解:∵一次函数y=kx﹣2的图象相过点A(﹣1,﹣1),∴﹣1=﹣k﹣2,解得k=﹣1,∴一次函数表达式为y=﹣x﹣2,∴令x=0,得y=﹣2,∴G(0,﹣2),∵y=ax2过点A(﹣1,﹣1),∴﹣1=a×1,解得a=﹣1,∴二次函数表达式为y=﹣x2,由一次函数与二次函数联立可得,解得,,∴S△OAB=OG•|A的横坐标|+OG•点B的横坐标=×2×1+×2×2=1+2=3.22.解:(1)∵抛物线经过A、B(0,3)∴由上两式解得∴抛物线的解析式为:;(2)由(1)抛物线对称轴为直线x=把x=代入,得y=4则点C坐标为(,4)设线段AB所在直线为:y=kx+b,则有,解得∴AB解析式为:∵线段AB所在直线经过点A、B(0,3)抛物线的对称轴l于直线AB交于点D∴设点D的坐标为D将点D代入,解得m=2∴点D坐标为,∴CD=CE﹣DE=2过点B作BF⊥l于点F∴BF=OE=∵BF+AE=OE+AE=OA=∴S△ABC=S△BCD+S△ACD=CD•BF+CD•AE∴S△ABC=CD(BF+AE)=×2×=23.解:(1)∵抛物线y=﹣x2+bx+c交于A(﹣1,0)和B(2,3)两点∴,解得:,∴抛物线解析式为y=﹣x2+2x+3,设直线AB的解析式为y=mx+n(m≠0),则,解得,∴直线AB的解析式为y=x+1;(2)令x=0,则y=﹣x2+2x+3=3,∴C(0,3),则OC=3,BC=2,BC∥x轴,∴S△ABC=×BC×OC==3.九年级数学上册二次函数单元综合测试卷一.选择题(共10小题)1.下列各式中,是y关于x的二次函数的是()A.y=4x B.y=3x﹣5C.y=D.y=2x2+12.已知:a>b>c,且a+b+c=0,则二次函数y=ax2+bx+c的图象可能是下列图象中的()A.B.C.D.3.二次函数y=(x﹣2)(x﹣4)+6的顶点坐标是()A.(2,6)B.(4,6)C.(3,﹣5)D.(3,5)4.将二次函数y=x2+2x﹣1转化为y=a(x﹣h)2+k的形式,结果为()A.y=(x﹣1)2B.y=(x+1)2C.y=(x+1)2﹣1D.y=(x+1)2﹣2 5.已知0≤x≤,则函数y=﹣2x2+8x﹣6的最大值是()A.﹣10.5B.2C.﹣2.5D.﹣66.顶点坐标为(3,1),形状与函数y=的图象相同且开口方向相反的抛物线的解析式为()A.y=+1B.y=+1C.y=﹣+1D.y=﹣+17.已知点A(﹣1,y1),B(1,y2),C(2,y3)都在二次函数y=(x﹣1)2的图象上,则y1,y2,y3的大小关系正确的是()A.y1<y2<y3B.y2<y1<y3C.y2<y3<y1D.y3<y2<y1 8.抛物线y=ax2+bx+c纵坐标y的对应值如下表:x…﹣2﹣1012…y…04664…则下列说法中正确的个数是()①方程ax2+bx+c=0,有两根为x1=﹣2,x2=3;②抛物线与y轴的交点为(0,6);③抛物线的对称轴是直线x=1;④抛物线开口向上.A.1B.2C.3D.49.如图,在正方形ABCD中,AB=4,AC与BD交于点O,E,F分别为边BC,CD上的点(点E,F不与线段BC,CD的端点重合),BE=CF,连接OE,OF,EF.关于以下三个结论,下列判断正确的是()结论Ⅰ:∠BOF始终是90°;结论Ⅱ:△OEF面积的最小值是2;结论Ⅲ:四边形OECF的面积始终是8.A.结论Ⅰ和Ⅱ都对,结论Ⅲ错B.结论Ⅰ和Ⅱ都对,结论Ⅱ错C.结论Ⅱ和Ⅲ都对,结论Ⅰ错D.三个结论都对10.使用家用燃气灶烧开同一壶水所需的燃气量y(单位:m3)与旋钮的旋转角度x(单位:度)(0<x≤90)近似满足函数关系y=ax2+bx+c(a≠0).如图记录了某种家用燃气灶烧开同一壶水的旋钮角度x与燃气量y的三组数据,根据上述函数模型和数据,可推断出此燃气灶烧开一壶水最节省燃气的旋钮角度约为()A.37.5°B.40°C.42.5°D.45°二.填空题(共6小题)11.函数是二次函数,则m的值为.12.已知抛物线y=x2﹣4x+c.与直线y=m相交于A,B两点,若点A的横坐标;x A=﹣1,则点B的横坐标.x B的值为.13.已知二次函数y=ax2开口向上,且|2﹣a|=3,则a=.14.已知抛物线y=x2﹣3x+1的图象上有一点A(m,n),则m﹣n的最大值是.15.如图,在平面直角坐标系中,抛物线y=﹣x2+2x+c与x轴交于点A、B,与y轴交于点C,过点C作CD∥x轴,交抛物线于另一点D,若AB+CD=3,则c的值为.16.如图,在矩形ABCD中,AB=12,BC=16,点E、F分别是边AB、BC上的动点,且EF=10,点G是EF的中点,AG、CG,则四边形AGCD面积的最小值为.三.解答题(共7小题)17.看图回答.(1)当y=0时,求x的值;(2)当y>5时,求x的范围;(3)y随x的增大而增大时,求x的范围.18.已知二次函数y=x2﹣6x+8.(1)将解析式化成顶点式;(2)写出它的开口方向、对称轴和顶点坐标;(3)x取什么值时,y随x的增大而增大;x取什么值时,y随x增大而减小.19.如图,以一定的速度将小球沿与地面成一定角度的方向击出时,小球的飞行路线是一条抛物线.若不考虑空气阻力,小球的飞行高度h(单位:m)与飞行时间t(单位:s)之间具有函数关系:h=﹣5r2+20t,求小球飞行高度达到最高时的飞行时间.20.“阳光玫瑰葡萄”品种是近几年来广受各地消费者青睐的优质新品种,在云南省广泛种植.长沙市某品牌水果经销商计划在2023年五一期间进行商业促销活动,经过调查往年的统计数据发现,云南省批发“阳光玫瑰葡萄”的最低价格为每斤15元若按每斤30元的价格到市区销售,平均每天可售出60斤若每斤“阳光玫瑰葡萄”的售价每降低1元,那么平均每天的销售量会增加10斤,为了尽快减少库存,该水果商决定降价销售.(1)若降价2元,则每天的销售利润是多少元(2)若该经销商计划销售“阳光玫瑰葡萄”每天盈利1100元,那么每斤“阳光玫瑰葡萄”的售价应降至每斤多少元?(其它成本忽略不计)(3)将商品的销售单价定为多少元时,商场每天销售该商品获得的利润w最大?最大利润是多少元?21.如图,抛物线与x轴交于A(﹣1,0)、B(4,0),与y轴交于C.(1)求抛物线的解析式;(2)如图1,已知线段DE与线段BC关于平面内某点成中心对称,其中DE的两端点刚好一个落在抛物线上,一个落在对称轴上,求落在对称轴上的点的坐标;(3)如图2,点M为第二象限抛物线上,作MN∥BC交抛物线于点N,直线NB、MC 交于点P,求P点的横坐标.22.在平面直角坐标系xOy中,对于点P(x,y)和Q(x,y'),给出如下定义:若y'=,则称点Q为点P的“可控变点”.例如:点(1,2)的“可控变点”为点(1,2),点(﹣1,3)的“可控变点”为点(﹣1,﹣3).(1)点(﹣5,﹣2)的“可控变点”坐标为;(2)若点P在函数y=﹣x2+16的图象上,其“可控变点”Q的纵坐标y′是7,求“可控变点”Q的横坐标;(3)若点P在函数y=﹣x2+16(﹣5≤x≤a)的图象上,其“可控变点”Q的纵坐标y′的取值范围是﹣16≤y′≤16,求实数a的取值范围.23.在平面直角坐标系中,抛物线y=x2+bx+c经过A(﹣4,0),点M为抛物线的顶点,点B在y轴上,直线AB与抛物线在第一象限交于点C(2,6),如图①.(1)求抛物线解析式;(2)直线AB的函数解析式为,点M的坐标为.(3)在y轴上找一点Q,使得△AMQ的周长最小,具体作法如图②,作点A关于y轴的对称点A',连接MA′交y轴于点Q,连接AM,AQ,此时△AMQ的周长最小,请求出点Q的坐标;(4)在坐标平面内是否存在点N,使以点A,O,C,N为顶点的四边形是平行四边形?若存在请直接写出点N的坐标;若不存在,请说明理由.参考答案一.选择题(共10小题)1.下列各式中,是y关于x的二次函数的是()A.y=4x B.y=3x﹣5C.y=D.y=2x2+1解:A.根据二次函数的定义,y=4x是一次函数,不是二次函数,故A不符合题意.B.根据二次函数的定义,y=3x﹣5不是二次函数,是一次函数,故B不符合题意.C.根据二次函数的定义,y=是反比例函数,不是二次函数,故C不符合题意.D.根据二次函数的定义,y=2x2+1是二次函数,故D符合题意.故选:D.2.已知:a>b>c,且a+b+c=0,则二次函数y=ax2+bx+c的图象可能是下列图象中的()A.B.C.D.解:A、由图知a>0,﹣=1,c>0,即b<0,∵已知a>b>c,故本选项错误;B、由图知a<0,而已知a>b>c,且a+b+c=0,必须a>0,故本选项错误;C、图C中条件满足a>b>c,且a+b+c=0,故本选项正确;D、∵a+b+c=0,即当x=1时a+b+c=0,与图中与x轴的交点不符,故本选项错误.故选:C.3.二次函数y=(x﹣2)(x﹣4)+6的顶点坐标是()A.(2,6)B.(4,6)C.(3,﹣5)D.(3,5)解:∵二次函数可化为y=(x﹣3)2+5,∴二次函数y=(x﹣2)(x﹣4)+6的顶点坐标是(3,5),故选:D.4.将二次函数y=x2+2x﹣1转化为y=a(x﹣h)2+k的形式,结果为()A.y=(x﹣1)2B.y=(x+1)2C.y=(x+1)2﹣1D.y=(x+1)2﹣2解:y=x2+2x﹣1=(x2+2x+1)﹣2=(x+1)2﹣2,即y=(x+1)2﹣2.故选:D.5.已知0≤x≤,则函数y=﹣2x2+8x﹣6的最大值是()A.﹣10.5B.2C.﹣2.5D.﹣6解:y=﹣2x2+8x﹣6=﹣2(x﹣2)2+2,∴当x<2时,y随着x增大而增大,∴当x=时有最大值y=﹣2(﹣2)2+2=﹣2.5,故选:C.6.顶点坐标为(3,1),形状与函数y=的图象相同且开口方向相反的抛物线的解析式为()A.y=+1B.y=+1C.y=﹣+1D.y=﹣+1解:设所求的抛物线解析式为y=a(x﹣3)2+1,∵所求抛物线与函数y=的图象相同且开口方向相反,∴a=﹣,∴所求的抛物线解析式为y=﹣(x﹣3)2+1.故选:D.7.已知点A(﹣1,y1),B(1,y2),C(2,y3)都在二次函数y=(x﹣1)2的图象上,则y1,y2,y3的大小关系正确的是()A.y1<y2<y3B.y2<y1<y3C.y2<y3<y1D.y3<y2<y1解:当x=﹣1时,y1=(x﹣1)2=(﹣1﹣1)2=4;当x=1时,y2=(x﹣1)2=(1﹣1)2=0;当x=2时,y3=(x﹣1)2=(2﹣1)2=1,所以y2<y3<y1.故选:C.8.抛物线y=ax2+bx+c纵坐标y的对应值如下表:x…﹣2﹣1012…y…04664…则下列说法中正确的个数是()①方程ax2+bx+c=0,有两根为x1=﹣2,x2=3;②抛物线与y轴的交点为(0,6);③抛物线的对称轴是直线x=1;④抛物线开口向上.A.1B.2C.3D.4解:根据表格数据可知:抛物线的对称轴是直线x==,∴③错误;∵抛物线与x轴的一个交点为(﹣2,0),∴抛物线与x轴的另一个交点为(3,0),∴方程ax2+bx+c=0有两根为x1=﹣2,x2=3;故①正确;从表格可知当x=0时,y=6,∴抛物线与y轴的交点为(0,6);∴②正确;从表格可知:当x<时,y随x的增大而增大,当x>时,y随x的增大而减小,∴抛物线开口向下,故④错误.故选:B.9.如图,在正方形ABCD中,AB=4,AC与BD交于点O,E,F分别为边BC,CD上的点(点E,F不与线段BC,CD的端点重合),BE=CF,连接OE,OF,EF.关于以下三个结论,下列判断正确的是()结论Ⅰ:∠BOF始终是90°;结论Ⅱ:△OEF面积的最小值是2;结论Ⅲ:四边形OECF的面积始终是8.A.结论Ⅰ和Ⅱ都对,结论Ⅲ错B.结论Ⅰ和Ⅱ都对,结论Ⅱ错C.结论Ⅱ和Ⅲ都对,结论Ⅰ错D.三个结论都对解:∵四边形ABCD是正方形,∴OB=OC,∠BOC=90°,∴∠OBE=∠OCF=45°,∵BE=CF,∴△BOE≌△COF,∴OE=OF,∠BOE=∠COF,∴∠BOE+∠COE=∠COF+∠COE,即∠EOF=∠BOC=90°,且S△COE+S△COF=S△COE+S△BOE,即S四边形OECF=S△BOC=S正方形ABCD=×4×4=4,由垂线段最短可得,当OE⊥BC时,OE=BC=×4=2,△OEF面积取最小值为×2×2=2,∴结论Ⅰ和Ⅱ都对,结论Ⅲ错,故选:A.10.使用家用燃气灶烧开同一壶水所需的燃气量y(单位:m3)与旋钮的旋转角度x(单位:度)(0<x≤90)近似满足函数关系y=ax2+bx+c(a≠0).如图记录了某种家用燃气灶烧开同一壶水的旋钮角度x与燃气量y的三组数据,根据上述函数模型和数据,可推断出此燃气灶烧开一壶水最节省燃气的旋钮角度约为()A.37.5°B.40°C.42.5°D.45°解:把(25,0.725),(50,0.06),(60,0.09)代入y=ax2+bx+c得:,解得,∴y=0.0001x2﹣0.008x+0.21=0.0001(x﹣40)2+0.05,∵0.0001>0,∴x=40时,y最小为0.05,∴燃气灶烧开一壶水最节省燃气的旋钮角度约为40°,故选:B.二.填空题(共6小题)11.函数是二次函数,则m的值为3.解:∵函数是二次函数,∴m2﹣7=2且m+3≠0,解得:m=3.则m的值为3.故答案为:3.12.已知抛物线y=x2﹣4x+c.与直线y=m相交于A,B两点,若点A的横坐标;x A=﹣1,则点B的横坐标.x B的值为5.解:∵y=x2﹣4x+c,∴抛物线开口向上,对称轴为直线x=﹣=2,∴点A,B关于直线x=2对称,∵点A横坐标为﹣1,∴点B横坐标为5,故答案为:5.13.已知二次函数y=ax2开口向上,且|2﹣a|=3,则a=5.解:∵|2﹣a|=3,∴2﹣a=±3,解得:a=﹣1或5,又二次函数y=ax2开口向上,则a>0,故a=5.故答案为:5.14.已知抛物线y=x2﹣3x+1的图象上有一点A(m,n),则m﹣n的最大值是3.解:∵点A(m,n)在抛物线y=x2﹣3x+1上,∴n=m2﹣3m+1,∴m﹣n=﹣m2+4m﹣1=﹣(m﹣2)2+3,∴当m=2时,m﹣n有最大值为3,故答案为:3.15.如图,在平面直角坐标系中,抛物线y=﹣x2+2x+c与x轴交于点A、B,与y轴交于点C,过点C作CD∥x轴,交抛物线于另一点D,若AB+CD=3,则c的值为﹣.解:设A(x1,0),B(x2,0),令y=0,则y=﹣x2+2x+c=0,由根与系数的关系得:x1+x2=2,x1•x2=﹣c,则AB=|x1﹣x2|===2,令x=0,则y=c,∴C(0,c),∵CD∥x轴,∴点D纵坐标为c,当y=c时,则﹣x2+2x+c=c,解得:x=2,或x=0,∴D(2,c),∴CD=2,∵AB+CD=3,∴2+2=3,解得:c=﹣,故答案为:﹣.16.如图,在矩形ABCD中,AB=12,BC=16,点E、F分别是边AB、BC上的动点,且EF=10,点G是EF的中点,AG、CG,则四边形AGCD面积的最小值为142.解:连接AC,过B作BH⊥AC于H,以B为圆心,BG为半径作圆,交BH于G',如图:∵四边形ABCD是矩形,∴∠EBF=90°,∵EF=10,点G是EF的中点,∴BG=EF=10=5,∴G在以B为圆心,5为半径的弧上,当G运动到G'时,S△ACG最小,此时四边形AGCD 面积的最小值,最小值即为四边形AG'CD的面积,∵AB=12=CD,BC=16=AD,∴AC=20,S△ACD=×12×16=96,∴BH==,∴G'H=BH﹣5=﹣5=,∴S△ACG'=AC•G'H=×20×=46,∴S四边形AG'CD=S△ACD+S△ACG'=46+96=142,即四边形AGCD面积的最小值是142.故答案为:142.三.解答题(共7小题)17.看图回答.(1)当y=0时,求x的值;(2)当y>5时,求x的范围;(3)y随x的增大而增大时,求x的范围.解:(1)由图象可知,抛物线经过点(﹣1,0),对称轴为直线x=1,∴抛物线与x轴的另一个交点为(3,0),∴当y=0时,x的值为﹣1和3;(2)∵抛物线经过点(﹣1,0),(3,0),(0,﹣3),∴设抛物线的解析式为y=a(x+1)(x﹣3),代入(0,﹣3)得,﹣3=﹣3a,解得a=1,∴抛物线的解析式为y=(x+1)(x﹣3),令y=5得5=(x+1)(x﹣3),解得x1=4,x2=﹣2,∴当y>5时,求x的范围是x>4或x<﹣2;(3)∵y=(x+1)(x﹣3)=(x﹣1)2+4,∴抛物线开口向上,顶点为(1,4),对称轴为直线x=1,∴y随x的增大而增大时,x的范围是x>1.18.已知二次函数y=x2﹣6x+8.(1)将解析式化成顶点式;(2)写出它的开口方向、对称轴和顶点坐标;(3)x取什么值时,y随x的增大而增大;x取什么值时,y随x增大而减小.解:(1)y=x2﹣6x+8=x2﹣6x+9﹣1=(x﹣3)2﹣1;(2)开口向上,对称轴是直线x=3,顶点坐标是(3,﹣1);(3)x>3时,y随x的增大而增大;x<3时,y随x增大而减小.19.如图,以一定的速度将小球沿与地面成一定角度的方向击出时,小球的飞行路线是一条抛物线.若不考虑空气阻力,小球的飞行高度h(单位:m)与飞行时间t(单位:s)之间具有函数关系:h=﹣5r2+20t,求小球飞行高度达到最高时的飞行时间.解:∵h=﹣5t2+20t=﹣5(t﹣2)2+20,且﹣5<0,∴当t=2时,h取最大值20,答:小球飞行高度达到最高时的飞行时间为2s.20.“阳光玫瑰葡萄”品种是近几年来广受各地消费者青睐的优质新品种,在云南省广泛种植.长沙市某品牌水果经销商计划在2023年五一期间进行商业促销活动,经过调查往年的统计数据发现,云南省批发“阳光玫瑰葡萄”的最低价格为每斤15元若按每斤30元的价格到市区销售,平均每天可售出60斤若每斤“阳光玫瑰葡萄”的售价每降低1元,那么平均每天的销售量会增加10斤,为了尽快减少库存,该水果商决定降价销售.(1)若降价2元,则每天的销售利润是多少元(2)若该经销商计划销售“阳光玫瑰葡萄”每天盈利1100元,那么每斤“阳光玫瑰葡萄”的售价应降至每斤多少元?(其它成本忽略不计)(3)将商品的销售单价定为多少元时,商场每天销售该商品获得的利润w最大?最大利润是多少元?解:(1)根据题意,降价2元则销售量为60+2×10=80(斤),销售利润为:(30﹣15﹣2)×80=1040(元),。
(完整word版)二次函数专题训练(正方形的存在性问题)含答案
二次函数专题训练(正方形的存在性)1.如图,已知抛物线y=x 2+bx+c 的图象经过点 A ( l , 0), B(﹣ 3,0),与 y 轴交于点C,抛物线的极点为 D ,对称轴与x 轴订交于点E,连结 BD .( 1)求抛物线的分析式.( 2)若点 P 在直线 BD 上,当 PE=PC 时,求点P 的坐标.( 3)在( 2)的条件下,作PF⊥ x 轴于 F,点 M 为 x 轴上一动点,N 为直线 PF 上一动点, G 为抛物线上一动点,当以点F, N ,G,M 四点为极点的四边形为正方形时,求点M 的坐标.2.如图,抛物线y= ﹣x2+bx+c 与 x 轴交于点 A 和点 B,与 y 轴交于点C,点 B 坐标为( 6,0),点 C 坐标为( 0, 6),点 D 是抛物线的极点,过点 D 作 x 轴的垂线,垂足为E,连结 BD .( 1)求抛物线的分析式及点 D 的坐标;( 2)点 F 是抛物线上的动点,当∠FBA= ∠ BDE 时,求点 F 的坐标;( 3)若点 M 是抛物线上的动点,过点M 作 MN ∥x 轴与抛物线交于点N ,点 P 在 x 轴上,点 Q 在座标平面内,以线段MN 为对角线作正方形MPNQ ,请写出点Q 的坐标.3.如图,已知抛物线y=ax2 +bx﹣ 3 过点 A (﹣ 1, 0), B( 3,0),点 M 、 N 为抛物线上的动点,过点M 作MD ∥ y 轴,交直线 BC 于点 D ,交 x 轴于点 E.过点 N 作 NF ⊥ x 轴,垂足为点 F( 1)求二次函数 y=ax2+bx ﹣ 3 的表达式;( 2)若 M 点是抛物线上对称轴右边的点,且四边形MNFE 为正方形,求该正方形的面积;( 3)若 M 点是抛物线上对称轴左边的点,且∠DMN=90°, MD=MN ,请直接写出点M 的横坐标.4.(2015 贵州省毕节地域) 如图,抛物线y=x 2+bx+c 与 x 轴交于 A (﹣ 1,0), B( 3, 0)两点,极点M 关于 x 轴的对称点是M′.( 1)求抛物线的分析式;( 2)若直线AM′与此抛物线的另一个交点为C,求△ CAB 的面积;( 3)能否存在过A, B 两点的抛物线,其极点P 对于 x 轴的对称点为Q,使得四边形APBQ 为正方形?若存在,求出此抛物线的分析式;若不存在,请说明原因.5. (2016 辽宁省铁岭市 ) .如图,抛物线y= ﹣x2+bx+c 与 x 轴交于点 A ,点 B,与 y 轴交于点C,点 B 坐标为( 6,0),点 C 坐标为( 0,6),点 D 是抛物线的极点,过点 D 作 x 轴的垂线,垂足为E,连结 BD .( 1)求抛物线的分析式及点 D 的坐标;( 2)点 F 是抛物线上的动点,当∠FBA= ∠ BDE 时,求点 F 的坐标;( 3)若点 M 是抛物线上的动点,过点M作MN∥ x轴与抛物线交于点N ,点 P 在 x 轴上,点 Q 在平面内,以线段 MN 为对角线作正方形MPNQ ,请直接写出点Q 的坐标.二次函数专题训练(正方形的存在性)6.(2016 广东省茂名市 ) .如图,抛物线 y=﹣ x2+bx+c 经过 A (﹣ 1, 0), B(3,0)两点,且与 y 轴交于点 C,点 D 是抛物线的极点,抛物线的对称轴DE 交 x 轴于点 E,连结 BD .(1)求经过 A ,B ,C 三点的抛物线的函数表达式;(2)点 P 是线段 BD 上一点,当 PE=PC 时,求点 P 的坐标;( 3)在( 2)的条件下,过点P 作 PF⊥x 轴于点 F, G 为抛物线上一动点,M 为 x 轴上一动点, N 为直线PF 上一动点,当以F、 M 、 G 为极点的四边形是正方形时,恳求出点M 的坐标.二次函数专题训练(正方形的存在性问题)参照答案1.如图,已知抛物线 y=x 2+bx+c 的图象经过点 A ( l , 0), B(﹣ 3,0),与 y 轴交于点 C,抛物线的极点为D ,对称轴与 x 轴订交于点 E,连结 BD .( 1)求抛物线的分析式.( 2)若点 P 在直线 BD 上,当 PE=PC 时,求点P 的坐标.( 3)在( 2)的条件下,作PF⊥ x 轴于 F,点 M 为 x 轴上一动点,N 为直线 PF 上一动点, G 为抛物线上一动点,当以点F, N ,G,M 四点为极点的四边形为正方形时,求点M 的坐标.【解答】解:( 1)∵抛物线y=x2+bx+c 的图象经过点 A ( 1, 0), B(﹣ 3,0),∴,∴,∴抛物线的分析式为y=x2+2x ﹣ 3;( 2)由( 1)知,抛物线的分析式为y=x 2+2x ﹣ 3;∴C( 0,﹣ 3),抛物线的极点 D(﹣ 1,﹣ 4),∴E(﹣ 1, 0),设直线 BD 的分析式为y=mx+n ,∴,∴,∴直线BD 的分析式为y= ﹣ 2x ﹣6,设点 P( a,﹣ 2a﹣ 6),∵ C( 0,﹣ 3), E(﹣ 1, 0),依据勾股定理得,PE2=( a+1)2+(﹣ 2a﹣ 6)2,22 2PC =a +(﹣ 2a﹣ 6+3 ),∵PC=PE,∴( a+1)2+(﹣ 2a﹣ 6)2 =a2+(﹣ 2a﹣ 6+3 )2,∴a=﹣ 2,∴ y= ﹣ 2×(﹣ 2)﹣ 6=﹣ 2,∴P(﹣ 2,﹣ 2),(3)如图,作 PF⊥ x 轴于 F,∴ F(﹣ 2, 0),设 M ( d, 0),∴ G( d, d2+2d ﹣ 3), N(﹣ 2, d2+2d﹣ 3),∵以点 F, N ,G, M 四点为极点的四边形为正方形,必有FM=MG ,∴|d+2|=|d2+2d ﹣ 3|,∴ d= 或 d= ,∴点 M 的坐标为(, 0),(, 0),(, 0),(, 0).2.如图,抛物线y= ﹣x2+bx+c 与 x 轴交于点 A 和点 B,与 y 轴交于点C,点 B 坐标为( 6,0),点 C 坐标为( 0, 6),点 D 是抛物线的极点,过点 D 作 x 轴的垂线,垂足为E,连结 BD .( 1)求抛物线的分析式及点 D 的坐标;( 2)点 F 是抛物线上的动点,当∠FBA= ∠ BDE 时,求点 F 的坐标;( 3)若点 M 是抛物线上的动点,过点M 作 MN ∥ x 轴与抛物线交于点N,点 P 在 x 轴上,点Q 在座标平面内,以线段MN 为对角线作正方形MPNQ ,请写出点Q 的坐标.【解答】解:( 1)把 B 、C 两点坐标代入抛物线分析式可得,解得,∴抛物线分析式为y=﹣x2+2x+6 ,∵ y= ﹣x2+2x+6= ﹣(x﹣2)2+8,∴ D(2,8);( 2)如图 1,过 F 作 FG⊥ x 轴于点 G,设 F( x,﹣x2+2x+6 ),则 FG=|﹣x2+2x+6| ,∵∠ FBA= ∠BDE ,∠ FGB= ∠ BED=90°,∴△ FBG ∽△ BDE ,∴=,∵ B(6,0),D(2,8),∴ E( 2,0), BE=4 ,DE=8 , OB=6 ,∴ BG=6 ﹣ x,∴=,当点 F 在 x 轴上方时,有=,解得x=﹣1或x=6(舍去),此时F点的坐标为(﹣1,);当点 F 在 x 轴下方时,有=﹣,解得x=﹣3或x=6(舍去),此时F 点坐标为(﹣ 3,﹣);综上可知 F 点的坐标为(﹣1,)或(﹣3,﹣);( 3)如图 2,设对角线MN 、 PQ 交于点 O′,∵点 M 、 N 对于抛物线对称轴对称,且四边形MPNQ 为正方形,∴点 P 为抛物线对称轴与x 轴的交点,点Q 在抛物线的对称轴上,设Q(2, 2n),则 M 坐标为( 2﹣ n,n),∵点 M 在抛物线 y= ﹣ x2+2x+6 的图象上,∴ n=﹣(2﹣n)2+2(2﹣n)+6,解得n=﹣1+或n=﹣1﹣,∴知足条件的点Q 有两个,其坐标分别为(2,﹣ 2+2)或(2,﹣2﹣2).3.如图,已知抛物线y=ax2 +bx﹣ 3 过点 A (﹣ 1, 0), B( 3,0),点 M 、 N 为抛物线上的动点,过点M 作MD ∥ y 轴,交直线 BC 于点 D ,交 x 轴于点 E.过点 N 作 NF ⊥ x 轴,垂足为点 F( 1)求二次函数 y=ax2+bx ﹣ 3 的表达式;( 2)若 M 点是抛物线上对称轴右边的点,且四边形MNFE 为正方形,求该正方形的面积;( 3)若 M 点是抛物线上对称轴左边的点,且∠DMN=90°, MD=MN ,请直接写出点M 的横坐标.【解答】解:( 1)把 A (﹣ 1, 0),B ( 3, 0)代入 y=ax 2+bx ﹣ 3,得:,解得,故该抛物线分析式为:y=x 2﹣2x﹣ 3;(2)由( 1)知,抛物线分析式为: y=x 2﹣2x﹣ 3=( x﹣ 1)2﹣ 4,∴该抛物线的对称轴是 x=1 ,极点坐标为( 1,﹣ 4).如图,设点 M 坐标为( m, m2﹣2m﹣ 3),此中 m> 1,∴ME=| ﹣ m2+2m+3|,∵M 、 N 对于 x=1 对称,且点 M 在对称轴右边,∴点 N 的横坐标为 2﹣ m,∴MN=2m ﹣ 2,∵四边形MNFE 为正方形,∴ME=MN ,∴|﹣ m2+2m+3|=2m ﹣ 2,分两种状况:①当﹣ m2+2m+3=2m ﹣ 2 时,解得: m1= 、 m2=﹣(不切合题意,舍去),当 m= 时,正方形的面积为( 2 ﹣2)2=24 ﹣ 8 ;②当﹣ m2 3 4=2﹣(不切合题意,舍去),+2m+3=2 ﹣ 2m 时,解得: m =2+ , m当 m=2+ 时,正方形的面积为[2 (2+ )﹣ 2]2=24+8 ;综上所述,正方形的面积为24+8 或 24﹣ 8 .( 3)设 BC 所在直线分析式为y=px+q ,把点 B (3, 0)、C( 0,﹣ 3)代入表达式,得:,解得:,∴直线 BC 的函数表达式为y=x﹣ 3,设点 M 的坐标为( t, t2﹣ 2t﹣ 3),此中 t <1,则点 N( 2﹣ t, t2﹣2t﹣ 3),点 D ( t, t﹣ 3),∴MN=2 ﹣ t﹣t=2 ﹣2t, MD=|t 2﹣ 2t﹣ 3﹣ t+3|=|t2﹣3t|.∵ MD=MN ,∴ |t2﹣ 3t|=2﹣ 2t,分两种状况:①当 t2﹣ 3t=2﹣ 2t 时,解得 t 1=﹣ 1, t2=2 (不切合题意,舍去).二次函数专题训练(正方形的存在性)②当 3t﹣ t2=2﹣ 2t 时,解得3 2(不切合题意,舍去).t = , t =综上所述,点 M 的横坐标为﹣ 1 或.4.(2015 贵州省毕节地域 ) 如图,抛物线 y=x 2+bx+c 与 x 轴交于 A (﹣ 1,0), B( 3, 0)两点,极点M 关于 x 轴的对称点是M′.( 1)求抛物线的分析式;( 2)若直线AM′与此抛物线的另一个交点为C,求△ CAB 的面积;( 3)能否存在过A, B 两点的抛物线,其极点P 对于 x 轴的对称点为Q,使得四边形APBQ 为正方形?若存在,求出此抛物线的分析式;若不存在,请说明原因.剖析:(1)依据待定系数法,可得函数分析式;( 2)依据轴对称,可得M′的坐标,依据待定系数法,可得AM′的分析式,依据解方程组,可得B点坐标,依据三角形的面积公式,可得答案;( 3)依据正方形的性质,可得P、 Q 点坐标,依据待定系数法,可得函数分析式.解答:解:( 1)将 A 、 B 点坐标代入函数分析式,得,解得,抛物线的分析式y=x 2﹣ 2x﹣ 3;( 2)将抛物线的分析式化为极点式,得 y= ( x﹣1)2﹣ 4, M点的坐标为( 1,﹣ 4), M′点的坐标为( 1, 4),设AM′的分析式为 y=kx+b ,将 A 、M′点的坐标代入,得,解得,AM′的分析式为y=2x+2 ,联立 AM′与抛物线,得,解得,C点坐标为( 5,12). S△ABC = ×4×12=24;( 3)存在过 A ,B 两点的抛物线,其极点P 对于 x 轴的对称点为Q,使得四边形APBQ 为正方形,由 ABPQ 是正方形, A (﹣ 1, 0) B ( 3, 0),得P( 1,﹣ 2), Q( 1, 2),或 P(1, 2), Q( 1,﹣ 2),将 A 点坐标代入函数分析式,得a(﹣ 1﹣ 1)2﹣ 2=0 ,解得 a=,抛物线的分析式为y=(x﹣1)2﹣2,②当 P( 1, 2)时,设抛物线的分析式为 y=a( x﹣ 1)2+2,将 A点坐标代入函数分析式,得 a(﹣ 1﹣ 1)2+2=0 ,解得 a=﹣,抛物线的分析式为y=﹣(x﹣1)2+2,综上所述: y=(x﹣1)2﹣2或y=﹣(x﹣1)2+2,使得四边形APBQ 为正方形.5. (2016 辽宁省铁岭市 ) .如图,抛物线y= ﹣x2+bx+c 与 x 轴交于点 A ,点 B,与 y 轴交于点C,点 B坐标为( 6,0),点 C 坐标为( 0,6),点 D 是抛物线的极点,过点 D 作 x 轴的垂线,垂足为E,连结 BD .( 1)求抛物线的分析式及点 D 的坐标;( 2)点 F 是抛物线上的动点,当∠ FBA=∠ BDE时,求点 F 的坐标;( 3)若点 M 是抛物线上的动点,过点M作MN∥ x轴与抛物线交于点N ,点 P 在 x 轴上,点 Q 在平面内,以线段 MN 为对角线作正方形MPNQ ,请直接写出点Q 的坐标.剖析( 1)由点 B 、C 的坐标利用待定系数法即可求出抛物线的分析式,再利用配方法将抛物线分析式变形成极点式即可得出结论;( 2)设线段 BF 与 y 轴交点为点 F′,设点 F′的坐标为( 0, m),由相像三角形的判断及性质可得出点F′的坐标,依据点B、F′的坐标利用待定系数法可求出直线BF 的分析式,联立直线BF 和抛物线的分析式成方程组,解方程组即可求出点 F 的坐标;( 3)设对角线 MN 、 PQ 交于点 O′,如图 2 所示.依据抛物线的对称性联合正方形的性质可得出点P、 Q 的地点,设出点Q 的坐标为( 2, 2n),由正方形的性质可得出点M 的坐标为(2﹣n, n).由点 M 在抛物线图象上,即可得出对于n 的一元二次方程,解方程可求出n 值,代入点Q 的坐标即可得出结论.解答解:( 1)将点 B ( 6,0)、 C( 0, 6)代入 y=﹣x2+bx+c 中,得:,解得:,∴ 抛物线的分析式为y= ﹣x2+2x+6 .∵ y= ﹣x2+2x+6= ﹣(x﹣2)2+8,∴点 D 的坐标为( 2, 8).(2)设线段 BF 与 y 轴交点为点 F′,设点 F′的坐标为( 0,m),如图 1 所示.∵∠ F′BO=∠ FBA= ∠ BDE ,∠ F′OB=∠ BED=90°,∴△ F′BO∽△ BDE ,∴.∵点 B (6, 0),点 D( 2, 8),11∴点 E( 2, 0),BE=6 ﹣ 4=4 , DE=8 ﹣ 0=8 ,OB=6 ,∴OF′=?OB=3,∴点 F′(0, 3)或( 0,﹣ 3).设直线 BF 的分析式为y=kx±3,则有 0=6k+3 或 0=6k﹣ 3,解得: k= ﹣或k=,∴直线 BF 的分析式为y=﹣x+3 或 y=x﹣ 3.联立直线 BF 与抛物线的分析式得:① 或② ,解方程组①得:或(舍去),∴ 点F的坐标为(﹣1,);解方程组②得:或(舍去),∴ 点F的坐标为(﹣3,﹣).综上可知:点 F 的坐标为(﹣ 1,)或(﹣ 3,﹣).( 3)设对角线 MN 、 PQ 交于点 O′,如图 2 所示.∵点 M 、 N 对于抛物线对称轴对称,且四边形MPNQ 为正方形,∴点 P 为抛物线对称轴与x 轴的交点,点 Q 在抛物线对称轴上,设点 Q 的坐标为(2, 2n),则点 M 的坐标为( 2 ﹣ n, n).∵点 M 在抛物线 y= ﹣x2+2x+6 的图象上,∴ n=﹣+2( 2﹣ n) +6,即 n2+2n ﹣ 16=0,解得: n1= ﹣ 1 , n2 =﹣﹣1.∴点 Q 的坐标为(2,﹣ 1)或( 2,﹣﹣ 1).6. (2016 广东省茂名市 ) 】.如图,抛物线 y= ﹣ x2 +bx+c 经过 A (﹣ 1,0), B( 3,0)两点,且与 y 轴交于点 C,点 D 是抛物线的极点,抛物线的对称轴DE 交 x 轴于点 E,连结 BD .(1)求经过 A ,B ,C 三点的抛物线的函数表达式;(2)点 P 是线段 BD 上一点,当 PE=PC 时,求点 P 的坐标;( 3)在( 2)的条件下,过点P 作 PF⊥x 轴于点 F, G 为抛物线上一动点,M 为 x 轴上一动点, N 为直线PF 上一动点,当以F、 M 、 G 为极点的四边形是正方形时,恳求出点M 的坐标.剖析( 1)利用待定系数法求出过A, B,C 三点的抛物线的函数表达式;12( 2)连结 PC、PE,利用公式求出极点 D 的坐标,利用待定系数法求出直线BD 的分析式,设出点P 的坐标为( x,﹣ 2x+6 ),利用勾股定理表示出PC2和 PE2,依据题意列出方程,解方程求出x 的值,计算求出点 P 的坐标;(3)设点 M 的坐标为( a, 0),表示出点 G 的坐标,依据正方形的性质列出方程,解方程即可.解答解:( 1)∵抛物线 y= ﹣x2+bx+c 经过 A (﹣ 1, 0), B ( 3, 0)两点,∴,解得,,∴ 经过A,B,C三点的抛物线的函数表达式为y= ﹣ x2+2x+3 ;( 2)如图 1,连结 PC、PE, x= ﹣=﹣=1,当x=1 时, y=4 ,∴点 D 的坐标为( 1, 4),设直线 BD 的分析式为: y=mx+n ,则,解得,,∴ 直线BD的分析式为y= ﹣ 2x+6,设点 P 的坐标为( x,﹣ 2x+6),则PC2=x 2+(3+2x ﹣ 6)2,PE2=( x﹣ 1)2+(﹣ 2x+6 )2,∵PC=PE,∴x2+(3+2x ﹣6)2=(x﹣1)2+(﹣2x+6 )2,解得, x=2,则 y= ﹣2×2+6=2 ,∴点 P 的坐标为( 2, 2);(3)设点 M 的坐标为( a, 0),则点 G 的坐标为( a,﹣ a2 +2a+3),∵以 F、M 、 G 为极点的四边形是正方形,∴ FM=MG ,即 |2﹣ a|=|﹣ a2 +2a+3|,当 2﹣ a=﹣ a2+2a+3 时,整理得,a2﹣ 3a﹣1=0 ,解得, a=,当2﹣ a=﹣(﹣ a2+2a+3)时,整理得, a2﹣ a﹣5=0 ,解得, a= ,∴当以 F、M 、G 为极点的四边形是正方形时,点 M 的坐标为(,0),(,0),(,0),(, 0).13。
中考复习专题09二次函数与正方形存在性问题(含解析)
