8.4.1平行四边形的性质(二)
新教材高中数学第八章立体几何初步8.4.1平面课件新人教A版必修第二册ppt
③
×
如三棱锥的四个顶点相连的四边形不能确定
一个平面
④
√
平面是空间中点的集合,是无限集
答案:④
4.设平面α与平面β交于直线l,A∈α,B∈α,且直线AB∩l=C,则
直线AB∩β=
.
解析:∵α∩β=l,AB∩l=C,∴C∈β,C∈AB,∴AB∩β=C.
答案:C
∴由基本事实3可知,点P在平面ABC与平面α的交线上,同理可
证Q,R也在平面ABC与平面α的交线上.
∴P,Q,R三点共线.
本例换为:如图所示,在正方体ABCD-A1B1C1D1中,设线段A1C
与平面ABC1D1交于点Q,如何说明B,Q,D1三点共线?
证明:如图所示,连接A1B,CD1.
显然B∈平面A1BCD1,D1∈平面A1BCD1.
④两条平行线确定一个平面
A.①②
B.②③
C.②④
D.③④
(2)两个平面若有三个公共点,则这两个平面(
A.相交
B.重合
C.相交或重合
D.以上都不对
)
解析:(1)不在同一条直线上的三点确定一个平面.圆上三个点
不会在同一条直线上,故可确定一个平面,∴①不正确,②正确.
当四点在一条直线上时不能确定一个平面,③不正确.根据平
且 P∈l
3.做一做:如图所示,在空间四边形各边AD,AB,BC,CD上分别
取E,F,G,H四点,如果EF,GH交于一点P,求证:点P在直线BD
上.
证明:∵EF∩GH=P,
∴P∈EF,且P∈GH.
又EF⊂平面ABD,GH⊂平面CBD,
∴P∈平面ABD,且P∈平面CBD,
即P∈平面ABD∩平面CBD,平面ABD∩平面CBD=BD,
2023年新高考数学一轮复习8-4 直线、平面平行的判定及性质(知识点讲解)含详解
专题8.4 直线、平面平行的判定及性质(知识点讲解)【知识框架】【核心素养】以立体几何的定义、公理和定理为出发点,认识和理解空间中线面平行的有关性质与判定定理,运用公理、定理和已获得的结论证明一些有关空间图形的平行关系的简单命题,凸显逻辑推理、直观想象、数学运算的核心素养.【知识点展示】(一)空间平行关系1.直线与平面平行的判定与性质a∥α,a⊂β,2.利用线面平行的定义,一般用反证法;利用线面平行的判定定理(a ⊄α,b ⊂α,a ∥b ⇒a ∥α),其关键是在平面内找(或作)一条直线与已知直线平行,证明时注意用符号语言的叙述;)利用面面平行的性质定理(α∥β,a ⊂α⇒a ∥β); 利用面面平行的性质(α∥β,a ⊄β,a ∥α⇒a ∥β). (二)平行关系中的三个重要结论(1)垂直于同一条直线的两个平面平行,即若a ⊥α,a ⊥β,则α∥β. (2)垂直于同一个平面的两条直线平行,即若a ⊥α,b ⊥α,则a ∥b. (3)平行于同一个平面的两个平面平行,即若α∥β,β∥γ,则α∥γ.【常考题型剖析】题型一:与线、面平行相关命题的判定例1. (2023·全国·高三专题练习)已知m ,n 为两条不同的直线,α,β为两个不同的平面,则下列结论中正确的是( ) A .若m //α,m //n ,则n //α B .若m //α,n //α,则m //n C .若m //α,n ⊂α,则m //nD .若m //α,m ⊂β,αβ=n ,则m //n例2.(2022·上海静安·二模)在下列判断两个平面α与β平行的4个命题中,真命题的个数是( ). (1)α、β都垂直于平面r ,那么α∥β. (2)α、β都平行于平面r ,那么α∥β. (3)α、β都垂直于直线l ,那么α∥β.(4)如果l 、m 是两条异面直线,且l ∥α,m ∥α,l ∥β,m ∥β,那么α∥β A .0B .1C .2D .3例3.(四川·高考真题(文))下列命题正确的是( ) A .若两条直线和同一个平面所成的角相等,则这两条直线平行 B .若一个平面内有三个点到另一个平面的距离相等,则这两个平面平行 C .若一条直线平行于两个相交平面,则这条直线与这两个平面的交线平行D .若两个平面都垂直于第三个平面,则这两个平面平行例4. (2022·云南师大附中模拟预测(理))若α,β是两个不同平面,m ,n 是两条不同直线,则下列4个推断中正确的是( )A .m α∥,m β∥,n ⊂α,n m n β⊂⇒∥B .m α⊂,n β⊂,m n αβ⇒∥∥C .m α∥,n α∥,m β⊂,n βαβ⊂⇒∥D .m α⊂,n β⊂,m n αβ⇒∥∥ 【方法技巧】直线、平面间平行的判定方法(1)关注是否符合判定定理与性质定理,并注意定理中易忽视的条件. (2)结合题意构造或绘制图形,结合图形作出判断. (3)利用实物进行空间想象,比较判断.(4)熟记一些常见结论,如垂直于同一条直线的两个平面平行等. 题型二:直线与平面平行的判定例5.(2023·全国·高三专题练习)在直三棱柱111ABC A B C -中,D 、E 、F 、M 、N 分别是BC 、11B C 、1AA 、1CC 、1A C 的中点,给出下列四个判断:①//EF 平面1ADB ;②//EM 平面1ADB ; ③//EN 平面1ADB ; ④1//A M 平面1ADB , 错误的序号为___________.例6.【多选题】(2017·全国·高考真题(文))如图,在下列四个正方体中,A ,B 为正方体的两个顶点,M ,N ,Q 为所在棱的中点,则在这四个正方体中,直线AB 与平面MNQ 平行的是( )A.B.C.D.例7.(2023·全国·高三专题练习)如图,AB是圆O的直径,点C是圆O上异于,A B的点,直线PC 平面ABC,,E F分别是PA,PC的中点.记平面BEF与平面ABC的交线为l,求证:直线l//平面PAC【总结提升】证明直线与平面平行的方法(1)线面平行的定义:一条直线与一个平面无公共点(不相交).(2)线面平行的判定定理:关键是找到平面内与已知直线平行的直线.常利用三角形的中位线、平行四边形的对边、成比例线段出现平行线或过已知直线作一平面找其交线.注意内外平行三条件,缺一不可.题型三:线面平行性质定理的应用例8.(福建·高考真题(文))如图,在正方体ABCD-A1B1C1D1中,AB=2,点E为AD的中点,点F在CD 上.若EF∥平面AB1C,则线段EF的长度等于________.例9.(2019·全国卷Ⅰ改编)如图,直四棱柱ABCD A 1B 1C 1D 1的底面是菱形,AA 1=4,AB =2,∠BAD =60°,E ,M ,N 分别是BC ,BB 1,A 1D 的中点.证明:MN ∥平面C 1DE .例10.如图,在直四棱柱ABCD A 1B 1C 1D 1中,E 为线段AD 上的任意一点(不包括A ,D 两点),平面CEC 1∩平面BB 1D =FG .证明:FG ∥平面AA 1B 1B .【总结提升】 1.思路方法:(1)通过线面平行可得到线线平行,其中一条线应是两平面的交线,要树立这种应用意识. (2)利用线面平行性质必须先找出交线. 2.易错提醒(1)在推证线面平行时,一定要强调直线不在平面内,否则,会出现错误.(2)线面平行关系证明的难点在于辅助面和辅助线的添加,在添加辅助线、辅助面时一定要以某一性质定理为依据,绝不能主观臆断.(3)解题中注意符号语言的规范应用. 题型四:平面与平面平行的判定与性质例11.(2023·全国·高三专题练习)已知长方体1111ABCD A B C D -中,4AB AD ==,12AA =,E ,F 分别为棱11A B 和11A D 的中点,M 为长方体表面上任意一点.若BM ∥平面AEF ,则BM 的最大值为( )A.B .C .D .6例12.(2020·全国·高三专题练习(文))如图,平面//α平面β,PAB △所在的平面与α,β分别交于CD 和AB ,若2PC =,3CA =,1CD =,则AB =______.例13.(2023·全国·高三专题练习)如图,在正方体1111ABCD A B C D -中,E ,F分别为棱11,DD CC 的中点.求证:平面1//AEC 平面BDF例14.(陕西·高考真题(文))如图,四棱柱ABCD -A 1B 1C 1D 1的底面ABCD 是正方形, O 为底面中心, A 1O∥平面ABCD, 12AB AA ==.(1)证明: 平面A 1BD // 平面CD 1B 1;(2)求三棱柱ABD -A 1B 1D 1的体积.【规律方法】 1.证明面面平行的常用方法 (1)利用面面平行的定义.(2)利用面面平行的判定定理:如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行. (3)利用“垂直于同一条直线的两个平面平行”.(4)利用“如果两个平面同时平行于第三个平面,那么这两个平面平行”. (5)利用“线线平行”“线面平行”“面面平行”的相互转化.2.面面平行的应用(1)两平面平行,构造与之相交的第三个平面,可得交线平行.(2)两平面平行,其中一个平面内的任意一条直线与另一个平面平行,可用于证明线面平行.3.三种平行关系之间的转化其中线面平行是核心,线线平行是基础,要注意它们之间的灵活转化.专题8.4 直线、平面平行的判定及性质(知识点讲解)【知识框架】【核心素养】以立体几何的定义、公理和定理为出发点,认识和理解空间中线面平行的有关性质与判定定理,运用公理、定理和已获得的结论证明一些有关空间图形的平行关系的简单命题,凸显逻辑推理、直观想象、数学运算的核心素养.【知识点展示】(一)空间平行关系1.直线与平面平行的判定与性质a∥α,a⊂β,2.利用线面平行的定义,一般用反证法;利用线面平行的判定定理(a ⊄α,b ⊂α,a ∥b ⇒a ∥α),其关键是在平面内找(或作)一条直线与已知直线平行,证明时注意用符号语言的叙述;)利用面面平行的性质定理(α∥β,a ⊂α⇒a ∥β); 利用面面平行的性质(α∥β,a ⊄β,a ∥α⇒a ∥β). (二)平行关系中的三个重要结论(1)垂直于同一条直线的两个平面平行,即若a ⊥α,a ⊥β,则α∥β. (2)垂直于同一个平面的两条直线平行,即若a ⊥α,b ⊥α,则a ∥b. (3)平行于同一个平面的两个平面平行,即若α∥β,β∥γ,则α∥γ.【常考题型剖析】题型一:与线、面平行相关命题的判定例1. (2023·全国·高三专题练习)已知m ,n 为两条不同的直线,α,β为两个不同的平面,则下列结论中正确的是( ) A .若m //α,m //n ,则n //α B .若m //α,n //α,则m //n C .若m //α,n ⊂α,则m //n D .若m //α,m ⊂β,αβ=n ,则m //n【答案】D 【解析】 【分析】举例说明判断A ,B ,C ;利用线面平行的性质判断D 作答. 【详解】如图,长方体1111ABCD A B C D -中,平面1111D C B A 视为平面α,对于A ,直线AB 视为m ,直线11A B 视为n ,满足m //α,m //n ,而n ⊂α,A 不正确;对于B,直线AB视为m,直线BC视为n,满足m//α,n//α,而m与n相交,B不正确;A D视为n,满足m//α,n⊂α,显然m与n是异面直线,C不正确;对于C,直线AB视为m,直线11对于D,由直线与平面平行的性质定理知,D正确.故选:D例2.(2022·上海静安·二模)在下列判断两个平面α与β平行的4个命题中,真命题的个数是().(1)α、β都垂直于平面r,那么α∥β.(2)α、β都平行于平面r,那么α∥β.(3)α、β都垂直于直线l,那么α∥β.(4)如果l、m是两条异面直线,且l∥α,m∥α,l∥β,m∥β,那么α∥βA.0B.1C.2D.3【答案】D【解析】【分析】由面面平行的判定定理及其相关结论分析可得结果.【详解】由面面平行的判定定理分析可知(1)错,(2),(3),(4)正确.故选:D例3.(四川·高考真题(文))下列命题正确的是()A.若两条直线和同一个平面所成的角相等,则这两条直线平行B.若一个平面内有三个点到另一个平面的距离相等,则这两个平面平行C.若一条直线平行于两个相交平面,则这条直线与这两个平面的交线平行D.若两个平面都垂直于第三个平面,则这两个平面平行【答案】C【解析】【详解】若两条直线和同一平面所成角相等,这两条直线可能平行,也可能为异面直线,也可能相交,所以A错;一个平面不在同一条直线的三点到另一个平面的距离相等,则这两个平面平行,故B错;若两个平面垂直同一个平面两平面可以平行,也可以垂直;故D错;故选项C正确.例4. (2022·云南师大附中模拟预测(理))若α,β是两个不同平面,m ,n 是两条不同直线,则下列4个推断中正确的是( )A .m α∥,m β∥,n ⊂α,n m n β⊂⇒∥B .m α⊂,n β⊂,m n αβ⇒∥∥C .m α∥,n α∥,m β⊂,n βαβ⊂⇒∥D .m α⊂,n β⊂,m n αβ⇒∥∥【答案】A【解析】【分析】利用线面,面面位置关系逐项分析即得.【详解】对于A ,如图,n ⊂α,n n βαβ⊂⇒⋂=,结合m α,m β,可知m n ∥,故A 正确;对于B ,如图,m ,n 可能异面,故B 错误;对于C ,如图,α,β可能相交,故C 错误;对于D ,如图,αβ,可能相交,故D 错误.故选:A .【方法技巧】直线、平面间平行的判定方法(1)关注是否符合判定定理与性质定理,并注意定理中易忽视的条件.(2)结合题意构造或绘制图形,结合图形作出判断.(3)利用实物进行空间想象,比较判断.(4)熟记一些常见结论,如垂直于同一条直线的两个平面平行等.题型二:直线与平面平行的判定例5.(2023·全国·高三专题练习)在直三棱柱111ABC A B C -中,D 、E 、F 、M 、N 分别是BC 、11B C 、1AA 、1CC 、1A C 的中点,给出下列四个判断:①//EF 平面1ADB ;②//EM 平面1ADB ;③//EN 平面1ADB ;④1//A M 平面1ADB ,错误的序号为___________.【答案】①②④【解析】【分析】连接DE 、1A E 、CE 、EF 、EM 、EN 、1A M 、FM ,证明出平面1//A CE 平面1AD B ,利用面面平行的性质结合假设法可判断①②③④的正误.【详解】连接DE 、1A E 、CE 、EF 、EM 、EN 、1A M 、FM ,在三棱柱111ABC A B C -中,因为11//BB CC 且11BB CC =,所以,四边形11BB C C 为平行四边形,则11//BC B C 且11BC B C =,D 、E 分别为BC 、11B C 的中点,则1//CD B E 且1CD B E =,故四边形1CDB E 为平行四边形,则1//CE B D ,CE ⊄平面1ADB ,1B D ⊂平面1ADB ,故//CE 平面1ADB ,同理可证四边形1BB ED 为平行四边形,则11////DE BB AA ,11DE BB AA ==,则四边形1AA ED 为平行四边形,所以,1//A E AD ,1A E ⊄平面1ADB ,AD ⊂平面1ADB ,则1//A E 平面1ADB ,1CE A E E =,故平面1//A CE 平面1AD B ,EN ⊂平面1A CE ,则//EN 平面1ADB ,③对;对于①,若//EF 平面1ADB ,EF EN E =,则平面//EFN 平面1ADB ,因为过点E 且与平面1ADB 平行的平面只有一个,矛盾,故①错,同理可知,②④均错.故答案为:①②④.例6.【多选题】(2017·全国·高考真题(文))如图,在下列四个正方体中,A ,B 为正方体的两个顶点,M ,N ,Q 为所在棱的中点,则在这四个正方体中,直线AB 与平面MNQ 平行的是( )A .B .C .D .【答案】BCD【解析】【分析】利用线面平行判定定理逐项判断可得答案.【详解】对于选项A,OQ∥AB,OQ与平面MNQ是相交的位置关系,故AB和平面MNQ不平行,故A错误;对于选项B,由于AB∥CD∥MQ,结合线面平行判定定理可知AB∥平面MNQ,故B正确;对于选项C,由于AB∥CD∥MQ,结合线面平行判定定理可知AB∥平面MNQ:故C正确;对于选项D,由于AB∥CD∥NQ,结合线面平行判定定理可知AB∥平面MNQ:故D正确;故选:BCD例7.(2023·全国·高三专题练习)如图,AB 是圆O 的直径,点C 是圆O 上异于,A B 的点,直线PC ⊥平面ABC ,,E F 分别是PA ,PC 的中点.记平面BEF 与平面ABC 的交线为l ,求证:直线l //平面PAC【答案】证明见解析【解析】【分析】先通过//EF AC 可得出//EF 平面ABC ,再利用线面平行的性质即可证明.【详解】因为,E F 分别是,PA PC 的中点,所以//EF AC ,又因为AC ⊂平面ABC ,EF ⊄平面ABC ,所以//EF 平面ABC ,又EF ⊂平面BEF ,平面BEF 与平面ABC 的交线为l ,所以//EF l ,而l ⊄平面PAC ,EF ⊂平面PAC ,所以//l 平面P AC .【总结提升】证明直线与平面平行的方法(1)线面平行的定义:一条直线与一个平面无公共点(不相交).(2)线面平行的判定定理:关键是找到平面内与已知直线平行的直线.常利用三角形的中位线、平行四边形的对边、成比例线段出现平行线或过已知直线作一平面找其交线.注意内外平行三条件,缺一不可. 题型三:线面平行性质定理的应用例8.(福建·高考真题(文))如图,在正方体ABCD -A 1B 1C 1D 1中,AB =2,点E 为AD 的中点,点F 在CD 上.若EF ∥平面AB 1C ,则线段EF 的长度等于________.【解析】【分析】根据直线与平面平行的性质定理可得//EF AC ,再根据E 为AD 的中点可得F 为CD 的中点,从而根据三角形的中位线可得.