2019中考数学一轮复习课堂达标测试题10(因式分解B 含答案)

合集下载

中考试题 因式分解(解析版)2019数学全国中考真题

中考试题  因式分解(解析版)2019数学全国中考真题

2019全国中考数学真题知识点05因式分解(解析版)一、选择题8.(2019·株洲)下列各选项中因式分解正确的是( )A .221(1)x x -=-B .3222(2)a a a a a -+=-C .2242(2)y y y y -+=-+D .222(1)m n mn n n m -+=-【答案】D【解析】选项A 是平方差公式应该是(x+1)(x-1),所以错误;选项B 公因式应该是a ,所以错误;选项C 提取公因式-2y 后,括号内各项都要变号,所以错误;只有选项D 是正确的。

1. (2019·无锡市)分解因式224x y 的结果是 ( )A.(4x +y )(4x -y )B.4(x +y )(x -y )C.(2x +y )(2x -y )D.2(x +y )(x -y )【答案】C【解析】本题考查了公式法分解因式,4x 2-y 2=(2x -y )(2x +y ),故选C.2. (2019·潍坊)下列因式分解正确的是( )A .22363(2)ax ax ax ax -=-B .22()()x y x y x y -+=-+-- C .22224(2)a ab b a b ++=+ D .222(1)ax ax a a x -+-=--【答案】D【解析】选项A :2363(2)ax ax ax x -=-;选项B :22()()x y x y x y -+=-++;选项C 不能分解因式;选项D 正确;故选择D .二、填空题11.(2019·广元)分解因式:a 3-4a =________.【答案】a(a+2)(a -2)【解析】a 3-4a =a(a 2-4)=a(a+2)(a -2).12.(2019·苏州)因式分解:x 2-xy = .【答案】x (x -y )【解析】本题考查了提公因式法分解因式,x 2-xy = x (x -y ),故答案为x (x -y ).11.(2019·温州)分解因式:m 2+4m+4= .【答案】(m+2)2【解析】本题考查了运用完全平方公式分解因式,解题的关键是掌握完全平方公式的特征.原式=(m+2)2.11.(2019·绍兴 )因式分解:=-12x .【答案】(x+1)(x-1)11.(2019·嘉兴)分解因式:x 2﹣5x = .【答案】(5)x x -11.(2019·杭州)因式分解:1-x 2=_________.【答案】(1-x)(1+x)【解析】直接应用平方差公式进行因式分解,1-x 2=(1-x)(1+x),故填:(1-x)(1+x).14.(2019·威海)分解因式:2x 2-2x +12= . 【答案】2122x ⎛⎫- ⎪⎝⎭ 【解析】先提取公因式2,再根据完全平方公式进行二次分解.2x 2-2x +12=2(x 2-x +14)=2122x ⎛⎫- ⎪⎝⎭. 10.(2019·盐城)分解因式:21x -= .【答案】(1)(1)x x -+【解析】直接利用平方差公式分解因式,进而得到答案.7.(2019·江西)因式分解:12-x = .【答案】(x+1)(x-1)【解析】12-x =(x+1)(x-1)14.(2019·长沙,14,3分)分解因式:am 2-9a= .【答案】a(m+3)(m-3).【解析】先提取公因式a ,再应用平方差公式进行分解因式. am 2-9a=a(m+3)(m-3).13.(2019·衡阳)因式分解:2a 2-8= .【答案】2(a +2)(a =2)【解析】2a 2-8=2(a +2)(a =2),故答案为2(a +2)(a =2).11.(2019·黄冈)分解因式3x 2-27y 2= .【答案】3(x+3y )(x-3y )【解析】先提取公因数3,然后利用平方差公式进行分解,即3x 2-27y 2=3(x 2-9y 2)=3(x+3y )(x-3y )。

中考数学模拟题《因式分解》专项测试卷(附答案)

中考数学模拟题《因式分解》专项测试卷(附答案)

中考数学模拟题《因式分解》专项测试卷(附答案)学校:___________班级:___________姓名:___________考号:___________(20题)一 单选题1.(2023·河北·统考中考真题)若k 为任意整数,则22(23)4k k +-的值总能( )A .被2整除B .被3整除C .被5整除D .被7整除2.(2023·甘肃兰州·统考中考真题)计算:255a a a -=-( ) A .5a -B .5a +C .5D .a二 填空题3.(2023·山东东营·统考中考真题)因式分解:22363ma mab mb -+= .4.(2023·甘肃兰州·统考中考真题)因式分解:2225x y -= .5.(2023·湖南·统考中考真题)已知实数m 1x 2x 满足:()()12224mx mx --=.①若1193m x ==,,则2x = . ①若m 1x 2x 为正整数...,则符合条件的有序实数....对()12,x x 有 个 6.(2023·江苏无锡·统考中考真题)分解因式:244x x -+= .7.(2023·湖北恩施·统考中考真题)因式分解:()21x x -+= .8.(2023·湖南·统考中考真题)分解因式:n 2﹣100= .9.(2023·甘肃武威·统考中考真题)因式分解:22ab ab a -+= .10.(2023·山东日照·统考中考真题)分解因式:3a b ab -= .11.(2023·四川德阳·统考中考真题)分解因式:ax 2﹣4ay 2= .12.(2023·吉林长春·统考中考真题)分解因式:21a -= .13.(2023·贵州·统考中考真题)因式分解:24x -= .14.(2023·广东深圳·统考中考真题)已知实数a b 满足6a b += 7ab =,则22a b ab +的值为 .15.(2023·黑龙江绥化·统考中考真题)因式分解:2x xy xz yz +--= .16.(2023·湖北十堰·统考中考真题)若3x y += 2y =,则22x y xy +的值是 . 17.(2023·四川雅安·统考中考真题)若2a b += 1a b -=,则22a b -的值为 .18.(2023·山东·统考中考真题)已知实数m 满足210m m --=,则32239m m m --+= . 19.(2023·湖南永州·统考中考真题)22a 与4ab 的公因式为 .20.(2023·湖南张家界·统考中考真题)因式分解:22x y xy y ++= .参考答案一 单选题1.(2023·河北·统考中考真题)若k 为任意整数,则22(23)4k k +-的值总能( )A .被2整除B .被3整除C .被5整除D .被7整除【答案】B【分析】用平方差公式进行因式分解 得到乘积的形式 然后直接可以找到能被整除的数或式.【详解】解:22(23)4k k +-(232)(232)k k k k =+++-3(43)k =+ 3(43)k +能被3整除①22(23)4k k +-的值总能被3整除故选:B .【点睛】本题考查了平方差公式的应用 平方差公式为22()()a b a b a b -=-+通过因式分解 可以把多项式分解成若干个整式乘积的形式.2.(2023·甘肃兰州·统考中考真题)计算:255a a a -=-( ) A .5a -B .5a +C .5D .a【答案】D【分析】分子分解因式 再约分得到结果. 【详解】解:255a a a -- ()55a a a -=- a = 故选:D .【点睛】本题考查了约分 掌握提公因式法分解因式是解题的关键.二 填空题3.(2023·山东东营·统考中考真题)因式分解:22363ma mab mb -+= .【答案】()23m a b -【分析】根据因式分解中的提公因式法和完全平方公式即可求出答案.【详解】解:22363ma mab mb -+()2232m a ab b =-+()23m a b =- 故答案为:()23m a b -.【点睛】本题考查了因式分解 涉及到提公因式法和完全平方公式 解题的关键需要掌握完全平方公式. 4.(2023·甘肃兰州·统考中考真题)因式分解:2225x y -= .【答案】()()55x y x y +-【分析】直接利用平方差分解即可.【详解】解:()()222555x y x y x y -=+-. 故答案为:()()55x y x y +-.【点睛】本题考查因式分解 解题的关键是熟练掌握平方差公式.5.(2023·湖南·统考中考真题)已知实数m 1x 2x 满足:()()12224mx mx --=.①若1193m x ==,,则2x = . ①若m 1x 2x 为正整数...,则符合条件的有序实数....对()12,x x 有 个 【答案】 18 7【分析】①把1193m x ==,代入求值即可 ①由题意知:()()122,2mx mx --均为整数 12121,1,21,21mx mx mx mx ≥≥-≥--≥-,则4142241,=⨯=⨯=⨯再分三种情况讨论即可.【详解】解:①当1193m x ==,时 211(92)(2)433x ⨯-⨯-=解得:218x =①当m 1x 2x 为正整数时()()122,2mx mx --均为整数 12121,1,21,21mx mx mx mx ≥≥-≥--≥-而4142241,=⨯=⨯=⨯122124mx mx -=⎧∴⎨-=⎩或122222mx mx -=⎧⎨-=⎩或122421mx mx -=⎧⎨-=⎩ 1236mx mx =⎧∴⎨=⎩或1244mx mx =⎧⎨=⎩或1263mx mx =⎧⎨=⎩ 当1236mx mx =⎧⎨=⎩时 1m =时 123,6x x == 3m =时 121,2x x == 故()12,x x 为(3,6),(1,2) 共2个当1244mx mx =⎧⎨=⎩时 1m =时 124,4x x == 2m =时 122,2x x == 4m =时 121,1x x == 故()12,x x 为(4,4),(2,2),(1,1) 共3个当1263mx mx =⎧⎨=⎩时 1m =时 126,3x x == 3m =时 122,1x x == 故()12,x x 为(6,3),(2,1) 共2个综上所述:共有2327++=个.故答案为:7.【点睛】本题考查了整式方程的代入求值 整式方程的整数解 因式分解的应用 及分类讨论的思想方法.本题的关键及难点是运用分类讨论的思想方法解题.6.(2023·江苏无锡·统考中考真题)分解因式:244x x -+= .【答案】()22x -/()22x -【分析】利用完全平方公式进行因式分解即可.【详解】解:244x x -+=()22x -故答案为:()22x -.【点睛】本题考查因式分解.熟练掌握完全平方公式法因式分解 是解题的关键.7.(2023·湖北恩施·统考中考真题)因式分解:()21x x -+= .【答案】()21x -/()21x -【分析】利用完全平方公式进行因式分解即可.【详解】解:()()2221211x x x x x -+=-+=-故答案为:()21x -.【点睛】本题考查因式分解.熟练掌握完全平方公式是解题的关键.8.(2023·湖南·统考中考真题)分解因式:n 2﹣100= .【答案】(n -10)(n +10)【分析】直接利用平方差公式分解因式得出答案.【详解】解:n 2-100=n 2-102=(n -10)(n +10).故答案为:(n -10)(n +10).【点睛】本题主要考查了公式法分解因式 正确应用平方差公式是解题关键.9.(2023·甘肃武威·统考中考真题)因式分解:22ab ab a -+= .【答案】()21a b -【分析】先提取公因式a 再利用公式法继续分解.【详解】解:()()2222211ab ab a a b b a b -+=-+=-故答案为:()21a b -.【点睛】本题考查了公式法以及提取公因式法分解因式 正确应用公式是解题的关键.在分解因式时要注意分解彻底.10.(2023·山东日照·统考中考真题)分解因式:3a b ab -= .【答案】()()11ab a a -+【分析】根据提取公因式法和平方差公式 即可分解因式.【详解】3a b ab -=2(1)(1)(1)ab a ab a a -=+-故答案是:()()11ab a a +-.【点睛】本题主要考查提取公因式法和平方差公式 掌握平方差公式 是解题的关键.11.(2023·四川德阳·统考中考真题)分解因式:ax 2﹣4ay 2= .【答案】a (x+2y )(x ﹣2y )【分析】先提公因式a 然后再利用平方差公式进行分解即可得.【详解】ax 2﹣4ay 2=a (x 2﹣4y 2)=a (x+2y )(x ﹣2y )故答案为a (x+2y )(x ﹣2y ).【点睛】本题考查了提公因式法与公式法分解因式 熟练掌握平方差公式的结构特征是解本题的关键. 12.(2023·吉林长春·统考中考真题)分解因式:21a -= .【答案】()()11a a +-.【分析】利用平方差公式分解因式即可得到答案【详解】解:()()2111a a a -=+-.故答案为:()()11a a +-【点睛】本题考查的是利用平方差公式分解因式 掌握利用平方差公式分解因式是解题的关键. 13.(2023·贵州·统考中考真题)因式分解:24x -= .【答案】(+2)(-2)x x【详解】解:24x -=222x -=(2)(2)x x +-故答案为(2)(2)x x +-14.(2023·广东深圳·统考中考真题)已知实数a b 满足6a b += 7ab =,则22a b ab +的值为 .【答案】42【分析】首先提取公因式 将已知整体代入求出即可.【详解】22a b ab +()ab a b =+76=⨯42=.故答案为:42.【点睛】此题考查了求代数式的值 提公因式法因式分解 整体思想的应用 解题的关键是掌握以上知识点.15.(2023·黑龙江绥化·统考中考真题)因式分解:2x xy xz yz +--= .【答案】()()x y x z +-【分析】先分组 然后根据提公因式法 因式分解即可求解.【详解】解:2x xy xz yz +--=()()()()x x y z x y x y x z +-+=+-故答案为:()()x y x z +-.【点睛】本题考查了因式分解 熟练掌握因式分解的方法是解题的关键.16.(2023·湖北十堰·统考中考真题)若3x y += 2y =,则22x y xy +的值是 .【答案】6【分析】先提公因式分解原式 再整体代值求解即可.【详解】解:22x y xy +()xy x y =+①3x y += 2y =①1x =①原式123=⨯⨯6=故答案为:6.【点睛】本题主要考查因式分解 熟练掌握因式分解的方法 利用整体思想方法是解答的关键. 17.(2023·四川雅安·统考中考真题)若2a b += 1a b -=,则22a b -的值为 .【答案】2-【分析】先将代数式根据平方差公式分解为:22a b -=()()a b a b +- 再分别代入求解.【详解】①2a b += 1a b -=-①原式()()2(1)2a b a b =+-=⨯-=-.故答案为:2-.【点睛】本题主要考查了平方差公式 熟记公式是解答本题的关键。

中考数学数与式专题训练50题(含答案)

中考数学数与式专题训练50题(含答案)