专题09二次函数与正方形存在性问题二次函数与正方形存在性问题1.作为特殊四边形中最特殊的一位,正方形拥有更多的性质,因此坐标系中的正方形存在性问题变化更加多样,从判定的角度来说,可以有如下:(1)有一个角为直角的菱形;(2)有一组邻边相等的矩形;(3)对角线互相垂直平分且相等的四边形.依据题目给定的已知条件选择恰当的判定方法,即可确定所求的点坐标.2.对于二次函数与正方形的存在性问题,常见的处理思路有:思路1:从判定出发若已知菱形,则加有一个角为直角或对角线相等;若已知矩形,则加有一组邻边相等或对角线互相垂直;若已知对角线互相垂直或平分或相等,则加上其他条件.思路2:构造三垂直全等若条件并未给关于四边形及对角线的特殊性,则考虑在构成正方形的4个顶点中任取3个,必是等腰直角三角形,若已知两定点,则可通过构造三垂直全等来求得第3个点,再求第4个点.3.示例:在平面直角坐标系中,已知A、B的坐标,在平面中求C、D使得以A、B、C、D 为顶点的四边形是正方形.如图,一共6个这样的点C使得以A、B、C为顶点的三角形是等腰直角三角形.【例1】(2022•齐齐哈尔)综合与探究如图,某一次函数与二次函数y=x2+mx+n的图象交点为A(﹣1,0),B(4,5).(1)求抛物线的解析式;(2)点C为抛物线对称轴上一动点,当AC与BC的和最小时,点C的坐标为(1,2);(3)点D为抛物线位于线段AB下方图象上一动点,过点D作DE⊥x轴,交线段AB于点E,求线段DE长度的最大值;(4)在(2)条件下,点M为y轴上一点,点F为直线AB上一点,点N为平面直角坐标系内一点,若以点C,M,F,N为顶点的四边形是正方形,请直接写出点N的坐标.【分析】(1)将A(﹣1,0),B(4,5)代入y=x2+mx+n,解方程即可得出答案;(2)根据两点之间,线段最短,可知当点A、B、C三点共线时,AC+BC的最小值为AB的长,求出直线AB的解析式,即可得出点C的坐标;(3)设D(a,a2﹣2a﹣3),则E(a,a+1),表示出DE的长度,利用二次函数的性质可得答案;(4)分CF为对角线和边,分别画出图形,利用正方形的性质可得答案.【解答】解:(1)将A(﹣1,0),B(4,5)代入y=x2+mx+n得,,∴,∴抛物线的解析式为y=x2﹣2x﹣3;(2)设直线AB的函数解析式为y=kx+b,,∴,∴直线AB的解析式为y=x+1,∵AC+BC≥AB,∴当点A、B、C三点共线时,AC+BC的最小值为AB的长,∵抛物线y=x2﹣2x﹣3的对称轴为x=1,∴当x=1时,y=2,∴C(1,2),故答案为:(1,2);(3)设D(a,a2﹣2a﹣3),则E(a,a+1),∴DE=(a+1)﹣(a2﹣2a﹣3)=﹣a2+3a+4(﹣1<a<4),∴当a=时,DE的最大值为;(4)当CF为对角线时,如图,此时四边形CMFN是正方形,∴N(1,1),当CF为边时,若点F在C的上方,此时∠MFC=45°,∴MF∥x轴,∵△MCF是等腰直角三角形,∴MF=CN=2,∴N(1,4),当点F在点C的下方时,如图,四边形CFNM是正方形,同理可得N(﹣1,2),当点F在点C的下方时,如图,四边形CFMN是正方形,同理可得N(,),综上:N(1,1)或(1,4)或(﹣1,2)或(,).【例2】(2022•扬州)如图是一块铁皮余料,将其放置在平面直角坐标系中,底部边缘AB在x轴上,且AB =8dm,外轮廓线是抛物线的一部分,对称轴为y轴,高度OC=8dm.现计划将此余料进行切割:(1)若切割成正方形,要求一边在底部边缘AB上且面积最大,求此正方形的面积;(2)若切割成矩形,要求一边在底部边缘AB上且周长最大,求此矩形的周长;(3)若切割成圆,判断能否切得半径为3dm的圆,请说明理由.【分析】(1)先根据题意求出抛物线的解析式,当正方形的两个顶点在抛物线上时正方形面积最大,先根据GH=2OG计算H的横坐标,再求出此时正方形的面积即可;(2)由(1)知:设H(t,﹣t2+8)(t>0),表示矩形EFGH的周长,再根据二次函数的性质求出最值即可;(3)设半径为3dm的圆与AB相切,并与抛物线相交,设交点为N,求出点N的坐标,并计算点N是圆M与抛物线在y轴右侧的切点即可.【解答】解:(1)如图1,由题意得:A(﹣4,0),B(4,0),C(0,8),设抛物线的解析式为:y=ax2+8,把B(4,0)代入得:0=16a+8,∴a=﹣,∴抛物线的解析式为:y=﹣x2+8,∵四边形EFGH是正方形,∴GH=FG=2OG,设H(t,﹣t2+8)(t>0),∴﹣t2+8=2t,解得:t1=﹣2+2,t2=﹣2﹣2(舍),∴此正方形的面积=FG2=(2t)2=4t2=4(﹣2+2)2=(96﹣32)dm2;(2)如图2,由(1)知:设H(t,﹣t2+8)(t>0),∴矩形EFGH的周长=2FG+2GH=4t+2(﹣t2+8)=﹣t2+4t+16=﹣(t﹣2)2+20,∵﹣1<0,∴当t=2时,矩形EFGH的周长最大,且最大值是20dm;(3)若切割成圆,能切得半径为3dm的圆,理由如下:如图3,N为⊙M N作⊙M的切线交y轴于Q,连接MN,过点N作NP ⊥y轴于P,则MN=OM=3,NQ⊥MN,设N(m,﹣m2+8),由勾股定理得:PM2+PN2=MN2,∴m2+(﹣m2+8﹣3)2=32,解得:m1=2,m2=﹣2(舍),∴N(2,4),∴PM=4﹣1=3,∵cos∠NMP===,∴MQ=3MN=9,∴Q(0,12),设QN的解析式为:y=kx+b,∴,∴,∴QN的解析式为:y=﹣2x+12,﹣x2+8=﹣2x+12,x2﹣2x+4=0,Δ=(﹣2)2﹣4××4=0,即此时N为圆M与抛物线在y轴右侧的唯一公共点,∴若切割成圆,能切得半径为3dm的圆.【例3】(2022•海南)如图1,抛物线y=ax2+2x+c经过点A(﹣1,0)、C(0,3),并交x轴于另一点B,点P(x,y)在第一象限的抛物线上,AP交直线BC于点D.(1)求该抛物线的函数表达式;(2)当点P的坐标为(1,4)时,求四边形BOCP的面积;(3)点Q在抛物线上,当的值最大且△APQ是直角三角形时,求点Q的横坐标;(4)如图2,作CG⊥CP,CG交x轴于点G(n,0),点H在射线CP上,且CH=CG,过GH的中点K作KI∥y轴,交抛物线于点I,连接IH,以IH为边作出如图所示正方形HIMN,当顶点M恰好落在y 轴上时,请直接写出点G的坐标.【分析】(1)将A,C两点坐标代入抛物线的解析式,进一步求得结果;(2)可推出△PCB是直角三角形,进而求出△BOC和△PBC的面积之和,从而求得四边形BOCP的面积;(3)作PE∥AB交BC的延长线于E,根据△PDE∽△ADB,求得的函数解析式,从而求得P点坐标,进而分为点P和点A和点Q分别为直角顶点,构造“一线三直角”,进一步求得结果;(4)作GL∥y轴,作RC⊥GL于L,作MT⊥KI于K,作HW⊥IK于点W,则△GLC≌△CRH,△ITM ≌△HWI.根据△GLC≌△CRH可表示出H点坐标,从而表示出点K坐标,进而表示出I坐标,根据MT=IW,构建方程求得n的值.【解答】解:(1)由题意得,,∴,∴该抛物线的函数表达式为:y=﹣x2+2x+3;(2)当y=0时,﹣x2+2x+3=0,∴x1=﹣1,x2=3,∴B(3,0),∵PC2+BC2=[1+(4﹣3)2]+(32+32)=20,PB2=[(3﹣1)2+42]=20,∴PC2+BC2=PB2,∴∠PCB=90°,===3,∴S△PBC===,∵S△BOC=S△PBC+S△BOC=3+=;∴S四边形BOCP(3)如图1,作PE∥AB交BC的延长线于E,设P(m,﹣m2+2m+3),∵B(3,0),C(0,3),∴直线BC的解析式为:y=﹣x+3,由﹣x+3=﹣m2+2m+3得,x=m2﹣2m,∴PE=m﹣(m2﹣2m)=﹣m2+3m,∵PE∥AB,∴△PDE∽△ADB,∴===﹣(m﹣)2+,=,∴当m=时,()最大当m=时,y=﹣()2+2×+3=,∴P(,),设Q(n,﹣n2+2n+3),如图2,当∠PAQ=90°时,过点A作y轴平行线AF,作PF⊥AF于F,作QG⊥AF于G,则△AFP∽△GQA,∴=,∴=,∴n=,如图3,当∠AQP=90°时,过QN⊥AB于N,作PM⊥QN于M,可得△ANQ∽△QMP,∴=,∴=,可得n1=1,n2=,如图4,当∠APQ=90°时,作PT⊥AB于T,作QR⊥PT于R,同理可得:=,∴n=,综上所述:点Q的横坐标为:或1或或;(4)如图5,作GL∥y轴,作RC⊥GL于L,作MT⊥KI于T,作HW⊥IK于点W,则△GLC≌△CRH,△ITM≌△HWI.∴RH=OG=﹣n,CR=GL=OC=3,MT=IW,∴G(n,0),H(3,3+n),∴K(,),∴I(,﹣()2+n+3+3),∵TM=IW,∴=()2+n +6﹣(3+n ),∴(n +3)2+2(n +3)﹣12=0,∴n 1=﹣4+,n 2=﹣4﹣(舍去),∴G (﹣4+,0).【例4】(2022•长春)在平面直角坐标系中,抛物线y =x 2﹣bx (b 是常数)经过点(2,0).点A 在抛物线上,且点A 的横坐标为m (m ≠0).以点A 为中心,构造正方形PQMN ,PQ =2|m |,且PQ ⊥x 轴.(1)求该抛物线对应的函数表达式;(2)若点B 是抛物线上一点,且在抛物线对称轴左侧.过点B 作x 轴的平行线交抛物线于另一点C ,连结BC .当BC =4时,求点B 的坐标;(3)若m >0,当抛物线在正方形内部的点的纵坐标y 随x 的增大而增大时,或者y 随x 的增大而减小时,求m 的取值范围;(4)当抛物线与正方形PQMN 的边只有2个交点,且交点的纵坐标之差为时,直接写出m 的值.【分析】(1)把(2,0)代入y =x 2﹣bx ,得到b =2,可得结论;(2)判断出点B 的横坐标为﹣1,可得结论;(3)分两种情形:当抛物线在正方形内部的点的纵坐标y 随x 的增大而增大.当抛物线在正方形内部的点的纵坐标y 随x 的增大而减小.利用图象法解决问题即可;(4)分三种情形:如图4﹣1中,当点N (0,)时,满足条件,如图4﹣2中,当点N (0,﹣),满足条件,如图4﹣3中,当正方形PQMN 的边长为时,满足条件,分别求出点A 的坐标,可得结论.【解答】解:(1)把(2,0)代入y =x 2﹣bx ,得到b =2,∴该抛物线的解析式为y =x 2﹣2x ;(2)如图1中,∵y=x2﹣2x=(x﹣1)2﹣1,∴抛物线的顶点为(1,﹣1),对称轴为直线x=1,∵BC∥x,∴B,C故对称轴x=1对称,BC=4,∴点B的横坐标为﹣1,∴B(﹣1,3);(3)如图2中,∵点A的横坐标为m,PQ=2|m|,m>0,∴PQ=PQM=MN=2m,∴正方形的边MN在y轴上,当点M与O重合时,由,解得或,∴A(3,3),观察图象可知,当m≥3时,抛物线在正方形内部的点的纵坐标y随x的增大而增大.如图3中,当PQ落在抛物线的对称轴上时,m=,观察图象可知,当0<m≤时,抛物线在正方形内部的点的纵坐标y随x的增大而减小.综上所述,满足条件的m的值为0<m≤或m≥3;(4)如图4﹣1中,当点N(0,)时,满足条件,此时直线NQ的解析式为y=﹣x+,由,解得,或,∵点A在第四象限,∴A(,﹣),∴m=.如图4﹣2中,当点N(0,﹣),满足条件,此时直线NQ是解析式为y=﹣x﹣,由,解得,∴A (,﹣),∴m =.如图4﹣3中,当正方形PQMN 的边长为时,满足条件,此时m =﹣,综上所述,满足条件的m 的值为或或﹣.1.(2020•乐平市一模)如图,抛物线y =a (x ﹣h )2+k (a ≠0)的顶点为A ,对称轴与x 轴交于点C ,当以AC 为对角线的正方形ABCD 的另外两个顶点B 、D 恰好在抛物线上时,我们把这样的抛物线称为美丽抛物线,正方形ABCD 为它的内接正方形.(1)当抛物线y =ax 2+1是美丽抛物线时,则a =﹣2;当抛物线y =+k 是美丽抛物线时,则k=﹣4;(2)若抛物线y =ax 2+k 是美丽抛物线时,则请直接写出a ,k 的数量关系;(3)若y =a (x ﹣h )2+k 是美丽抛物线时,(2)a ,k 的数量关系成立吗?为什么?(4)系列美丽抛物线y n =a n (x ﹣n )2+k n (n 为小于7的正整数)顶点在直线y =x 上,且它们中恰有两条美丽抛物线内接正方形面积比为1:16.求它们二次项系数之和.【分析】(1)画出函数y=ax2+k的图象,求出点D的坐标,即可求解;(2)由(1)知,点D的坐标为(k,k),即可求解;(3)美丽抛物线沿x轴向右或向左平移后得到的抛物线仍然是美丽抛物线,美丽抛物线y=a(x﹣h)2+k 沿x轴经过适当平移后为抛物线y=ax2+k,即可求解;(4)设这两条美丽抛物线的顶点坐标分别为和,它们的内接正方形的边长比为,则m=4k,,进而求解.【解答】解:(1)函数y=ax2+k的图象如下:①抛物线y=ax2+1是美丽抛物线时,则AC=1,∵四边形ABCD为正方形,则点D的坐标为(,),将点D的坐标代入y=ax2+1得:=a()2+1,解得a=﹣2;②同理可得,点D的坐标为(k,k),将点D的坐标代入y=+k得:k=(k)2+1,解得k=0(不合题意)或﹣4;故答案为:﹣4;(2)由(1)知,点D的坐标为(k,k),将点D 的坐标代入y =ax 2+k 得:k =a (k )2+k ,解得ak =﹣2;(3)答:成立.∵美丽抛物线沿x 轴向右或向左平移后得到的抛物线仍然是美丽抛物线.∴美丽抛物线y =a (x ﹣h )2+k 沿x 轴经过适当平移后为抛物线y =ax 2+k .∴ak =﹣2;(4)设这两条美丽抛物线的顶点坐标分别为和,(k ,m 为小7的正整数,且k <m ),它们的内接正方形的边长比为,∴m =4k ,.∴这两条美丽抛物线分别为和.∵,=﹣2,∴a 1=﹣12,a 4=﹣3.∴a 1+a 4=﹣15.答:这两条美丽抛物线对应的二次函数的二次项系数和为﹣15.2.(2016秋•西城区校级期中)我们规定:在正方形ABCD 中,以正方形的一个顶点A 为顶点,且过对角顶点C 的抛物线,称为这个正方形的以A 为顶点的对角抛物线.(1)在平面直角坐标系xOy 中,点在轴正半轴上,点C 在y 轴正半轴上.①如图1,正方形OABC 的边长为2,求以O 为顶点的对角抛物线;②如图2,在平面直角坐标系xOy 中,正方形OABC 的边长为a ,其以O 为顶点的对角抛物线的解析式为y =x 2,求a 的值;(2)如图3,正方形ABCD 的边长为4,且点A 的坐标为(3,2),正方形的四条对角抛物线在正方形ABCD 内分别交于点M 、P 、N 、Q ,直接写出四边形MPNQ 的形状和四边形MPNQ 的对角线的交点坐标.【分析】(1)①设O为顶点的抛物线的解析式为y=ax2,把B(2,2)代入即可解决问题.②设B(a,a).代入y=x2求出a即可解决问题.(2)如图3中,结论:四边形MPNQ是菱形,对角线的交点坐标为(5,4).求出A、B、C、D的顶点的对角抛物线,利用方程组求出M、P、N、Q的坐标即可解决问题.【解答】解:(1)①如图1中,设O为顶点的抛物线的解析式为y=ax2,∵过B(2,2),∴2=4a,∴a=,∴所求的抛物线的解析式为y=x2.②如图2中,设B(a,a).则有a=a2,解得a=4或0(舍弃),∴B(4,4),∴OA=4,∴正方形的边长为4.(2)如图3中,结论:四边形MPNQ是菱形,对角线的交点坐标为(5,4).理由:∵正方形ABCD的边长为4,A(3,2),∴B(7,2),C(7,6),D(3,6),∴以A为顶点的对角抛物线为y=(x﹣3)2+2,以B为顶点的对角抛物线为y=(x﹣7)2+2,以C为顶点的对角抛物线为y=﹣(x﹣7)2+6,以D为顶点的对角抛物线为y=﹣(x﹣3)2+6,由可得M(5,3),由可得N(5,5),由可得P(3+2,4),由可得Q(7﹣2,4),∴PM=,PN=,QN=,QM=,∴PM=PN=QN=QM,∴四边形MPNQ是菱形,对角线的交点坐标为(5,4).3.(2022•陇县二模)在平面直角坐标系中,已知抛物线经过A(﹣2,0),两点,且与y轴交于点C,点B是该抛物线的顶点.(1)求抛物线L1的表达式;(2)将L1平移后得到抛物线L2,点D,E在L2上(点D在点E的上方),若以点A,C,D,E为顶点的四边形是正方形,求抛物线L2的解析式.【分析】(1)利用顶点式,可以求得该抛物线的解析式;(2)根据题意,画出相应的图形,然后利用分类讨论的方法,可以分别求得对应的抛物线L2的解析式.【解答】解:(1)设抛物线L1的表达式是,∵抛物线L1过点A(﹣2,0),∴,解得,∴.即抛物线L1的表达式是;(2)令x=0,则y=﹣2,∴C(0,﹣2).Ⅰ.当AC为正方形的对角线时,如图所示,∵AE3=E3C=CD3=D3A=2,∴点D3的坐标为(0,0),点E3的坐标为(﹣2,﹣2).设,则,解得即抛物线L2的解析式是.Ⅱ.当AC为边时,分两种情况,如图,第①种情况,点D1,E1在AC的右上角时.∵AO=CO=E1O=D1O=2,∴点D1的坐标为(0,2),点E1的坐标为(2,0).设,则,解得:,即抛物线L2的解析式是.第②种情况,点D2E2在AC的左下角时,过点D2作D2M⊥x轴,则有△AD2M≌△AD1O,∴AO=AM,D1O=D2M.过E2作E2N⊥y轴,同理可得,△CE2N≌△CE1O,∴CO=CN,E1O=E2N.则点D2的坐标为(﹣4,﹣2),点E2的坐标为(﹣2,﹣4),设,则,解得,即抛物线L2的解析式是.综上所述:L2的表达式为:,或.4.(2022•临潼区二模)在平面直角坐标系中,已知抛物线L1:y=ax2+bx+c经过A(﹣2,0),B(1,﹣)两点,且与y轴交于点C,点B是该抛物线的顶点.(1)求抛物线L1的表达式;(2)将L1平移后得到抛物线L2,点D,E在L2上(点D在点E的上方),若以点A,C,D,E为顶点的四边形是正方形,求抛物线L2的解析式.【分析】(1)利用顶点式,可以求得该抛物线的解析式;(2)根据题意,画出相应的图形,然后利用分类讨论的方法,可以分别求得对应的抛物线L2的解析式.【解答】解:(1)设抛物线L1的表达式是y=a(x﹣1)2﹣,∵抛物线L1:y=ax2+bx+c A(﹣2,0),∴0=9a﹣,解得a=,∴y=(x﹣1)2﹣,即抛物线L1的表达式是y=x2﹣x﹣2;(2)当AC为正方形的对角线时,则点D的坐标为(0,0),点E(﹣2,﹣2),设y=x2+bx+c,∴,解得,即抛物线L2的解析式是y=x2+x;当AC为边时,分两种情况,第一种情况,点D、E在AC的右上角时,则点D的坐标(0,2),点E(2,0),设y=x2+bx+c,∴,解得,即抛物线L2的解析式是y=x2﹣x+2;第二种情况,点D、E在AC的左下角时,则点D的坐标(﹣4,﹣2),点E(﹣2,﹣4),设y=x2+bx+c,则,解得,即抛物线L2的解析式是y=x2+x﹣4.5.(2022•松阳县一模)如图,抛物线与x轴,y轴分别交于A,D,C三点,已知点A(4,0),点C(0,4).若该抛物线与正方形OABC交于点G且CG:GB=3:1.(1)求抛物线的解析式和点D的坐标;(2)若线段OA,OC上分别存在点E,F,使EF⊥FG.已知OE=m,OF=t①当t为何值时,m有最大值?最大值是多少?②若点E与点R关于直线FG对称,点R与点Q关于直线OB对称.问是否存在t,使点Q恰好落在抛物线上?若存在,直接写出t的值;若不存在,请说明理由.【分析】(1)先求得点G的坐标,再用待定系数法求解即可;(2)①证明△EOF∽△FCG,利用相似三角形的性质得到m关于t的二次函数,利用二次函数的性质即可求解;②根据轴对称的性质以及全等三角形的判定和性质先后求得点R(﹣m,2t),点Q(2t,﹣m),代入二次函数的解析式得到方程,解方程即可求解.【解答】解:(1)∵点A(4,0),点C(0,4).且四边形OABC是正方形,∴QA=QC=BC=4,∵CG:GB=3:1.∴CG=3,BG=l,∴点G的坐标为(3,4),设抛物线的解析式为y=ax2+bx+c,把.4(4,0),C(0,4),G(3,4),代入y=ax2+bx+c得,,解得:,∴抛物线的解析式为y=﹣x2+3x+4,令y=0,则﹣x2+3x+4=0,解得x=4或x=﹣1,∴点D的坐标为(﹣1,0);.(2)①∵EF⊥FG,∠EOF=∠GFE=∠GCF=90°,∴∠EFO+∠FEO=∠EFO+∠CFG=90°,.∴∠FEO=∠CFG,∴△EOF∽△FCG,∴=,即=,∴m=﹣t2+t=﹣(t﹣2)2+,∴当t=2时,m有最大值,最大值为;②∵点A(4,0),点C(0,4),且四边形OABC是正方形,∴点B的坐标为(4,4),设直线OB的解析式为y=kx,把(4,4),代入得:4=4k,解得k=1,∴直线OB的解析式为y=x,过点R作RS⊥y轴于点S,如图:∵点E与点R关于直线FG对称,EF⊥FG,∴RF=EF,∠RFS=∠EFO,∴△RFS≌△EFO(AAS),∴RS=EO=m,FS=FO=t,则SO=2t,∴点R的坐标为(﹣m,21)∵点R与点Q关于直线OB对称,同理点Q的坐标为(2t,﹣m),把Q(2t,﹣m)代入y=﹣x2+3x+4,得:﹣m=﹣4t2+6t+4,由①得m=﹣t2+t,∴t2﹣t=﹣4t2+6t+4,解得:t1=,t2=,∵0≤t1≤4,∴当t=时,点G恰好落在抛物线上.6.(2022•香坊区校级开学)在平面直角坐标系中,点O为坐标原点,点A、C分别在x轴、y轴正半轴上,四边形OABC是正方形,抛物线y=﹣x2+bx+c经过点B、C,OA=18.(1)如图1,求抛物线的解析式;(2)如图2,点D是OA的中点,经过点D的直线交AB于点E、交y轴于点F,连接BD,若∠EDA=2∠ABD,求直线DE的解析式;(3)如图3,在(2)的条件下,点G在OD上,连接GC、GE,点P在AB右侧的抛物线上,点Q为BP中点,连接DQ,过点B作BH⊥BP,交直线DP于点H,连接CH、GH,若GC=GE,DQ=PQ,求△CGH的周长【分析】(1)根据正方形的性质求得B,C的坐标,利用待定系数法求解析式即可;(2)在AD延长线时取DI=DE,连接IE,设∠ABD=α,可得tan∠EIA==,设AE=x,则AI=2x,在Rt△ADE中,ED2=AD2+AE2,建立方程,解方程进而可得E点的坐标,利用待定系数法求解析式即可;(3)延长BD,交y轴于点M.设直线DP交y轴于点S,分别求得G,C.H三点的坐标,进而根据勾股定理以及两点距离公式分别求得CG,HG,HC的长,即可求得△CGH的周长.【解答】解:∵四边形OABC是正方形,抛物线y=﹣x2+bx+c经过点B、C,OA=18.∴AB=OC=OA=18,∴C(0,18),B(18,18),∴c=18,∴18=﹣×182+bx+18,解得b=2,∴抛物线的解析式为y=﹣x2+2x+18;(2)如图,在AD延长线时取DI=DE,连接IE,设∠ABD=α,∵∠EDA=2∠ABD,∴∠EDA=2α,∵DI=DE,∴∠EID=∠IED=α,∵点D是OA的中点,∴OD=DA=9,∴tanα==,∴tan∠EIA==,设AE=x,则AI=2x,∴ED=DI=IA﹣DA=2x﹣9,在Rt△ADE中,ED2=AD2+AE2,即(2x﹣9)2=92+x2,解得x1=12,x2=0(舍),∴AE=12,∴E(18,12),∵D(9,0),设直线ED的解析式为y=kx+t,∴,解得,∴直线DE的解析式为y=x﹣12;(3)如图,延长BD,交y轴于点M,设直线DP交y轴于点S,∵OD=DA,∠DOM=∠DAB,∠ODM=∠ADB,∴△ODM≌△ADB(ASA),∴MD=DB,∵点Q为BP中点,DQ=PQ,∴DQ=BQ=PQ,∴∠QDB=∠QBD,∠QDP=∠QPD,∠QDB+∠QBD+∠QDP+∠QPD=180°,∴∠BDQ+∠PDQ=90°,即∠BDP=90°,∴PH⊥BD,∴∠SDO+∠MDO=∠MDO+∠OMD=90°,∴∠SDO=∠OMD=∠ABD,∴tan ∠SDO =tan ∠ABD ==,∴OS =OD =,∴S (0,),设直线SD 的解析式为y =mx +n ,将点S (0,),D (9,0)代入得,,解得,∴直线SD 的解析式为y =﹣x +,联立,解得,,∵点P 在AB ∴P (27,﹣9),∵D (9,0),B (18,18),∴PD ==9,BD ==9,∴DB =DP ,∴△DBP 是等腰直角三角形,∴∠DBP =45°,DQ ⊥BP ,∵BH ⊥BP ,∴BH ∥DQ ,∴=1,∴DH =DP ,∵D (9,0),P (27,﹣9),∴H (﹣9,9),∵点G 在OD 上,GC =GE ,C (0,18),E (18,12),设G (p ,0),则p 2+182=(18﹣p )2+122,解得p =4,∴G (4,0),∵H (﹣9,9),G (4,0),C (0,18),∴CG ==2,CH ==9,HG ==5,∴CG +HG +CH =2+5+9,∴△CGH 的周长为2+5+9.7.(2021•咸丰县一模)如图,在平面直角坐标系中,抛物线与x 轴正半轴交于点A ,且点A 的坐标为(3,0),过点A 作垂直于x 轴的直线l ,P 是该抛物线上一动点,其横坐标为m ,过点P 作PQ ⊥l 于点Q ,M 是直线l 上的一点,其纵坐标为.以PQ ,QM 为边作矩形PQMN .(1)求抛物线的解析式;(2)当点Q 与点M 重合时,求的值;(3)当矩形PQMN 是正方形,且抛物线的顶点在该正方形内部时,求m 的值;(4)当抛物线在矩形PQMN 内的部分所对应的函数值y 随x 的增大而减小时,求m 的取值范围.【分析】(1)利用待定系数法求解即可.(2)根据点M 与点P 的纵坐标相等构建方程求解即可.(3)根据PQ =MQ ,构建方程求解即可.(4)当点P 在直线l 的左边,点M 在点Q 是下方下方时,抛物线在矩形PQMN 内的部分所对应的函数值y 随x 的增大而减小,则有﹣m +<﹣m 2+m +,解得0<m <4,观察图象可知.当0<m <3时,抛物线在矩形PQMN内的部分所对应的函数值y随x的增大而减小,如图4﹣1中.当m>4时,点M 在点Q的上方,也满足条件,如图4﹣2中.【解答】解:(1)∵抛物线的图象经过点A(3,0),∴=0,解得b=1.∴抛物线解析式为:.(2)∵P点的横坐标为m,且P点在抛物线y=的图象上,∴P点的坐标为(m,),∵PQ⊥l,l过A点且垂直于x轴,∴Q点的坐标为(3,),∵M点的坐标为(3,﹣m+),∵Q点与M点重合,∴=﹣m+,解方程得:m=0或m=4.(3)∵抛物线=﹣(x﹣1)2+2,∴抛物线的顶点坐标为(1,2).∵N点的坐标为N(m,﹣m+),要使顶点(1,2)在正方形PQMN内部,∴﹣m+>2,得m<﹣.∴PN=﹣m+﹣()=m2﹣2m,PQ=3﹣m.∵四边形PQMN是正方形,∴m2﹣2m=3﹣m,解得m=1+(舍去)或m=1﹣.∴当m=1﹣时,抛物线顶点在正方形PQMN内部.(4)∵M点的纵坐标﹣m+,随P点的横坐标m的增大而减小,根据(1)的结果得:当m=0时,M,Q两点重合;m=3时,P,Q重合;m=4时,M,Q重合,矩形PQMN不存在;当m<0时,直线MN在直线PQ上方,抛物线顶点在矩形PQMN内部,不合题意.当0<m<4时,直线MN在直线PQ下方,如图4﹣1,当3<m<4时,矩形内部没有抛物线图象,不合题意;当m>4时,直线MN在直线PQ上方,矩形内部有抛物线,且为对称轴右侧,y随x的增大而减小,如图4﹣2;综上:当0<m<3或m>4时,抛物线在矩形PQMN内的部分所对应的函数值y随x的增大而减小.8.(2021•云南模拟)如图1,在平面直角坐标系xOy中,抛物线与x轴交于点A,B(点A在点B的左侧),交y轴于点C,且经过点D(5,6).(1)求抛物线的解析式及点A,B的坐标;(2)在平面直角坐标系xOy中,是否存在点P,使△APD是等腰直角三角形?若存在,请直接写出符合条件的所有点的坐标;若不存在,请说明理由;(3)在直线AD下方,作正方形ADEF,并将沿对称轴平移|t|个单位长度(规定向上平移时t为正,向下平移时t为负,不平移时t为0),若平移后的抛物线与正方形ADEF(包括正方形的内部和边)有公共点,求t的取值范围.【分析】(1)用待定系数法直接求出解析式,然后令y=0,求出点A、B的坐标即可;(2)求出直线AD的解析式,设直线AD与y轴交于点E,得出∠DAB=45°,过点D作DP1⊥x轴,过点A作AP2∥y轴,过点D作DP2∥x轴,AP2与DP2交于点P2,延长AP1至P3,使AP1=P1P3,连接DP3,延长DP1至P4,使DP1=P1P4,连接AP4,延长AP2至P5,使AP2=P2P5,连接DP5,延长DP2至P6,使DP2=P2P6,连接AP6,则△AP1D,△AP2D,△AP3D,△AP4D,△AP5D,△AP6D为所有符合题意的等腰直角三角形,求出各个P点的坐标即可;(3)设平移后的抛物线解析式为,分别求出抛物线平移后与正方形ADEF有公共点的最低位置和最高位置的t值,即可求出t的取值范围.【解答】解:(1)依题意,将点D(5,6)代入,得,解得k=﹣2,∴抛物线的解析式为,令y=0,得,解得x1=﹣1,x2=3,∴A(﹣1,0),B(3,0);(2)存在,设直线AD的解析式为y=mx+n(m≠0),将A(﹣1,0),D(5,6)两点坐标代入得,,解得,∴直线AD的解析式为y=x+1,如图1,设直线AD与y轴交于点E,令x=0,得y=1,∴OA=OE=1,∴∠DAB=45°,过点D作DP1⊥x轴,过点A作AP2∥y轴,过点D作DP2∥x轴,AP2与DP2交于点P2,延长AP1至P3,使AP1=P1P3,连接DP3,延长DP1至P4,使DP1=P1P4,连接AP4,延长AP2至P5,使AP2=P2P5,连接DP5,延长DP2至P6,使DP2=P2P6,连接AP6,则△AP1D,△AP2D,△AP3D,△AP4D,△AP5D,△AP6D为所有符合题意的等腰直角三角形,∴P1(5,0),P2(﹣1,6),P3(11,0),P4(5,﹣6),P5(﹣1,12),P6(﹣7,6);(3)如图2,由(2)可知,点E的坐标是(11,0),点F的坐标是(5,﹣6),直线AD的解析式是y=x+1,设平移后的抛物线解析式为,结合图象可知,当抛物线经过点E时,是抛物线平移后与正方形ADEF有公共点的最低位置,将点(11,0)代入,得,解得t=﹣48,当抛物线与AD边有唯一公共点时,是抛物线平移后与正方形ADEF有公共点的最高位置,将y=x+1与联立方程组,,化简得x2﹣4x+2t﹣5=0,∵只有唯一解,即此一元二次方程有两个相等的实数根,∴△=(﹣4)2﹣4×1×(2t﹣5)=0,解得,∴t的取值范围.9.(2019秋•温州校级月考)如图1所示,动点A、B同时从原点O出发,运动的速度都是每秒1个单位,动点A沿x轴正方向运动,动点B沿y轴正方向运动,以OA、OB为邻边建立正方形OACB,抛物线y =﹣x²+bx+c经过B、C两点,假设A、B两点运动的时间为t秒.=6?若存在,(1)当t=3秒时,求此时抛物线的解析式;此时抛物线上是否存在一点D,使得S△BCD 求出点D的坐标;若不存在,说明理由;(2)如图2,在(1)的条件下,有一条平行于y轴的动直线l,交抛物线于点E,交直线OC于点F,若以O、B、E、F四个点构成的四边形是平行四边形,求点F的坐标;(3)在动点A、B运动的过程中,若正方形OACB内部有一个点P,且满足OP=,CP=,∠OPA =135°,直接写出此时AP的长度.【分析】(1)根据正方形的性质可得OA、OB,然后写出点B、C的坐标,再利用待定系数法求二次函数解析式解答,设BC边上的高为h,利用三角形的面积求出h,从而确定出点P的纵坐标,再代入抛物线解析式求解即可;(2)分点E在点F上方和下方两种情况表示出EF,再根据平行四边形对边相等列方程求解即可;(3)将△AOP绕点A逆时针旋转90°得到△AP′C,根据旋转的性质可得AP′=AP,P′C=OP,∠AP′C=∠OPA,然后判断出△APP′是等腰直角三角形,再求出∠PP′C=90°,利用勾股定理列式求出PP′,再根据等腰直角三角形的性质解答.【解答】解:(1)∵t=3秒,∴OA=OB=3,∴点B(0,3),C(3,3),将点B、C代入抛物线得,,解得,∴抛物线解析式为y=﹣x2+3x+3,设BC边上的高为h,=6,∵BC=OA=3,S△BCD∴h=4,∴点D的纵坐标为3﹣4=﹣1,令y=﹣1,则﹣x2+3x+3=﹣1,整理得,x2﹣3x﹣4=0,解得x1=﹣1,x2=4,所以,D1(﹣1,﹣1),D2(4,﹣1);(2)∵OB=3,∴EF=3,设E(m,﹣m2+3m+3),F(m,m),若E在F上方,则,﹣m2+3m+3﹣m=3,整理得,m2﹣2m=0,解得m1=0(舍去),m2=2,∴F1(2,2),若F在E上方,则,m﹣(﹣m2+3m+3)=3,整理m2﹣2m﹣6=0,解得m1=1﹣,m2=1+,∴F2(1﹣,1﹣),F3(1+,1+);(4)如图,将△AOP绕点A逆时针旋转90°得到△AP′C,由旋转的性质得,AP′=AP,P′C=OP=,∠AP′C=∠OPA=135°,∵△APP′是等腰直角三角形,∴∠AP′P=45°,∴∠PP′C=135°﹣45°=90由勾股定理得,PP′==,所以,AP=PP′=×=1.10.(2021•峨眉山市模拟)如图,已知直线y=与坐标轴交于A,B两点,以线段AB为边向上作正方形ABCD,过点A,D,C的抛物线与直线的另一个交点为E.(1)求抛物线的解析式;(2)若正方形以每秒个单位长度的速度沿射线AB下滑,直至顶点D落在x轴上时停止,设正方形落在x轴下方部分的面积为S,求S关于滑行时间t的函数关系式,并写出相应自变量t的取值范围;(3)在(2)的条件下,抛物线与正方形一起平移,同时停止,求抛物线上C,E两点间的抛物线弧所扫过的面积.【分析】(1)求出OA、OB,根据勾股定理求出AB,过C作CZ⊥x轴于Z,过D作DM⊥y轴于M,证△AOB≌△BZC≌△DMA,推出BZ=OA=DM=1,CZ=OB=MA=2,进而求解;(2)分为三种情况,根据题意画出图形,①当点A运动到x轴上点F时,②当点C运动x轴上时,③当点D运动到x轴上时,根据相似三角形的性质和判定和三角形的面积公式求出即可;(3)由抛物线上C,E两点间的抛物线弧所扫过的面积即为▱EE′C′C的面积,即可求解.【解答】解:(1)∵直线y=﹣x+1,∴当x=0时,y=1,当y=0x=2,∴OA=1,OB=2,过C作CZ⊥x轴于Z,过D作DM⊥y轴于M,∵四边形ABCD是正方形,∴AD=AB=BC,∠ABC=∠AOB=∠CZB=90°,∴∠ABO+∠CBZ=90°,∠OAB+∠ABO=90°,∴∠OAB=∠CBZ,在△AOB和△BZC中,,∴△AOB≌△BZC(AAS),∴OA=BZ=1,OB=CZ=2,∴C(3,2),同理可求D的坐标是(1,3);设抛物线为y=ax2+bx+c,∵抛物线过A(0,1),D(1,3),C(3,2),则,解得,∴抛物线的解析式为y=﹣x2+x+1;(2)∵OA=1,OB=2,∴由勾股定理得:AB=,①当点A运动到x轴上点F时,t=1,当0<t≤1时,如图1,∵∠OFA=∠GFB′,tan∠OFA=,∴tan∠GFB′===,∴GB′=t,=FB′×GB′=•t•t=t2;∴S△FB′G②当点C运动x轴上时,t=2,当1<t≤2时,如图2,∵AB=A′B′=,∴A′F=t﹣,∴A′G=,∵B′H=t,=(A′G+B′H)•A′B′=(+t)•=t﹣;∴S四边形A′B′HG③当点D运动到x轴上时,t=3,当2<t≤3时,如图3,∵A′G=,∴GD′=﹣=,=×2×1=1,OA=1,∠AOF=∠GD′H=90°,∠AFO=∠GFA′,∵S△AOF∴△AOF∽△GA′F,∴=()2,=()2,∴S△GA′F=()2﹣()2=﹣t2+t﹣;则S五边形GA′B′CH综上,S=;(3)设平移后点E和点C对应的点为E′、C′,则抛物线上C,E两点间的抛物线弧所扫过的面积即为▱EE′C′C的面积,联立y=与y=﹣x2+x+1并解得,∴E(4,﹣1),∴BC=BE,CE=,当顶点D落在x3个单位长度,向右平移了6个单位长度,此时点E′的坐标为(10,﹣4),∴EE′=3,∴抛物线上C,E两点间的抛物线弧所扫过的面积为S=EE′•BC=3×=15.11.(2021•深圳模拟)如图1,抛物线C1:y=ax2+bx+c与x轴交于A(﹣1,0),B(3,0)两点,且顶点为C,直线y=kx+2经过A,C两点.(1)求直线AC的表达式与抛物线C1的表达式;(2)如图2,将抛物线C1沿射线AC方向平移一定距离后,得到抛物线为C2,其顶点为D,抛物线C2=S△MAE,求与直线y=kx+2的另一交点为E,与x轴交于M,N两点(M点在N点右边),若S△MDE 点D的坐标;(3)如图3,若抛物线C1向上平移4个单位得到抛物线C3,正方形GHST的顶点G,H在x轴上,顶点S,T在x轴上方的抛物线C3上,P(m,0)是射线GH上一动点,则正方形GHST的边长为4,。
完整版)初三数学二次函数专题训练(含标准答案)-
完整版)初三数学二次函数专题训练(含标准答案)-二次函数专题训练(含答案)一、填空题1.把抛物线y=-1/2x向左平移2个单位得抛物线,接着再向下平移3个单位,得抛物线.2.函数y=-2x+x^2图象的对称轴是x=1,最大值是1.3.正方形边长为3,如果边长增加x面积就增加y=x^2+6x+9.4.二次函数y=-2x+8x-6,通过配方化为y=a(x-2)^2-2的形为.5.二次函数y=ax+c(c不为零),当x取x1,x2(x1≠x2)时,函数值相等,则x1与x2的关系是x1+x2=-2a/c.6.抛物线y=ax^2+bx+c当b=0时,对称轴是x=0,当a,b同号时,对称轴在y轴侧,当a,b异号时,对称轴在x=-b/2a 处.7.抛物线y=-2(x+1)^2-3开口向下,对称轴是x=-1,顶点坐标是(-1,-3).如果y随x的增大而减小,那么x的取值范围是x<-1.8.若a5/2a时,函数值随x的增大而减小.9.二次函数y=ax^2+bx+c(a≠0)当a>0时,图象的开口向上;当a<0时,图象的开口向下,顶点坐标是(-b/2a,c-b^2/4a).10.抛物线y=-2(x-2)^2+2,开口向下,顶点坐标是(2,2),对称轴是x=2.11.二次函数y=-3(x-1)^2+2的图象的顶点坐标是(1,2).12.已知y=(x+1)^2-2,当x≥1时,函数值随x的增大而减小.13.已知直线y=2x-1与抛物线y=5x+k交点的横坐标为2,则k=9,交点坐标为(2,13).14.用配方法将二次函数y=x^2+x-2化成y=a(x-(-1/2))^2-9/4的形式是y=(x+1/2)^2-9/4.15.如果二次函数y=x^2-6x+m的最小值是1,那么m的值是10.二、选择题:16.在抛物线y=2x^2-3x+1上的点是(D)(3,4)17.直线y=5x/2-2与抛物线y=x^2-x的交点个数是(C)2个18.关于抛物线y=ax^2+bx+c(a≠0),下面几点结论中,正确的有(A、B、C)①当a>0时,对称轴左边y随x的增大而减小,对称轴右边y随x的增大而增大,当a<0时,情况相反。
题型九 二次函数综合题 类型十一 二次函数与正方形有关的问题(专题训练)(解析版)