【详解】如图:因为//EF 平面1AB C ,EF ⊂平面DABC ,且平面1A C B 平面ABCD AC =,所以//EF AC ,又因为E 为AD 的中点,所以F 为CD 的中点, 所以12EF AC =,因为正方体的棱长为2.所以AC =所以EF =故答案为.例9.(2019·全国卷Ⅰ改编)如图,直四棱柱ABCD A 1B 1C 1D 1的底面是菱形,AA 1=4,AB =2,∠BAD =60°,E ,M,N分别是BC,BB1,A1D的中点.证明:MN∥平面C1DE.【答案】见解析【解析】证明:连接B1C,ME.因为M,E分别为BB1,BC的中点,所以ME∥B1C,且ME=12B1C.又因为N为A1D的中点,所以ND=12A1D.由题设知A1B1//=DC,可得B1C//=A1D,故ME//=ND,因此四边形MNDE为平行四边形,所以MN∥ED.又MN⊄平面C1DE,ED⊂平面C1DE,所以MN∥平面C1DE.例10.如图,在直四棱柱ABCDA1B1C1D1中,E为线段AD上的任意一点(不包括A,D两点),平面CEC1∩平面BB1D=FG.证明:FG∥平面AA1B1B.【答案】见解析【解析】证明:在直四棱柱ABCDA1B1C1D1中,BB1∥CC1,BB1⊂平面BB1D,CC1⊄平面BB1D,所以CC1∥平面BB1D.又CC1⊂平面CEC1,平面CEC1∩平面BB1D=FG,所以CC1∥FG.因为BB1∥CC1,所以BB1∥FG.而BB1⊂平面AA1B1B,FG⊄平面AA1B1B,所以FG∥平面AA1B1B.【总结提升】1.思路方法:(1)通过线面平行可得到线线平行,其中一条线应是两平面的交线,要树立这种应用意识.(2)利用线面平行性质必须先找出交线.(1)在推证线面平行时,一定要强调直线不在平面内,否则,会出现错误.(2)线面平行关系证明的难点在于辅助面和辅助线的添加,在添加辅助线、辅助面时一定要以某一性质定理为依据,绝不能主观臆断.(3)解题中注意符号语言的规范应用.题型四:平面与平面平行的判定与性质例11.(2023·全国·高三专题练习)已知长方体1111ABCD A B C D -中,4AB AD ==,12AA =,E ,F 分别为棱11A B 和11A D 的中点,M 为长方体表面上任意一点.若BM ∥平面AEF ,则BM 的最大值为( )A.B .C .D .6【答案】C【解析】【分析】由面面平行的性质结合题意可确定点M 所在的平面,再由平面几何的性质即可确定BM 的值为最大值时的位置,即可求解【详解】如图所示,取G ,H 分别为棱11B C 和11D C 的中点,连接11,,,BG DH BD B D ,由题意易知1111,BF B D GH B D ∥∥,所以BF GH ∥;又易知AF BG ∥,故可以证明平面BGHD ∥平面AEF ;又BM ∥平面AEF ,由面面平行的性质可知M ∈平面BGHD ,所以由题意可知M 在等腰梯形BGHD 四条边上运动,过点H 作HQ BD ⊥,交BD 于点Q ,由题意可知BD GH DH BG DQ ====所以HQ BQ BD DQ =-=所以BH又BD BH ==,所以故当M 与D 点重合时,BM 的值为最大值,此时BM BD ==例12.(2020·全国·高三专题练习(文))如图,平面//α平面β,PAB △所在的平面与α,β分别交于CD 和AB ,若2PC =,3CA =,1CD =,则AB =______. 【答案】52【解析】【分析】根据面面平行的性质,证得//CD AB ,结合CD PC AB PA =,即可求解. 【详解】由题意,平面//α平面β,PAB △所在的平面与α,β分别交于CD 和AB , 根据面面平行的性质,可得//CD AB ,所以CD PC AB PA =, 因为2PC =,3CA =,1CD =,所以15522CD PA AB PC ⋅⨯===.故答案为:52. 例13.(2023·全国·高三专题练习)如图,在正方体1111ABCD A B C D -中,E ,F 分别为棱11,DD CC 的中点.求证:平面1//AEC 平面BDF【答案】证明见解析【解析】【分析】根据1//DF EC ,可证明1//EC 平面BDF ;又//BF AE ,可得//AE 平面BDF .进而根据线面平行证明面面平行.【详解】证明:在正方体1111ABCD A B C D -中,E ,F 分别为棱11,DD CC 的中点, 所以11111,22DE DD C F CC ==. 因为11CC DD =,且11//CC DD ,所以1DE C F =,且1//DE C F ,所以四边形1DEC F 是平行四边形,所以1//DF EC 又DF ⊂平面BDF ,1EC ⊄平面BDF ,所以1//EC 平面BDF .同理,//BF AE ,又BF ⊂平面BDF ,AE ⊄平面BDF , 所以//AE 平面BDF .又1AE EC E ⋂=,1,AE EC ⊂平面1AEC ,所以平面1//AEC 平面BDF 例14.(陕西·高考真题(文))如图,四棱柱ABCD -A 1B 1C 1D 1的底面ABCD 是正方形, O 为底面中心, A 1O∥平面ABCD, 1AB AA =(1)证明: 平面A 1BD // 平面CD 1B 1;(2)求三棱柱ABD -A 1B 1D 1的体积.【答案】(1)证明见解析;(2)1.【解析】【详解】试题分析:(1)要证明1A C ⊥平面11BB D D ,只要证明1A C 垂直于平面11BB D D 内的两条相交直线即可,由已知可证出1A C ⊥BD ,取11B D 的中点为1E ,通过证明四边形11A OCE 为正方形可证1A C ⊥1E O .由线面垂直的判定定理问题得证;(2)由已知1A O 是三棱柱ABD ﹣A 1B 1D 1的高,由此能求出三棱柱ABD ﹣A 1B 1D 1的体积 试题解析:(Ⅰ)∵四棱柱ABCD ﹣A 1B 1C 1D 1的底面ABCD 是正方形,O 为底面中心,A 1O ⊥平面ABCD ,AB=AA 1=,由棱柱的性质可得BB 1和DD 1平行且相等,故四边形BB 1D 1D 为平行四边形,故有BD 和B 1D 1平行且相等.而BD 不在平面CB 1D 1内,而B 1D 1在平面CB 1D 1内,∴BD ∥平面CB 1D 1.同理可证,A 1BCD 1为平行四边形,A 1B ∥平面CB 1D 1.而BD 和A 1B 是平面A 1BD 内的两条相交直线,故有平面A 1BD ∥平面CD 1B 1 .(Ⅱ)由题意可得A 1O 为三棱柱ABD ﹣A 1B 1D 1的高.三角形A 1AO 中,由勾股定理可得A 1O===1,∴三棱柱ABD ﹣A 1B 1D 1的体积V=S △ABD •A 1O=•A 1O=×1=1.【规律方法】1.证明面面平行的常用方法 (1)利用面面平行的定义.(2)利用面面平行的判定定理:如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行.(3)利用“垂直于同一条直线的两个平面平行”.(4)利用“如果两个平面同时平行于第三个平面,那么这两个平面平行”.(5)利用“线线平行”“线面平行”“面面平行”的相互转化.2.面面平行的应用(1)两平面平行,构造与之相交的第三个平面,可得交线平行.(2)两平面平行,其中一个平面内的任意一条直线与另一个平面平行,可用于证明线面平行.3.三种平行关系之间的转化其中线面平行是核心,线线平行是基础,要注意它们之间的灵活转化.。
【新教材精创】8.4.1 平面 导学案(2)-人教A版高中数学必修第二册
【新教材】8.4.1 平面(人教A版)1.正确理解平面的概念;2.能用符号语言描述空间点、直线、平面之间的位置关系;3.能用图形、文字、符号三种语言描述三个基本事实,理解三个基本事实和三个推论的地位与作用.1.数学抽象:平面概念的理解;2.逻辑推理:点线共面、多点共线,多线共点问题;3.直观想象:点、直线、平面之间的位置关系.重点:1、平面的概念及表示;2、平面的三个基本事实和推论,注意他们的条件、结论、作用、图形语言及符号语言.难点:平面的三个基本事实的掌握与运用.一、预习导入阅读课本124-127页,填写。
1、平面(1)平面的概念几何里所说的“平面”,是从课桌面、黑板面、海面这样的一些物体中抽象出来的.几何里的平面是__________________的.(2)平面的画法①水平放置的平面通常画成一个平行四边形,用平行四边形表示平面,平行四边形的锐角通常画成_______,且横边长等于其邻边长的_______.如图(1).②如果一个平面被另一个平面遮挡住,为了增强它的立体感,把被遮挡部分用_______画出来或者不画.如图(2).(3)平面的表示平面通常用希腊字母α、β、γ等表示,如平面α、平面β等,也可以用表示平面的平行四边形的四个顶点或者相对的两个顶点的大写字母来表示,如平面AC、平面ABCD等.2、点、直线、平面之间的位置关系及语言表达点A在直线l上,则_______, 点A在直线l外,则_______;点A在平面α内,则_______, 点A在平面α外,则_______;直线l在平面α内,则_______, 直线l在平面α外,则_______;平面α与平面β相交直线l,则______________.3、平面的基本事实基本事实1的三个推论推论1:经过____________________________,有且只有一个平面. 推论2:经过_____________________,有且只有一个平面.推论3:经过_____________________,有且只有一个平面.1.下列说法:①书桌面是平面;②8个平面重叠后,要比6个平面重叠后厚;③有一个平面的长是100 m,宽是90 m;④平面是绝对平滑,无厚度,无限延展的抽象概念.其中正确的个数为()(A)0 (B)1(C)2 (D)32. 三条直线两两相交,可以确定平面的个数是()(A)1个(B)1个或2个(C)1个或3个(D)3个3.若A∈平面α,B∈平面α,C∈直线AB,则()(A)C∈α(B)C∉α(C)AB⊄α(D)AB∩α=C4.如图,已知D,E是△ABC的边AC,BC上的点,平面α经过D,E两点,若直线AB与平面α的交点是P,则点P 与直线DE的位置关系是____________________________.题型一文字语言、图形语言、符号语言的转换例1根据下列符号表示的语句,说明点、线、面之间的位置关系,并画出相应图形:(1)A∈α,B∉α;(2)l⊂α,m∩α=A,A∉l;(3)P∈l, P∉α,Q∈l,Q∈α.跟踪训练一1、A,B,C表示不同的点,n,l表示不同的直线,α,β表示不同的平面,下列推理表述不正确的是()(A)A∈l,A∈α,B∈l,B∈α⇒l⊂α(B)A∈α,A∈β,B∈β,B∈α⇒α∩β=直线AB(C)A,B,C∈α,A,B,C∈β,且A,B,C不共线⇒α与β重合(D)l∈α,n∈α,l∩n=A⇒l与n确定唯一平面2、如图,用符号表示下列图形中点、直线、平面之间的位置关系.题型二 点线共面例2 如图,l 1∩l 2=A,l 2∩l 3=B,l 1∩l 3=C,求证直线l 1,l 2,l 3在同一平面内.跟踪训练二1、空间两两相交且共点的三条直线,可以确定的平面数是( )(A)1 (B)2 (C)3 (D)1或3题型三 多点共线、多线共点问题例3如图所示,在正方体ABCD-A 1B 1C 1D 1中,E 为AB 的中点,F 为AA 1的中点.求证:CE,D 1F,DA 三线交于一点.跟踪训练三1.如图所示,在长方体ABCD-A 1B 1C 1D 1中,O 是B 1D 1的中点,直线A 1C 交平面AB 1D 1于点M,则下列结论正确的是( )(A)A,M,O 三点共线(B)A,M,O,A 1不共面(C)A,M,C,O 不共面(D)B,B 1,O,M 共面1.文字语言叙述:“平面内有一条直线,则这条直线上的点必在这个平面内”改成符号语言是()(A)a∈α,A⊂a⇒A⊂α(B)a⊂α,A∈a⇒A∈α(C)a∈α,A∈a⇒A⊂α(D)a∈α,A∈a⇒A∈α2.下列图形中不一定是平面图形的是()(A)三角形(B)平行四边形(C)梯形(D)四边相等的四边形3.如图是正方体或四面体,P,Q,R,S分别是所在棱的中点,这四个点不共面的一个图是()4.如图,正方体ABCD-A1B1C1D1中,若E,F,G分别为棱BC,C1C,B1C1的中点,O1,O2分别为四边形ADD1A1,A1B1C1D1的中心,则下列各组中的四个点在同一个平面上的是.①A,C,O1,D1;②D,E,G,F;③A,E,F,D1;④G,E,O1,O2.5.如图,已知正方体ABCD A1B1C1D1的棱长为8 cm,M,N,P分别是AB, A1D1,BB1的中点.(1)画出过M,N,P三点的平面与平面A1B1C1D1的交线以及与平面BB1C1C的交线;(2)设过M,N,P三点的平面与B1C1交于点Q,求PQ的长.答案小试牛刀1. B2.C3.A4. 点P在直线DE上自主探究例1【答案】见详细解析.【详细解析】(1)点A在平面α内,点B不在平面α内.(2)直线l在平面α内,直线m与平面α相交于点A,且点A不在直线l上.(3)直线l经过平面α外一点P和平面α内一点Q.图形分别如图(1),(2),(3)所示.跟踪训练一【答案】1、D.2、①中,α∩β=l,a∩α=A,a∩β=B.②中,α∩β=l,a⊂α, b⊂β,a∩l=P,b∩l=P.【详细解析】1.选D,D选项的表述有问题.2. 在①中,α∩β=l,a∩α=A,a∩β=B.在②中,α∩β=l,a⊂α, b⊂β,a∩l=P,b∩l=P.例2【答案】见详细解析.【详细解析】因为l1∩l2=A,所以l1,l2确定一个平面α.因为l2∩l3=B,所以l2,l3确定一个平面β.因为A∈l2,l2⊂α,所以A∈α.因为A∈l2,l2⊂β,所以A∈β.同理可证B∈α,B∈β,C∈α,C∈β.所以不共线的三个点A,B,C既在平面α内,又在平面β内.所以平面α和β重合,即直线l1,l2,l3在同一平面内.跟踪训练二1、【答案】D.【详细解析】两两相交且共点的三条直线若在一个平面内,可确定一个平面,若不在一平面内,每两条直线可确定一个平面,共可确定3个平面,故选D.例3 【答案】见详细解析.【详细解析】连接EF,D1C,A1B,因为E为AB的中点,F为AA1的中点,所以EF12A1B.又因为A1B D1C,所以EF12D1C,所以E,F,D1,C四点共面,可设D1F∩CE=P.又D1F⊂平面A1D1DA,CE⊂平面ABCD,所以点P为平面A1D1DA与平面ABCD的公共点.又因为平面A1D1DA∩平面ABCD=DA,所以据公理3可得P∈DA,即CE,D1F,DA三线交于一点.跟踪训练三1.【答案】A.【详细解析】连接A1C1,AC,则A1C1∥AC.所以A1,C1,C,A四点共面.所以A1C⊂平面ACC1A1.因为M ∈A 1C,所以M ∈平面ACC 1A 1,又M ∈平面AB 1D 1,所以M 在平面ACC 1A 1与平面AB 1D 1的交线上,同理O 也在平面ACC 1A 1与平面AB 1D 1的交线上,所以A,M,O 三点共线.故选A. 当堂检测1-3. BDD 4. ①③④.5.【答案】( 1)见详细解析( 2)43√10.【详细解析】 (1)如图,设M,N,P 三点确定的平面为α,则α与平面ABB 1A 1交于MP. 设MP∩A 1B 1=R,则RN 是α与平面A 1B 1C 1D 1的交线. 设RN∩B 1C 1=Q,则PQ 是α与平面BB 1C 1C 的交线.(2)因为正方体的棱长为8 cm,M,P 分别为AB,BB 1的中点, 所以B 1R=BM=4 cm. 在△RA 1N 中,=,所以B 1Q=412×4=43(cm). 在Rt △PB 1Q 中, PB 1=4 cm,B 1Q= 43cm,所以PQ=√42+( 43)2=43√10(cm).。
新版高中数学必修2课件:8.4.1平面
平面个数是 1 或 3,如果交于不共线的三点,可以确定的平面个数 是 1,所以空间两两相交的三条直线,可以确定的平面个数是 1 或
3. 答案:B
2.如图所示的两个相交平面,其中画法正确的是( )
解析:对于①,图中没有画出平面 α 与平面 β 的交线,另外图 中的实线、虚线也没有按照画法原则去画,因此①的画法不正确.同 样的道理,可知②③的画法不正确,④中画法正确.
方法归纳 证明三点共线,可以证明三点都在两平面的交线上或第三点在 两点所确定的直线上.
微点 2 线共点问题 例 3 在四面体 ABCD 中,E,G 分别是 BC,AB 的中点,点 F 在 CD 上,点 H 在 AD 上,且 DF:FC=DH:HA=2:3.求证:EF,GH, BD 交于一点.
证明:如图,连接 GE、HF 因为 E,G 分别是 BC,AB 的中点,所以 GE∥AC,GE=12AC. 又 DF:FC=DH:HA=2:3, 所以 FH∥AC,FH=25AC,所以 FH∥GE,FH≠GE, 所以 E,F,H,G 四点共面,且四边形 EFHG 是一个梯形. 延长 GH 和 EF 交于一点 O, 因为 GH⊂平面 ABD,EF⊂平面 BCD, 所以 O∈平面 ABD,O∈平面 BCD, 所以点 O 在这两个平面的交线上, 而这两个平面的交线是 BD,且交线只有这一条,所以点 O 在 直线 BD 上. 所以 EF,GH,BD 交于一点.
(3)根据已知符号语言或文字语言画相应的图形时,要注意实线 和虚线的区别.
跟踪训练 1 根据如图所示,在横线上填入相应的符号或字母: A___∈_____平面 ABC,A____∉____平面 BCD,BD___⊄_____平面 ABC,平面 ABC∩平面 ACD=___A__C___.