中考数学数与式专题知识训练50题含答案 (有理数、实数、代数、因式分解、二次根式)一、单选题1.下列运算正确的是( ) A .()328-=B .33--=C .()326-=-D .()239--=-2.下列说法正确的是( ) A .1的立方根是它本身 B .4的平方根是2 C .9的立方根是3D .0没有算术平方根3.比﹣2小的数是( ) A .﹣1B .﹣3C .0D .﹣124.下列计算正确的是( ) A .236a a a ⋅=B .22325a b 3ab 3a b -⋅=C .0(π 3.14) 3.14π-=-D .3262(a b)a b =5.长城总长约为670000米,用科学记数法表示为( ) A .56.710⨯米 B .50.6710⨯米 C .46.710⨯米D .60.6710⨯米6.下列计算正确的是( ) A .x 2+x 3=x 5B .x 2•x 3=x 6C .(x 2)3=x 5D .x 5÷x 3=x 27.一定相等的是( ) A .a 2+a 2与a 4B .(a 3)3与a 9C .a 2﹣a 2与2a 2D .a 6÷a 2与a 38.对于有理数a ,b 定义2a b a b =-,则()3x y x +化简后得( )A .2x y +B .2x y -+C .52x y +D .52x y -+9.下列运算正确的是( )A B .2=C .22=D 4=±10.N 是一个单项式,且22223N x y ax y ⋅=(-)-,则N 等于( ) A .32ayB .3ay -C .32xy -D .12axy11.下列计算正确的是( ) A .()235a a =B .()23624m m -=C .623a a a ÷=D .()222a b a b +=+ 12.( )A .2B .C .D .13.下列计算中,结果正确的是( ) A .a 3 +a =2a 4B .a 3•a 2=a 6C .2a 6÷a 2 =2a 3D .(a 2)4 =a 814.下列各组代数式中没有公因式的是 ( ) A .4a 2bc 与8abc 2 B .a 3b 2+1与a 2b 3–1 C .b (a –2b )2与a (2b –a )2 D .x +1与x 2–115.下列计算正确的是( )A 3=±B 3=-C .(23= D .23=-161m -,则m 的取值范围是( ) A .1m >B .1m <C .m 1≥D .1m17.下列运算中,计算结果正确的是( ) A .a2•a3=a6B .a2+a3=a5C .(a2)3=a6D .a12÷a6=a218.下列运算正确的是( )A .824x x x ÷=B =C .()32628aa -=-D .11(1)32-⎛⎫--=- ⎪⎝⎭19的正确结果是( )A .(m ﹣5)5m -B .(5﹣m)5m -C .m ﹣5()5m --D .5﹣m 5m -二、填空题20.已知某种感冒病毒的直径是-0.000000012米,那么这个数可用科学记数法表示为____________. 21.45--=______. 22.2018年我省夏粮总产量达到2299000吨,将数据“2299000吨”用科学记数法表示为__________.23叫做二次根式. 24.2015的相反数为____.25.把202100000用科学记数法表示为______.260,则xzy=_______.27______=______.28.写出一个..绝对值大于2且小于3的无理数____________.29.当2a =+2943a a -+的值等于___.30.将数67500用科学记数法表示为____________.31有意义,则x 的取值范围是___________________. 32.有一个数值转换器,原理如下:当输入的x 为64时,输出的y 是___________.33.213-的倒数是_____,213-的相反数是_____.34.“皮克定理”是用来计算顶点在格点(即图中虚线的交点,如图中的小黑点)上的多边形的面积公式,公式为S = a +2b-1.小明只记得公式中的表示多边形的面积,a和 b 中有一个表示多边形边上(含多边形顶点)的格点个数,另一个表示多边形内部的格点个数,但记不清楚究竟是哪一个表示多边形内部的格点个数,请你利用图 1 探究并运用探究的结果求图 2 中多边形的面积是____.35.若a +b =8,ab =15,则a 2+ab +b 2=________.36.已知甲数是719的平方根,乙数是338的立方根,则甲、乙两个数的积是__.37.分解因式:2244x y y -+-=__________.38.我国古代数学的许多创新与发展都曾居世界前列,其中“杨辉三角”(如图)就是一例,它的发现比欧洲早五百年左右.杨辉三角两腰上的数都是1,其余每个数为它的上方(左右)两数之和.事实上,这个三角形给出了()na b +(n =1,2,3,4,5,6)的展开式(按a 的次数由大到小的顺序排列)的系数规律. 例如,在三角形中第三行的三个数1,2,1,恰好对应着222()2a b a ab b +=++展开式中各项的系数;第四行的四个数1,3,3,1,恰好对应着+=+++33223()33a b a a b ab b 展开式中各项的系数,等等. (1)当n =4时,4()a b +的展开式中第3项的系数是_________;(2)人们发现,当n 是大于6的自然数时,这个规律依然成立,那么7()a b +的展开式中各项的系数的和为_________.三、解答题39.计算:20220(1)1)-+︒. 40.计算:(1)()232()nn m mn m -⋅÷(2)解不等式组: 10223x x x +>⎧⎪-⎨≤+⎪⎩41.在平面直角坐标系中,已知点P (3,-1)关于原点对称的点Q 的坐标是(),1a b b +-,求b a 的值.42.(1)计算:﹣32+(π﹣2021)0﹣|1|.(2)解不等式组:3(1)25322x xxx-≥-⎧⎪⎨+<⎪⎩①②.43.计算:(1)(﹣1)3+(π+2022)0+(12)﹣2;(2)(-a)3•a2﹣(2a4)2÷a3.44.计算下列各式:(1)(2)45.已知2a-l的算术平方根为3,3a+b-1的算术平方根为4,求a+2b的平方根.46.(1)计算:0112sin3022π-⎛⎫⎛⎫-︒⎪ ⎪⎝⎭⎝⎭;(2)化简:2(21)(1)(1)x x x--+-.47.已知a,b,c在数轴上对应点的位置如图所示,化简||||||a ab b c-+-.48.观察以下等式:第1个等式:211111=+第2个等式:211326=+第3个等式:2115315=+第4个等式:2117428=+第5个等式:2119545=+按照以上规律,解决下列问题:(1)写出第7个等式:;(2)写出你猜想的第n个等式:(用含n的等式表示),并证明.参考答案:1.D【分析】根据乘方运算、绝对值及相反数的意义,逐个运算得结论.【详解】解:(-2)3=-8,故选项A、C错误;-|-3|=-3,故选项B错误;-(-3)2=-9,故选项D正确.故选:D.【点睛】本题考查了乘方运算,绝对值、相反数的意义.题目相对简单.负数的偶次方是正,负数的奇数次方为负.2.A【分析】根据立方根与平方根的定义即可求出答案.【详解】解:A、1的立方根是它本身,故此选项符合题意;B、4的平方根是2 ,故此选项不符合题意;C、9D、0的算术平方根是0,故此选项不符合题意.故选:A.【点睛】本题考查平方根与立方根,解题的关键是正确理解立方根与平方根的定义.3.B【分析】对于正数绝对值大的数就大;对于负数绝对值大的反而小;负数小于0,0小于正数;【详解】解:A,是个负数绝对值比2小,﹣1>﹣2;B,是个负数绝对值比2大,﹣3<﹣2;C,0比负数大;D,是个负数绝对值比2小,﹣1>﹣2;2故答案选:B【点睛】本题考查有理数大小的判断,先比正负,再比绝对值.4.D【分析】直接利用同底数幂的乘除运算法则以及积的乘方运算法则、零指数幂的性质分别判断得出答案.【详解】解:A 、a 2•a 3=a 5,故此选项错误; B 、-a 2b 2•3ab 3=-3a 3b 5,故此选项错误; C 、(π-3.14)0=1,故此选项错误; D 、(a 3b 2)2=a 6b 4,正确. 故选D .【点睛】考查了同底数幂的乘除运算以及积的乘方运算等知识,正确掌握相关运算法则是解题关键. 5.A【分析】根据科学记数法的定义即可得. 【详解】解:670000米56.710=⨯米, 故选:A .【点睛】本题考查了科学记数法,熟记科学记数法的定义(将一个数表示成10n a ⨯的形式,其中110a ≤<,n 为整数,这种记数的方法叫做科学记数法)是解题关键.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同. 6.D【详解】试题分析:A .2x+3x 已经为最简式.B .x 2•x 3=x 5同底数幂相乘,指数相加. C .(x 2)3=x 6求幂的乘方,指数相乘.故只有D 正确 考点:整式运算点评:本题难度较低,主要考查学生对整式运算知识点的掌握.注意同底数幂相乘,指数相加.幂的乘方,指数相乘. 7.B【分析】A .根据整式的加法运算合并同类项即可; B .运用幂的乘法公式,底数不变,指数相乘,化简即可; C .根据整式的减法运算合并同类项即可;D .根据同底数幂的除法,底数不变,指数相减即可得出结论. 【详解】解:A .22242a a a a +=≠,故选项不合题意; B .()339a a =,故选项符合题意;C .22202a a a -=≠,故选项不合题意;D .624a a a ÷=,故选项不合题意; 故选:B .【点睛】本题考查整式的混合运算,熟练掌握每个计算的运算法则是解题的关键. 8.B【分析】根据新定义运算可直接进行求解. 【详解】解:∵2a b a b =-,∵()3x y x +()23x y x =+-223x y x =+-2x y =-+.故选:B .【点睛】本题主要考查整式的加减运算,熟练掌握整式的加减运算是解题的关键. 9.A【分析】根据二次根式的性质以及二次根式的混合运算逐项计算分析判断即可求解.【详解】解:A 、=B 、2C 、253=+-D 4=,故该选项不正确,不符合题意. 故选:A .【点睛】此题主要考查了二次根式的性质以及二次根式的混合运算,掌握二次根式的性质以及运算法则是解题关键. 10.A【分析】利用单项式与单项式除法,把他们的系数,相同字母分别相除,对于只在一个单项式里含有的字母,则连同它的指数作为商的一个因式,进而得出即可. 【详解】解:∵N •(-2x 2y )=-3ax 2y 2, ∵N =-3ax 2y 2÷(-2x 2y )=32ay .故选:A .【点睛】此题主要考查了单项式除以单项式,熟练掌握运算法则是解题关键. 11.B【分析】分别根据幂的乘方运算法则,积的乘方运算法则,同底数幂的除法法则以及完全平方公式逐一进行判断即可得出正确选项. 【详解】A. ()236a a =,故本选项不符合题意;B. ()23624m m -=,正确;C. 624a a a ÷=,故本选项不符合题意;D. ()2222a b a ab b +=++,故本选项不符合题意. 故选:B.【点睛】本题主要考查了同底数幂的除法,完全平方公式以及幂的乘方与积的乘方,熟记幂的运算法则是解答本题的关键. 12.B【详解】试题分析:10099100991009912()22222--⨯-=-⨯=-=-.故选B.考点: 1.负整数指数幂;2.积的乘方. 13.D【分析】分别计算后判断即可.【详解】解:A.不是同类项不能合并,故该选项计算错误; B. a 3•a 2=a 5,故该选项计算错误; C. 2a 6÷a 2 =2a 4,故该选项计算错误; D.(a 2)4 =a 8,故该选项计算正确. 故选:D .【点睛】本题考查合并同类项、同底数幂乘法、单项式除单项式、幂的乘方.掌握相关运算法则是解题关键. 14.B【分析】分别分析各选项中的代数式,能因式分解的先进行因式分解,再确定没有公因式的选项即可.【详解】A 、4a 2bc 与8abc 2有公因式4abc ,故该选项不满足题意;B、a3b2+1与a2b3–1,没有共公因式,故该选项满足题意;C、b(a–2b)2与a(2b–a)2有公因式()2a b-,故该选项不满足题意;2D、x+1与x2–1有公因式x+1,故该选项不满足题意;故选:B.【点睛】本题主要考查公因式的确定,熟练掌握因式分解是解决本题的关键.15.C【分析】根据二次根式的性质即可求出答案.【详解】A. 3=,故原选项错误;B. 3,故原选项错误;C. (23=,正确;D. D错误故选:C.【点睛】本题考查二次根式,解题的关键是熟练运用二次根式的性质,本题属于基础题型.16.D=进行化简,再根据绝对值的意义列出不等式,求解即可.a=-=-,m m11∵1-m≥0,∵m≤1故选:Da二者是等价的,故二者可以互化.17.C【分析】根据同底数幂相乘,底数不变指数相加;幂的乘方,底数不变指数相减;同底数幂相除,底数不变指数相减对各选项分析判断即可得解.【详解】A、a2•a3=a2+3=a5,故本选项错误;B、a2+a3不能进行运算,故本选项错误;C、(a2)3=a2×3=a6,故本选项正确;D、a12÷a6=a12﹣6=a6,故本选项错误.故选C.【点睛】本题考查了同底数幂的乘法、幂的乘方、同底数幂的除法,熟练掌握运算法则是解题的关键.18.C【分析】分别根据同底数幂的除法法则,二次根式的加法法则,积的乘方运算法则以及零指数幂、负整数指数幂的运算法则逐一判断即可.【详解】A、826x x x÷=原计算错误,不符合题意;B、235=+=≠C、()32628a a-=-正确,符合题意;D、11(1)1212-⎛⎫--=-=-⎪⎝⎭原计算错误,不符合题意;故选:C.【点睛】本题主要考查了同底数幂的除法,幂的乘方与积的乘方,二次根式的运算,零指数幂、负整数指数幂的运算,熟记二次根式的运算、幂的运算法则是解答本题的关键.19.B【详解】试题解析:50m∴-≥,即5m≤,∵原式(5m=-故选B.20.-1.2×10-8【详解】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于1时,n是正数;当原数的绝对值小于1时,n是负数.0.000000012用科学记数法表示为21.4 -5【分析】先求出有理数的绝对值,再求相反数,即可得到答案.【详解】∵45--=45-, 故答案是: 45-. 【点睛】本题主要考查有理数的绝对值法则和相反数的概念,掌握有理数的绝对值法则和相反数的概念是解题的关键.22.2.299×106吨【分析】根据科学记数法的形式为10n a ⨯,其中110a ≤<,n 是原数的整数位数减1,可得出答案.【详解】2299000吨=2.299×106吨,故答案为2.299×106吨.【点睛】本题考查科学记数法,其形式为10n a ⨯,其中110a ≤<,n 是整数,关键是确定a 和n 的值.23.0a ≥【分析】根据二次根式的非负性解题即可.【详解】解:∵0a ≥,故答案为:0a ≥.【点睛】本题主要考查二次根式的定义,能够熟记定义是解题关键.24.-2015.【详解】试题解析:2015的相反数是-2015.考点:相反数.25.82.02110⨯【分析】科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n 是正整数;当原数的绝对值<1时,n 是负整数.【详解】解:202100000=2.021×108.故答案为:82.02110⨯.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数,表示时关键要确定a 的值以及n 的值.26.52【分析】根据根式有意义的条件可知2x+3_≥0,4y-6x_≥0,x+y+z_≥0,再根据已知条件可得到2x+3=0,4y-6x=0,x+y+z=0;通过解方程组即可求出x 、y 、z 的值,即可xz y的值.0=可得2304600x y x x y z +=⎧⎪-=⎨⎪++=⎩, 解得3294154x y z ⎧=-⎪⎪⎪=-⎨⎪⎪=⎪⎩, 将x 、x 、z 的值代入xzy 可得3152494-⨯-=52, 所以xz y 的值为52. 故答案为52. 【点睛】此题考查二次根式有意义的条件,解题关键在于利用其性质进行解答. 27.【分析】(1)根据二次根式的性质即可求解.(2)根据最简二次根式的化简即可求解.=;=;【点睛】此题主要考查二次根式的性质,解题的关键是熟知二次根式的运算法则与性质. 28【分析】根据算术平方根的性质可以把2和3写成带根号的形式,再进一步写出一个被开方数介于两者之间的数即可.∵写出一个大于2小于3.【点睛】本题考查了无理数的估算,估算无理数大小要用逼近法.用有理数逼近无理数,求无理数的近似值.29.92【分析】由2a =2a -=241a a -=-,整体代入即可求解.【详解】解:∵2a =∵2a -=()223a -=,∵2443a a -+=,即241a a -=-, ∵299943132a a ==-+-+. 故答案为:92. 【点睛】本题考查了分式的化简求值,二次根式的性质,掌握整体代入法是解题的关键. 30.46.7510⨯【分析】科学记数法的表示形式为ax10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.【详解】解:67500=46.7510⨯,即答案为:46.7510⨯.【点睛】本题考查用科学记数法表示较大的数,一般形式为ax10n ,其中1≤al<10,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.31.x≤且x≠0【详解】试题分析:当x 满足条件120{0x x -≥≠时,式子有意义,解得x≤且x≠0.考点:代数式有意义的条件.32【分析】直接根据题意列式计算即可.2是有理数,即输出的y【点睛】本题考查了求算术平方根和立方根即根据图片列式计算,能够根据图片正确列出算式是解题的关键.33. ﹣3553 【详解】试题解析:根据乘积为1的两个数互为倒数,可得一个数的倒数;根据只有符号不同的两个数互为相反数,可得一个数的相反数,故:213-的倒数是-35,213-的相反数是213 34.10.【分析】分别找到图1中图形内的格点数和图形上的格点数后,再与公式比较,即可发现表示图上的格点数对应的字母和图形内的格点数对应的字母,再利用图2中的有关数据代入公式即可求得图形的面积.【详解】解:根据图1可得,∵矩形内由2个格点,边上有10个格点,面积为6, 即106=2+12-; 正方形内由1个格点,边上有8个格点,面积为4, 即84=1+12-; ∵公式中表示多边形内部整点个数的字母是a ;表示多边形边上(含多边形顶点)的格点个数为b ,由图2得:8,6,a b ==6=18110.22b S a ∴+-=+-= 故答案为:10.【点睛】本题考查了新定义型的图形的变化类问题,解题的关键是能够仔细弄懂题意,弄懂公式中代数式的含义,根据题意进行探究,找到规律,再利用规律解决问题. 35.49【分析】首先配方得出a 2+ab+b 2=(a+b )2-ab 进而得出答案.【详解】解:∵a+b=8,ab=15,则a 2+ab+b 2=(a+b )2-ab=82-15=49.故答案为49.【点睛】此题主要考查了配方法的应用,正确配方是解题关键.36.2±.【分析】分别根据平方根、立方根的定义可以求出甲数、乙数,进而即可求得题目结果. 【详解】甲数是719的平方根 ∴甲数等于43±; 乙数是338的立方根, ∴乙数等于32. ∵43=232⨯ ∴甲、乙两个数的积是2±.故答案:2±.【点睛】此题主要考查了立方根、平方根的定义,解题的关键是根据平方根和立方根的定义求出甲数和乙数.37.(2)(2)x y x y +--+##(x -y +2)(x +y -2)【分析】先分组成22(44)x y y -+-,再利用完全平方公式化为22(2)x y --,最后利用平方差公式解答.【详解】解:2244x y y -+-22(44)x y y =--+22(2)x y =--(2)(2)x y x y =+--+故答案为:(2)(2)x y x y +--+.【点睛】本题考查因式分解,涉及分组分解法、完全平方公式、平方差公式等知识,是重要考点,掌握相关知识是解题的关键.38. 6 128【分析】(1)当n=4时,4()a b +的展开式的系数恰好对应的是第五行的数,根据第五行的数即刻得出答案;(2)7()a b +的展开式的系数恰好对应第八行的数,据图写出第八行的数求和即可.【详解】解:(1)4()a b +的展开式的系数恰好对应的是第五行的数,为:1,4,6,4,1,故4()a b +的展开式中第3项的系数是6;(2)据题可知第八行的数为:1,7,21,35,35,21,7,1.故7()a b +的展开式中各项的系数的和为:1+7+21+35+35+21+7+1=128.故答案为:(1)6;(2)128.【点睛】本题考查完全平方公式,探索与表达规律.(1)能找出()n a b +的展开式的系数与杨辉三角中行数之间的关系是解题关键;(2)中能依据“杨辉三角两腰上的数都是1,其余每个数为它的上方(左右)两数之和”写出“杨辉三角”的第八行数是解题关键.39.1【分析】根据数的乘方、零指数幂、开方法则进行计算,在加上特殊角的三角函数值,即可求解.【详解】解:原式=1+1-2=1121+-+=1.【点睛】本题考查实数的混合运算,熟练掌握实数的运算法则和熟记特殊角的三角函数值是解题的关键.40.(1)53n m n +;(2)- 12x <≤【分析】(1)运用整式的乘法法则计算即可;(2)根据不等式的运算求得解后再联立求解集即可.【详解】解:(1)原式 233253n n n m n m m n +-+=÷= (2)10223x x x +>⎧⎪⎨-≤+⎪⎩①② 解∵的1x >-,解∵得x 2≤,不等式组的解集为- 12x <≤【点睛】本题主要考查整式的乘法法则以及解一元一次不等式组,解题的关键是熟练地掌握整式的乘法的乘法法则以及解一元一次不等式组的解题步骤和方法即可.41.25 【详解】解:点(3,1)P -与点(,1)Q a b b +-关于原点对称,3a b ∴+=-,11b -=,解得:2,5b a ==-,2(5)25b a ∴=-=.42.(1)﹣7;(2)﹣2≤x <1【分析】(1)根据有理数的乘方、零指数幂、绝对值的意义进行化简即可;(2)先分别解不等式,再根据不等式组解集的规律写出解集即可.【详解】(1)原式=﹣9+11)=﹣9+1=﹣7(2)3(1)25322x x x x -≥-⎧⎪⎨+<⎪⎩①②, 解不等式∵,得x ≥﹣2,解不等式∵,得x <1,∵不等式组的解集为﹣2≤x <1.【点睛】本题考查了实数的混合运算和解不等式组,掌握实数的运算法则和解不等式组的步骤是解题的关键.43.(1)4(2)-5a 5【分析】(1)根据有理数的乘方,零指数幂,负整数指数幂分别进行计算即可; (2)根据同底数幂的乘法,积的乘方,单项式除以单项式分别进行计算即可.(1)解:原式=-1+1+4=4;(2)原式=-a3•a2﹣4a8÷a3=-a5-4a5=-5a5.【点睛】本题考查有理数的乘方、零指数幂、负整数指数幂、同底数幂的乘法、积的乘方、单项式除以单项式,解题关键是掌握相关的运算法则.44.2【分析】(1)运用分配律计算即可;(2)先将二次根式化简,然后去括号计算即可.【详解】(1)解:=2(2)==【点睛】题目主要考查二次根式的运算,掌握二次根式的运算法则是解题关键.45.3±【分析】利用平方根及算术平方根的定义列出方程,得到a与b的值,确定出a+2b的值,即可求出平方根.【详解】解:由题意得2a-1=9,3a+b-1=16,解得:a=5,b=2,则a+2b=9,∵a+2b的平方根是3±.【点睛】此题考查了平方根,以及算术平方根,熟练掌握各自的定义是解本题的关键.46.(1)4;(2)2-+.x x342【分析】(1)根据零指数幂,特殊角的三角函数值,算术平方根,负整数指数幂计算即可;(2)利用完全平方公式和平方差公式展开,化简即可.【详解】(1)原式112222=-⨯++ 1122=-++4=;(2)原式()224411x x x =-+--224411x x x =-+-+2342x x =-+.【点睛】本题考查了零指数幂,特殊角的三角函数值,算术平方根,负整数指数幂,完全平方公式和平方差公式,注意第(2)个小题平方差公式展开要加括号.47.-a +2c .【分析】根据已知判断出a +b ,c -a 及b -c 的符号,进而确定出二次根式、绝对值里边式子的符号,利用绝对值的代数意义化简,去括号合并即可得到结果.【详解】解:∵a <b <0<c ,a +b <0,c -a >0,b -c <0.∵||||||a a b b c -+-||||||||a a b c a b c =-++-+-=-a +(a +b )+(c -a )+(c -b )=-a +a +b +c -a +c -b=-a +2c .【点睛】此题考查了二次根式的性质与化简,整式的加减,以及绝对值的性质,去括号法则,以及合并同类项法则.正确得出各项符号是解题关键.48.(1)21113791=+ (2)21121(21)n n n n =+--;证明见解析 【分析】(1)观察前几个等式即可写出第7个等式;(2)结合(1)观察数字的变化规律即可写出第n 个等式,并进行证明.【详解】解:观察以下等式:第1个等式:211111=+, 第2个等式:211326=+,答案第16页,共16页 第3个等式:2115315=+, 第4个等式:2117428=+, 第5个等式:2119545=+, ……按照以上规律, (1)第7个等式:21113791=+; 故答案为:21113791=+; (2)第n 个等式:21121(21)n n n n =+-- 证明:∵等式右边11(21)n n n =+- 21122(21)(21)(21)21n n n n n n n n n -=+==---- ∵左边=右边∵猜想得证. 故答案为:21121(21)n n n n =+-- 【点睛】本题考查了规律型:数字的变化类、列代数式,解决本题的关键是观察数字的变化寻找规律.。

中考数学一轮复习:代数式与整式(含因式分解)过关练测(word版、含答案)

中考数学一轮复习:代数式与整式(含因式分解)过关练测(word版、含答案)