题型九 二次函数综合题类型十一 二次函数与正方形有关的问题(专题训练)1.(2022·浙江湖州)如图1,已知在平面直角坐标系xOy 中,四边形OABC 是边长为3的正方形,其中顶点A ,C 分别在x 轴的正半轴和y 轴的正半轴上,抛物线2y x bx c =-++经过A ,C 两点,与x 轴交于另一个点D .(1)①求点A ,B ,C 的坐标;②求b ,c 的值.(2)若点P 是边BC 上的一个动点,连结AP ,过点P 作PM ⊥AP ,交y 轴于点M (如图2所示).当点P 在BC 上运动时,点M 也随之运动.设BP =m ,CM =n ,试用含m 的代数式表示n ,并求出n 的最大值.【答案】(1)①A(3,0),B(3,3),C(0,3);②23b c =ìí=î(2)2133324n m æö=--+ç÷èø;34【分析】(1)①根据坐标与图形的性质即可求解;②利用待定系数法求解即可;(2)证明Rt △ABP ∽Rt △PCM ,根据相似三角形的性质得到n 关于m 的二次函数,利用二次函数的性质即可求解.(1)解:①∵正方形OABC 的边长为3,∴点A ,B ,C 的坐标分别为A(3,0),B(3,3),C(0,3);②把点A(3,0),C(0,3)的坐标分别代入y=−x 2+bx+c ,得9303b c c -++=ìí=î,解得23b c =ìí=î;(2)解:由题意,得∠APB=90°-∠MPC=∠PMC ,∠B=∠PCM=90°,∴Rt △ABP ∽Rt △PCM ,∴AB BP PC CM =,即33m m n=-.整理,得213n m m =-+,即2133324n m æö=--+ç÷èø.∴当32m =时,n 的值最大,最大值是34.【点睛】本题综合考查了正方形的性质,相似三角形的判定和性质,二次函数的性质,待定系数法求函数解析式,根据正方形的性质求出点A ,B ,C 的坐标是解题的关键.2.(2022·山东泰安)若二次函数2y ax bx c =++的图象经过点()2,0A -,()0,4B -,其对称轴为直线1x =,与x 轴的另一交点为C .(1)求二次函数的表达式;(2)若点M 在直线AB 上,且在第四象限,过点M 作MN x ^轴于点N .①若点N 在线段OC 上,且3MN NC =,求点M 的坐标;②以MN 为对角线作正方形MPNQ (点P 在MN 右侧),当点P 在抛物线上时,求点M 的坐标.【答案】(1)2142y x x =-- (2)①836,55æö-ç÷èø;②1,52æö-ç÷èø【分析】(1)利用待定系数解答,即可求解;(2)①先求出直线AB 的表达式为24y x =--,然后设点N 的坐标为()0m ,.可得(),24M m m --.可得到24MN m =+,4NC m =-.再由3MN NC =,即可求解;②连接PQ 与MN 交与点E .设点M 的坐标为(),24t t --,则点N 的坐标为(),0t 根据正方形的性质可得E 的坐标为(),2t t --,进而得到P 的坐标()22,2t t +--.再由点P 在抛物线上,即可求解.(1)解:Q 二次函数2y ax bx c =++的图象经过点()0,4-,4c \=-.又Q 抛物线经过点()2,0A -,对称轴为直线1x =,1,24240,b a a b ì-=ï\íï--=î 解得∶1,21,a b ì=ïíï=-î\抛物线的表达式为2142y x x =--.(2)解∶①设直线AB 的表达式为y kx n =+.Q 点A ,B 的坐标为()2,0A -,()0,4B -,∴204k n n -+=ìí=-î, 解得∶24k n =-ìí=-î,\直线AB 的表达式为24y x =--.根据题意得∶点C 与点()2,0A -关于对称轴直线1x =对称,()4,0C \.设点N 的坐标为()0m ,.MN x ^Q 轴,(),24M m m \--.∴24MN m =+4NC m \=-.3MN NC=Q ()2434m m \+=-,解,得85m =.\点M 的坐标836,55æö-ç÷èø;②连接PQ 与MN 交与点E .设点M 的坐标为(),24t t --,则点N 的坐标为(),0t Q 四边形MPNQ 是正方形,PQ M N \^,NE EP =,12NE MN =.∵MN ⊥x 轴,//PQ x \轴.\E 的坐标为(),2t t --.2NE t \=+.222ON EP ON NE t t t \+=+=++=+.∴P 的坐标()22,2t t +--.Q 点P 在抛物线2142y x x =--上,()()212222422t t t \+-+-=--.解,得112t =,22t =-.Q 点P 在第四象限,2t \=-舍去.即12t =.\点M 坐标为1,52æö-ç÷èø.【点睛】本题主要考查了二次函数的综合题,熟练掌握二次函数的图形和性质,正方形的性质,一次函数的图象和性质是解题的关键.3.(2020·吉林中考真题)如图,在平面直角坐标系中,抛物线与轴正半轴交于点,且点的坐标为,过点作垂直于轴的直线.是该抛物线上的任意一点,其横坐标为,过点作于点;是直线上的一点,其纵坐标为,以,为边作矩形.(1)求的值.(2)当点与点重合时,求的值.(3)当矩形是正方形,且抛物线的顶点在该正方形内部时,求的值.(4)当抛物线在矩形内的部分所对应的函数值随的增大而减小时,直接写出的取值范围.【答案】(1);(2);(3);(4)或.【解析】【分析】(1)将A 点坐标代入函数解析式即可求得b 的值;(2)分别表示出P 、Q 、M 的坐标,根据Q 、M 的横坐标相同,它们重合时纵坐标也相同,21322y x bx =-++x A A ()3,0A x l P m P PQ l ^Q M l 32m -+PQ QM PQMN b Q M m PQMN m PQMN y x m 1b =120,4m m ==1m =+03m <<4m >列出方程求解即可;(3)分别表示出PQ 和MQ 的长度,根据矩形是正方形时,即可求得m 的值,再根据顶点在正方形内部,排除不符合条件的m 的值;(4)分,,,四种情况讨论,结合图形分析即可.【详解】解:(1)将点代入得,解得b=1,;(2)由(1)可得函数的解析式为,∴,∵于点,∴,∵是直线上的一点,其纵坐标为,∴,若点与点重合,则,解得;(3)由(2)可得,,当矩形是正方形时,即,即或,解得,PQMN PQ MQ =1m £13m <<3m =3m>()3,0A 21322y x bx =-++21303322b =-´++21322y x x =-++213,22P m m m æö-++ç÷èøPQ l ^Q 233,122m m Q æöç÷è-+ø+M l 32m -+3(3,)2m M -+Q M 2133222m m m -++=-+120,4m m ==|3|PQ m =-223131)2222|((||2|MQ m m m m m -+=+=-+--PQMN PQ MQ =212|2||3|m m m -=-22123m m m -=-22123m m m -=-22123m m m -=-121,1m m ==-解得,又,∴抛物线的顶点为(1,2),∵抛物线的顶点在该正方形内部,∴P 点在抛物线对称轴左侧,即,且M点的纵坐标大于抛物线顶点的纵坐标,即,解得,故m的值为;(4)①如下图当时,若抛物线在矩形内的部分所对应的函数值随的增大而减小,则M 点的纵坐标应该小于P 点纵坐标,且P 点应该在x 轴上侧,即且,解得,解得,∴,②如下图22123m m m -=-3233m m =+=-2131(1)2222y x x x =-++=--+1m <322m -+>12m <-1-1m £PQMN y x 2313222m m m -+<-++213022m m -++>2313222m m m -+<-++04m <<213022m m -++>13m -<<01m <£当时,若抛物线在矩形内的部分所对应的函数值随的增大而减小,则M 点的纵坐标应该小于P 点纵坐标,即,解得,∴;③当时,P 点和M 点都在直线x=3上不构成矩形,不符合题意;④如下图当时,若抛物线在矩形内的部分所对应的函数值随的增大而减小,则M 点的纵坐标应该大于P 点纵坐标,即,解得或,故,综上所述或.【点睛】13m <<PQMN y x 2313222m m m -+<-++04m <<13m <<3m=3m >PQMN y x 2313222m m m -+>-++0m <4m >4m >03m <<4m >本题考查二次函数综合,正方形的性质定理,求二次函数解析式.能分别表示出M 、P 、Q 的坐标并结合图形分析是解决此题的关键,注意分类讨论.4.(2020·山东潍坊?中考真题)如图,抛物线与x 轴交于点和点,与y 轴交于点C ,顶点为D ,连接与抛物线的对称轴l 交于点E .(1)求抛物线的表达式;(2)点P 是第一象限内抛物线上的动点,连接,当时,求点P 的坐标;(3)点N 是对称轴l 右侧抛物线上的动点,在射线上是否存在点M ,使得以点M ,N ,E 为顶点的三角形与相似?若存在,求点M 的坐标;若不存在,请说明理由.【答案】(1);(2);(3)在射线上存在点M ,使得以点M ,N ,E 为顶点的三角形与相似,点M 的坐标为:,或.【解析】【分析】(1)直接将和点代入,解出a ,b 的值即可得出答案;(2)先求出点C 的坐标及直线BC 的解析式,再根据图及题意得出三角形PBC 的面积;过点P 作PG 轴,交轴于点G ,交BC 于点F ,设,根据三角形PBC 28(0)y ax bx a =++¹()2,0A -()8,0B,,AC BCBC ,PB PC 35PBC ABC S S =V V ED OBC V 21382y x x =-++()()1221268P P ,,,ED OBC V ()3,8(3,5()311,()2,0A -()8,0B28(0)y ax bx a =++¹^x x 21,382P t t x æö-++ç÷èø的面积列关于t 的方程,解出t 的值,即可得出点P 的坐标;(3)由题意得出三角形BOC 为等腰直角三角形,然后分MN=EM ,MN=NE ,NE=EM 三种情况讨论结合图形得出边之间的关系,即可得出答案.【详解】(1)抛物线过点和点抛物线解析式为:(2)当时,直线BC 解析式为:过点P 作PG 轴,交轴于点G ,交BC 于点F设即Q 28(0)y ax bx a =++¹()2,0A -()8,0B 428064880a b a b -+=ì\í++=î123a b ì=-ï\íï=î\21382y x x =-++0x =8y =()0,8C \\8y x =-+111084022ABC S AB OC =××=´´=V Q 3245PBC ABC S S \==V V ^x x 21,382P t t x æö-++ç÷èø(),8F t t \-+2142PF t t\=-+1242PBC S PF OB \=×=V 211482422t t æö´-+´=ç÷èø122,6t t \==(3)为等腰直角三角形抛物线的对称轴为点E 的横坐标为3又点E 在直线BC 上点E 的纵坐标为5设①当MN=EM ,,时解得或(舍去)此时点M 的坐标为()()1221268P P \,,,()()08,80=90C B COB аQ ,,,OBC \V 21382y x x =-++331222b x a =-=-=æö´-ç÷èø\Q \()35E \,()21,,382M m N n n n æö-++ç÷èø3,90EMN Ð=°NME COB :△△2531382m n n n m -=-ìïí-++=ïî68n m =ìí=î20n m =-ìí=î\()3,8②当ME=EN ,时解得:或(舍去)此时点M 的坐标为③当MN=EN ,时连接CM ,易知当N 为C 关于对称轴l 的对称点时,,此时四边形CMNE为正方形90MEN Ð=°25313852m n n n -=-ìïí-++=ïî53m n ì=ïí=ïî53m n ì=ïí=ïî\(3,590MNE Ð=°MNE COB :△△CM CE\=()()()0,8,3,5,3,C E M m QCM CE \====解得:(舍去)此时点M 的坐标为在射线上存在点M ,使得以点M ,N ,E 为顶点的三角形与相似,点M 的坐标为:,或.【点睛】本题是一道综合题,涉及到二次函数的综合、相似三角形的判定及性质、等腰三角形的性质、勾股定理、正方形的性质等知识点,综合性比较强,解答类似题的关键是添加合适的辅助线.5.如图,在平面直角坐标系中,抛物线y =―23x 2+bx +c ,经过A (0,﹣4),B (x 1,0),C (x 2,0)三点,且|x 2―x 1|=5.(1)求b ,c 的值;(2)在抛物线上求一点D ,使得四边形BDCE 是以BC 为对角线的菱形;(3)在抛物线上是否存在一点P ,使得四边形BPOH 是以OB 为对角线的菱形?若存在,求出点P 的坐标,并判断这个菱形是否为正方形?若不存在,请说明理由.【答案】(1)b =―143,c =―4;(2)D (―72,256);(3)存在一点P (﹣3,4),使得四边1211,5m m ==()311,ED OBC V ()3,8(3,5+()311,形BPOH 为菱形,不能为正方形.【解析】试题分析:(1)把A (0,﹣4)代入可求c ,运用根与系数的关系及|x 2―x 1|=5,可求出b ;(2)因为菱形的对角线互相垂直平分,故菱形的另外一条对角线必在抛物线的对称轴上,满足条件的D 点,就是抛物线的顶点;(3)由四边形BPOH 是以OB 为对角线的菱形,可得PH 垂直平分OB ,求出OB 的中点坐标,代入抛物线解析式即可,再根据所求点的坐标与线段OB 的长度关系,判断是否为正方形即可.试题解析:(1)∵抛物线y =―23x 2+bx +c ,经过点A (0,﹣4),∴c=﹣4,又∵由题意可知,x 1、x 2是方程―23x 2+bx ―4=0的两个根,∴x 1+x 2=32b ,x 1x 2=6,由已知得(x 2―x 1)2=25,∴x 12+x 22―2x 1x 2=25,∴(x 1+x 2)2―4x 1x 2=25,∴94b 2―24=25,解得:b =±143,当b=143时,抛物线与x 轴的交点在x 轴的正半轴上,不合题意,舍去.∴b=―143;(2)∵四边形BDCE 是以BC 为对角线的菱形,根据菱形的性质,点D 必在抛物线的对称轴上,又∵y =―23x 2―143x ―4=―23(x +72)2+256,∴抛物线的顶点(―72,256)即为所求的点D ;(3)∵四边形BPOH 是以OB 为对角线的菱形,点B 的坐标为(﹣6,0),根据菱形的性质,点P 必是直线x=﹣3与抛物线y =―23x 2―143x ―4的交点,∴当x=﹣3时,y =―23×(―3)2―143×(―3)―4=4,∴在抛物线上存在一点P (﹣3,4),使得四边形BPOH 为菱形.四边形BPOH 不能成为正方形,因为如果四边形BPOH 为正方形,点P 的坐标只能是(﹣3,3),但这一点不在抛物线上.考点:1.二次函数综合题;2.探究型;3.存在型;4.压轴题.6.如图,顶点为M 的抛物线23y ax bx =++与x 轴交于()3,0A ,()1,0B -两点,与y 轴交于点C .(1)求这条抛物线对应的函数表达式;(2)问在y 轴上是否存在一点P ,使得PAM D 为直角三角形?若存在,求出点P 的坐标;若不存在,说明理由.(3)若在第一象限的抛物线下方有一动点D ,满足DA OA =,过D 作DG x ^轴于点G ,设ADG D 的内心为I ,试求CI 的最小值.【答案】(1)2y x 2x 3=-++;(2)点P 坐标为30,2æö-ç÷èø或()0,1或()0,3或70,2æöç÷èø时,PAM D 为直角三角形;(3)CI .【解析】(1)结合题意,用待定系数法即可求解;(2)分3种情况讨论,用勾股定理即可求解;(3)根据正方形的判定和勾股定理,即可得到答案.【详解】(1)∵抛物线23y ax bx =++过点()3,0A ,()1,0B -,∴933030a b a b ++=ìí-+=î,解得:12a b =-ìí=î,∴这条抛物线对应的函数表达式为2y x 2x 3=-++.(2)在y 轴上存在点P ,使得PAM D 为直角三角形.∵()222314y x x x =-++=--+,∴顶点()1,4M ,∴()22231420AM =-+=,设点P 坐标为()0,p ,∴222239AP p p =+=+,()222214178MP p p p =+-=-+,①若90PAM Ð=°,则222AM AP MP +=.∴22209178p p p ++=-+,解得:32p =-,∴30,2P æö-ç÷èø.②若90APM Ð=°,则222AP MP AM +=,∴22917820p p p ++-+=,解得:11p =,23p =,∴()0,1P 或()0,3.③若90AMP Ð=°,则222AM MP AP +=,∴22201789p p p +-+=+,解得:72p =,∴70,2P æöç÷èø.综上所述,点P 坐标为30,2æö-ç÷èø或()0,1或()0,3或70,2æöç÷èø时,PAM D 为直角三角形.(3)如图,过点I 作IE x ^轴于点E ,IF AD ^于点F ,IH DG ^于点H ,∵DG x ^轴于点G ,∴90HGE IEG IHG Ð=Ð=Ð=°,∴四边形IEGH 是矩形,∵点I 为ADG D 的内心,∴IE IF IH ==,AE AF =,DF DH =,EG HG =,∴矩形IEGH 是正方形,设点I 坐标为(),m n ,∴OE m =,HG GE IE n ===,∴3AF AE OA OE m ==-=-,∵3DA OA ==,∴()33DH DF DA AF m m ==-=--=,∴DG DH HG m n =+=+,∵222DG AG DA +=,∴()()22233m n n m +++-=,∴化简得:22330m m n n -++=,配方得:22339222m n æöæö-++=ç÷ç÷èøèø,∴点(),I m n 与定点33,22Q æö-ç÷èø.∴点I 在以点33,22Q æö-ç÷èø的圆在第一象限的弧上运动,∴当点I 在线段CQ 上时,CI 最小,∵CQ ==,∴CI CQ IQ =-=∴CI .【点睛】本题考查用待定系数法求二元一次方程、勾股定理和正方形的判定,解题的关键是熟练掌握用待定系数法求二元一次方程、勾股定理和正方形的判定.7.(2019·浙江中考真题)如图,在平面直角坐标系中,正方形OABC 的边长为4,边OA,OC分别在x 轴,y 轴的正半轴上,把正方形OABC 的内部及边上,横、纵坐标均为整数的点称为好点.点P 为抛物线2()2y x m m =--++的顶点.(1)当0m =时,求该抛物线下方(包括边界)的好点个数.(2)当3m =时,求该抛物线上的好点坐标.(3)若点P 在正方形OABC 内部,该抛物线下方(包括边界)恰好存在8个好点,求m 的取值范围.【答案】(1)好点有:(0,0),(0,1),(0,2),(1,0)和(1,1),共5个;(2)(1,1),(2,4)和(4,4);(31m <.【解析】【分析】(1)如图1中,当m =0时,二次函数的表达式y =﹣x 2+2,画出函数图象,利用图象法解决问题即可;(2)如图2中,当m =3时,二次函数解析式为y =﹣(x ﹣3)2+5,如图2,结合图象即可解决问题;(3)如图3中,抛物线的顶点P (m ,m+2),推出抛物线的顶点P 在直线y =x+2上,由点P 在正方形内部,则0<m <2,如图3中,E (2,1),F (2,2),观察图象可知,当点P 在正方形OABC 内部,该抛物线下方(包括边界)恰好存在8个好点时,抛物线与线段EF 有交点(点F 除外),求出抛物线经过点E 或点F 时Dm 的值,即可判断.【详解】解:(1)当0m º时,二次函数的表达式为22y x =-+画出函数图像(图1)图1Q 当0x =时,2y =;当1x =时,1y =\抛物线经过点(0,2)和(1,1)\好点有:(0,0),(0,1),(0,2),(1,0)和(1,1),共5个(2)当3m =时,二次函数的表达式为2(3)5y x =--+画出函数图像(图2)图2Q 当1x =时,1y =;当2x =时,4y =;当4x =时,y 4=\该抛物线上存在好点,坐标分别是(1,1),(2,4)和(4,4)(3)Q 抛物线顶点P 的坐标为(,2)m m +\点P 支直线2y x =+上由于点P 在正方形内部,则02m <<如图3,点(2,1)E ,(2,2)F图3\当顶点P 支正方形OABC 内,且好点恰好存在8个时,抛物线与线段EF 有交点(点F 除外)当抛物线经过点(2,1)E 时,2(2)21m m --++=解得:1m =,2m =(舍去)当抛物线经过点(2,2)F 时,2(2)22m m --++=解得:31m =,44m =(舍去)\1m <时,顶点P 在正方形OABC 内,恰好存在8个好点【点睛】本题属于二次函数综合题,考查了正方形的性质,二次函数的性质,好点的定义等知识,解题的关键是理解题意,学会正确画出图象,利用图象法解决问题,学会利用特殊点解决问题.8.(2017·湖北中考真题)如图,矩形OABC 的两边在坐标轴上,点A 的坐标为(10,0),抛物线y=ax 2+bx+4过点B ,C 两点,且与x 轴的一个交点为D (﹣2,0),点P 是线段CB 上的动点,设CP=t (0<t <10).(1)请直接写出B 、C 两点的坐标及抛物线的解析式;(2)过点P 作PE ⊥BC ,交抛物线于点E ,连接BE ,当t 为何值时,∠PBE=∠OCD ?(3)点Q 是x 轴上的动点,过点P 作PM ∥BQ ,交CQ 于点M ,作PN ∥CQ ,交BQ 于点N ,当四边形PMQN 为正方形时,请求出t 的值.【答案】(1)B (10,4),C (0,4),215463y x x =-++;(2)3;(3)103或 203.【解析】试题分析:(1)由抛物线的解析式可求得C 点坐标,由矩形的性质可求得B 点坐标,由B 、D 的坐标,利用待定系数法可求得抛物线解析式;(2)可设P (t ,4),则可表示出E 点坐标,从而可表示出PB 、PE 的长,由条件可证得△PBE∽△OCD ,利用相似三角形的性质可得到关于t 的方程,可求得t 的值;(3)当四边形PMQN 为正方形时,则可证得△COQ ∽△QAB ,利用相似三角形的性质可求得CQ 的长,在Rt △BCQ 中可求得BQ 、CQ ,则可用t 分别表示出PM 和PN ,可得到关于t 的方程,可求得t 的值.试题解析:解:(1)在y =ax 2+bx +4中,令x =0可得y =4,∴C (0,4),∵四边形OABC 为矩形,且A (10,0),∴B (10,4),把B 、D 坐标代入抛物线解析式可得10010444240a b a b ++=ìí-+=î,解得1653a b ì=-ïïíï=ïî,∴抛物线解析式为y =16-x 2+53x +4;(2)由题意可设P (t ,4),则E (t ,16-t 2+53t +4),∴PB =10﹣t ,PE =16-t 2+53t +4﹣4=16-t 2+53t ,∵∠BPE =∠COD =90°,当∠PBE =∠OCD时,则△PBE ∽△OCD ,∴PE PB OD OC=,即BP•OD =CO•PE ,∴2(10﹣t )=4(16-t 2+53t ),解得t =3或t =10(不合题意,舍去),∴当t =3时,∠PBE =∠OCD ;当∠PBE =∠CDO 时,则△PBE ∽△ODC ,∴PE PB OC OD=,即BP•OC =DO•PE ,∴4(10﹣t )=2(16-t 2+53t ),解得t =12或t =10(均不合题意,舍去)综上所述∴当t =3时,∠PBE =∠OCD ;(3)当四边形PMQN 为正方形时,则∠PMC =∠PNB =∠CQB =90°,PM =PN ,∴∠CQO +∠AQB =90°,∵∠CQO +∠OCQ =90°,∴∠OCQ =∠AQB ,∴Rt △COQ ∽Rt △QAB ,∴CO OQ AQ AB=,即OQ•AQ =CO•AB ,设OQ =m ,则AQ =10﹣m ,∴m (10﹣m )=4×4,解得m =2或m =8,①当m =2时,CQ BQ =∴sin ∠BCQ =BQ BC ,sin ∠CBQ =CQ BC∴PM =PC•sin ∠PCQ t ,PN =PB•sin ∠CBQ 10﹣t ),t 10﹣t ),解得t =103,②当m =8时,同理可求得t =203,∴当四边形PMQN 为正方形时,t 的值为103或203.点睛:本题为二次函数的综合应用,涉及矩形的性质、待定系数法、相似三角形的判定和性质、勾股定理、解直角三角形、方程思想等知识.在(1)中注意利用矩形的性质求得B 点坐标是解题的关键,在(2)中证得△PBE∽△OCD是解题的关键,在(3)中利用Rt△COQ ∽Rt△QAB求得CQ的长是解题的关键.本题考查知识点较多,综合性较强,难度较大.。
专题30 二次函数与正方形存在问题-2022年中考数学之二次函数重点题型专题(全国通用版)(解析版)
专题30 二次函数与正方形存在问题1.(2021—2022广东佛山市九年级期中)直线3y x =-+与x 轴相交于点A ,与y 轴相交于点B ,抛物线2y ax 2x c =++经过点A ,B ,与x 轴的另一个交点为C . (1)求抛物线的解析式;(2)如图1,若点P 为直线AB 上方的抛物线上的一动点,求四边形APBO 的面积的最大值; (3)如图2,(2,3)D 为抛物线上的一点,直线CD 与AB 相交于点M ,点H 在抛物线上,过H 作HK y ∥轴,交直线CD 于点K .P 是平面内一点,当以点M ,H ,K ,P 为顶点的四边形是正方形时,请直接写出点P 的坐标.【答案】(1)2y x 2x 3=-++;(2)638;(3)P 点坐标为(5,2)或(12,或(12+,时,以点M ,H ,K ,P 为顶点的四边形是正方形 【分析】(1)先求出A 、B 的坐标,然后把A 、B 坐标代入二次函数解析式求解即可;(2)过点P 作PD ⊥x 轴于D ,设P 点坐标为(m ,223m m -++),则D 点坐标为(m ,0),则223PD m m =-++,OD m =,再由B (0,3),A (3,0),得到OB =OA =3,则3DA OA OD m =-=-,根据=ADP APBO OBPD S S S +△四边形梯形1=22OB PD OD AD PD +⋅+⋅进行求解即可;(3)先求出C 点坐标,然后求出直线CD 的解析式,证明∠MAC =45°,∠CMA =90°,然后求出M 点的坐标,再分当MH ⊥MK 时和当MH ⊥HK 时,进行讨论求解即可得到答案. 【详解】解:(1)∵直线3y x =-+与x 轴相交于点A ,与y 轴相交于点B , ∴点A 的坐标为(3,0),点B 的坐标为(0,3), ∵抛物线2y ax 2x c =++经过点A ,B ,∴9603a c c ++=⎧⎨=⎩,∴13a c =-⎧⎨=⎩,∴抛物线解析式为2y x 2x 3=-++; (2)如图所示,过点P 作PD ⊥x 轴于D ,设P 点坐标为(m ,223m m -++),则D 点坐标为(m ,0), ∴223PD m m =-++,OD m =, ∵B (0,3),A (3,0), ∴OB =OA =3,∴3DA OA OD m =-=-, ∴=ADP APBO OBPD S S S +△四边形梯形1=22OB PD OD AD PD +⋅+⋅ ()()()32211=2632322m m m m m m -+++--++ ()()323211=2653922m m m m m m -+++-++ ()23332m m =--- 23363=228m ⎛⎫--+ ⎪⎝⎭,∵302-<, ∴当32m =-时,四边形APBO 的面积最大,最大为638;(3)令0y =,则2230x x -++=, 解得1x =-或3x =, ∴C 点坐标为(-1,0), 设直线CD 的解析式为y kx b =+,∴023k b k b -+=⎧⎨+=⎩,∴11k b =⎧⎨=⎩,∴直线CD 的解析式为1y x =+, 设直线CD 与y 轴交点为E , ∴E (0,1), ∴OC =OE =1, ∴∠MCA =45°, 又∵OB =OB =3, ∴∠MAC =45°, ∴∠CMA =90°,联立13y x y x =+⎧⎨=-+⎩,解得12x y =⎧⎨=⎩,∴M 的坐标为(1,2)如图3-1,3-2所示,当MH ⊥MK 时,H 在AB 上,K 在CD 上时, ∵H 在抛物线上,∴H 的坐标为(3,0)或(0,3)(舍去,H 点与B 点重合), 当H 坐标为(3,0)时,如图3-2所示,MH ==∵四边形PKMH 是正方形, ∴MK MH ==HMK =90°, ∴4HK , ∴K (3,4),∵MP 的中点与BK 的中点坐标相同, ∴1332220422PP x y ++⎧=⎪⎪⎨++⎪=⎪⎩,∴52P P x y =⎧⎨=⎩, ∴P点坐标为(5,2);如图3-4所示,当MH⊥HK时,∵四边形HMPK是正方形,∴∠MKP=45°,HM∥KP∴∠MKP=∠MCA,∴KP∥AC,∴HM∥AC∥KP,∴H的纵坐标为2,∴2232-++=,x x解得1x=,x=1∴H点的坐标为(12),∴K点坐标为(1+,MH PK==∴P点坐标为(12-,;如图3-5所示,当MH⊥HK时,∵四边形HMPK是正方形,∴∠KMH=45°,HM∥KP∴∠KMH=∠MCA,∴MH∥AC,∴HM∥AC∥KP,∴H的纵坐标为2,∴2232-++=,x x解得1x=1x=,∴H点的坐标为(12),∴K 点坐标为(1+,MH PK ==∴P 点坐标为(12+,;综上所述,P 点坐标为(5,2)或(12,或(12,时,以点M ,H ,K ,P 为顶点的四边形是正方形.【点睛】本题主要考查了二次函数综合,一次函数与几何综合,正方形的性质,等腰直角三角形的性质与判定,平行线的判定,等等,解题的关键在于能够熟练掌握相关知识进行求解. 2.如图,已知抛物线2y x bx c =++的图象经过点(1,0)A ,(3,0)B -,与y 轴交于点C ,抛物线的顶点为D ,对称轴与x 轴相交于点E ,连接BD . (1)求抛物线的解析式.(2)在抛物线上点B 和点D 之间是否存在一点H 使得四边形OBHC 的面积最大,若存在求出四边形OBHC 的最大面积,若不存在,请说明理由.(3)直线BD 上有一点P ,使得PE PC =时,过P 作PF x ⊥轴于F ,点M 为x 轴上一动点,N 为直线PF 上一动点,G 为抛物线上一动点,当以点F ,N ,G ,M 四点为顶点的四边形为正方形时,求点M 的坐标.【答案】(1)223y x x =+-;(2)存在,638;(3)点M 的坐标为⎫⎪⎪⎝⎭,⎫⎪⎪⎝⎭,⎫⎪⎪⎝⎭,⎫⎪⎪⎝⎭【分析】(1)利用待定系数法求解即可;(2)先求出C 、D 的坐标,设点()2,23(31)H a a a a +--<<-,即可得到OBH OCH OBHC S S S =+△△四边形21123||22OB a a OC a =⨯+-+⨯,由此求解即可; (3)先求出E 点坐标,利用待定系数法求出直线BD 的解析式,利用PC PE =求出P 点坐标,设设(,0)M d ,则()2,23G d d d +-,()22,23N d d -+-,利用FM MG =建立方程求解即可. 【详解】解:(1)∵抛物线2y x bx c =++的图象经过点(1,0)A ,(3,0)B -∴10930b c b c ++=⎧⎨-+=⎩,∴23b c =⎧⎨=-⎩,∴抛物线的解析式为223y x x =+-;(2)当1x =-时,4y =-,所以点(1,4)D --,当0x =时3y =-,,所以点(0,3)C -设点()2,23(31)H a a a a +--<<-所以OBH OCH OBHC S S S =+△△四边形21123||22OB a a OC a =⨯+-+⨯()2333222a a a =---2399222a a =--+ 当322b a a =-=-时,638OBHC S =四边形.(3)由(1)知,抛物线的解析式为223y x x =+-;∴(0,3)C -,抛物线的顶点(1,4)D --,∴(1,0)E -,设直线BD 的解析式为y mx n =+,∴304m n m n -+=⎧⎨-+=-⎩,∴26m n =-⎧⎨=-⎩∴直线BD 的解析式为26y x =--,设点(,26)P m m --, ∵(0,3)C -,(1,0)E -,根据勾股定理得,222(1)(26)PE m m =++--,222(263)PC m m =+--+, ∵PC PE =,∴2222(1)(26)(263)m m m m ++--=+--+ ∴2m =-,∴2(2)62y =-⨯--=-, ∴(2,2)P --,如图,作PF x ⊥轴于F ,∵(2,0)F -,设(,0)M d ,则()2,23G d d d +-,()22,23N d d -+-∴以点F ,N ,G ,M 四点为顶点的四边形为正方形,必有FM MG =,∴2|2|23d d d +=+-∴d =d =∴点M 的坐标为⎫⎪⎪⎝⎭,⎫⎪⎪⎝⎭,⎫⎪⎪⎝⎭,⎫⎪⎪⎝⎭.【点睛】本题主要考查了二次函数的综合,待定系数法求函数解析式,正方形的性质,两点距离公式等等,解题的关键在于能够熟练掌握相关知识进行求解.3.(2021·山东梁山·中考一模)如图1,在平面直角坐标系xOy 中,抛物线2:C y ax bx c =++与x 轴相交于A B ,两点,顶点为(0,4),4D AB =,设点(,0)F m 是x 轴的正半轴上一点,将抛物线C 绕点F 旋转180︒,得到新的抛物线C '.(1)求抛物线C 的函数表达式;(2)若抛物线C '与抛物线C 在y 轴的右侧有两个不同的公共点,求m 的取值范围. (3)如图2,P 是第一象限内抛物线C 上一点,它到两坐标轴的距离相等,点P 在抛物线C '上的对应点P ',设M 是C 上的动点,N 是C '上的动点,试探究四边形PMP N '能否成为正方形?若能,求出m 的值;若不能,请说明理由.【答案】(1)24y x =-+;(22m <;(3)能,m【分析】(1)根据顶点(0,4)D 设顶点式,将(2,0)A -代入即可求得解析式;(2)由题意抛物线C ′的顶点坐标为(2m ,-4),设抛物线C ′的解析式为2(2)4y x m =--,由224(2)4y x y x m ⎧=-+⎨=--⎩,消去y 得到222240x mx m -+-=,由题意,抛物线C ′与抛物线C 在y 轴的右侧有两个不同的公共点,则有()222(2)424020240m m m m ⎧-->⎪⎪>⎨⎪->⎪⎩,解不等式组即可解决问题;(3)情形1,四边形PMP ′N 能成为正方形.作PE ⊥x 轴于E ,MH ⊥x 轴于H.由题意易知P ⎝⎭,当△PFM 是等腰直角三角形时,四边形PMP ′N 是正方形,推出PF =FM ,∠PFM =90°,易证△PFE ≌△FMH ,可得PE FH EF HM m ====,可得M m m ⎛⎫- ⎪ ⎪⎝⎭,利用待定系数法即可解决问题;情形2,如图,四边形PMP ′N是正方形,同法可得M m m ⎛⎫- ⎪ ⎪⎝⎭,利用待定系数法即可解决问题. 【详解】(1)由题意抛物线的顶点(0,4),(2,0)D A -,设抛物线的解析式为24y ax =+, 把(2,0)A -代入可得1a =-,∴抛物线C 的函数表达式为24y x =-+.(2)由题意抛物线C '的顶点坐标为(2,4)m -,设抛物线C '的解析式为 2(2)4y x m =--,由224(2)4y x y x m ⎧=-+⎨=--⎩,消去y 得到222240x mx m -+-=, 由题意,抛物线C '与抛物线C 在y 轴的右侧有两个不同的公共点, 则有()222(2)424020240m m m m ⎧-->⎪⎪>⎨⎪->⎪⎩2m <,∴满足条件的m2m <. (3)结论:四边形PMP N '能成为正方形. 理由:1情形1,当0m <<PE x ⊥轴于,E MH x ⊥轴于H .由题意P 点在二次函数上,且横纵坐标相等,24x x =-+,解得x ,∴P ⎝⎭,当PFM △是等腰直角三角形时,四边形PMP N '是正方形, ,90PF FM PFM ︒∴=∠=,可证PFE FMH △≌△,可得PE FH EF HM m ====,M m m ⎛∴ ⎝⎭, ∵点M 在24y x =-+上,24m m ⎛∴=-+ ⎝⎭,解得m =弃),m ∴PMP N '是正方形,情形2,如图,当m >时,四边形PMP N '是正方形,同法可得M m m ⎛⎫- ⎪ ⎪⎝⎭,把M m m ⎛⎫- ⎪ ⎪⎝⎭代入24y x =-+中, 2142m m ⎛=-+ ⎝⎭,解得m =0(舍弃),m ∴=PMP N '是正方形.综上,四边形PMP N '能成为正方形,m =【点睛】本题考查二次函数综合题、中心对称变换、正方形的性质、全等三角形的判定和性质、一元二次方程的根与系数的关系等知识,解题的关键是灵活运用所学知识解决问题,学会利用参数构建方程解决问题,属于中考压轴题.4.如图,二次函数2y x bx c =++的图象与x 轴交于()3,0A ,()1,0B -,与y 轴交于点C . (1)求该二次函数的解析式及点C 的坐标;(2)如图1,点P 为抛物线AC 段一动点,PQ AC ⊥于点Q ,PG x ⊥轴交AC 于点G ,当PQ 的长度最大时,求点P 的坐标.(3)点M 为抛物线上一点,过M 作//MN x 轴交直线AC 于点N ,点E 为x 轴上一点,点F 为坐标系内一点,当以点M ,N ,E ,F 为顶点的四边形是正方形时,直接写出点M 的坐标.【答案】(1)223y x x =--,()0,3C -;(2)315,24P ⎛⎫- ⎪⎝⎭;(3)17(,)24--,211(,)39--,(2,5)-【分析】(1)先求出二次函数的解析式,即可得到结果;(2)设PG x ⊥轴于点H ,()2,23P m m m --,求出OA OC =,根据直角三角形性质得到2PQ PG =,求出直线AC 的解析式,得到(),3G m m -,求出PG ,即可得到结果; (3)由题意可得:MN ∥EF ,设M 点的坐标为()2,23x x x --,即可得到N 的点,再根据正方形的性质,分类讨论即可; 【详解】解:(1)∵2y x bx c =++的图象与x 轴交于()3,0A ,()1,0B -∴09301b cb c =++⎧⎨=-+⎩∴23b c =-⎧⎨=-⎩∴223y x x =-- 当0x =时,3y =- ∴()0,3C -(2)设PG x ⊥轴于点H ,()2,23P m m m --∵()3,0A ,()0,3C - ∴OA OC =在Rt AOC △中,45OCA OAC ∠=∠=︒ ∵45HGA PGQ ∠=∠=︒,PQ AC ⊥∴sin PGQ PQ PG ==∠∴2PQ PG =设直线AC 的解析式为:111y k x b =+∴11033k b b =+⎧⎨-=⎩ ∴13y x =- ∴(),3G m m -∴()22239323324PG m m m m m m ⎛⎫=----=-+=--+ ⎪⎝⎭即当32m =时PG 最大. ∴315,24P ⎛⎫- ⎪⎝⎭.(3)设M 点的坐标为()2,23x x x --, 则点N 的坐标为()222,23x x x x ---, ∴MN 的长度为23x x -①当MN 为直角边时,可知MN ∥EF , ∴E ,F 均在x 轴上,∴M ,N 点到x 轴的距离为223x x --,即2=23NE x x --∵MNEF 为正方形, ∴MN NE =,即2223=3x x x x ---,解得13x =,212x =-当x=3时,M 点为A 点,应舍去 ∴M 点可为17(,)24--②当MN 是对角线时,得到23MN x x =-,此时E 点为MN 的垂直平分线与x 轴的交点且△ENM 为直角等腰三角形,故MN 的长度应该为M 到x 轴的距离的2倍得到22332=2x x x x ---解得13x =,223x =-,32x =-同理x=3时应舍去故M 点可为211(,)39--,(2,5)-故综上M 点坐标可为17(,)24--,211(,)39--,(2,5)-【点睛】本题主要考查了二次函数的综合应用,结合正方形的性质是解题的关键.5.(2021·山东庆云·九年级期末)如图,抛物线y =﹣x 2+bx +c 经过A (﹣1,0),B (3,0)两点,且与y 轴交于点C ,点D 是抛物线的顶点,抛物线的对称轴DE 交x 轴于点E ,连接BD .