高中数学第八章立体几何初步8.4.1平面教学用书教案第二册
8.4 空间点、直线、平面之间的位置关系8。
4。
1平面素养目标·定方向素养目标学法指导1.理解并掌握平面的基本事实及推论。
(逻辑推理)2.会用基本事实及推论解决有关问题.(逻辑推理)要充分利用长方体以及身边的生活中的物品认识空间点、直线、平面,要类比初中平面几何中点、直线去认识空间中的点、直线、平面,逐步过渡与抽象,并确定它们之间的关系.必备知识·探新知知识点1平面1.平面的概念几何中所说的“平面”,是从课桌面、黑板面、平静的水面等,这样的一些物体中抽象出来的。
类似于直线向两端无限延伸,几何中的平面是向四周__无限延展__的。
2.平面的画法我们常用矩形的直观图,即__平行四边形__表示平面,它的锐角通常画成__45°__,且横边长等于其邻边长的__2__倍,如图①.如果一个平面的一部分被另一个平面遮挡住,为了增强它的立体感,把被遮挡部分用__虚线__画出来,如图②.3.平面的表示法图①的平面可表示为__平面α__、平面ABCD、__平面AC__或平面BD。
知识点2点、线、面之间的位置关系1.直线在平面内的概念如果直线l上的__所有点__都在平面α内,就说直线l在平面α内,或者说平面α经过直线l.2.一些文字语言与符号语言的对应关系:文字语言表达符号语言表示文字语言表达符号语言表示点A在直线l上__A∈l__点A在直线l外__A∉l__点A在平面α内__A∈α__点A在平面α外__A∉α__直线l在平面α内__l⊂α__直线l在平面α外__l⊄α__直线l,m相交于点A l∩m=A平面α,β相交于直线lα∩β=l知识点3平面的基本性质及应用1.基本事实内容图形符号作用基本事实1过不在一条直线上的三个点,__有且只有__一个平面A,B,C三点不共线⇒存在唯一的平面α使A,B,C∈α一是确定平面;二是证明点、线共面问题;三是判断两个平面重合的依据基本事实2如果一条直线上的__两个点__在一A∈l,B∈l,且A∈α,B∈α既可判定直线和点是个平面内,那么这条直线在__这个平面内__⇒__l⊂α__否在平面内,又能说明平面是无限延展的基本事实3如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的__公共直线__P∈α且P∈β⇒α∩β=l,且P∈l①判定两平面相交的依据②判定点在直线上2.利用基本事实1和基本事实2,再结合“两点确定一条直线”,可以得到下面三个推论:推论1__经过一条直线和这条直线外一点__,有且只有一个平面。
【优创课件】8.4.1平面(人教A版2019必修二)
【探究3】把三角尺的一个角立在课桌面上,三角尺所在平面与课桌面只有一个公共点吗? [提示]由于平面是无限延展的,所以不可能只有一个公共点,它们应该有一条公共直线.
基本事实3:如果两个不重合的平面有一个公共点,那 么它们有且只有一条过该点的公共直线。 图形:
符号:P∈α,且P∈β⇒α∩β=l,且P∈l
【思考1】几何里的“平面”有边界吗?用什么 图形表示平面?
【提示】 没有.平行四边形. 【思考2】一个平面把空间分成了几部分? 【提示】 二部分.
知识点二 点、线、面之间的关系及符号表示 A是点,l,m是直线,α,β是平面.
文字语言 A在l上 A在l外 A在α内 A在α外 l在α内 l在α外
l,m相交于A l,α相交于A α,β相交于l
证明:若EF、GH交于一点P, 则E,F,G,H四点共面, 又因为EF⊂平面ABD,GH⊂平面CBD, 平面ABD∩平面CBD=BD, 所以P∈平面ABD,且P∈平面CBD, 由基本事实3可得P∈BD.
(四)操作演练 素养提升
1.下列有关平面的说法正确的是( )
A.平行四边形是一个平面
B.任何一个平面图形都是一个平面
(三)典型例题
4.三点共线问题
例4.如图,在正方体ABCD-A1B1C1D1中,设线段A1C与平面ABC1D1交于点Q, 求证:B,Q,D1三点共线.
证明:如图,连接A1B,CD1,BD1,显然B∈平面A1BCD1,D1∈平面A1BCD1, ∴BD1⊂平面A1BCD1. 同理,BD1⊂平面ABC1D1, ∴平面ABC1D1∩平面A1BCD1=BD1.∵A1C∩平面ABC1D1=Q, ∴Q∈平面ABC1D1. 又∵A1C⊂平面A1BCD1,∴Q∈平面A1BCD1. ∴Q在平面A1BCD1与平面ABC1D1的交线上,即Q∈BD1,∴B,Q,D1三点共线.
8.4.1 平面PPT课件(人教版)
命题视角 3:线共点问题 [例 5] 在四面体 ABCD 中,E,G 分别是 BC,AB 的中点,点 F 在 CD 上, 点 H 在 AD 上,且 DF FC=DH HA=2 3.求证:EF,GH,BD 交于一点.
[分析] 先证明三条直线中的两条相交于一点,再证明该点在第三条直线上即 可.
[证明] 如图所示,连接 GE、HF,
提示:(1)平面是平的. (2)平面是没有厚度的. (3)平面是无限延展而没有边界的.
知识点二 点、直线、平面之间位置关系的三种语言表示
文字语言表达 点 A 在直线 l 上 点 A 在直线 l 外 点 A 在平面 α 内 点 A 在平面 α 外
直线 l 在平面 α 内
[填一填] 图形
符号语言表达 A∈l A∉l A∈α A∉α
l⊂α
文字语言表达 直线 l 在平面 α 外 平面 α,β 相交于 l
图形
符号语言表达 l⊄α
α∩β=l
[答一答] 5.如图,点 A ∈ 平面 ABC;点 A ∉ 面 ABC∩平面 BCD= BC .
平面 BCD;BD ⊂ 平面 ABD;平
6.直线和平面都是由点组成的,联系集合的观点,点和直线、平面的位置关 系,如何用符号来表示?直线和平面呢?
8.4.1 平面
[课标解读]1.借助长方体直观认识平面.2.了解关于平面的三个基本事实(公理) 和推论.
[素养目标] 水平一:1.了解平面的概念,掌握平面的画法及表示方法.(数学 抽象)2.能用符号语言描述空间点、直线、平面之间的位置关系.(直观想象)3.能用 图形、文字、符号三种语言描述三个基本事实(公理),理解三个基本事实的地位与 作用.(逻辑推理)
水平二:通过对平面的学习,逐步培养学生的空间想象意识.(逻辑推理)
8.4 平行四边形(1)》课件 (苏科版八年级下)
课堂检测
6、平行四边形ABCD中,AB=7cm,BE⊥ CD于 E,且BE=5 cm,求平行四边形ABCD的面积。
7、从平行四边形的一个锐角的顶点做两条高, 如果这两条高线的夹角是135°,求这个平行四边 形的各个角的度数。
8.已知:如图,□ABCD的对角线AC、BD相交 于点O,直线EF过点O与AD、BC相交于点E、F, ①请说明: OE=OF. ②若直线EF与DC、BA的延长线相交于点F、E, 上述结论是否还成立?若成立,请说明A=48°,BC=3cm,则∠B= ∠C= ,AD= 。 3、在
,
ABCD 中, ∠ADC=125°, ∠CAD=21°,求∠ABC, ∠CAB的度数
(3题图)
课 通过本节课的学习, 堂 感 你对平行四边形有哪些 悟 新的认识?有哪些收获
与体会?
感 悟 与 收 获
D F B
C
同理:四边形EDFB、EDCF四边形也是平行四边形。
1. 在□ABCD中,若周长是30,AB:BC=2:3, 则AD= ,CD= .
2. 在□ABCD中,若∠B=3∠A,则∠A=
° ,∠D=
°.
3.如图,□ABCD的对角线交于点O, BC=7cm,BD=10cm, AC=6cm. 则△AOD的周长= .
通过本节课的学习,你对平行四 边形有哪些新的认识?有哪些收获 与体会?
1、平行四边形的定义 2、平行四边形的性质 平行四边形的对边相等 平行四边形的对角相等 平行四边形的对角线互相平分
课堂检测
1、 ABCD中,∠A=3 ∠B, 则∠C= , ∠D= . 2、 ABCD中, ∠A:∠B=2:1,则∠C = ,∠D= . 3、平行四边形的周长是40cm,两邻边的比是3:2, 则较长边长为 . 4、 ABCD中,已知AB,BC,CD三条边的长 度分别为(x+3)cm,(x-4)cm,16cm,这个平行四 边形的周长是 . 5、 ABCD中, ∠A-∠B=25°,求 ABCD中各角的度数.
2020届高三理数一轮讲义:8.4-直线、平面平行的判定及其性质(含答案)
第4节 直线、平面平行的判定及其性质最新考纲 1.以立体几何的定义、公理和定理为出发点,认识和理解空间中线面平行的有关性质与判定定理;2.能运用公理、定理和已获得的结论证明一些有关空间图形的平行关系的简单命题.知 识 梳 理1.直线与平面平行 (1)直线与平面平行的定义直线l 与平面α没有公共点,则称直线l 与平面α平行. (2)判定定理与性质定理(1)平面与平面平行的定义没有公共点的两个平面叫做平行平面. (2)判定定理与性质定理平行关系中的三个重要结论(1)垂直于同一条直线的两个平面平行,即若a ⊥α,a ⊥β,则α∥β. (2)平行于同一平面的两个平面平行,即若α∥β,β∥γ,则α∥γ. (3)垂直于同一个平面的两条直线平行,即若a ⊥α,b ⊥α,则a ∥b .基 础 自 测1.判断下列结论正误(在括号内打“√”或“×”)(1)若一条直线和平面内一条直线平行,那么这条直线和这个平面平行.( ) (2)若直线a ∥平面α,P ∈α,则过点P 且平行于直线a 的直线有无数条.( ) (3)如果一个平面内的两条直线平行于另一个平面,那么这两个平面平行.( ) (4)如果两个平面平行,那么分别在这两个平面内的两条直线平行或异面.( ) 解析 (1)若一条直线和平面内的一条直线平行,那么这条直线和这个平面平行或在平面内,故(1)错误.(2)若a ∥α,P ∈α,则过点P 且平行于a 的直线只有一条,故(2)错误. (3)如果一个平面内的两条直线平行于另一个平面,则这两个平面平行或相交,故(3)错误.答案 (1)× (2)× (3)× (4)√2.(必修2P61A1(2)改编)下列说法中,与“直线a ∥平面α”等价的是( ) A.直线a 上有无数个点不在平面α内 B.直线a 与平面α内的所有直线平行C.直线a与平面α内无数条直线不相交D.直线a与平面α内的任意一条直线都不相交解析因为a∥平面α,所以直线a与平面α无交点,因此a和平面α内的任意一条直线都不相交,故选D.答案 D3.(必修2P61A1(1)改编)下列命题中正确的是( )A.若a,b是两条直线,且a∥b,那么a平行于经过b的任何平面B.若直线a和平面α满足a∥α,那么a与α内的任何直线平行C.平行于同一条直线的两个平面平行D.若直线a,b和平面α满足a∥b,a∥α,b⊄α,则b∥α解析根据线面平行的判定与性质定理知,选D.答案 D4.(2018·长沙模拟)已知m,n是两条不同的直线,α,β,γ是三个不同的平面,则下列命题中正确的是( )A.m∥α,n∥α,则m∥nB.m∥n,m∥α,则n∥αC.m⊥α,m⊥β,则α∥βD.α⊥γ,β⊥γ,则α∥β解析A中,m与n平行、相交或异面,A不正确;B中,n∥α或n⊂α,B不正确;根据线面垂直的性质,C正确;D中,α∥β或α与β相交,D错.答案 C5.(2019·成都月考)若平面α∥平面β,直线a∥平面α,点B∈β,则在平面β内且过B点的所有直线中( )A.不一定存在与a平行的直线B.只有两条与a平行的直线C.存在无数条与a平行的直线D.存在唯一与a平行的直线解析当直线a在平面β内且过B点时,不存在与a平行的直线,故选A.答案 A6.(2019·衡水开学考试)如图是长方体被一平面所截得的几何体,四边形EFGH 为截面,则四边形EFGH的形状为________.解析∵平面ABFE∥平面DCGH,又平面EFGH∩平面ABFE=EF,平面EFGH∩平面DCGH=HG,∴EF∥HG.同理EH∥FG,∴四边形EFGH是平行四边形.答案平行四边形考点一与线、面平行相关命题的判定【例1】(1)(2019·开封模拟)在空间中,a,b,c是三条不同的直线,α,β是两个不同的平面,则下列命题中的真命题是( )A.若a⊥c,b⊥c,则a∥bB.若a⊂α,b⊂β,α⊥β,则a⊥bC.若a∥α,b∥β,α∥β,则a∥bD.若α∥β,a⊂α,则a∥β(2)(2018·聊城模拟)下列四个正方体中,A,B,C为所在棱的中点,则能得出平面ABC∥平面DEF的是( )解析(1)对于A,若a⊥c,b⊥c,则a与b可能平行、异面、相交,故A是假命题;对于B,设α∩β=m,若a,b均与m平行,则a∥b,故B是假命题;对于C,a,b可能平行、异面、相交,故C是假命题;对于D,若α∥β,a⊂α,则a与β没有公共点,则a∥β,故D是真命题.(2)在B中,如图,连接MN,PN,∵A,B,C为正方体所在棱的中点,∴AB∥MN,AC∥PN,∵MN∥DE,PN∥EF,∴AB∥DE,AC∥EF,∵AB∩AC=A,DE∩EF=E,AB,AC⊂平面ABC,DE,EF⊂平面DEF,∴平面ABC∥平面DEF.答案(1)D (2)B规律方法 1.判断与平行关系相关命题的真假,必须熟悉线、面平行关系的各个定义、定理,无论是单项选择还是含选择项的填空题,都可以从中先选出最熟悉最容易判断的选项先确定或排除,再逐步判断其余选项.2.(1)结合题意构造或绘制图形,结合图形作出判断.(2)特别注意定理所要求的条件是否完备,图形是否有特殊情况,通过举反例否定结论或用反证法推断命题是否正确.【训练1】 (1)下列命题正确的是( )A.若两条直线和同一个平面平行,则这两条直线平行B.若一条直线与两个平面所成的角相等,则这两个平面平行C.若一条直线与两个相交平面都平行,则这条直线与这两个平面的交线平行D.若两个平面垂直于同一个平面,则这两个平面平行(2)(2018·安庆模拟)在正方体ABCD-A1B1C1D1中,M,N,Q分别是棱D1C1,A1D1,BC的中点,点P在BD1上且BP=23BD1,则下面说法正确的是________(填序号).①MN∥平面APC;②C1Q∥平面APC;③A,P,M三点共线;④平面MNQ∥平面APC.解析(1)A选项中两条直线可能平行也可能异面或相交;对于B选项,如图,在正方体ABCD-A1B1C1D1中,平面ABB1A1和平面BCC1B1与B1D1所成的角相等,但这两个平面垂直;D选项中两平面也可能相交.C正确.(2)如图,对于①,连接MN,AC,则MN∥AC,连接AM,CN,易得AM,CN交于点P,即MN⊂平面APC,所以MN∥平面APC是错误的.对于②,由①知M,N在平面APC内,由题易知AN∥C1Q,且AN⊂平面APC,C1Q⊄平面APC.所以C1Q∥平面APC是正确的.对于③,由①知,A,P,M三点共线是正确的.对于④,由①知MN⊂平面APC,又MN⊂平面MNQ,所以平面MNQ∥平面APC是错误的.答案(1)C (2)②③考点二直线与平面平行的判定与性质多维探究角度1 直线与平面平行的判定【例2-1】(2019·东北三省四市模拟)在如图所示的几何体中,四边形ABCD是正方形,PA⊥平面ABCD,E,F分别是线段AD,PB的中点,PA=AB=1.(1)证明:EF∥平面PDC;(2)求点F到平面PDC的距离.(1)证明取PC的中点M,连接DM,MF,∵M,F分别是PC,PB的中点,∴MF∥CB,MF=12 CB,∵E为DA的中点,四边形ABCD为正方形,∴DE∥CB,DE=12 CB,∴MF∥DE,MF=DE,∴四边形DEFM为平行四边形,∴EF∥DM,∵EF⊄平面PDC,DM⊂平面PDC,∴EF∥平面PDC.(2)解∵EF∥平面PDC,∴点F到平面PDC的距离等于点E到平面PDC的距离. ∵PA⊥平面ABCD,∴PA⊥DA,在Rt△PAD中,PA=AD=1,∴DP= 2.∵PA⊥平面ABCD,∴PA⊥CB,∵CB⊥AB,PA∩AB=A,∴CB⊥平面PAB,∴CB⊥PB,则PC=3,∴PD2+DC2=PC2,∴△PDC为直角三角形,∴S△PDC=12×1×2=22.连接EP,EC,易知V E-PDC=V C-PDE,设E到平面PDC的距离为h,∵CD⊥AD,CD⊥PA,AD∩PA=A,∴CD⊥平面PAD,则13×h×22=13×1×12×12×1,∴h=24,∴点F到平面PDC的距离为2 4.角度2 直线与平面平行性质定理的应用【例2-2】(2018·上饶模拟)如图所示,在正方体ABCD-A1B1C1D1中,棱长为2,E,F分别是棱DD1,C1D1的中点.(1)求三棱锥B1-A1BE的体积;(2)试判断直线B1F与平面A1BE是否平行,如果平行,请在平面A1BE上作出与B1F 平行的直线,并说明理由.解(1)如图所示,V B1-A1BE=V E-A1B1B=13S△A1B1B· DA=13×12×2×2×2=43.(2)B1F∥平面A1BE.延长A1E交AD延长线于点H,连BH交CD于点G,则BG就是所求直线.证明如下:因为BA1∥平面CDD1C1,平面A1BH∩平面CDD1C1=GE,所以A1B∥GE.又A1B∥CD1,所以GE∥CD1.又E为DD1的中点,则G为CD的中点.故BG∥B1F,BG就是所求直线.规律方法 1.利用判定定理判定线面平行,关键是找平面内与已知直线平行的直线.常利用三角形的中位线、平行四边形的对边或过已知直线作一平面找其交线.2.在解决线面、面面平行的判定时,一般遵循从“低维”到“高维”的转化,即从“线线平行”到“线面平行”,再到“面面平行”;而在应用性质定理时,其顺序恰好相反.【训练2】(2017·江苏卷)如图,在三棱锥A-BCD中,AB⊥AD,BC⊥BD,平面ABD⊥平面BCD,点E,F(E与A,D不重合)分别在棱AD,BD上,且EF⊥AD.