截面法求内力 PPT
合集下载
杆件的内力分析与内力图
F M
y
0 0
C
F l a FS FA l F l a M FA x x l
由其右边分离体的平衡条件同样可得 a FA m F 0
F
y
FB B
FS F FB 0 F l a FS F FB l
A y FA
x
m
m M 切向应力的合力, C A 称为剪力 x m FS x FS m MC 0 M C m M F a x FB l x 0
1 1 FN1
60kN
2
A
30kN
B
x
FN2
2
C
60kN
解:1、计算杆件各段的轴力。 AB 段
X 0
BC 段
FN1 30 0
FN1=30kN
1 30kN
2
X 0
FN2 60 0
FN2= 60kN
+
FN图
2、绘制轴力图。
60kN
| FN |max=60 kN
第三节 扭转和扭矩图
x
Fab l
由剪力、弯矩图知: 在集中力作用点,弯 矩图发生转折,剪力 图发生突变,其突变 值等于集中力的大小, 从左向右作图,突变 方向沿集中力作用的 方向。
Fa l
x
M
三. 弯矩、剪力与分布荷载集度之间的关系及其应用
y O m m x q(x) n n dx F Me x M ( x) m FS(x) m n M(x)+dM(x) C n FS(x)+dFS(x)
1分钟me作功
W ' M e M e (2n 1) 2nMe
第二章内力与内力图详解
例:如左图,求n-n面的内力。 左半部分
Fx 0
FN FP
右半部分:
Fx 0 FN FP
左右两部分的力方向相反,但是同一内力, 因此规定内力由变形确定正负号,是标量。
§2-1 横截面上内力与内力分量
P2
P1
m
P4
P1
P2
m
P3 P2
P3
m P5
(a)
P1
y FR
m
M
C x
zm
(c)
P3
m
(b)
第二章 内力与内力图
§2-1 横截面上内力与内力分量 §2-2 轴向拉压杆的内力与内力图 §2-3 扭转圆轴的内力与内力图 §2-4 平面弯曲梁的内力与内力图 §2-5 平面刚架和曲杆的内力图
横截面上内力计算--截面法
截面法求内力步骤
❖ 将杆件在欲求内力的截面处假想的截断,取其中任一部分; ❖ 画出其受力图。所有外力,并在断面上画出相应内力; ❖ 由静平衡条件确定内力大小。
传动轴的扭矩图。
解:1)计算外力偶
MA
9549
PA n
9549 36 300
1146N.m
M B MC 350N.m;M D 446N.m
2)由外力偶分段,用截面法分别求每段
轴的扭矩即为1-,由
Mx 0
M B M x1 0 M x1 350N.m
B
C
A
350
700
446 x
D
扭矩图例2
10kN 30kN.m 20kN.m
A
2m B
10kN.m
D C
M x (kN.m)
10
A
B
20
C
02截面法求内力基本方法
例1. 求以下桁架各杆的内力
0 -33 34.8
19
19
Y 0 YNAD 11 kN YNAD CD 0.5 X NAD AC 1.5 X NAD 3YNAD 33 kN
X 0 FNAC 33 kN
0 -33
-33
34.8 -8
19
19
0 -33
-33
34.8
dM dx
FQ ,
dFQ q( x), dx
dFN p( x) dx
Mq
M+dM
dx
FN
dx
FN+d FN
FQ
FQ+dFQ
dM dx
FQ ,
dFQ q( x), dx
dFN p( x) dx
集中力
梁上 无外力 均布力作用 集中力作用 偶M作 铰处
情况
(q向下)
处(FP向下) 用处
斜直 剪力图 水平线 线(
)
为 零 处
有突 变(突 变值=
FP)
如 变 号
无 无变化 影
响
一般 抛物 有 有尖 有 有突变
弯矩图 为斜 线(
极 角(向 极 (突变 为零
直线 下凸) 值 下) 值 值=M)
曲杆微分关系
曲杆微段
dFN ds
=-qt+
FQ R
dFQ ds
=qn-
FN R
dM ds
=FQ-m
求内力基本方法:截面法
材料力学规定: 轴力FN --拉力为正 剪力FQ--绕隔离体顺时针方向转动者为正
弯矩M--使梁的下侧纤维受拉者为正
M
M+dM
0 -33 34.8
19
19
Y 0 YNAD 11 kN YNAD CD 0.5 X NAD AC 1.5 X NAD 3YNAD 33 kN
X 0 FNAC 33 kN
0 -33
-33
34.8 -8
19
19
0 -33
-33
34.8