(1)求经过A ,B ,C 三点的抛物线的函数表达式;(2)点Q 在该抛物线的对称轴上,若△BCQ 是以BC 为直角边的直角三角形,求点Q 的坐标;(3)若P 为BD 的中点,过点P 作PF ⊥x 轴于点F ,G 为抛物线上一动点,M 为x 轴上一动点,N 为直线PF 上一动点,当以F 、M 、N 、G 为顶点的四边形是正方形时,请求出点M 的坐标.【答案】(1)2y x 2x 3=-++;(2)()1,4Q 或()1,2Q -;(3),0M ⎫⎪⎪⎝⎭,⎫⎪⎪⎝⎭,⎫⎪⎪⎝⎭,⎫⎪⎪⎝⎭【分析】(1)把A ,B 代入解析式求解即可;(2)根据已知条件分∠QCB=90°或∠QBC=90°,再利用勾股定理列出方程,即可求解;(3)设点(),0M a ,则()2,23G a a a -++,根据以F 、M 、N 、G 为顶点的四边形是正方形分类计算即可; 【详解】(1)∵抛物线y =﹣x 2+bx +c 经过A (﹣1,0),B (3,0)两点,∴10930b c b c --+=⎧⎨-++=⎩,解得23b c =⎧⎨=⎩,∴2y x 2x 3=-++;(2)由(1)知B (3,0),()0,3C , 连接BC ,∵△BCQ 是以BC 为直角边的直角三角形, 则90QCB ∠=︒或90QBC ∠=︒, ∵Q 在对称轴上,设()1,Q m ,则()22213610CQ m m m =+-=-+,()()22223104BQ m m =-+-=+,2223318BC =+=,当90QCB ∠=︒时,由勾股定理得:222QB QC BC =+, 即22461018m m m +=-++, 解得4m =, ∴()1,4Q ;当90QBC ∠=︒时,由勾股定理得:222CQ BQ BC =+, 即22610418m m m -+=++, 解得2m =-, ∴()1,2Q -;综上所述,()1,4Q 或()1,2Q -;(3)设点(),0M a ,则()2,23G a a a -++,∵以F 、M 、N 、G 为顶点的四边形是正方形,∴FM=MG ,即2223a a a -=-++,当2223a a a -=-++,解得a =当()2223a a a -=--++,解得a =∴,0M ⎫⎪⎪⎝⎭,⎫⎪⎪⎝⎭,⎫⎪⎪⎝⎭,⎫⎪⎪⎝⎭.【点睛】本题主要考查了二次函数动点问题,根据直角三角形和正方形的几何特征,列出相关的方程,是解题的关键,特别要注意分类讨论思想在解题中的应用.6.(2021·重庆市中考二模)在平面直角坐标系xOy 中,抛物线23y ax bx =++与y 轴交于点C 与x 轴交于A ,B 两点(点A 在点B 的左侧),其中()2,0A -,并且抛物线过点()4,3D .(1)求抛物线的解析式;(2)如图1,点P 为直线CD 上方抛物线上一点,过P 作//PE y 轴交BC 于点E .连接CP ,PD ,DE ,求四边形CPDE 面积的最大值及点P 的坐标;(3)如图2,将抛物线沿射线CB 方向平移得新抛物线2111y a x b x c =++()10≠a ,是否在新抛物线上存在点M ,在平面内存在点N ,使得以A ,C ,M ,N 为顶点的四边形为正方形?若存在,直接写出此时新抛物线的顶点坐标,若不存在,请说明理由.【答案】(1)2134y x x =-++;(2)3t =时,CPDE S 最大为94,点P 的坐标为(3,154);(3)存在,新抛物线的顶点坐标为(5,2)或(3,-1)或(52,32).【分析】(1)利用待定系数法求解即可;(2)要使S 四边形CPDE 最大,则PE 最大,设P (t ,14-t 2+t +3),则E (t ,12-t +3),利用二次函数的性质求解即可;(3)分情况讨论,当AC 为正方形ACMN 的边时,当AC 为正方形ACNM 的边时,当AC 为正方形AMCN 的对角线时,分别作出辅助线,利用全等三角形的判定和性质以及二次函数的平移规律解答即可. 【详解】解:(1)因为抛物线过点A (−2,0)和D (4,3),∴423016433a b a b -+=⎧⎨++=⎩,解得:141a b ⎧=-⎪⎨⎪=⎩, ∴抛物线的解析式为2134y x x =-++; (2)抛物线2134y x x =-++的对称轴为22bx a=-=, 则顶点坐标为(2,4), ∵点A (−2,0), ∴点B (6,0), 令0x =,则3y =, ∴C (0,3), 又D (4,3), ∴DC //x 轴, ∴PE ⊥CD ,∵S 四边形CPDE =12PE ⋅CD , ∴S 四边形CPDE 最大,即PE 最大, 设直线BC 的解析式为3y kx =+, ∴063k =+,∴12k=-,∴直线BC的解析式为132y x=-+,设P(t,14-t2+t+3),则E(t,12-t+3),∴PE=14-t2+32t=()219344t--+,∴t=3时,S四边形CPDE最大为94,此时P的坐标为(3,154);(3)∵A(−2,0),C(0,3),∴OA=2,OC=3,∴AC=当AC为正方形ACMN的边时,如图,则MN=MC=AN=AC,过M作MG⊥y轴于G,过N作NQ⊥x轴于Q,∵ACMN为正方形,∴∠ACM=∠CAN=90︒,∴∠ACO+∠GCM=∠CAO+∠QAN=∠CAO+∠ACO =90︒,∠QAN+∠ANQ =90︒,∴∠GCM =∠OAC =∠QNA , ∴Rt △GCM ≅Rt △OAC ≅Rt △QNA , ∴GC =OA =QN =2,GM =OC =QA =3, ∴M (3,1),N (1,2),∵经过点M 的新抛物线是原抛物线2134y x x =-++平移得到的, ∵原抛物线2134y x x =-++的顶点坐标为(2,4),由平移的性质得,新抛物线的顶点坐标为(2+3,4-2),即(5,2); 当AC 为正方形ACNM 的边时,如图,同理求得, N (3,1),M (1,2),同理,新抛物线的顶点坐标为(2+1,4-5),即(3,-1); 当AC 为正方形AMCN 的对角线时,如图, 则AM =MC =CN =AN ,∠CMA =90︒,过M 作MF ⊥y 轴于F ,过M 作MH ⊥x 轴于H ,∴四边形MFOH 为矩形,MF ∥AO ,∴∠FMA =∠MAH ,∠CMF +∠FMA =90︒,∠CMF +∠MCF =90︒, ∴∠MAH =∠MCF , ∴Rt △MAH ≅Rt △MCF , ∴AH =CF ,MH =MF , ∴四边形MFOH 为正方形, 设正方形MFOH 的边长为x , ∴AO +OH =CO -OF ,即2+x =3-x , 解得:12x =, 点M 的坐标为(12,12),同理,新抛物线的顶点坐标为(2+12,4-52),即(52,32);综上,新抛物线的顶点坐标为(5,2)或(3,-1)或(52,32).【点睛】本题是二次函数综合题,需要掌握待定系数法求函数的解析式,二次函数的性质,正方形的性质,勾股定理,二次函数的平移等知识点,正确的作出辅助线、分类讨论是解题的关键. 7.(2021·陕西中考模拟预测)在平面直角坐标系中,已知抛物线21:C y x bx c =++与x 轴的一个交点是()1,0A -,与y 轴交于点()0,3C -. (1)求抛物线1C 的函数表达式;(2)已知点D 是第一象限内一点,且ACD △是以AC 为直角边的等腰直角三角形,则点D 坐标为 ;(3)在直线AC 左侧有一点M ,将抛物线1C 的图象绕点M 旋转180︒得到抛物线2C ,其中点A 、C 的对应点分别是A '、C ',若以A 、C 、A '、C '为顶点的四边形是正方形,求点M 的坐标并直接写出抛物线2C 的表达式.【答案】(1)223y x x =--;(2)(2,1);(3)点M 为(2-,2-);抛物线2C 的表达式为2(5)y x =-+.【分析】(1)直接利用待定系数法,即可求出抛物线的解析式;(2)设点D 为(m ,n ),由等腰直角三角形的性质,得到AD ⊥AC ,AD =AC ,CD =,然后找出关系列出方程,即可求出点D 的坐标;(3)设点M 的坐标为(x ,y ),利用正方形的性质:对角线互相垂直且相等,得到AM CM =,AM CM ⊥,则△AMC 是等腰直角三角形,然后得到AM CM ==再找出关系列出方程,即可求出答案. 【详解】解:(1)直接把点()1,0A -,点()0,3C -代入抛物线21:C y x bx c =++,则103b c c -+=⎧⎨=-⎩,解得23b c =-⎧⎨=-⎩, ∴抛物线的解析式为223y x x =--; (2)根据题意,设点D 为(m ,n ),∵ACD △是以AC 为直角边的等腰直角三角形,且点D 在第一象限, ∴线段AD 也是直角边,即AD ⊥AC ,如图,∵AD AC = ∴22(1)10m n ++=①,∵CD ==∴222(3)m n ++=②,∴联合①②式,解得21m n =⎧⎨=⎩(负值已舍去),∴点D 的坐标为(2,1); 故答案为:(2,1);(3)由题意,设点M 的坐标为(x ,y ), 若以A 、C 、A '、C '为顶点的四边形是正方形, ∴点M 是正方形的对称中心,也是对角线的交点, ∵正方形的对角线互相垂直且相等, ∴AM CM =,AM CM ⊥,∵AM =CM ,∵△AMC 是等腰直角三角形,∴AC =∴AM CM ==∴2222(1)5(3)5x y x y ⎧++=⎨++=⎩, 解得:1122x y =-⎧⎨=-⎩或2211x y =⎧⎨=-⎩,∵点M 在直线AC 的左侧, ∴点M 的坐标为(2-,2-);∴点()1,0A -关于点M (2-,2-)对称的坐标为A '(3-,4-), 点()0,3C -关于点M (2-,2-)对称的坐标为C '(4-,1-); ∵抛物线223y x x =--的顶点坐标为(1,4-), ∴绕点M 旋转180︒后的顶点坐标为(5-,0); 设抛物线2C 的解析式为2(5)y a x =+, 把点A '(3-,4-)代入,则 24(35)a -=-+,∴1a =-,∴抛物线2C 的解析式为2(5)y x =-+. 【点睛】本题考查了二次函数的图像和性质,正方形的性质,等腰直角三角形的性质,中心对称的性质,以及坐标与图形,解题的关键是熟练掌握所学的知识,正确的分析题意,找出点的对应关系进行解题.8.(2021·甘肃兰州·中考一模)如图1,抛物线y =ax 2﹣5x +c 与直线y =﹣x +4相交于A (4,0),B (0,4)两点.动点C 从点O 出发,以每秒1个单位长度的速度沿OA 方向运动,设运动的时间为t 秒.过点C 作CD ⊥x 轴分别交直线AB 于点D ,抛物线于点E . (1)求抛物线y =ax 2﹣5x +c 的表达式; (2)连接AE ,当t =3时,求△ADE 的面积;(3)如图2.当t =2时,在x 轴上存在点F ,抛物线上存在点G ,直线DE 上存在点H ,当以C ,F ,G ,H 为顶点的四边形是正方形时,求点F 的坐标.【答案】(1)254y x x =-+;(2)32;(3)(2或(3.【分析】(1)利用待定系数法即可求出抛物线表达式.(2)根据题意可将x =3分别代入直线和抛物线解析式,即可得出D 点和E 点坐标.即可求出DE 长,再根据题意即可求出AC 长,最后利用三角形面积公式即可求出结果. (3)根据题意可知C 点坐标.设F 点坐标为(m ,0),根据正方形的性质可知G 点坐标为2(54)m m m -+,.即可知254GF m m =-+.再由2CF m =-,可得绝对值方程2542m m m -+=-,分类讨论解出方程即可求出F 点坐标. 【详解】(1)根据题意可知点A 、B 在抛物线上,将其坐标代入抛物线表达式得:240454c a c =⎧⎨=⨯-⨯+⎩,解得:14a c =⎧⎨=⎩, 即抛物线解析式为254y x x =-+. (2)当t =3时,OC =3. ∴C (3,0).将x =3分别代入直线和抛物线解析式得:341D y =-+=、235342E y =-⨯+=-.即D (3,1)、 E (3,-2),∴1(2)3D E DE y y =-=--=,431A C AC x x =-=-=. ∴11331222ADESDE AC ==⨯⨯=. (3)当t =2时,OC =2. ∴C (2,0).设F 点坐标为(m ,0),根据正方形的性质可知G 点坐标为2(54)m m m -+,.∴254GF m m =-+.∵2CF m =-,∴2542m m m -+=-,即(1)(4)2m m m --=-①当4m ≥时,(1)(4)2m m m解得:12334m m ==(舍) ②当24m <<时,(1)(4)2m m m ---=-解得:12222m m ==(舍) ③当12m <≤时,(1)(4)2m m m ---=-解得:132m =>(舍),23m =④当1m 时,(1)(4)2m m m --=-解得:121m =>(舍),22m =综上,点F 的坐标为(2或(3. 【点睛】本题为二次函数综合题.考查利用待定系数法求函数解析式,二次函数图象和一次函数图象与直线的交点问题,正方形的性质以及解含绝对值的一元二次方程.熟练掌握利用待定系数法求函数解析式是解答本题的关键.9.(2021·甘肃·中考二模)如图,抛物线2y x bx c =++经过()1,0A -,()3,0B 两点,且与y 轴交于点C ,点D 是抛物线的顶点,抛物线的对称轴DE 交x 轴于点E ,连接BD .(1)求该抛物线的函数表达式;(2)点Q 在该抛物线的对称轴上,若ACQ 是以AC 为腰的等腰三角形,求点Q 的坐标; (3)若P 为BD 的中点,过点P 作PF x ⊥轴于点F ,G 为抛物线上一动点,GM x ⊥轴于点M ,N 为直线PF 上一动点,当以F 、M 、G 、N 为顶点的四边形是正方形时,直接写出点M 的坐标.【答案】(1)223y x x =--;(2)()1,0Q 或(Q 或(1,;(3)点M 的坐标为:0⎫⎪⎪⎝⎭或12⎛⎫ ⎪ ⎪⎝⎭或32⎛⎫ ⎪ ⎪⎝⎭或32⎛⎫⎪ ⎪⎝⎭【分析】(1)利用待定系数法将A ,B 坐标代入函数解析式,即可求出抛物线的函数表达式; (2)根据题意,分为两种情况:CQ=AC 或AQ=AC ,即可求出点Q 的坐标;(3)设点(),0M a ,则()2,23G a a a --,根据以F 、M 、N 、G 为顶点的四边形为正方形分类计算即可. 【详解】解:(1)∵抛物线2y x bx c =++经过()1,0A -,()3,0B 两点∴10930b c b c -+=⎧⎨++=⎩,解得23b c =-⎧⎨=-⎩,∴223y x x =--; (2)连接AC由(1)知()1,0A -,()3,0B ,()0,3C -,DE 为抛物线的对称轴∴1OA =,3OC =,()1,0E ,点E 与点A 关于y 轴对称∴在Rt AOC 中,由勾股定理得AC =①当CQ AC =时,点Q 与点E 重合 ∴()1,0Q②当AQ AC =时,如图在Rt AQE △中,AQ =112AE =--=由勾股定理得EQ =∴(Q 或(1,综上所述,()1,0Q 或(Q 或(1, (3)设点(),0M a ,则()2,23G a a a --, ∵P 为BD 的中点,()3,0B ,点D 的横坐标为1 ∴点P 的横坐标为2 ∵PF x ⊥轴于点F ∴()2,0F ,2FM a =-当FM MG =时,以F 、M 、G 、N 为顶点的四边形是正方形,即2223a a a -=--当2223a a a -=--,解得12a ±=;当()2223a a a -=---,解得32a =∴M ⎫⎪⎪⎝⎭或12⎛⎫ ⎪ ⎪⎝⎭或32⎛⎫ ⎪ ⎪⎝⎭或32⎛⎫ ⎪ ⎪⎝⎭.【点睛】本题主要考查了二次函数动点问题,根据直角三角形和正方形的几何特征,列出相关的方程,是解题的关键,特别要注意分类讨论思想在解题中的应用.10.(2021·江西·中考模拟预测)如图1,在平面直角坐标系xOy 中,抛物线C :y =ax 2+bx +c与x 轴相交于A 、B 两点,顶点为D (0,4),AB =F (m ,0)是x 轴的正半轴上一点,将抛物线C 绕点F 旋转180°,得到新的抛物线C '. (1)求抛物线C 的函数表达式;(2)若抛物线C '与抛物线C 在y 轴的右侧有两个不同的公共点. ①抛物线C '的解析式为 (用含m 的关系式表示); ②求m 的取值范围;(3)如图2,P 是第一象限内抛物线C 上一点,它到两坐标轴的距离相等,点P 在抛物线C '上的对应点为P ',设M 是C 上的动点,N 是C '上的动点,试探究四边形PMP 'N 能否成为正方形,若能,求出m 的值;若不能,请说明理由.【答案】(1)y =﹣12x 2+4;(2)①y =12(x ﹣2m )2﹣4;②2<m <;(3)能,m ﹣3或6.【分析】(1)由题意抛物线的顶点C (0,4),A (﹣,0),再设抛物线的解析式为y =ax 2+4,把A (,0)代入可得a =﹣12即可解答;(2)①由题意抛物线C ′的顶点坐标为(2m ,﹣4),可得出抛物线C ′的解析式为y =12(x ﹣2m )2﹣4;②联立两抛物线的解析式,消去y 得到x 2﹣2mx +2m 2﹣8=0,由题意,抛物线C ′与抛物线C 在y 轴的右侧有两个不同的公共点,则得到关于m 的不等式组,解不等式组即可解决问题; (3)情形1,四边形PMP ′N 能成为正方形.作PE ⊥x 轴于E ,MH ⊥x 轴于H .由题意易知P (2,2),当△PFM 是等腰直角三角形时,四边形PMP ′N 是正方形,推出PF =FM ,∠PFM =90°,易证△PFE ≌△FMH ,可得PE =FH =2,EF =HM =2﹣m ,可得M (m +2,m ﹣2),理由待定系数法即可解决问题;情形2,如图,四边形PMP ′N 是正方形,同法可得M (m ﹣2,2﹣m ),利用待定系数法即可解决问题. 【详解】解:(1)由题意抛物线的顶点C (0,4),A (﹣0), 设抛物线的解析式为y =ax 2+4, 把A (﹣0)代入可得a =﹣12, ∴抛物线C 的函数表达式为y =﹣12x 2+4.(2)①∵将抛物线C 绕点F 旋转180°,得到新的抛物线C ', ∴抛物线C ′的顶点坐标为(2m ,﹣4), ∴抛物线C ′的解析式为y =12(x ﹣2m )2﹣4, 故答案为:y =12(x ﹣2m )2﹣4.②由221421(2)42y x y x m ⎧=-+⎪⎪⎨⎪=--⎪⎩,消去y 得到x 2﹣2mx +2m 2﹣8=0,由题意,抛物线C ′与抛物线C 在y 轴的右侧有两个不同的公共点, 则有222(2)4(28)020280m m m m ⎧-->⎪>⎨⎪->⎩,解得2<m <,∴满足条件的m 的取值范围为2<m <. (3)结论:四边形PMP ′N 能成为正方形.理由:情形1,如图,作PE ⊥x 轴于E ,MH ⊥x 轴于H .由题意易知P(2,2),当△PFM是等腰直角三角形时,四边形PMP′N是正方形,∴PF=FM,∠PFM=90°,∴∠FPE=∠MFH,∴△PFE≌△FMH(AAS),∴PE=FH=2,EF=HM=2﹣m,∴M(m+2,m﹣2),∵点M在y=﹣12x2+4上,∴m﹣2=﹣12(m+2)2+4,解得m﹣33(舍弃),∴m3时,四边形PMP′N是正方形.情形2,如图,四边形PMP′N是正方形,同法可得M(m﹣2,2﹣m),把M(m﹣2,2﹣m)代入y=﹣12x2+4中,2﹣m=﹣12(m﹣2)2+4,解得m=6或0(舍弃),∴m=6时,四边形PMP′N是正方形.综上,四边形PMP′N能成为正方形,m3或6.【点睛】本题属于二次函数综合题,主要考查了中心对称变换、正方形的性质、全等三角形的判定和性质、一元二次方程的根与系数的关系等知识,灵活运用所学知识和利用参数构建方程解决问题成为解答本题的关键.11.如图1,在平面直角坐标系中,抛物线y=﹣x2+bx+c与x轴分别交于A(﹣3,0),B两点,与y轴交于点C,点D为抛物线的顶点,抛物线的对称轴是x=﹣1,且与x轴交于E 点.(1)请直接写出抛物线的解析式及顶点D的坐标;(2)如图2,连接AD,设点P是线段AD上的一个动点,过点P作x轴的垂线交抛物线于点G,交x轴于点H,连接AG、GD,当△ADG的面积为1时,①求点P的坐标;②连接PC、PE,探究PC、PE的数量关系和位置关系,并说明理由;(3)设M为抛物线上一动点,N为抛物线的对称轴上一动点,Q为x轴上一动点,当以Q、M、N、E为顶点的四边形为正方形时,请直接写出点Q的坐标.【答案】(1)y=﹣x2﹣2x+3,顶点D坐标为(﹣1,4);(2)①P(﹣2,2);②PC=PE,PC⊥PE,理由见解析;(3)Q0)或,0)或,0)或,0)【分析】(1)根据待定系数法,即可得到答案;(2)①易求:直线AD的解析式为:y=2x+6,设点P(m,2m+6)(﹣3<m<﹣1),则G (m,﹣m2﹣2m+3),得到PG=﹣m2﹣4m﹣3,结合S△ADG=1,列出关于m的方程即可;②连接CE,根据勾股定理分别求出PC,PE,CE的值,即可得到PC、PE的数量关系和位置关系;(3)设N(﹣1,n),Q(p,0),根据题意得:M(p,n),|p+1|=|n|,﹣p2﹣2p+3=n,即可求出点Q的坐标.【详解】(1)∵抛物线y =﹣x 2+bx +c 的对称轴是x =﹣1, ∴﹣2(1)b ⨯- =﹣1, ∴b =﹣2,∴抛物线y =﹣x 2+bx +c 的解析式为y =﹣x 2﹣2x +c ,∵抛物线过点A (﹣3,0),∴0=﹣9+6+c ,∴c =3,∴抛物线的解析式为y =﹣x 2﹣2x +3,∴顶点D 坐标为(﹣1,4);(2)①由(1)知,D (﹣1,4),∵A (﹣3,0),∴直线AD 的解析式为:y =2x +6,设点P (m ,2m +6)(﹣3<m <﹣1),由(1)知,抛物线的解析式为:y =﹣x 2﹣2x +3,∵PH ⊥x 轴,∴G (m ,﹣m 2﹣2m +3),∴PG =﹣m 2﹣2m +3﹣(2m +6)=﹣m 2﹣4m ﹣3,∵△ADG 的面积为1,∴S △ADG =12PG ×(﹣1+3)=﹣m 2﹣4m ﹣3=1, ∴m =﹣2,∴P (﹣2,2);②如图2,连接CE ,由(1)知,抛物线的解析式为y =﹣x 2﹣2x +3,∴C (0,3),由①知,P (﹣2,2),∵抛物线的对称轴x =1,∴E (﹣1,0),∴PC =PE CE ∴PC =PE ,PC 2+PE 2=5+5=10=CE 2,∴△PCE 是以CE 为斜边的直角三角形,∴∠CPE =90°.∴PC ⊥PE ;(3)设N (﹣1,n ),Q (p ,0),∵以Q 、M 、N 、E 为顶点的四边形为正方形,∴M (p ,n ),|p +1|=|n |①,∵点M 在抛物线上,∴﹣p 2﹣2p +3=n ②,联立①②解得,p n ⎧=⎪⎪⎨⎪=⎪⎩或p n ⎧=⎪⎪⎨⎪=⎪⎩或p n ⎧=⎪⎪⎨⎪=⎪⎩或p n ⎧=⎪⎪⎨⎪=⎪⎩, ∴Q,0).【点睛】本题主要考查二次函数与平面几何的综合,根据题意,画出草图,是解题的关键,体现了数形结合的思想方法.。
专题 二次函数压轴训练题(四)---菱形、正方形存在性问题(解析版)
(苏科版)九年级下册数学《第5章二次函数》专题二次函数压轴训练题(四)------菱形、正方形存在性问题★★★方法指引:◎菱形的存在性问题(常为含60”角的菱形)通常有两大类:1、已知三人定点探究菱形时,分别以三个定点中的任意两人定点确定线段为要探究的券形的对角线画出所有菱形,结合题干要求找出满足条件的菱形:2、已知两个定点去探究菱形时,以两个定点连线所成的线段作为要探究菱形的对角线或边长画出符合题意的菱形,结合题干要求找出满足条件的菱形:3、计算:建立类似平行四边形的存在性问题来解◎正方形存在性问题正方形是菱形和矩形特征的集结,因此同时采取菱形或矩形存在性问题解决的方法去求点的坐标.【典例1】(2022春•盱眙县期中)如图,在平面直角坐标系中,抛物线y =x 2+bx +c 与x 轴交于点A (﹣1,0),B (3,0),与y 轴交于点C ,作直线BC ,点P 是抛物线在第四象限上一个动点(点P 不与点B ,C 重合),连结PB ,PC ,以PB ,PC 为边作▱CPBD ,点P 的横坐标为m .(1)求抛物线对应的函数表达式;(2)当▱CPBD 有两个顶点在x 轴上时,点P 的坐标为 ;(3)当▱CPBD 是菱形时,求m 的值.【分析】(1)利用交点式求抛物线的解析式;(2)先确定点D 在x 轴上,再利用平行四边形的性质可判断PC ∥x 轴,然后根据抛物线的对称性确定点P 的坐标;(3)根据菱形的性质得PB =PC ,利用勾股定理即可求解.【解答】解:(1)∵抛物线y =x 2+bx +c 与x 轴交于点A (﹣1,0),B (3,0),∴抛物线的解析式为y =(x +1)(x ﹣3),即y =x 2﹣2x ﹣3;(2)∵抛物线的解析式为y =x 2﹣2x ﹣3,令x =0,则y =﹣3,∴C (0,﹣3),∵▱CPBD 有两个顶点在x 轴上,∴点D 在x 轴上,而BD ∥PC ,∴点P 和点C 为抛物线上的对称点,而抛物线的对称轴为直线x =−−22×1=1,∴点P 的坐标为(2,﹣3),故答案为:(2,﹣3);(3)∵抛物线的解析式为y =x 2﹣2x ﹣3,点P 的横坐标为m .∴P (m ,m 2﹣2m ﹣3),∵▱CPBD 是菱形,∴PB =PC ,∴m 2+(m 2﹣2m ﹣3+3)2=(3﹣m )2+(m 2﹣2m ﹣3)2,整理得m 2﹣m ﹣3=0,解得m =∵点P 是抛物线在第四象限上一个动点,∴m >0,∴m 【点评】本题是二次函数的综合题,考查了二次函数图象上点的坐标特征,二次函数的性质和平行四边形的性质,勾股定理,菱形的性质,会利用待定系数法求二次函数的解析式、理解坐标与图形的性质是解题的关键.【变式1-1】如图,已知抛物线y =x 2﹣2x ﹣3与x 轴交于A ,D 两点,与y 轴交于点C ,点B 为抛物线的顶点.(1)求抛物线的对称轴及点B 的坐标;(2)若抛物线上存在一点E ,使得S △EAB =S △CAD ,求点E 的坐标;(3)若平面直角坐标系内存在动点P ,抛物线上是否存在点Q ,使得以A ,C ,P ,Q 为顶点的四边形是以AC 为对角线的菱形?若存在,请求出点Q 的坐标;若不存在,请说明理由.【分析】(1)把抛物线y =x 2﹣2x ﹣3化为顶点式求解即可;(2)由题意知,△EAD 与△CAD 有公共底AD ,若想使两三角形面积相等,则高相等即可,设出点E 的坐标,由高相等,列方程求解即可;(3)根据AC 为菱形的对角线,由菱形对角线互相垂直且平分的性质,可知菱形对角线过点O ,可求出菱形另一条对角线所在的直线解析式,将其与抛物线解析式联立求解即可.【解答】解:(1)∵抛物线y =x 2﹣2x ﹣3=(x ﹣1)2﹣4,∴抛物线的对称轴为直线x =1,点B 的坐标(1,﹣4);(2)如图,设E (x ,x 2﹣2x ﹣3),∵点C 为抛物线与y 轴的交点,∴C (0,﹣3),∵△EAD 与△CAD 有共同的底边AD ,且S △EAB =S △CAD ,∴点E 到x 轴的距离等于点C 到x 轴的距离,∴|x 2﹣2x ﹣3|=3,∴x 2﹣2x ﹣3=3或x 2﹣2x ﹣3=﹣3,解得x 1=2,x 2=0,x 3=1,x 4=+1,∴E 1(2,﹣3),E 2(0,﹣3),E 3+1,3),E 4(1,3),∴点E 的坐标为(2,﹣3)或(0,﹣3+1,3)或(1,3);(3)存在,理由:如图,∵四边形是以AC 为对角线的菱形,由菱形对角线互相垂直平分的性质,作AC 的垂直平分线交抛物线于点Q 1,Q 2,令x 2﹣2x ﹣3=0,解得:x 1=﹣1,x 2=3,∴A (3,0),∴OA =OC =3,∴AC 的垂直平分线过点O ,设AC 的中点为点F ,由C (0,﹣3),∴032=32,−302=−32,∴F (32,−32),∴直线Q 1Q 2的解析式为y =﹣x ,联立y =x 2−2x−3y =−x,解得:x =y =−x =y =,∴点Q【点评】本题考查了二次函数的性质,一次函数的性质,三角形的面积及菱形的判定与性质,正确作出辅助线是解题的关键.【变式1-2】(2022秋•代县月考)如图,抛物线y =12x 2−32x ﹣2与x 轴交于A ,B 两点(点A 在点B 的左侧),与y 轴交于点C ,抛物线的顶点为D ,对称轴为直线l .(1)求点A ,B ,C 的坐标;(2)试探究抛物线上是否存在点E ,使OE =EC ,若存在,请求出点E 的坐标;若不存在,请说明理由;(3)设点F 在直线l 上运动,点G 在平面内运动,若以点B ,C ,F ,G 为顶点的四边形是菱形,且BC 为边,直接写出点F 的坐标.【分析】(1)令y =0,解方程即可求得点A 和点B 的坐标;令x =0,求得y 值,即可求得点C 的坐标;(2)由OE =EC 可得点E 在OC 的垂直平分线上,则点E 的纵坐标为﹣1,将y =﹣1代入抛物线y =12x 2−32x ﹣2,求出x 的值,即可求解;(3)分两种情况:①当BC 为边,BF 为对角线时;②当BC 为边,BF 为对角线时,根据菱形的性质即可求解.【解答】解:(1)当y =12x 2−32x ﹣2=0时,解得:x 1=﹣1,x 2=4,∴A (﹣1,0),B (4,0);当x =0时,y =12x 2−32x ﹣2=﹣2,∴C (0,﹣2);(2)∵OE =EC ,∴点E 在OC 的垂直平分线上,∵C (0,﹣2),∴点E 的纵坐标为﹣1,将y =﹣1代入抛物线y =12x 2−32x ﹣2得,12x 2−32x ﹣2=﹣1,解得x =∴点E 11);(3)∵y =12x 2−32x ﹣2与x 轴交于A (﹣1,0),B (4,0),∴y =12x 2−32x ﹣2的对称轴为直线x =−142=32,设点F 的坐标的坐标为(32,m ),①当BC 为边,BF 为对角线时,BC =CF ,∴BC 2=CF 2,∴42+22=(32)2+(m +2)2,解得m ,∴点F 的坐标为(32,2)或(32,2);②当BC 为边,CF 为对角线时,BC =BF ,∴BC 2=BF 2,∴42+22=(4−32)2+m 2,解得m∴点F 的坐标为(32,)或(32,综上所述,点F 的坐标为(32,2)或(32,2)或(32,)或(32,【点评】本题是二次函数综合题,考查了待定系数法求一次函数的解析式、二次函数与坐标轴的交点、线段垂直平分线的性质,勾股定理,菱形的性质等知识点,数形结合、熟练掌握相关性质及定理是解题的关键.【变式1-3】(2022•抚顺县二模)如图,抛物线y =ax 2+bx +6(a ≠0)与x 轴交于A (﹣1,0),B (3,0)两点,与y 轴交于点C ,顶点为D .(1)求抛物线的解析式;(2)若在线段BC 上存在一点M ,使得∠BMO =45°,过点O 作OH ⊥OM 交BC 的延长线于点H ,求点M 的坐标;(3)点P 是y 轴上一动点,点Q 是在对称轴上一动点,是否存在点P ,Q ,使得以点P ,Q ,C ,D 为顶点的四边形是菱形?若存在,求出点Q 的坐标;若不存在,请说明理由.【分析】(1)把点A(﹣1,0),B(3,0)代入抛物线解析式得a−b+6=09a+3b+6=0,解得a=−2b=4,即可得出结论;(2)由待定系数法得直线BC的解析式为y=﹣2x+6,设点M的坐标为(m,﹣2m+6)(0<m<3),过点M作MN⊥y轴于点N,过点H作HK⊥y轴于点K,证△OMN≌△HOK(AAS),得MN=OK,ON =HK.则H(﹣2m+6,﹣m),再由点H(﹣2m+6,﹣m)在直线y=﹣2x+6上,得﹣2(﹣2m+6)+6=﹣m,解得m=65,即可解决问题;(3)分两种情况讨论,①当CD为菱形的边时,②当CD为菱形的对角线时,分别求出点Q的坐标即可.【解答】解:(1)∵抛物线y=ax2+bx+6经过点A(﹣1,0),B(3,0)两点,∴a−b+6=09a+3b+6=0,解得:a=−2 b=4,∴抛物线的解析式为y=﹣2x2+4x+6;(2)由(1)得,点C(0,6),设直线BC的解析式为y=kx+c,∵直线BC经过点B(3,0),C(0,6),∴3k+c=0 c=6,解得:k=−2 c=6∴直线BC的解析式为y=﹣2x+6,设点M的坐标为(m,﹣2m+6)(0<m<3),如图1,过点M作MN⊥y轴于点N,过点H作HK⊥y轴于点K,则∠MNO=∠OKH=90°,∵OH⊥OM,∴∠MOH=90°,∵∠OMB=45°,∴△MOH是等腰直角三角形,∴OM=OH.∵∠MON+∠KOH=90°,∠OHK+∠KOH=90°,∴∠MON=∠OHK,∴△OMN≌△HOK(AAS),∴MN=OK,ON=HK.∴H(﹣2m+6,﹣m),∵点H(﹣2m+6,﹣m)在直线y=﹣2x+6上,∴﹣2(﹣2m+6)+6=﹣m,解得:m=6 5,把m=65代入y=﹣2x+6得:y=185,∴当∠OMB=45°时,点M的坐标为(65,185);(3)存在,理由如下:∵抛物线的解析式为y=﹣2x2+4x+6=﹣2(x﹣1)2+8,顶点为D,∴点D的坐标为(1,8),分两种情况讨论:①当CD为菱形的边时,如图2,过C作CE⊥DQ于E∵C(0,6),D(1,8),∴CD=∴DQ=CD=∴Q点的坐标为(1,81,8②当CD为菱形的对角线时,如图3,设点Q(1,m),P(0,n),∵C(0,6),D(1,8),∴m+n=6+8=14,∴n=14﹣m,∴P(0,14﹣m),∴PC=14﹣m﹣6=8﹣m,∵CQ PC=CQ,∴8﹣m解得:m=27 4,∴点Q的坐标为(1,274);综上所述,点Q的坐标为(1,81,8+1,274).【点评】本题是二次函数综合题目,考查了待定系数法求抛物线和直线的解析式、坐标与图形性质、全等三角形的判定与性质、等腰直角三角形的判定与性质、菱形的性质、两点间的距离、二次函数的图象、一次函数的性质等知识,本题综合性强,熟练掌握待定系数法菱形的性质,证明三角形全等和进行分类讨论是解题的关键,属于中考常考题型.【变式1-4】已知,如图,在平面直角坐标系xOy中,点A、B、C分别为坐标轴上的三个点,且OA=1,OB=3,OC=4.(1)求经过A、B、C三点的抛物线的解析式及顶点坐标;(2)在抛物线上是否存在一点P,使△ACP的面积等于△ACB的面积?若存在,请求出点P的坐标;若不存在,请说明理由;(3)在平面直角坐标系xOy中是否存在一点Q,使得以点A、B、C、Q为顶点的四边形为菱形?若存在,请求出点Q的坐标;若不存在,请说明理由.【分析】(1)根据待定系数法,可得函数解析式,根据配方法,可得答案;(2)根据等底等高的三角形面积相等,可得P点的纵坐标,根据自变量与函数值的对应关系,可得答案;(3)根据菱形的四边相等,可得QB的长,根据菱形的对边平行,可得Q点的纵坐标.【解答】解:(1)设抛物线的解析式为y=ax2+bx+c,∵OA=1,OB=3,OC=4.∴A(1,0)、B(0,3)、C(﹣4,0),将A,B,C代入函数解析式,得∴a+b+c=0c=316a−4b+c=0解得:a=−34,b=−94,c=3,∴经过A、B、C三点的抛物线的解析式为y=−34x2−94x+3;∵y=−34x2−94x+3=−34(x+32)2+7516∴抛物线的顶点坐标是(−32,7516),(2)在抛物线上存在一点P,使△ACP的面积等于△ACB的面积,理由为:设点P的坐标为P(m,n),∵S△ACB =12×5×3=152,S△ACP=12×5×|n|∴12×5×|n|=152,n=±3∴当n=3时,−34m2−94m+3=3,解得m1=0,x2=﹣3即P(﹣3,3)或(0,3)当n=﹣3时,−34m2−94m+3=﹣3,解得m1m2=P23),P33)综上所述:P的坐标为(﹣3,3)或(0,333)(3)在平面直角坐标系xOy中存在一点Q,使得以点A、B、C、Q为顶点的四边形为菱形,理由为:∵OB=3,OC=4,OA=1,∴BC=AC=5,当BQ平行且等于AC时,四边形ACBP为菱形,∴BQ=AC=BC=5,∵BQ∥AC,∴点Q到x轴的距离等于OB=3,∴点Q的坐标为(5,3),当点Q在第二、三象限时,以点A、B、C、Q为顶点的四边形只能是平行四边形,不是菱形,则当点Q的坐标为(5,3)时,以点A、B、C、Q为顶点的四边形为菱形.【点评】本题考查了二次函数综合题,解(1)的关键是待定系数法,解(2)的关键是利用等底等高的三角形面积相等得出P点的纵坐标,有利用自变量与函数值的对应关系;解(3)的关键是利用菱形的四边相等得出QB的长.【变式1-5】(2023•鹤山市模拟)如图,抛物线y=ax2+bx+c与x轴交于A,B(﹣1,0)两点,与y轴交于点C,直线AC的解析式为y=23x﹣2.(1)求抛物线的解析式;(2)已知k为正数,当0<x≤1+k时,y的最大值和最小值分别为m,n,且m+n=163,求k的值;(3)点P是平面内任意一点,在抛物线对称轴上是否存在点Q,使得以点A,C,P,Q为顶点的四边形是菱形?若存在,求出点Q的坐标;若不存在,请说明理由.【分析】(1)求出点A 和点C 坐标,从点A 和点B 坐标将抛物线的解析式设为交点式,将点C 坐标代入,进一步求得结果;(2)箱求出n 的值,进而求得m 的值,进而求得点k 的值;(3)只需满足三角形ACQ 为等腰三角形即可.设点Q 的坐标,进而表示出AQ ,CQ 及AC ,进而根据AQ =CQ ,AQ =AC 及CQ =AC ,进一步求得结果.【解答】解:(1)当x =0时,y =﹣2,∴点C (0,﹣2),当y =0时,23x−2=0,∴x =3,∴点A (3,0),∴设y =a (x +1)•(x ﹣3),将点C (0,﹣2)代入得,﹣3a =﹣2,∴a =23,∴y =23(x +1)•(x ﹣3)=23x 2−43x−2;(2)∵抛物线的对称轴为直线:x =1,∵k >0,∴k +1>1,∴当0<x <1+k 时,∴当x =1时,n =23(1+1)×(1﹣3)=−83,∵m +n =163,∴m =8,当m =8时,23x 2−43x ﹣2=8,∴x 1=5,x 2=﹣3(舍去),∴1+k =5,∴k =4;(3)设点Q (1,a ),∵A (3,0),C (0,﹣2),∴AQ 2=(3﹣1)2+a 2=a 2+4,AC 2=32+22=13,CQ 2=1+(a +2)2=a 2+4a +5,①当AQ =AC 时,a 2+4=13,∴a =±3,∴Q 1(1,3),Q 2(1,﹣3),当AQ =CQ 时,a 2+4a +5=a 2+4,∴a =−14,∴Q 3(1,−14),当AC =CQ 时,a 2+4a +5=13,∴a =﹣2±∴Q 4(1,﹣Q 5(1,﹣2﹣综上所述:Q (1,3)或(1.﹣3)或(1.−14)或(1,﹣1,﹣2﹣【点评】本题考查了二次函数及其图象性质,等腰三角形的判定和性质,点的坐标平移特征等知识,解决问题的关键是正确分类,准确计算.【变式1-6】(2022•朝阳)如图,在平面直角坐标系中,抛物线y=ax2+2x+c与x轴分别交于点A(1,0)和点B,与y轴交于点C(0,﹣3),连接BC.(1)求抛物线的解析式及点B的坐标.