求证:(1)EF∥平面ABC;(2)AD⊥AC.证明(1)在平面ABD内,AB⊥AD,EF⊥AD,则AB∥EF.∵AB⊂平面ABC,EF⊄平面ABC,∴EF∥平面ABC.(2)∵BC⊥BD,平面ABD∩平面BCD=BD,平面ABD⊥平面BCD,BC⊂平面BCD,∴BC⊥平面ABD.∵AD⊂平面ABD,∴BC⊥AD.又AB⊥AD,BC,AB⊂平面ABC,BC∩AB=B,∴AD⊥平面ABC,又因为AC⊂平面ABC,∴AD⊥AC.考点三面面平行的判定与性质典例迁移【例3】 (经典母题)如图所示,在三棱柱ABC-A1B1C1中,E,F,G,H分别是AB,AC,A1B1,A1C1的中点,求证:(1)B,C,H,G四点共面;(2)平面EFA1∥平面BCHG.证明(1)∵G,H分别是A1B1,A1C1的中点,∴GH是△A1B1C1的中位线,则GH∥B1C1.又∵B1C1∥BC,∴GH∥BC,∴B,C,H,G四点共面.(2)∵E,F分别为AB,AC的中点,∴EF∥BC,∵EF⊄平面BCHG,BC⊂平面BCHG,∴EF∥平面BCHG.又G,E分别为A1B1,AB的中点,A1B1綉AB,∴A1G綉EB,∴四边形A1EBG是平行四边形,∴A1E∥GB.∵A1E⊄平面BCHG,GB⊂平面BCHG,∴A1E∥平面BCHG.又∵A1E∩EF=E,∴平面EFA1∥平面BCHG.【迁移探究1】在本例中,若将条件“E,F,G,H分别是AB,AC,A1B1,A1C1的中点”变为“D1,D分别为B1C1,BC的中点”,求证:平面A1BD1∥平面AC1D.证明如图所示,连接A1C交AC1于点M,∵四边形A1ACC1是平行四边形,∴M是A1C的中点,连接MD,∵D为BC的中点,∴A1B∥DM.∵A1B⊂平面A1BD1,DM⊄平面A1BD1,∴DM∥平面A1BD1,又由三棱柱的性质知,D1C1綉BD,∴四边形BDC1D1为平行四边形,∴DC1∥BD1.又DC1⊄平面A1BD1,BD1⊂平面A1BD1,∴DC1∥平面A1BD1,又DC1∩DM=D,DC1,DM⊂平面AC1D,因此平面A1BD1∥平面AC1D.【迁移探究2】在本例中,若将条件“E,F,G,H分别是AB,AC,A1B1,A1C1的中点”变为“点D,D1分别是AC,A1C1上的点,且平面BC1D∥平面AB1D1”,试求ADDC的值.解连接A1B交AB1于O,连接OD1.由平面BC1D∥平面AB1D1,且平面A1BC1∩平面BC1D=BC1,平面A1BC1∩平面AB1D1=D 1O ,所以BC 1∥D 1O ,则A 1D 1D 1C 1=A 1OOB=1. 又由题设A 1D 1D 1C 1=DC AD , ∴DC AD=1,即ADDC=1. 规律方法 1.判定面面平行的主要方法 (1)利用面面平行的判定定理.(2)线面垂直的性质(垂直于同一直线的两平面平行). 2.面面平行条件的应用(1)两平面平行,分析构造与之相交的第三个平面,交线平行. (2)两平面平行,其中一个平面内的任意一条直线与另一个平面平行.提醒 利用面面平行的判定定理证明两平面平行,需要说明是在一个平面内的两条直线是相交直线.【训练3】 (2019·南昌二模)如图,四棱锥P -ABCD 中,底面ABCD 是直角梯形,AB ∥CD ,AB ⊥AD ,AB =2CD =2AD =4,侧面PAB 是等腰直角三角形,PA =PB ,平面PAB ⊥平面ABCD ,点E ,F 分别是棱AB ,PB 上的点,平面CEF ∥平面PAD .(1)确定点E ,F 的位置,并说明理由; (2)求三棱锥F -DCE 的体积.解 (1)因为平面CEF ∥平面PAD ,平面CEF ∩平面ABCD =CE , 平面PAD ∩平面ABCD =AD , 所以CE ∥AD ,又AB ∥DC , 所以四边形AECD 是平行四边形, 所以DC =AE =12AB ,即点E 是AB 的中点.因为平面CEF ∥平面PAD ,平面CEF ∩平面PAB =EF ,平面PAD ∩平面PAB =PA ,所以EF∥PA,又点E是AB的中点,所以点F是PB的中点.综上,E,F分别是AB,PB的中点.(2)连接PE,由题意及(1)知PA=PB,AE=EB,所以PE⊥AB,又平面PAB⊥平面ABCD,平面PAB∩平面ABCD=AB,所以PE⊥平面ABCD.又AB∥CD,AB⊥AD,所以V F-DEC=12VP-DEC=16S△DEC×PE=16×12×2×2×2=23.[思维升华]1.转化思想:三种平行关系之间的转化其中线面平行是核心,线线平行是基础,要注意它们之间的灵活转化.2.直线与平面平行的主要判定方法(1)定义法;(2)判定定理;(3)面面平行的性质.3.平面与平面平行的主要判定方法(1)定义法;(2)判定定理;(3)推论;(4)a⊥α,a⊥β⇒α∥β.[易错防范]1.在推证线面平行时,一定要强调直线不在平面内,否则,会出现错误.2.面面平行的判定中易忽视“面内两条相交线”这一条件.3.如果一个平面内有无数条直线与另一个平面平行,易误认为这两个平面平行,实质上也可以相交.4.运用性质定理,要遵从由“高维”到“低维”,但也要注意,转化的方向总是由题目的具体条件而定,决不可过于“模式化”.基础巩固题组(建议用时:40分钟)一、选择题1.若直线l不平行于平面α,且l⊄α,则( )A.α内的所有直线与l异面B.α内不存在与l平行的直线C.α与直线l至少有两个公共点D.α内的直线与l都相交解析因为l⊄α,直线l不平行于平面α,所以直线l只能与平面α相交,于是直线l与平面α只有一个公共点,所以平面α内不存在与l平行的直线. 答案 B2.(2019·大连双基测试)已知直线l,m,平面α,β,γ,则下列条件能推出l∥m的是( )A.l⊂α,m⊂β,α∥βB.α∥β,α∩γ=l,β∩γ=mC.l∥α,m⊂αD.l⊂α,α∩β=m解析选项A中,直线l,m也可能异面;选项B中,根据面面平行的性质定理,可推出l∥m,B正确;选项C中,直线l,m也可能异面;选项D中,直线l,m 也可能相交.故选B.答案 B3.(2018·长郡中学质检)如图所示的三棱柱ABC-A1B1C1中,过A1B1的平面与平面ABC交于DE,则DE与AB的位置关系是( )A.异面B.平行C.相交D.以上均有可能解析在三棱柱ABC-A1B1C1中,AB∥A1B1,∵AB⊂平面ABC,A1B1⊄平面ABC,∴A1B1∥平面ABC,∵过A1B1的平面与平面ABC交于DE.∴DE∥A1B1,∴DE∥AB. 答案 B4.(2018·重庆六校联考)设a,b是两条不同的直线,α,β是两个不同的平面,则α∥β的一个充分条件是( )A.存在一条直线a,a∥α,a∥βB.存在一条直线a,a⊂α,a∥βC.存在两条平行直线a,b,a⊂α,b⊂β,a∥β,b∥αD.存在两条异面直线a,b,a⊂α,b⊂β,a∥β,b∥α解析对于选项A,若存在一条直线a,a∥α,a∥β,则α∥β或α与β相交,若α∥β,则存在一条直线a,使得a∥α,a∥β,所以选项A的内容是α∥β的一个必要条件;同理,选项B、C的内容也是α∥β的一个必要条件而不是充分条件;对于选项D,可以通过平移把两条异面直线平移到一个平面中,成为相交直线,则有α∥β,所以选项D的内容是α∥β的一个充分条件.故选D.答案 D5.(2019·合肥模拟)若平面α截三棱锥所得截面为平行四边形,则该三棱锥与平面α平行的棱有( )A.0条B.1条C.2条D.1条或2条解析如图所示,四边形EFGH为平行四边形,则EF∥GH.∵EF⊄平面BCD,GH⊂平面BCD,∴EF∥平面BCD.又∵EF⊂平面ACD,平面BCD∩平面ACD=CD,∴EF∥CD.又EF⊂平面EFGH,CD⊄平面EFGH.∴CD∥平面EFGH,同理,AB∥平面EFGH,所以与平面α(面EFGH)平行的棱有2条.答案 C二、填空题6.(2018·杭州模拟)如图,在正方体ABCD-A1B1C1D1中,AB=2,E为AD的中点,点F 在CD 上,若EF ∥平面AB 1C ,则EF =________.解析 根据题意,因为EF ∥平面AB 1C ,所以EF ∥AC .又E 是AD 的中点,所以F 是CD 的中点.因为在Rt△DEF 中,DE =DF =1,故EF = 2. 答案27.如图,平面α∥平面β,△ABC ,△A ′B ′C ′分别在α,β内,线段AA ′,BB ′,CC ′共点于O ,O 在α,β之间,若AB =2,AC =1,∠BAC =60°,OA ∶OA ′=3∶2,则△A ′B ′C ′的面积为________.解析 相交直线AA ′,BB ′所在平面和两平行平面α,β相交于AB ,A ′B ′,所以AB ∥A ′B ′.同理BC ∥B ′C ′,CA ∥C ′A ′.所以△ABC 与△A ′B ′C ′的三内角相等,所以△ABC ∽△A ′B ′C ′,A ′B ′AB =OA ′OA =23.S △ABC =12×2×1×32=32, 所以S △A ′B ′C ′=32×⎝ ⎛⎭⎪⎫232=32×49=239.答案2398.(2019·郑州调研)设m ,n 是两条不同的直线,α,β,γ是三个不同的平面,给出下列四个命题: ①若m ⊂α,n ∥α,则m ∥n ;②若α∥β,β∥γ,m ⊥α,则m ⊥γ; ③若α∩β=n ,m ∥n ,m ∥α,则m ∥β; ④若m ∥α,n ∥β,m ∥n ,则α∥β.其中是真命题的是________(填上正确命题的序号).解析①m∥n或m,n异面,故①错误;易知②正确;③m∥β或m⊂β,故③错误;④α∥β或α与β相交,故④错误.答案②三、解答题9.(2019·武汉模拟)已知四棱锥P-ABCD的底面ABCD是平行四边形,侧面PAB⊥平面ABCD,E是棱PA的中点.(1)求证:PC∥平面BDE;(2)平面BDE分此棱锥为两部分,求这两部分的体积比.(1)证明在平行四边形ABCD中,连接AC,设AC,BD的交点为O,则O是AC的中点.又E是PA的中点,连接EO,则EO是△PAC的中位线,所以PC∥EO,又EO⊂平面EBD,PC⊄平面EBD,所以PC∥平面EBD.(2)解设三棱锥E-ABD的体积为V1,高为h,四棱锥P-ABCD的体积为V,则三棱锥E-ABD的体积V1=13×S△ABD×h,因为E是PA的中点,所以四棱锥P-ABCD的高为2h,所以四棱锥P-ABCD的体积V=13×S四边形ABCD×2h=4×13S△ABD×h=4V1,所以(V-V1)∶V1=3∶1,所以平面BDE分此棱锥得到的两部分的体积比为3∶1或1∶3.10.如图,ABCD与ADEF均为平行四边形,M,N,G分别是AB,AD,EF的中点.求证:(1)BE∥平面DMF;(2)平面BDE∥平面MNG.证明(1)连接AE,则AE必过DF与GN的交点O,连接MO,则MO为△ABE的中位线,所以BE∥MO.又BE⊄平面DMF,MO⊂平面DMF,所以BE∥平面DMF.(2)因为N,G分别为平行四边形ADEF的边AD,EF的中点,所以DE∥GN,又DE⊄平面MNG,GN⊂平面MNG,所以DE∥平面MNG.又M为AB的中点,所以MN为△ABD的中位线,所以BD∥MN,又MN⊂平面MNG,BD⊄平面MNG,所以BD∥平面MNG,又DE,BD⊂平面BDE,DE∩BD=D,所以平面BDE∥平面MNG.能力提升题组(建议用时:20分钟)11.(2019·石家庄模拟)过三棱柱ABC-A1B1C1的任意两条棱的中点作直线,其中与平面ABB1A1平行的直线共有( )A.4条B.6条C.8条D.12条解析如图,H,G,F,I是相应线段的中点,故符合条件的直线只能出现在平面HGFI中,有FI,FG,GH,HI,HF,GI共6条直线.答案 B12.已知m,n是两条不同直线,α,β是两个不同平面,则下列命题正确的是( )A.若α,β垂直于同一平面,则α与β平行B.若m,n平行于同一平面,则m与n平行C.若α,β不平行,则在α内不存在与β平行的直线D.若m,n不平行,则m与n不可能垂直于同一平面解析A项,α,β可能相交,故错误;B项,直线m,n的位置关系不确定,可能相交、平行或异面,故错误;C项,若m⊂α,α∩β=n,m∥n,则m∥β,故错误;D项,假设m,n垂直于同一平面,则必有m∥n与已知m,n不平行矛盾,所以原命题正确,故D项正确.答案 D13.在正四棱柱ABCD-A1B1C1D1中,O为底面ABCD的中心,P是DD1的中点,设Q 是CC1上的点,则点Q满足条件________时,有平面D1BQ∥平面PAO.解析如图所示,设Q为CC1的中点,因为P为DD1的中点,所以QB∥PA.连接DB,因为P,O分别是DD1,DB的中点,所以D1B∥PO,又D1B⊄平面PAO,QB⊄平面PAO,PO⊂平面PAO,PA⊂平面PAO,所以D1B∥平面PAO,QB∥平面PAO,又D 1B∩QB=B,所以平面D1BQ∥平面PAO.故Q为CC1的中点时,有平面D1BQ∥平面PAO.答案Q为CC1的中点14.(2018·河南六市三模)已知空间几何体ABCDE中,△BCD与△CDE均是边长为2的等边三角形,△ABC是腰长为3的等腰三角形,平面CDE⊥平面BCD,平面ABC⊥平面BCD.(1)试在平面BCD内作一条直线,使得直线上任意一点F与E的连线EF均与平面ABC平行,并给出证明;(2)求三棱锥E-ABC的体积.解 (1)如图所示,取DC的中点N,取BD的中点M,连接MN,则MN即为所求.证明:连接EM,EN,取BC的中点H,连接AH,∵△ABC是腰长为3的等腰三角形,H为BC的中点,∴AH⊥BC,又平面ABC⊥平面BCD,平面ABC∩平面BCD=BC,AH⊂平面ABC,∴AH⊥平面BCD,同理可证EN⊥平面BCD,∴EN∥AH,∵EN⊄平面ABC,AH⊂平面ABC,∴EN∥平面ABC.又M,N分别为BD,DC的中点,∴MN∥BC,∵MN⊄平面ABC,BC⊂平面ABC,∴MN∥平面ABC.又MN∩EN=N,MN⊂平面EMN,EN⊂平面EMN,∴平面EMN∥平面ABC,又EF⊂平面EMN,∴EF∥平面ABC,即直线MN上任意一点F与E的连线EF均与平面ABC平行. (2)连接DH,取CH的中点G,连接NG,则NG∥DH,由(1)可知EN∥平面ABC,∴点E到平面ABC的距离与点N到平面ABC的距离相等,又△BCD是边长为2的等边三角形,∴DH⊥BC,又平面ABC⊥平面BCD,平面ABC∩平面BCD=BC,DH⊂平面BCD,∴DH⊥平面ABC,∴NG⊥平面ABC,易知DH=3,∴NG=3 2,又S△ABC=12·BC·AH=12×2×32-12=22,∴V E-ABC=13·S△ABC·NG=63.。
青岛版初中数学课本新目录
七年级上册第1章基本的几何图形1.1 我们身边的图形世界1.2 几何图形1.3 线段、射线和直线1.4 线段的比较与作法第2章有理数2.1 有理数2.2 数轴2.3 相反数与绝对值第3章有理数的运算3.1 有理数的加法与减法3.2 有理数的乘法与除法3.3 有理数的乘方3.4 有理数的混合运算3.5 利用计算器进行有理数的运算第4章数据的收集、整理与描述4.1 普查和抽样调查4.2 简单随机抽样4.3 数据的整理4.4 扇形统计图第5章代数式与函数的初步认识5.1 用字母表示数5.2 代数式5.3 代数式的值5.4 生活中的常量与变量5.5 函数的初步认识第6章整式的加减6.1 单项式与多项式6.2 同类项6.3 去括号6.4 整式的加减第7章一元一次方程7.1 等式的基本性质7.2 一元一次方程7.3 一元一次方程的解法7.4 一元一次方程的应用七年级下册第8章角8.1 角的表示8.2 角的比较8.3 角的度量8.4 对顶角8.5 垂直第9章平行线9.1 同位角、内错角、同旁内角9.2 平行线和它的画法9.3 平行线的性质9.4 平行线的判定第10章一次方程组10.1认识二元一次方程组10.2二元一次方程组的解法10.3三元一次方程组10.4列方程组解应用题第11章整式的乘法11.1 同底数幂的乘法11.2 积的乘方与幂的乘方11.3 单项式的乘法11.4 多项式乘多项式11.5 同底数幂的除法11.6 零指数幂与负整数指数幂第12章乘法公式与因式分解12.1 平方差公式12.2 完全平方公式12.3 用提公因式法进行因式分解12.4 用公式法进行因式分解第13章平面图形的认识13.1 三角形13.2 多边形13.3 圆第14章位置与坐标14.1 用有序数对表示位置14.2 平面直角坐标系14.3 用方向和距离描述两个物体的相对位置八年级上册 第1章 全等三角形1.1 全等三角形1.2 怎样判定三角形全等 1.3 尺规作图第2章 图形的轴对称2.1 图形的的轴对称第5章 几何证明初步5.1 定义与命题 5.2 为什么要证明 5.3 什么是几何证明5.4 平行线的性质定理和判定定理 5.5 三角形的内角和定理 5.6 几何证明举例八年级下册第6章 平行四边形1.1 平行四边形及其性质 1.2 平行四边形的判定 1.3 特殊的平行四边形 1.4 中位线定理第7章 实数10.4 一次函数与二元一次方程 10.5 一次函数与一元一次不等式 10.6 一次函数的应用第十一章 图形的平移与旋转 11.1 图形的平移 11.2 图形的旋转 11.3 图形的中心对称九年级上册(待变动)第1章特殊四边形1.1 平行四边形及其性质1.2 平行四边形的判定1.3 特殊的平行四边形1.4 图形的中心对称1.5 梯形1.6 中位线定理第2章图形变换2.1 图形的平移2.2 图形的旋转2.3 图形的位似第3章一元二次方程3.1 一元二次方程3.2 用配方法解一元二次方程3.3 用公式法解一元二次方程3.4 用因式分解法解一元二次方程3.5 一元二次方程的应用第4章对圆的进一步认识4.1 圆的对称性4.2 确定圆的条件4.3 圆周角4.4 直线与圆的位置关系4.5 三角形的内切圆4.6 圆与圆的位置关系4.7 弧长及扇形面积的计算九年级下册(待变动)第5章对函数的再探索5.1 函数与它的表示法5.2 一次函数与一元一次不等式5.3 反比例函数5.4 二次函数5.5 二次函数2y ax=的图象和性质5.6 二次函数2y ax bx c=++的图象和性质5.7 确定二次函数的解析式5.8 二次函数的应用5.9 用图象法解一元二次方程第6章频率与概率6.1 频数与频率6.2 频数分布直方图6.3 用频率估计概率6.4 用树状图计算概率课题学习质数的分布第7章空间图形的初步认识7.1 几种常见的几何体7.2 棱柱的侧面展开图7.3 圆柱、圆锥的侧面展开图第8章投影与识图8.1 从不同的方向看物体8.2 盲区8.3 影子和投影8.4 正投影8.5 物体的三视图。