dM dx
FQ ,
dFQ q( x), dx
dFN p( x) dx
Mq
M+dM
dx
FN
dx
FN+d FN
FQ
FQ+dFQ
dM dx
FQ ,
dFQ q( x), dx
dFN p( x) dx
集中力
梁上 无外力 均布力作用 集中力作用 偶M作 铰处
情况
(q向下)
处(FP向下) 用处
斜直 剪力图 水平线 线(
)
为 零 处
有突 变(突 变值=
FP)
如 变 号
无 无变化 影
响
一般 抛物 有 有尖 有 有突变
弯矩图 为斜 线(
极 角(向 极 (突变 为零
直线 下凸) 值 下) 值 值=M)
曲杆微分关系
曲杆微段
dFN ds
=-qt+
FQ R
dFQ ds
=qn-
FN R
dM ds
=FQ-m
求内力基本方法:截面法
材料力学规定: 轴力FN --拉力为正 剪力FQ--绕隔离体顺时针方向转动者为正
弯矩M--使梁的下侧纤维受拉者为正
M
M+dM
静定结构的内力计算图文
30 30
4m
4m
4m
4m
12kN
12kN 12kN
M 图(kN·m)
9kN
9kN
2kN/m
7kN
5kN
9kN
4.5kN
7.5kN
39
第40页/共76页
作业
习题3-5、3-6、3-9 习题3-10、3-12
40
第41页/共76页
§3-3 三铰拱
41
第42页/共76页
一、 概述
1、定义:
通常杆轴线为曲线,在竖向荷载作用下,支座产生水平反力的结构。
AC段受力图:
q
MC
t
C
FNC
FQC
n
x
FAY
FAYSinα
(2)求内力方程:
MC = 0 Ft = 0 Fn= 0
M = 1 qlx 1 qx2 (0 x l) 22
FN
=
q(1 l 2
x) sin
(0 x l)
FQ
=
q(1 2
l
x) cos
(0 x l)
FAYcosα
FAY
M中 =162 / 8 6.23/ 2 =1.385kN.m(下拉)
弯矩图见下图。
1kN/m
6.23 D
C 1.385
6.23 E
1.385kN A
4.5kN
M 图(kN.m)
B 1.385kN
1. 5kN
38
第39页/共76页
例:主从刚架弯矩图。
12kN
2kN/m
36 36
6m
12 42 30
F
F
曲梁
拱
f / l : 高跨比(1~1/10)
第二章 杆件的内力·截面法讲解
F
FN (+)FN
F
F
FN (-)FN
F
轴力图: 轴力沿轴线变化的图形
F
F
FN
轴力图的意义
+ x
① 直观反映轴力与截面位置变化关系; ② 确定出最大轴力的数值及其所在位置,即确定危险截面位置,为 强度计算提供依据。
例 图示杆的A、B、C、D点分别作用着大小为FA = 5 F、 FB = 8 F、 FC = 4 F、 FD= F 的力,方向如图,试求各段内力并画出杆 的轴力图。
应变
一、正应变(线应变)定义
av
Du Ds
棱边 ka 的平均正应变
lim
Du k点沿棱边 ka 方向的正应变
Ds0 Ds
正应变特点
1、 正应变是无量纲量 2、 过同一点不同方位的正应变一般不同
二、切应变定义 微体相邻棱边所夹直角的
改变量 g ,称为切应变
切应变量纲与单位
切应变为无量纲量 切应变单位为 弧度(rad)
BC
D
FN 2 FB FC FD 0
FB
FC
FD
FN2= –3F,
求BC段内力:
FN3
C
D
Fx 0 FN3 FC FD 0 FN3= 5F,
FC
FD
FN4
D
求CD段内力:
Fx 0 FN 4 FD 0
FN4= F
FD
FN1 2F, FN2= –3F, FN3= 5F, FN4= F
M
M
取左段为研究对象:
M 0, T M 0 M x
Tx
T M
取右段为研究对象:
第二章杆件的内力截面法
扭矩图
材料力学电子课堂
§5-3 弯曲的概念.剪力与弯矩
一、弯曲的概念
受力特点:在包含杆轴的纵向平面内作用一对大小相等、方向相反 的力偶或在垂直于杆件轴线方向作用横向力。 变形特点:杆件轴线由直线变为曲线。 梁
以 弯曲变形 为主要变形的杆件。
对称弯曲:
材料力学电子课堂
工程中最常见的梁,其横截面一般至少有一根对称轴,因而整个杆件有一个 包含轴线的纵向对称面。若所有外力都作用在该纵向对称面内时,梁弯曲变 形后的轴线将是位于该平面内的一条曲线,这种弯曲形式称为对称弯曲(或 平面弯曲)。
材料力学电子课堂
第五章
杆件的内力