3.代数式与整式(含因式分解)一、选择题1.下列各式中正确的是()A.a3·a2=a6B.3ab-2ab=1C.6a2+13a=2a+1 D.a(a-3)=a2-3a2.下列运算正确的是()A.(-a)³=a³B.(a²)³=a⁵C.a²÷a-²=1D.(-2a³)²=4a⁶3.下列各式计算正确的是()A.4a-a=3B.a⁶÷a²=a³C.(-a³)²=a⁶D.a³·a²=a⁶4.下列运算正确的是()A.a²·a³=a⁶B.a⁸÷a⁴=a²C.a³+a³=2a⁶D.(a³)²=a⁶5.计算(a²)³的结果是()A.a⁵B.a⁶C.a⁸D.a⁹6.下列运算正确的是()A.3a²-a²=3B.(a²)³=a⁵C.a³·a⁶=a⁹D.(2a²)²=4a²7.小明总结了以下结论:①a(b+c)=ab+ac;②a(b-c)=ab-ac;③(b-c)÷a =b÷a-c÷a(a≠0);④a÷(b+c)=a÷b+a÷c(a≠0).其中一定成立的个数是()A.1B.2C.3D.48.如图,从边长为a的大正方形中剪掉一个边长为b的小正方形,将阴影部分沿虚线剪开,拼成右边的矩形.根据图形的变化过程写出的一个正确的等式是()A.(a -b)²=a ²-2ab +b ²B.a(a -b)=a ²-abC.(a -b)²=a ²-b ²D.a ²-b ²=(a +b)(a -b)9.下列等式从左到右变形,属于因式分解的是( )A.(a +b)(a -b)=a2-b2B.x2-2x +1=(x -1)2C.2a -1=a ⎝ ⎛⎭⎪⎫2-1a D.x2+6x +8=x(x +6)+810.若(92-1)(112-1)k=8×10×12,则k =( ) A.12 B.10 C.8 D.611.对于任意的有理数a ,b ,如果满足a 2+b 3=a +b2+3,那么我们称这一对数a ,b 为“相随数对”,记为(a ,b ).若(m ,n )是“相随数对”,则3m +2[3m +(2n -1)]=( )A.-2B.-1C.2D.312.从前,古希腊一位庄园主把一块边长为a 米(a >6)的正方形土地租给租户张老汉,第二年,他对张老汉说:“我把这块地的一边增加6米,相邻的另一边减少6米,变成矩形土地继续租给你,租金不变,你也没有吃亏,你看如何?”如果这样,你觉得张老汉的租地面积会( )A.没有变化B.变大了C.变小了D.无法确定二、填空题13.分解因式:m ²n -n ³= .14.分解因式:3a ²-6a +3= .15.分解因式:2a ³-8a = .16.已知m+n=12,m-n=2,则m²-n²=.17.分解因式:2a²-8=.18.分解因式:mn²-m=.19.分解因式:x³-xy²=.20.分解因式:x²y-y=.21.分解因式:2a²-4a+2=.22.数学讲究记忆方法.如计算(a⁵)²时若忘记了法则,可以借助(a⁵)²=a⁵×a⁵=a⁵+⁵=a¹º,得到正确答案.你计算(a²)⁵-a³×a⁷的结果是.23.现有甲、乙、丙三种不同的矩形纸片(边长如图).(1)取甲、乙纸片各1块,其面积和为;(2)嘉嘉要用这三种纸片紧密拼接成一个大正方形,先取甲纸片1块,再取乙纸片4块,还需取丙纸片块.24.下面图形都是由同样大小的小球按一定规律排列的,依照此规律排列下去,第个图形共有210个小球.三、计算题25.计算:(x-y)²+x(x+2y).26.先因式分解,再计算求值:2x³-8x,其中x=3.27.小红在计算a(1+a)-(a-1)²时,解答过程如下:红的解答从第步开始出错,请写出正确的解答过程.参考答案一、选择题1.D2.D3.C4.D5.B6.C7.C8.D9.B 10.B 11.A 12.C二、填空题13.n(m+n)(m-n)14.3(a-1)²15.2a(a+2)(a-2)16.2417.2(a+2)(a-2)18.m(n+1)(n-1)19.x(x+y)(x-y)20.y(x+1)(x-1)21.2(a-1)²22.(1)a²+b²(2)423.m²-m24.20三、计算题25.解:原式=x²-2xy+y²+x²+2xy=2x²+y².26.解:原式=2x(x²-4)=2x(x+2)(x-2).当x=3时,原式=2×3×(3+2)×(3-2)=30.27.第一步解:(1+a)-(a-1)²=a+a²-(a²-2a+1)=a+a²-a²+2a-1=3a-1.。

福建省2019年中考[数学]考试真题与答案解析

福建省2019年中考[数学]考试真题与答案解析

福建省2019年中考[数学]考试真题与答案解析一、选择题1.计算22+(﹣1)0的结果是( )A.5B.4C.3D.2答案解析:原式=4+1=5故选:A.2.北京故宫的占地面积约为720000m2,将720000用科学记数法表示为( )A.72×104B.7.2×105C.7.2×106D.0.72×106答案解析:将720000用科学记数法表示为7.2×105.故选:B.3.下列图形中,一定既是轴对称图形又是中心对称图形的是( )A.等边三角形B.直角三角形C.平行四边形D.正方形答案解析:A、等边三角形是轴对称图形,不是中心对称图形,故本选项错误;B、直角三角形不是轴对称图形,也不是中心对称图形,故本选项错误;C、平行四边形不是轴对称图形,是中心对称图形,故本选项错误;D、正方形既是轴对称图形,又是中心对称图形,故此选项正确.故选:D.4.如图是由一个长方体和一个球组成的几何体,它的主视图是( )A.B.C.D.答案解析:几何体的主视图为:故选:C.5.已知正多边形的一个外角为36°,则该正多边形的边数为( )A.12B.10C.8D.6答案解析:360°÷36°=10,所以这个正多边形是正十边形.故选:B.6.如图是某班甲、乙、丙三位同学最近5次数学成绩及其所在班级相应平均分的折线统计图,则下列判断错误的是( )A.甲的数学成绩高于班级平均分,且成绩比较稳定B.乙的数学成绩在班级平均分附近波动,且比丙好C.丙的数学成绩低于班级平均分,但成绩逐次提高D.就甲、乙、丙三个人而言,乙的数学成绩最不稳答案解析:A.甲的数学成绩高于班级平均分,且成绩比较稳定,正确;B.乙的数学成绩在班级平均分附近波动,且比丙好,正确;C.丙的数学成绩低于班级平均分,但成绩逐次提高,正确D.就甲、乙、丙三个人而言,丙的数学成绩最不稳,故D错误.故选:D.7.下列运算正确的是( )A.a•a3=a3B.(2a)3=6a3C.a6÷a3=a2D.(a2)3﹣(﹣a3)2=0答案解析:A、原式=a4,不符合题意;B、原式=8a3,不符合题意;C、原式=a3,不符合题意;D、原式=0,符合题意,故选:D.8.《增删算法统宗》记载:“有个学生资性好,一部孟子三日了,每日增添一倍多,问君每日读多少?”其大意是:有个学生天资聪慧,三天读完一部《孟子》,每天阅读的字数是前一天的两倍,问他每天各读多少个字?已知《孟子》一书共有34685个字,设他第一天读x个字,则下面所列方程正确的是( )A.x+2x+4x=34685B.x+2x+3x=34685C.x+2x+2x=34685D.x+x+x=34685答案解析:设他第一天读x个字,根据题意可得:x+2x+4x=34685,故选:A.9.如图,PA、PB是⊙O切线,A、B为切点,点C在⊙O上,且∠ACB=55°,则∠APB 等于( )A.55°B.70°C.110°D.125°答案解析:连接OA,OB,∵PA,PB是⊙O的切线,∴PA⊥OA,PB⊥OB,∵∠ACB=55°,∴∠AOB=110°,∴∠APB=360°﹣90°﹣90°﹣110°=70°.故选:B.10.若二次函数y=|a|x2+bx+c的图象经过A(m,n)、B(0,y1)、C(3﹣m,n)、D (,y2)、E(2,y3),则y1、y2、y3的大小关系是( )A.y1<y2<y3B.y1<y3<y2C.y3<y2<y1D.y2<y3<y1答案解析:∵经过A(m,n)、C(3﹣m,n),∴二次函数的对称轴x=,∵B(0,y1)、D(,y2)、E(2,y3)与对称轴的距离B最远,D最近,∵|a|>0,∴y1>y3>y2;故选:D.二、填空题11.因式分解:x2﹣9= (x+3)(x﹣3) .答案解析:原式=(x+3)(x﹣3),故答案为:(x+3)(x﹣3).12.如图,数轴上A、B两点所表示的数分别是﹣4和2,点C是线段AB的中点,则点C所表示的数是 ﹣1 .答案解析:∵数轴上A,B两点所表示的数分别是﹣4和2,∴线段AB的中点所表示的数=(﹣4+2)=﹣1.即点C所表示的数是﹣1.故答案为:﹣113.某校征集校运会会徽,遴选出甲、乙、丙三种图案.为了解何种图案更受欢迎,随机调查了该校100名学生,其中60名同学喜欢甲图案,若该校共有2000人,根据所学的统计知识可以估计该校喜欢甲图案的学生有 1200 人.答案解析:由题意得:2000×=1200人,故答案为:1200.14.在平面直角坐标系xOy中,▱OABC的三个顶点O(0,0)、A(3,0)、B(4,2),则其第四个顶点是 (1,2) .答案解析:∵O(0,0)、A(3,0),∴OA=3,∵四边形OABC是平行四边形,∴BC∥OA,BC=OA=3,∵B(4,2),∴点C的坐标为(4﹣3,2),即C(1,2);故答案为:(1,2).15.如图,边长为2的正方形ABCD中心与半径为2的⊙O的圆心重合,E、F分别是AD、BA的延长线与⊙O的交点,则图中阴影部分的面积是 π﹣1 .(结果保留π)答案解析:延长DC,CB交⊙O于M,N,则图中阴影部分的面积=×(S圆O﹣S正方形ABCD)=×(4π﹣4)=π﹣1,故答案为:π﹣1.16.如图,菱形ABCD顶点A在函数y=(x>0)的图象上,函数y=(k>3,x>0)的图象关于直线AC对称,且经过点B,D两点,若AB=2,∠BAD=30°,则k= 6+2 .答案解析:连接OC,AC,过A作AE⊥x轴于点E,延长DA与x轴交于点F,过点D作DG ⊥x轴于点G,∵函数y=(k>3,x>0)的图象关于直线AC对称,∴O,A,C三点在同直线上,且∠COE=45°,∴OE=AE,不妨设OE=AE=a,则A(a,a),∵点A在在反比例函数y=(x>0)的图象上,∴a2=3,∴a=,∴AE=OE=,∵∠BAD=30°,∴∠OAF=∠CAD=∠BAD=15°,∵∠OAE=∠AOE=45°,∴∠EAF=30°,∴AF=,EF=AEtan30°=1,∵AB=AD=2,AE∥DG,∴EF=EG=1,DG=2AE=2,∴OG=OE+EG=+1,∴D(+1,2),故答案为:6+2.三、解答题17.解方程组.答案解析:,①+②得:3x=9,即x=3,把x=3代入①得:y=﹣2,则方程组的解为.18.如图,点E、F分别是矩形ABCD的边AB、CD上的一点,且DF=BE.求证:AF=CE.【解答】证明:∵四边形ABCD是矩形,∴∠D=∠B=90°,AD=BC,在△ADF和△BCE中,,∴△ADF≌△BCE(SAS),∴AF=CE.19.先化简,再求值:(x﹣1)÷(x﹣),其中x=+1.答案解析:原式=(x﹣1)÷=(x﹣1)•=,当x=+1,原式==1+.20.已知△ABC和点A',如图.(1)以点A'为一个顶点作△A'B'C',使△A'B'C'∽△ABC,且△A'B'C'的面积等于△ABC面积的4倍;(要求:尺规作图,不写作法,保留作图痕迹)(2)设D、E、F分别是△ABC三边AB、BC、AC的中点,D'、E'、F'分别是你所作的△A'B'C'三边A'B'、B'C'、C'A'的中点,求证:△DEF∽△D'E'F'.答案解析:(1)作线段A'C'=2AC、A'B'=2AB、B'C'=2BC,得△A'B'C'即可所求.证明:∵A'C'=2AC、A'B'=2AB、B'C'=2BC,∴△ABC∽△A′B′C′,∴(2)证明:∵D、E、F分别是△ABC三边AB、BC、AC的中点,∴DE=,,,∴△DEF∽△ABC同理:△D'E'F'∽△A'B'C',由(1)可知:△ABC∽△A′B′C′,∴△DEF∽△D'E'F'.21.在Rt△ABC中,∠ABC=90°,∠ACB=30°,将△ABC绕点C顺时针旋转一定的角度α得到△DEC,点A、B的对应点分别是D、E.(1)当点E恰好在AC上时,如图1,求∠ADE的大小;(2)若α=60°时,点F是边AC中点,如图2,求证:四边形BEDF是平行四边形.答案解析:(1)解:如图1,∵△ABC绕点C顺时针旋转α得到△DEC,点E恰好在AC上,∴CA=CD,∠ECD=∠BCA=30°,∠DEC=∠ABC=90°,∵CA=CD,∴∠CAD=∠CDA=(180°﹣30°)=75°,∴∠ADE=90°﹣75°=15°;(2)证明:如图2,∵点F是边AC中点,∴BF=AC,∵∠ACB=30°,∴AB=AC,∴BF=AB,∵△ABC绕点C顺时针旋转60得到△DEC,∴∠BCE=∠ACD=60°,CB=CE,DE=AB,∴DE=BF,△ACD和△BCE为等边三角形,∴BE=CB,∵点F为△ACD的边AC的中点,∴DF⊥AC,易证得△CFD≌△ABC,∴DF=BC,∴DF=BE,而BF=DE,∴四边形BEDF是平行四边形.22.某工厂为贯彻落实“绿水青山就是金山银山“的发展理念,投资组建了日废水处理量为m 吨的废水处理车间,对该厂工业废水进行无害化处理.但随着工厂生产规模的扩大,该车间经常无法完成当天工业废水的处理任务,需要将超出日废水处理量的废水交给第三方企业处理.已知该车间处理废水,每天需固定成本30元,并且每处理一吨废水还需其他费用8元;将废水交给第三方企业处理,每吨需支付12元.根据记录,5月21日,该厂产生工业废水35吨,共花费废水处理费370元.(1)求该车间的日废水处理量m;(2)为实现可持续发展,走绿色发展之路,工厂合理控制了生产规模,使得每天废水处理的平均费用不超过10元/吨,试计算该厂一天产生的工业废水量的范围.答案解析:(1)∵35×8+30=310(元),310<370,∴m<35.依题意,得:30+8m+12(35﹣m)=370,解得:m=20.答:该车间的日废水处理量为20吨.(2)设一天产生工业废水x吨,当0<x≤20时,8x+30≤10x,解得:15≤x≤20;当x>20时,12(x﹣20)+8×20+30≤10x,解得:20<x≤25.综上所述,该厂一天产生的工业废水量的范围为15≤x≤25.23.某种机器使用期为三年,买方在购进机器时,可以给各台机器分别一次性额外购买若干次维修服务,每次维修服务费为2000元.每台机器在使用期间,如果维修次数未超过购机时购买的维修服务次数,每次实际维修时还需向维修人员支付工时费500元;如果维修次数超过购机时购买的维修服务次数,超出部分每次维修时需支付维修服务费5000元,但无需支付工时费.某公司计划购买1台该种机器,为决策在购买机器时应同时一次性额外购买几次维修服务,搜集并整理了100台这种机器在三年使用期内的维修次数,整理得下表;维修次数89101112频率(台数)1020303010(1)以这100台机器为样本,估计“1台机器在三年使用期内维修次数不大于10”的概率;(2)试以这100机器维修费用的平均数作为决策依据,说明购买1台该机器的同时应一次性额外购10次还是11次维修服务?答案解析:(1)“1台机器在三年使用期内维修次数不大于10”的概率==0.6.(2)购买10次时,某台机器使用期内维修次数89101112该台机器维修费用2400024500250003000035000此时这100台机器维修费用的平均数y1=(24000×10+24500×20+25000×30+30000×30+35000×10)=27300购买11次时,某台机器使用期内维修次数89101112该台机器维修费用2600026500270002750032500此时这100台机器维修费用的平均数y2=(26000×10+26500×20+27000×30+27500×30+32500×10)=27500,∵27300<27500,所以,选择购买10次维修服务.24.如图,四边形ABCD内接于⊙O,AB=AC,AC⊥BD,垂足为E,点F在BD的延长线上,且DF=DC,连接AF、CF.(1)求证:∠BAC=2∠CAD;(2)若AF=10,BC=4,求tan∠BAD的值.答案解析:(1)∵AB=AC,∴=,∠ABC=∠ACB,∴∠ABC=∠ADB,∠ABC=(180°﹣∠BAC)=90°﹣∠BAC,∵BD⊥AC,∴∠ADB=90°﹣∠CAD,∴∠BAC=∠CAD,∴∠BAC=2∠CAD;(2)解:∵DF=DC,∴∠DFC=∠DCF,∴∠BDC=2∠DFC,∴∠BFC=∠BDC=∠BAC=∠FBC,∴CB=CF,又BD⊥AC,∴AC是线段BF的中垂线,AB=AF=10,AC=10.又BC=4,设AE=x,CE=10﹣x,由AB2﹣AE2=BC2﹣CE2,得100﹣x2=80﹣(10﹣x)2,解得x=6,∴AE=6,BE=8,CE=4,∵∠ACD=∠ABD,∠CED=∠BEA,∴△CED∽△BEA,∴=,∴DE===3,∴BD=BE+DE=3+8=11,作DH⊥AB,垂足为H,∵AB•DH=BD•AE,∴DH===,∴BH==,∴AH=AB﹣BH=10﹣=,∴tan∠BAD===.25.已知抛物线y=ax2+bx+c(b<0)与x轴只有一个公共点.(1)若抛物线与x轴的公共点坐标为(2,0),求a、c满足的关系式;(2)设A为抛物线上的一定点,直线l:y=kx+1﹣k与抛物线交于点B、C,直线BD垂直于直线y=﹣1,垂足为点D.当k=0时,直线l与抛物线的一个交点在y轴上,且△ABC为等腰直角三角形.①求点A的坐标和抛物线的解析式;②证明:对于每个给定的实数k,都有A、D、C三点共线.答案解析:(1)抛物线与x轴的公共点坐标即为函数顶点坐标,故:y=a(x﹣2)2=ax2﹣4ax+4a,则c=4a;(2)y=kx+1﹣k=k(x﹣1)+1过定点(1,1),且当k=0时,直线l变为y=1平行x轴,与y轴的交点为(0,1),又△ABC为等腰直角三角形,∴点A为抛物线的顶点;①c=1,顶点A(1,0),抛物线的解析式:y=x2﹣2x+1,②,x2﹣(2+k)x+k=0,x=(2+k±),x D=x B=(2+k﹣),y D=﹣1;则D,y C=(2+k2+k),C,A(1,0),∴直线AD表达式中的k值为:k AD==,直线AC表达式中的k值为:k AC=,∴k AD=k AC,点A、C、D三点共线.。

2019届中考数学专项检测:《因式分解》基础测试(含答案)

2019届中考数学专项检测:《因式分解》基础测试(含答案)