(2)如图,点P为线段BC上的一个动点(点P不与点B,C重合),过点P作y轴的平行线交抛物线于点Q,求线段PQ长度的最大值.(3)动点P BC上由点C向点B运动,同时动点M以每秒1个单位长度的速度在线段BO上由点B向点O运动,在平面内是否存在点N,使得以点P,M,B,N为顶点的四边形是菱形?若存在,请直接写出符合条件的点N的坐标;若不存在,请说明理由.【分析】(1)将A,C两点坐标代入抛物线的解析式求得a,c的值,进而得出解析式,当y=0时,求出方程的解,进而求得B点坐标;(2)由B,C两点求出BC的解析式,进而设出点P和点Q坐标,表示出PQ的长,进一步得出结果;(3)要使以点P,M,B,N为顶点的四边形是菱形,只需△PMB是等腰三角形,所以分为PM=BM,PM=PB和BP=BM,结合图象,进一步得出结果.【解答】解:(1)由题意得,c=−3a+2×1+c=0,∴c=−3 a=1,∴y=x2+2x﹣3,当y=0时,x2+2x﹣3=0,∴x1=1,x2=﹣3,∴B(﹣3,0);(2)设直线BC的解析式为:y=kx+b,∴b=−3−3k+b=0,∴k=−1 b=−3,∴y=﹣x﹣3,设点P(m,﹣m﹣3),Q(m,m2+2m﹣3),∴PQ=(﹣m﹣3)﹣(m2+2m﹣3)=﹣m2﹣3m=﹣(m+32)2+94,∴当m=−32时,PQ最大=94;(3)如图1,∵B(﹣3,0),C(0,﹣3),∴OB=OC=3,∴∠OCB=∠OBC=45°,作PD⊥y轴于D,∴CD=PD==t,当BM=PM时,∴∠MPB=∠OBC=45°,∵∠PMO=∠PDO=∠MOD=90°,∴四边形OMPD是矩形,∴OM=PD=t,由BM+OM=OB得,∴2t=3,∴t=3 2,∴P(−32,−32),∴N(﹣3,−32),如图2,当PM =PB 时,作PD ⊥y 轴于D ,作PE ⊥x 轴于E ,∴BM =2BE ,可得四边形PDOE 是矩形,∴OE =PD =t ,∴BE =3﹣t ,∴t =2(3﹣t ),∴t =2,∴P (﹣2,﹣1),∴N (﹣2,1),如图3,当PB =MB 时,=t ,∴t =6﹣∴P (,3﹣∴N (0,3﹣综上所述:N (﹣3,−32)或(﹣2,1)或(0,3﹣【点评】本题考查了二次函数及其图象的性质,用待定系数法求一次函数的解析式,等腰三角形的分类和等腰三角形的性质,菱形的性质等知识,解决问题的关键是正确分类,画出符合条件的图形.【变式1-7】如图,在平面直角坐标系中,抛物线y=ax2+bx+3与x轴交于A、C两点,与y轴交于点B,且OA=1,OC=4.(1)求抛物线解析式;(2)在该抛物线上是否存在一点P,使得以点A、B、C、P为顶点的四边形为菱形?若存在,请求出P 点坐标;若不存在,请说明理由;(3)已知点Q(5,3)和该抛物线上一动点M,试求当|QM﹣AM|的值最大时点M的坐标,并直接写出|QM﹣AM|的最大值.【分析】(1)设抛物线的解析式为y=ax2+bx+c,把A,B,C三点坐标代入求出a,b,c的值,即可确定出所求抛物线解析式;(2)在平面直角坐标系xOy中存在一点P,使得以点A、B、C、P为顶点的四边形为菱形,理由为:根据OA,OB,OC的长,利用勾股定理求出BC与AC的长相等,只有当BP与AC平行且相等时,四边形ACBP为菱形,可得出BP的长,由OB的长确定出P的纵坐标,确定出P坐标,当点P在第二、三象限时,以点A、B、C、P为顶点的四边形只能是平行四边形,不是菱形;(3)利用待定系数法确定出直线QA解析式,当点M与点Q、A不在同一直线上时,根据三角形的三边关系|QM﹣AM|<QA,当点M与点Q、A在同一直线上时,|QM﹣AM|=QA,当点M与点Q、A在同一直线上时,|QM﹣AM|的值最大,即点M为直线QA与抛物线的交点,联立直线QP与抛物线解析式,求出当|QM﹣AM|的最大值时M坐标,确定出|QM﹣AM|的最大值即可.【解答】解:(1)设抛物线的解析式为y=ax2+bx+c,∵A(1,0)、B(0,3)、C(﹣4,0),∴a+b+c=0c=316a−4b+c=0,解得:a=−34,b=−94,c=3,∴经过A、B、C三点的抛物线的解析式为y=−34x2−94x+3;(2)在该抛物线上是不存在一点P,使得以点A、B、C、P为顶点的四边形为菱形,理由为:∵OB=3,OC=4,OA=1,∴BC=AC=5,当BP平行且等于AC时,四边形ACBP为菱形,∴BP=AC=5,且点P到x轴的距离等于OB,∴点P的坐标为(5,3),∵(5,3)不在抛物线上;当点P在第二、三象限时,以点A、B、C、P为顶点的四边形只能是平行四边形,不是菱形,在该抛物线上是不存在一点P,使得以点A、B、C、P为顶点的四边形为菱形;(3)如图,设直线QA的解析式为y=kx+b(k≠0),∵A(1,0),Q(5,3),∴5k+b=3 k+b=0,解得:k=34,b=−34,∴直线QA的解析式为y=34x−34,当点M与点Q、A不在同一直线上时,根据三角形的三边关系|QM﹣AM|<QA,当点M与点Q、A在同一直线上时,|QM﹣AM|=QA,∴当点M与点Q、A在同一直线上时,|QM﹣AM|的值最大,即点M为直线QA与抛物线的交点,解方程组y=34x−34y=−34x2−94x+3,得x1=1y1=0或x2=−5y2=−92,∴点M的坐标为(1,0)或(﹣5,−92)时,|QM﹣AM|的值最大,此时|QM﹣AM|的最大值为5.【点评】此题属于二次函数综合题,涉及的知识有:二次函数的性质,待定系数法确定抛物线解析式、一次函数解析式,菱形的判定,以及坐标与图形性质,熟练掌握待定系数法是解本题的关键.【变式1-8】如图,已知抛物线y=16x2+bx+c与x轴交于A,B两点(A在B的左侧),与y轴交于点C,已知点B坐标为(6,0),点C坐标为(0,﹣2).(1)求抛物线的解析式;(2)如图1,点P是直线BC下方抛物线上一点,连接PB,PC,求△PBC面积的最大值;(3)如图2,将抛物线向右平移6个单位,向上平移2个单位,得到新的抛物线y',新抛物线y'的顶点为D,是否在新抛物线y'的对称轴上存在点M,在坐标平面内存在点N,使得以B,D,M,N为顶点的四边形是菱形?若存在,请直接写出点N的坐标,若不存在,请说明理由.【分析】(1)将点A、B两点的坐标代入,进而求得结果;(2)作PE⊥AB于E,交BC于F,求BC的关系式,进而设和表示出点P和点F的坐标,求出PF的表达式,进而求得PF的最大值,进一步求得三角形PBC的最大值;(3)先求出点B、点D的坐标,求出BD的长,分为BD是边和对角线两种情形,当BD是边时,点M 可在D的上方和下方,利用平移或中点坐标公式求得结果.【解答】解:(1)由题意得,−2×62+6b+c=0,∴c =−2b =−23,∴y =16x 2−23x−2;(2)如图1,作PE ⊥AB 于E ,交BC 于F ,可得BC 的关系式是:y =13x−2,设点P (m ,16m 2−23m−2),F (m ,13m−2),∴PF =(13m−2)﹣(16m 2−23m−2)=−16m 2+m =−16(m ﹣3)2+32,∴当m =3时,PF 最大=32,∵S △PBC =12PF •(x B ﹣x C )=12×6⋅PF =3PF ,∴△PBC 的面积最大值是92;(3)∵原抛物线可化为y =16(x ﹣2)2−23,∴其顶点是(2,−23),∵2+6=8,−23+2=43,∴新抛物线的顶点是D ′(8,43),对称轴是直线x =8,∴BD 如图2,当BD为边时,点M在D的上方,∵M(8∴N(6如图3,点M在D点下方,N(6,如图4N(10,0),如图5,BD 为对角线时,设M (8,a ),由MB =MD 得,22+a 2=(43−a )2,∴a =−1518,∴M (8,−1518),∴N (6,8718),综上所述:N (66,8718)或(6,10,0).【点评】本题考查二次函数及其图象性质,菱形性质,菱形的分类(等腰三角形分类),平移与坐标之间的关系等知识,解决问题的关键是正确分类.【变式1-9】(2023•西藏)在平面直角坐标系中,抛物线y =﹣x 2+bx +c 与x 轴交于A (﹣3,0),B (1,0)两点,与y 轴交于点C .(1)求抛物线的解析式;(2)如图甲,在y 轴上找一点D ,使△ACD 为等腰三角形,请直接写出点D 的坐标;(3)如图乙,点P 为抛物线对称轴上一点,是否存在P 、Q 两点使以点A ,C ,P ,Q 为顶点的四边形是菱形?若存在,求出P 、Q 两点的坐标,若不存在,请说明理由.【分析】(1)将A(﹣3,0),B(1,0)代入y=﹣x2+bx+c,求出b、c,即可得出答案;(2)分别以点D为顶点、以点A为顶点、当以点C为顶点,计算即可;(3)抛物线y=﹣x2﹣2x+3的对称轴为x=﹣1,设P(﹣1,t),Q(m,n),求出AC2=18,AP2=t2+4,PC2=t2﹣6t+10,分三种情况:以AP为对角线或以AC为对角线或以CP为对角线,【解答】解:(1)∵A(﹣3,0),B(1,0)两点在抛物线上,∴0=−(−3)2−3b+c 0=−12+b+c,解得:b=−2 c=3,∴抛物线的解析式为:y=﹣x2﹣2x+3;(2)令x=0,y=3,∴C(0,3),等腰△ACD,如图甲,当以点D为顶点时,DA=DC,点D与原点O重合,∴D(0,0);当以点A为顶点时,AC=AD,AO是等腰△ACD中线,∴OC=OD,∴D(0,﹣3);当以点C为顶点时,AC=CD==∴点D的纵坐标为3﹣+3,∴D(0,3﹣0,+3);综上所述,点D的坐标为(0,0)或(0,﹣3)或(0,3﹣0,+3);(3)存在,理由如下:抛物线y=﹣x2﹣2x+3的对称轴为:x=﹣1,设P(﹣1,t),Q(m,n),∵A(﹣3,0),C(0,3),则AC2=(﹣3)2+32=18,AP2=(﹣1+3)2+t2=t2+4,PC2=(﹣1)2+(t﹣3)2=t2﹣6t+10,∵四边形ACPQ是菱形,∴分三种情况:以AP为对角线或以AC为对角线或以CP为对角线,①当以AP为对角线时,则CP=CA,如图1,∴t2﹣6t+10=18,解得:t =3∴P 1(﹣1,3P 2(﹣1,3+∵四边形ACPQ 是菱形,∴AP 与CQ 互相垂直平分,即AP 与CQ 的中点重合,当P 1(﹣1,3∴m 02=−3−12,n 32解得:m =﹣4,n =∴Q 1(﹣4,当P 2(﹣1,3+∴m 02=−3−12,n 32解得:m =﹣4,n∴Q 2(﹣4②以AC 为对角线时,则PC =AP ,如图2,∴t 2﹣6t +10=t 2+4,解得:t =1,∴P 3(﹣1,1),∵四边形APCQ 是菱形,∴AC 与PQ 互相垂直平分,即AC 与CQ 中点重合,∴m−12=−302,n−12=032,解得:m =﹣2,n =2,∴Q 3(﹣2,2);③当以CP 为对角线时,则AP =AC ,如图3,∴t 2+4=18,解得:t∴P 4(﹣1P 5(﹣1,∵四边形ACQP 是菱形,∴AQ 与CP 互相垂直平分,即AQ 与CP 的中点重合,∴−3m 2=0−12,n 02解得:m =2,n =3∴Q 4(2,3+Q 5(2,3综上所述,符合条件的点P 、Q 的坐标为:P (﹣1,3Q (﹣4,P (﹣1,3+Q (﹣4P (﹣1,1),Q (﹣2,2)或P (﹣1Q (2,3P (﹣1,Q (2,3【点评】本题是二次函数综合题,考查了解析式的求法、等腰三角形的判定、菱形的性质、坐标与图形的性质、分类讨论等知识,熟练掌握菱形的性质和坐标与图形的性质是解题的关键.【变式1-10】如图,已知抛物线y=ax2+bx+c的顶点D的坐标为(﹣2,9),抛物线与坐标轴分别交于A、B、C三点,且B的坐标为(0,5),连接DB、DC,作直线BC.(1)求抛物线的解析式;(2)P是x轴上的一点,过点P作x轴的垂线,与CD交于H,与CB交于G,若线段HG把△CBD的面积分成相等的两部分,求P点的坐标;(3)若点M在直线CB上,点N在平面上,直线CB上是否存在点M,使以点C、点D、点M、点N 为顶点的四边形为菱形?若存在,请直接写出点M的坐标;若不存在,请说明理由.【分析】(1)抛物线y=ax2+bx+c的顶点D的坐标为(﹣2,9),可设y=a(x+2)2+9,再将点B(0,5)代入,解得a的值,则可得抛物线的解析式;(2)求得直线BC与直线CD的解析式,设点P的坐标为(x,0),则G(x,x+5),H(x,3x+15)根据S△CGH =12HG×CP,将S△CGH=用含x的式子表示出来,再由S△BCD=S△DKC+S△DKB,求得S△BCD;根据线段HG把△CBD的面积分成相等的两部分,得出关于x的方程,解方程并作出取舍,则可得P 点的坐标;(3)设点M的坐标为(m,m+5),求得CD的值,再分情况讨论:当CD与DM是菱形的两边时,则CD=DM;当DM'与CM'是菱形的两边时,则CM'=DM';当DM'与CM'是菱形的两边时,则CM'=DM'.分别得出关于m的等式,解得m的值,则可得点M的坐标.【解答】解:(1)∵抛物线y=ax2+bx+c的顶点D的坐标为(﹣2,9),∴可设y=a(x+2)2+9,又∵抛物线过点B(0,5),代入得:5=4a+9,∴a=﹣1,∴y=﹣(x+2)2+9=﹣x2﹣4x+5,∴抛物线的解析式为y=﹣x2﹣4x+5;(2)∵抛物线y=﹣x2﹣4x+5与坐标轴分别交于A、B、C三点,且B的坐标为(0,5),∴当y=0时,﹣x2﹣4x+5=0,解得x1=﹣5,x2=1,∴A(1,0),C(﹣5,0),又∵D(﹣2,9),∴直线BC的解析式为y=x+5;设直线CD的解析式为y=kx+b,将C(﹣5,0),D(﹣2,9)代入,得:0=−5k+b9=−2k+b,解得:k=3b=15,∴直线CD的解析式为y=3x+15.设点P的坐标为(x,0),则G(x,x+5),H(x,3x+15).∴S△CGH =12HG×CP=12(5+x)(3x+15﹣x﹣5)=12(5+x)(2x+10)=(5+x)(x+5)=(x+5)2,设抛物线的对称轴交直线BC于点K,如图:∵顶点D的坐标为(﹣2,9),∴对称轴为直线x=﹣2,∴K(﹣2,3),∴DK=9﹣3=6,∴S△BCD =S△DKC+S△DKB=12×6×3+12×6×2=15,∴若线段HG把△CBD的面积分成相等的两部分,则(x+5)2=12×15,解得:x1=x2=∴P0);(3)如图,设点M的坐标为(m,m+5),∵C(﹣5,0),D(﹣2,9),∴CD当CD与DM是菱形的两边时,则CD=DM,∴=解得m1=﹣5(不合题意,舍去),m2=7,∴点M(7,12);当CD与CM''是菱形的两边时,则CD=CM'',∴=解得m=±5,∴点M(5,M(﹣5,﹣当DM'与CM'是菱形的两边时,则CM'=DM',解得m=−5 4,∴点M(−54,154).综上所述,点M的坐标为(7,12)或(5,5,﹣−54,154).【点评】本题属于二次函数综合题,考查了待定系数法求一次函数和二次函数的解析式、一次函数和二次函数图象上的点的坐标特点、三角形的面积计算、一元二次方程及菱形的性质等知识点,数形结合、熟练掌握相关性质及定理是解题的关键.【典例2】如图,抛物线y =x 2+bx +c 与x 轴交于点A ,B ,与y 轴交于点C ,其中点A 在y 轴的左侧,点C 在x 轴的下方,且OA =OC =5.(1)求抛物线对应的函数解析式;(2)点P 为抛物线对称轴上的一动点,当PB +PC 的值最小时,求点P 的坐标;(3)在(2)条件下,点E 为抛物线的对称轴上的动点,点F 为抛物线上的动点,以点P 、E 、F 为顶点作四边形PEFM ,当四边形PEFM 为正方形时,请直接写出坐标为整数的点M 的坐标.【分析】(1)由题意,可得A (﹣5,0),C (0,﹣5).把点A ,C 的坐标代入y =x 2+bx +c ,得到关于b 、c 的二元一次方程组,解方程组即可求出抛物线的函数解析式;(2)利用配方法求出抛物线的对称轴是直线x =﹣2.由抛物线y =x 2+4x ﹣5与x 轴交于点A ,B ,得出点A ,B 关于直线x =﹣2对称.连接AC ,交对称轴于点P ,根据两点之间线段最短可知此时PB +PC 的值最小.利用待定系数法求出直线AC 的解析式为y =﹣x ﹣5,把x =﹣2代入,求出y =﹣3,进而得出点P 的坐标;(3)在(2)条件下,点P 的坐标为(﹣2,﹣3).设F (x ,x 2+4x ﹣5),根据正方形的性质可得E (﹣2,x 2+4x ﹣5),M (x ,﹣3),PM =PE ,根据两点间的距离公式列出方程|x +2|=|x 2+4x ﹣5+3|,解方程即可求解.【解答】解:(1)由题意,可得A (﹣5,0),C (0,﹣5).∵抛物线y =x 2+bx +c 过点A ,点C ,∴25−5b +c =0c =−5,解得b =4c =−5,∴抛物线对应的函数解析式为y =x 2+4x ﹣5;(2)∵y=x2+4x﹣5=(x+2)2﹣9,∴对称轴是直线x=﹣2.∵抛物线y=x2+4x﹣5与x轴交于点A,B,∴点A,B关于直线x=﹣2对称.连接AC,交对称轴于点P,此时PB+PC的值最小.设直线AC的解析式为y=mx+n,则−5m+n=0n=−5,解得m=−1n=−5,∴直线AC的解析式为y=﹣x﹣5,当x=﹣2时,y=﹣3,∴点P的坐标为(﹣2,﹣3);(3)在(2)条件下,点P的坐标为(﹣2,﹣3).设F(x,x2+4x﹣5),∵四边形PEFM为正方形,∴E(﹣2,x2+4x﹣5),M(x,﹣3),PM=PE,∴|x+2|=|x2+4x﹣5+3|,∴x2+4x﹣2=x+2,或x2+4x﹣2=﹣x﹣2,整理得x2+3x﹣4=0,或x2+5x=0,解得x1=﹣4,x2=1,x3=0,x4=﹣5,∴M(﹣4,﹣3)或M(1,﹣3)或M(0,﹣3)或M(﹣5,﹣3).【点评】本题是二次函数综合题,其中涉及到利用待定系数法求抛物线与直线的解析式,二次函数的性质,轴对称的性质,正方形的性质,综合性较强,难度适中.利用数形结合与方程思想是解题的关键.【变式2-1】已知在平面直角坐标系xOy 中,二次函数y =x 2﹣2nx ﹣3n 2(n >0)与x 轴交于A 、B ,与y 轴交于点C .(1)求A 、B 及顶点的坐标(用含n 的代数式表示);(2)如图所示,当AB =4时,D 为(4,﹣1),在抛物线上是否存在点P 使得以线段PD 为直径的圆经过坐标原点O 若点P 存在,求出满足条件的点P 的坐标;若不存在,说明理由;已知E 在x 轴上,F 在抛物线上,G 为平面内一点,若以B 、E 、F ,G 为顶点的四边形是正方形,请直接写出E 点所有可能的坐标.【分析】(1)y =x 2﹣2nx ﹣3n 2=(x ﹣3n )(x +n ),即可求解;(2)设点P (x ,x 2﹣2x ﹣3),由中点公式得:点O ′(x 42,x 2−2x−42),则O ′O =O ′D ,即可得到关于x 的方程,解方程即可;分BE 为正方形的边、BE 为正方形的对角线两种情况,分别求解即可.【解答】解:(1)y =x 2﹣2nx ﹣3n 2=(x ﹣3n )(x +n ),当y =0时,x 1=﹣n ,x 2=3n ,故点A 、B 的坐标分别为:(﹣n ,0)、(3n ,0),顶点的坐标为(n ,﹣4n 2);(2)存在,理由:AB =4时,则4m =4,解得:m =1,故点A 、B 、C 的坐标分别为:(﹣1,0)、(3,0)、(0,﹣3),抛物线的表达式为:y =x 2﹣2x ﹣3,设点P (x ,x 2﹣2x ﹣3),由中点公式得:点O ′(x 42,x 2−2x−42),则O ′O =O ′D ,即(x 42)2+(x 2−2x−42)2=(x 42−4)2+(x 2−2x−42+1)2,整理得:x 2﹣6x ﹣3=0,解得:x =3±故点P 的坐标为:(3﹣12﹣设点E 的坐标为:(a ,0),①当BE 为正方形的边时,则点F (a ,a 2﹣2a ﹣3),则BE =FE ,即|a ﹣3|=|a 2﹣2a ﹣3|,解得:a =3或0或﹣2(舍去3),故点E 的坐标为:(0,0)或(﹣2,0);②当BE 为正方形的对角线时,则BE 和GF 相互垂直平分,即点F 在BE 的中垂线上,△FBE 为等腰直角三角形,即点F 到BE 的距离等于12BE ,而BE =a ﹣3,故F (a−32,|a−32|),将点F 的坐标代入抛物线表达式得:|a−32|=(a−32)2−2×a−32−3 解得:a =﹣3或3或﹣7(舍去3),故点E 的坐标为:(﹣3,0)或(﹣7,0);综上点E 的坐标为:(0,0)或(﹣2,0)或(﹣3,0)或(﹣7,0).【点评】本题是二次函数的综合运用,考查了待定系数法求二次函数的解析式,中点坐标公式,两点间的距离公式,正方形的性质等知识,熟练掌握坐标与图形的性质是解题的关键.【变2-2】(2022秋•越城区期中)如图,抛物线y =﹣x 2+bx +c 经过A (﹣1,0),B (3,0)两点,且与y 轴交于点C ,点D 是抛物线的顶点,抛物线的对称轴DE 交x 轴于点E ,连接BD .(1)求经过A ,B ,C 三点的抛物线的函数表达式;(2)点Q 在该抛物线的对称轴上,若△BCQ 是以BC 为直角边的直角三角形,求点Q 的坐标;(3)若P 为BD 的中点,过点P 作PF ⊥x 轴于点F ,G 为抛物线上一动点,M 为x 轴上一动点,N 为直线PF 上一动点,当以F 、M 、N 、G 为顶点的四边形是正方形时,请求出点M 的坐标.【分析】(1)利用待定系数法求出过A,B,C三点的抛物线的函数表达式;(2)如图1,连接BC,CD.首先证明△OBC是等腰直角三角形,分两种情形分别求出点Q的坐标即可.(3)设点M的坐标为(a,0),表示出点G的坐标,根据正方形的性质列出方程,解方程即可.【解答】解:(1)∵抛物线y=﹣x2+bx+c经过A(﹣1,0),B(3,0)两点,∴−1−b+c=0−9+3b+c=0,解得,b=2 c=3,∴经过A,B,C三点的抛物线的函数表达式为y=﹣x2+2x+3.(2)如图1,连接BC,CD.由题意,C(0,3),B(3,0),∴OB=OC=3,∵∠BOC=90°,∴∠OBC=∠OCB=45°∵y=﹣(x﹣1)2+4,∴抛物线顶点D的坐标为(1,4),∵△BCQ是以BC为直角边的直角三角形,当∠Q′BC=90′时,∠ABQ′=45°,∴EB=EQ′=2,∴Q′(1,﹣2),当∠QCB=90°时,此时点Q与点D重合,Q(1,4),综上所述,满足条件的点Q的坐标为(1,4)或(1,﹣2).(3)如图2中,设点M的坐标为(a,0),则点G的坐标为(a,﹣a2+2a+3),∵以F、M、N、G为顶点的四边形是正方形,∴FM=MG,即|2﹣a|=|﹣a2+2a+3|,当2﹣a=﹣a2+2a+3时,整理得,a2﹣3a﹣1=0,解得,a=当2﹣a=﹣(﹣a2+2a+3)时,整理得,a2﹣a﹣5=0,解得,a=∴当以F、M、N、G为顶点的四边形是正方形时,点M00),00).。
(word版)初三数学二次函数专题训练(含答案),文档
二次函数专题训练〔含答案〕一、填空题1.把抛物线y1x2向左平移2个单位得抛物线,接着再向下平移3个2单位,得抛物线.2 .函数y2x2x图象的对称轴是,最大值是.3 .正方形边长为3,如果边长增加x面积就增加y,那么y与x之间的函数关系是.4.二次函数y2x28x 6,通过配方化为y a(x h)2k的形为.5.二次函数y ax2c〔c不为零〕,当x取x,x〔x≠x〕时,函数值相等,那么1212x1与x2的关系是.6.抛物线y ax2bx c当b=0时,对称轴是,当a,b同号时,对称轴在y轴侧,当a,b异号时,对称轴在y轴侧.7.抛物线y 2(x1)23开口,对称轴是,顶点坐标是.如果y随x的增大而减小,那么x的取值范围是.8 .假设a0,那么函数y2x2ax5图象的顶点在第象限;当x a时,函4数值随x的增大而.二次函数9.口抛物线y ax2bx c〔a≠0〕当a0时,图象的开口a0时,图象的开,顶点坐标是.y1(x h)2,开口,顶点坐标是,对称轴2是.11.二次函数y3(x)2()的图象的顶点坐标是〔1,-2〕.12.y1(x1)22,当x时,函数值随x的增大而减小.313.直线y2x1与抛物线y5x2k交点的横坐标为2,那么k=,交点坐标为.14.用配方法将二次函数y x22x化成y a(xh)2k的形式是. 315.如果二次函数yx26x m的最小值是1,那么m的值是.二、选择题:16.在抛物线y2x23x1上的点是〔〕1A.〔0,-1〕B.1,0 C.〔-1,5〕D.〔3,4〕217.直线y5x2与抛物线yx21x的交点个数是〔〕22个个个 D.互相重合的两个18.关于抛物线y ax2bx c〔a≠0〕,下面几点结论中,正确的有〔〕①当a0时,对称轴左边y随x的增大而减小,对称轴右边y随x的增大而增大,当0时,情况相反.②抛物线的最高点或最低点都是指抛物线的顶点.③只要解析式的二次项系数的绝对值相同,两条抛物线的形状就相同.④一元二次方程ax2bx c 0〔a≠0〕的根,就是抛物线y ax2bx c与x轴交点的横坐标.A.①②③④B.①②③C.①②D.①19.二次函数y=(x+1)(x-3),那么图象的对称轴是〔〕A.x=1B.x=-2C.x=3D.x=-320.如果一次函数yax b的图象如图代13-3-12中A所示,那么二次函yax2bx-3的大致图象是〔〕图代13-2-1221.假设抛物线y ax2bxc的对称轴是x 2,那么ab〔〕A.2B.11D.2422.假设函数y a1,-2〕,那么抛物线的图象经过点〔xA.质说得全对的是〔〕开口向下,对称轴在y轴右侧,图象与正半开口向下,对称轴在y轴左侧,图象与正半开口向上,对称轴在y轴左侧,图象与负半开口向下,对称轴在y轴右侧,图象与负半y ax2(a 1)x a3的性轴相交轴相交轴相交轴相交23.二次函数y x2bxc中,如果b+c=0,那么那时图象经过的点是〔〕A.(-1,-1)B.(1,1)C.(1,-1)D.〔-1,1〕224.函数y ax2与y a〔a0〕在同一直角坐标系中的大致图象是〔〕x图代13-3-1325.如图代13-3-14,抛物线y x2bx c与y轴交于A点,与x轴正半轴交于B,C两点,且BC=3,S△ABC=6,那么b的值是〔〕A.b=5B.b=-5C.b=±5D.b=4图代13-3-1426.二次函数y ax2〔a 0〕,假设要使函数值永远小于零,那么自变量x的取值范围是〔〕A.X取任何实数00或x027.抛物线y2(x3)24向左平移1个单位,向下平移两个单位后的解析式为〔〕A.y2(x4)26B.y2(x4)22C.y2(x2)22D.y3(x3)2228.二次函数y x2ykx9k2〔k0〕图象的顶点在〔〕轴的负半轴上轴的正半轴上轴的负半轴上轴的正半轴上29.四个函数:y x,y x1,y1〔x0〕,y x2〔x0〕,其中图象经过原x点的函数有〔〕个个个个30.不管x为值何,函数y ax2bx c〔a≠0〕的值永远小于0的条件是〔〕0,00,03C.a0,00,0三、解答题31.二次函数y x22ax 2b 1和y x2(a 3)x b21的图象都经过x轴上两上不同的点M,N,求a,b的值.32.二次函数y ax2bx c的图象经过点A〔2,4〕,顶点的横坐标为1,它2的图象与x轴交于两点B〔x1,0〕,C〔x2,0〕,与y轴交于点D,且x12x2213,试问:y轴上是否存在点P,使得△POB与△DOC相似〔O为坐标原点〕?假设存在,请求出过P,B两点直线的解析式,假设不存在,请说明理由.33.如图代13-3-15,抛物线与直线y=k(x-4)都经过坐标轴的正半轴上A,B两点,该抛物线的对称轴x=-21与x轴相交于点C,且∠ABC=90°,求:〔1〕直线AB的解析式;〔2〕抛物线的解析式.图代13-3-15图代13-3-1634.中图代13-3-16,抛物线y ax23x c交x轴正方向于A,B两点,交y轴正方向于C点,过A,B,C三点做⊙D,假设⊙D与y轴相切.〔1〕求a,c满足的关系;〔2〕设∠ACB=α,求tgα;〔3〕设抛物线顶点为 P,判断直线PA与⊙O的位置关系并证明.如图代13-3-17,这是某市一处十字路口立交桥的横断面在平面直角坐标系中的示意图,横断面的地平线为x轴,横断面的对称轴为y轴,桥拱的DGD'局部为一段抛物线,顶点C的高度为8米,AD和A'D'是两侧高为米的支柱,OA和OA'为两个方向的汽车通行区,宽都为15米,线段CD和C'D'为两段对称的上桥斜坡,其坡度为1∶4.求〔1〕桥拱DGD'所在抛物线的解析式及CC'的长;〔2〕BE和B'E'为支撑斜坡的立柱,其高都为4米,相应的AB和A'B'为两个方向的行人及非机动车通行区,试求AB和A'B'的宽;〔3〕按规定,汽车通过该桥下时,载货最高处和桥拱之间的距离不得小于米,车载大型设备的顶部与地面的距离均为7米,它能否从OA〔或OA'〕区域平安通过?请说明理由.4图代13-3-1736.:抛物线yx 2 (m 4)x m 2与x 轴交于两点A(a,0),B(b,0)〔ab 〕.O为坐标原点,分别以OA ,OB 为直径作⊙O 和⊙O 在y 轴的哪一侧?简要说明理由,并12指出两圆的位置关系.37.如果抛物线yx 2 2(m 1)x m 1与x 轴都交于A ,B 两点,且A 点在x 轴( 的正半轴上,B 点在x 同的负半轴上, OA 的长是a ,OB 的长是b.1〕求m 的取值范围;2〕假设a ∶b=3∶1,求m 的值,并写出此时抛物线的解析式;〔3〕 设〔2〕中的抛物线与 y 轴交于点 C ,抛物线的顶点是 M ,问:抛物线上是否存 在点P ,使△PAB 的面积等于△BCM 面积的8倍?假设存在,求出 P 点的坐标;假设不存在,请说明理由.38.:如图代13-3-18,EB 是⊙O 的直径,且EB=6,在BE 的延长线上取点 P ,使是EP 上一点,过A 作⊙O 的切线AD ,切点为D ,过D 作DF ⊥AB 于F ,过B 作AD 的垂线BH ,交AD 的延长线于H ,连结ED 和FH.图代13-3-181〕假设AE=2,求AD 的长.〔2〕当点A 在EP 上移动〔点A 不与点E 重合〕时,①是否总有ADED?试证明AH FH你的结论;②设 ED=x ,BH=y ,求y 与x 的函数关系式,并写出自变量x 的取值范围.39.二次函数yx2(m24m5)x2(m24m9)的图象与x 轴的交点为2240. A ,B 〔点A 在点B 右边〕,与y 轴的交点为 C.1〕假设△ABC 为Rt △,求m 的值;2〕在△ABC 中,假设AC=BC ,求∠ACB 的正弦值;〔3〕设△ABC 的面积为 S ,求当m 为何值时,S 有最小值,并求这个最小值 .如图代13-3-19,在直角坐标系中,以AB 为直径的⊙C 交x 轴于A ,交y 轴于B ,满足OA ∶OB=4∶3,以OC 为直径作⊙D ,设⊙D 的半径为2.5图代13-3-191〕求⊙C 的圆心坐标.2〕过C 作⊙D 的切线EF 交x 轴于E ,交y 轴于F ,求直线EF 的解析式.〔3〕抛物线yax 2bx c 〔a ≠0〕的对称轴过C 点,顶点在⊙C 上,与y 轴交点为B ,求抛物线的解析式.41.直线y1x 和yx m ,二次函数yx 2pxq 图象的顶点为M.21x 与y〔1〕假设M 恰在直线yx m 的交点处,试证明:无论m 取何实数值,2二次函数yx 2 pxq 的图象与直线 y xm 总有两个不同的交点.〔2〕在〔1〕的条件下,假设直线y x m 过点D 〔0,-3〕,求二次函数yx 2pxq 的表达式,并作出其大致图象.图代13-3-20〔3〕 在〔2〕的条件下,假设二次函数 y x 2 pxq 的图象与y 轴交于点C ,与x同的左交点为A ,试在直线y1x 上求异于M 点P ,使P 在△CMA 的外接圆上.242.如图代 13-3-20,抛物线yx 2 ax b 与x 轴从左至右交于A ,B 两点,( 与y 轴交于点C ,且∠BAC=α,∠ABC=β,tg α-tg β=2,∠ACB=90°.1〕求点C 的坐标;2〕求抛物线的解析式;3〕假设抛物线的顶点为P ,求四边形ABPC 的面积.6参 考 答 案动脑动手设每件提高x 元〔0≤x ≤10〕,即每件可获利润〔2+x 〕元,那么每天可销售〔100-10x 〕件,设每天所获利润为y 元,依题意,得y (2x)(10010x)10x 2 80x 20010(x4)2 360.∴当x=4时〔0≤x ≤10〕所获利润最大,即售出价为 14元,每天所赚得最大利润 360元.2.∵ymx 23m 4x 4,3∴当x=0时,y=4.当mx 23m 4x4 0,m0时m 1 3,m 24.33m即抛物线与y 轴的交点为〔0,4〕,与x 轴的交点为A 〔3,0〕,B4,0.3m1〕当AC=BC 时,43,m 4.3m4x 2 9 ∴y492〕当AC=AB 时,AO 3,OC4,AC 5.∴45 .33mm 112 .∴,m 231时,y1x 2 11x4;6当m666当m2时,y2x22x4.3333〕当AB=BC 时,44 2342,3m3m∴m8.77∴y8x244x4.721可求抛物线解析式为:y4x24,y1x211x4,y2x22x4或8x244x 96633y4.7213.〔1〕∵[(25)]24(226)m mm22m21(m2 1)20图代13-3-21∴不管m取何值,抛物线与x轴必有两个交点.令y=0,得x2(m25)x2m260(x2)(xm23)0,∴x12,x2m23.∴两交点中必有一个交点是A〔2,0〕.〔2〕由〔1〕得另一个交点B的坐标是〔m2+3,0〕.d m232m21,∵m2+100,∴d=m2+1.3〕①当d=10时,得m2=9.∴A〔2,0〕,B〔12,0〕.y x214x24(x7)225.该抛物线的对称轴是直线x=7,顶点为〔7,-25〕,∴AB的中点E〔7,0〕.过点P作PM⊥AB于点M,连结PE,那么PE 1AB5,PM2b2,ME2(7a)2,2∴(7a)2b252.①∵点PD在抛物线上,8∴b(a 7)2 25. ②解①②联合方程组,得 b 1 1,b 2 0.当b=0时,点P 在x 轴上,△ABP 不存在,b=0,舍去.∴b=-1.注:求b 的值还有其他思路,请读者探觅,写出解答过程.②△ABP 为锐角三角形时,那么-25≤b -1;△ ABP 为钝角三角形时,那么 b -1,且b ≠0.同步题库一、 填空题1.y1(x2)2,y1(x 2)23;2.x1,1;3.y(x3)29;4.224 8y2(x2)22;5. 互为相反数;轴,左,右;7. 下,x=-1,(-1,-3) ,x-1;8.四,增大;9.向上,向下,b ,4ac b 2 ,xb ; 10.向下,〔h,0〕,x=h ;2a4a2a1 2,-2;-1;,〔2,3〕;14.yx13;15.10.9二、选择题 28. C三、解答题解法一:依题意,设M 〔x 1,0〕,N 〔x 2,0〕,且x 1≠x 2,那么x 1,x 2为方程x 2+2ax-2b+1=0的两个实数根,∴x 1 x 22a ,x 1·x 22b1. ∵x 1,x 2又是方程x 2 (a3)xb 21 0的两个实数根,∴ x1+x 2=a-3,x 1·x 2=1-b 2.∴2a a 3,2b 1 1 b 2.解得a 1, 或a 1,b 0;b2.当a=1,b=0 时,二次函数的图象与x 轴只有一个交点,a=1,b=0舍去.当a=1;b=2时,二次函数y x 2 2x 3和yx 22x 3符合题意.∴a=1,b=2.解法二:∵二次函数yx 22ax 2b 1的图象对称轴为x a ,9二次函数 yx 2 (a 3)x b 21的图象的对称轴为 xa3,2又两个二次函数图象都经过 x 轴上两个不同的点 M ,N ,∴两个二次函数图象的对称轴为同一直线 .∴a3.a2解得a1.∴两个二次函数分别为yx 2 2x 2b1和yx 2 2xb 21.依题意,令y=0,得x 2 2x 2b 1 0,x 2 2xb 2 10.①+②得b 22b 0. 解得b 1 0,b 22.∴a 1,a 1,b 0;或2.b当a=1,b=0时,二次函数的图象与 x 轴只有一个交点,∴a=1,b=0舍去.当a=1,b=2时,二次函数为y x 22x 3和yx 2 2x3符合题意.∴a=1,b=2.32.解:∵y ax 2 bx c 的图象与x 轴交于点B 〔x 1,0〕,C 〔x 2,0〕,∴x 1 x 2b,x 1x 2c .aa又∵x 12 x 22 13即(x 1x 2)2 2x 1x 2 13,∴( b )22 c 13 .①aa又由y 的图象过点A 〔2,4〕,顶点横坐标为1,那么有4a+2b+c=42,②b 1③2a.2解由①②③组成的方程组得a=-1,b=1,c=6.10∴ y=-x 2+x+6.与x 轴交点坐标为〔-2,0〕,〔3,0〕.与y 轴交点D 坐标为〔0,6〕.设y 轴上存在点 P ,使得△POB ∽△DOC ,那么有 〔1〕 当B 〔-2,0〕,C 〔3,0〕,D 〔0,6〕时,有OB OP ,OB 2,OC 3,OD6.OCOD∴OP=4,即点P 坐标为〔0,4〕或〔0,-4〕.当P 点坐标为〔0,4〕时,可设过P ,B 两点直线的解析式为y=kx+4.有 0=-2k-4.得 k=-2.∴ y=-2x-4.或 OBOP,OB2,OD6,OC3. OD OC ∴OP=1,这时P 点坐标为〔0,1〕或〔0,-1〕.当P 点坐标为〔0,1〕时,可设过P ,B 两点直线的解析式为y=kx+1.有 0=-2k+1.得1k.2∴y1x1.2当P 点坐标为〔0,-1〕时,可设过P ,B 两点直线的解析式为y=kx-1,有0=-2k-1 ,得k 1 .2∴y1x1.22〕当B 〔3,0〕,C 〔-2,0〕,D 〔0,6〕时,同理可得y=-3x+9,或 y=3x-9, 或y1x 1,3 或y11. x 3解:〔1〕在直线y=k(x-4)中,令y=0,得x=4.∴A 点坐标为〔4,0〕. ∴ ∠ABC=90°. ∵△CBD ∽△BAO ,∴OB OA2OCOB ,即OB=OA ·OC.11又∵CO=1,OA=4,∴OB2=1×4=4.∴OB=2〔OB=-2舍去〕∴B点坐标为〔0,2〕.将点B〔0,2〕的坐标代入y=k(x-4)中,得k 1.1x 2∴直线的解析式为:y2.2〔2〕解法一:设抛物线的解析式为y a(x1)2h,函数图象过A〔4,0〕,B〔0,2〕,得25a h0,a h 2.解得a1,h25. 1212∴抛物线的解析式为:y1(x1)225. 1212解法二:设抛物线的解析式为:y ax2bx c,又设点A〔4,0〕关于x=-1的对称是D.∵CA=1+4=5,∴CD=5.∴OD=6.∴D点坐标为〔-6,0〕.将点A〔4,0〕,B〔0,2〕,D〔-6,0〕代入抛物线方程,得16a4b c0,c2,36a6b c0.解得a 1,b1,c2. 126∴抛物线的解析式为:y1x21x2.12634.解:〔1〕A,B的横坐标是方程ax23x c 0的两根,设为x1,x2〔x2x1〕,C的纵坐标是C.