• §5-1 杆件的拉伸(压缩)内力 • §5-2 杆件的扭转内力 • §5-3 弯曲内力· 剪力与弯矩 • §5-4 剪力图和弯矩图 • §5-6 剪力、弯矩和载荷集度间的微分关系 ※§5-7 平面刚架与平面曲杆的弯矩内力
材料力学电子课堂
§5-1 杆件的拉伸或压缩时的内力
Me
Me
材料力学电子课堂
二、外力偶矩的计算
已知:P—传递的功率,(kw) n—转速,(r/min) 求:外力偶矩Me ( N· m) 解: P M e
Me
Me
n 30 n P 1000 M e 30
Me
由此求得外力偶矩:
P 1000 30 P 9549 (N . m) n n
材料力学电子课堂 注意
1、用截面法求轴力时,取留下的一部分作受力图时,在切开的截
面上建议假设正的轴力,由平衡方程得出的FN值为正,说明轴力 为正(拉力); FN值为负,说明轴力为负(压力)。 2、在画轴力图时,填充为下画线或无填充,不要画剖面线形式; 并注上 符号 或 。
静定结构内力计算PPT课件
杆件的内力计算
直杆平衡的微分方程
qy Q
N M
qx
Q+d Q
N+d N M+d M
dx
dN
dQ
dx qx, dx qy,
d2M dx2
d dx
dM dx
qy
dM Q dx
Depatment of Egnieering Mechanics, Hohai University
杆件的内力计算
直杆内力图的形状特征
Depatment of Egnieering Mechanics, Hohai University
杆件的内力计算
列内力方程法:把某一截面的内力表示为该截面 位置的函数,绘内力图。 控制截面法:将若干个控制截面截开,取某一侧 为隔离体,根据隔离体的平衡条件计算内力,将 这些控制截面的内力绘制成图。
Depatment of Egnieering Mechanics, Hohai University
杆件的内力计算
例:用列内力方程方法作图示梁内力图
q A
l
解:
B
HA 0,VA ql/2(), VB ql/2()
X 0, N(x) 0
M Q
1 ql 2
Y 0,Q(x) 1 ql qx
1 ql 2
几何特性:无多余约束的几何不变体系。 静力特征:仅由静力平衡条件可求全部反力和内力。
静定结构受力分析:计算荷载作用下结构的反力和内力, 并绘出结构的内力图。 静定结构受力分析的基本方法:选取atment of Egnieering Mechanics, Hohai University
集中力作 用点
集中力偶 作用点
均布荷载 作用区段
无横向荷 载作用区 段
截面法求内力讲解
解: 1. 确定支座反力
B Fx 0 MA 0
FBy
Fy 0
FAx 0 2FPa FPa FBy 3a 0 FAy FBy 2FP 0
FBy
FP 3
FAy
5FP 3
2FP FQE
A 5FP
C E ME
3
Fy 0
2FP
FQE
5FP 3
0
C
a
FAy
b l
FPb l
+
FP a
-
l FQ图
FPab M图
l
B FBy
A FPb
l
FQ
M
MA 0
Fy 0
FBy
FP a l
FAy
FPb l
FQ
FQ
FPb l
(0 x a)
M
M FPb x (0 x a)
l
B
FQ
FP a l
(a x l)
FPa M FPa (l x)
平: 对留下部分写平衡方程求出内力的值
FQ(+)
FQ(+)
M(+)
M(+)
(1)平衡方程的正负和内力的正负是完全不同性质的两套符号系统。 (2)取简单部分作为隔离体,列平衡方程时,尽量使一个方程含有一个未知量
例1 求E截面内力
A FAx
FAy
2FP FPa
C
D
1.5a E
a
a
a
2. 用截面法研究内力
M JK J
F QJK
M JK J
求内力基本方法:截面法
)
为 零 处
有突 变(突 变值=
FP)
如 变 号
无 无变化 影
响
一般 抛物 有 有尖 有 有突变
弯矩图 为斜 线(
极 角(向 极 (突变 为零
直线 下凸) 值 下) 值 值=M)
曲杆微分关系
曲杆微段
dFN ds
=-qt+
FQ R
dFQ ds
=qn-
FN R
dM ds
=FQ-m
直杆段受力
两者 任一截面 内力相同
q ME
FQE
FQ 图
MF ( kN )
FQF
请大家作图示 斜梁内力图。
l q
q
q 返 回
杆端内力 内力图
负
MBA
B端
FNBA
FQBA
弯矩图--习惯绘在杆件受拉的一侧,不需 标正负号 轴力和剪力图--可绘在杆件的任一侧,但 需标明正负号