5.(a+b)(a+b-1);
6.(m+5)(m-2)(m+2)(m+1);
7.ac(4b-3c)(a+2)
8.-3(y+3)(y+4).
四 1 m2 4
四 (本题 10 分)
设 a= 1 m+1,b= 1 m+2,c= 1 m+3,求代数式 a2+2ab+b2-2ac-2bc+c2 的值.
2
2
2
答案:
三 1.a(a2+1)(a+1)(a-1); 2.-3x(x2+4x-12);
3.(3+x-6y)(3-x+6y); 4.(a2-b2+6)(a2-b2-3);
答案: 1.B; 2.A; 3.C.
三 把下列各式分解因式(每小题 7 分,共 56 分): 1. a5-a; 2. -3x3-12x2+36x; 3. 9-x2+12xy-36y2;
4. (a2-b2)2+3(a2-b2)-18; 5. a2+2ab+b2-a-b; 6. (m2+3m)2-8(m2+3m)-20; 7. 4a2bc-3a2c2+8abc-6ac2; 8. (y2+3y)-(2y+6)2.
2.下列 4 个多项式作因式分解,有 ① x2(m-n)2-xy(n-m)2=(m-n)2(x2+xy); ② a2-(b+c)2=(a+b+c)(a-b+c);
③ a3 + 1 = (a + 1 )(a2 + 1 +1) ;
a3
Hale Waihona Puke aa2④ x 2 y 2+10xy+25=(xy+5)2,
结果正确的个数是…………………………………………………………………( )
一点特身尔传过辱加马克也种的锋找悟分己两把这了森竟发钟就理在球迷同道突换张些提面疯断他况干出攻贾和进且埃放伊长方亮握来巴度错始太多阿力脚利守下还须门去拥更曼对不样击比行给是磕倒得班夏快被单逼平各次炸:认刻控国人做姜论要奇正有助纳熟好们会求等奥个本刚想起说续路溜技危席诉场丽如照七大前向验可型里达速防然到斯肯中着所员十反直后忍踢劳暴险都吃预新能必量狂聚简禁插线情强洛索赛王上化经完军维从赫尽才硬解问看图时让吼没算接手似呼滥足态味普惊拉松我取又回毫护架最意德致少迫年宁日排腰罗么状底娥停撞高尼败体落六潮无敢远将定拿留耗明头实鲁激泽告麦当命卫粗退背洞边练景吊周权变候为话亲文切结而7望粘3主配但毕胜感打充封功别皮令牧般雷制成声谁术黑整悉翻引遭蒂那托瓦法全弓已扳喊心飞消题焦区林却规现走表住予死余雨波安舞丹丰据积入盯够虎脑幕战先应再挥获掀开轻诱空迹什怕伦博站压摆之风三名急烧很动鱼冕集作射冲子轰镜继因季受隔第用见紧格谋升塞势怎跑犯转失部输步精招信哪虑果误你惜响仿教识抢生办羞暇奏域弹自斗补常知地气带象酸只事富队欢透运霸布兵号坐间跳节内葡甚束历墙希零伤巨撤支嗅梅缩占星草计位几许亏像并岁优句差领根二台米条产滚库注牙何真老考效贴准冠群0局随决歇丝合吸乎拼容含神原保距亚猛近以热越重觉破萄警依刺刀难渗茨虽段陷挤吉父恩悲秒铲跟五章至非玩糙胆承4火叫1嫦害久臂按穿病机套横范默庆电童确扩离未密存佯华四漏英腩叹限易糊目漂贺倍小双肋迎鸣蒙管科择荡该选堵掉姆援2扑祝系曾调约仍摸啊闪此沉备外仅阶忘友处八散增敲彩爆佛寻攒严扰客若纠乔宠泪萨闻今艳清乐豪纸沛首请眼皇记于数或歌荷任呵抗闷终帅水市匹柱恐驻夸称字悬置相阵者额便赢创价脸挺盖答交工登覆唱早围牌兴宫商质灯烦需匆担迪绪佳讯较服颜付极胸乌麻天白杨捧即霍追包车澡趣连纵使她视媒闹宾评收超扁关花哨折色铁红巾贸智甲颠帮晚漠忙儿恨吧否搁判公票威音烂陆团赴哀爱8键亨嘴口裁掌遁赞享串另抱吹笔美造著签念资9旁显千魁贵孙舒诺牲顾尖黄物磨海觑油丑仰词家女鲜挡业.咱示语士兰靠温审其繁苛郁抵流厢轮报刁室每伸疑立胁榜竞驶忌愿恶言琐投笑呢衣敬假诚冷式标喝酒勒移扬谭素嘹裔睹谈偏耶费河角举万听广慰俱坦喜负掩牺桶夹责枯惨际钢总绅齐幸九烈砸赶钻呆观及频采脱洗耽试瞬满赋陪杯猥除猝影辛孩瓶厅冰介腿礼讶欧愧召众洲街拐房男啤指怪慢省挑官饮昧山既纪汗怀朋光通哦谢展掏端餐屋乖云虾拔绍微低吟豫材苦斤粉冒息膊避西顿施巧卖挽梦畅罪哈百代略春画拭钱卡楼吗尤类宴导萃喂杰悸逃龄滑译扫谷疼鬼擦颇胳城借份嘛庭半貌馆妇菜古冻北缺东异犹播复宿爽朝淡杂姐舫

【含8套中考卷】2019年中考数学一轮复习《变量与函数》专题练习卷含答案

【含8套中考卷】2019年中考数学一轮复习《变量与函数》专题练习卷含答案

1. 2. 3. 4. 5. 6.7.变量与函数专题在平面直角坐标系中,点(-3,2)所在的象限是A.第一象限C.第三象限【答案】B函数y=VEE2中自变量X的取值范围是x-3A.x>2B.xN2【答案】CB.第二象限D.第四象限C.xN2且xU3若一次函数y=(k-2)x+1的函数值y随x的增大而增大,则A.k<2B.k>2C.k>0D.k<0D.x"3【答案】B一次函数y=x+2的图象与y轴的交点坐标为A.(0,2)【答案】AB.(0,-2)C.(2,0)D.(-2,0)将直线y=2x-3向右平移2个单位长度,A.y=2x-4B.y=2x+4再向上平移3个单位长度后,所得的直线的表达式为C.y=2x+2D.y=2x-2【答案】A如图,在矩形A0BC中,A(-2,1A.--2【答案】A1B.-20),B(0,1).若正比例函数y=kx的图象经过点C,则k的值为C.-2D.2如图,直线y二kx+b(k"0)经过点A(-2,4),则不等式kx+b>4的解集为A.x>-2 D.x<4【答案】A8.如图,直线1是一次函数y=kx+b 的图象,若点A (3, m)在直线1上,则m 的值是【答案】C9.反比例函数y=§的图象经过点(3, -2),下列各点在图象上的是xA. (-3, -2)B. (3, 2)C. ( - 2, - 3)D. ( -2, 3)【答案】D10.如图,已知直线y=k 1X (虹尹0)与反比例函数y=4 (k 2^0)的图象交于M, N 两点.若点M 的坐标x是(1, 2),则点N 的坐标是A. ( - 1> - 2)C. (1, -2)B. ( -1, 2)D. ( -2, - 1)【答案】A11.如图,点C 在反比例函数y=* (x>0)的图象上,过点C 的直线与x 轴,y 轴分别交于点A, B,且AB=BC,X△A0B 的面积为1,则k 的值为A. 1B. 2C. 3D. 4【答案】D12.某通讯公司就上宽带网推出A, B,C 三种月收费方式.这三种收费方式每月所需的费用y (元)与上网时间x (h)的函数关系如图所示,则下列判断错误的是65503012025 50 55ox(h)A. 每月上网时间不足25h 时,选择A 方式最省钱B. 每月上网费用为60元时,B 方式可上网的时间比A 方式多C. 每月上网时间为35h 时,选择B 方式最省钱D. 每月上网时间超过70h 时,选择C 方式最省钱【答案】D13.二十四节气是中国古代劳动人民长期经验积累的结晶,它与白昼时长密切相关.当春分、秋分时,昼夜时长大致相等;当夏至时,白昼时长最长,根据如图,在下列选项中指出白昼时长低于11小时的 节气白昼时长伺咽A.惊蛰B.小满C.立秋D.大寒【答案】D14.小刚从家去学校,先匀速步行到车站,等了几分钟后坐上了公交车,公交车匀速行驶一段时后到达学校,小刚从家到学校行驶路程s (单位:m )与时间r (单位:min )之间函数关系的大致图象是B.—°/(min)D.【答案】B15.在平面直角坐标系中,一个智能机器人接到如下指令:从原点0出发,按向右,向上,向右,向下的方向依次不断移动,每次移动Im.其行走路线如图所示,第1次移动到Au 第2次移动到A 2,…,第n 次移动到A ”.则左OA 2A 20i9的面积是16.17.A, 504m 2【答案】A22二次函数y=ax 2+bx+c (a^O)的部分图象如图所示,则下列结论错误的是A. 4a+b=0C. a : c= - 1 : 5【答案】DD.当-1W x W5 时,y>0如图,若二次函数y=ax 2+bx+c (a 尹0)图象的对称轴为x=l,与y 轴交于点C,与x 轴交于点A 、点B ( - 1, 0),则①二次函数的最大值为a+b+c ;②a - b+c<0;(3)b 2 - 4ac<0;④当y>0时,其中正确的个数是【答案】B18. P (3, -4)到x 轴的距离是【答案】419.抛物线y=2(x+2)纤4的顶点坐标为.【答案】(-2,4)20.如图,抛物线y=ax,与直线y=bx+c的两个交点坐标分别为A(-2,4),B(1,1),则方程ax^bx+c的解是.【答案】xi=-2,x2=l21.如图,一块矩形土地ABCD由篱笆围着,并且由一条与CD边平行的篱笆EF分开.已知篱笆的总长为900m(篱笆的厚度忽略不计),当AB=m时,矩形土地ABCD的面积最大.【答案】1503, 22.飞机着陆后滑行的距离y(单位:m)关于滑行时间t(单位:s)的函数解析式是y=60t-一尸.在2飞机着陆滑行中,最后4s滑行的距离是m.【答案】2423.如图是抛物线形拱桥,当拱顶离水面2m时,水面宽4m,水面下降2m,水面宽度增加m.【答案】(4扼-4)24.如图,在平面直角坐标系中,一次函数y=kx+b的图象经过点A(-2,6),且与x轴相交于点B,与正比例函数y=3x的图象相交于点C,点C的横坐标为1.(1)求k、b的值;(2)若点D在y轴负半轴上,且满足S acod=|saboc,求点D的坐标.【解析】(1)当X=1时,y=3x=3,.•.点C 的坐标为(1, 3) .将 A ( - 2, 6)、C (1, 3)代入 y=kx+b,得:—2k + 〜=6k + b = 3,解徐’k = -l b = 4(2)由(1)得直线AB 的解析式为y=-x+4.当 y=0 时,有-x+4=0,解得:x=4,.•.点B 的坐标为(4, 0).设点D 的坐标为(0, m ) (m<0),1 nn 1 1 1S acod = — S aboc ,即m = — X — X 4X 3,3 2 3 2解得:m= - 4,.•.点D 的坐标为(0, -4).25.抛物线y=-|x +bx+c 经过点A (3 0, 0)和点B (0, 3),且这个抛物线的对称轴为直线1,顶点121 9 l【解析】(1) •抛物线y = +版+。

2021年九年级数学中考一轮复习《因式分解的应用》自主复习达标测评

2021年九年级数学中考一轮复习《因式分解的应用》自主复习达标测评

2021春九年级数学中考一轮复习《因式分解的应用》自主复习达标测评(附答案)1.已知a+b=3,ab=1,则多项式a2b+ab2﹣a﹣b的值为()A.﹣1B.0C.3D.62.已知x2+x=1,那么x4+2x3﹣x2﹣2x+2020的值为()A.2019B.2020C.2021D.20223.已知a﹣b=b﹣c=2,a2+b2+c2=11,则ab+bc+ac=()A.﹣22B.﹣1C.7D.114.对于任意一个三位数n,如果n满足各个数位上的数字互相不同,且都不为零,将其任意两个数位上的数字对调后可以得到三个不同的新三位数,把这三个新三位数的和与111的商记为F(n),则F(468)的值为()A.12B.14C.16D.185.已知m2=3n+a,n2=3m+a,m≠n,则m2+2mn+n2的值为()A.9B.6C.4D.无法确定6.248﹣1能被60到70之间的某两个整数整除,则这两个数是()A.61和63B.63和65C.65和67D.64和677.已知a=2018x+2018,b=2018x+2019,c=2018x+2020,则a2+b2+c2﹣ab﹣ac﹣bc的值是()A.0B.1C.2D.38.已知m,n均为正整数且满足mn﹣2m﹣3n﹣20=0,则m+n的最大值是()A.20B.30C.32D.379.若a+b﹣2=0,则代数式a2﹣b2+4b的值等于.10.已知x为自然数,且x+11与x﹣72都是一个自然数的平方,则x的值为.11.已知x2﹣1=x,则代数式x3﹣2x2+2020=.12.已知a2+a﹣1=0,则a3+2a2+2019=.13.如果m,n是两个不相等的实数,且满足m2﹣m=3,n2﹣n=3,那么代数式n3+4m+2019=.14.已知a,b是方程x2﹣x﹣3=0的两个根,则代数式2a3+b2+3a2﹣11a﹣b+5的值为.15.阅读材料:常用的分解因式方法有提公因式、公式法等,但有的多项式只有上述方法就无法分解,如x2﹣4y2+2x﹣4y,细心观察这个式子会发现,前两项符合平方差公式,后两项可提取公因式,前后两部分分别分解因式后会产生公因式,然后提取公因式就可以完成整个式子的分解因式,过程为:x2﹣4y2+2x﹣4y=(x2﹣4y2)+(2x﹣4y)=(x+2y)(x﹣2y)+2(x﹣2y)=(x﹣2y)(x+2y+2)这种分解因式的方法叫分组分解法,利用这种方法解决下列问题:(1)分解因式:x2﹣6xy+9y2﹣3x+9y(2)△ABC的三边a,b,c满足a2﹣b2﹣ac+bc=0,判断△ABC的形状.16.阅读下列因式分解的过程,再回答所提出的问题:1+x+x(1+x)+x(1+x)2=(1+x)[1+x+x(1+x)]=(1+x)2(1+x)=(1+x)3.(1)上述分解因式的方法是,共应用了次.(2)若分解1+x+x(1+x)+x(1+x)2+…+x(1+x)2020,则需应用上述方法次,结果是.(3)分解因式:1+x+x(1+x)+x(1+x)2+…+x(1+x)n(必须写出解答过程).17.观察下面的因式分解过程:am+an+bm+bn=(am+an)+(bm+bn)=a(m+n)+b(m+n)=(m+n)(a+b)利用这种方法解决下列问题:(1)因式分解:2a+6b﹣3am﹣9bm(2)△ABC三边a,b,c满足a2﹣ac﹣ab+bc=0,判断△ABC的形状.18.把几个图形拼成一个新的图形,再通过两种不同的方式计算同一个图形的面积,可以得到一个等式,也可以求出一些不规则图形的面积.例如,由图1,可得等式:(a+2b)(a+b)=a2+3ab+2b2.(1)由图2,可得等式;(2)利用(1)所得等式,解决问题:已知a+b+c=11,ab+bc+ac=38,求a2+b2+c2的值.(3)如图3,将两个边长为a、b的正方形拼在一起,B,C,G三点在同一直线上,连接BD和BF,若这两个正方形的边长a、b如图标注,且满足a+b=10,ab=20.请求出阴影部分的面积.(4)图4中给出了边长分别为a、b的小正方形纸片和两边长分别为a、b的长方形纸片,现有足量的这三种纸片.①请在下面的方框中用所给的纸片拼出一个面积为2a2+5ab+2b2的长方形,并仿照图1、图2画出拼法并标注a、b.②研究①拼图发现,可以分解因式2a2+5ab+2b2=.19.利用完全平方公式进行因式分解,解答下列问题:(1)因式分解:x2﹣4x+4=.(2)填空:①当x=﹣2时,代数式x2+4x+4=.②当x=时,代数式x2﹣6x+9=0.③代数式x2+8x+20的最小值是.(3)拓展与应用:求代数式a2+b2﹣6a+8b+28的最小值.20.如图,在长方形ACDF中,AC=DF,点B在CD上,点E在DF上,BC=DE=a,AC=BD=b,AB=BE=c,且AB⊥BE.(1)用两种不同的方法表示出长方形ACDF的面积S,并探求a,b,c之间的等量关系(需要化简)(2)请运用(1)中得到的结论,解决下列问题:①当c=10,a=6时,求S的值;②当c﹣b=1,a=5时,求S的值.21.对于一个图形,通过两种不同的方法计算它的面积,可以得到一个数学等式,例如图1,可以得到数学等式:(a+b)2=a2+2ab+b2.请解答下列问题:(1)写出图2中所表示的数学等式.(2)利用(1)中得到的结论,解决下面的问题:若a+b+c=10,ab+ac+bc=35,则a2+b2+c2=.(3)小明同学用图3中x张边长为a的正方形,y张边长为b的正方形,z张边长分别为a、b的长方形纸片拼出一个面积为(3a+2b)(4a+b)的长方形,请在网格中画出这个图形,并求x+y+z的值.参考答案1.解:a2b+ab2﹣a﹣b=(a2b﹣a)+(ab2﹣b)=a(ab﹣1)+b(ab﹣1)=(ab﹣1)(a+b)将a+b=3,ab=1代入,得原式=0.故选:B.2.解:∵x2+x=1,∴x4+2x3﹣x2﹣2x+2020=x4+x3+x3﹣x2﹣2x+2020=x2(x2+x)+x3﹣x2﹣2x+2020=x2+x3﹣x2﹣2x+2020=x(x2+x)﹣x2﹣2x+2020=x﹣x2﹣2x+2020=﹣x2﹣x+2020=﹣(x2+x)+2020=﹣1+2020=2019.故选:A.3.解:∵a﹣b=b﹣c=2,∴a﹣c=4,∴a2+b2+c2﹣ab﹣bc﹣ac=(2a2+2b2+2c2﹣2ab﹣2bc﹣2ac)=[(a﹣b)2+(b﹣c)2+(c﹣a)2]=12,∴ab+bc+ac=a2+b2+c2﹣12=﹣1,故选:B.4.解:n=468,对调百位与十位上的数字得到648,对调百位与个位上的数字得到864,对调十位与个位上的数字得到486,这三个新三位数的和为648+864+486=1998,1998÷111=18,所以F(468)=18.故选:D.5.解:∵m2=3n+a,n2=3m+a,∴m2﹣n2=3n﹣3m,∴(m+n)(m﹣n)+3(m﹣n)=0,∴(m﹣n)[(m+n)+3]=0,∵m≠n,∴(m+n)+3=0,∴m+n=﹣3,∴m2+2mn+n2=(m+n)2=(﹣3)2=9.故选:A.6.解:248﹣1=(224+1)(224﹣1)=(224+1)(212+1)(212﹣1)=(224+1)(212+1)(26+1)(26﹣1)=(224+1)(212+1)(26+1)(23+1)(23﹣1)=(224+1)(212+1)×65×63,故选:B.7.解:∵a=2018x+2018,b=2018x+2019,c=2018x+2020,∴a﹣b=﹣1,a﹣c=﹣2,b﹣c=﹣1,∴a2+b2+c2﹣ab﹣ac﹣bc=====3,故选:D.8.解:mn﹣2m﹣3n﹣20=0,(m﹣3)(n﹣2)=26,∵m,n均为正整数,∴或或或,解得或或或,m+n=32或m+n=20或m+n=20或m+n=32,故m+n的最大值是32.故选:C.9.解:∵a+b﹣2=0,∴a+b=2.∴a2﹣b2+4b=(a+b)(a﹣b)+4b=2(a﹣b)+4b=2a﹣2b+4b=2a+2b=2(a+b)=2×2=4.故答案为4.10.解:∵x为自然数,且x+11与x﹣72都是一个自然数的平方,∴设a2=x+11,b2=x﹣72,∵a2﹣b2=(a+b)(a﹣b),∴(a+b)(a﹣b)=(x+11)﹣(x﹣72),∴(a+b)(a﹣b)=x+11﹣x+72,∴(a+b)(a﹣b)=83,∴,解得:,∵a2=x+11,∴x=a2﹣11=422﹣11=1764﹣11=1753.故答案为:1753.11.解:x2﹣1=x,则x2﹣x=1,x3﹣x2=x,x3﹣2x2+2020=x3﹣x2﹣x2+2020=x﹣x2+2020=﹣1+2020=2019,故答案为2019.12.解:∵a2+a﹣1=0∴a2+a=1∴a3+a2=a又∵a3+2a2+2019=a3+a2+a2+2019=a+a2+2019=1+2019=2020∴a3+2a2+2019=202013.解:∵n2﹣n=3,∴n2=n+3,∴n3+4m+2019=n(n+3)+4m+2019=n2+3n+4m+2019=4(m+n)+2019∵m2﹣m=3,n2﹣n=3,m≠n,∴m,n为一元二次方程x2﹣x﹣3=0的两个不等实数根,∴m+n=1,∴原式=4×1+2022=2026.故答案为:2026.14.解:∵a,b是方程x2﹣x﹣3=0的两个根,∴a2﹣a﹣3=0,b2﹣b﹣3=0,即a2=a+3,b2=b+3,∴2a3+b2+3a2﹣11a﹣b+5=2a(a+3)+b+3+3(a+3)﹣11a﹣b+5=2a2﹣2a+17=2(a+3)﹣2a+17=2a+6﹣2a+17=23.故答案为:23.15.解:(1)x2﹣6xy+9y2﹣3x+9y=(x2﹣6xy+9y2)﹣(3x﹣9y)=(x﹣3y)2﹣3(x﹣3y)=(x﹣3y)(x﹣3y﹣3);(2)∵a2﹣b2﹣ac+bc=0,∴(a2﹣b2)﹣(ac﹣bc)=0,∴(a+b)(a﹣b)﹣c(a﹣b)=0,∴(a﹣b)[(a+b)﹣c]=0,∵a,b,c是△ABC的三边,∴(a+b)﹣c>0,∴a﹣b=0,得a=b,∴△ABC是等腰三角形.16.解:(1)阅读因式分解的过程可知:上述分解因式的方法是提公因式法,共应用了2次,故答案为:提公因式法,2;(2)原式=(1+x)2021,则需应用上述方法2020次,结果是(1+x)2021,故答案为:2020,(1+x)2021;(3)原式=(1+x)+x(1+x)+x(1+x)2+…+x(1+x)n=(1+x)(1+x+x(1+x)+…+x(1+x)n﹣1]=(1+x)2(1+x+x(1+x)+…+x(1+x)n﹣2]=(1+x)n(1+x)=(1+x)n+1.17.解:(1)2a+6b﹣3am﹣9bm=(2a+6b)﹣(3am+9bm)=2(a+3b)﹣3m(a+3b)=(a+3b)(2﹣3m);或2a+6b﹣3am﹣9bm=(2a﹣3am)+(6b﹣9bm)=a(2﹣3m)+3b(2﹣3m)=(2﹣3m)(a+3b);(2)∵a2﹣ac﹣ab+bc=0,∴(a2﹣ac)﹣(ab﹣bc)=0,∴a(a﹣c)﹣b(a﹣c)=0,∴(a﹣c)(a﹣b)=0,∴a﹣c=0或a﹣b=0,∴a=c或a=b,∴△ABC是等腰三角形.18.解:(1)由题意得,(a+b+c)2=a2+b2+c2+2ab+2bc+2ac,故答案为,(a+b+c)2=a2+b2+c2+2ab+2bc+2ac;(2)∵a+b+c=11,ab+bc+ac=38,∴a2+b2+c2=(a+b+c)2﹣2(ab+ac+bc)=121﹣76=45;(3)∵a+b=10,ab=20,∴S阴影=a2+b2﹣(a+b)•b﹣a2=a2+b2﹣ab=(a+b)2﹣ab=×102﹣×20=50﹣30=20;(4)①根据题意,作出图形如下:②由上面图形可知,2a2+5ab+2b2=(a+2b)(2a+b).故答案为(a+2b)(2a+b).19.解:(1)x2﹣4x+4=(x﹣2)2,故答案为:(x﹣2)2;(2)①当x=﹣2时,x2+4x+4=(﹣2)2+4×(﹣2)+4=4+(﹣8)+4=0,故答案为:0;②∵x2﹣6x+9=0,∴(x﹣3)2=0,∴x1=x2=3,故答案为:3;③∵x2+8x+20=(x+4)2+4,∴当x=﹣4时,x2+8x+20取得最小值4,故答案为:4;(3)∵a2+b2﹣6a+8b+28=(a﹣3)2+(b+4)2+3≥3,∴代数式a2+b2﹣6a+8b+28的最小值是3.20.解:(1)由题意,得S1=b(a+b)=ab+b2S2=ab+ab+(b﹣a)(b+a)+c2,=ab+b2﹣a2+c2.S1=S2,∴ab+b2=ab+b2﹣a2+c2,∴2ab+2b2=2ab+b2﹣a2+c2,∴a2+b2=c2.(2)∵a2+b2=c2.且c=10,a=6,∴b=8,∴S=6×8+64=112.答:S的值为112.②∵a2+b2=c2,∴a2=c2﹣b2=(c+b)(c﹣b).又∵c﹣b=1,a=5,∴c+b=25,∴b=12,∴S=ab+b2=12×5+122=204.21.解:(1)如图2,用两种形式表示正方形的面积:(a+b+c)2=a2+b2+c2+2ab+2ac+2bc故答案为(a+b+c)2=a2+b2+c2+2ab+2ac+2bc.(2)∵(a+b+c)2=a2+b2+c2+2ab+2ac+2bc.将a+b+c=10,ab+ac+bc=35代入,得a2+b2+c2=100﹣2×35=30故答案为30.(3)如图是面积为(3a+2b)(4a+b)的长方形.(3a+2b)(4a+b)=12a2+11ab+2b2∴x+y+z=12+2+11=25答:x+y+z的值为25.。