又∵y轴与⊙O相切,∴OA2·OB=OC.∴x1·x2=c2.又由方程ax23x c0知x1x2c,a12∴c2c,即ac=1.a〔2〕连结PD ,交x 轴于E ,直线PD 必为抛物线的对称轴,连结AD 、BD ,图代13-3-22∴AE1AB .1 2ACBADBADE.2ax ,∵0,x21∴ABx 2x 1 9 4ac5a.aAE5.2a又ED=OC=c ,∴tg AE 5 .DE23〕设∠PAB=β,∵P 点的坐标为3, 5 ,又∵a0,2a 4a∴在Rt △PAE 中,PE5.4a∴PE5tg.AE2∴tgβ=tg α.∴β=α.∴∠PAE=∠ADE.∵∠ADE+∠DAE=90°PA 和⊙D 相切.解:〔1〕设DGD '所在的抛物线的解析式为 y ax 2 c ,由题意得 G 〔0,8〕,D 〔15,〕.138c,解得a1 , ∴9025ac.c 8.∴DGD '所在的抛物线的解析式为 y1x 2 8.∵AD1且AD=5.5,90AC4∴×4=22(米).∴cc2OC 2 (OA AC) 2(1522〕=74 〔米〕.答:cc '的长为 74米. 〔2〕∵EB 1,BE 4,BC=16.BC 4∴∴AB=AC-BC=22-16=6〔米〕.答:AB 和A 'B '的宽都是 6米.〔3〕在y1x 2 8中,当x=4时,901737y16 8 .90 45∵37 (7 0.4) 1970.4545∴该大型货车可以从 OA 〔OA '〕区域平安通过.解:〔1〕∵⊙O 1与⊙O 2外切于原点O ,∴A ,B 两点分别位于原点两旁,即 a0,b0.∴方程x 2 (m 4)x m 2 0的两个根a ,b 异号.ab=m+20,∴m-2.〔2〕当m-2,且m ≠-4时,四边形PO 1O 2Q 是直角梯形.根据题意,计算得S四边形POOQ1b 2〔或1a 2或1〕.1 22 2m=-4时,四边形POOQ 是矩形.1 2根据题意,计算得S四边形POOQ1b 2〔或1a 2或1〕.1 222〔3〕∵(m 4)2 4(m 2)(m2)240∴方程x 2 (m 4)x m 2 0有两个不相等的实数根.∵ m-2,∴a b m4 0,ab m 20.14∴a0,b0.∴⊙O1与⊙O2都在y轴右侧,并且两圆内切.解:〔1〕设A,B两点的坐标分别是〔x1,0〕、〔x2,0〕,∵A,B两点在原点的两侧,∴x1x20,即-〔m+1〕0,解得m-1.∵[2(m1)]24(1)(m1)4m24m84(m1)272当m-1时,0,∴m的取值范围是m-1.2〕∵a∶b=3∶1,设a=3k,b=k〔k0〕,那么x1=3k,x2=-k,∴3k k2(m1),3k(k)(m1).解得m12,m21 .143∵m x2时,x1〔不合题意,舍去〕,33∴m=2∴抛物线的解析式是y x2x3.〔3〕易求抛物线y x22x3与x轴的两个交点坐标是A〔3,0〕,B〔-1,0〕与y轴交点坐标是C〔0,3〕,顶点坐标是M〔1,4〕.设直线BM的解析式为y px q,4 p1 q,那么0p(1)q.p2,解得q 2.∴直线BM的解析式是y=2x+2.设直线BM与y轴交于N,那么N点坐标是〔0,2〕,∴SBCM SBCNSMNC111111221.设P点坐标是〔x,y〕,15∵SABP8S BCM,∴1AB y81. 2即14y8.2∴y4.∴y4.当y=4时,P点与M点重合,即P〔1,4〕,当y=-4时,-4=-x2+2x+3,解得x122.∴满足条件的P点存在.P点坐标是〔1,4〕,(122,4),(122,4).38.〔1〕解:∵AD切⊙O于D,AE=2,EB=6,∴AD2=AE·AB=2×〔2+6〕=16.∴AD=4.图代13-2-23〔2〕①无论点A在EP上怎么移动〔点A不与点E重合〕,总有证法一:连结DB,交FH于G,∵AH是⊙O的切线,∴∠HDB=∠DEB.又∵BH⊥AH,BE为直径,∴∠BDE=90°AD ED.AH FH ∴有∠DBE=90°-∠DEB=90°-∠HDB=∠DBH.在△DFB和△DHB中,DF⊥AB,∠DFB=∠DHB=90°,DB=DB,∠DBE=∠DBH,∴△DFB∽△DHB.BH=BF,∴△BHF是等腰三角形.BG⊥FH,即BD⊥FH.16∴ED∥FH,∴AD ED.AH FH图代13-3-24证法二:连结DB,∵AH是⊙O的切线,∴∠HDB=∠DEF.又∵DF⊥AB,BH⊥DH,∴∠EDF=∠DBH.以BD为直径作一个圆,那么此圆必过F,H两点,∴∠DBH=∠DFH,∴∠EDF=∠DFH.∴ED∥FH.∴AD EDAH .FH ②∵ED=x,BH=,BH=y,BE=6,BF=BH,∴EF=6y.又∵DF是Rt△BDE斜边上的高,∴∴△DFE∽△BDE,EFED,即ED2EFEB.ED EB∴x26(6y),即y1x26.6∵点A不与点E重合,∴ED=x0.A从E向左移动,ED逐渐增大,当A和P重合时,ED最大,这时连结OD,那么OD⊥PH.∴OD∥BH.又POPE EO639,PB12,OD PO,BH ODPB4,BH PB PO ∴BF BH4,EF EB BF642,2由ED=EF·EB得x2 2 612,x0,∴x23.∴0x≤23.〔或由BH=4=y,代入y1x26中,得x23〕617故所求函数关系式为y1 x2 6〔0x ≤2 3〕.639.解:∵yx2m 4m5 x 2m24m 9(x2)[xm24m9],222∴可得A(2,0),Bm 24m 9 ,0,C0,2m 24m9 .22〔1〕∵△ABC 为直角三角形,∴OC 2OB ,AO24m9即4m24m92m,22化得(m 2)20.∴m=2.〔2〕∵AC=BC ,CO ⊥AB ,∴AO=BO ,即m 24m 9 2 .2∴OC2m 24m94.∴ACBC5.22过A 作AD ⊥BC ,垂足为D ,∴ AB·OC=BC ·AD.∴8AD.58∴sin ACBAD 5 4 .AC2 55图代13-3-25〔3〕S ABC1AB CO21m 24m 9 22m 24m9222(u2)u(u1)21.∵u m 2 4m9 1 ,2 2181,即m5∴当u2时,S 有最小值,最小值为.24解:〔1〕∵OA ⊥OB ,OA ∶OB=4∶3,⊙D 的半径为2,∴⊙C 过原点,OC=4,AB=8.A 点坐标为32,0,B 点坐标为0,24.55∴⊙C 的圆心C 的坐标为 16 ,12.52〕由EF 是⊙D 切线,∴OC ⊥EF.∵ CO=CA=CB,∴∠COA=∠CAO ,∠COB=∠CBO.∴ Rt△AOB ∽Rt △OCE ∽Rt △FCO.∴OE OC ,OFOC .AB OA AB OB∴OE5,OF20.3E 点坐标为〔 5,0〕,F 点坐标为0,20,3∴切线EF 解析式为y4x 20 .3 3〔3〕①当抛物线开口向下时,由题意,得抛物线顶点坐标为16,12 4,可得5 5b16, 5,2a 5 a324ac b 2 324ab1,524.24 cc. 55∴y5x 2 x 24 .32 5②当抛物线开口向上时 ,顶点坐标为16,124,得5 519b 16,5,2a 5a 4acb 28, b8 4,4a52424c.c .5541. ∴综合上述,抛物线解析式为〔1〕证明:由y5 x 2 4x 24 .8 5y5x 2 x24或y 5x 2 4x 24.325 85y1x, 2 yxm,有1xxm ,3221∴x mxmy m .2,3 , 32 1∴交点 M()m,m332m 21m此时二次函数为yx3 3x24mx 4m 2 1m .y ,有 3 93由②③联立,消去x24m1x4m 22m0.3934m1 244m 22m39316m 2 8m116m 28m9 3 931 0.∴无论m 为何实数值,二次函数y x 2pxq 的图象与直线yxm 总有两个不同的交点.20图代13-3-26〔2〕解:∵直线y=-x+m过点D〔0,-3〕,∴-3=0+m,∴m=-3.∴M〔-2,-1〕.∴二次函数为y(x2)21x24x3(x3)(x1).图象如图代13-3-26.3〕解:由勾股定理,可知△CMA为Rt△,且∠CMA=Rt∠,∴MC为△CMA外接圆直径.∵P在y 1x上,可设Pn,1n,由MC为△CMA外接圆的直径,P在这个圆上,22∴∠CPM=Rt∠.过P分别作PN⊥y,轴于N,PQ⊥x轴于R,过M作MS⊥y轴于S,MS的延长线与PR的延长线交于点Q.由勾股定理,有222212MP QP(n2)2n1.MQ,即MP222NC2NP231n n2.CP2220.CM而MP 2CP2CM2,21n2∴(n2)21n13n220,22即52260,n n2∴5n24n120,(5n6)(n2)0.21∴n 16,n 22.5 而n 2=-2即是M 点的横坐标,与题意不合,应舍去.∴n 6,5此时1 32n.5∴P 点坐标为6 ,3.5解:〔1〕根据题意,设点A 〔x 1,0〕、点〔x 2,0〕,且C 〔0,b 〕,x 10,x 20,b0,∵x 1,x 2是方程 x 2 axb0的两根, ∴x 1 x 2a,x 1x 2b .2在Rt △ABC 中,OC ⊥AB ,∴OC=OA ·OB.∵ OA=-x∴ bb0,∴b=1,∴C 〔0,1〕.〔2〕在Rt △AOC 的Rt △BOC 中,1,OB=x 2,2=-x 1·x 2=b.OCOC 1 1 x 1x 2 a tgtgx 1x 2x 1x 22.OAOBb∴a2.∴抛物线解析式为yx 2 2x1.图代13-3-27〔3〕∵y x 2 2x1,∴顶点P 的坐标为〔1,2〕,当x 2 2x 1 0时,x12. ∴A(12,0),B(12,0).延长PC 交x 轴于点D ,过C ,P 的直线为y=x+1, ∴点D 坐标为〔-1 ,0〕. ∴S 四边形ABPC S DPB S DCA221DB y p 1AD yc221(22)21(22)1 2232(平方单位).223。
专题09 二次函数中的存在性问题之正方形(18南充)(解析版)
专题09 二次函数中的存在性问题之正方形【典例1】(2018•南充)如图,抛物线顶点P(1,4),与y轴交于点C(0,3),与x轴交于点A,B.(1)求抛物线的解析式.(2)Q是抛物线上除点P外一点,△BCQ与△BCP的面积相等,求点Q的坐标.(3)若M,N为抛物线上两个动点,分别过点M,N作直线BC的垂线段,垂足分别为D,E.是否存在点M,N使四边形MNED为正方形?如果存在,求正方形MNED的边长;如果不存在,请说明理由.【点拨】(1)设出抛物线顶点坐标,把C坐标代入求出即可;(2)由△BCQ与△BCP的面积相等,得到PQ与BC平行,①过P作PQ∥BC,交抛物线于点Q,如图1所示;②设G(1,2),可得PG=GH=2,过H作直线Q2Q3∥BC,交x轴于点H,分别求出Q的坐标即可;(3)存在点M,N使四边形MNED为正方形,如图2所示,过M作MF∥y轴,过N作NF∥x轴,过N作NH∥y轴,则有△MNF与△NEH都为等腰直角三角形,设M(x1,y1),N(x2,y2),设直线MN 解析式为y=﹣x+b,与二次函数解析式联立,消去y得到关于x的一元二次方程,利用根与系数关系表示出NF2,由△MNF为等腰直角三角形,得到MN2=2NF2,若四边形MNED为正方形,得到NE2=MN2,求出b的值,进而确定出MN的长,即为正方形边长.【解答】解:(1)设y=a(x﹣1)2+4(a≠0),把C(0,3)代入抛物线解析式得:a+4=3,即a=﹣1,则抛物线解析式为y=﹣(x﹣1)2+4=﹣x2+2x+3;(2)由B(3,0),C(0,3),得到直线BC解析式为y=﹣x+3,∵S△PBC=S△QBC,∴PQ∥BC,①过P作PQ∥BC,交抛物线于点Q,如图1所示,∵P (1,4),∴直线PQ 解析式为y =﹣x +5, 联立得:{y =−x +5y =−x 2+2x +3,解得:{x =1y =4或{x =2y =3,即(1,4)与P 重合,Q 1(2,3);②∵S △BCQ =S △BCP , ∴PG =GH∵直线BC 的解析式为y =﹣x +3,P (1,4) ∴G (1,2), ∴PG =GH =2,过H 作直线Q 2Q 3∥BC ,交x 轴于点H ,则直线Q 2Q 3解析式为y =﹣x +1, 联立得:{y =−x +1y =−x 2+2x +3,解得:{x =3+√172y =−1−√172或{x =3−√172y =−1+√172, ∴Q 2(3−√172,−1+√172),Q 3(3+√172,−1−√172);(3)存在点M ,N 使四边形MNED 为正方形,如图2所示,过M 作MF ∥y 轴,过N 作NF ∥x 轴,过N 作NH ∥y 轴,则有△MNF 与△NEH 都为等腰直角三角形,设M (x 1,y 1),N (x 2,y 2),设直线MN 解析式为y =﹣x +b ,联立得:{y =−x +by =−x 2+2x +3,消去y 得:x 2﹣3x +b ﹣3=0,∴NF 2=|x 1﹣x 2|2=(x 1+x 2)2﹣4x 1x 2=21﹣4b , ∵△MNF 为等腰直角三角形, ∴MN 2=2NF 2=42﹣8b , ∵H (x 2,﹣x 2+3),∴NH 2=2=(﹣x 2+b +x 2﹣3)2=(b ﹣3)2, ∴NE 2=12(b ﹣3)2,若四边形MNED 为正方形,则有NE 2=MN 2, ∴42﹣8b =12(b 2﹣6b +9), 整理得:b 2+10b ﹣75=0, 解得:b =﹣15或b =5, ∵正方形边长为MN =√42−8b , ∴MN =9√2或√2.【点睛】此题属于二次函数综合题,涉及的知识有:待定系数法确定函数解析式,根与系数的关系,等腰直角三角形的性质,正方形的性质,勾股定理,以及一次函数与二次函数的性质,熟练掌握待定系数法是解本题的关键.【精练1】如图,抛物线y =﹣ax 2+bx +5过点(1,2)、(4,5),交y 轴于点B ,直线 AB 经过抛物线顶点A ,交x 轴于点C ,请解答下列问题: (1)求抛物线的解析式;(2)点Q 在平面内,在第一象限内是否存在点P ,使以A ,B ,P ,Q 为顶点的四边形是正方形?若存在,直接写出点P 的坐标;若不存在,请说明理由.【点拨】(1)把已知点的坐标代入抛物线解析式即可求得a 、b 的值,可求得抛物线解析式;(2)可先求得A 、B 两点的坐标,可求得AB 长度,分别过A 、B 两点作AB 的垂线,则点P 可以在这两条直线上,且P A =AB 或PB =AB ,分别求得两垂线的解析式,设出点P 的坐标,再根据线段相等可列出方程,可求得点P 的坐标. 【解答】解:(1)∵抛物线y =﹣ax 2+bx +5过点(1,2)、(4,5), ∴{−a +b +5=2−16a +4b +5=5,解得{a =−1b =−4,∴抛物线解析式为y =x 2﹣4x +5;(2)在y =x 2﹣4x +5中,令x =0可得y =5, ∴B (0,5),∵y =x 2﹣4x +5=(x ﹣2)2+1, ∴A (2,1),∴AB =√22+(1−5)2=2√5,设直线AB 解析式为y =kx +n ,则有{2k +n =1n =5,解得{k =−2n =5,∴直线AB 解析式为y =﹣2x +5, ①当P A ⊥AB 时,如图1,可设直线P A 解析式为y =12x +m ,把A (2,1)代入可得1+m =1,解得m =0,∴直线P A 解析式为y =12x , ∴可设点P 坐标为(x ,12x ),∴P A =√(x −2)2+(12x −1)2, ∵四边形P ABQ 为正方形,∴P A =AB ,即√(x −2)2+(12x −1)2=2√5,解得x =﹣2或x =6∵点P 在第一象限内,∴x =﹣2不符合题意,舍去,故x =6,此时P 点坐标为(6,3); ②当PB ⊥AB 时,如图2,可设直线PB 解析式为y =12x +s ,把B (0,5)代入可得s =5, ∴直线PB 解析式为y =12x +5, ∴可设P 点坐标为(x ,12x +5),∴PB =√x 2+(12x +5−5)2,同理可得√x 2+(12x +5−5)2=2√5,解得x =﹣4(舍去)或x =4,此时P 点坐标为(4,7);综上可知存在满足条件的点P ,其坐标为(6,3)或(4,7).【点睛】本题为二次函数的综合应用,涉及待定系数法、二次函数的性质、勾股定理、正方形的性质、方程思想及分类讨论思想等知识点.在(1)中注意待定系数法的应用步骤,在(2)中确定出P 点的位置是解题的关键,注意利用正方形的性质列方程.本题考查知识点较多,综合性较强,但难度不大. 【精练2】(曲靖)如图,在平面直角坐标系中,抛物线y =ax 2+2ax +c 交x 轴于A ,B 两点,交y 轴于点C (0,3),tan ∠OAC =34.(1)求抛物线的解析式;(2)点H 是线段AC 上任意一点,过H 作直线HN ⊥x 轴于点N ,交抛物线于点P ,求线段PH 的最大值;(3)点M 是抛物线上任意一点,连接CM ,以CM 为边作正方形CMEF ,是否存在点M 使点E 恰好落在对称轴上?若存在,请求出点M 的坐标;若不存在,请说明理由.【点拨】(1)由点C 的坐标以及tan ∠OAC =34可得出点A 的坐标,结合点A 、C 的坐标利用待定系数法即可求出抛物线的解析式;(2)设直线AC 的解析式为y =kx +b ,由点A 、C 的解析式利用待定系数法即可求出直线AC 的解析式,设N (x ,0)(﹣4<x <0),可找出H 、P 的坐标,由此即可得出PH 关于x 的解析式,利用配方法即二次函数的性质即可解决最值问题;(3)过点M 作MK ⊥y 轴于点K ,交对称轴于点G ,根据角的计算依据正方形的性质即可得出△MCK ≌△MEG (AAS ),进而得出MG =CK .设出点M 的坐标利用正方形的性质即可得出点G 、K 的坐标,由正方形的性质即可得出关于x 的含绝对值符号的一元二次方程,解方程即可求出x 值,将其代入抛物线解析式中即可求出点M 的坐标. 【解答】解:(1)∵C (0,3), ∴OC =3, ∵tan ∠OAC =34, ∴OA =4, ∴A (﹣4,0).把A (﹣4,0)、C (0,3)代入y =ax 2+2ax +c 中,得{16a −8a +c =0c =3,解得:{a =−38c =3, ∴抛物线的解析式为y =−38x 2−34x +3.(2)设直线AC 的解析式为y =kx +b , 把A (﹣4,0)、C (0,3)代入y =kx +b 中,得:{−4k +b =0b =3,解得:{k =34b =3, ∴直线AC 的解析式为y =34x +3.设N (x ,0)(﹣4<x <0),则H (x ,34x +3),P (x ,−38x 2−34x +3),∴PH =−38x 2−34x +3﹣(34x +3)=−38x 2−32x =−38(x +2)2+32,∵−38<0, ∴PH 有最大值,当x =﹣2时,PH 取最大值,最大值为32.(3)过点M 作MK ⊥y 轴于点K ,交对称轴于点G ,则∠MGE =∠MKC =90°, ∴∠MEG +∠EMG =90°, ∵四边形CMEF 是正方形, ∴EM =MC ,∠EMC =90°, ∴∠EMG +∠CMK =90°, ∴∠MEG =∠CMK .在△MCK 和△MEG 中,{∠MEG =∠CMK∠MGE =∠CKM =90°EM =MC ,∴△MCK ≌△MEG (AAS ), ∴MG =CK .由抛物线的对称轴为x =﹣1,设M (x ,−38x 2−34x +3),则G (﹣1,−38x 2−34x +3),K (0,−38x 2−34x +3),∴MG =|x +1|,CK =|−38x 2−34x +3﹣3|=|−38x 2−34x |=|38x 2+34x |,∴|x +1|=|38x 2+34x |,∴38x 2+34x =±(x +1),解得:x 1=﹣4,x 2=−23,x 3=−43,x 4=2,代入抛物线解析式得:y 1=0,y 2=103,y 3=103,y 4=0,∴点M的坐标是(﹣4,0),(−23,103),(−43,103)或(2,0).【点睛】本题考查了待定系数法求函数解析式、二次函数的性质、正方形的性质以及全等三角形的判定与性质,解题的关键是:(1)利用待定系数法求出抛物线解析式;(2)根据二次函数的性质解决最值问题;(3)根据正方形的性质得出关于x的含绝对值符号的一元二次方程.本题属于中档题,难度不大,解决该题型题目时,根据正方形的性质找出关于x的含绝对值符号的一元二次方程,解方程求出点的横坐标是关键.【精练3】(2020•郑州模拟)如图1,在平面直角坐标系中,直线y=x+4与抛物线y=−12x2+bx+c(b,c是常数)交于A、B两点,点A在x轴上,点B在y轴上.设抛物线与x轴的另一个交点为点C.(1)求该抛物线的解析式;(2)P是抛物线上一动点(不与点A、B重合),①如图2,若点P在直线AB上方,连接OP交AB于点D,求PDOD的最大值;②如图3,若点P在x轴的上方,连接PC,以PC为边作正方形CPEF,随着点P的运动,正方形的大小、位置也随之改变.当顶点E或F恰好落在y轴上,直接写出对应的点P的坐标.【点拨】(1)利用直线解析式求出点A、B的坐标,再利用待定系数法求二次函数解析式解答;(2)作PF ∥BO 交AB 于点F ,证△PFD ∽△OBD ,得比例线段PDOD=PF OB,则PF 取最大值时,求得PDOD的最大值;(3)(i )点F 在y 轴上时,过点P 作PH ⊥x 轴于H ,根据正方形的性质可证明△CPH ≌△FCO ,根据全等三角形对应边相等可得PH =CO =2,然后利用二次函数解析式求解即可;(ii )点E 在y 轴上时,过点PK ⊥x 轴于K ,作PS ⊥y 轴于S ,同理可证得△EPS ≌△CPK ,可得PS =PK ,则P 点的横纵坐标互为相反数,可求出P 点坐标;点E 在y 轴上时,过点PM ⊥x 轴于M ,作PN ⊥y 轴于N ,同理可证得△PEN ≌△PCM ,可得PN =PM ,则P 点的横纵坐标相等,可求出P 点坐标.由此即可解决问题. 【解答】解:(1)直线y =x +4与坐标轴交于A 、B 两点, 当x =0时,y =4,x =﹣4时,y =0, ∴A (﹣4,0),B (0,4),把A ,B 两点的坐标代入解析式得,{−4b +c =8c =4,解得,{b =−1c =4,∴抛物线的解析式为y =−12x 2−x +4; (2)如图1,作PF ∥BO 交AB 于点F , ∴△PFD ∽△OBD , ∴PD OD=PF OB,∵OB 为定值, ∴当PF 取最大值时,PD OD有最大值,设P (x ,−12x 2−x +4),其中﹣4<x <0,则F (x ,x +4), ∴PF =y P −y F =−12x 2−x +4−(x +4)=−12x 2−2x , ∵−12<0且对称轴是直线x =﹣2, ∴当x =﹣2时,PF 有最大值,此时PF=2,PDOD =PFOB=12;(3)∵点C(2,0),∴CO=2,(i)如图2,点F在y轴上时,过点P作PH⊥x轴于H,在正方形CPEF中,CP=CF,∠PCF=90°,∵∠PCH+∠OCF=90°,∠PCH+∠HPC=90°,∴∠HPC=∠OCF,在△CPH和△FCO中,{∠HPC=∠OCF ∠PHC=∠COF PC=CF,∴△CPH≌△FCO(AAS),∴PH=CO=2,∴点P的纵坐标为2,∴−12x2−x+4=2,解得,x=−1±√5,∴P1(−1+√5,2),P2(−1−√5,2),(ii)如图3,点E在y轴上时,过点PK⊥x轴于K,作PS⊥y轴于S,同理可证得△EPS≌△CPK,∴PS=PK,∴P点的横纵坐标互为相反数,∴−12x2−x+4=−x,解得x=2√2(舍去),x=﹣2√2,∴P3(−2√2,2√2),如图4,点E在y轴上时,过点PM⊥x轴于M,作PN⊥y轴于N,同理可证得△PEN≌△PCM,∴PN=PM,∴P点的横纵坐标相等,∴−12x2−x+4=x,解得x=−2+2√3,x=−2−2√3(舍去),∴P4(−2+2√3,−2+2√3),综合以上可得P点坐标为(−2+2√3,−2+2√3),(−2√2,2√2),(−1+√5,2),(−1−√5,2).【点睛】此题主要考查了二次函数的综合应用,全等三角形的判定与性质以及待定系数法求二次函数解析式,正方形的性质的应用,解题的关键是正确进行分类讨论.【精练4】(2019秋•秀屿区期中)已知抛物线y=ax2+bx+c(a≠0)经过原点,(1)当顶点坐标为(2,2)时,求此函数的解析式;(2)继续探究,如果b≠0,且抛物线顶点坐标为(m,m),m≠0,求此函数的解析式(用含m的式子表示)(3)现有一组过原点的抛物线,顶点A1,A2,A n在直线y=x上,横坐标依次为1,2,…,n(n为正整数,且n≤12),分别过每个顶点作x轴的垂线,垂足记为B1,B2,…,B n,以线段A n B n为边向右作正方形A n B n∁n D n,若这组抛物线中有一条经过D n,求所有满足条件的正方形边长.【点拨】(1)顶点坐标为(2,2)时,抛物线的表达式为:y=a(x﹣2)2+2=ax2﹣4ax+4a+2,故4a+2=0,解得:a=−12,即可求解;(2)抛物线顶点坐标为(m,m),抛物线的表达式为:y=a(x﹣m)2+m=ax2﹣2max+am2+m,即:am2+m=0,解得:a=−1m,即可求解;(3)点D n所在的抛物线解析式为y=−1t x2+2x.四边形A n B n∁n D n是正方形,则点D n的坐标是(2n,n),−1t(2n)2+2•2n=n,4n=3t,即可求解.【解答】解:抛物线y=ax2+bx+c(a≠0)经过原点,则抛物线的表达式为:y=ax2+bx;(1)顶点坐标为(2,2)时,抛物线的表达式为:y=a(x﹣2)2+2=ax2﹣4ax+4a+2,故4a+2=0,解得:a=−1 2,故抛物线的表达式为:y=−12(x﹣2)2+2=−12x2+2x;(2)抛物线顶点坐标为(m,m),抛物线的表达式为:y=a(x﹣m)2+m=ax2﹣2max+am2+m,即:am2+m=0,解得:a=−1 m,故抛物线的表达式为:y=−1m(x﹣m)2+m=−1m x2+2x;(3)∵顶点A1,A2,…,A n在直线y=x上,∴可设A n(n,n),点D n所在的抛物线顶点坐标为(t,t).∴a=−1t,b=2,∴由(1)(2)可得,点D n所在的抛物线解析式为y=−1t x2+2x.∵四边形A n B n∁n D n是正方形,∴点D n的坐标是(2n,n),∴−1t(2n)2+2•2n=n,∴4n=3t.∵t、n是正整数,且t≤12,n≤12,∴n=3,6或9.∴满足条件的正方形边长是3,6或9.【点睛】本题考查的是二次函数综合运用,这种阅读型题目,通常按照题设的顺序逐次求解,计算起来比较容易.【精练5】(2019•张家界)已知抛物线y=ax2+bx+c(a≠0)过点A(1,0),B(3,0)两点,与y轴交于点C,OC=3.(1)求抛物线的解析式及顶点D的坐标;(2)过点A作AM⊥BC,垂足为M,求证:四边形ADBM为正方形;(3)点P为抛物线在直线BC下方图形上的一动点,当△PBC面积最大时,求点P的坐标;(4)若点Q为线段OC上的一动点,问:AQ+12QC是否存在最小值?若存在,求岀这个最小值;若不存在,请说明理由.【点拨】(1)函数的表达式为:y=a(x﹣1)(x﹣3)=a(x2﹣4x+3),即可求解;(2)AM=MB=AB sin45°=√2=AD=BD,则四边形ADBM为菱形,而∠AMB=90°,即可求解;(3)S△PBC=12PH×OB,即可求解;(4)过点C作与y轴夹角为30°的直线CH,过点A作AH⊥CH,垂足为H,则HQ=12CQ,AQ+12QC最小值=AQ+HQ=AH,即可求解.【解答】解:(1)函数的表达式为:y=a(x﹣1)(x﹣3)=a(x2﹣4x+3),即:3a=3,解得:a=1,故抛物线的表达式为:y=x2﹣4x+3,则顶点D (2,﹣1);(2)∵OB =OC =4,∴∠OBC =∠OCB =45°,AM =MB =AB sin45°=√2=AD =BD ,则四边形ADBM 为菱形,而∠AMB =90°,∴四边形ADBM 为正方形;(3)将点B 、C 的坐标代入一次函数表达式:y =mx +n 并解得:直线BC 的表达式为:y =﹣x +3,过点P 作y 轴的平行线交BC 于点H ,设点P (x ,x 2﹣4x +3),则点H (x ,﹣x +3),则S △PBC =12PH ×OB =32(﹣x +3﹣x 2+4x ﹣3)=32(﹣x 2+3x ),∵−32<0,故S △PBC 有最大值,此时x =32,故点P (32,−34); (4)存在,理由:如上图,过点C 作与y 轴夹角为30°的直线CH ,过点A 作AH ⊥CH ,垂足为H ,则HQ =12CQ ,AQ +12QC 最小值=AQ +HQ =AH ,直线HC 所在表达式中的k 值为√3,直线HC 的表达式为:y =√3x +3…①则直线AH 所在表达式中的k 值为−√33,则直线AH 的表达式为:y =−√33x +s ,将点A 的坐标代入上式并解得:则直线AH 的表达式为:y =−√33x +√33⋯②,联立①②并解得:x =1−3√34, 故点H (1−3√34,3+√34),而点A (1,0), 则AH =3+√32, 即:AQ +12QC 的最小值为3+√32. 【点睛】本题是二次函数综合运用,涉及到一次函数、特殊四边形性质、图形的面积计算等,其中(4),过点C 作与y 轴夹角为30°的直线CH ,则HQ =12CQ ,是本题的难点.【精练6】(东营区校级期中)如图,直线y =﹣3x +3与x 轴、y 轴分别交于点A 、B ,抛物线y =a (x ﹣2)2+k 经过点A 、B ,并与X 轴交于另一点C ,其顶点为P .(1)求a ,k 的值;(2)抛物线的对称轴上有一点Q ,使△ABQ 是以AB 为底边的等腰三角形,求Q 点的坐标;(3)点M 为抛物线上任意一点,点N 为对称轴上任意一点,是否存在点M ,N 使以A ,C ,M ,N 为顶点的四边形为正方形?若存在,请求出求此正方形的边长.若不存在,请说明理由.【点拨】(1)先求出直线y =﹣3x +3与x 轴交点A ,与y 轴交点B 的坐标,再将A 、B 两点坐标代入y =a (x ﹣2)2+k ,得到关于a ,k 的二元一次方程组,解方程组即可求解;(2)设Q 点的坐标为(2,m ),对称轴x =2交x 轴于点F ,过点B 作BE 垂直于直线x =2于点E .在Rt △AQF 与Rt △BQE 中,用勾股定理分别表示出AQ 2=AF 2+QF 2=1+m 2,BQ 2=BE 2+EQ 2=4+(3﹣m )2,由AQ =BQ ,得到方程1+m 2=4+(3﹣m )2,解方程求出m =2,即可求得Q 点的坐标;(3)当点N 在对称轴上时,由NC 与AC 不垂直,得出AC 为正方形的对角线,根据抛物线的对称性及正方形的性质,得到M 点与顶点P (2,﹣1)重合,N 点为点P 关于x 轴的对称点,此时,MF =NF =AF =CF =1,且AC ⊥MN ,则四边形AMCN 为正方形,在Rt △AFN 中根据勾股定理即可求出正方形的边长.【解答】解:(1)∵直线y =﹣3x +3与x 轴、y 轴分别交于点A 、B ,∴A (1,0),B (0,3).又∵抛物线y =a (x ﹣2)2+k 经过点A (1,0),B (0,3),∴{a +k =04a +k =3,解得{a =1k =−1, 故a ,k 的值分别为1,﹣1;(2)如图1,设Q 点的坐标为(2,m ),对称轴x =2交x 轴于点F ,过点B 作BE 垂直于直线x =2于点E . 在Rt △AQF 中,AQ 2=AF 2+QF 2=1+m 2,在Rt △BQE 中,BQ 2=BE 2+EQ 2=4+(3﹣m )2,∵AQ =BQ ,∴1+m 2=4+(3﹣m )2,∴m =2,∴Q 点的坐标为(2,2);(3)如图2,当点N在对称轴上时,NC与AC不垂直,所以AC应为正方形的对角线.∵对称轴x=2是AC的中垂线,∴M点与顶点P(2,﹣1)重合,N点为点P关于x轴的对称点,其坐标为(2,1).此时,MF=NF=AF=CF=1,且AC⊥MN,∴四边形AMCN为正方形.在Rt△AFN中,AN=√AF2+NF2=√2,即正方形的边长为√2.【点睛】此题是二次函数的综合题,主要考查了二元一次方程组的解法,等腰三角形的性质,勾股定理,二次函数的性质,正方形的判定与性质,综合性较强,难度适中.,解本题的关键是用勾股定理求出点Q 的坐标.。
二次函数专题训练(正方形的存在性问题)含答案(可编辑修改word版)
1.如图,已知抛物线y=x2+bx+c 的图象经过点A(l,0),B(﹣3,0),与y 轴交于点C,抛物线的顶点为D,对称轴与x 轴相交于点E,连接BD.(1)求抛物线的解析式.(2)若点P 在直线BD 上,当PE=PC 时,求点P 的坐标.(3)在(2)的条件下,作PF⊥x 轴于F,点M 为x 轴上一动点,N 为直线PF 上一动点,G 为抛物线上一动点,当以点F,N,G,M 四点为顶点的四边形为正方形时,求点M 的坐标.2.如图,抛物线y=﹣x2+bx+c 与x 轴交于点A 和点B,与y 轴交于点C,点B 坐标为(6,0),点C 坐标为(0,6),点D 是抛物线的顶点,过点D 作x 轴的垂线,垂足为E,连接BD.(1)求抛物线的解析式及点D 的坐标;(2)点F 是抛物线上的动点,当∠FBA=∠BDE 时,求点F 的坐标;(3)若点M 是抛物线上的动点,过点M 作MN∥x 轴与抛物线交于点N,点P 在x 轴上,点Q 在坐标平面内,以线段MN 为对角线作正方形MPNQ,请写出点Q 的坐标.3.如图,已知抛物线y=ax2+bx﹣3 过点A(﹣1,0),B(3,0),点M、N 为抛物线上的动点,过点M 作MD∥y 轴,交直线BC 于点D,交x 轴于点E.过点N 作NF⊥x 轴,垂足为点 F(1)求二次函数y=ax2+bx﹣3 的表达式;(2)若M 点是抛物线上对称轴右侧的点,且四边形MNFE 为正方形,求该正方形的面积;(3)若M 点是抛物线上对称轴左侧的点,且∠DMN=90°,MD=MN,请直接写出点M 的横坐标.4.(2015 贵州省毕节地区) 如图,抛物线y=x2+bx+c 与x 轴交于A(﹣1,0),B(3,0)两点,顶点M 关于x 轴的对称点是M′.(1)求抛物线的解析式;(2)若直线AM′与此抛物线的另一个交点为C,求△CAB 的面积;(3)是否存在过A,B 两点的抛物线,其顶点P 关于x 轴的对称点为Q,使得四边形APBQ 为正方形?若存在,求出此抛物线的解析式;若不存在,请说明理由.5.(2016 辽宁省铁岭市) .如图,抛物线y=﹣x2+bx+c 与x 轴交于点A,点B,与y 轴交于点C,点B 坐标为(6,0),点C 坐标为(0,6),点D 是抛物线的顶点,过点D 作x 轴的垂线,垂足为E,连接BD.(1)求抛物线的解析式及点D 的坐标;(2)点F 是抛物线上的动点,当∠FBA=∠BDE 时,求点F 的坐标;(3)若点M 是抛物线上的动点,过点M 作MN∥x 轴与抛物线交于点N,点P 在x 轴上,点Q 在平面内,以线段MN 为对角线作正方形MPNQ,请直接写出点Q 的坐标.6.(2016 广东省茂名市) .如图,抛物线y=﹣x2+bx+c 经过A(﹣1,0),B(3,0)两点,且与y 轴交于点C,点D 是抛物线的顶点,抛物线的对称轴DE 交x 轴于点E,连接BD.(1)求经过A,B,C 三点的抛物线的函数表达式;(2)点P 是线段BD 上一点,当PE=PC 时,求点P 的坐标;(3)在(2)的条件下,过点P 作PF⊥x 轴于点F,G 为抛物线上一动点,M 为x 轴上一动点,N 为直线PF 上一动点,当以F、M、G 为顶点的四边形是正方形时,请求出点M 的坐标.二次函数专题训练(正方形的存在性问题)参考答案1.如图,已知抛物线y=x2+bx+c 的图象经过点A(l,0),B(﹣3,0),与y 轴交于点C,抛物线的顶点为D,对称轴与x 轴相交于点E,连接BD.(1)求抛物线的解析式.(2)若点P 在直线BD 上,当PE=PC 时,求点P 的坐标.(3)在(2)的条件下,作PF⊥x 轴于F,点M 为x 轴上一动点,N 为直线PF 上一动点,G 为抛物线上一动点,当以点F,N,G,M 四点为顶点的四边形为正方形时,求点M 的坐标.【解答】解:(1)∵抛物线y=x2+bx+c 的图象经过点A(1,0),B(﹣3,0),∴,∴,∴抛物线的解析式为y=x2+2x﹣3;(2)由(1)知,抛物线的解析式为y=x2+2x﹣3;∴C(0,﹣3),抛物线的顶点D(﹣1,﹣4),∴E(﹣1,0),设直线BD 的解析式为y=mx+n,∴,∴,∴直线BD 的解析式为y=﹣2x﹣6,设点P(a,﹣2a﹣6),∵C(0,﹣3),E(﹣1,0),根据勾股定理得,PE2=(a+1)2+(﹣2a﹣6)2,PC2=a2+(﹣2a﹣6+3)2,∵PC=PE,∴(a+1)2+(﹣2a﹣6)2=a2+(﹣2a﹣6+3)2,∴a=﹣2,∴y=﹣2×(﹣2)﹣6=﹣2,∴P(﹣2,﹣2),(3)如图,作PF⊥x 轴于F,∴F(﹣2,0),设M(d,0),∴G(d,d2+2d﹣3),N(﹣2,d2+2d﹣3),∵以点F,N,G,M 四点为顶点的四边形为正方形,必有FM=MG,∴|d+2|=|d2+2d﹣3|,∴d= 或d=,∴点M 的坐标为(,0),(,0),(,0),(,0).2.如图,抛物线y=﹣x2+bx+c 与x 轴交于点A 和点B,与y 轴交于点C,点B 坐标为(6,0),点C 坐标为(0,6),点D 是抛物线的顶点,过点D 作x 轴的垂线,垂足为E,连接BD.(1)求抛物线的解析式及点D 的坐标;(2)点F 是抛物线上的动点,当∠FBA=∠BDE 时,求点F 的坐标;(3)若点M 是抛物线上的动点,过点M 作MN∥x 轴与抛物线交于点N,点P 在x 轴上,点Q 在坐标平面内,以线段MN 为对角线作正方形MPNQ,请写出点Q 的坐标.【解答】解:(1)把B、C 两点坐标代入抛物线解析式可得,解得,∴抛物线解析式为y=﹣x2+2x+6,∵y=﹣x2+2x+6=﹣(x﹣2)2+8,∴D(2,8);(2)如图1,过F 作FG⊥x 轴于点G,设F(x,﹣x2+2x+6),则FG=|﹣x2+2x+6|,∵∠FBA=∠BDE,∠FGB=∠BED=90°,∴△FBG∽△BDE,∴=,∵B(6,0),D(2,8),∴E(2,0),BE=4,DE=8,OB=6,∴BG=6﹣x,∴= ,当点F 在x 轴上方时,有=,解得x=﹣1 或x=6(舍去),此时F 点的坐标为(﹣1,);当点F 在x 轴下方时,有=﹣,解得x=﹣3 或x=6(舍去),此时F 点坐标为(﹣3,﹣);综上可知F 点的坐标为(﹣1,)或(﹣3,﹣);(3)如图2,设对角线MN、PQ 交于点O′,∵点M、N 关于抛物线对称轴对称,且四边形MPNQ 为正方形,∴点P 为抛物线对称轴与x 轴的交点,点Q 在抛物线的对称轴上,设Q(2,2n),则M 坐标为(2﹣n,n),∵点M 在抛物线y=﹣x2+2x+6 的图象上,∴n=﹣(2﹣n)2+2(2﹣n)+6,解得n=﹣1+ 或n=﹣1﹣,∴满足条件的点Q 有两个,其坐标分别为(2,﹣2+2)或(2,﹣2﹣2).3.