应熟记常用单跨梁的弯矩图
FP
a
FP
A
a
l
ql2
2 q
bBABl源自FABFab
l
a
b
l
q
A
B
ql2
8
l
almm
A
B
bl m
a
b
m
m
l
l
l
FP
直杆微分关系
求内力基本方法:截面法
材料力学规定: 轴力FN --拉力为正 剪力FQ--绕隔离体顺时针方向转动者为正
弯矩M--使梁的下侧纤维受拉者为正
M
M+dM
dx
FN
dx
FN+d FN
FQ
FQ+dFQ
为 零 处
有突 变(突 变值=
FP)
如 变 号
无 无变化 影
响
一般 抛物 有 有尖 有 有突变
弯矩图 为斜 线(
极 角(向 极 (突变 为零
直线 下凸) 值 下) 值 值=M)
曲杆微分关系
曲杆微段
dFN ds
=-qt+
FQ R
dFQ ds
=qn-
FN R
dM ds
=FQ-m
直杆段受力
两者 任一截面 内力相同
q ME
FQE
FQ 图
MF ( kN )
FQF
请大家作图示 斜梁内力图。
l q
q
q 返 回
杆端内力 内力图
负
MBA
B端
FNBA
FQBA
弯矩图--习惯绘在杆件受拉的一侧,不需 标正负号 轴力和剪力图--可绘在杆件的任一侧,但 需标明正负号
应熟记常用单跨梁的弯矩图
FP
a
FP
A
a
l
ql2
2 q
bBABl源自FABFab
l
a
b
l
q
A
B
ql2
8
l
almm
A
B
bl m
a
b
m
m
l
l
l
FP
直杆微分关系
求内力基本方法:截面法
材料力学规定: 轴力FN --拉力为正 剪力FQ--绕隔离体顺时针方向转动者为正
弯矩M--使梁的下侧纤维受拉者为正
M
M+dM
dx
FN
dx
FN+d FN
FQ
FQ+dFQ
内力与内力图
常见载荷作用下剪力图和弯矩图的特点
若一段梁上无载荷(即q=0),则剪力图为水平直线,弯 矩图为倾斜直线。剪力为正时,弯矩图为向右上方倾斜的 直线,剪力为负时则弯矩图向右下方倾斜,剪力为零时弯 矩图成为水平直线。 若一段梁上作用着均布载荷,则剪力图为斜直线,弯矩图 为二次抛物线。若均布力方向向下,则剪力图为向右下方 倾斜的直线,弯矩图为开口向下的抛物线,抛物线的顶点 的剪力等于零的截面。 在集中力作用的截面上,剪力图有突变,变化值等于该集 中力的大小,弯矩图上由出现折角。 在集中力偶作用的截面上,剪力图无变化,弯矩图上有突 变,变化值等于该集中力偶的力偶矩的大小。
2
ql
五 弯矩、剪力与载荷集度间的关系
在例3中,将弯矩方程对x求一阶导数,得
dM qx F Q dx
将剪力方程对x求一阶导数,得
dF Q dx
q
也就是说,弯矩方程对x的一阶导数等于剪力方程;剪力方程对x的一阶导数 等于载荷集度。这一关系并非只存在于该问题中,而是普遍成立的一个规律。 根据导数的几何意义,以上关系表明:弯矩图上某点的切线的斜率,等于对 应截面上的剪力;剪力图上某点切线的斜率等于对应截面上的载荷集度。根 据这一规律,还可得到常见载荷下剪力图和弯矩图的特点。
例4
例4 外伸梁受力如图所示,试画出其剪力图和弯矩图。
解:(1)根据梁的平衡条件求出梁的支座反力。
FA
qa 4
FB
3qa 4
例1 杆件受力如图所示,求指定截面上的轴力并画出轴力图。
• • • • • • • • • • • • • • 解:(1)用截面法求内力。 沿截面1-1截开,由左侧一段的平衡,有 FN1+10=0 所以 FN1=-10(kN) 沿截面2-2截开,由左侧一段的平衡,有 FN2-40+10=0 所以 FN2=40-10=30(kN) 沿截面3-3截开,由右侧一段的平衡,有 -FN3+20=0 所以 FN3=20( kN ) (2)根据计算结果作出轴力图。 (3)讨论:由以上计算过程可以看出,将 平衡方程中的外力都移至等号右端,则有 FN=ΣFie 也就是说,横截面上的轴力,等于其左侧 (或右侧)一段杆上所有外力的代数和。掌 握这一关系,有利于快速计算轴力并画出轴 力图。
《截面法求内力》课件
通过使用截面法求内力,工程师可以 更好地了解结构的受力状态,优化结 构设计,提高结构的承载能力和安全 性。
截面法求内力的基本步骤
确定截面位置
根据结构的特点和受力情况,选择适 当的截面位置。
进行截面分析
对所选截面进行详细的分析,包括该 截面的受力状态、约束条件以及与周 围结构的相互作用关系等。
计算内力
截面法的优缺点