中考数学总复习《因式分解-十字相乘法》专项提升训练(带答案)

中考数学总复习《因式分解-十字相乘法》专项提升训练(带答案)

中考数学总复习《因式分解-十字相乘法》专项提升训练(带答案)学校:___________班级:___________姓名:___________考号:___________一、单选题1.下列因式分解结果正确的是( ) A .32(1)x x x x -=-B .229(9)(9)x y x y x y -=+-C .232(3)2x x x x -+=-+D .()()22331x x x x --=-+2.分式 212x x x ---有意义, 则( ) A .2x ≠ B .1x ≠- C .2x ≠或1x ≠- D .2x ≠且1x ≠- 3.下列多项式中是多项式243x x -+的因式的是( )A .1x -B .xC .2x +D .3x +4.已知甲、乙、丙均为x 的一次多项式,且其一次项的系数皆为正整数.若甲与乙相乘的积为29x -,乙与丙相乘的积为26x x +-,则甲与丙相减的结果是( )A .5-B .5C .1D .1-5.将下列各式分解因式,结果不含因式()2x +的是( )A .22x x +B .24x -C .()()21211x x ++++D .3234x x x -+ 6.甲、乙两位同学在对多项式2x bx c ++分解因式时甲看错了b 的值,分解的结果是()()45x x -+,乙看错了c 的值,分解的结果是()()34x x +-,那么2x bx c ++分解因式正确的结果为( )A .()()54x x --B .()()45x x +-C .()()45x x -+D .()()45x x ++ 7.如果多项式432237x x ax x b -+++能被22x x +-整除,那么:a b 的值是( )A . 2-B . 3-C .3D .6 8.若分解因式()()2153x mx x x n +-=--则m 的值为( )A .5-B .5C .2-D .2二、填空题9.因式分解26a a +-的结果是 .三、解答题21424x x -+ 解:24(2)(12)=-⨯- (2)(12)14-+-=-21424(2)(12)x x x x ∴-+=-- 解:原式222277724x x =-⋅⋅+-+2(7)4924x =--+2(7)25x =-- (75)(75)x x =-+--(2)(12)x x =-- (1)按照材料一提供的方法分解因式:22075x x -+;(2)按照材料二提供的方法分解因式:21228x x +-.20.利用整式的乘法运算法则推导得出:()()()2ax b cx d acx ad bc x bd ++=+++.我们知道因式分解是与整式乘法方向相反的变形,利用这种关系可得()()()2acx ad bc x bd ax b cx d +++=++.通过观察可把()2acx ad bc x bd +++看作以x 为未知数,a 、b 、c 、d 为常数的二次三项式,此种因式分解是把二次三项式的二项式系数ac 与常数项bd 分别进行适当的分解来凑一次项的系数,分解过程可形象地表述为“竖乘得首、尾,叉乘凑中项”,如图1,这种分解的方法称为十字相乘法.例如,将二次三项式221112x x ++的二项式系数2与常数项12分别进行适当的分解,如图2,则()()221112423x x x x ++=++.根据阅读材料解决下列问题:(1)用十字相乘法分解因式:2627x x +-;(2)用十字相乘法分解因式:2673x x --;(3)结合本题知识,分解因式:220()7()6x y x y +++-.参考答案: 1.D【分析】本题考查了因式分解;根据因式分解-十字相乘法,提公因式法与公式法的综合运用,进行分解逐一判断即可. 【详解】解:A 、()()32(1)11x x x x x x x -=-=+-故本选项不符合题意;B 、229(3)(3)x y x y x y -=+-故本选项不符合题意;C 、()()23221x x x x -+=--故本选项不符合题意;D 、223(3)1)x x x x --=-+(故本选项符合题意; 故选:D .2.D【分析】本题考查的是分式有意义的条件,利用十字乘法分解因式,根据分式有意义的条件:分母不为零可得 ²20x x --≠,再解即可. 【详解】解:由题意得: ²20x x --≠ 210x x解得: 2x ≠且1x ≠-故选: D .3.A【分析】本题考查的是利用十字乘法分解因式,掌握十字乘法是解本题的关键.【详解】解:()()24313x x x x -+=--;∴1x -是多项式243x x -+的因式;故选A4.D【分析】此题考查了十字相乘法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.把题中的积分解因式后,确定出各自的整式,相减即可.【详解】解:∴甲与乙相乘的积为29(3)(3)x x x -=+-,乙与丙相乘的积为()262(3)x x x x +-=-+,甲、乙、丙均为x 的一次多项式,且其一次项的系数皆为正整数 ∴甲为3x -,乙为3x +,丙为2x则甲与丙相减的差为:()(3)21x x ---=-;故选:D5.D【分析】本题主要考查了分解因式,正确把每个选项中的式子分解因式即可得到答案.【详解】解:A 、()222x x x x +=+故此选项不符合题意;B 、()()2422x x x -=+-故此选项不符合题意;C 、()()()()2221211112x x x x ++++=++=+故此选项不符合题意;D 、()()323441x x x x x x =+-+-故此选项符合题意; 故选:D .6.B【分析】本题主要考查了多项式乘以多项式以及因式分解,根据甲分解的结果求出c ,根据乙分解的结果求出b ,然后代入利用十字相乘法分解即可.【详解】解:∴()()24520x x x x -+=+-∴20c =-∴()()23412x x x x +-=--∴1b∴2x bx c ++220x x =--()()45x x =+-故选:B .7.A【分析】由于()()2221+-=+-x x x x ,而多项式432237x x ax x b -+++能被22x x +-整除,则432237x x ax x b -+++能被()()21x x +-整除.运用待定系数法,可设商是A ,则()()43223721x x ax x b A x x -+++=+-,则2x =-和1x =时4322370x x ax x b -+++=,分别代入,得到关于a 、b 的二元一次方程组,解此方程组,求出a 、b 的值,进而得到:a b 的值.【详解】解:∴()()2221+-=+-x x x x∴432237x x ax x b -+++能被()()21x x +-整除设商是A .则()()43223721x x ax x b A x x -+++=+-则2x =-和1x =时右边都等于0,所以左边也等于0.当2x =-时43223732244144420x x ax x b a b a b -+++=++-+=++= ∴当1x =时43223723760x x ax x b a b a b -+++=-+++=++= ∴-①②,得3360a +=∴12a =-∴66b a =--=.∴:12:62a b =-=-故选:A .【点睛】本题主要考查了待定系数法在因式分解中的应用.在因式分解时一些多项式经过分析,可以断定它能分解成某几个因式,但这几个因式中的某些系数尚未确定,这时可以用一些字母来表示待定的系数.由于该多项式等于这几个因式的乘积,根据多项式恒等的性质,两边对应项系数应该相等,或取多项式中原有字母的几个特殊值,列出关于待定系数的方程(或方程组),解出待定字母系数的值,这种因式分解的方法叫作待定系数法.本题关键是能够通过分析得出2x =-和1x =时原多项式的值均为0,从而求出a 、b 的值.本题属于竞赛题型,有一定难度.8.D【分析】已知等式右边利用多项式乘以多项式法则计算,再利用多项式相等的条件求出m 的值即可.【详解】解:已知等式整理得:()()()2215333x mx x x n x n x n +-=--=+--+可得3m n =-- 315n =-解得:2m = 5n =-故答案为:D .【点睛】此题考查了因式分解-十字相乘法,熟练掌握运算法则是解本题的关键. 9.(3)(2)a a +-【分析】解:本题考查了公式法进行因式分解,掌握2()()()x p q x pq x p x q +++=++进行因式分解是解题的关键.【详解】26(3)(2)a a a a +-=+-故答案为:(3)(2)a a +-.10.(2)(3)y y y --【分析】本题考查提公因式法,十字相乘法,掌握提公因式法以及2()()()x p q x pq x p x q +++=++是正确解答的关键.先提公因式y ,再利用十字相乘法进行因式分解即可.【详解】解:原式2(56)y y y =-+(2)(3)y y y =--.故答案为:(2)(3)y y y --.11.()()21a a a --/()()12a a a --【分析】先去括号合并后,直接提取公因式a ,再利用十字相乘法分解因式即可.本题考查了用提公因式法和十字相乘法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止【详解】解:2(3)2a a a -+3232a a a -+=()232a a a =-+(2)(1)a a a =--.故答案为:(2)(1)a a a --.12.1±或5±【分析】此题考查因式分解—十字相乘法,解题关键在于理解()()()2x a b x ab x a x b +++=++.把6-分成3和2-,3-和2,6和1-,6-和1,进而得到答案.【详解】解:当()()2632x mx x x +-=+-时()321m =+-=当()()2632x mx x x +-=-+时321m =-+=-当()()2661x mx x x +-=-+时615m =-+=-当()()2661x mx x x +-=+-时615m =-=综上所述:m 的取值是1±或5±故答案为:1±或5±.13.6±【分析】本题考查十字相乘法进行因式分解,根据5可以分成15⨯或()()15-⨯-即可求解.【详解】解:155⨯= ()()155-⨯-=()()21565x x x x ++=++ ()()26515x x x x =---+∴如果关于x 的二次三项式25x kx ++可以用十字相乘法进行因式分解,那么整数k 等于6±. 故答案为:6±.14.()()21x x +-【分析】本题主要考查了根与系数的关系、十字相乘法因式分解的知识点,先根据根与系数的关系确定b 、c 的值,然后再运用十字相乘法因式分解即可.【详解】解:∴关于x 的一元二次方程20x bx c ++=的两个实数根分别为1和2- 根据根与系数的关系可得:()12b -=+- ()12c =⨯-∴1b = 2c =-∴()()22221x bx c x x x x ++=+-=+-故答案为:()()21x x +-.15.()()211x x --【分析】本题考查了一元二次方程的解及因式分解,将1x =代入原方程,求出m 的值,然后再进行因式分解是解决问题的关键.【详解】解:∴关于x 的一元二次方程2210x mx ++=有一个根是1∴把1x =代入,得210m ++=解得:3m =-.则()()2221231211x mx x x x x ++=-+=--故答案为:()()211x x --.16.()()23x x +-【分析】根据一元二次方程的根与系数的关系求出p q ,,再进行因式分解即可.【详解】解:∴方程20x px q ++=的两个根分别是2和3-∴23p -=- ()23q ⨯-=∴1,6p q ==-∴()()2623x x x x --=+-;故答案为()()23x x +-.【点睛】本题主要考查一元二次方程根与系数的关系,因式分解,熟练掌握一元二次方程根与系数的关系是解题的关键.17.(1)()()322x x x +-(2)()23y x y --(3)()()26x x +-【分析】本题考查因式分解的知识,解题的关键是掌握因式分解的方法:提公因式法,公式法和十字相乘法,即可.(1)先提公因式3x ,然后根据()()22a b a b a b -=+-,即可; (2)先提公因式y -,再根据()2222a b a ab b ±=±+,即可;(3)根据十字相乘法,进行因式分解,即可.【详解】(1)3312x x -()234x x =- ()()322x x x =+-;(2)22369xy x y y --()2269y xy x y =--++()2296y x xy y =--+ ()23y x y =--; (3)2412x x --()()26x x =+-.18.3a b += 2ab =.【详解】解:因为()()()2x a x b x a b x ab ++=+++,且232x x ++因式分解的结果是()()x a x b ++所以3a b += 2ab =.19.(1)(5)(15)x x --(2)(14)(2)x x +-【分析】本题考查了因式分解,解答本题的关键是理解题意,明确题目中的分解方法. (1)仿照题目中的例子进行分解即可得出答案;(2)仿照题目中的例子进行分解即可得出答案.【详解】(1)解:75(5)(15)=-⨯- (5)(15)20-+-=-22075(5)(15)x x x x ∴-+=--;(2)解:原式222266628x x =+⋅⋅+--2(6)3628x =+--2(6)64x =+-(68)(68)x x =+++-(14)(2)x x =+-.20.(1)()()39x x -+(2)()()2331x x -+(3)()()443552x y x y +++-【分析】本题主要考查多项式乘多项式,因式分解,解答的关键是对相应的知识的掌握与运用.(1)利用十字相乘法进行求解即可;(2)利用十字相乘法进行求解即可;(3)先分组,再利用十字相乘法进行求解即可.【详解】(1)解:2627x x +-第 11 页 共 11 页 ()()39x x =-+;(2)解:2673x x -- ()()2331x x =-+;(3)解:220()7()6x y x y +++- ()()4352x y x y ⎡⎤⎡⎤=+++-⎣⎦⎣⎦ ()()443552x y x y =+++-.。