8.4空间中的平行关系
1.平行直线平行公理:过直线外一点有且只有一条直线和已知直线平行.基本性质4:平行于同一条直线的两条直线互相平行.等角定理:如果一个角的两边与另一个角的两边分别对应平行,并且方向相同,那么这两个角相等.2.直线与平面平行判定性质定义定理图形条件a∩α=∅a⊂α,b⊄α,a∥b a∥αa∥α,a⊂β,α∩β=b结论a∥αb∥αa∩α=∅a∥b3.平面与平面平行判定性质定义定理图形条件α∩β=∅a⊂β,b⊂β,a∩b=P,a∥α,b∥αα∥β,α∩γ=a,β∩γ=b α∥β,a⊂β结论α∥βα∥βa∥b a∥α【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”)(1)若一条直线平行于一个平面内的一条直线,则这条直线平行于这个平面.(×)(2)若一条直线平行于一个平面,则这条直线平行于这个平面内的任一条直线.(×)(3)如果一个平面内的两条直线平行于另一个平面,那么这两个平面平行.(×)(4)如果两个平面平行,那么分别在这两个平面内的两条直线平行或异面.(√)(5)若直线a与平面α内无数条直线平行,则a∥α.(×)(6)若α∥β,直线a∥α,则a∥β.(×)1.一条直线l上有相异三个点A、B、C到平面α的距离相等,那么直线l与平面α的位置关系是()A.l∥αB.l⊥αC.l与α相交但不垂直D.l∥α或l⊂α答案 D解析当距离不为零时,l∥α,当距离为零时,l⊂α.2.设α,β,γ为三个不同的平面,m,n是两条不同的直线,在命题“α∩β=m,n⊂γ,且________,则m∥n”中的横线处填入下列三组条件中的一组,使该命题为真命题.①α∥γ,n⊂β;②m∥γ,n∥β;③n∥β,m⊂γ.可以填入的条件有()A.①或②B.②或③C.①或③D.①或②或③答案 C解析由面面平行的性质定理可知,①正确;当n∥β,m⊂γ时,n和m在同一平面内,且没有公共点,所以平行,③正确.故选C.3.(教材改编)下列命题中正确的是()A.若a,b是两条直线,且a∥b,那么a平行于经过b的任何平面B.若直线a和平面α满足a∥α,那么a与α内的任何直线平行C.平行于同一条直线的两个平面平行D.若直线a,b和平面α满足a∥b,a∥α,b⊄α,则b∥α答案 D解析A中,a可以在过b的平面内;B中,a与α内的直线可能异面;C中,两平面可相交;D中,由直线与平面平行的判定定理知,b∥α,正确.4.(教材改编)如图,正方体ABCD-A1B1C1D1中,E为DD1的中点,则BD1与平面AEC的位置关系为________.答案平行解析连接BD,设BD∩AC=O,连接EO,在△BDD1中,O为BD的中点,所以EO为△BDD1的中位线,则BD 1∥EO ,而BD 1⊄平面ACE ,EO ⊂平面ACE , 所以BD 1∥平面ACE .5.过三棱柱ABC -A 1B 1C 1任意两条棱的中点作直线,其中与平面ABB 1A 1平行的直线共有________条. 答案 6解析 各中点连线如图,只有面EFGH 与面ABB 1A 1平行,在四边形EFGH 中有6条符合题意.题型一 直线与平面平行的判定与性质 命题点1 直线与平面平行的判定例1 如图,四棱锥P -ABCD 中,AD ∥BC ,AB =BC =12AD ,E ,F ,H 分别为线段AD ,PC ,CD 的中点,AC 与BE 交于O 点,G 是线段OF 上一点. (1)求证:AP ∥平面BEF ; (2)求证:GH ∥平面P AD . 证明 (1)连接EC , ∵AD ∥BC ,BC =12AD ,∴BC 綊AE ,∴四边形ABCE 是平行四边形, ∴O 为AC 的中点.又∵F 是PC 的中点,∴FO ∥AP , FO ⊂平面BEF ,AP ⊄平面BEF , ∴AP ∥平面BEF . (2)连接FH ,OH ,∵F ,H 分别是PC ,CD 的中点, ∴FH ∥PD ,∴FH ∥平面P AD .又∵O 是BE 的中点,H 是CD 的中点, ∴OH ∥AD ,∴OH ∥平面P AD .又FH ∩OH =H ,∴平面OHF ∥平面P AD .又∵GH ⊂平面OHF ,∴GH ∥平面P AD . 命题点2 直线与平面平行性质定理的应用例2 (2014·安徽)如图,四棱锥P -ABCD 的底面是边长为8的正方形,四条侧棱长均为217.点G ,E ,F ,H 分别是棱PB ,AB ,CD ,PC 上共面的四点,平面GEFH ⊥平面ABCD ,BC ∥平面GEFH . (1)证明:GH ∥EF ;(2)若EB =2,求四边形GEFH 的面积.(1)证明 因为BC ∥平面GEFH ,BC ⊂平面PBC , 且平面PBC ∩平面GEFH =GH , 所以GH ∥BC .同理可证EF ∥BC ,因此GH ∥EF .(2)解 如图,连接AC ,BD 交于点O ,BD 交EF 于点K ,连接OP ,GK . 因为P A =PC ,O 是AC 的中点,所以PO ⊥AC , 同理可得PO ⊥BD .又BD ∩AC =O ,且AC ,BD 都在底面内, 所以PO ⊥底面ABCD .又因为平面GEFH ⊥平面ABCD , 且PO ⊄平面GEFH ,所以PO ∥平面GEFH . 因为平面PBD ∩平面GEFH =GK ,所以PO ∥GK ,且GK ⊥底面ABCD ,从而GK ⊥EF . 所以GK 是梯形GEFH 的高.由AB =8,EB =2得EB ∶AB =KB ∶DB =1∶4, 从而KB =14DB =12OB ,即K 为OB 的中点.再由PO ∥GK 得GK =12PO ,即G 是PB 的中点,且GH =12BC =4.由已知可得OB =42,PO =PB 2-OB 2=68-32=6, 所以GK =3.故四边形GEFH 的面积 S =GH +EF 2·GK =4+82×3=18.如图所示,在四棱锥P -ABCD 中,∠ABC =∠ACD =90°,∠BAC=∠CAD =60°,E 为PD 的中点,AB =1,求证:CE ∥平面P AB .证明由已知条件有AC=2AB=2,AD=2AC=4,CD=2 3.如图所示,延长DC,AB,设其交于点N,连接PN,因为∠NAC=∠DAC=60°,AC⊥CD,所以C为ND的中点,又因为E为PD的中点,所以EC∥PN,因为EC⊄平面P AB,PN⊂平面P AB,所以CE∥平面P AB.思维升华判断或证明线面平行的常用方法:(1)利用线面平行的定义(无公共点);(2)利用线面平行的判定定理(a⊄α,b⊂α,a∥b⇒a∥α);(3)利用面面平行的性质定理(α∥β,a⊂α⇒a∥β);(4)利用面面平行的性质(α∥β,a⊄β,a∥α⇒a∥β).题型二平面与平面平行的判定与性质例3如图所示,在三棱柱ABC-A1B1C1中,E,F,G,H分别是AB,AC,A1B1,A1C1的中点,求证:(1)B,C,H,G四点共面;(2)平面EF A1∥平面BCHG.证明(1)∵G,H分别是A1B1,A1C1的中点,∴GH是△A1B1C1的中位线,∴GH∥B1C1.又∵B1C1∥BC,∴GH∥BC,∴B,C,H,G四点共面.(2)∵E,F分别是AB,AC的中点,∴EF∥BC.∵EF⊄平面BCHG,BC⊂平面BCHG,∴EF∥平面BCHG.∵A1G綊EB,∴四边形A1EBG是平行四边形,∴A1E∥GB.∵A1E⊄平面BCHG,GB⊂平面BCHG,∴A1E∥平面BCHG.∵A1E∩EF=E,∴平面EF A1∥平面BCHG.引申探究1.在本例条件下,若D为BC1的中点,求证:HD∥平面A1B1BA.证明如图所示,连接HD,A1B,∵D为BC1的中点,H为A1C1的中点,∴HD∥A1B,又HD⊄平面A1B1BA,A1B⊂平面A1B1BA,∴HD∥平面A1B1BA.2.在本例条件下,若D1,D分别为B1C1,BC的中点,求证:平面A1BD1∥平面AC1D.证明如图所示,连接A1C交AC1于点M,∵四边形A1ACC1是平行四边形,∴M是A1C的中点,连接MD,∵D为BC的中点,∴A1B∥DM.∵A1B⊂平面A1BD1,DM⊄平面A1BD1,∴DM∥平面A1BD1.又由三棱柱的性质知,D1C1綊BD,∴四边形BDC1D1为平行四边形,∴DC1∥BD1.又DC1⊄平面A1BD1,BD1⊂平面A1BD1,∴DC1∥平面A1BD1,又∵DC1∩DM=D,DC1,DM⊂平面AC1D,∴平面A1BD1∥平面AC1D.思维升华证明面面平行的方法:(1)面面平行的定义;(2)面面平行的判定定理:如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行;(3)利用垂直于同一条直线的两个平面平行;(4)两个平面同时平行于第三个平面,那么这两个平面平行;(5)利用“线线平行”“线面平行”“面面平行”的相互转化.如图,在正方体ABCD—A1B1C1D1中,S是B1D1的中点,E、F、G分别是BC、DC、SC的中点,求证:(1)直线EG∥平面BDD1B1;(2)平面EFG∥平面BDD1B1.证明(1)如图,连接SB,∵E,G分别是BC,SC的中点,∴EG∥SB.又∵SB⊂平面BDD1B1,EG⊄平面BDD1B1,∴直线EG∥平面BDD1B1.(2)连接SD,∵F,G分别是DC,SC的中点,∴FG∥SD.又∵SD⊂平面BDD1B1,FG⊄平面BDD1B1,∴FG∥平面BDD1B1,又EG⊂平面EFG,FG⊂平面EFG,EG∩FG=G,∴平面EFG∥平面BDD1B1.题型三平行关系的综合应用例4在正方体ABCD—A1B1C1D1中,如图.(1)求证:平面AB1D1∥平面C1BD;(2)试找出体对角线A1C与平面AB1D1和平面C1BD的交点E,F,并证明A1E=EF=FC.(1)证明因为在正方体ABCD—A1B1C1D1中,AD綊B1C1,所以四边形AB1C1D是平行四边形,所以AB1∥C1D.又因为C1D⊂平面C1BD,AB1⊄平面C1BD,所以AB1∥平面C1BD.同理,B1D1∥平面C1BD.又因为AB1∩B1D1=B1,AB1⊂平面AB1D1,B1D1⊂平面AB1D1,所以平面AB1D1∥平面C1BD.(2)解如图,连接A1C1交B1D1于点O1,连接AO1,与A1C交于点E.因为AO1⊂平面AB1D1,所以点E也在平面AB1D1内,所以点E就是A1C与平面AB1D1的交点.连接AC交BD于点O,连接C1O,与A1C交于点F,则点F就是A1C与平面C1BD的交点.下面证明A1E=EF=FC.因为平面A1C1C∩平面AB1D1=EO1,平面A1C1C∩平面C1BD=C1F,平面AB1D1∥平面C1BD,所以EO 1∥C 1F ,在△A 1C 1F 中,O 1是A 1C 1的中点, 所以E 是A 1F 的中点,即A 1E =EF .同理可证OF ∥AE ,所以F 是CE 的中点,即FC =EF , 所以A 1E =EF =FC .思维升华 (1)线面平行和面面平行的性质都体现了转化思想.(2)对较复杂的综合结论问题往往需要反复运用线面平行的判定定理和性质定理来进行证明,有如下方法: 线线平行―――――→在平面内找或作一直线线面平行 ―――――――――→经过直线找或作平面与已知平面的交线线线平行 如图所示,四棱锥P -ABCD 的底面是边长为a 的正方形,侧棱P A ⊥底面ABCD ,在侧面PBC 内,有BE ⊥PC 于E ,且BE =63a ,试在AB 上找一点F ,使EF ∥平面P AD .解 如图所示,在平面PCD 内,过E 作EG ∥CD 交PD 于G , 连接AG ,在AB 上取点F ,使AF =EG , ∵EG ∥CD ∥AF ,EG =AF , ∴四边形FEGA 为平行四边形, ∴FE ∥AG .又AG ⊂平面P AD ,FE ⊄平面P AD , ∴EF ∥平面P AD . ∴F 即为所求的点.又P A ⊥面ABCD ,∴P A ⊥BC , 又BC ⊥AB ,∴BC ⊥面P AB . ∴PB ⊥BC .∴PC 2=BC 2+PB 2=BC 2+AB 2+P A 2. 设P A =x 则PC =2a 2+x 2, 由PB ·BC =BE ·PC 得: a 2+x 2·a =2a 2+x 2·63a ,∴x =a ,即P A =a ,∴PC =3a . 又CE =a 2-(63a )2=33a ,∴PE PC =23,∴GE CD =PE PC =23, 即GE =23CD =23a ,∴AF =23a .即AF =23AB .故点F 是AB 上靠近B 点的一个三等分点.5.立体几何中的探索性问题典例 (12分)如图,在四棱锥S -ABCD 中,已知底面ABCD 为直角梯形,其中AD ∥BC ,∠BAD =90°,SA ⊥底面ABCD ,SA =AB =BC =2.tan ∠SDA =23.(1)求四棱锥S -ABCD 的体积;(2)在棱SD 上找一点E ,使CE ∥平面SAB ,并证明. 规范解答解 (1)∵SA ⊥底面ABCD ,tan ∠SDA =23,SA =2,∴AD =3.[2分]由题意知四棱锥S -ABCD 的底面为直角梯形,且SA =AB =BC =2,[4分] V S -ABCD =13×SA ×12×(BC +AD )×AB=13×2×12×(2+3)×2=103.[6分] (2)当点E 位于棱SD 上靠近D 的三等分点处时,可使CE ∥平面SAB .[8分] 证明如下:取SD 上靠近D 的三等分点为E ,取SA 上靠近A 的三等分点为F ,连接CE ,EF ,BF , 则EF 綊23AD ,BC 綊23AD ,∴BC 綊EF ,∴CE ∥BF .[10分] 又∵BF ⊂平面SAB ,CE ⊄平面SAB , ∴CE ∥平面SAB .[12分]解决立体几何中的探索性问题的步骤 第一步:写出探求的最后结论. 第二步:证明探求结论的正确性. 第三步:给出明确答案.第四步:反思回顾,查看关键点、易错点和答题规范.温馨提醒(1)立体几何中的探索性问题主要是对平行、垂直关系的探究,对条件和结论不完备的开放性问题的探究,解决这类问题一般根据探索性问题的设问,假设其存在并探索出结论,然后在这个假设下进行推理论证,若得到合乎情理的结论就肯定假设,若得到矛盾的结论就否定假设.(2)这类问题也可以按类似于分析法的格式书写步骤:从结论出发“要使……成立”,“只需使……成立”.[方法与技巧]1.平行问题的转化关系2.直线与平面平行的主要判定方法(1)定义法;(2)判定定理;(3)面与面平行的性质.3.平面与平面平行的主要判定方法(1)定义法;(2)判定定理;(3)推论;(4)a⊥α,a⊥β⇒α∥β.[失误与防范]1.在推证线面平行时,一定要强调直线不在平面内,否则会出现错误.2.在解决线面、面面平行的判定时,一般遵循从“低维”到“高维”的转化,即从“线线平行”到“线面平行”,再到“面面平行”;而在应用性质定理时,其顺序恰好相反,但也要注意,转化的方向总是由题目的具体条件而定,决不可过于“模式化”.3.解题中注意符号语言的规范应用.A组专项基础训练(时间:35分钟)1.平面α∥平面β,点A,C∈α,B,D∈β,则直线AC∥直线BD的充要条件是()A.AB∥CDB.AD∥CBC.AB与CD相交D.A,B,C,D四点共面答案 D解析充分性:A,B,C,D四点共面,由平面与平面平行的性质知AC∥BD.必要性显然成立.2.(2015·安徽)已知m,n是两条不同直线,α,β是两个不同平面,则下列命题正确的是()A.若α,β垂直于同一平面,则α与β平行B.若m,n平行于同一平面,则m与n平行C.若α,β不平行,则在α内不存在与β平行的直线D.若m,n不平行,则m与n不可能垂直于同一平面解析 对于A ,α,β垂直于同一平面,α,β关系不确定,故A 错;对于B ,m ,n 平行于同一平面,m ,n 关系不确定,可平行、相交、异面,故B 错;对于C ,α,β不平行,但α内能找出平行于β的直线,如α中平行于α,β交线的直线平行于β,故C 错;对于D ,若假设m ,n 垂直于同一平面,则m ∥n ,其逆否命题即为D 选项,故D 正确.3.设l 为直线,α,β是两个不同的平面.下列命题中正确的是( )A.若l ∥α,l ∥β,则α∥βB.若l ⊥α,l ⊥β,则α∥βC.若l ⊥α,l ∥β,则α∥βD.若α⊥β,l ∥α,则l ⊥β答案 B解析 l ∥α,l ∥β,则α与β可能平行,也可能相交,故A 项错;由“同垂直于一条直线的两个平面平行”可知B 项正确;由l ⊥α,l ∥β可知α⊥β,故C 项错;由α⊥β,l ∥α可知l 与β可能平行,也可能l ⊂β,也可能相交,故D 项错.故选B.4.给出下列关于互不相同的直线l 、m 、n 和平面α、β、γ的三个命题:①若l 与m 为异面直线,l ⊂α,m ⊂β,则α∥β;②若α∥β,l ⊂α,m ⊂β,则l ∥m ;③若α∩β=l ,β∩γ=m ,γ∩α=n ,l ∥γ,则m ∥n .