如图,已知抛物线y=ax2+bx﹣3 过点A(﹣1,0),B(3,0),点M、N 为抛物线上的动点,过点M 作MD∥y 轴,交直线BC 于点D,交x 轴于点E.过点N 作NF⊥x 轴,垂足为点 F(1)求二次函数y=ax2+bx﹣3 的表达式;(2)若M 点是抛物线上对称轴右侧的点,且四边形MNFE 为正方形,求该正方形的面积;(3)若M 点是抛物线上对称轴左侧的点,且∠DMN=90°,MD=MN,请直接写出点M 的横坐标.【解答】解:(1)把A(﹣1,0),B(3,0)代入y=ax2+bx﹣3,得:,解得,故该抛物线解析式为:y=x2﹣2x﹣3;(2)由(1)知,抛物线解析式为:y=x2﹣2x﹣3=(x﹣1)2﹣4,∴该抛物线的对称轴是x=1,顶点坐标为(1,﹣4).如图,设点M 坐标为(m,m2﹣2m﹣3),其中m>1,∴ME=|﹣m2+2m+3|,∵M、N 关于x=1 对称,且点M 在对称轴右侧,∴点N 的横坐标为2﹣m,∴MN=2m﹣2,∵四边形MNFE 为正方形,∴ME=MN,∴|﹣m2+2m+3|=2m﹣2,分两种情况:①当﹣m2+2m+3=2m﹣2 时,解得:m1=、m2=﹣(不符合题意,舍去),当m=时,正方形的面积为(2﹣2)2=24﹣8 ;②当﹣m2+2m+3=2﹣2m 时,解得:m3=2+,m4=2﹣(不符合题意,舍去),当m=2+时,正方形的面积为[2(2+)﹣2]2=24+8 ;综上所述,正方形的面积为24+8或24﹣8.(3)设BC 所在直线解析式为y=px+q,把点B(3,0)、C(0,﹣3)代入表达式,得:,解得:,∴直线BC 的函数表达式为y=x﹣3,设点M 的坐标为(t,t2﹣2t﹣3),其中t<1,则点N(2﹣t,t2﹣2t﹣3),点D(t,t﹣3),∴MN=2﹣t﹣t=2﹣2t,MD=|t2﹣2t﹣3﹣t+3|=|t2﹣3t|.∵MD=MN,∴|t2﹣3t|=2﹣2t,分两种情况:①当t2﹣3t=2﹣2t 时,解得t1=﹣1,t2=2(不符合题意,舍去).②当3t﹣t2=2﹣2t 时,解得t3=,t2=(不符合题意,舍去).综上所述,点M 的横坐标为﹣1 或.4.(2015 贵州省毕节地区) 如图,抛物线y=x2+bx+c 与x 轴交于A(﹣1,0),B(3,0)两点,顶点M 关于x 轴的对称点是M′.(1)求抛物线的解析式;(2)若直线AM′与此抛物线的另一个交点为C,求△CAB 的面积;(3)是否存在过A,B 两点的抛物线,其顶点P 关于x 轴的对称点为Q,使得四边形APBQ 为正方形?若存在,求出此抛物线的解析式;若不存在,请说明理由.分析:(1)根据待定系数法,可得函数解析式;(2)根据轴对称,可得M′的坐标,根据待定系数法,可得AM′的解析式,根据解方程组,可得B 点坐标,根据三角形的面积公式,可得答案;(3)根据正方形的性质,可得P、Q 点坐标,根据待定系数法,可得函数解析式.解答:解:(1)将A、B 点坐标代入函数解析式,得,解得,抛物线的解析式y=x2﹣2x﹣3;(2)将抛物线的解析式化为顶点式,得y=(x﹣1)2﹣4,M 点的坐标为(1,﹣4),M′点的坐标为(1,4),设AM′的解析式为y=kx+b,将A、M′点的坐标代入,得,解得,AM′的解析式为y=2x+2,联立AM′与抛物线,得,解得,C 点坐标为(5,12).S△ABC=×4×12=24;(3)存在过A,B 两点的抛物线,其顶点P 关于x 轴的对称点为Q,使得四边形APBQ 为正方形,由ABPQ 是正方形,A(﹣1,0)B(3,0),得P(1,﹣2),Q(1,2),或P(1,2),Q(1,﹣2),①当顶点P(1,﹣2)时,设抛物线的解析式为y=a(x﹣1)2﹣2,将A 点坐标代入函数解析式,得a(﹣1﹣1)2﹣2=0,解得a= ,抛物线的解析式为y=(x﹣1)2﹣2,②当P(1,2)时,设抛物线的解析式为y=a(x﹣1)2+2,将A 点坐标代入函数解析式,得a(﹣1﹣1)2+2=0,解得a=﹣,抛物线的解析式为y=﹣(x﹣1)2+2,综上所述:y=(x﹣1)2﹣2 或y=﹣(x﹣1)2+2,使得四边形APBQ 为正方形.5.(2016 辽宁省铁岭市) .如图,抛物线y=﹣x2+bx+c 与x 轴交于点A,点B,与y 轴交于点C,点B 坐标为(6,0),点C 坐标为(0,6),点D 是抛物线的顶点,过点D 作x 轴的垂线,垂足为E,连接BD.(1)求抛物线的解析式及点D 的坐标;(2)点F 是抛物线上的动点,当∠FBA=∠BDE 时,求点F 的坐标;(3)若点M 是抛物线上的动点,过点M 作MN∥x 轴与抛物线交于点N,点P 在x 轴上,点Q 在平面内,以线段MN 为对角线作正方形MPNQ,请直接写出点Q 的坐标.分析(1)由点B、C 的坐标利用待定系数法即可求出抛物线的解析式,再利用配方法将抛物线解析式变形成顶点式即可得出结论;(2)设线段BF 与y 轴交点为点F′,设点F′的坐标为(0,m),由相似三角形的判定及性质可得出点F′的坐标,根据点B、F′的坐标利用待定系数法可求出直线BF 的解析式,联立直线BF 和抛物线的解析式成方程组,解方程组即可求出点F 的坐标;(3)设对角线MN、PQ 交于点O′,如图2 所示.根据抛物线的对称性结合正方形的性质可得出点P、Q 的位置,设出点Q 的坐标为(2,2n),由正方形的性质可得出点M 的坐标为(2﹣n,n).由点M 在抛物线图象上,即可得出关于n 的一元二次方程,解方程可求出n 值,代入点Q 的坐标即可得出结论.解答解:(1)将点B(6,0)、C(0,6)代入y=﹣x2+bx+c 中,得:,解得:,∴抛物线的解析式为y=﹣x2+2x+6.∵y=﹣x2+2x+6=﹣(x﹣2)2+8,∴点D 的坐标为(2,8).(2)设线段BF 与y 轴交点为点F′,设点F′的坐标为(0,m),如图1 所示.∵∠F′BO=∠FBA=∠BDE,∠F′OB=∠BED=90°,∴△F′BO∽△BDE,∴.∵点B(6,0),点D(2,8),∴点E(2,0),BE=6﹣4=4,DE=8﹣0=8,OB=6,∴OF′=•OB=3,∴点F′(0,3)或(0,﹣3).设直线BF 的解析式为y=kx±3,则有0=6k+3 或0=6k﹣3,解得:k=﹣或k=,∴直线BF 的解析式为y=﹣x+3 或y=x﹣3.联立直线BF 与抛物线的解析式得:①或②,解方程组①得:或(舍去),∴点F 的坐标为(﹣1,);解方程组②得:或(舍去),∴点F 的坐标为(﹣3,﹣).综上可知:点F 的坐标为(﹣1,)或(﹣3,﹣).(3)设对角线MN、PQ 交于点O′,如图2 所示.∵点M、N 关于抛物线对称轴对称,且四边形MPNQ 为正方形,∴点P 为抛物线对称轴与x 轴的交点,点Q 在抛物线对称轴上,设点Q 的坐标为(2,2n),则点M 的坐标为(2﹣n,n).∵点M 在抛物线y=﹣x2+2x+6 的图象上,∴n=﹣+2(2﹣n)+6,即n2+2n﹣16=0,解得:n1=﹣1,n2=﹣﹣1.∴点Q 的坐标为(2,﹣1)或(2,﹣﹣1).6.(2016 广东省茂名市) 】.如图,抛物线y=﹣x2+bx+c 经过A(﹣1,0),B(3,0)两点,且与y 轴交于点C,点D 是抛物线的顶点,抛物线的对称轴DE 交x 轴于点E,连接BD.(1)求经过A,B,C 三点的抛物线的函数表达式;(2)点P 是线段BD 上一点,当PE=PC 时,求点P 的坐标;(3)在(2)的条件下,过点P 作PF⊥x 轴于点F,G 为抛物线上一动点,M 为x 轴上一动点,N 为直线PF 上一动点,当以F、M、G 为顶点的四边形是正方形时,请求出点M 的坐标.分析(1)利用待定系数法求出过A,B,C 三点的抛物线的函数表达式;(2)连接PC、PE,利用公式求出顶点D 的坐标,利用待定系数法求出直线BD 的解析式,设出点P 的坐标为(x,﹣2x+6),利用勾股定理表示出PC2和PE2,根据题意列出方程,解方程求出x 的值,计算求出点P 的坐标;(3)设点M 的坐标为(a,0),表示出点G 的坐标,根据正方形的性质列出方程,解方程即可.解答解:(1)∵抛物线y=﹣x2+bx+c 经过A(﹣1,0),B(3,0)两点,∴,解得,,∴经过A,B,C 三点的抛物线的函数表达式为y=﹣x2+2x+3;(2)如图1,连接PC、PE,x=﹣=﹣=1,当x=1 时,y=4,∴点D 的坐标为(1,4),设直线BD 的解析式为:y=mx+n,则,解得,,∴直线BD 的解析式为y=﹣2x+6,设点P 的坐标为(x,﹣2x+6),则PC2=x2+(3+2x﹣6)2,PE2=(x﹣1)2+(﹣2x+6)2,∵PC=PE,∴x2+(3+2x﹣6)2=(x﹣1)2+(﹣2x+6)2,解得,x=2,则y=﹣2×2+6=2,∴点P 的坐标为(2,2);(3)设点M 的坐标为(a,0),则点G 的坐标为(a,﹣a2+2a+3),∵以F、M、G 为顶点的四边形是正方形,∴FM=MG,即|2﹣a|=|﹣a2+2a+3|,当2﹣a=﹣a2+2a+3 时,整理得,a2﹣3a﹣1=0,解得,a=,当2﹣a=﹣(﹣a2+2a+3)时,整理得,a2﹣a﹣5=0,解得,a= ,∴当以F M、G、为顶点的四边形是正方形时点,M 的坐标(0,)(0,)(0,)(,0).为,,,。
二次函数基础练习题大全(含答案)
1、正方形铁片边长为15cm ,在四个角上各剪去一个边长为x 〔cm 〕的小正方形,用余下的局部做成一个无盖的盒子.(1)求盒子的外表积S 〔cm 2〕与小正方形边长x 〔cm 〕之间的函数关系式;(2)当小正方形边长为3cm 时,求盒子的外表积.2、二次函数),0(2≠+=a c ax y 当x=1时,y= -1;当x=2时,y=2,求该函数解析式.3、对于函数22x y =以下说法:①当x 取任何实数时,y 的值总是正的;②x 的值增大,y 的值也增大;③y 随x 的增大而减小;④图像关于y 轴对称.其中正确的选项是 .4、抛物线 y =-x 2 不具有的性质是〔 〕A 、开口向下B 、对称轴是 y 轴C 、与 y 轴不相交D 、最高点是原点5、苹果熟了,从树上落下所经过的路程 s 与下落时间 t 满足 S =12gt 2〔g =9.8〕,那么 s 与 t 的函数图像大致是〔 〕A B C D6、函数2ax y =与b ax y +-=的图像可能是〔 〕A .B .C .D . 7、函数24m m y mx 的图像是开口向下的抛物线,求m 的值.8、二次函数12-=mmx y 在其图像对称轴的左侧,y 随x 的增大而增大,求m 的值. 9、函数()422-++=m m x m y 是关于x 的二次函数,求:(1) 满足条件的m 的值;(2) m 为何值时,抛物线有最低点?求出这个最低点,这时x 为何值时,y 随x 的增大而增大;s tO s t Os t O st O(3) m 为何值时,抛物线有最大值?最大值是多少?当x 为何值时,y 随x 的增大而减小?10、如果抛物线2y ax 与直线1y x 交于点,2b ,求这条抛物线所对应的二次函数的关系式.11、函数2)(22+-+=x m m mx y 的图象关于y 轴对称,那么m =________;12、抛物线942++=x x y 的对称轴是 .13、抛物线251222+-=x x y 的开口方向是 ,顶点坐标是 .14、将 y =x 2-2x +3 化成 y =a (x -h)2+k 的形式,那么 y =____.15、把二次函数215322y x x 的图象向上平移3个单位,再向右平移4个单位,那么两次平移后的函数图象的关系式是16、抛物线1662--=x x y 与x 轴交点的坐标为_________;17、函数x x y +-=22有最____值,最值为_______;18、二次函数c bx x y ++=2的图象沿x 轴向左平移2个单位,再沿y 轴向上平移3个单位,得到的图象的函数解析式为122+-=x x y ,那么b 与c 分别等于〔 〕 A 、6,4 B 、-8,14 C 、-6,6 D 、-8,-1419、二次函数122--=x x y 的图象在x 轴上截得的线段长为〔 〕 A 、22 B 、23 C 、32 D 、3320、通过配方,写出以下函数的开口方向、对称轴和顶点坐标:〔1〕12212+-=x x y ; 〔2〕2832-+-=x x y ; 〔3〕4412-+-=x x y 21、求二次函数62+--=x x y 的图象与x 轴和y 轴的交点坐标22、一次函数的图象过抛物线223yx x 的顶点和坐标原点 1) 求一次函数的关系式;2) 判断点2,5是否在这个一次函数的图象上23、某商场以每台2500元进口一批彩电.如每台售价定为2700元,可卖出400台,以每100元为一个价格单位,假设将每台提高一个单位价格,那么会少卖出50台,那么每台定价为多少元即可获得最大利润?最大利润是多少元?25、二次函数2224y mx x m m 的图象经过原点,那么此抛物线的顶点坐标是26、二次函数c bx ax y ++=2的图象如下图,那么a___0,b___0,c___0,ac b 42-____0;27、二次函数c bx ax y ++=2的图象如图,那么直线bc ax y +=的图象不经过第 象限.〔第26题〕 〔第27题〕 〔〕 〔〕28、二次函数2y x ax b 中,假设0a b ,那么它的图象必经过点〔 〕A 1,1B 1,1C 1,1D 1,110、函数b ax y +=与c bx ax y ++=2的图象如上图所示,那么以下选项中正确的选项是〔 〕A 、0,0>>c abB 、0,0><c abC 、0,0<>c abD 、0,0<<c ab11、函数c bx ax y ++=2的图象如下图,那么函数b ax y +=的图象是〔 〕12、二次函数c bx ax y ++=2的图象如图,那么abc 、2a+b 、a+b+c 、a-b+c 这四个代数式中,值为正数的有〔 〕A .4个B .3个C .2个D .1个13、抛物线的图角如图,那么以下结论: ①>0;②;③>;④<1.其中正确的结论是〔 〕.〔A 〕①② 〔B 〕②③ 〔C 〕②④ 〔D 〕③④14、二次函数2y ax bx c 的最大值是3a ,且它的图象经过1,2,1,6两点, 求a 、b 、c 的值。
第11讲二次函数中矩形正方形的存在性问题专题探究(原卷版)
第11讲二次函数中矩形、正方形的存在性问题专题探究【知识总结】❖方法策略:抓矩形两大性质【内角=90°+对角线相等→转化为直角△存在性问题】正方形存在性问题转化为等腰直角三角形存在性问题【类题训练】1.如图,在平面直角坐标系中,抛物线y=ax2﹣2ax﹣3a(a>0)与x轴交于A、B两点(点A在点B左侧),经过点A的直线l:y=kx+b与y轴交于点C,与抛物线的另一个交点为D,且CD=4AC.(1)直接写出点A的坐标,并用含a的式子表示直线l的函数表达式(其中k、b用含a的式子表示).(2)点E为直线l下方抛物线上一点,当△ADE的面积的最大值为时,求抛物线的函数表达式;(3)设点P是抛物线对称轴上的一点,点Q在抛物线上,以点A、D、P、Q为顶点的四边形能否为矩形?若能,求出点P的坐标;若不能,请说明理由.2.综合与探究如图,抛物线y=﹣x2+bx+c的顶点为D(1,4),与x轴交于A和B两点,交y轴于点C.(1)求抛物线的函数表达式及点A,B、C的坐标;(2)如图1,点P是直线BC上方的抛物线上的动点,当△BCP面积最大时,求点P的横坐标;(3)如图2,若点M是坐标轴上一点,点N为平面内一点,是否存在这样的点,使以B、D、M、N为顶点的四边形是以BD为对角线的矩形?若存在,请直接写出点N的坐标,若不存在,请说明理由.3.如图,在平面直角坐标系中,抛物线y=ax2+bx﹣3与x轴交于A(﹣1,0),B(3,0)两点,与y轴交于点C,点P为抛物线上的动点.(1)求该抛物线的函数表达式;(2)点D为直线y=x上的动点,当点P在第四象限时,求四边形PBDC面积的最大值及此时点P的坐标;(3)已知点E为x轴上一动点,点Q为平面内任意一点,是否存在以点P,C,E,Q为顶点的四边形是以PC为对角线的正方形,若存在,请直接写出点Q的坐标,若不存在,请说明理由.4.如图,已知抛物线y=﹣x2﹣x+2与x轴交于点A,B(点A在点B的左侧),与y轴交于点C,过点B作直线BD∥AC交抛物线于点D.(1)求点D的坐标;(2)点P是直线AC上方的抛物线上一点,连接DP,交AC于点E,连接BE,BP,求△BPE面积的最大值及此时点P的坐标;(3)将抛物线沿射线CA方向平移单位得到新的抛物线y',点M是新抛物线y'对称轴上一点,点N 为平面直角坐标系内一点,直接写出所有以A,C,M,N为顶点的四边形为矩形的点N的坐标,并写出其中一个点N的坐标的求解过程.5.已知抛物线y=﹣x2+bx+c与x轴交于点A(3,0)和点B(﹣1,0),与y轴交于点C,点D在抛物线上运动(不与点A,B,C重合).(1)求抛物线的解析式;(2)如图1,当点D在第一象限抛物线上运动时,过点D作DF⊥x轴,垂足为点F,直线DF与直线AC交于点E,若DE=EA,求点D的坐标;(3)如图2,直线BD交直线AC于点H,点G在坐标平面内,在抛物线上是否存在点D,使以点A,D,H,G为顶点的四边形为矩形,若存在,请直接写出点D的坐标;若不存在,请说明理由.6.如图,抛物线的对称轴与x轴交于点A(1,0),与y轴交于点B(0,3),C为该抛物线图象上的一个动点.(1)求抛物线的解析式;(2)如图,当点C在第一象限,且∠BAC=90°,求tan∠ABC的值;(3)点D在抛物线上(点D在点C的左侧,不与点B重合),点P在坐标平面内,问是否存在正方形ACPD?若存在,请直接写出点P的坐标;若不存在,请说明理由.7.如图,二次函数y=﹣+bx+c的图象经过A(﹣2,0),B(0,4)两点.(1)求这个二次函数的解析式,并直接写出顶点D的坐标;(2)若该抛物线与x轴的另一个交点为C,点P为第一象限内抛物线上一点,求P点坐标为多少时,△BCP的面积最大,并求出这个最大面积.(3)在直线CD上有点E,作EF⊥x轴于点F,当以O、B、E、F为顶点的四边形是矩形时,直接写出E点坐标.8.若二次函数的图象经过点A(﹣2,0),其对称轴为直线x=1,与x轴的另一个交点为C,与y轴交于点B.(1)点C的坐标为;(2)求二次函数的解析式;(3)点M在线段AB上,过点M作MN⊥x轴于点N.①若MN:NC=2:5,求点M的坐标;②以MN为对角线作正方形MPNQ(点P在MN右侧),当点P在对称轴上时,直接写出点M的坐标.9.如图,抛物线y=ax2+bx+c经过点A(﹣1,0),B(0,3),C(3,0).(1)求抛物线的表达式;(2)若点P为第一象限内抛物线上的一点,设△PBC的面积为S,求S的最大值及此时点P的坐标;(3)已知M是抛物线对称轴上一点,在平面内是否存在点N,使以B、C、M、N为顶点的四边形是矩形?若存在,直接写出N点坐标;若不存在,请说明理由.10.平面直角坐标系中,过一点分别作坐标轴的垂线,若两垂线与坐标轴围成矩形的周长数值是面积数值的2倍,则称这个点为“二倍点”.例如,点P(,3)是“二倍点”.(1)在点A(1,1),B(﹣3,),C(﹣6,3)中,是“二倍点”的有;(2)若点E为双曲线y=﹣(x>0)上任意一点.①请说明随着点E在图象上运动,为什么函数值y随自变量x的增大而增大?②若将点E向右平移一个单位,再向下平移一个单位得到点F.求证:点F为“二倍点”.(3)已知“二倍点”M在抛物线y=x2(x>0)的图象上,“二倍点”N在一次函数y=x(x>0)的图象上,点G在x轴上,坐标平面内有一点H,若以点M,N,G,H为顶点的四边形是矩形,请直接写出点H的坐标.11.已知,二次函数y=﹣x2+x+2图象与x轴交于A、B两点,与y轴交于点C,连接AC、BC.(1)如图1,请判断△ABC的形状,并说明理由;(2)如图2,D为线段AB上一动点,作DP∥AC交抛物线于点P,过P作PE⊥x轴,垂足为E,交BC 于点F,过F作FG⊥PE,交DP于G,连接CG,OG,求阴影部分面积S的最大值和D点坐标;(3)如图3,将抛物线沿射线AC方向移动个单位得到新的抛物线y'=ax2+bx+c(a≠0),是否在新抛物线对称轴上存在点M,在坐标平面内存在点N,使得以C、B、M、N为顶点的四边形是以CB为边的矩形?若存在,请直接写出N点坐标;若不存在,请说明理由.。
题型九 二次函数综合题 类型十一 二次函数与正方形有关的问题(专题训练)(原卷版)
题型九 二次函数综合题类型十一 二次函数与正方形有关的问题(专题训练)1.(2022·浙江湖州)如图1,已知在平面直角坐标系xOy 中,四边形OABC 是边长为3的正方形,其中顶点A ,C 分别在x 轴的正半轴和y 轴的正半轴上,抛物线2y x bx c =-++经过A ,C 两点,与x 轴交于另一个点D .(1)①求点A ,B ,C 的坐标;②求b ,c 的值.(2)若点P 是边BC 上的一个动点,连结AP ,过点P 作PM ⊥AP ,交y 轴于点M (如图2所示).当点P 在BC 上运动时,点M 也随之运动.设BP =m ,CM =n ,试用含m 的代数式表示n ,并求出n 的最大值.2.(2022·山东泰安)若二次函数2y ax bx c =++的图象经过点()2,0A -,()0,4B -,其对称轴为直线1x =,与x 轴的另一交点为C .(1)求二次函数的表达式;(2)若点M 在直线AB 上,且在第四象限,过点M 作MN x ^轴于点N .①若点N 在线段OC 上,且3MN NC =,求点M 的坐标;②以MN 为对角线作正方形MPNQ (点P 在MN 右侧),当点P 在抛物线上时,求点M 的坐标.3.(2020·吉林中考真题)如图,在平面直角坐标系中,抛物线与轴正21322y x bx =-++x半轴交于点,且点的坐标为,过点作垂直于轴的直线.是该抛物线上的任意一点,其横坐标为,过点作于点;是直线上的一点,其纵坐标为,以,为边作矩形.(1)求的值.(2)当点与点重合时,求的值.(3)当矩形是正方形,且抛物线的顶点在该正方形内部时,求的值.(4)当抛物线在矩形内的部分所对应的函数值随的增大而减小时,直接写出的取值范围.4.(2020·山东潍坊?中考真题)如图,抛物线与x 轴交于点和点,与y 轴交于点C ,顶点为D ,连接与抛物线的对称轴l 交于点A A ()3,0A x l P m P PQ l ^Q M l 32m -+PQ QM PQMN b Q M m PQMN m PQMN y x m 28(0)y ax bx a =++¹()2,0A -()8,0B ,,AC BC BCE .(1)求抛物线的表达式;(2)点P 是第一象限内抛物线上的动点,连接,当时,求点P 的坐标;(3)点N 是对称轴l 右侧抛物线上的动点,在射线上是否存在点M ,使得以点M ,N ,E 为顶点的三角形与相似?若存在,求点M 的坐标;若不存在,请说明理由.5.如图,在平面直角坐标系中,抛物线y =―23x 2+bx +c ,经过A (0,﹣4),B (x 1,0),C (x 2,0)三点,且|x 2―x 1|=5.,PB PC 35PBC ABC S S =V V ED OBC V(1)求b ,c 的值;(2)在抛物线上求一点D ,使得四边形BDCE 是以BC 为对角线的菱形;(3)在抛物线上是否存在一点P ,使得四边形BPOH 是以OB 为对角线的菱形?若存在,求出点P 的坐标,并判断这个菱形是否为正方形?若不存在,请说明理由.6.如图,顶点为M 的抛物线23y ax bx =++与x 轴交于()3,0A ,()1,0B -两点,与y 轴交于点C .(1)求这条抛物线对应的函数表达式;(2)问在y 轴上是否存在一点P ,使得PAM D 为直角三角形?若存在,求出点P 的坐标;若不存在,说明理由.(3)若在第一象限的抛物线下方有一动点D ,满足DA OA =,过D 作DG x ^轴于点G ,设ADG D 的内心为I ,试求CI 的最小值.7.(2019·浙江中考真题)如图,在平面直角坐标系中,正方形OABC 的边长为4,边OA,OC 分别在x 轴,y 轴的正半轴上,把正方形OABC 的内部及边上,横、纵坐标均为整数的点称为好点.点P 为抛物线2()2y x m m =--++的顶点.m=时,求该抛物线下方(包括边界)的好点个数.(1)当0m=时,求该抛物线上的好点坐标.(2)当3(3)若点P在正方形OABC内部,该抛物线下方(包括边界)恰好存在8个好点,求m的取值范围.8.(2017·湖北中考真题)如图,矩形OABC的两边在坐标轴上,点A的坐标为(10,0),抛物线y=ax2+bx+4过点B,C两点,且与x轴的一个交点为D(﹣2,0),点P是线段CB上的动点,设CP=t(0<t<10).(1)请直接写出B、C两点的坐标及抛物线的解析式;(2)过点P作PE⊥BC,交抛物线于点E,连接BE,当t为何值时,∠PBE=∠OCD?(3)点Q是x轴上的动点,过点P作PM∥BQ,交CQ于点M,作PN∥CQ,交BQ于点N,当四边形PMQN为正方形时,请求出t的值.。
(完整word)中考数学 二次函数存在性问题 及参考答案
中考数学二次函数存在性问题及参考答案一、二次函数中相似三角形的存在性问题1。
如图,把抛物线2=向左平移1个单位,再向下平移4个单位,得到抛物线2y x=-+.y x h k()所得抛物线与x轴交于A,B两点(点A在点B的左边),与y轴交于点C,顶点为D。
(1)写出h k、的值;(2)判断△ACD的形状,并说明理由;(3)在线段AC上是否存在点M,使△AOM∽△ABC?若存在,求出点M的坐标;若不存在,说明理由。
2。
如图,已知抛物线经过A(﹣2,0),B(﹣3,3)及原点O,顶点为C.(1)求抛物线的解析式;(2)若点D在抛物线上,点E在抛物线的对称轴上,且A、O、D、E为顶点的四边形是平行四边形,求点D的坐标;(3)P是抛物线上的第一象限内的动点,过点P作PM⊥x轴,垂足为M,是否存在点P,使得以P、M、A为顶点的三角形△BOC相似?若存在,求出点P的坐标;若不存在,请说明理由.二、二次函数中面积的存在性问题3。
如图,抛物线()20y ax bx a >=+与双曲线ky x=相交于点A ,B .已知点B 的坐标为(-2,-2),点A 在第一象限内,且tan ∠AOX =4.过点A 作直线AC ∥x 轴,交抛物线于另一点C . (1)求双曲线和抛物线的解析式; (2)计算△ABC 的面积;(3)在抛物线上是否存在点D,使△ABD 的面积等于△ABC 的面积.若存在,请你写出点D 的坐标;若不存在,请你说明理由.4。
如图,抛物线y =ax 2+c (a >0)经过梯形ABCD 的四个顶点,梯形的底AD 在x 轴上, 其中A (-2,0),B (-1, -3). (1)求抛物线的解析式;(3分)(2)点M 为y 轴上任意一点,当点M 到A 、B 两点的距离之和为最小时,求此时点M 的坐标;(2xyCB_ D_ AO分)(3)在第(2)问的结论下,抛物线上的点P使S△PAD=4S△ABM成立,求点P的坐标.(4分)(4)在抛物线的BD段上是否存在点Q使三角形BDQ的面积最大,若有,求出点Q的坐标,若没有,请说明理由。
九年级 二次函数单元复习练习(Word版 含答案)
九年级 二次函数单元复习练习(Word 版 含答案)一、初三数学 二次函数易错题压轴题(难)1.在平面直角坐标系中,二次函数22y ax bx =+-的图象与x 轴交于点(4,0)A -,(1,0)B ,与y 轴交于点C .(1)求此抛物线的解析式;(2)点P 是抛物线22y ax bx =+-上的任意一点,过点P 作x 轴的垂线PD ,直线PD交直线AC 于点D .①是否存在点P ,使得PAC ∆的面积是ABC ∆面积的45?若存在,求出点P 的坐标;若不存在,请说明理由.②点Q 是坐标平面内的任意一点,若以O ,C ,Q ,D 为顶点的四边形是菱形时,请直接写出点Q 的坐标. 【答案】(1)213222y x x =+- (2)①存在,点P 的坐标为(22,12)-+-,(222,12)--+,(2,3)-- ②1816,55Q ⎫⎛-- ⎪⎝⎭,2(2,1)Q -,34525Q ⎝⎭,44525Q ⎛ ⎝⎭【解析】 【分析】(1)将(4,0)A -,(1,0)B 两点坐标代入解析式中求解即可; (2)①先求出△PAC 的面积为4,再求出直线AC 的解析式为122y x =--.设点P 的横坐标为(t ,213222t t +-),利用21442∆∆∆=-=⋅=+=PAC PDC PDA S S S OA PD t t 即可求解; ②先设出D 点坐标,然后再按对角线分成三种情况讨论即可求解.【详解】解:(1)由题意得,将(4,0)A -,(1,0)B 两点坐标代入解析式中:1642020a b a b --=⎧⎨+-=⎩,解得:1232a b ⎧=⎪⎪⎨⎪=⎪⎩. ∴此抛物线的解析式为213222y x x =+-, 故答案为213222y x x =+-. (2)①存在点P ,使得PAC ∆的面积是ABC ∆面积的45.理由如下: 作出如下所示示意图:∵点(4,0)A -,(1,0)B , ∴4OA =,5AB =, 令0x =,则2y =-, ∴(0,2)C -,∴2OC =, ∴1152522ABC S AB OC ∆=⋅=⨯⨯=, ∴445545PAC ABC S S ∆∆==⨯=, 设直线AC 的解析式为y mx n =+,则有402m n n -+=⎧⎨=-⎩,解得:122m n ⎧=-⎪⎨⎪=-⎩,∴直线AC 的解析式为122y x =--. 设点P 的横坐标为t ,则其纵坐标为213222t t +-, 即213,222P t t t ⎫⎛+- ⎪⎝⎭. ∵PD x ⊥轴,则点D 的坐标为1,22t t ⎫⎛--⎪⎝⎭. ∴2213112222222PD t t t t t ⎫⎛=+----=+ ⎪⎝⎭. ∵22111424222PAC PDC PDA S S S OA PD t t t t ∆∆∆=-=⋅=⨯⨯+=+. ∴244t t +=,即2440t t +-=或2440t t ++=, 解得:1222t =-+,2222t =--,32t =-.∴点P 的坐标为(222,12)-+-,(222,12)--+,(2,3)--, 故答案为:(222,12)-+-或(222,12)--+或(2,3)--. ②分类讨论:情况一:当OC 为菱形的对角线时,此时DO=DC ,即D 点在线段OC 的垂直平分线, ∴D 点坐标(-2,-1),将△OCD 沿y 轴翻折,此时四边形ODCQ 为菱形,故此时Q 点坐标为(2,-1),如下图一所示,情况二:当OQ 为对角线时,DO=DQ ,如下图二所示,DQ=OC=OD=2,设D 点坐标1,22⎛⎫-- ⎪⎝⎭x x ,则EO=-x ,DE=122x +,在Rt △EDO 中,由勾股定理可知:EO²+ED²=DO², 故221(2)42++=x x ,解得80(),5舍==-x x ,此时Q 点坐标为816,55⎛⎫-- ⎪⎝⎭,情况三:当OD 为对角线时,OC=OQ=2,如下图三所示:设D 点坐标1,22⎛⎫-- ⎪⎝⎭m m ,则EO=|m|,DE=122m +,QE=2-(122m +)=12m , 在Rt △QDO 中,由勾股定理可知:QE²+EO²=QO², 故221()()42+=m m ,解得124545,==-m m ,此时Q 点坐标为4525,⎛⎫- ⎪ ⎪⎝⎭或4525,55⎛⎫- ⎪ ⎪⎝⎭, 综上所述,Q 点的坐标为1816,55Q ⎫⎛-- ⎪⎝⎭,2(2,1)Q -,34525,55Q ⎫⎛-⎪ ⎝⎭,44525,Q ⎫⎛-⎪ ⎝⎭.故答案为1816,55Q ⎫⎛-- ⎪⎝⎭,2(2,1)Q -,34525,Q ⎫⎛-⎪ ⎝⎭,44525,Q ⎫⎛-⎪ ⎝⎭.【点睛】本题考查了待定系数法求二次函数解析式,三角形的面积问题,菱形的存在性问题等,属于综合题,具有一定的难度,熟练掌握二次函数的图形及性质是解决本题的关键.2.如图,直线l :y =﹣3x +3与x 轴,y 轴分别相交于A 、B 两点,抛物线y =﹣x 2+2x +b 经过点B .(1)该抛物线的函数解析式;(2)已知点M 是抛物线上的一个动点,并且点M 在第一象限内,连接AM 、BM ,设点M 的横坐标为m ,△ABM 的面积为S ,求S 与m 的函数表达式,并求出S 的最大值; (3)在(2)的条件下,当S 取得最大值时,动点M 相应的位置记为点M '. ①写出点M '的坐标;②将直线l 绕点A 按顺时针方向旋转得到直线l ',当直线l ′与直线AM '重合时停止旋转,在旋转过程中,直线l '与线段BM '交于点C ,设点B ,M '到直线l '的距离分别为d 1,d 2,当d 1+d 2最大时,求直线l '旋转的角度(即∠BAC 的度数).【答案】(1)2y x 2x 3=-++;(2)21525228S m ⎛⎫=--+ ⎪⎝⎭ ,258;(3)①57,24M ⎛⎫'⎪⎝⎭;②45° 【解析】 【分析】(1)利用直线l 的解析式求出B 点坐标,再把B 点坐标代入二次函数解析式即可求出b 的值.(2)设M 的坐标为(m ,﹣m 2+2m +3),然后根据面积关系将△ABM 的面积进行转化. (3)①由(2)可知m =52,代入二次函数解析式即可求出纵坐标的值. ②可将求d 1+d 2最大值转化为求AC 的最小值. 【详解】(1)令x =0代入y =﹣3x+3, ∴y =3, ∴B (0,3),把B (0,3)代入y =﹣x 2+2x+b 并解得:b =3, ∴二次函数解析式为:y =﹣x 2+2x+3. (2)令y =0代入y =﹣x 2+2x+3,∴0=﹣x 2+2x+3, ∴x =﹣1或3,∴抛物线与x 轴的交点横坐标为-1和3, ∵M 在抛物线上,且在第一象限内, ∴0<m <3,令y =0代入y =﹣3x+3, ∴x =1,∴A 的坐标为(1,0),由题意知:M 的坐标为(m ,﹣m 2+2m+3), ∴S =S 四边形OAMB ﹣S △AOB =S △OBM +S △OAM ﹣S △AOB=12×m×3+12×1×(-m2+2m+3)-12×1×3=﹣12(m﹣52)2+258,∴当m=52时,S取得最大值258.(3)①由(2)可知:M′的坐标为(52,74).②设直线l′为直线l旋转任意角度的一条线段,过点M′作直线l1∥l′,过点B作BF⊥l1于点F,根据题意知:d1+d2=BF,此时只要求出BF的最大值即可,∵∠BFM′=90 ,∴点F在以BM′为直径的圆上,设直线AM′与该圆相交于点H,∵点C在线段BM′上,∴F在优弧'BM H上,∴当F与M′重合时,BF可取得最大值,此时BM′⊥l1,∵A(1,0),B(0,3),M′(52,74),∴由勾股定理可求得:AB10,M′B55M′A 85,过点M′作M′G⊥AB于点G,设BG=x,∴由勾股定理可得:M′B2﹣BG2=M′A2﹣AG2,∴851610﹣x)2=12516﹣x2,∴x =5108, cos ∠M′BG ='BG BM =2,∠M′BG= 45︒ 此时图像如下所示,∵l 1∥l′,F 与M′重合,BF ⊥l 1 ∴∠B M′P=∠BCA =90︒, 又∵∠M′BG=∠CBA= 45︒ ∴∠BAC =45︒. 【点睛】本题主要考查了一次函数与二次函数的综合以及一次函数旋转求角度问题,正确掌握一次函数与二次函数性质及综合问题的解法是解题的关键.3.如图所示,在平面直角坐标系中,抛物线2(0)y ax bx c a =++≠的顶点坐标为()3, 6C ,并与y 轴交于点()0, 3B ,点A 是对称轴与x 轴的交点.(1)求抛物线的解析式;(2)如图①所示, P 是抛物线上的一个动点,且位于第一象限,连结BP 、AP ,求ABP ∆的面积的最大值;(3)如图②所示,在对称轴AC 的右侧作30ACD ∠=交抛物线于点D ,求出D 点的坐标;并探究:在y 轴上是否存在点Q ,使60CQD ∠=?若存在,求点Q 的坐标;若不存在,请说明理由.【答案】(1)21233y x x =-++;(2)当92n =时,PBA S ∆最大值为818;(3)存在,Q 点坐标为((0,-或,理由见解析【解析】 【分析】(1)利用待定系数法可求出二次函数的解析式;(2)求三角形面积的最值,先求出三角形面积的函数式.从图形上看S △PAB=S △BPO+S △APO-S △AOB,设P 21,233n n n ⎛⎫-++ ⎪⎝⎭求出关于n 的函数式,从而求S △PAB 的最大值. (3) 求点D 的坐标,设D 21,233t t t ⎛⎫-++ ⎪⎝⎭,过D 做DG 垂直于AC 于G,构造直角三角形,利用勾股定理或三角函数值来求t 的值即得D 的坐标;探究在y 轴上是否存在点Q ,使60CQD ∠=?根据以上条件和结论可知∠CAD=120°,是∠CQD 的2倍,联想到同弧所对的圆周角和圆心角,所以以A 为圆心,AO 长为半径做圆交y 轴与点Q,若能求出这样的点,就存在Q 点. 【详解】解:()1抛物线顶点为()3,6∴可设抛物线解析式为()236y a x =-+将()0,3B 代入()236y a x =-+得396a =+ 13a ∴=-∴抛物线()21363y x =--+,即21233y x x =-++ ()2连接,3, 3OP BO OA ==,PBA BPO PAO ABO S S S S ∆∆∆∆=+-设P 点坐标为21,233n n n ⎛⎫-++ ⎪⎝⎭1133222BPO x S BO P n n ∆===2211119323322322PAO y S OA P n n n n ∆⎛⎫==-++=-++ ⎪⎝⎭11933222ABO S OA BO ∆==⨯⨯= 22231991919813222222228PBAS n n n n n n ∆⎛⎫⎛⎫=+-++-=-+=--+ ⎪ ⎪⎝⎭⎝⎭ ∴当92n =时,PBA S ∆最大值为818()3存在,设点D 的坐标为21,233t t t ⎛⎫-++⎪⎝⎭过D 作对称轴的垂线,垂足为G ,则213,6233DG t CG t t ⎛⎫=-=--++ ⎪⎝⎭30ACD ∠=2DG DC ∴=在Rt CGD ∆中有222243CG CD DG DG DG DG =+=-=)21336233t t t ⎛⎫-=--++ ⎪⎝⎭化简得(1133303t t ⎛⎫---= ⎪⎝⎭13t ∴=(舍去),2333t =+∴点D(333+3,33AG GD ∴==连接AD ,在Rt ADG ∆中229276AD AG GD ++=6,120AD AC CAD ∴==∠=Q ∴在以A 为圆心,AC 为半径的圆与y 轴的交点上此时1602CQD CAD ∠=∠= 设Q 点为(0,m), AQ 为A 的半径 则AQ ²=OQ ²+OA ², 6²=m ²+3²即2936m += ∴1233,33m m ==-综上所述,Q 点坐标为()()0,330,33-或故存在点Q ,且这样的点有两个点.