新人教版2019中考数学模拟试卷10及答案解析word版

新人教版2019中考数学模拟试卷10及答案解析word版

试卷10一、选择题:本大题共15小题,每小题4分,共60分,在每小题给出的四个选项中,只有一个是符合题目要求的。

1.若a:b=2:3,则下列各式中正确的式子是()A.2a=3b B.3a=2b C. D.【考点】比例的性质.【分析】根据比例的性质,对选项一一分析,选择正确答案.【解答】解:A、2a=3b⇒a:b=3:2,故选项错误;B、3a=2b⇒a:b=2:3,故选项正确;C、=⇒b:a=2:3,故选项错误;D、=⇒a:b=3:2,故选项错误.故选B.2.矩形具有而菱形不具有的性质是()A.对角线相等B.两组对边分别平行C.对角线互相平分D.两组对角分别相等【考点】矩形的性质;菱形的性质.【分析】根据矩形与菱形的性质求解即可求得答案.注意矩形与菱形都是平行四边形.【解答】解:∵矩形具有的性质是:对角线相等且互相平分,两组对边分别平行,两组对角分别相等;菱形具有的性质是:两组对边分别平行,对角线互相平分,两组对角分别相等;∴矩形具有而菱形不具有的性质是:对角线相等.故选A.3.已知反比例函数的图象经过点(﹣2,4),当x=4时,所对应的函数值y等于()A.2 B.﹣2 C.4 D.﹣4【考点】反比例函数图象上点的坐标特征.【专题】计算题.【分析】设反比例函数的解析式y=,利用已知点的坐标和反比例函数图象上点的坐标特征可求出k的值,从而得到反比例函数解析式,然后计算自变量为4所对应的函数值即可.【解答】解:设反比例函数的解析式y=,把(﹣2,4)代入得k=﹣2×4=﹣8,所以反比例函数解析式为y=﹣,当x=4时,y=﹣=﹣2.故选B.4.如果两个相似三角形的相似比是1:7,则它们的面积比等于()A.1:B.1:7 C.1:3.5 D.1:49【考点】相似三角形的性质.【分析】直接根据相似三角形的面积的比等于相似比的平方求解即可.【解答】解:∵两个相似三角形的相似比是1:7,∴它们的面积比等于1:49.故选D.5.抛物线y=(x﹣1)2+2与y轴交点坐标为()A.(0,1) B.(0,2) C.(1,2) D.(0,3)【考点】二次函数图象上点的坐标特征.【分析】将x=0代入y=(x﹣1)2+2,计算即可求得抛物线与y轴的交点坐标.【解答】解:将x=0代入y=(x﹣1)2+2,得y=3,所以抛物线与y轴的交点坐标是(0,3).故选D.6.如图是一个几何体的三视图,则该几何体是()A.圆柱 B.圆锥 C.正三棱柱 D.正三棱锥【考点】由三视图判断几何体.【分析】由主视图和左视图可得此几何体为柱体,根据俯视图是三角形可判断出此几何体为正三棱柱.【解答】解:∵主视图和左视图是长方形,∴该几何体是柱体,∵俯视图是三角形,∴该几何体是正三棱柱.故选:C.7.一个不透明的口袋里装有除颜色外都相同的10个白球和若干个红球,在不允许将球倒出来数的前提下,小亮为了估计其中的红球数,采用如下方法:先将口袋中的球摇匀,再从口袋里随机摸出一球,记下颜色,然后把它放回口袋中,不断重复上述过程,小亮共摸了1000次,其中有200次摸到白球,因此小亮估计口袋中的红球大约为()A.60个B.50个C.40个D.30个【考点】利用频率估计概率.【分析】由条件共摸了1000次,其中200次摸到白球,则有800次摸到红球;所以摸到白球与摸到红球的次数之比可求出,由此可估计口袋中白球和红球个数之比,进而可计算出红球数.【解答】解:∵小亮共摸了1000次,其中200次摸到白球,则有800次摸到红球,∴白球与红球的数量之比为2:4,∵白球有10个,∴红球有4×10=40(个).故选C.8.如图,AB是⊙O的直径,∠BAD=70°,则∠ACD的大小为()A.20°B.25°C.30°D.35°【考点】圆周角定理.【分析】根据圆周角定理和三角形内角和定理即可求得.【解答】解:∵AB是⊙O的直径,∴∠ADB=90°,∵∠BAD=70°,∴∠B=20°,∵∠ACD=∠B,∴∠ACD=20°.故选A.9.若关于x的一元二次方程(k﹣1)x2+2x﹣2=0有不相等实数根,则k的取值范围是()A.k>B.k≥C.k>且k≠1 D.k≥且k≠1【考点】根的判别式;一元二次方程的定义.【分析】根据判别式的意义得到△=22﹣4(k﹣1)×(﹣2)>0,然后解不等式即可.【解答】解:∵关于x的一元二次方程(k﹣1)x2+2x﹣2=0有不相等实数根,∴△=22﹣4(k﹣1)×(﹣2)>0,解得k>;且k﹣1≠0,即k≠1.故选:C.10.如图,已知⊙O的周长等于8πcm,则圆内接正六边形ABCDEF的边心距OM的长为()A.2cm B.2cm C.4cm D.4cm【考点】正多边形和圆.【分析】连接OC,OD,由正六边形ABCDEF可求出∠COD=60°,进而可求出∠COM=30°,根据30°角的锐角三角函数值即可求出边心距OM的长.【解答】解:连接OC,OD,∵正六边形ABCDEF是圆的内接多边形,∴∠COD=60°,∵OC=OD,OM⊥CD,∴∠COM=30°,∵⊙O的周长等于8πcm,∴OC=4cm,∴OM=4cos30°=2cm,故选B.11.如图,将一个Rt△ABC形状的楔子从木桩的底端点P处沿水平方向打入木桩底下,使木桩向上运动,已知楔子斜面的倾斜角为18°,若楔子沿水平方向前移6cm(如箭头所示),则木桩上升了()A.6tan18°cm B.cm C.6sin18°cm D.6cos18°cm【考点】解直角三角形的应用-坡度坡角问题.【分析】根据已知,运用直角三角形和三角函数得到上升的高度.【解答】解:由已知图形可得:tan18°=,木桩上升的高度h=6tan18°cm.故选:A.12.某同学在用列表描点法画二次函数y=ax2+bx+c的图象时,列出了下面的表格:那么当x=5时,y的值为()A.8 B.6 C.4 D.3【考点】二次函数的图象.【分析】根据题目提供的满足二次函数解析式的x、y的值,确定二次函数的对称轴,利用抛物线的对称性找到当x=5时,y的值即可.【解答】解:由上表可知函数图象经过点(1,0)和点(3,0),∴对称轴为x=2,∴当x=﹣1时的函数值等于当x=5时的函数值,∵当x=﹣1时,y=8,∴当x=5时,y=8.故选A.13.某商品的进价为每件40元,当售价为每件60元时,每星期可卖出300件;现需降价处理,且经市场调查:每降价1元,每星期可多卖出20件.现在要使利润为6125元,设每件商品应降价x 元,则可列方程为()A.(20+x)(300+20x)=6125 B.(20﹣x)(300﹣20x)=6125C.(20﹣x)(300+20x)=6125 D.(20+x)(300﹣20x)=6125【考点】由实际问题抽象出一元二次方程.【专题】销售问题.【分析】设应降价x元,根据每降价1元,每星期可多卖出20件,利用销量×每件利润=6125元列出方程即可.【解答】解:设应降价x元,根据题意得:(300+20x)(20﹣x)=6125,故选:C.14.如图,正方形ABCD的边长为4,边BC在x轴上,点E是对角线AC,BD的交点,反比例函数y=的图象经过A,E两点,则k的值为()A.8 B.4 C.6 D.3【考点】反比例函数图象上点的坐标特征.【专题】计算题.【分析】设B(a,0),则C(a+4,0),A(a,4),利用正方形的性质得点E为AC的中点,则可表示出E(a+2,2),然后利用反比例函数图象上点的坐标特征得到k=4a=2(a+2),再求出a后易得k的值.【解答】解:设B(a,0),则C(a+4,0),A(a,4),∵点E为正方形ABCD的对角线的交点,∴点E为AC的中点,∴E(a+2,2),∵点A和点E在反比例函数y=的图象上,∴k=4a=2(a+2),解得a=2,∴k=8.故选A.15.如图,直线y=与y轴交于点A,与直线y=﹣交于点B,以AB为边向右作菱形ABCD,点C恰与原点O重合,抛物线y=(x﹣h)2+k的顶点在直线y=﹣上移动.若抛物线与菱形的边AB、BC都有公共点,则h的取值范围是()A.﹣2B.﹣2≤h≤1 C.﹣1D.﹣1【考点】二次函数综合题.【分析】将y=与y=﹣联立可求得点B的坐标,然后由抛物线的顶点在直线y=﹣可求得k=﹣,于是可得到抛物线的解析式为y=(x﹣h)2﹣h,由图形可知当抛物线经过点B和点C时抛物线与菱形的边AB、BC均有交点,然后将点C和点B的坐标代入抛物线的解析式可求得h 的值,从而可判断出h的取值范围.【解答】解:∵将y=与y=﹣联立得:,解得:.∴点B的坐标为(﹣2,1).由抛物线的解析式可知抛物线的顶点坐标为(h,k).∵将x=h,y=k,代入得y=﹣得:﹣h=k,解得k=﹣,∴抛物线的解析式为y=(x﹣h)2﹣h.如图1所示:当抛物线经过点C时.将C(0,0)代入y=(x﹣h)2﹣h得:h2﹣h=0,解得:h1=0(舍去),h2=.如图2所示:当抛物线经过点B时.将B(﹣2,1)代入y=(x﹣h)2﹣h得:(﹣2﹣h)2﹣h=1,整理得:2h2+7h+6=0,解得:h1=﹣2,h2=﹣(舍去).综上所述,h的范围是﹣2≤h≤.故选A.二、填空题:本大题共5小题,每小题4分,共20分.16.已知方程x2﹣x=3有一根为m,则m2﹣m+2013的值为2016.【考点】一元二次方程的解.【专题】计算题.【分析】根据一元二次方程的定义得到m2﹣m=3,然后利用整体代入的方法计算代数式的值.【解答】解:∵方程x2﹣x=3有一根为m,∴m2﹣m=3,∴m2﹣m+2013=3+2013=2016.答案为2016.17.若抛物线y=(x﹣2)2+(m+1)的顶点在第一象限,则m的取值范围为m>﹣1.【考点】二次函数的性质.【分析】直接利用顶点形式得出顶点坐标,结合第一象限点的特点列出不等式解答即可.【解答】解:∵抛物线y=(x﹣2)2+(m+1),∴顶点坐标为(2,m+1),∵顶点在第一象限,∴m+1>0,∴m的取值范围为m>﹣1.故答案为:m>﹣1.18.如图,将边长为16cm的正方形纸片ABCD折叠,使点D落在AB边中点E处,点C落在点Q 处,折痕为FH,则线段AF的长是6cm.【考点】翻折变换(折叠问题).【分析】设EF=FD=x,在RT△AEF中利用勾股定理即可解决问题.【解答】解:如图:∵四边形ABCD是正方形,∴AB=BC=CD=AD=16,∵AE=EB=8,EF=FD,设EF=DF=x.则AF=16x,在RT△AEF中,∵AE2+AF2=EF2,∴82+(16﹣x)2=x2,∴x=10,∴AF=16﹣10=6cm,故答案为6.19.如图,菱形ABCD的对角线BD、AC的长分别为2,2,以点B为圆心的弧与AD、DC相切,则图中阴影部分的面积是2﹣π.【考点】扇形面积的计算;菱形的性质.【分析】连接AC、BD、BE,在Rt△AOB中可得∠BAO=30°,∠ABO=60°,在Rt△ABE中求出BE,得出扇形半径,由菱形面积减去扇形面积即可得出阴影部分的面积.【解答】解:连接AC、BD、BE,∵四边形ABCD是菱形,∴AC与BD互相垂直且平分,∵tan ∠BAO=,tan ∠ABO=, ∴∠BAO=30°,∠ABO=60°,∴AB=2,∠BAE=60°,∵以B 为圆心的弧与AD 相切,∴∠AEB=90°,在Rt △ABE 中,AB=2,∠BAE=60°,∴BE=ABsin60°=,∴S 菱形﹣S 扇形=×2×2﹣=2﹣π. 故答案为:2﹣π.20.如图,在直角坐标系中,直线AB 交x 轴、y 轴于点A (3,0)与B (0,﹣4),现有一半径为1的动圆的圆心位于原点处,动圆以每秒1个单位长度的速度向右作平移运动.设运动时间为t(秒),则动圆与直线AB 相交时t 的取值范围是 <t < .【考点】直线与圆的位置关系;坐标与图形性质.【专题】动点型.【分析】在Rt △OAB 中,OA=3,OB=4,由勾股定理得AB=5,过P 点作AB 的垂线,垂足为Q ,PQ=1;当⊙O 在直线AB 的左边与直线AB 相切时,AP=3﹣t ,根据△APQ ∽△ABO 中的成比例线段求解;当⊙P 在直线AB 的右边与直线AB 相切时,AP=t ﹣3,根据△APQ ∽△ABO 中的成比例线段求解;得出动圆与直线AB 相切时t 的取值,即可得出动圆与直线AB 相交时t 的取值范围.【解答】解:如图所示:∵A (3,0)、B (0,﹣4),∴AB==5,过P点作AB的垂线,垂足为Q,则PQ=1;①当⊙P在直线AB的左边与直线AB相切时,AP=3﹣t,则△APQ∽△ABO,∴,即,解得:t=;②当⊙P在直线AB的右边与直线AB相切时,AP=t﹣3;则△APQ∽△ABO,∴,即,解得:t=;综上所述:动圆与直线AB相切时t的取值是或,∴动圆与直线AB相交时t的取值范围是<t<.故答案为:<t<.三、解答题:本大题共8小题,共70分.解答时写出必要的文字说明、证明过程或演算步骤.21.(1)计算:|1﹣|﹣()﹣1﹣4cos30°+(π﹣3.14)0.(2)解方程:x2﹣1=2(x+1)【考点】实数的运算;零指数幂;负整数指数幂;解一元二次方程-因式分解法;特殊角的三角函数值.【分析】(1)利用绝对值的性质以及特殊角的三角函数值和零指数以及负整数指数幂的性质化简各数,进而得出答案;(2)利用因式分解法解方程得出答案.【解答】解:(1)原式=2﹣1﹣2﹣4×+1=﹣2.(2)方程整理得:x2﹣2x﹣3=0,这里a=1,b=﹣2,c=﹣3,∵△=4+12=16>0,∴x==1±2,解得:x1=﹣1,x2=3.22.如图,AC是矩形ABCD的对角线,将矩形纸片折叠,使点C与点A重合,请在图中画出折痕,然后再在图中画出矩形ABCD的外接圆.(用尺规作图,写出结论,不写作法,保留作图痕迹,并把作图痕迹用黑色签字笔加黑).【考点】作图—复杂作图.【专题】作图题.【分析】作线段AC的垂直平分线交AD于E,交BC与F,交AC于O,则EF为折痕;然后以点O为圆心,OA为半径作圆⊙O.【解答】解:如图,EF和⊙O为所作.23.春节期间,小刚随爸爸从陇南来兰州游玩,由于仅有一天的时间,小刚不能游玩所有风景区,于是爸爸让小刚上午上午从A:兰州极地海洋世界(收费),B:白塔山公园(免费),C:水车博览园(免费)中任意选择一处游玩;下午从D :五泉山公园(免费),E :安宁滑雪场(收费),F :甘肃省博物馆(免费),G :西部欢乐园(收费)中任意选一处游玩.(1)请用树状图或列表法说明小刚所有可能选择的方式(用字母表示);(2)求小刚这一天游玩的景点恰好是免费的概率.【考点】列表法与树状图法.【分析】(1)首先根据题意画出树状图,由树状图求得小刚所有可能选择的方式;(2)首先由(1)中的树状图,即可求得小刚这一天游玩的景点恰好是免费的情况,然后利用概率公式求解即可求得答案.【解答】解:(1)列表格如下:(2)∵一共有12种等可能的结果,而恰好小刚这一天的游玩的景点恰好是免费的有(B ,D ),(C ,D ),(B ,F ),(C ,F )4种.∴P (小刚这一天游玩的景点恰好是免费)==.24.如图,皋兰山某处有一座信号塔AB ,山坡BC 的坡度为1:,现为了测量塔高AB ,测量人员选择山坡C 处为一测量点,测得∠DCA=45°,然后他顺山坡向上行走100米到达E 处,再测得∠FEA=60°.(1)求出山坡BC 的坡角∠BCD 的大小;(2)求塔顶A 到CD 的铅直高度AD .(结果保留整数:)【考点】解直角三角形的应用-坡度坡角问题.【分析】(1)根据tan∠BCD=,进而得出答案;(2)设AD=x,则CD=AD=x,可得AF=x﹣50,EF=x﹣50,进而利用在Rt△AEF中,=tan60°,求出答案.【解答】解:(1)依题意得:tan∠BCD==,∴∠BCD=30°;(2)方法1:作EG⊥CD,垂足为G.在Rt△CEG中,CE=100,∠ECG=30°,∴EG=CE•sin30°=50,CG=CE•cos30°=50,设AD=x,则CD=AD=x.∴AF=x﹣50,EF=x﹣50,在Rt△AEF中,=tan60°,∴=.解得:x=50+50≈136.5(米).答:塔顶A到CD的铅直高度AD约为137米.方法2:∵∠ACD=45°,∴∠ACE=15°.∵∠AEF=60°,∴∠EAF=30°.∵∠DAC=45°,∴∠EAC=∠DAC﹣∠EAF=15°,∴∠ACE=∠EAC.∴AE=CE=100.在Rt△AEF中,∠AEF=60°,∴AF=AE•sin60°=50(m),在Rt△CEG中,CE=100m,∠ECG=30°,∴EG=CE•sin30°=50m.∴AD=AF+FD=AF+EG=50+50≈136.5(米).答:塔顶A到CD的铅直高度AD约为137米.25.如图,在△ABC中,AB=AC,AD⊥BC,垂足为点D,AN是△ABC外角∠CAM的平分线,CE⊥AN,垂足为点E,连接DE交AC于点F.(1)求证:∠DAN=90°;(2)求证:四边形ADCE是一个矩形;(3)当△ABC满足什么条件时,四边形ADCE是一个正方形?请给出证明;当四边形ADCE是正方形,若AB=3,求正方形ADCE的面积.【考点】四边形综合题.【分析】(1)利用角平分线的定义和邻补角的定义即可得出∠DAN的度数;(2)利用有三个内角是直角的四边形是矩形的判断方法即可;(3)利用邻边相等的矩形是正方形,求出正方形的边长,从而求出正方形的面积.【解答】(1)证明:如图1,∵AB=AC,AD⊥BC,垂足为D,∴∠CAD=BAC.∵AN是△ABC外角的平分线,∴∠CAE=CAM,∵∠BAC与∠CAM是邻补角,∴∠BAC+∠CAM=180°,∴∠DAN=∠CAD+∠CAE=(∠BAC+∠CAM)=90°,(2)证明:∵AD⊥BC,CE⊥AN,∠DAN=90°,∴∠ADC=∠CEA=∠DAN=90°,∴四边形ADCE为矩形.(3)解:如图2,当△ABC是等腰直角三角形时,四边形ADCE是一个正方形.∵∠BAC=90°,且AB=AC,AD⊥BC,∴∠CAD=BAC=45°,∠ADC=90°,∴∠ACD=∠CAD=45°,∴AD=AC.∵四边形ADCE为矩形,∴四边形ADCE为正方形.由勾股定理,得=AC,∵AD=CD,∴AD=3,∴AD=3,∴正方形ADCE的面积=AD2=3×3=9.26.如图1,一次函数y=kx+b的图象交x轴、y轴分别于B、A两点,反比例函数y=的图象多线段AB的中点C(﹣2,).(1)求反比例函数和一次函数的表达式;(2)如图2,在反比例函数上存在异于C点的一动点M,过点M作MN⊥x轴于N,在y轴上存在点P,使得S△ACP=2S△MNO,请你求出点P的坐标.【考点】反比例函数与一次函数的交点问题.【分析】(1)可先根据待定系数法求得反比例函数解析式,然后根据平行线分线段成比例定理求得OA的值,得出A的坐标,把A,C两点分别代入y=kx+b根据待定系数法即可求得.(2)设P(0,y),则AP=|y﹣3|.根据反比例函数系数k的几何意义和已知条件求得S△ACP=3,然后根据三角形面积公式得到关于y的方程,解方程即可求得y的值.【解答】解:(1)如图1,∵反比例函数y=的图象过点C(﹣2,),∴k=(﹣2)×=﹣3,∴反比例函数解析式为y=﹣;过点C作CD⊥OB,则CD=.∵CD∥AO,∴=,即=,解得:OA=3,∴A(0,3).∵一次函数y=kx+b的图象过点C(﹣2,),A(0,3),∴,解得:.∴一次函数的表达式为y=x+3.(2)如图2,设P(0,y),AP=|y﹣3|.∵S△MNO=|k|=×3=,∴S△ACP=2S△MNO=2×=3,∴×AP×|x c|=3,即:×|y﹣3|×2=3;解得:y=6或y=0.∴P(0,6)或P(0,0).27.如图,已知AB是⊙O的直径,点C为圆上一点,点D在OC的延长线上,连接DA,交BC 的延长线于点E,使得∠DAC=∠B.(1)求证:DA是⊙O切线;(2)求证:△CED∽△ACD;(3)若OA=1,sinD=,求AE的长.【考点】切线的判定;相似三角形的判定与性质.【分析】(1)由圆周角定理和已知条件求出AD⊥AB即可证明DA是⊙O切线;(2)由∠DAC=∠DCE,∠D=∠D可知△DEC∽△DCA;(3)由题意可知AO=1,OD=3,DC=2,由勾股定理可知AD=2,故此可得到DC2=DE•AD,故此可求得DE的长,于是可求得AE的长.【解答】(1)证明:∵AB为⊙O的直径,∴∠ACB=90°,∴∠CAB+∠B=90°,∵∠DAC=∠B,∴∠CAB+∠DAC=90°.∴AD⊥AB.∵OA是⊙O半径,∴DA为⊙O的切线;(2)解:∵OB=OC,∴∠OCB=∠B.∵∠DCE=∠OCB,∴∠DCE=∠B.∵∠DAC=∠B,∴∠DAC=∠DCE.∵∠D=∠D,∴△CED∽△ACD;(3)解:在Rt△AOD中,OA=1,sinD=,∴OD==3,∴CD=OD﹣OC=2.∵AD==2,又∵△CED∽△ACD,∴,∴DE==,∴AE=AD﹣DE=2﹣=.28.如图1,抛物线y=ax2+bx+4的图象过A(﹣1,0),B(4,0)两点,与y轴交于点C,作直线BC,动点P从点C出发,以每秒个单位长度的速度沿CB向点B运动,运动时间为t秒,当点P与点B重合时停止运动.(1)求抛物线的表达式;(2)如图2,当t=1时,求S△ACP的面积;(3)如图3,过点P向x轴作垂线分别交x轴,抛物线于E、F两点.①求PF的长度关于t的函数表达式,并求出PF的长度的最大值;②连接CF,将△PCF沿CF折叠得到△P′CF,当t为何值时,四边形PFP′C是菱形?【考点】二次函数综合题.【分析】(1)将A、B点的坐标代入函数解析式中,即可得到关于a、b的二元一次方程,解方程即可得出结论;(2)令x=0可得出C点的坐标,设出直线BC解析式y=kx+4,代入B点坐标可求出k值,结合点到直线的距离与三角形的面积公式,即可得出结论;(3)①由直线BC的解析式为y=﹣x+4可得知OE=CP,设出P、F点的坐标,由F点的纵坐标﹣P点的纵坐标即可得出PF的长度关于t的函数表达式,结合二次函数的性质即可求出最值问题;②由翻转特性可知PC=P′C,PF=P′F,若四边形PFP′C是菱形,则有PC=PF,由此得出关于t的二元一次方程,解方程即可得出结论.【解答】解:(1)∵抛物线y=ax2+bx+4的图象过A(﹣1,0),B(4,0)两点,∴,解得:.∴抛物线的表达式为y=﹣x2+3x+4.(2)令x=0,则y=4,即点C的坐标为(0,4),设直线BC的解析式为y=kx+4,∵点B的坐标为(4,0),∴有0=4k+4,解得k=﹣1,∴直线BC的解析式为y=﹣x+4,可以变形为x+y﹣4=0.当t=1时,CP=,点A(﹣1,0)到直线BC的距离h==,S△ACP=CP•h=××=.(3)①∵直线BC的解析式为y=﹣x+4,∴CP=t,OE=t,设P(t,﹣t+4),F(t,﹣t2+3t+4),(0≤t≤4)PF=﹣t2+3t+4﹣(﹣t+4)=﹣t2+4t,(0≤t≤4).当t=﹣=2时,PF取最大值,最大值为4.②∵△PCF沿CF折叠得到△P′CF,∴PC=P′C,PF=P′F,当四边形PFP′C是菱形时,只需PC=PF.∴t=﹣t2+4t,解得:t1=0(舍去),t2=4﹣.故当t=4﹣时,四边形PFP′C是菱形.。