其中真命题的个数为( )A.3B.2C.1D.0答案 C解析 ①中当α与β不平行时,也可能存在符合题意的l 、m ;②中l 与m 也可能异面;③中⎩⎪⎨⎪⎧ l ∥γl ⊂αα∩γ=n⇒l ∥n ,同理,l ∥m ,则m ∥n ,正确.5.下列四个正方体图形中,A ,B 为正方体的两个顶点,M ,N ,P 分别为其所在棱的中点,能得出AB ∥平面MNP 的图形的序号是( )A.①③B.①④C.②③D.②④解析①中易知NP∥AA′,MN∥A′B,∴平面MNP∥平面AA′B可得出AB∥平面MNP(如图).④中,NP∥AB,能得出AB∥平面MNP.6.在四面体A-BCD中,M,N分别是△ACD,△BCD的重心,则四面体的四个面中与MN平行的是________. 答案平面ABD与平面ABC解析如图,取CD的中点E,连接AE,BE.则EM∶MA=1∶2,EN∶BN=1∶2,所以MN∥AB.所以MN∥平面ABD,MN∥平面ABC.7.将一个真命题中的“平面”换成“直线”、“直线”换成“平面”后仍是真命题,则该命题称为“可换命题”.给出下列四个命题:①垂直于同一平面的两直线平行;②垂直于同一平面的两平面平行;③平行于同一直线的两直线平行;④平行于同一平面的两直线平行.其中是“可换命题”的是________.(填命题的序号)答案①③解析由线面垂直的性质定理可知①是真命题,且垂直于同一直线的两平面平行也是真命题,故①是“可换命题”;因为垂直于同一平面的两平面可能平行或相交,所以②是假命题,不是“可换命题”;由基本性质4可知③是真命题,且平行于同一平面的两平面平行也是真命题,故③是“可换命题”;因为平行于同一平面的两条直线可能平行、相交或异面,故④是假命题,故④不是“可换命题”.8.如图,在正四棱柱ABCD-A1B1C1D1中,E、F、G、H分别是棱CC1、C1D1、D1D、CD的中点,N是BC的中点,动点M在四边形EFGH上及其内部运动,则M满足条件________时,有MN∥平面B1BDD1.答案M∈线段FH解析因为HN∥BD,HF∥DD1,所以平面NHF∥平面B1BDD1,故线段FH上任意点M与N相连,都有MN∥平面B1BDD1.(答案不唯一)9.如图,ABCD与ADEF为平行四边形,M,N,G分别是AB,AD,EF的中点. 求证:(1)BE∥平面DMF;(2)平面BDE∥平面MNG.证明(1)如图,连接AE,则AE必过DF与GN的交点O,连接MO,则MO为△ABE的中位线,所以BE∥MO,又BE⊄平面DMF,MO⊂平面DMF,所以BE∥平面DMF.(2)因为N,G分别为平行四边形ADEF的边AD,EF的中点,所以DE∥GN,又DE⊄平面MNG,GN⊂平面MNG,所以DE∥平面MNG.又M为AB中点,所以MN为△ABD的中位线,所以BD∥MN,又BD⊄平面MNG,MN⊂平面MNG,所以BD∥平面MNG,又DE与BD为平面BDE内的两条相交直线,所以平面BDE∥平面MNG.10.如图,E、F、G、H分别是正方体ABCD-A1B1C1D1的棱BC、CC1、C1D1、AA1的中点.求证:(1)EG∥平面BB1D1D;(2)平面BDF∥平面B1D1H.证明(1)取B1D1的中点O,连接GO,OB,易证四边形BEGO为平行四边形,故OB∥GE,由线面平行的判定定理即可证EG∥平面BB1D1D.(2)由题意可知BD∥B1D1.如图,连接HB、D1F,易证四边形HBFD1是平行四边形,故HD1∥BF.又B1D1∩HD1=D1,BD∩BF=B,所以平面BDF∥平面B1D1H.B组专项能力提升(时间:20分钟)11.设m,n是两条不同的直线,α,β是两个不同的平面,下列命题中正确的是()A.若α⊥β,m⊂α,n⊂β,则m⊥nB.若α∥β,m⊂α,n⊂β,则m∥nC.若m⊥n,m⊂α,n⊂β,则α⊥βD.若m⊥α,m∥n,n∥β,则α⊥β答案 D解析A中,m与n可垂直、可异面、可平行;B中m与n可平行、可异面;C中若α∥β,仍然满足m⊥n,m⊂α,n⊂β,故C错误;故D正确.12.空间四边形ABCD的两条对棱AC、BD的长分别为5和4,则平行于两条对棱的截面四边形EFGH在平移过程中,周长的取值范围是________.答案(8,10)解析 设DH DA =GH AC =k ,∴AH DA =EH BD=1-k , ∴GH =5k ,EH =4(1-k ),∴周长=8+2k .又∵0<k <1,∴周长的范围为(8,10).13.在三棱锥S -ABC 中,△ABC 是边长为6的正三角形,SA =SB =SC =15,平面DEFH 分别与AB ,BC ,SC ,SA 交于D ,E ,F ,H .D ,E 分别是AB ,BC 的中点,如果直线SB ∥平面DEFH ,那么四边形DEFH 的面积为________.答案 452解析 取AC 的中点G ,连接SG ,BG .易知SG ⊥AC ,BG ⊥AC ,SG ∩BG =G ,故AC ⊥平面SGB ,所以AC ⊥SB .因为SB ∥平面DEFH ,SB ⊂平面SAB ,平面SAB ∩平面DEFH =HD ,则SB ∥HD .同理SB ∥FE .又D ,E 分别为AB ,BC 的中点,则H ,F 也为AS ,SC 的中点,从而得HF 綊12AC 綊DE ,所以四边形DEFH 为平行四边形.又AC ⊥SB ,SB ∥HD ,DE ∥AC ,所以DE ⊥HD ,所以四边形DEFH 为矩形,其面积S =HF ·HD =(12AC )·(12SB )=452.14.(2015·四川改编)一个正方体的平面展开图及该正方体的直观图的示意图如图所示.(1)请将字母F ,G ,H 标记在正方体相应的顶点处(不需说明理由);(2)判断平面BEG 与平面ACH 的位置关系.并证明你的结论.解 (1)点F ,G ,H 的位置如图所示.(2)平面BEG ∥平面ACH ,证明如下:因为ABCD-EFGH 为正方体,所以BC ∥FG ,BC =FG ,又FG ∥EH ,FG =EH ,所以BC ∥EH ,BC =EH ,于是BCHE 为平行四边形,所以BE ∥CH ,又CH ⊂平面ACH ,BE ⊄平面ACH ,所以BE ∥平面ACH ,同理BG ∥平面ACH ,又BE ∩BG =B ,所以平面BEG ∥平面ACH .15.如图,已知正方形ABCD 的边长为6,点E ,F 分别在边AB ,AD 上,AE =AF=4,现将△AEF 沿线段EF 折起到△A ′EF 位置,使得A ′C =2 6. (1)求五棱锥A ′-BCDFE 的体积; (2)在线段A ′C 上是否存在一点M ,使得BM ∥平面A ′EF ?若存在,求A ′M 的长;若不存在,请说明理由.解 (1)如图所示,连接AC ,设AC ∩EF =H ,连接A ′H .因为四边形ABCD 是正方形,AE =AF =4,所以H 是EF 的中点,且EF ⊥AH ,EF ⊥CH ,从而有A ′H ⊥EF ,CH ⊥EF ,又A ′H ∩CH =H ,所以EF ⊥平面A ′HC ,且EF ⊂平面ABCD ,从而平面A ′HC ⊥平面ABCD ,过点A ′作A ′O 垂直HC 且与HC 相交于点O ,则A ′O ⊥平面ABCD ,因为正方形ABCD 的边长为6,AE =AF =4,故A ′H =22,CH =42,所以cos ∠A ′HC =A ′H 2+CH 2-A ′C 22A ′H ·CH =8+32-242×22×42=12, 所以HO =A ′H ·cos ∠A ′HC =2,则A ′O =6,所以五棱锥A ′-BCDFE 的体积V =13×(62-12×4×4)×6=2863.(2)线段A′C上存在点M,使得BM∥平面A′EF,此时A′M=6 2.证明如下:连接OM,BD,BM,DM,且易知BD过O点.A′M=62=14A′C,HO=14HC,所以OM∥A′H,又OM⊄平面A′EF,A′H⊂平面A′EF,所以OM∥平面A′EF,又BD∥EF,BD⊄平面A′EF,EF⊂平面A′EF,所以BD∥平面A′EF,又BD∩OM=O,所以平面MBD∥平面A′EF,因为BM⊂平面MBD,所以BM∥平面A′EF.。
青岛版九年级数学上册全部学案
青岛版九年级数学上册全部学案青岛版数学九年级上册学案1.1 平行四边形及其性质(1)审核人:张宏学习目标:1、理解并掌握平行四边形的定义2、掌握平行四边形的性质定理1及性质定理23、提高综合运用知识的能力学习重点:平行四边形的定义,对角、对边相等的性质,以及性质的应用.学习难点:运用平行四边形的性质进行有关的论证和计算.预习指导:1、在四边形中,最常见、价值最大的是平行四边形,生活中也常见平行四边形的实例,如_______________________________________________________等,都是平行四边形。
2、____________________________________是平行四边形。
3、平行四边形的性质是:_________________________________________. 学习过程:一、学习新知1、平行四边形的定义(1)定义:________________________________________叫做平行四边形。
(2)几何语言表述: ∵ AB∥CD AD∥BC ∴四边形ABCD是平行四边形(3)定义的双重性: 具备__________________的四边形,才是平行四边形,反过来,平行四边形就一定具有性质。
(4)平行四边形的表示:平行四边形ABCD记作_________,读作___________. 2、平行四边形的性质平行四边形是一种特殊的四边形,它除具有四边形的性质和两组对边分别平行外,还有什么特殊的性质呢?已知:如图ABCD,求证:AB=CD,CB=AD.分析:要证AB=CD,CB=AD.我们可以考虑只要证明四条线段所在的两个三角形全等,因此我们可以作辅助线__________________,它将平行四边形分成_________和__________,我们只要证明这两个三角形全等即可得到结论.证明:总结:本题提供了证明线段相等的方法,也体现了数学中的转化思想。
§8.4 直线、平面平行的判定与性质
§8.4直线、平面平行的判定与性质分析解读 1.理解空间直线和平面位置关系的概念;了解直线和平面的位置关系;掌握直线与平面平行的判定定理和性质定理.2.会运用直线与平面及平面与平面的位置关系,和它们平行的判定定理和性质定理解决简单的应用问题与证明问题.3.推理和证明要严谨、合理、充分.4.高考对本节内容的考查,一般通过对图形或几何体的熟悉,考查线线平行、线面平行、面面平行之间的转化思想,题型以解答题为主,分值约为5分,属中档题.五年高考考点一直线与平面平行的判定与性质1.(2021安徽,5,5分)已知m,n是两条不同直线,α,β是两个不同平面,则下列命题正确的是( )A.若α,β垂直于同一平面,则α与β平行B.若m,n平行于同一平面,则m与n平行C.若α,β,则在α内与β平行的直线D.若m,n,则m与n垂直于同一平面答案D2.(2021江苏,15,14分)如图,在三棱锥A-BCD中,AB⊥AD,BC⊥BD,平面ABD⊥平面BCD,点E,F(E与A,D不重合)别离在棱AD,BD上,且EF⊥AD.求证:(1)EF∥平面ABC;(2)AD⊥AC.证明(1)在平面ABD内,因为AB⊥AD,EF⊥AD,所以EF∥AB.又因为EF⊄平面ABC,AB⊂平面ABC,所以EF∥平面ABC.(2)因为平面ABD⊥平面BCD,平面ABD∩平面BCD=BD,BC⊂平面BCD,BC⊥BD,所以BC⊥平面ABD.因为AD⊂平面ABD,所以BC⊥AD.又AB⊥AD,BC∩AB=B,AB⊂平面ABC,BC⊂平面ABC,所以AD⊥平面ABC.又因为AC⊂平面ABC,所以AD⊥AC.3.(2021江苏,16,14分)如图,在直三棱柱ABC-A1B1C1中,D,E分别为AB,BC的中点,点F在侧棱B1B上,且B1D⊥A1F,A1C1⊥A1B1.求证:(1)直线DE∥平面A1C1F;(2)平面B1DE⊥平面A1C1F.证明(1)在直三棱柱ABC-A1B1C1中,A1C1∥AC.在△ABC中,因为D,E别离为AB,BC的中点,所以DE∥AC,于是DE∥A1C1.又因为DE⊄平面A1C1F,A1C1⊂平面A1C1F,所以直线DE∥平面A1C1F.(2)在直三棱柱ABC-A1B1C1中,A1A⊥平面A1B1C1.因为A1C1⊂平面A1B1C1,所以A1A⊥A1C1.又因为A1C1⊥A1B1,A1A⊂平面ABB1A1,A1B1⊂平面ABB1A1,A1A∩A1B1=A1,所以A1C1⊥平面ABB1A1.因为B1D⊂平面ABB1A1,所以A1C1⊥B1D.又因为B1D⊥A1F,A1C1⊂平面A1C1F,A1F⊂平面A1C1F,A1C1∩A1F=A1,所以B1D⊥平面A1C1F.因为直线B1D⊂平面B1DE,所以平面B1DE⊥平面A1C1F.4.(2021四川,18,12分)如图,在四棱锥P-ABCD中,AD∥BC,∠ADC=∠PAB=90°,BC=CD=AD,E为棱AD的中点,异面直线PA 与CD所成的角为90°.(1)在平面PAB内找一点M,使得直线CM∥平面PBE,并说明理由;(2)若二面角P-CD-A的大小为45°,求直线PA与平面PCE所成角的正弦值.解析(1)在梯形ABCD中,AB与CD不平行.延长AB,DC,相交于点M(M∈平面PAB),点M即为所求的一个点.理由如下:由已知,BC∥ED,且BC=ED.所以四边形BCDE是平行四边形.从而CM∥EB.又EB⊂平面PBE,CM⊄平面PBE,所以CM∥平面PBE.(说明:延长AP至点N,使得AP=PN,则所找的点可以是直线MN上任意一点)(2)解法一:由已知,CD⊥PA,CD⊥AD,PA∩AD=A,所以CD⊥平面PAD.从而CD⊥PD.所以∠PDA是二面角P-CD-A的平面角.所以∠PDA=45°.设BC=1,则在Rt△PAD中,PA=AD=2.过点A作AH⊥CE,交CE的延长线于点H,连接PH.易知PA⊥平面ABCD,又CE⊂平面ABCD,从而PA⊥CE.于是CE⊥平面PAH.所以平面PCE⊥平面PAH.过A作AQ⊥PH于Q,则AQ⊥平面PCE.所以∠APH是PA与平面PCE所成的角.在Rt△AEH中,∠AEH=45°,AE=1,所以AH=.在Rt△PAH中,PH==,所以sin∠AP H==.解法二:由已知,CD⊥PA,CD⊥AD,PA∩AD=A,所以CD⊥平面PAD.于是CD⊥PD.从而∠PDA是二面角P-CD-A的平面角.所以∠PDA=45°.由PA⊥AB,可得PA⊥平面ABCD.设BC=1,则在Rt△PAD中,PA=AD=2.作Ay⊥AD,以A为原点,以,的方向别离为x轴,z轴的正方向,成立如图所示的空间直角坐标系A-xyz,则A(0,0,0),P(0,0,2),C(2,1,0),E(1,0,0),所以=(1,0,-2),=(1,1,0),=(0,0,2).设平面PCE的法向量为n=(x,y,z),由得设x=2,解得n=(2,-2,1).设直线PA与平面PCE所成角为α,则sin α===.所以直线PA与平面PCE所成角的正弦值为.教师用书专用(5—13)5.(2021广东,6,5分)设m,n是两条不同的直线,α,β是两个不同的平面.下列命题中正确的是( )A.若α⊥β,m⊂α,n⊂β,则m⊥nB.若α∥β,m⊂α,n⊂β,则m∥nC.若m⊥n,m⊂α,n⊂β,则α⊥βD.若m⊥α,m∥n,n∥β,则α⊥β答案D6.(2021安徽,15,5分)如图,正方体ABCD-A1B1C1D1的棱长为1,P为BC的中点,Q为线段CC1上的动点,过点A,P,Q的平面截该正方体所得的截面记为S.则下列命题正确的是(写出所有正确命题的编号).①当0<CQ<时,S为四边形②当CQ=时,S为等腰梯形③当CQ=时,S与C1D1的交点R知足C1R=④当<CQ<1时,S为六边形⑤当CQ=1时,S的面积为答案①②③⑤7.(2021山东,17,12分)如图,在三棱台DEF-ABC中,AB=2DE,G,H别离为AC,BC的中点.(1)求证:BD∥平面FGH;(2)若CF⊥平面ABC,AB⊥BC,CF=DE,∠BAC=45°,求平面FGH与平面ACFD所成的角(锐角)的大小.解析(1)证法一:连接DG,CD,设CD∩GF=O,连接OH.在三棱台DEF-ABC中,AB=2DE,G为AC的中点,可得DF∥GC,DF=GC,所以四边形DFCG为平行四边形.则O为CD的中点,又H为BC的中点,所以OH∥BD,又OH⊂平面FGH,BD⊄平面FGH,所以BD∥平面FGH.证法二:在三棱台DEF-ABC中,由BC=2EF,H为BC的中点,可得BH∥EF,BH=EF,所以四边形BHFE为平行四边形,可得BE∥HF.在△ABC中,G为AC的中点,H为BC的中点,所以GH∥AB.又GH∩HF=H,所以平面FGH∥平面ABED.因为BD⊂平面ABED,所以BD∥平面FGH.(2)解法一:设AB=2,则CF=1.在三棱台DEF-ABC中,G为AC的中点,由DF=AC=GC,可得四边形DGCF为平行四边形,因此DG∥FC.又FC⊥平面ABC,所以DG⊥平面ABC.在△ABC中,由AB⊥BC,∠BAC=45°,G是AC中点,所以AB=BC,GB⊥GC,因此GB,GC,GD两两垂直.以G为坐标原点,成立如图所示的空间直角坐标系G-xyz.所以G(0,0,0),B(,0,0),C(0,,0),D(0,0,1).可得H,F(0,,1),故=,=(0,,1).