截面法的优点在于简单易懂,易于操作,适用于各种形状和尺寸的构件。然而,截面法也存在一些局限 性,如对于复杂结构和多跨连续梁的计算可能较为繁琐,需要借助其他分析方法。
截面法求内力的展望
截面法的进一步研究和改进
随着科技的发展和工程实践的深入,截面法的研究也在不断进步。未来可以进一步研究截 面法的精度和可靠性,提高其计算效率和准确性。同时,可以结合数值分析方法和其他现 代技术手段,对截面法进行改进和优化。
《截面法求内力》 ppt课件
contents
目录
• 截面法求内力概述 • 截面法求内力的基本原理 • 截面法求内力的具体操作 • 截面法求内力的实例解析 • 截面法求内力的注意事项与优化建议 • 总结与展望
01
CATALOGUE
截面法求内力概述
截面法求内力的定义
截面法求内力是指在结构分析中,通过在结构上选择适当的截面,并按照一定的 步骤和方法,计算出该截面所承受的内力(如轴力、剪力和弯矩等)的方法。
内力计算
计算内力时,应考虑所有可能的受力情况, 避免遗漏。
边界条件
正确处理结构的边界条件,如固定、自由、 简支等,对分析结果至关重要。
优化建议
简化模型
使用软件辅助
在保证分析精度的前提下,尽量简化模型 ,减少计算量。
利用专业软件进行内力分析,可以大大提 高计算效率和准确性。
截面法求内力的基本步骤
确定截面位置
根据结构的特点和受力情况,选择适 当的截面位置。
进行截面分析
对所选截面进行详细的分析,包括该 截面的受力状态、约束条件以及与周 围结构的相互作用关系等。
计算内力
截面法的优缺点
截面法的优点在于简单易懂,易于操作,适用于各种形状和尺寸的构件。然而,截面法也存在一些局限 性,如对于复杂结构和多跨连续梁的计算可能较为繁琐,需要借助其他分析方法。
截面法求内力的展望
截面法的进一步研究和改进
随着科技的发展和工程实践的深入,截面法的研究也在不断进步。未来可以进一步研究截 面法的精度和可靠性,提高其计算效率和准确性。同时,可以结合数值分析方法和其他现 代技术手段,对截面法进行改进和优化。
《截面法求内力》 ppt课件
contents
目录
• 截面法求内力概述 • 截面法求内力的基本原理 • 截面法求内力的具体操作 • 截面法求内力的实例解析 • 截面法求内力的注意事项与优化建议 • 总结与展望
01
CATALOGUE
截面法求内力概述
截面法求内力的定义
截面法求内力是指在结构分析中,通过在结构上选择适当的截面,并按照一定的 步骤和方法,计算出该截面所承受的内力(如轴力、剪力和弯矩等)的方法。
内力计算
计算内力时,应考虑所有可能的受力情况, 避免遗漏。
边界条件
正确处理结构的边界条件,如固定、自由、 简支等,对分析结果至关重要。
优化建议
简化模型
使用软件辅助
在保证分析精度的前提下,尽量简化模型 ,减少计算量。
利用专业软件进行内力分析,可以大大提 高计算效率和准确性。
02.2.内力·截面法·及轴力图
FN 图
F +
第15页
武生院建筑工程学院:材料力学
课堂练习:试求出下列图形当中1-1、2-2、 3-3截面上的轴力, 并画出轴力图。.
(1)
1F
2F
3
(2)
10KN
1 1
10KN
2 2
6KN
3 3 6KN
1
2
3
第16页
一般来说:正值的轴力画上轴线上方,负值画在轴线下 方。
第5页
武生院建筑工程学院:材料力学
第二章 轴向拉伸和压缩
F
F
(c)
(f)
轴力图(FN图)——显示横截面上轴力与横截面位置的关系。
第6页
武生院建筑工程学院:材料力学
第二章 轴向拉伸和压缩
注意:杆受多个轴向外力作用时,应以外力作用点处 的横截面作为特征截面,将梁分成若干段来求整段梁的轴 力。
FN2=50 kN(拉力)
为方便取截面3-3右边为 分离体,假设轴力为拉力。 FN3=-5 kN (压力),同理,FN4=20 kN (拉力)
第9页
武生院建筑工程学院:材料力学
第二章 轴向拉伸和压缩
轴力图(FN图)显示了各段杆横截面上的轴力。 FNm , a xFN250kN
第10页
武生院建筑工程学院:材料力学
例题2-1 试作此杆的轴力图。
(a)
等直杆的受力示意图
第7页
武生院建筑工程学院:材料力学
解:
第二章 向拉伸和压缩
为求轴力方便,先求出约束力 FR=10 kN 为方便,取横截面1-1左 边为分离体,假设轴力为 拉力,得
FN1=10 kN(拉力)
第8页
武生院建筑工程学院:材料力学
F +
第15页
武生院建筑工程学院:材料力学
课堂练习:试求出下列图形当中1-1、2-2、 3-3截面上的轴力, 并画出轴力图。.