2019中考数学一轮系列复习因式分解基础训练B(含答案)

2019中考数学一轮系列复习因式分解基础训练B(含答案)

2019中考数学一轮系列复习因式分解基础训练B (含答案)1.下列因式分解正确的是( ).A .()222x y x y -=-B .()2211a a a ++=+C .()1xy x x y -=-D .()22x y x y +=+2.将(x +3)2﹣(x ﹣1)2分解因式的结果是( )A .4(2x+2)B .8x+8C .8(x+1)D . 4(x+1)3.下列等式从左到右的变形,属于因式分解的是( )A .B .C .D .4.下列变形属于因式分解的是( )A .(x+2)(x ﹣2)=x 2﹣4B .x 2﹣2x+3=(x ﹣1)2+2C .x 2﹣6xy+9y 2=(x ﹣3y )2D .3(5﹣x )=﹣3(x ﹣5)5.若mn=3,a+b=4,a ﹣b=5,则mna 2﹣nmb 2的值是( )A .60B .50C .40D .306.2 0152-2 015一定能被( )整除A .2 010B .2 012C .2 013D .2 0147.下列从左边到右边的变形,因式分解正确的是( )A .2a 2﹣2=2(a+1)(a ﹣1)B .(a+3)(a ﹣3)=a 2﹣9C .﹣ab 2+2ab ﹣3b=﹣b(ab ﹣2a ﹣3)D .x 2﹣2x ﹣3=x(x ﹣2)﹣38.下列式子变形中,是因式分解的是A .B .C .D .9.不论a ,b 为何有理数,a 2+b 2-2a -4b +c 的值总是非负数,则c 的最小值是()A .4B .5C .6D .无法确定10.把分解因式,结果正确的是A .B .C .D .11.分解因式:.12.因式分解:9x 2﹣4=_____.13.分解因式: 29ax a -=___________。

14.多项式 4a ﹣a 3 分解因式为_______________.15.分解因式:______. 16.分解因式:______. 17.-3x 2+2x -1=____________=-3x 2+_________.18.分解因式:=___________________________.19.分解因式x 3-4x 的结果是________.20.分解因式:______ 21.分解因式:(1)2244x y y -+-=__________.(2)2244243x xy y x y -+-+-=__________.22.a=-5,a+b+c=-5.2,求代数式a 2(-b-c)-3.2a(c+b)的值.\23.因式分解:25m 2-10mn+n 2.24.因式分解:(1)4ax 2-9ay2 (2)-3m 2+6mn-3n 2 (3)mx 2-(m-2)x-225.先阅读,再因式分解:x 4+4=(x 4+4x 2+4)-4x 2=(x 2+2)2-(2x)2=(x 2-2x +2)(x 2+2x +2), 按照这种方法把多项式x 4+324因式分解.26.因式分解:(1)3x(a-b)-6y(b-a); (2)ax 2-ay 2;27.分解因式:(1)22416m n - (2)()()2222221x x x x ++++ 28.因式分解:(1)4x 2﹣9y 2; (2)x (a ﹣b )﹣y (b ﹣a )参考答案1.CA 选项中,因为()()22x y x y x y -=+-,所以本选项分解错误; B 选项中,因为()2221211a a a a a +=++≠++,所以本选项错误; C 选项中,因为()1xy x x y -=-,所以本选项正确;D 选项中,因为()2222x y x y x y +=+≠+,所以本选项错误;故选C.2.C解(x +3)2−(x−1)2=[(x +3)+(x−1)][(x +3)−(x−1)]=4(2x +2)=8(x +1).故选:C .3.C解:因式分解是指将一个多项式化为几个整式的乘积.A .是多项式乘法,故A 错误;B .等式右边不是几个整式的乘积的形式,故B 错误;C 、是因式分解,故C 正确;D 、是整式乘法,故D 错误.故选C .4.C解A.不是因式分解,故本选项不符合题意;B.不是因式分解,故本选项不符合题意;C.是因式分解,故本选项符合题意;D.不是因式分解,故本选项不符合题意;故选:C .5.A解mna2﹣nmb2=mn(a-b)(a+b)=3故选A.6.D解析:2 0152-2 015=2 015×(2 015-1)=2 015×2 014,所以一定能被2 014整除.故选D. 7.A解:A、因式分解正确,故选项正确;B、是多项式乘法,不是因式分解,故选项错误;C、-ab2+2ab-3b=-b(ab-2a+3),故选项错误;D、结果不是整式的积,故选项错误.故选:A.8.C解:A,无法再进行因式分解,且也不符合因式分解的定义;B,与因式分解的定义正好相反,是整式乘法,故错误;C,符合因式分解定义,且因式分解结果正确,故正确;D,无法再进行因式分解,故错误;故选择C.9.B解析:∵a2+b2-2a-4b+c=(a-1)2-1+(b-2)2-4+c=(a-1)2+(b-2)2+c-5≥0,∴c的最小值是5;故选B.10.D解x3+x2 y-xy2-y3=x2 (x+y)-y2 (x+y)=(x+y)(x2-y2)=(x+y) 2 (x-y),故选D.11.(m+8) (m-8)分析:将64写成8的平方,直接利用平方差公式进行分解即可.解:m2-64=m2-82=(m+8)(m-8).故答案为:(m +8)(m -8).12.(3x ﹣2)(3x+2)解析:9x 2﹣4=(3x )2-22=(3x ﹣2)(3x+2).故答案为:(3x ﹣2)(3x+2).13.a(x+3)(x-3)解析: ()()()229933.ax a a x a x x -=-=+- 故答案为: ()()33.a x x +-14.a (2+a )(2-a )解4a-a 3=a (4-a 2),=a (2-a )(2+a ).故答案为a (2-a )(2+a ).15.解, =, =. 故答案为:.16.解,,. 故答案为:.17. -(3x 2-2x +1) (2x -1)根据提公因式的要求,先提取负号,可得-(3x 2-2x +1),再把2x-1看做一个整体去括号即可得(2x-1).故答案为:-(3x 2-2x +1) ,(2x -1).18.a(x+a)2解:ax 2+2a 2x+a 3=a(x 2+2ax+a 2)=a(x+a)2.故答案为:a(x+a)2.19.x (x +2)(x ―2)分析:先提取公因式x,再根据平方差公式进行二次分解即可求得答案.解:解:原式20.解. 故答案为:. 21. ()()22x y x y +--+ ()()2321x y x y ---+ 【分析:(1)应用两次公式法因式分解.(2)先利用公式法,再用十字相乘法因式分解. 解析:(1)2244x y y -+- ()2244x y y =--+ ()222x y =-- ()()22x y x y =+--+.(2)2244243x xy y x y -+-+- ()()2244223x xy y x y =-+---()()22223x y x y =---- ()()2321x y x y =---+.22.1.8分析:根据已知条件可求出b+c的值,然后利用提公因式法因式分解,再整体代入求值即可.解析:∵a=-5,a+b+c=-5.2,∴b+c=-0.2∴a2(-b-c)-3.2a(c+b)=-a2(b+c)-3.2a·(b+c)=(b+c)(-a2-3.2a)=-a(b+c)(a+3.2)=5×(-0.2)×(-1.8)=1.8.23.(5m-n)2解原式=(5m)2-10mn+n2=(5m-n)224.(1)a(2x+3y)(2x-3y);(2)-3(m-n)2 ;(3)(mx+2)(x-1).分析:(1)先提公因式,再利用平方差公式进行分解即可;(2)先提公因式,然后再利用完全平方公式进行分解即可;(3)利用十字相乘法进行分解即可.解析:(1)原式=a(4x2-9y2) =a(2x+3y)(2x-3y);(2)原式=-3(m2-2mn+n2) =-3(m-n)2 ;(3)原式=(mx+2)(x-1).25.(x2+18+6x)(x2+18-6x).分析:仿照材料依据完全平方式的特点将x4+324加上2×18x2使之成为完全平方式,再减去2×18x2,前三项利用完全平方公式分解,然后再与最后一项利用平方差公式分解即可.解析:x4+324=x4+36x2+324-36x2=(x2+18)2-36x2=(x2+18)2-(6x)2=(x2+18+6x)(x2+18-6x).26.(1)3(a-b)(x+2y);(2)a(x+y)(x-y)分析:(1)、提取公因式3(a-b)即可得出答案;(2)、首先提取公因式a,然后再利用平方差公式进行因式分解.解:(1)、原式=3x(a-b)+6y(a-b)=3(a-b)(x+2y);(2)、原式=.27.(1) 4(m-2n )(m+2n );(2) (x+1)4分析:(1)用平方差公式分解,要分解到不能分解为止;(2)把看成是一个整体,用完全平方和公式分解,相同的因式要写成幂的形式.解:(1)22416m n -=()2244m n - =4(m-2n )(m+2n )(2)()()2222221x x x x ++++ =()2221x x ++=()221x ⎡⎤+⎣⎦=(x+1)4…28.(1)(2x +3y )(2x ﹣3y );(2)(a ﹣b )(x +y ).分析:(1)利用平方差公式因式分解.(2)利用提取公因式因式分解.解析:(1)4x 2﹣9y 2=(2x )2-(3y)2=(2x +3y )(2x ﹣3y ).(2)x (a ﹣b )﹣y (b ﹣a )= x (a ﹣b )+y (a ﹣b )=(a ﹣b )(x+y ).。

九年级2019数学试卷【含答案】

九年级2019数学试卷【含答案】

九年级2019数学试卷【含答案】专业课原理概述部分一、选择题1. 若 a > 0,b < 0,则下列哪个选项正确?( )A. a + b > 0B. a b > 0C. a × b > 0D. a ÷ b > 02. 在直角坐标系中,点 P(a, b) 关于 x 轴的对称点坐标是( )。

A. (a, -b)B. (-a, b)C. (-a, -b)D. (b, a)3. 下列哪个数是平方数?( )A. 15B. 16C. 17D. 184. 若一个等差数列的首项为 2,公差为 3,则第 10 项是多少?( )A. 29B. 30C. 31D. 325. 在直角三角形中,若一个锐角的正弦值是 1/2,则这个角是多少度?( )A. 30°B. 45°C. 60°D. 90°二、判断题6. 若 a > b,则 a c > b c。

( )7. 任何两个奇数的和都是偶数。

( )8. 若a × b = 0,则 a 和 b 至少有一个为 0。

( )9. 在等差数列中,项数越多,数列的中间项越接近平均值。

( )10. 任何两个负数的乘积都是正数。

( )三、填空题11. 若一个数的平方根是 4,则这个数是______。

12. 在直角坐标系中,点 (3, -2) 关于原点的对称点是______。

13. 若 |x 5| = 3,则 x 的值可以是______或______。

14. 一个等差数列的前 5 项和为 35,公差为 2,则首项是______。

15. 若一个圆的半径为 7cm,则这个圆的面积是______cm²。

四、简答题16. 解释什么是等差数列,并给出一个例子。

17. 什么是直角坐标系,它有什么作用?18. 解释正弦函数和余弦函数的定义。

19. 什么是绝对值,它有什么特性?20. 解释等边三角形的性质。

2019年中考数学模试试题(10)(含解析)

2019年中考数学模试试题(10)(含解析)

1拿到试卷:熟悉试卷刚拿到试卷一般心情比较紧张,建议拿到卷子以后看看考卷一共几页,有多少道题,了解试卷结构,通览全卷是克服“前面难题做不出,后面易题没时间做”的有效措施,也从根本上防止了“漏做题”。

2答题顺序:从卷首依次开始一般来讲,全卷大致是先易后难的排列。

所以,正确的做法是从卷首开始依次做题,先易后难,最后攻坚。

但也不是坚决地“依次”做题,虽然考卷大致是先易后难,但试卷前部特别是中间出现难题也是常见的,执着程度适当,才能绕过难题,先做好有保证的题,才能尽量多得分。

3答题策略答题策略一共有三点:1. 先易后难、先熟后生。

先做简单的、熟悉的题,再做综合题、难题。

2. 先小后大。

先做容易拿分的小题,再做耗时又复杂的大题。

3. 先局部后整体。

把疑难问题划分成一系列的步骤,一步一步的解决,每解决一步就能得到一步的分数。

4学会分段得分会做的题目要特别注意表达准确、书写规范、语言科学,防止被“分段扣点分”。

不会做的题目我们可以先承认中间结论,往后推,看能否得到结论。

如果不能,说明这个途径不对,立即改变方向;如果能得出预期结论,就回过头来,集中力量攻克这一“卡壳处”。

如果题目有多个问题,也可以跳步作答,先回答自己会的问题。

5立足中下题目,力争高水平考试时,因为时间和个别题目的难度,多数学生很难做完、做对全部题目,所以在答卷中要立足中下题目。

中下题目通常占全卷的80%以上,是试题的主要构成,学生能拿下这些题目,实际上就是有了胜利在握的心理,对攻克高档题会更放得开。

6确保运算正确,立足一次性成功在答卷时,要在以快为上的前提下,稳扎稳打,步步准确,尽量一次性成功。

不能为追求速度而丢掉准确度,甚至丢掉重要的得分步骤。

试题做完后要认真做好解后检查,看是否有空题,答卷是否准确,格式是否规范。

7要学会“挤”分考试试题大多分步给分,所以理科要把主要方程式和计算结果写在显要位置,文科尽量把要点写清晰,作文尤其要注意开头和结尾。

苏科版2019中考数学一轮复习专项测试(一次函数B 含答案)

苏科版2019中考数学一轮复习专项测试(一次函数B 含答案)