设n=(x,y,z)是平面FGH的法向量,则由可得可得平面FGH的一个法向量n=(1,-1,).因为是平面ACFD的一个法向量,=(,0,0),所以cos<,n>===.所以平面FGH与平面ACFD所成角(锐角)的大小为60°.解法二:作HM⊥AC于点M,作MN⊥GF于点N,连接NH.由FC⊥平面ABC,得HM⊥FC,又FC∩AC=C,所以HM⊥平面ACFD.因此GF⊥NH,所以∠MNH即为所求的角.在△BGC中,MH∥BG,MH=BG=,由△GNM∽△GCF,可得=,从而MN=.由HM⊥平面ACFD,MN⊂平面ACFD,得HM⊥MN,因此tan∠MNH==,所以∠MNH=60°.所以平面FGH与平面ACFD所成角(锐角)的大小为60°.8.(2021安徽,19,13分)如图所示,在多面体A1B1D1DCBA中,四边形AA1B1B,ADD1A1,ABCD均为正方形,E为B1D1的中点,过A1,D,E的平面交CD1于F.(1)证明:EF∥B1C;(2)求二面角E-A1D-B1的余弦值.解析(1)证明:由正方形的性质可知A1B1∥AB∥DC,且A1B1=AB=DC,所以四边形A1B1CD为平行四边形,从而B1C∥A1D,又A1D⊂面A1DE,B1C⊄面A1DE,于是B1C∥面A1DE.又B1C⊂面B1CD1,面A1DE∩面B1CD1=EF,所以EF∥B1C.(2)因为四边形AA1B1B,ADD1A1,ABCD均为正方形,所以AA1⊥AB,AA1⊥AD,AB⊥AD且AA1=AB=AD,以A为原点,分别以,,为x轴,y轴和z轴单位正向量建立如图所示的空间直角坐标系,可得点的坐标A(0,0,0),B(1,0,0),D(0,1,0),A1(0,0,1),B1(1,0,1),D1(0,1,1),而E点为B1D1的中点,所以E点的坐标为(0.5,0.5,1).设面A1DE的法向量n1=(r1,s1,t1),而该面上向量=(0.5,0.5,0),=(0,1,-1),由n1⊥,n1⊥得r1,s1,t1应知足的方程组(-1,1,1)为其一组解,所以可取n1=(-1,1,1).设面A1B1CD的法向量n2=(r2,s2,t2),而该面上向量=(1,0,0),=(0,1,-1),由此同理可得n2=(0,1,1).所以结合图形知二面角E-A1D-B1的余弦值为==.评析本题考查直线与直线的平行关系和二面角的求解,考查空间想象能力、逻辑推理能力以及运算求解能力.正确求解各点坐标以及平面法向量是解决问题的关键.9.(2021江苏,16,14分)如图,在直三棱柱ABC-A1B1C1中,已知AC⊥BC,BC=CC1,设AB1的中点为D,B1C∩BC1=E.求证:(1)DE∥平面AA1C1C;(2)BC1⊥AB1.证明(1)由题意知,E为B1C的中点,又D为AB1的中点,因此DE∥AC.又因为DE⊄平面AA1C1C,AC⊂平面AA1C1C,所以DE∥平面AA1C1C.(2)因为棱柱ABC-A1B1C1是直三棱柱,所以CC1⊥平面ABC.因为AC⊂平面ABC,所以AC⊥CC1.又因为AC⊥BC,CC1⊂平面BCC1B1,BC⊂平面BCC1B1,BC∩CC1=C,所以AC⊥平面BCC1B1.又因为BC1⊂平面BCC1B1,所以BC1⊥AC.因为BC=CC1,所以矩形BCC1B1是正方形,因此BC1⊥B1C.因为AC,B1C⊂平面B1AC,AC∩B1C=C,所以BC1⊥平面B1AC.又因为AB1⊂平面B1AC,所以BC1⊥AB1.10.(2021天津,17,13分)如图,在四棱柱ABCD-A1B1C1D1中,侧棱A1A⊥底面ABCD,AB⊥AC,AB=1,AC=AA1=2,AD=CD=,且点M和N分别为B1C和D1D的中点.(1)求证:MN∥平面ABCD;(2)求二面角D1-AC-B1的正弦值;(3)设E为棱A1B1上的点.若直线NE和平面ABCD所成角的正弦值为,求线段A1E的长.解析如图,以A为原点成立空间直角坐标系,依题意可得A(0,0,0),B(0,1,0),C(2,0,0),D(1,-2,0),A1(0,0,2),B1(0,1,2),C1(2,0,2),D1(1,-2,2).又因为M,N别离为B1C和D1D的中点,得M,N(1,-2,1).(1)证明:依题意,可得n=(0,0,1)为平面ABCD的一个法向量.=.由此可得·n=0,又因为直线MN⊄平面ABCD,所以MN∥平面ABCD.(2)=(1,-2,2),=(2,0,0).设n1=(x,y,z)为平面ACD1的法向量,则即不妨设z=1,可得n1=(0,1,1).设n2=(x,y,z)为平面ACB1的法向量,则又=(0,1,2),得不妨设z=1,可得n2=(0,-2,1).因此有cos<n1,n2>==-,于是sin<n1,n2>=.所以,二面角D1-AC-B1的正弦值为.(3)依题意,可设=λ,其中λ∈[0,1],则E(0,λ,2),从而=(-1,λ+2,1).又n=(0,0,1)为平面ABCD的一个法向量,由已知,得cos<,n>===,整理得λ2+4λ-3=0,又因为λ∈[0,1],解得λ=-2.所以,线段A1E的长为-2.11.(2021课标Ⅱ,18,12分)如图,四棱锥P-ABCD中,底面ABCD为矩形,PA⊥平面ABCD,E为PD的中点.(1)证明:PB∥平面AEC;(2)设二面角D-AE-C为60°,AP=1,AD=,求三棱锥E-ACD的体积.解析(1)证明:连接BD交AC于点O,连接EO.因为ABCD为矩形,所以O为BD的中点.又E为PD的中点,所以EO∥PB.又EO⊂平面AEC,PB⊄平面AEC,所以PB∥平面AEC.(2)因为PA⊥平面ABCD,ABCD为矩形,所以AB,AD,AP两两垂直.如图,以A为坐标原点,的方向为x轴的正方向,||为单位长,成立空间直角坐标系A-xyz,则D(0,,0),E,=.设B(m,0,0)(m>0),则C(m,,0),=(m,,0).设n1=(x,y,z)为平面ACE的法向量,则即可取n1=.又n2=(1,0,0)为平面DAE的法向量,由题设得|cos<n1,n2>|=,即=,解得m=.因为E为PD的中点,所以三棱锥E-ACD的高为.三棱锥E-ACD的体积V=××××=.12.(2021湖北,19,12分)如图,在棱长为2的正方体ABCD-A1B1C1D1中,E,F,M,N分别是棱AB,AD,A1B1,A1D1的中点,点P,Q 分别在棱DD1,BB1上移动,且DP=BQ=λ(0<λ<2).(1)当λ=1时,证明:直线BC1∥平面EFPQ;(2)是不是存在λ,使面EFPQ与面PQMN所成的二面角为直二面角?若存在,求出λ的值;若不存在,说明理由.解析解法一:(几何方式)(1)证明:如图1,连接AD1,由ABCD-A1B1C1D1是正方体,知BC1∥AD1.当λ=1时,P是DD1的中点,又F是AD的中点,所以FP∥AD1.所以BC1∥FP.而FP⊂平面EFPQ,且BC1⊄平面EFPQ,故直线BC1∥平面EFPQ.(2)如图2,连接BD.因为E,F别离是AB,AD的中点,所以EF∥BD,且EF=BD.又DP=BQ,DP∥BQ,所以四边形PQBD是平行四边形,故PQ∥BD,且PQ=BD,从而EF∥PQ,且EF=PQ.在Rt△EBQ和Rt△FDP中,因为BQ=DP=λ,BE=DF=1,于是EQ=FP=,所以四边形EFPQ是等腰梯形.同理可证四边形PQMN是等腰梯形.别离取EF,PQ,MN的中点,记为H,O,G,连接OH,OG,则GO⊥PQ,HO⊥PQ,而GO∩HO=O,故∠GOH是面EFPQ与面PQMN所成的二面角的平面角.若存在λ,使面EFPQ与面PQMN所成的二面角为直二面角,则∠GOH=90°.连接EM,FN,则由EF∥MN,且EF=MN,知四边形EFNM是平行四边形.连接GH,因为H,G是EF,MN的中点,所以GH=ME=2.在△GOH中,GH2=4,OH2=1+λ2-=λ2+,OG2=1+(2-λ)2-=(2-λ)2+,由OG2+OH2=GH2,得(2-λ)2++λ2+=4,解得λ=1±,故存在λ=1±,使面EFPQ与面PQMN所成的二面角为直二面角.解法二:(向量方式)以D为原点,射线DA,DC,DD1别离为x,y,z轴的正半轴成立如图3所示的空间直角坐标系D-xyz.由已知得B(2,2,0),C1(0,2,2),E(2,1,0),F(1,0,0),P(0,0,λ).=(-2,0,2),=(-1,0,λ),=(1,1,0).(1)证明:当λ=1时,=(-1,0,1),因为=(-2,0,2),所以=2,即BC1∥FP.而FP⊂平面EFPQ,且BC1⊄平面EFPQ,故直线BC1∥平面EFPQ.(2)设平面EFPQ的法向量为n=(x,y,z),则由可得于是可取n=(λ,-λ,1).同理可得平面MNPQ的法向量为m=(λ-2,2-λ,1).若存在λ,使面EFPQ与面PQMN所成的二面角为直二面角,则m·n=(λ-2,2-λ,1)·(λ,-λ,1)=0,即λ(λ-2)-λ(2-λ)+1=0,解得λ=1±.故存在λ=1±,使面EFPQ与面PQMN所成的二面角为直二面角.13.(2021山东,18,12分)如图所示,在三棱锥P-ABQ中,PB⊥平面ABQ,BA=BP=BQ,D,C,E,F别离是AQ,BQ,AP,BP的中点,AQ=2BD,PD与EQ交于点G,PC与FQ交于点H,连接GH.(1)求证:AB∥GH;(2)求二面角D-GH-E的余弦值.解析(1)证明:因为D,C,E,F别离是AQ,BQ,AP,BP的中点,所以EF∥AB,DC∥AB.所以EF∥DC.又EF⊄平面PCD,DC⊂平面PCD,所以EF∥平面PCD.又EF⊂平面EFQ,平面EFQ∩平面PCD=GH,所以EF∥GH.又EF∥AB,所以AB∥GH.(2)解法一:在△ABQ中,AQ=2BD,AD=DQ,所以∠ABQ=90°,即AB⊥BQ.因为PB⊥平面ABQ,所以AB⊥PB.又BP∩BQ=B,所以AB⊥平面PBQ.由(1)知,AB∥GH,所以GH⊥平面PBQ.又FH⊂平面PBQ,所以GH⊥FH.同理可得GH⊥HC,所以∠FHC为二面角D-GH-E的平面角.设BA=BQ=BP=2,连接FC,在Rt△FBC中,由勾股定理得FC=,在Rt△PBC中,由勾股定理得PC=.又H为△PBQ的重心,所以HC=PC=.同理,FH=.在△FHC中,由余弦定理得cos∠FHC==-.即二面角D-GH-E的余弦值为-.解法二:在△ABQ中,AQ=2BD,AD=DQ,所以∠ABQ=90°.又PB⊥平面ABQ,所以BA,BQ,BP两两垂直.以B为坐标原点,别离以BA,BQ,BP所在直线为x轴,y轴,z轴,成立如图所示的空间直角坐标系.设BA=BQ=BP=2,则E(1,0,1),F(0,0,1),Q(0,2,0),D(1,1,0),C(0,1,0),P(0,0,2).所以=(-1,2,-1),=(0,2,-1),=(-1,-1,2),=(0,-1,2).设平面EFQ的法向量为m=(x1,y1,z1),由m·=0,m·=0,得取y1=1,得m=(0,1,2).设平面PDC的法向量为n=(x2,y2,z2),由n·=0,n·=0,得取z2=1,得n=(0,2,1),所以cos<m,n>==.因为二面角D-GH-E为钝角,所以二面角D-GH-E的余弦值为-.考点二平面与平面平行的判定与性质1.(2021课标全国Ⅱ,14,5分)α,β是两个平面,m,n是两条直线,有下列四个命题:①若是m⊥n,m⊥α,n∥β,那么α⊥β.②若是m⊥α,n∥α,那么m⊥n.③若是α∥β,m⊂α,那么m∥β.④若是m∥n,α∥β,那么m与α所成的角和n与β所成的角相等.其中正确的命题有.(填写所有正确命题的编号)答案②③④2.(2021江苏,16,14分)如图,在三棱锥S-ABC中,平面SAB⊥平面SBC,AB⊥BC,AS=AB.过A作AF⊥SB,垂足为F,点E,G别离是棱SA,SC的中点.求证:(1)平面EFG∥平面ABC;(2)BC⊥SA.证明(1)因为AS=AB,AF⊥SB,垂足为F,所以F是SB的中点.又因为E是SA的中点,所以EF∥AB.因为EF⊄平面ABC,AB⊂平面ABC,所以EF∥平面ABC.同理EG∥平面ABC.又EF∩EG=E,所以平面EFG∥平面ABC.(2)因为平面SAB⊥平面SBC,且交线为SB,又AF⊂平面SAB,AF⊥SB,所以AF⊥平面SBC,因为BC⊂平面SBC,所以AF⊥BC.又因为AB⊥BC,AF∩AB=A,AF,AB⊂平面SAB,所以BC⊥平面SAB.因为SA⊂平面SAB,所以BC⊥SA.三年模拟A组2021—2021年模拟·基础题组考点一直线与平面平行的判定与性质1.(人教A必2,二,2-2A,3,变式)如图,在四面体ABCD中,若截面PQMN是正方形,则在下列命题中,错误的为( )A.AC⊥BDB.AC=BDC.AC∥截面PQMND.异面直线PM与BD所成的角为45°答案B2.(2021江苏无锡模拟,18)如图,在四面体PABC中,已知PA⊥平面ABC,PA=AC,∠ACB=90°,D为PC的中点.(1)求证:AD⊥BD;(2)若M为PB的中点,点N在直线AB上,且AN∶NB=1∶2,求证:直线AD∥平面CMN.证明(1)∵PA=AC,D为PC的中点,∴AD⊥PC.∵PA⊥平面ABC,BC⊂平面ABC,∴PA⊥BC.∵∠ACB=90°,∴BC⊥AC,又PA∩AC=A,PA,AC⊂平面PAC,∴BC⊥平面PAC.∵AD⊂平面PAC,∴BC⊥AD.又∵AD⊥PC,BC∩PC=C,PC,BC⊂平面PBC,∴AD⊥平面PBC.∵BD⊂平面PBC,∴AD⊥BD.(2)连接DM,设BD与CM交于点G,连接NG.∵D、M别离为PC和PB的中点,∴DM∥BC且DM=BC,∴DG∶GB=DM∶BC=1∶2.∵AN∶NB=1∶2,∴AN∶NB=DG∶GB.∴△BNG∽△BAD,∴AD∥NG.∵AD⊄平面CMN,NG⊂平面CMN,∴直线AD∥平面CMN.3.(2021广东六校联盟联考,19)如图,在三棱锥P-ABC中,PA⊥平面ABC,底面ABC是直角三角形,PA=AB=BC=4,O是棱AC 的中点,G是△AOB的重心,D是PA的中点.(1)求证:BC⊥平面PAB;(2)求证:DG∥平面PBC;(3)求二面角A-PC-B的大小.解析(1)证明:∵PA⊥平面ABC,∴PA⊥BC,∵底面ABC是直角三角形,AB=BC,∴BC⊥AB,又∵PA∩AB=A,∴BC⊥平面PAB.(2)证明:如图,连接OG并延长交AB于点E,连接DO,DE,∵G是△AOB的重心,∴OE为AB边上的中线,∴E为AB的中点,又D为PA的中点,∴DE∥PB,同理可得DO∥PC,又DE∩DO=D,PB∩PC=P,∴平面DOE∥平面PBC,又DG⊂平面DOE,∴DG∥平面PBC.(3)过点O作OQ⊥PC于点Q,连接BQ,∵AB=BC且O是棱AC的中点,∴BO⊥AC.∵PA⊥平面ABC,∴平面PAC⊥平面ABC.又平面PAC∩平面ABC=AC,且BO⊂平面ABC,∴BO⊥平面PAC,∴BO⊥PC,又OQ⊥PC,BO∩OQ=O,∴PC⊥平面BOQ,∴BQ⊥PC,∴∠OQB为二面角A-PC-B的平面角.由已知得OB=OC=2,PC==4,∵△PAC∽△OQC,∴=,即=,∴OQ=,∴tan∠OQB==,∴∠OQB=60°,即二面角A-PC-B的大小为60°.考点二平面与平面平行的判定与性质4.(2021豫西五校4月联考,6)已知m,n,l1,l2表示不同直线,α、β表示不同平面,若m⊂α,n⊂α,l1⊂β,l2⊂β,l1∩l2=M,则α∥β的一个充分条件是( )A.m∥β且l1∥αB.m∥β且n∥βC.m∥β且n∥l2D.m∥l1且n∥l2答案D5.(2021江西九江模拟,19)如图,在三棱柱ABC-A1B1C1中,AA1⊥底面ABC,AB⊥AC,AC=AA1,E、F分别是棱BC、CC1的中点.(1)若线段AC上的点D知足平面DEF∥平面ABC1,试肯定点D的位置,并说明理由;(2)证明:EF⊥A1C.解析(1)∵面DEF∥面ABC1,面ABC∩面DEF=DE,面ABC∩面ABC1=AB,∴AB∥DE,(4分)∵在△ABC中,E是BC的中点,∴D是线段AC的中点.(6分)(2)证明:∵在三棱柱ABC-A1B1C1中,AC=AA1,∴侧面A1ACC1是菱形,∴A1C⊥AC1,(7分)又易患AB⊥A1C,∵AB∩AC1=A,∴A1C⊥面ABC1,(9分)∴A1C⊥BC1.(10分)又∵E、F别离为棱BC、CC1的中点,∴EF∥BC1,(11分)∴EF⊥A1C.(12分)B组2021—2021年模拟·提升题组(满分:60分时间:60分钟)一、选择题(共5分)1.(2021浙江金华十校联考,8)如图,在四面体ABCD中,AB=CD=2,AD=BD=3,AC=BC=4,点E,F,G,H别离在棱AD,BD,BC,AC上,若直线AB,CD都平行于平面EFGH,则四边形EFGH面积的最大值是( )A. B. C.1 D.2答案C二、填空题(共5分)2.(2021山西太原五中月考,14)过三棱柱ABC-A1B1C1的任意两条棱的中点作直线,其中与平面ABB1A1平行的直线共有_____ 条.答案6三、解答题(共50分)3.(2021江苏无锡检测,18)如图,在四棱柱ABCD-A1B1C1D1中,底面ABCD为等腰梯形,AD∥BC,AD=2AB=2BC,M为AD的中点,CB1⊥底面ABCD.求证:(1)C1M∥平面A1ABB1;(2)平面B1BM⊥平面ACB1.证明(1)因为ABCD-A1B1C1D1为四棱柱,所以B1C1∥BC且B1C1=BC.