(1)
1F
2F
3
(2)
10KN
1 1
10KN
2 2
6KN
3 3 6KN
1
2
3
第16页
一般来说:正值的轴力画上轴线上方,负值画在轴线下 方。
第5页
武生院建筑工程学院:材料力学
第二章 轴向拉伸和压缩
F
F
(c)
(f)
轴力图(FN图)——显示横截面上轴力与横截面位置的关系。
第6页
武生院建筑工程学院:材料力学
第二章 轴向拉伸和压缩
注意:杆受多个轴向外力作用时,应以外力作用点处 的横截面作为特征截面,将梁分成若干段来求整段梁的轴 力。
FN2=50 kN(拉力)
为方便取截面3-3右边为 分离体,假设轴力为拉力。 FN3=-5 kN (压力),同理,FN4=20 kN (拉力)
第9页
武生院建筑工程学院:材料力学
第二章 轴向拉伸和压缩
轴力图(FN图)显示了各段杆横截面上的轴力。 FNm , a xFN250kN
第10页
武生院建筑工程学院:材料力学
例题2-1 试作此杆的轴力图。
(a)
等直杆的受力示意图
第7页
武生院建筑工程学院:材料力学
解:
第二章 向拉伸和压缩
为求轴力方便,先求出约束力 FR=10 kN 为方便,取横截面1-1左 边为分离体,假设轴力为 拉力,得
FN1=10 kN(拉力)
第8页
武生院建筑工程学院:材料力学
内力的计算——截面法截面法PPT课件
如图211所示受到轴向拉伸和轴向压缩的杆件ab和bc当杆ab受到外力包括载荷和约束反力拉伸作用而产生伸长变形时其内部材料的分子之间因相对位置改变而产生相互作用力来抵抗这种伸长变形这种相互作用力将随外力增大而加大但有一定限度如果超过了这个限度时杆件就会发生过大变形或被拉断
一、任务描述
在工程实际中,构件受到轴向拉伸或压缩地实例很多。如图2-1-1a所示 的悬臂式吊车中,AB和BC两杆就是受到轴向拉伸和压缩的构件。AB和BC 两杆铰接于B点。α=30°,在B铰接点悬吊一重G=20kN的物体,试分析计算, 在外力作用下AB和BC两杆件截面上的内力。(不计杆的自重)
7、轴向拉伸或压缩的概念
杆件受到沿轴线方向的拉力 或压力作用,杆件变形是沿轴 向的伸长或缩缩
特点:
受力特点——作用于杆件两端的外力大小相 等,方向相反,作用线与杆件轴线重合。
变形特点——杆件变形是沿轴线方向伸长或 缩短。
构件特点——等截面直杆。
第11页/共21页
第19页/共21页
小结:
拉伸、压缩杆件内力计算的方法与步骤 用静力学平衡方程计算相关杆件所受外力。 用截面法求解杆件的内力:截开、代替、平衡。 为了使应用静力学方程计算出的内力不仅在大小而且在方向 上与材料力学内力的规定统一, 通常采用“设正法”画截面上的内力。即无论截面上的内力 是拉力还是压力,一律按正的内力 (即背离横截面)画出。这样用平衡方程式求出的内力若为 正,则为拉力,反之则为压力。
轴力的正负规定:
当轴力的指向离开截面时,杆受拉,规定轴力为正;反之, 当轴力指向截面时,杆受压,规定轴力为负。即拉为正,压为 负。
第16页/共21页
10、轴力图
直观地表明各截面上轴力沿轴线的变化,横坐标X轴表示 杆截面的位置,纵坐标表示相应截面上轴力的大小。
一、任务描述
在工程实际中,构件受到轴向拉伸或压缩地实例很多。如图2-1-1a所示 的悬臂式吊车中,AB和BC两杆就是受到轴向拉伸和压缩的构件。AB和BC 两杆铰接于B点。α=30°,在B铰接点悬吊一重G=20kN的物体,试分析计算, 在外力作用下AB和BC两杆件截面上的内力。(不计杆的自重)
7、轴向拉伸或压缩的概念
杆件受到沿轴线方向的拉力 或压力作用,杆件变形是沿轴 向的伸长或缩缩
特点:
受力特点——作用于杆件两端的外力大小相 等,方向相反,作用线与杆件轴线重合。
变形特点——杆件变形是沿轴线方向伸长或 缩短。
构件特点——等截面直杆。
第11页/共21页
第19页/共21页
小结:
拉伸、压缩杆件内力计算的方法与步骤 用静力学平衡方程计算相关杆件所受外力。 用截面法求解杆件的内力:截开、代替、平衡。 为了使应用静力学方程计算出的内力不仅在大小而且在方向 上与材料力学内力的规定统一, 通常采用“设正法”画截面上的内力。即无论截面上的内力 是拉力还是压力,一律按正的内力 (即背离横截面)画出。这样用平衡方程式求出的内力若为 正,则为拉力,反之则为压力。
轴力的正负规定:
当轴力的指向离开截面时,杆受拉,规定轴力为正;反之, 当轴力指向截面时,杆受压,规定轴力为负。即拉为正,压为 负。
第16页/共21页
10、轴力图
直观地表明各截面上轴力沿轴线的变化,横坐标X轴表示 杆截面的位置,纵坐标表示相应截面上轴力的大小。
截面法求内力
FQ M
F Q 50 (6x8 )
B
50 M 4 0 5x 0 0(6 x 8 )
叠加法
条件:结构线弹性、小பைடு நூலகம்形
荷载叠加法: 当结构上同时作用有许多荷载
时,先分别作出各荷载单独作用 下的内力图,再将各个内力图的 竖标相叠加(代数和),便得到 各荷载共同作用下的内力图。
2FP FP a
ql FBy 2
F By
Fy 0
F Ay
ql 2
-
q FQ
FQq 2 lqx (0xl)
ql
A
2
ql
2
M
Mqxlqx2 (0xl)
22
FP
M0
FP
FQ图
+
FP(l-a)
M图
M0
FP 内力图形状特征 M 0
FPb
l
+
FQ图 F P a
-
l
M0 l
+
M 0b l
M图
F P ab l
(3)计算点C右截面的内力
FNRC 0 FQRC40kN MC R80kNm
内力图:表示结构上各截面的内力随横截面位置变化规律的图形。
列方程作内力图
FP x
A
Ca B
l
FP
+
FQ图 FP(l-a)
截面法
剪力方程 弯矩方程
FQFQx MMx
FQ B
M
F Q = 0 0x a
例2 图示为在截面C处承受一斜向集中力的简支梁。试求截面 C处左、 右两截面的内力。
(a)
(b) (c)
(a) (b) (c)
内力分析的基本方法-截面法
q=20kN/m
解:求支座反力,由MB =0,得:
E
2m
30kN 4m A
D
C
-FA 6 -30 4 +206 3 =0 故: FA =40kN() 30 +FBx =0 由 x =0,得:
FBx=30kN FBy=80kN
故: FBx = -30kN()
B 6m FA=40kN (a)
RA
RB 1、计算支座反力
得: QD= qL/2 Σmc= 0 MD–RA×L+qL×L/2 = 0 得: MD= qL2 取E--E截面右段为对象
ME
E
解得:RA=3qL/2 (竖直向上) RB=qL/2 (竖直向上)
2、取D--D截面左段为对象, 画出受力图 q D
MD
qL2
QE E
RA
D
ΣΎ= 0 Σmc= 0
简 支梁
悬臂梁
外伸梁
12
三、梁的内力剪力和弯矩
P1 RA
m
M
Q
M Q
m
P2
m
m
RA
RB
RB
取截面m-m以左为对象:
该相切于横截面的集中力称为剪力,用Q表示; 位于纵向对称平面内的力偶称为弯矩,用M表示。
由平衡方程: ΣΥ=0 Σmc=0 求得Q 求得M 取截面m-m以右为对象, 同理可得。
13
剪力、弯矩的正负号规定 剪力使隔离体产生顺转为正,逆转为负; 弯矩使隔离体产生下凸为正,上凸为负。
N2
N2 = 0
N1 = - P
2、不共线的两杆结点,外力沿一杆作用,则另一杆轴 5 力为零。
N1
3、无外力作用的三杆结点
N2 N2 = 0 N1 = N3 N3
解:求支座反力,由MB =0,得:
E
2m
30kN 4m A
D
C
-FA 6 -30 4 +206 3 =0 故: FA =40kN() 30 +FBx =0 由 x =0,得:
FBx=30kN FBy=80kN
故: FBx = -30kN()
B 6m FA=40kN (a)
RA
RB 1、计算支座反力
得: QD= qL/2 Σmc= 0 MD–RA×L+qL×L/2 = 0 得: MD= qL2 取E--E截面右段为对象
ME
E
解得:RA=3qL/2 (竖直向上) RB=qL/2 (竖直向上)