【点睛】(1)本题考查了利用待定系数法求二次函数解析式,根据已知条件选用顶点式较方便;(2)本题是三角形面积的最值问题,解决这个问题应该在分析图形的基础上,引出自变量,再根据图形的特征列出面积的计算公式,用含自变量的代数式表示面积的函数式,然后求出最值.(3)先求抛物线上点的坐标问题及符合条件的点是否存在.一般先假设这个点存在,再根据已知条件求出这个点.4.如图,已知点()1,2A 、()()5,0B n n >,点P 为线段AB 上的一个动点,反比例函数()0k y x x=>的图像经过点P .小明说:“点P 从点A 运动至点B 的过程中,k 值逐渐增大,当点P 在点A 位置时k 值最小,在点B 位置时k 值最大.”(1)当1n =时.①求线段AB 所在直线的函数表达式.②你完全同意小明的说法吗?若完全同意,请说明理由;若不完全同意,也请说明理由,并求出正确的k 的最小值和最大值.(2)若小明的说法完全正确,求n 的取值范围.【答案】(1)①1944y x =-+;②不完全同意小明的说法;理由见详解;当92x =时,k 有最大值8116;当1x =时,k 有最小值2;(2)109n ≥; 【解析】【分析】(1)①直接利用待定系数法,即可求出函数的表达式;②由①得直线AB 为1944y x =-+,则21944k x x =-+,利用二次函数的性质,即可求出答案;(2)根据题意,求出直线AB 的直线为21044n n y x --=+,设点P 为(x ,k x ),则得到221044n n k x x --=-,讨论最高项的系数,再由一次函数及二次函数的性质,得到对称轴52b a-≥,即可求出n 的取值范围. 【详解】解:(1)当1n =时,点B 为(5,1),①设直线AB 为y ax b =+,则251a b a b +=⎧⎨+=⎩,解得:1494a b ⎧=-⎪⎪⎨⎪=⎪⎩, ∴1944y x =-+; ②不完全同意小明的说法;理由如下: 由①得1944y x =-+, 设点P 为(x ,k x),由点P 在线段AB 上则 1944k x x =-+,∴22191981()444216k x x x =-+=--+; ∵104-<, ∴当92x =时,k 有最大值8116; 当1x =时,k 有最小值2;∴点P 从点A 运动至点B 的过程中,k 值先增大后减小,当点P 在点A 位置时k 值最小,在92x =的位置时k 值最大. (2)∵()1,2A 、()5,B n ,设直线AB 为y ax b =+,则25a b a b n +=⎧⎨+=⎩,解得:24104n a n b -⎧=⎪⎪⎨-⎪=⎪⎩, ∴21044n n y x --=+, 设点P 为(x ,k x ),由点P 在线段AB 上则 221044n n k x x --=-, 当204n -=,即n=2时,2k x =,则k 随x 的增大而增大,如何题意; 当n≠2时,则对称轴为:101042242n n x n n --==--; ∵点P 从点A 运动至点B 的过程中,k 值逐渐增大,当点P 在点A 位置时k 值最小,在点B 位置时k 值最大.即k 在15x ≤≤中,k 随x 的增大而增大; 当204n ->时,有 ∴20410124n n n -⎧>⎪⎪⎨-⎪≤⎪-⎩,解得:26n n >⎧⎨≥-⎩, ∴不等式组的解集为:2n >;当204n -<时,有 ∴20410524n n n -⎧<⎪⎪⎨-⎪≥⎪-⎩,解得:1029n ≤<, ∴综合上述,n 的取值范围为:109n ≥. 【点睛】本题考查了二次函数的性质,反比例函数的性质,一次函数的性质,以及解不等式组,解题的关键是熟练掌握所学的知识,掌握所学函数的性质进行解题,注意利用分类讨论的思想进行分析.5.定义:对于已知的两个函数,任取自变量x 的一个值,当0x ≥时,它们对应的函数值相等;当0x <时,它们对应的函数值互为相反数,我们称这样的两个函数互为相关函数.例如:正比例函数y x =,它的相关函数为(0)(0)x x y x x ≥⎧=⎨-<⎩. (1)已知点()5,10A -在一次函数5y ax =-的相关函数的图像上,求a 的值; (2)已知二次函数2142y x x =-+-. ①当点3,2B m ⎛⎫ ⎪⎝⎭在这个函数的相关函数的图像上时,求m 的值;②当33x -≤≤时,求函数2142y x x =-+-的相关函数的最大值和最小值. (3)在平面直角坐标系中,点M 、N 的坐标分别为1,12⎛⎫-⎪⎝⎭、9,12⎛⎫ ⎪⎝⎭,连结MN .直接写出线段MN 与二次函数24y x x n =-++的相关函数的图像有两个公共点时n 的取值范围.【答案】(1)1;(2)①22- ;②max 432y =,min 12y =-;(3)31n -<≤-,514n <≤【解析】【分析】 (1)先求出5y ax =-的相关函数,然后代入求解,即可得到答案;(2)先求出二次函数的相关函数,①分为m <0和m ≥0两种情况将点B 的坐标代入对应的关系式求解即可;②当-3≤x <0时,y=x 2-4x+12,然后可 此时的最大值和最小值,当0≤x≤3时,函数y=-x 2+4x-12,求得此时的最大值和最小值,从而可得到当-3≤x≤3时的最大值和最小值; (3)首先确定出二次函数y=-x 2+4x+n 的相关函数与线段MN 恰好有1个交点、2个交点、3个交点时n 的值,然后结合函数图象可确定出n 的取值范围.【详解】解:(1)根据题意,一次函数5y ax =-的相关函数为5,(0)5,(0)ax x y ax x -≥⎧=⎨-+<⎩, ∴把点()5,10A -代入5y ax =-+,则(5)510a -⨯-+=,∴1a =;(2)根据题意,二次函数2142y x x =-+-的相关函数为2214,(0)214,(0)2x x x y x x x ⎧-+-≥⎪⎪=⎨⎪-+<⎪⎩, ①当m <0时,将B (m ,32)代入y=x 2-4x+12得m 2-4m+1322=, 解得:m=2当m≥0时,将B (m ,32)代入y=-x 2+4x-12得:-m 2+4m-12=32, 解得:或m=2.综上所述:m=2-或m=2+或m=2-②当-3≤x <0时,y=x 2-4x+12,抛物线的对称轴为x=2,此时y 随x 的增大而减小, ∴当3x =-时,有最大值,即2143(3)4(3)22y =--⨯-+=, ∴此时y 的最大值为432. 当0≤x≤3时,函数y=-x 2+4x 12-,抛物线的对称轴为x=2, 当x=0有最小值,最小值为12-, 当x=2时,有最大值,最大值y=72. 综上所述,当-3≤x≤3时,函数y=-x 2+4x 12-的相关函数的最大值为432,最小值为12-; (3)如图1所示:线段MN 与二次函数y=-x 2+4x+n 的相关函数的图象恰有1个公共点.∴当x=2时,y=1,即-4+8+n=1,解得n=-3.如图2所示:线段MN与二次函数y=-x2+4x+n的相关函数的图象恰有3个公共点.∵抛物线y=x2-4x-n与y轴交点纵坐标为1,∴-n=1,解得:n=-1.∴当-3<n≤-1时,线段MN与二次函数y=-x2+4x+n的相关函数的图象恰有2个公共点.如图3所示:线段MN与二次函数y=-x2+4x+n的相关函数的图象恰有3个公共点.∵抛物线y=-x2+4x+n经过点(0,1),∴n=1.如图4所示:线段MN与二次函数y=-x2+4x+n的相关函数的图象恰有2个公共点.∵抛物线y=x 2-4x-n 经过点M (12-,1), ∴14+2-n=1,解得:n=54. ∴1<n≤54时,线段MN 与二次函数y=-x 2+4x+n 的相关函数的图象恰有2个公共点. 综上所述,n 的取值范围是-3<n≤-1或1<n≤54. 【点睛】本题主要考查的是二次函数的综合应用,解答本题主要应用了二次函数的图象和性质、函数图象上点的坐标与函数解析式的关系,求得二次函数y=-x 2+4x+n 的相关函数与线段MN 恰好有1个交点、2个交点、3个交点时n 的值是解题的关键.6.已知二次函数y =ax 2+bx +c (a ≠0).(1)若b =1,a =﹣12c ,求证:二次函数的图象与x 轴一定有两个不同的交点; (2)若a <0,c =0,且对于任意的实数x ,都有y ≤1,求4a +b 2的取值范围; (3)若函数图象上两点(0,y 1)和(1,y 2)满足y 1•y 2>0,且2a +3b +6c =0,试确定二次函数图象对称轴与x 轴交点横坐标的取值范围.【答案】(1)见解析;(2)240a b +≤ ;(3)12323b a <-< 【解析】【分析】(1)根据已知条件计算一元二次方程的判别式即可证得结论;(2)根据已知条件求得抛物线的顶点纵坐标,再整理即可;(3)将(0,y 1)和(1,y 2)分别代入函数解析式,由y 1•y 2>0,及2a +3b +6c =0,得不等式组,变形即可得出答案.【详解】解:(1)证明:∵y =ax 2+bx+c (a≠0),∴令y =0得:ax 2+bx+c =0∵b =1,a =﹣12c ,∴△=b 2﹣4ac =1﹣4(﹣12c )c =1+2c 2, ∵2c 2≥0,∴1+2c 2>0,即△>0, ∴二次函数的图象与x 轴一定有两个不同的交点;(2)∵a <0,c =0,∴抛物线的解析式为y =ax 2+bx ,其图象开口向下,又∵对于任意的实数x ,都有y≤1,∴顶点纵坐标214b a-≤, ∴﹣b 2≥4a ,∴4a+b 2≤0;(3)由2a+3b+6c =0,可得6c =﹣(2a+3b ),∵函数图象上两点(0,y 1)和(1,y 2)满足y 1•y 2>0,∴c (a+b+c )>0,∴6c (6a+6b+6c )>0,∴将6c =﹣(2a+3b )代入上式得,﹣(2a+3b )(4a+3b )>0,∴(2a+3b )(4a+3b )<0,∵a≠0,则9a 2>0,∴两边同除以9a 2得,24()()033b b a a ++<, ∴203403b a b a ⎧+<⎪⎪⎨⎪+>⎪⎩或203403b a b a ⎧+>⎪⎪⎨⎪+<⎪⎩, ∴4233b a -<<-, ∴二次函数图象对称轴与x 轴交点横坐标的取值范围是:12323b a <-<. 【点睛】 本题考查了抛物线与x 轴的交点、抛物线与一元二次方程的关系及抛物线与不等式的关系等知识点,熟练掌握二次函数的性质是解题的关键.7.如图,已知抛物线y=ax 2+bx+c(a≠0)的顶点坐标为Q(2,-1),且与y 轴交于点C(0,3),与x 轴交于A ,B 两点(点A 在点B 的右侧),点P 是该抛物线上的一动点,从点C 沿抛物线向点A 运动(点P 与A 不重合),过点P 作PD ∥y 轴,交AC 于点D .(1)求该抛物线的函数关系式;(2)当△ADP 是直角三角形时,求点P 的坐标;(3)在题(2)的结论下,若点E在x轴上,点F在抛物线上,问是否存在以A、P、E、F为顶点的平行四边形?若存在,求点F的坐标;若不存在,请说明理由.【答案】(1) y=x2﹣4x+3;(2) P1(1,0),P2(2,﹣1);(3) F1(22,1),F2(22,1).【解析】【分析】(1)已知了抛物线的顶点坐标,可将抛物线的解析式设为顶点式,然后将函数图象经过的C点坐标代入上式中,即可求出抛物线的解析式;(2)由于PD∥y轴,所以∠ADP≠90°,若△ADP是直角三角形,可考虑两种情况:①以点P为直角顶点,此时AP⊥DP,此时P点位于x轴上(即与B点重合),由此可求出P点的坐标;②以点A为直角顶点,易知OA=OC,则∠OAC=45°,所以OA平分∠CAP,那么此时D、P关于x轴对称,可求出直线AC的解析式,然后设D、P的横坐标,根据抛物线和直线AC的解析式表示出D、P的纵坐标,由于两点关于x轴对称,则纵坐标互为相反数,可据此求出P 点的坐标;(3)很显然当P、B重合时,不能构成以A、P、E、F为顶点的四边形,因为点P、F都在抛物线上,且点P为抛物线的顶点,所以PF与x轴不平行,所以只有(2)②的一种情况符合题意,由②知此时P、Q重合;假设存在符合条件的平行四边形,那么根据平行四边形的性质知:P、F的纵坐标互为相反数,可据此求出F点的纵坐标,代入抛物线的解析式中即可求出F点的坐标.【详解】(1)∵抛物线的顶点为Q(2,﹣1),∴设抛物线的解析式为y=a(x﹣2)2﹣1,将C(0,3)代入上式,得:3=a(0﹣2)2﹣1,a=1;∴y=(x﹣2)2﹣1,即y=x2﹣4x+3;(2)分两种情况:①当点P1为直角顶点时,点P1与点B重合;令y=0,得x2﹣4x+3=0,解得x1=1,x2=3;∵点A在点B的右边,∴B(1,0),A(3,0);∴P 1(1,0);②当点A 为△AP 2D 2的直角顶点时; ∵OA=OC ,∠AOC=90°,∴∠OAD 2=45°;当∠D 2AP 2=90°时,∠OAP 2=45°, ∴AO 平分∠D 2AP 2;又∵P 2D 2∥y 轴,∴P 2D 2⊥AO ,∴P 2、D 2关于x 轴对称;设直线AC 的函数关系式为y=kx+b (k≠0). 将A (3,0),C (0,3)代入上式得: 303k b b +=⎧⎨=⎩, 解得13k b =-⎧⎨=⎩; ∴y=﹣x+3;设D 2(x ,﹣x+3),P 2(x ,x 2﹣4x+3), 则有:(﹣x+3)+(x 2﹣4x+3)=0, 即x 2﹣5x+6=0;解得x 1=2,x 2=3(舍去);∴当x=2时,y=x 2﹣4x+3=22﹣4×2+3=﹣1; ∴P 2的坐标为P 2(2,﹣1)(即为抛物线顶点). ∴P 点坐标为P 1(1,0),P 2(2,﹣1); (3)由(2)知,当P 点的坐标为P 1(1,0)时,不能构成平行四边形; 当点P 的坐标为P 2(2,﹣1)(即顶点Q )时, 平移直线AP 交x 轴于点E ,交抛物线于F ; ∵P (2,﹣1),∴可设F (x ,1);∴x 2﹣4x+3=1,解得x 1=22,x 22; ∴符合条件的F 点有两个,即F 1(2﹣2,1),F 2(2+2,1).【点睛】此题主要考查了二次函数的解析式的确定、直角三角形的判定、平行四边形的判定与性质等重要知识点,同时还考查了分类讨论的数学思想,能力要求较高,难度较大.8.如图1,在平面直角坐标系中,O 为原点,抛物线2y ax bx c =++经过、、A B C 三点,且其对称轴为1,x =其中点()0,3C ,点()3,0B .(1)求抛物线的解析式;(2)①如图(1),点D 是直线CB 上方抛物线上的动点,当四边形DCAB 的面积取最大值时,求点D 的坐标;②如图(2),连接,CA 在抛物线上有一点,M 满足12MCB ACO ∠=∠,请直接写出点M 的横坐标.【答案】(1)23233=y x ;(2)①D 3532,,②233+2 【解析】【分析】 (1)根据点(3C ,点()3,0B ,利用待定系数法,可得函数解析式;(2)①先求出直线BC 的解析式,当直线m 与抛物线只有一个交点时,点D 到BC 的距离最远,此时△BCD 取最大值,故四边形DCAB 有最大值,求出b 的值代入原式即可得到答案; ②根据题干条件抛物线上有一点,M 满足12MCB ACO ∠=∠,通过利用待定系数法利用方程组求出直线BE 的解析式,可得答案.【详解】解:(1)由题意得: 120933b a a b ⎧-=⎪⎨⎪=++⎩解得323a ,b 故抛物线的解析式是23233=++y x x .图(1) 图(2)(2)①设直线BC 的解析式为3.∵直线BC 过点B (3,0),∴3则k=33-, 故直线BC 解析式为y=33 设直线m 解析式为3yx b ,且直线m ∥直线BC 当直线m 与抛物线只有一个交点时,点D 到BC 的距离最远,此时△BCD 取最大值,故四边形DCAB 有最大值. 令23323b 3+=+ 23-333330x x b 当2Δ(-33)-43(333)0b 时直线m 与抛物线有唯一交点 解之得:73,b 代入原式可求得:32x =∴D 353(2图(3)过D 作DP ∥y 轴交CB 于点P ,△DCB 面积=△DPC 面积+△DPB 面积, ∴D 3532⎛ ⎝⎭②存在,点M 的横坐标为313+2解题提示:如图3符合条件的直线有两条: CM 1和CM 2(分别在CB 的上方和下方)∵在Rt △ACO 中,∠ACO=30°,在Rt △COB 中,∠CBO=30°,∴∠BCM 1=∠BCM 2=15°∵△BCE 中,∠BCE=∠BEC 2=15°∴BC=BE=23则E (33+0)设直线CE 解析式为:3y kx =+ ∴0(323)3k解之得:32∴直线CE 解析式为:(32)3y x ∴23233(32)3y x x y x ⎧=+⎪⎨⎪=⎩解得:x 1=0,x 23-1∵ 在Rt △OCF 中,∠CBO=30°,∠BCF=15°∴在Rt △COF 中, ∠CFO=45° ∴3∴F 30)∴直线CF 的解析式为-3y x∴23233-3y x x y x ⎧=-++⎪⎨⎪=+⎩解之得:30x =(舍去),43+2x即点M 的横坐标为:23-1或3+2【点睛】本题考查了二次函数的综合题:熟练掌握二次函数图象上点的坐标特征、一次函数图象上点的坐标特征和二次函数的性质;会利用待定系数法求二次函数解析式,理解坐标与图形性质是解题关键.9.如图,已知抛物2(0)y ax bx c a =++≠经过点,A B ,与y 轴负半轴交于点C ,且OC OB =,其中B 点坐标为(3,0),对称轴l 为直线12x =. (1)求抛物线的解析式; (2) 在x 轴上方有一点P , 连接PA 后满足PAB CAB ∠=∠, 记PBC ∆的面积为S , 求当10.5S =时点P 的坐标(3)在(2)的条件下,当点P 恰好落在抛物线上时,将直线BC 上下平移,平移后的10.5S =时点P 的坐标;直线y x t =+与抛物线交于,C B ''两点(C '在B '的左侧),若以点,,C B P ''为顶点的三角形是直角三角形,求出t 的值.【答案】(1)211322y x x =--(2)(2,6)(3)19或32 【解析】【分析】 (1)确定点A 的坐标,再进行待定系数法即可得出结论;(2)确定直线AP 的解析式,用m 表示点P 的坐标,由面积关系求S 和m 的函数关系式即可求解;(3)先确定点P 的坐标,当'''90B PC ∠=,利用根与系数的关系确定'''B C 的中点E 的坐标,利用''2B C PE =建立方程求解,当''''90PC B ∠=时,确定点G 的坐标,进而求出直线''C G 的解析式,得出点''C 的坐标即可得出结论.【详解】(1)∵OC OB =,且B 点坐标为(3,0),∴C 点坐标为(0,3)-. 设抛物线解析式为21()2y a x k =-+. 将B 、C 两点坐标代入得2504134a k a k ⎧=+⎪⎪⎨⎪-=+⎪⎩,解得12258a k ⎧=⎪⎪⎨⎪=-⎪⎩. ∴抛物线解析式为22112511()-322822y x x x =-=--. (2)如图1,设AP 与y 轴交于点'C .∵PAB CAB ∠=∠,OA OA =,90AOC AOC ∠'=∠=︒,∴AOC ∆≌AOC ∆',∴3OC OC ='=,∴(0,3)C '.∵对称轴l 为直线12x =, ∴(2,0)A -,∴直线AP 解析式为332y x =+, ∵(3,0)B ,(0,-3)C ,∴直线BC 解析式为-3y x =, ∴313(3)622PF x x x =+--=+, ∴13924PBC S OB PF x ∆=⨯⨯=+, ∵10.5S =,∴3910.54x +=, ∴2x =. 此时P 点的坐标为(2,6).(3)如图2,由211-322332y x x y x ⎧=-⎪⎪⎨⎪=+⎪⎩得6,12P (), 当90C PB ∠=''︒时,取''B C 的中点E ,连接PE .则2B C PE ''=,即224B C PE =''.设1122(,),(,)B x y C x y ''. 由211-322y x x y x t⎧=-⎪⎨⎪=+⎩得23(26)0x x t --+=, ∴12123,(26)x x x x t +==-+, ∴点33(,)22E t +, 222221212121212()()2()2()41666B C x x y y x x x x x x t ⎡⎤=-+-=-+-=+⎣=⎦'',222233261(6)(1221222PE t t t =-+-=-+), ∴226116664(21)2t t t +=-+, 解得:19t =或6(舍去),当90PC B ''''∠=︒时,延长C P ''交BC 于H ,交x 轴于G .则90,45BHG PGO ∠=︒∠=︒,过点P 作PG x ⊥轴于点Q ,则12GQ PQ ==,∴(18,0)G ,∴直线C G ''的解析式为18y x =-+,由211-322-18y x xy x⎧=-⎪⎨⎪=+⎩得725xy=-⎧⎨=⎩或612xy=⎧⎨=⎩(舍去),∴(7,25)C'-',将(7,25)C'-'代入y x t=+中得32t=.综上所述,t的值为19或32.【点睛】本题主要考查了待定系数法、全等三角形的判定和性质、三角形面积的计算方法、根与系数的关系、直角三角形的性质,属于二次函数综合题.10.在平面直角坐标系中,二次函数y=ax2+bx+2的图象与x轴交于A(﹣3,0),B(1,0)两点,与y轴交于点C.(1)求这个二次函数的关系解析式;(2)求直线AC的函数解析式;(3)点P是直线AC上方的抛物线上一动点,是否存在点P,使△ACP的面积最大?若存在,求出点P的坐标;若不存在,说明理由;【答案】(1)y=﹣23x2﹣43x+2;(2)223y x=+;(3)存在,(35,22-)【解析】【分析】(1)直接用待定系数法即可解答;(2)先确定C点坐标,设直线AC的函数解析式y=kx+b,最后用待定系数法求解即可;(3)连接PO,作PM⊥x轴于M,PN⊥y轴于N,然后求出△ACP面积的表达式,最后利用二次函数的性质求最值即可.【详解】解:(1)∵抛物线y=ax2+bx+2过点A(﹣3,0),B(1,0),∴093202a ba b=-+⎧⎨=++⎩解得2343ab⎧=-⎪⎪⎨⎪=-⎪⎩,∴二次函数的关系解析式为y=﹣23x2﹣43x+2;(2)∵当x=0时,y=2,∴C(0,2)设直线AC的解析式为y kx b=+,把A、C两点代入得0=32k bb-+⎧⎨=⎩解得232kb⎧=⎪⎨⎪=⎩∴直线AC的函数解析式为223y x=+;(3)存在.如图: 连接PO,作PM⊥x轴于M,PN⊥y轴于N设点P坐标为(m,n),则n=224233m m--+),PN=-m,AO=3当x=0时,y=22400233-⨯-⨯+=2,∴点C的坐标为(0,2),OC=2∵PAC PAO PCO ACOS S S S=+-212411322()3223322m m m ⎛⎫=⨯⋅--++⨯⋅--⨯⨯ ⎪⎝⎭ =23m m --∵a=-1<0∴函数S △PAC =-m 2-3m 有最大值 ∴b 当m=()33212-=--⨯- ∴当m=32-时,S △PAC 有最大值n=222423435223332322m m ⎛⎫--+=-⨯-⨯+= ⎪⎝⎭ ∴当△ACP 的面积最大时,P 的坐标为(35,22-). 【点睛】 本题是二次函数压轴题,综合考查了二次函数的图象与性质、待定系数法、二次函数极值等知识点,根据题意表示出△PAC 的面积是解答本题的关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.如图,已知抛物线y=x2+bx+c的图象经过点A(l,0),B(﹣3,0),与y轴交于点C,抛物线的顶点为D,对称轴与x轴相交于点E,连接BD.(1)求抛物线的解析式.(2)若点P在直线BD上,当PE=PC时,求点P的坐标.(3)在(2)的条件下,作PF⊥x轴于F,点M为x轴上一动点,N为直线PF上一动点,G为抛物线上一动点,当以点F,N,G,M四点为顶点的四边形为正方形时,求点M的坐标.2.如图,抛物线y=﹣x2+bx+c与x轴交于点A和点B,与y轴交于点C,点B坐标为(6,0),点C坐标为(0,6),点D是抛物线的顶点,过点D作x轴的垂线,垂足为E,连接BD.(1)求抛物线的解析式及点D的坐标;(2)点F是抛物线上的动点,当∠FBA=∠BDE时,求点F的坐标;(3)若点M是抛物线上的动点,过点M作MN∥x轴与抛物线交于点N,点P在x轴上,点Q在坐标平面内,以线段MN为对角线作正方形MPNQ,请写出点Q的坐标.3.如图,已知抛物线y=ax2+bx﹣3过点A(﹣1,0),B(3,0),点M、N为抛物线上的动点,过点M 作MD∥y轴,交直线BC于点D,交x轴于点E.过点N作NF⊥x轴,垂足为点F(1)求二次函数y=ax2+bx﹣3的表达式;(2)若M点是抛物线上对称轴右侧的点,且四边形MNFE为正方形,求该正方形的面积;(3)若M点是抛物线上对称轴左侧的点,且∠DMN=90°,MD=MN,请直接写出点M的横坐标.4.(2015 贵州省毕节地区) 如图,抛物线y=x2+bx+c与x轴交于A(﹣1,0),B(3,0)两点,顶点M关于x轴的对称点是M′.(1)求抛物线的解析式;(2)若直线AM′与此抛物线的另一个交点为C,求△CAB的面积;(3)是否存在过A,B两点的抛物线,其顶点P关于x轴的对称点为Q,使得四边形APBQ为正方形?若存在,求出此抛物线的解析式;若不存在,请说明理由.5. (2016 辽宁省铁岭市) .如图,抛物线y=﹣x2+bx+c与x轴交于点A,点B,与y轴交于点C,点B坐标为(6,0),点C坐标为(0,6),点D是抛物线的顶点,过点D作x轴的垂线,垂足为E,连接BD.(1)求抛物线的解析式及点D的坐标;(2)点F是抛物线上的动点,当∠FBA=∠BDE时,求点F的坐标;(3)若点M是抛物线上的动点,过点M作MN∥x轴与抛物线交于点N,点P在x轴上,点Q在平面内,以线段MN为对角线作正方形MPNQ,请直接写出点Q的坐标.6. (2016 广东省茂名市) .如图,抛物线y=﹣x2+bx+c经过A(﹣1,0),B(3,0)两点,且与y轴交于点C,点D是抛物线的顶点,抛物线的对称轴DE交x轴于点E,连接BD.(1)求经过A,B,C三点的抛物线的函数表达式;(2)点P是线段BD上一点,当PE=PC时,求点P的坐标;(3)在(2)的条件下,过点P作PF⊥x轴于点F,G为抛物线上一动点,M为x轴上一动点,N为直线PF上一动点,当以F、M、G为顶点的四边形是正方形时,请求出点M的坐标.二次函数专题训练(正方形的存在性问题)参考答案1.如图,已知抛物线y=x2+bx+c的图象经过点A(l,0),B(﹣3,0),与y轴交于点C,抛物线的顶点为D,对称轴与x轴相交于点E,连接BD.(1)求抛物线的解析式.(2)若点P在直线BD上,当PE=PC时,求点P的坐标.(3)在(2)的条件下,作PF⊥x轴于F,点M为x轴上一动点,N为直线PF上一动点,G为抛物线上一动点,当以点F,N,G,M四点为顶点的四边形为正方形时,求点M的坐标.【解答】解:(1)∵抛物线y=x2+bx+c的图象经过点A(1,0),B(﹣3,0),∴,∴,∴抛物线的解析式为y=x2+2x﹣3;(2)由(1)知,抛物线的解析式为y=x2+2x﹣3;∴C(0,﹣3),抛物线的顶点D(﹣1,﹣4),∴E(﹣1,0),设直线BD的解析式为y=mx+n,∴,∴,∴直线BD的解析式为y=﹣2x﹣6,设点P(a,﹣2a﹣6),∵C(0,﹣3),E(﹣1,0),根据勾股定理得,PE2=(a+1)2+(﹣2a﹣6)2,PC2=a2+(﹣2a﹣6+3)2,∵PC=PE,∴(a+1)2+(﹣2a﹣6)2=a2+(﹣2a﹣6+3)2,∴a=﹣2,∴y=﹣2×(﹣2)﹣6=﹣2,∴P(﹣2,﹣2),(3)如图,作PF⊥x轴于F,∴F(﹣2,0),设M(d,0),∴G(d,d2+2d﹣3),N(﹣2,d2+2d﹣3),∵以点F,N,G,M四点为顶点的四边形为正方形,必有FM=MG,∴|d+2|=|d2+2d﹣3|,∴d=或d=,∴点M的坐标为(,0),(,0),(,0),(,0).2.如图,抛物线y=﹣x2+bx+c与x轴交于点A和点B,与y轴交于点C,点B坐标为(6,0),点C坐标为(0,6),点D是抛物线的顶点,过点D作x轴的垂线,垂足为E,连接BD.(1)求抛物线的解析式及点D的坐标;(2)点F是抛物线上的动点,当∠FBA=∠BDE时,求点F的坐标;(3)若点M是抛物线上的动点,过点M作MN∥x轴与抛物线交于点N,点P在x轴上,点Q在坐标平面内,以线段MN为对角线作正方形MPNQ,请写出点Q的坐标.【解答】解:(1)把B、C两点坐标代入抛物线解析式可得,解得,∴抛物线解析式为y=﹣x2+2x+6,∵y=﹣x2+2x+6=﹣(x﹣2)2+8,∴D(2,8);(2)如图1,过F作FG⊥x轴于点G,设F(x,﹣x2+2x+6),则FG=|﹣x2+2x+6|,∵∠FBA=∠BDE,∠FGB=∠BED=90°,∴△FBG∽△BDE,∴=,∵B(6,0),D(2,8),∴E(2,0),BE=4,DE=8,OB=6,∴BG=6﹣x,∴=,当点F在x轴上方时,有=,解得x=﹣1或x=6(舍去),此时F点的坐标为(﹣1,);当点F在x轴下方时,有=﹣,解得x=﹣3或x=6(舍去),此时F点坐标为(﹣3,﹣);综上可知F点的坐标为(﹣1,)或(﹣3,﹣);(3)如图2,设对角线MN、PQ交于点O′,∵点M、N关于抛物线对称轴对称,且四边形MPNQ为正方形,∴点P为抛物线对称轴与x轴的交点,点Q在抛物线的对称轴上,设Q(2,2n),则M坐标为(2﹣n,n),∵点M在抛物线y=﹣x2+2x+6的图象上,∴n=﹣(2﹣n)2+2(2﹣n)+6,解得n=﹣1+或n=﹣1﹣,∴满足条件的点Q有两个,其坐标分别为(2,﹣2+2)或(2,﹣2﹣2).3.如图,已知抛物线y=ax2+bx﹣3过点A(﹣1,0),B(3,0),点M、N为抛物线上的动点,过点M 作MD∥y轴,交直线BC于点D,交x轴于点E.过点N作NF⊥x轴,垂足为点F(1)求二次函数y=ax2+bx﹣3的表达式;(2)若M点是抛物线上对称轴右侧的点,且四边形MNFE为正方形,求该正方形的面积;(3)若M点是抛物线上对称轴左侧的点,且∠DMN=90°,MD=MN,请直接写出点M的横坐标.【解答】解:(1)把A(﹣1,0),B(3,0)代入y=ax2+bx﹣3,得:,解得,故该抛物线解析式为:y=x2﹣2x﹣3;(2)由(1)知,抛物线解析式为:y=x2﹣2x﹣3=(x﹣1)2﹣4,∴该抛物线的对称轴是x=1,顶点坐标为(1,﹣4).如图,设点M坐标为(m,m2﹣2m﹣3),其中m>1,∴ME=|﹣m2+2m+3|,∵M、N关于x=1对称,且点M在对称轴右侧,∴点N的横坐标为2﹣m,∴MN=2m﹣2,∵四边形MNFE为正方形,∴ME=MN,∴|﹣m2+2m+3|=2m﹣2,分两种情况:①当﹣m2+2m+3=2m﹣2时,解得:m1=、m2=﹣(不符合题意,舍去),当m=时,正方形的面积为(2﹣2)2=24﹣8;②当﹣m2+2m+3=2﹣2m时,解得:m3=2+,m4=2﹣(不符合题意,舍去),当m=2+时,正方形的面积为[2(2+)﹣2]2=24+8;综上所述,正方形的面积为24+8或24﹣8.(3)设BC所在直线解析式为y=px+q,把点B(3,0)、C(0,﹣3)代入表达式,得:,解得:,∴直线BC的函数表达式为y=x﹣3,设点M的坐标为(t,t2﹣2t﹣3),其中t<1,则点N(2﹣t,t2﹣2t﹣3),点D(t,t﹣3),∴MN=2﹣t﹣t=2﹣2t,MD=|t2﹣2t﹣3﹣t+3|=|t2﹣3t|.∵MD=MN,∴|t2﹣3t|=2﹣2t,分两种情况:①当t2﹣3t=2﹣2t时,解得t1=﹣1,t2=2(不符合题意,舍去).②当3t﹣t2=2﹣2t时,解得t3=,t2=(不符合题意,舍去).综上所述,点M的横坐标为﹣1或.4.(2015 贵州省毕节地区) 如图,抛物线y=x2+bx+c与x轴交于A(﹣1,0),B(3,0)两点,顶点M关于x轴的对称点是M′.(1)求抛物线的解析式;(2)若直线AM′与此抛物线的另一个交点为C,求△CAB的面积;(3)是否存在过A,B两点的抛物线,其顶点P关于x轴的对称点为Q,使得四边形APBQ为正方形?若存在,求出此抛物线的解析式;若不存在,请说明理由.分析:(1)根据待定系数法,可得函数解析式;(2)根据轴对称,可得M′的坐标,根据待定系数法,可得AM′的解析式,根据解方程组,可得B点坐标,根据三角形的面积公式,可得答案;(3)根据正方形的性质,可得P、Q点坐标,根据待定系数法,可得函数解析式.解答:解:(1)将A、B点坐标代入函数解析式,得,解得,抛物线的解析式y=x2﹣2x﹣3;(2)将抛物线的解析式化为顶点式,得y=(x﹣1)2﹣4,M点的坐标为(1,﹣4),M′点的坐标为(1,4),设AM′的解析式为y=kx+b,将A、M′点的坐标代入,得,解得,AM′的解析式为y=2x+2,联立AM′与抛物线,得,解得,C点坐标为(5,12).S△ABC=×4×12=24;(3)存在过A,B两点的抛物线,其顶点P关于x轴的对称点为Q,使得四边形APBQ为正方形,由ABPQ是正方形,A(﹣1,0)B(3,0),得P(1,﹣2),Q(1,2),或P(1,2),Q(1,﹣2),将A点坐标代入函数解析式,得a(﹣1﹣1)2﹣2=0,解得a=,抛物线的解析式为y=(x﹣1)2﹣2,②当P(1,2)时,设抛物线的解析式为y=a(x﹣1)2+2,将A点坐标代入函数解析式,得a(﹣1﹣1)2+2=0,解得a=﹣,抛物线的解析式为y=﹣(x﹣1)2+2,综上所述:y=(x﹣1)2﹣2或y=﹣(x﹣1)2+2,使得四边形APBQ为正方形.5. (2016 辽宁省铁岭市) .如图,抛物线y=﹣x2+bx+c与x轴交于点A,点B,与y轴交于点C,点B坐标为(6,0),点C坐标为(0,6),点D是抛物线的顶点,过点D作x轴的垂线,垂足为E,连接BD.(1)求抛物线的解析式及点D的坐标;(2)点F是抛物线上的动点,当∠FBA=∠BDE时,求点F的坐标;(3)若点M是抛物线上的动点,过点M作MN∥x轴与抛物线交于点N,点P在x轴上,点Q在平面内,以线段MN为对角线作正方形MPNQ,请直接写出点Q的坐标.分析(1)由点B、C的坐标利用待定系数法即可求出抛物线的解析式,再利用配方法将抛物线解析式变形成顶点式即可得出结论;(2)设线段BF与y轴交点为点F′,设点F′的坐标为(0,m),由相似三角形的判定及性质可得出点F′的坐标,根据点B、F′的坐标利用待定系数法可求出直线BF的解析式,联立直线BF和抛物线的解析式成方程组,解方程组即可求出点F的坐标;(3)设对角线MN、PQ交于点O′,如图2所示.根据抛物线的对称性结合正方形的性质可得出点P、Q 的位置,设出点Q的坐标为(2,2n),由正方形的性质可得出点M的坐标为(2﹣n,n).由点M在抛物线图象上,即可得出关于n的一元二次方程,解方程可求出n值,代入点Q的坐标即可得出结论.解答解:(1)将点B(6,0)、C(0,6)代入y=﹣x2+bx+c中,得:,解得:,∴抛物线的解析式为y=﹣x2+2x+6.∵y=﹣x2+2x+6=﹣(x﹣2)2+8,∴点D的坐标为(2,8).(2)设线段BF与y轴交点为点F′,设点F′的坐标为(0,m),如图1所示.∵∠F′BO=∠FBA=∠BDE,∠F′OB=∠BED=90°,∴△F′BO∽△BDE,∴.∵点B(6,0),点D(2,8),∴点E(2,0),BE=6﹣4=4,DE=8﹣0=8,OB=6,∴OF′=•OB=3,∴点F′(0,3)或(0,﹣3).设直线BF的解析式为y=kx±3,则有0=6k+3或0=6k﹣3,解得:k=﹣或k=,∴直线BF的解析式为y=﹣x+3或y=x﹣3.联立直线BF与抛物线的解析式得:①或②,解方程组①得:或(舍去),∴点F的坐标为(﹣1,);解方程组②得:或(舍去),∴点F的坐标为(﹣3,﹣).综上可知:点F的坐标为(﹣1,)或(﹣3,﹣).(3)设对角线MN、PQ交于点O′,如图2所示.∵点M、N关于抛物线对称轴对称,且四边形MPNQ为正方形,∴点P为抛物线对称轴与x轴的交点,点Q在抛物线对称轴上,设点Q的坐标为(2,2n),则点M的坐标为(2﹣n,n).∵点M在抛物线y=﹣x2+2x+6的图象上,∴n=﹣+2(2﹣n)+6,即n2+2n﹣16=0,解得:n1=﹣1,n2=﹣﹣1.∴点Q的坐标为(2,﹣1)或(2,﹣﹣1).6. (2016 广东省茂名市) 】.如图,抛物线y=﹣x2+bx+c经过A(﹣1,0),B(3,0)两点,且与y轴交于点C,点D是抛物线的顶点,抛物线的对称轴DE交x轴于点E,连接BD.(1)求经过A,B,C三点的抛物线的函数表达式;(2)点P是线段BD上一点,当PE=PC时,求点P的坐标;(3)在(2)的条件下,过点P作PF⊥x轴于点F,G为抛物线上一动点,M为x轴上一动点,N为直线PF上一动点,当以F、M、G为顶点的四边形是正方形时,请求出点M的坐标.分析(1)利用待定系数法求出过A,B,C三点的抛物线的函数表达式;(2)连接PC、PE,利用公式求出顶点D的坐标,利用待定系数法求出直线BD的解析式,设出点P的坐标为(x,﹣2x+6),利用勾股定理表示出PC2和PE2,根据题意列出方程,解方程求出x的值,计算求出点P的坐标;(3)设点M的坐标为(a,0),表示出点G的坐标,根据正方形的性质列出方程,解方程即可.解答解:(1)∵抛物线y=﹣x2+bx+c经过A(﹣1,0),B(3,0)两点,∴,解得,,∴经过A,B,C三点的抛物线的函数表达式为y=﹣x2+2x+3;(2)如图1,连接PC、PE,x=﹣=﹣=1,当x=1时,y=4,∴点D的坐标为(1,4),设直线BD的解析式为:y=mx+n,则,解得,,∴直线BD的解析式为y=﹣2x+6,设点P的坐标为(x,﹣2x+6),则PC2=x2+(3+2x﹣6)2,PE2=(x﹣1)2+(﹣2x+6)2,∵PC=PE,∴x2+(3+2x﹣6)2=(x﹣1)2+(﹣2x+6)2,解得,x=2,则y=﹣2×2+6=2,∴点P的坐标为(2,2);(3)设点M的坐标为(a,0),则点G的坐标为(a,﹣a2+2a+3),∵以F、M、G为顶点的四边形是正方形,∴FM=MG,即|2﹣a|=|﹣a2+2a+3|,当2﹣a=﹣a2+2a+3时,整理得,a2﹣3a﹣1=0,解得,a=,当2﹣a=﹣(﹣a2+2a+3)时,整理得,a2﹣a﹣5=0,解得,a=,∴当以F、M、G为顶点的四边形是正方形时,点M的坐标为(,0),(,0),(,0),(,0).。