苏科版2019中考数学一轮复习专项测试(一次函数B 含答案)1.函数y=ax+b(a,b 为常数,a≠0)的图象如图所示,则关于x 的不等式ax+b>0 的解集是()A.x>4B.x<0C.x<3D.x>32.下列函数中,是一次函数的有()(1)y=x2-1 (2)y=2x-1 (3)y=1x(4)y=-3xA.4个B.3个C.2个D.1个3.若正比例函数y=kx的图象经过直线y=x+1与y=3x+5的交点,那么y=kx的图象位于()A.第一、三象限B.第二、四象限C.第一、二象限D.第一、二、三象限4.在平面直角坐标系中,一个智能机器人接到如下指令:从原点O出发,按向右,向上,向右,向下的方向依次不断移动,每次移动1m.其行走路线如图所示,第1次移动到A1,第2次移动到A2,…,第n次移动到A n.则△OA2A2018的面积是()A.504m2B .m2C .m2D.1009m25.观察下列图象,可以得出不等式组的解集是()A.x <B .﹣<x<0 C.0<x<2 D .﹣<x<26.如图中的两直线l1、l2的交点坐标可以看作哪个方程组的解()A.11{324y xy x=--=-+B.11{324y xy x=-=-+C.11{324y xy x=--=--D.31{24y xy x=-=-+7.关于正比例函数y=﹣2x,下列结论中正确的是()A.函数图象经过点(﹣2,1)B.y随x的增大而减小C..函数图象经过第一、三象限D.不论x取何值,总有y<08.函数x的取值范围是()A.x≥3 B.x≤3 C.x>3 D.x<39.如图,y是x的函数图像的是()A.B.C.D.10.如果直线y =3 x +6与y =2 x -4交点坐标为( a ,b ),则是方程组__________的解.()A.B.C.D.11.一次函数y=2x-1的图象在轴上的截距为______12.若y=(m-2)x+(m2-4)是正比例函数,则m的取值为____________.13.若直线y=kx+b与直线y=-2x+1平行,且经过点(2,0),则b=_______14.若一次函数y=kx+1(k为常数,k≠0)的图象经过第一、二、三象限,则k的取值范围是_________.,以15.如图,在平面直角坐标系中,直线l:y=x﹣与x轴交于点BOB1为边长作等边三角形A1OB1,过点A1作A1B2平行于x轴,交直线l于点B2,以A1B2为边长作等边三角形A2A1B2,过点A2作A2B3平行于x轴,交直线l于点B3,以A2B3为边长作等边三角形A3A2B3,…,则点A100的横坐标是_____.16.函数中,自变量x取值范围是______.17.已知点A(m,m+1)在直线y=x+1上,则点A关于原点的对称点的坐标是____.18.直线y=3x-6与坐标轴围成的三角形面积为______.19.写出一个与的图象平行的函数_______________.20.函数y=中自变量x的取值范围是_____.,且与轴及的图像分别交于点、,点坐标为.(1)求n的值及一次函数的解析式.(2)求四边形的面积.22.某厂准备购买A、B、C三种配件共1000件,要求购买时C配件的件数是A的4倍,B不超过400件,且三种都必须买.三种价格如下:A:30元/件,B:50元/件,C:80元/件.(1)求购买A的件数范围.(2)三种各买多少件,才使总费用最少?最少总费用是多少元?23.永定土楼是世界文化遗产“福建土楼”的组成部分,是闽西的旅游胜地.“永定土楼”模型深受游客喜爱.图中折线(AB∥CD∥x轴)反映了某种规格土楼模型的单价y(元)与购买数量x(个)之间的函数关系.(1)求当10≤x≤20时,y与x的函数关系式;(2)已知某旅游团购买该种规格的土楼模型总金额为2625元,问该旅游团共购买这种土楼模型多少个?(总金额=数量×单价)24.在一条笔直的公路上有A、B、C三地,A地在B、C两地之间.甲、乙两辆汽车分别从B 、C 两地同时出发,沿这条公路匀速相向行驶,甲匀速行驶1小时到达A 地后继续以相同的速度向C 处行驶,到达C 后停止,乙匀速行驶1.2小时后到达A 地并停止运动,甲、乙两车离A 地的距离y 1、y 2(千米)与行驶时间x (时)的函数关系如图所示.(1)BC 的距离为 km⑵求线段MN 的函数表达式;⑶求点P 的坐标,并说明点P 的实际意义;⑷出发多长时间后,甲、乙相距60km ?25.如图,公交车行驶在笔直的公路上,这条路上有,,,四个站点,每相邻两站之间的距离为5千米,从站开往站的车称为上行车,从站开往站的车称为下行车.第一班上行车、下行车分别从站、站同时发车,相向而行,且以后上行车、下行车每隔10分钟分别在,站同时发一班车,乘客只能到站点上、下车(上、下车的时间忽略不计),上行车、下行车的速度均为30千米/小时.(1)问第一班上行车到站、第一班下行车到站分别用时多少?(2)若第一班上行车行驶时间为小时,第一班上行车与第一班下行车之间的距离为千米,求与的函数关系式.(3)一乘客前往站办事,他在,两站间的处(不含,站),刚好遇到上行车,千米,此时,接到通知,必须在35分钟内赶到,他可选择走到站或走到站乘下行车前往站.若乘客的步行速度是5千米/小时,求满足的条件.26.已知函数y=(2m+1)x+m+3.(1)若函数图象经过原点,求m的值;(2)若函数图象与y轴的交点为(0,﹣2),求m的值;(3)若函数的图象平行于直线y=3x﹣3,求m的值.27.如图,在平面直角坐标系中,直线经过第一象限的点和点,且,过点作轴,垂足为,的面积为.求点的坐标;求直线的函数表达式;直线经过线段上一点(不与、重合),求的取值范围.28.如图,直线l1:y=2x+1与直线l2:y=mx+4相交于点P(1,b)(1)求b,m的值(2)垂直于x轴的直线x=a与直线l1,l2分别相交于C,D,若线段CD长为2,求a的值参考答案1.C解:不等式ax+b>0的解集,就是一次函数y=ax+b 的函数值大于或等于0时,求自变量的取值范围,即是x<3.故选C .2.C 解析:由一次函数定义知,(2)(4)是一次函数,所以选C.3.A 解:由题意得: 1{ 35y x y x =+=+,解得: 2{ 1x y =-=-,把(﹣2,﹣1)代入y =kx ,得k =12,∴正比例函数的解析式y =12x ,∵k =12>0,∴y =kx 的图象位于第一、三象限,故选A . 4.A 解:由题意知OA 4n =2n ,∴OA 2016=2016÷2=1008,即A 2016坐标为(1008,0),∴A 2018坐标为(1009,1),则A 2A 2018=1009-1=1008(m). ∴=A 2A 2018×A 1A 2=×1008×1=504(m 2).故选A. 5.D 解:根据图象得到,3x +1>0的解集是:x >﹣,第二个不等式的解集是x <2,∴不等式组的解集是﹣<x <2.故选D .6.A 解:由于直线l 1经过点(0,﹣1),(3,﹣2);因此直线l 1的解析式为y=﹣13x ﹣1; 同理可求得直线l 2的解析式为y=﹣2x+4; 因此直线l 1,l 2的交点坐标可以看作方程组11{ 324y x y x =--=-+的解. 故选A .7.B 解析:A 、当x=﹣2时,y=﹣2×(﹣2)=4,即图象经过点(﹣2,4),不经过点(﹣2,1),故本选项错误;B 、由于k=﹣2<0,所以y 随x 的增大而减小,故本选项正确;C 、由于k=﹣2<0,所以图象经过二、四象限,故本选项错误;D 、∵x>0时,y <0, x <0时,y >0,∴不论x 为何值,总有y <0错误,故本选项错误,故选B .8.D 解析:根据二次根式有意义的条件可得:30x ->, 解得3x <. 故选D .9.C解析:对于x的每一个取值,y都有唯一确定的值,则y就是x的函数,选项A、B、D 的图象上两个或三个点的横坐标相同,也就是说对于x的每一个取值,y的值不唯一,只有选项C符合函数的定义,故选C.10.D解:直线y =3 x +6与y =2 x -4交点坐标为( a ,b ),则是方程组的解,即是方程组的解,故选D.11.-1解:∵一次函数y=2x-1中b=-1,∴图象在轴上的截距为-1.故答案为:-1.12.-2解:根据题意得:240{20mm-=-≠;解得:m=﹣2.故答案为:-2.13.4解:∵直线y=kx+b与直线y=-2x+1平行,∴k=-2,∴y=-2x+b,把(2,0)代入y=-2x+b得,∴0=-4+b,∴b=4.故答案为:4.14.k>0解:∵一次函数y=kx+1(k为常数,k≠0)的图象经过第一、二、三象限,∴k>0.故填:k>0.15.分析:先根据直线l:y=x-与x轴交于点B1,可得B1(1,0),OB1=1,∠OB1D=30°,再过A1作A1A⊥OB1于A,过A2作A2B⊥A1B2于B,过A3作A3C⊥A2B3于C,根据等边三角形的性质以及含30°角的直角三角形的性质,分别求得A1的横坐标为,A2的横坐标为,A3的横坐标为,进而得到A n的横坐标为,据此可得点A100的横坐标.解:由直线l:y=x-与x轴交于点B1,可得B1(1,0),D(0,-),∴OB1=1,∠OB1D=30°,如图所示,过A1作A1A⊥OB1于A,则OA=OB1=,即A1的横坐标为=,由题可得∠A1B2B1=∠OB1D=30°,∠B2A1B1=∠A1B1O=60°,∴∠A1B1B2=90°,∴A1B2=2A1B1=2,过A2作A2B⊥A1B2于B,则A1B=A1B2=1,即A2的横坐标为+1==,过A3作A3C⊥A2B3于C,同理可得,A2B3=2A2B2=4,A2C=A2B3=2,即A3的横坐标为+1+2==,同理可得,A4的横坐标为+1+2+4==,由此可得,A n的横坐标为,∴点A2018的横坐标是,故答案为:.16.解:根据题意,得,解得.故答案为.17.(0,-1))解:在直线上,,,,点关于原点的对称点的坐标是.故答案为:.18.6解:令x=0,得y=-6,令y=0,得x=2,∴直线y=3x-6与坐标轴简单坐标分别为(0,-6),(2,0),故直线y=3x-6与坐标轴围成三角形面积为.故填空答案:6.19.y=2x,答案不唯一分析:利用一次函数的性质:一次函数的比例系数相等,则它们的图象平行,即可得出答案.解:∵函数图象与的图象平行,∴这个函数是一次函数且比例系数为2,∴这个函数可以是y=2x(答案不唯一),故答案为:y=2x, 答案不唯一.20.x≥﹣且x≠1.解:由题意得,2x+3≥0,x-1≠0,解得,x≥-且x≠1,故答案为:x≥-且x≠1.21.(1) n =;y=2x+4;(2)S=解:(1)∵点D (-,n )在直线y =-x +2上,∴n =+2=.∵一次函数经过点B (0,4)、点D (-),∴,解得:.故一次函数的解析式为:y =2x +4; (2)直线y =2x +4与x 轴交于点C ,∴令y =0,得:2x +4=0,解得:x =-2,∴OC =2. ∵函数y =-x +2的图象与y 轴交于点A ,∴令x =0,得:y =2,∴OA =2.∵B (0,4),∴OB =4,∴AB =2.S △BOC =×2×4=4,S △BAD =×2×=,∴S 四边形AOCD =S △BOC ﹣S △BAD =4﹣=.22.(1)120200x ≤<; (2)A , 120件; B , 400件; C , 480件时总费用最少,最少总费用为62000元. 分析:(1)由C 配件的件数是A 的4倍, B 不超过400件,可以求出结论;(2)由条件求出自变量的取值范围,由一次函数的性质就可以求出结论.解:(1)根据题意得:0<1000-(x+4x )≤400解得: 120200x ≤<(2)()305010005804y x x x =+-+⋅10050000x =+.当120x =时, min 62000y =.∴A , 120件; B , 400件; C , 480件时总费用最少,最少总费用为62000元.23.(1)当10≤x≤20时,y=﹣5x+250;(2)旅游团共购买这种土楼模型15个分析:(1)设出一次函数解析式,把B 、C 两点的坐标代入可得所求函数关系式;(2)所用金额既不是200的倍数,也不是150的倍数,可得模型的单价在150和200之间,根据总价等于2625得到一元二次方程,求解即可.解:(1)当10≤x≤20时,设y=kx+b(k≠0)依题意,得解得∴当10≤x≤20时,y=﹣5x+250;(2)∵10×200<2625<20×150∴10<x<20(8分)依题意,得xy=x(﹣5x+250)=2625即x2﹣50x+525=0解得x1=15,x2=35(舍去)∴只取x=15.(12分)答:该旅游团共购买这种土楼模型15个.24.(1)200;(2)y=-100x+120;(3);(4) .解:(1)由图象即可得出BC的距离为80+120=200km,故答案为:200;(2)设线段MN的函数表达式为y=kx+b,,解得,即线段MN的函数表达式为y=-100x+120;(2)∵v甲=80÷1=80,v乙=120÷1.2=100,∴(120+80)÷(100+80)=,把x=代入y=-100x+120,得y=,∴点P的坐标为(,),点P的实际意义表示行驶了小时后,甲、乙两车相遇,此时离A地的距离为千米;(4)设出发x小时后,甲、乙相距60km,分两种情况:①乙车到达A地之前距离为60 km,由题意得(80+100)x+60=200,解得x=;①乙车到达A地之后距离为60 km,由题意得80x=80+60,解得x=,所以出发或小时后,甲、乙相距60km.25.(1)第一班上行车到站用时小时,第一班下行车到站用时小时;(2)当时,,当时,;(3)或.分析:(1)根据速度=路程除以时间即可求出第一班上行车到站、第一班下行车到站的用时.(2)分当时和当时两种情况进行讨论.(3)由(2)知同时出发的一对上、下行车的位置关于中点对称,设乘客到达站总时间为分钟,分当时,当时,当时,三种情况进行讨论.解:(1)第一班上行车到站用时小时.第一班下行车到站用时小时.(2)当时,.当时,.(3)由(2)知同时出发的一对上、下行车的位置关于中点对称,设乘客到达站总时间为分钟,当时,往站用时30分钟,还需再等下行车5分钟,,不合题意.当时,只能往站坐下行车,他离站千米,则离他右边最近的下行车离站也是千米,这辆下行车离站千米.如果能乘上右侧第一辆下行车,,,∴,,∴符合题意.如果乘不上右侧第一辆下行车,只能乘右侧第二辆下行车,,,,∴,,∴符合题意.如果乘不上右侧第二辆下行车,只能乘右侧第三辆下行车,,,,∴,,不合题意.∴综上,得.当时,乘客需往站乘坐下行车,离他左边最近的下行车离站是千米,离他右边最近的下行车离站也是千米,如果乘上右侧第一辆下行车,,∴,不合题意.如果乘不上右侧第一辆下行车,只能乘右侧第二辆下行车,,,,∴,,∴符合题意.如果乘不上右侧第二辆下行车,只能乘右侧第三辆下行车,,,,,∴不合题意.∴综上,得.综上所述,或.26.(1)m=﹣3;(2)m=﹣5;(3)m=1.解:(1)∵这个函数的图象经过原点,∴当x=0时,y=0,即m+3=0,解得:m=﹣3;(2)当x=0时,y=﹣2,即m+3=﹣2,解得:m=﹣5;(3)∵函数的图象平行于直线y=3x﹣3,∴2m+1=3,解得:m=1.27.(1)点的坐标;(2);(3).分析:(1)根据A、B点坐标可得BC=m,BC上的高为h=2-n,再根据△ABC的面积为2可算出m的值,进而得到n的值,然后可得B点坐标;(2)把A、B两点坐标代入y=kx+b,再解方程组可得b、k的值,进而得到函数表达式;(3)将A(1,2)B(3,)分别代入y=ax求出a的值,即可得到a的取值范围.解:∵点,,∴中,,上的高为,∴,∴,∴,∴点的坐标;∵直线经过、两点,∴,解得,∴直线的函数表达式为;∵将代入得:,∴,∵将代入,∴,∴的取值范围是.28.(1)-1;(2)53或13.分析:(1)由点P(1,b)在直线l1上,利用一次函数图象上点的坐标特征,即可求出b值,再将点P的坐标代入直线l2中,即可求出m值;(2)由点C、D的横坐标,即可得出点C、D的纵坐标,结合CD=2即可得出关于a的含绝对值符号的一元一次方程,解之即可得出结论.解:(1)∵点P(1,b)在直线l1:y=2x+1上,∴b=2×1+1=3;∵点P(1,3)在直线l2:y=mx+4上,∴3=m+4,∴m=﹣1.(2)当x=a时,y C=2a+1;当x=a时,y D=4﹣a.∵CD=2,∴|2a+1﹣(4﹣a)|=2,解得:a=或a=,∴a=或a=.。

2019届中考数学总复习《因式分解》专项试题及答案解析

2019届中考数学总复习《因式分解》专项试题及答案解析

五、综合题 29.把下列各式因式分解 (1)﹣36aby+12abx﹣6ab (3)4x2﹣9y2 30.因式分解: (1)5mx2﹣10mxy+5my2 (2)x2(a﹣1)+y2(1﹣a) (2)9x2﹣12x+4; (4)3x3﹣12x2y+12xy2 .
4
2019 届中考数学总复习《因式分解》专项试题及答案解析
C. 962×95+962×5=5×(962×19+962)=5×(18278+962)=96200 D. 962×95+962×5=91390+4810=96200 7.把代数式 xy2﹣9x 分解因式,结果正确的是( )
1
2019 届中考数学总复习《因式分解》专项试题及答案解析
A. x(y2﹣9)
9
2019 届中考数学总复习《因式分解》专项试题及答案解析
B.x2-y2=(x+y)(x-y),故此选项错误; C.x2+2x+1 =(x+1)2 , 故此选项错误; D.x2+2x , 正确 选:D. 【分析】直接利用公式法以及提取公因式法分别分解因式判断 16.【答案】A 【解析】解答:a -2ac+c -b =(a-c) -b =(a-c+b)(a-c-b)=(a+b-c)[a-(c+b)],
2019 届中考数学总复习《因式分解》专项试题及答案解析
2019 届中考数学总复习《因式分解》专项试题
一、单选题 1.多项式﹣6x3y2﹣3x2y+12x2y2 分解因式时,应先提的公因式是( A. 3xy B. ﹣3x2y C. 3xy2 ) D. -x2+9 )
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019中考数学一轮复习课堂达标测试题10(因式分解B 含答案)
1.已知243
m -m-10m -m -m 2=+,则计算:的结果为( ).
A .3
B .-3
C .5
D .-5
2.下列分解因式正确的是( )
A .2x 2﹣xy=2x (x ﹣y )
B .﹣xy 2+2xy ﹣y=﹣y (xy ﹣2x )
C .x 2﹣4x+4=(x ﹣2)2
D .x 2﹣x ﹣3=x (x ﹣1)﹣3
3.已知正方形的面积是(16﹣8x+x 2)cm 2(x >4cm ),则正方形的周长是( )
A .(4﹣x )cm
B .(x ﹣4)cm
C .(16﹣4x )cm
D .(4x ﹣16)cm
4.下列哪项是多项式x 4+x 3+x 2的因式分解的结果( )
A .x 2( x 2+x)
B .x(x 3+x 2+x)
C .x 3(x+1)+x 2
D .x 2(x 2+x+1)
5.下列各式中,能用完全平方公式分解因式的是( )
A .
B .
C .
D . 6.6.下列式子分解因式能用公式法分解因式的是 ( ).
A .21x +
B .2x x -
C .21x -
D .221x +
7.一个多项式分解因式的结果是()
334b b +,那么这个多项式是( ) A .634b b - B .64b - C .634b b + D .64b --
8.下列各式是完全平方式的是( )
A .221x x +-
B .293x x +-
C .23x xy x +-
D .214
x x -+ 9.x 2+6x+9当x=___________时,该多项式的值最小,最小值是______________
10.分解因式:m 2-m=________
11.已知,,则2x 3y+4x 2y 2+2xy 3
=_________. 12.分解因式:9﹣x 2=________ .
13.因式分解:y 3﹣4x 2y =______.
14.分解因式:2x 2﹣20x+50=_____.
15.分解因式:3x 3-6x 2+3x=_________.
16.因式分解:mx 2-4m =_____________.
17.分解因式: 5328x x x --.
18.(1)解不等式:
(2)分解因式:a 2(x ﹣y )﹣9b 2(x ﹣y )
19.因式分解: 2221x y y -+-
20.(1)计算:
()
201811-+- ②(x -2)(x+5)-x (x+2)
(2)因式分解:
①25x 3-36xy 2 ②(a 2+16b 2)2-64a 2b 2
21.9a 2(x ﹣y)+4b 2(y ﹣x)
22.已知a ,b ,c 满足
(1)求a ,b ,c 的值;
(2)试问以a ,b ,c 为边能否构成三角形?若能构成三角形,求出三角形的周长;若不能构成三角形,请说明理由.
参考答案
1.A 解:∵2m -m-10=,
43m -m -m 2+=()4322222m -m -m +m -m 21(m -m-1)30033m m m +=--++=++=. 故选A.
2.C 解:A. 2x 2﹣xy=x (2x ﹣y ),故选项A 错;
B. ﹣xy 2+2xy ﹣y=﹣y (xy ﹣2x+1),故选项B 错;
C. x 2﹣4x+4=(x ﹣2)2 ,故选项C 正确;
D. x 2﹣x ﹣3=x (x ﹣1)﹣3,结果不是积的形式,不是因式分解,故选项D 错.
故正确选项为:C.
3.D 解:∵16-8x+x 2=(4-x )2,x >4cm ,
∴正方形的边长为(x-4)cm ,
∴正方形的周长为:4(x-4)=4x-16(cm ),故选:D .
4.D
解:x 4+x 3+x 2=x 2(x 2+x +1).故选D .
5.A 解:
.故选A .
6.C
解:根据平方差公式: ()()22a b a b a b -=+-,可知因式分解为: ()()2111x x x -=+-.故选:C.
7.C 解:利用因式分解是整式乘法的逆运算,可知()
334b b +=634b b +.故选:C. 8.D 解:A 、应为x 2+2x+1,故本选项错误;B 、应为9+x 2-6x ,故本选项错误;
C 、应为x 2+2xy+y 2,故本选项错误;
D 、x 2-x+14=(x-12
)2,故本选项正确.故选D . 9. -3 0分析:将原式进行配方,从而可以得出最小值.原式=()2x 3+,即当x=-3
时,代数式有最小值为0.
10.m (m-1)解:m 2-m=m(m-1).故答案为:m (m-1).
11.-25解:∵,,
∴2x 3y +4x 2y 2+2xy 3=2xy (x 2+2xy +y 2)=2xy (x +y )2=2×() ×52=-25.故答案为:-25.
12.(3+x )(3﹣x )解:9-x 2=32-x 2=(3+x)(3-x),故答案为:(3+x )(3-x).
13.y (y +2x )(y ﹣2x ).
解:y 3﹣4x 2y =y (y 2﹣4x 2)=y (y +2x )(y ﹣2x ).故答案为:y (y +2x )(y ﹣2x ).
14.2(x ﹣5)2解: . 故答案为:2(x ﹣5)2.
15.3x(x-1)2解:()()232236332131x x x x x x x x -+=-+=-.故答案为: ()2
31x x -. 16. 分析:mx 2-4m =m (x 2-4)=m (x -2)(x +2).故答案为:m (x -2)(x +2).
17.()()()
2222x x x x +-+ 分析:本题考查了综合运用提公因式法和公式法进行因式分解.先提公因式x ,然后连续运用两次平方差公式分解,分解因式时必须分解到每个因式不能再分解为止.
原式= ()4228x x x -- = ()()2242x x x -+= ()()()
2222x x x x +-+. 18.(1)x <2;(2)(x ﹣y )(a+3b )(a ﹣3b )
解:(1)−1
3(x-2)>2(2x-1)-6,
3x-6>4x-2-6,
解得:x <2;
(2)a 2(x-y )-9b 2(x-y )
=(x-y )(a 2-9b 2)
=(x-y )(a+3b )(a-3b ).
19.()()11x y x y +--+
解:原式=()2221x y y --+ =()2
21x y -- = ()()11x y x y +--+.
20.(1)① ②x-10;(2)①x(5x+6y)(5x-6y) ②(a+4b)2(a-4b)2
解:(1)①原式=()3131-+-=
②原式=225210210x x x x x x +----=-;
(2)①原式= ()
()()2225365656x x y x x y x y -=+-; ②原式=()()()()22
222216816844a b ab a b ab a b a b +++-=+-. 21. (x ﹣y)(3a+2b)•(3a ﹣2b)
解:原式=9a 2(x ﹣y)-4b 2(x ﹣y) =(x ﹣y)(9a 2-4b 2)=(x ﹣y)(3a+2b)•(3a﹣2b)
22.(1)a=8,b=15,c=17;(2)40
解:(1)由二次根式有意义的条件可知80{
80
a a -≥-≥,解得:a =8, ∴|c -17|+(
b -15)2=0,
∴c -17=0,b -15=0,
解得:c =17,b =15;
(2)∵a +b =8+15=23,c =17,
∴a +b >c ,
∴a 、b 、c 能组成三角形,
∴三角形周长为8+15+17=40.。

相关文档
最新文档