2、取D--D截面左段为对象, 画出受力图 q D
MD
qL2
QE E
RA
D
ΣΎ= 0 Σmc= 0
简 支梁
悬臂梁
外伸梁
12
三、梁的内力剪力和弯矩
P1 RA
m
M
Q
M Q
m
P2
m
m
RA
RB
RB
取截面m-m以左为对象:
该相切于横截面的集中力称为剪力,用Q表示; 位于纵向对称平面内的力偶称为弯矩,用M表示。
由平衡方程: ΣΥ=0 Σmc=0 求得Q 求得M 取截面m-m以右为对象, 同理可得。
13
剪力、弯矩的正负号规定 剪力使隔离体产生顺转为正,逆转为负; 弯矩使隔离体产生下凸为正,上凸为负。
N2
N2 = 0
N1 = - P
2、不共线的两杆结点,外力沿一杆作用,则另一杆轴 5 力为零。
N1
3、无外力作用的三杆结点
N2 N2 = 0 N1 = N3 N3
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
截
5、用平衡方程求出截面上的内力
面
法
求
内 列出平衡方程,求出横截面上的内力。
力 解:-F+FN1=0 的 FN1=F(拉) 步 注: 骤 1 、力正负的规定:
列方程时,左负右正,下负上正。和坐标轴的 规定一致。
2 、求出的结果为正值表示受拉伸,负值表示压缩。
练习题
练 习 题
3、如果以上两条两边都一样,那么随便选哪一边都 可以。
截
4、假设出截面上的正应力
面
法
求
内以其所在截面的名称对其命名。
步 注:内力的假设原则
骤 1、拉、压时内力垂直于截面。 2、选左边为研究对象,内力向右设;选右边为研究
对象,内力向左设。
当杆件受外力作用时,各颗粒间的相对位置将 会发生改变,引发颗粒间内力也要变化。我们把这 种杆件内部由于外力作用而产生的相互作用力的改 变量称为内力。而且内力与外力的关系是:内力是 因外力而产生的(当外力解除时,内力也随之消失) 外力越大,内力越大,当内力超过一定限度,工件 就会产生破坏。
其大小和分部情况与杆件变形、破坏有密切联 系,所以我们必须把内力求出。
截面法求内力
复习提问
1、材料力学的内容、研究对象和任务 分别是什么?
2、什么是承载能力?它有哪三个衡量 面?分别表示什么意义?
3、杆件有哪几种基本变形?
§7-1 拉
拉伸和压缩的受力特点
伸
和
压
缩
的
概 受力的特点:作用在杆端的两外力(或外力的合力) 念 大小相等,方向相反,力的作用线与杆件的轴线重
合。
§7-2 拉 伸 和 压 缩 时 截 面 上 的 内 力
二、截面法求内力
前面学过的方法已经不能求内力了, 为了确定在外力作用下构件所产的内 力的大小和方向,我们采用了一种新 的方法——截面法
截
1、确定外力个数及作用点
面
法
求
内
力 如图AB杆受两个力,一个向左,一个向右,大小均为 的 F。作用点分别为A和B。
大家应该也有点累了,稍作休息
大家有疑问的,可以询问和交
截
3、假设截面截开选一半为研究对象
面
法
求
内 按顺序从1-1截面开始,假设截面截开,选一半为研 力 究对象,并另行画出所选部分的视图。
的 注:选哪一半为研究对象的原则 步 1、哪一半无约束反力(在原图上不和其它物体接
触),选哪一半为研究对象。
骤 2、哪一半受力简单(受力少),选哪一半为研究对 象。
§7-1 拉
拉伸和压缩的变形特点
伸
和
压
缩
的
概 变形的特点:杆件沿轴线方向伸长(拉伸时)或缩短 念 (压缩时)。
§7-2 拉 伸 和 压 缩 时 截 面 上 的 内 力
一、内力的定义
物体是由无数颗粒(原子)组成的,在其未受 外力作用时就存在相互作用力(引力和斥力),以 维持它们之间的联系及物体的原有形状。
注:外力有两种
步 一、载荷:在图上用“→”标出,并注明大小的那个。 骤 二、约束反力:图上未标出,要自己分析。有约束反
力的地方必画有除研究对象以外的物体。
截
2、确定要截开的次数和位置
面
法
求
1
内
力
1
的 以外力的作用点为分界点,将杆件分段。每段必须也
步 骤
只需截开一次。在截开前我们在原图上标出截面, 并按1-1、2-2、3-3……命名。