又M为AD的中点,所以BC∥AM,所以B1C1∥AM,又AD=2BC,所以BC=AM,所以B1C1=AM,所以四边形B1C1MA为平行四边形,所以C1M∥B1A,又B1A⊂平面A1ABB1,C1M⊄平面A1ABB1,所以C1M∥平面A1ABB1.(2)连接CM.由(1)知四边形BCMA为平行四边形,又BC=AB,所以AM=AB,所以四边形BCMA为菱形,所以BM⊥AC,又CB1⊥底面ABCD,所以CB1⊥BM.因为AC∩CB1=C,所以BM⊥平面ACB1.又BM⊂平面B1BM,所以平面B1BM⊥平面ACB1.4.(2021安徽合肥一中模拟,18)如图,四棱锥P-ABCD中,E为AD的中点,PE⊥平面ABCD,底面ABCD为梯形,AB∥CD,AB=2DC=2,AC∩BD=F,且△PAD与△ABD均为正三角形,G为△PAD的重心.(1)求证:GF∥平面PDC;(2)求三棱锥G-PCD的体积.解析(1)证明:连接AG交PD于H,连接CH.在梯形ABCD中,AB∥CD,且AB=2DC,可得=.又正△PAD中,G为△PAD的重心,∴=.在△AHC中,==,故GF∥HC.又HC⊂平面PCD,GF⊄平面PCD,∴GF∥平面PDC.(2)∵PE⊥平面ABCD,且易求PE=3,又由(1)知GF∥平面PDC,∴V G-PCD=V F-PCD=V P-CDF=×PE×S△CDF.又由AB∥CD,且AB=2DC=2,△ABD为正三角形,知DF=BD=.又∠CDF=∠ABD=60°,∴S△CDF=×CD×DF×sin∠BDC=,∴V P-CDF=×PE×S△CDF=,∴三棱锥G-PCD的体积为.5.(2021山西太原质检,19)如图,四边形ABCD中,AB⊥AD,AD∥BC,AD=6,BC=2AB=4,E,F别离在BC,AD上,EF∥AB,现将四边形ABCD沿EF折起,使BE⊥EC.(1)若BE=1,在折叠后的线段AD上是不是存在一点P,使得CP∥平面ABEF?若存在,求出的值;若不存在,说明理由;(2)求三棱锥A-CDF的体积的最大值,并求出此时点F到平面ACD的距离.解析(1)AD上存在一点P,使得CP∥平面ABEF,此时=.理由如下:当=时,=,过点P作MP∥FD交AF于点M,连接EM,CP,则有==.∵BE=1,∴FD=5,故MP=3.又EC=3,MP∥FD∥EC,故有MP EC,故四边形MPCE为平行四边形,∴CP∥ME.又∵CP⊄平面ABEF,ME⊂平面ABEF,故CP∥平面ABEF.(2)设BE=x(0<x≤4),∴AF=x,FD=6-x,故V A-CDF=××2·(6-x)·x=(-x2+6x),∴当x=3时,V A-CDF有最大值,且最大值为3,此时EC=1,AF=3,FD=3,DC=2,由BE⊥EC,BE⊥EF,且EC∩EF=E,得BE⊥平面ECDF,又AF∥BE,故AF⊥平面ECDF.∴AF⊥FD,∴AD==3,同理可求AC=.在△ACD中,由余弦定理得cos∠ADC===,∴sin∠ADC=,∴S△ADC=·DC·DA·sin∠ADC=3.设点F到平面ADC的距离为h,∵V A-CDF=V F-ACD,即3=·h·S△ADC,∴h=,即三棱锥A-CDF的体积最大时,点F到平面ADC的距离为.6.(2021河北石家庄二模,18)如图,在三棱柱ABC-DEF中,侧面ABED是边长为2的菱形,且∠ABE=,BC=.四棱锥F-ABED的体积为2,点F在平面ABED内的正投影为点G,且点G在AE上,点M在线段CF上,且CM=CF.(1)证明:直线GM∥平面DEF;(2)求二面角M-AB-F的余弦值.解析(1)证明:因为四棱锥F-ABED的体积为2,所以V F-ABED=××2×2×FG=2,所以FG=.又BC=EF=,所以EG=,易知AE=2,则点G是AE的靠近点A的四等分点.(2分)过点G作GK∥AD交DE于点K,连接FK,则GK=AD=CF.又MF=CF,所以MF=GK,又MF∥GK,所以四边形MFKG为平行四边形,(4分)所以GM∥FK,又FK⊂平面DEF,GM⊄平面DEF,所以直线GM∥平面DEF.(6分)(2)连接BD,设AE,BD的交点为O,以OB所在直线为x轴,OE所在直线为y轴,过点O的平面ABED的垂线为z轴成立空间直角坐标系,如图所示,则A(0,-1,0),B(,0,0),F,M,=(-,-1,0),=,=.(8分)设平面ABM,平面ABF的法向量别离为m=(x1,y1,z1),n=(x2,y2,z2),则得不妨取x1=x2=1,则m=(1,-,-1),n=,(10分)所以cos<m,n>==,易知二面角M-AB-F是锐二面角,故二面角M-AB-F的余弦值为.(12分)C组2021—2021年模拟·方式题组方式1 证明直线与平面平行的常常利用方法1.(2021湖北武汉汉阳一中模拟,19)如图,在三棱柱ABC-A1B1C1中,底面△ABC是等边三角形,且AA1⊥平面ABC,D为AB的中点.(1)求证:直线BC1∥平面A1CD;(2)若AB=BB1=2,E是BB1的中点,求三棱锥A1-CDE的体积.解析(1)证明:连接AC1,交A1C于点F,连接DF,则F为AC1的中点,又D为AB的中点,所以BC1∥DF.又BC1⊄平面A1CD,DF⊂平面A1CD,所以BC1∥平面A1CD.(2)三棱锥A1-CDE的体积==·h.其中三棱锥C-A1DE的高h等于点C到平面ABB1A1的距离,可知h=CD=.又=2×2-×1×2-×1×1-×1×2=,所以==·h=××=.2.(2021河南新乡调研,19)如图①所示,四边形ABCD为等腰梯形,AD∥BC,且AD=BC=a,∠BAD=135°,AE⊥BC于点E,F为BE的中点.将△ABE沿AE折起至△AB'E的位置,取得如图②所示的四棱锥B'-ADCE.(1)求证:AF∥平面B'CD;(2)若平面AB'E⊥平面AECD,求二面角B'-CD-E的余弦值.解析(1)证明:如图,取B'C的中点G,连接FG,DG.∵F为B'E的中点,∴FG∥EC,且FG=EC,(2分)∵题图①中四边形ABCD为等腰梯形,AD∥BC,且AD=BC=a,AE⊥BC,∠BAD=135°,∴BC=3a,AD∥EC,AD=EC.∴AD∥FG,AD=FG,∴四边形ADGF为平行四边形,∴AF∥DG,(5分)∵AF⊄平面B'CD,DG⊂平面B'CD,∴AF∥平面B'CD.(6分)(2)易证EA,EB',EC两两垂直,故以点E为原点,直线EB'为x轴,直线EC为y轴,直线EA为z轴,成立如图所示的空间直角坐标系,则B'(a,0,0),D(0,a,a),C(0,2a,0),所以=(-a,2a,0),=(0,-a,a),设平面B'CD的法向量为n=(x,y,z),则令z=1,得n=(2,1,1),(10分)显然=(a,0,0)为平面AECD的一个法向量,所以cos<,n>==,(11分)由图知平面B'CD与平面AECD所成的二面角为锐角,所以所求的余弦值为.(12分)方式2 证明平面与平面平行的常常利用方法3.(2021安徽合肥一中模拟,18)如图,四边形ABCD与ADEF均为平行四边形,M,N,G别离是AB,AD,EF的中点.(1)求证:BE∥平面DMF;(2)求证:平面BDE∥平面MNG.证明(1)如图,连接AE,则AE必过DF与GN的交点O,连接MO,则MO为△ABE的中位线,所以BE∥MO,又BE⊄平面DMF,MO⊂平面DMF,所以BE∥平面DMF.(2)因为N,G别离为平行四边形ADEF的边AD,EF的中点,所以DE∥GN.又DE⊄平面MNG,GN⊂平面MNG,所以DE∥平面MNG.又M为AB的中点,所以MN为△ABD的中位线,所以BD∥MN,又BD⊄平面MNG,MN⊂平面MNG,所以BD∥平面MNG,又DE与BD为平面BDE内的两条相交直线,所以平面BDE∥平面MNG.4.(2021河南中原名校联考,20)如图,在矩形ABCD中,AB=1,AD=a,PA⊥平面ABCD,且PA=1,E,F别离为AD,PA的中点,在BC上有且只有一个点Q,使得PQ⊥QD.(1)求证:平面BEF∥平面PDQ;(2)求二面角E-BF-Q的余弦值.解析(1)证明:如图,以点A为原点,别离以,,的方向为x轴,y轴,z轴的正方向,成立空间直角坐标系A-xyz,则A(0,0,0),B(1,0,0),D(0,a,0),P(0,0,1),设Q(1,x,0),则=(1,x,-1),=(-1,a-x,0),(2分)若PQ⊥QD,则·=-1+x(a-x)=0,即x2-ax+1=0,Δ=(-a)2-4,∵在BC上有且只有一个点Q,使得PQ⊥QD,∴Δ=0,∴a=2,x=1.(4分)∴Q(1,1,0),=(-1,1,0),又E是AD的中点,∴E(0,1,0),=(-1,1,0),∴=,∴BE∥DQ,又BE⊄平面PDQ,DQ⊂平面PDQ,∴BE∥平面PDQ,又F是PA的中点,∴EF∥PD,∵EF⊄平面PDQ,PD⊂平面PDQ,∴EF∥平面PDQ,∵BE∩EF=E,BE,EF⊄平面PDQ,∴平面BEF∥平面PDQ.(6分) (2)设平面BFQ的法向量n1=(x,y,z),则n1·=0,n1·=0,易知=,=(0,1,0),∴-x+z=0,y=0,取z=2,得n1=(1,0,2),同理,可得平面BEF的一个法向量n2=(1,1,2),∴cos<n1,n2>==,又易知二面角E-BF-Q为锐角,∴二面角E-BF-Q的余弦值为.(12分)。
人教A版高中数学必修二讲义第八章 8.4 8.4.1
8.4.1平面知识点一平面的概念平面的概念及表示( 1)概念:几何里所说的“平面”是从生活中的物体中□01抽象出来的,是□02向四周无限延展的.( 2)平面的画法:①常用□03矩形的直观图,即平行四边形表示平面.当平面水平放置时,常把平行四边形的一边画成□04横向;当平面竖直放置时,常把平行四边形的一边画成□05竖向.如图a.②在画两个相交平面时,如果其中一个平面的一部分被另一个平面挡住,通常□06把被挡住的部分画成虚线或不画,这样可使画出的图形立体感更强一些.如图b.( 3)表示法:可以用□07希腊字母α,β,γ等来表示;用□08两个大写的英文字母( 表示平面的平行四边形的相对的两个顶点)来表示;用□09四个大写的英文字母( 表示平面的平行四边形的□10四个顶点)来表示.知识点二点、线、面之间的关系点、直线、平面之间的基本位置关系及语言表达知识点三平面的基本性质1.解决立体几何问题首先应过好文字语言、符号语言和图形语言三大语言关,即实现这三种语言的相互转换,正确理解集合符号所表示的几何图形的实际意义,恰当地用符号语言描述图形语言,将图形语言用文字语言描述出来,再转换为符号语言.文字语言和符号语言在转换的时候,要注意符号语言所代表的含义,作直观图时,要注意线的实虚.2.对于证明几点( 或几条直线)共面的问题,先由其中几个点( 或几条直线)确定一个平面后,再证明其他点( 或直线)也在该平面内即可.3.证明三点共线通常采用以下方法:( 1)首先找出两个平面,然后证明这三个点都是这两个平面的公共点,由基本事实3可知这些点都在交线上;( 2)先由其中任意两点确定一条直线,再证明另一点也在这条直线上.4.证明三线共点,可先由两条直线交于一点,而这个点分别在两个平面内,这两个平面的交线就是第三条直线,由基本事实3可知该点在第三条直线上,即三线共点.1.判一判( 正确的打“√”,错误的打“×”)( 1)平行四边形是一个平面.( )( 2)若A∈a,a⊂α,则A∈α.( )( 3)两个平面的交线可能是一条线段.( )( 4)经过一条直线和一个点,有且只有一个平面.( )答案( 1)×( 2)√( 3)×( 4)×2.做一做( 1)如图所示,用符号语言表示以下各概念:①点A,B在直线a上:________;②直线a在平面α内:________;③点D在直线b上,点C在平面α内:________.( 2)若平面α与平面β相交于直线l,点A∈α,A∈β,则点A________l;其理由是__________________________.( 3) 根据图,填入相应的符号:A________平面ABC,A________平面BCD,BD________平面ABC,平面ABC∩平面ACD=________.答案( 1)①A∈a,B∈a②a⊂α③D∈b,C∈α( 2)∈同时在两个不重合平面上的点一定在两个平面的交线上( 3)∈∉⊄AC题型一平面概念的理解例1( 1)下列命题:①书桌面是平面;②8个平面重叠起来要比6个平面重叠起来厚;③有一个平面的长是50 m,宽为20 m;④平面是绝对平的、无厚度、可以无限延展的抽象的数学概念.其中正确命题的个数为________;( 2)下图中的两个相交平面,其中画法正确的是________.[详细解析]( 1)由平面的概念,知它是平滑、无厚度、可无限延展的,可以判断命题④正确,其余的命题都不符合平面的概念,所以命题①、②、③都不正确.( 2)对于①,图中没有画出平面α与平面β的交线,另外图中的实、虚也没有按照画法原则去画,因此①的画法不正确.同样的道理,也可知②、③图形的画法不正确,④中图形的画法正确.[答案]( 1)1( 2)④平面概念的理解及特点( 1)平面是一个只描述而不定义的原始概念,它是由平时生活中常见的平面抽象出来的,是理想的,是无限延展的,是无厚薄、大小的.( 2)要注意平面具有如下特点:①平面是平的;②平面是没有厚度的;③平面是无限延展而没有边界的;④平面是由空间的点、线组成的无限集合;⑤平面图形是空间图形的重要组成部分.下列四种说法正确的是________.①平面的形状是平行四边形;②任何一个平面图形都可以表示平面;③平面ABCD的面积为100 cm2;④空间图形中,后作的辅助线都是虚线.答案②详细解析①错误,通常用平行四边形表示平面,但平面的形状不一定是平行四边形;③错误,平面不能度量;④错误,看不到的线画成虚线.题型二文字语言、图形语言、符号语言的相互转化例2根据图形用符号表示下列点、直线、平面之间的关系.( 1)点P与直线AB;( 2)点C与直线AB;( 3)点M与平面AC;( 4)点A1与平面AC;( 5)直线AB与直线BC;( 6)直线AB与平面AC;( 7)平面A1B与平面AC.[详解]( 1)P∈AB.( 2)C∉AB.( 3)M∈平面AC.( 4)A1∉平面AC.( 5)AB∩BC=B.( 6)AB⊂平面AC.( 7)平面A1B∩平面AC=AB.三种语言的转换方法( 1)用文字语言、符号语言表示一个图形时,首先仔细观察图形有几个平面、几条直线且相互之间的位置关系如何,试着先用文字语言表示,再用符号语言表示.( 2)根据符号语言或文字语言画相应的图形时,要注意实线和虚线的区别.( 1)把下列符号叙述所对应的图形的字母编号填在题后横线上.①A∉α,a⊂α:________;②α∩β=a,P∉α且P∉β:________;③a⊄α,a∩α=A:________;④α∩β=a,α∩γ=c,β∩γ=b,a∩b∩c=O:________.( 2)根据下列符号表示的语句,说明点、线、面之间的位置关系,并画出相应的图形.①A∈α,B∉α;②l⊂α,m∩α=A,A∉l;③P∈l,P∉α,Q∈l,Q∈α.答案( 1)①C②D③A④B( 2)见详细解析详细解析( 2)①点A在平面α内,点B不在平面α内,如图①.②直线l在平面α内,直线m与平面α相交于点A,且点A不在直线l上,如图②.③直线l经过平面α外一点P和平面α内一点Q,如图③.题型三线共面问题例3已知直线b∥c,且直线a与b,c都相交,求证:直线a,b,c共面.[证明]∵b∥c,∴不妨设b,c共面于平面α,设a∩b=A,a∩c=B,∴A∈a,B∈a,A ∈b,B∈c,又b⊂α,∴A∈α,同理B∈α,即a⊂α,∴三线共面.[条件探究]在本例中,若直线a∥b∥c,直线l∩a=A,l∩b=B,l∩c=C,又该如何证明直线a,b,c,l共面?证明如图所示.∵a∥b,∴a,b可确定一个平面α.又l∩a=A,l∩b=B,∴A∈a,B∈b,A∈α,B∈α.∴AB⊂α.又A∈l,B∈l,∴l⊂α.又b∥c,∴b,c可确定一个平面β.同理l⊂β.∵平面α,β均经过直线b,l,且b和l是两条相交直线,∴l与b确定的平面是唯一的.∴a,b,c,l四线共面.证明多线共面的两种方法( 1)纳入法:先由部分直线确定一个平面,再证明其他直线在这个平面内.( 2)重合法:即先证明一些元素在一个平面内,再证明另一些元素在另一个平面内,然后证明这两个平面重合,即证得所有元素在同一个平面内.下列说法中正确的是( )A.空间不同的三点确定一个平面B.空间两两相交的三条直线确定一个平面C.空间有三个角为直角的四边形一定是平面图形D.和同一条直线相交的三条平行直线一定在同一平面内答案 D详细解析经过同一条直线上的三点有无数个平面,故A不正确;当两两相交的三条直线相交于一点时,可能确定三个平面,故B不正确;有三个角为直角的四边形不一定是平面图形,如图,在正方体ABCD-A1B1C1D1中,四边形ACC1D1满足∠ACC1=∠CC1D1=∠C1D1A=90°,但四边形ACC1D1不是平面图形,故C不正确;和同一条直线相交的三条平行直线一定共面,故选D.题型四点共线问题例4如图,已知△ABC的三个顶点都不在平面α内,它的三边AB,BC,AC延长后分别交平面α于点P,Q,R.求证:P,Q,R三点在同一条直线上.[证明]证法一:由已知AB的延长线交平面α于点P,根据基本事实3,平面ABC与平面α必相交于一条直线,设为l.∵P∈直线AB,∴P∈平面ABC.又AB∩α=P,∴P∈平面α,∴P是平面ABC与平面α的公共点.∵平面ABC∩α=l,∴P∈l.同理,Q∈l,R∈l.∴P,Q,R三点在同一条直线l上.证法二:∵AP∩AR=A,∴直线AP与直线AR确定平面APR.又AB∩α=P,AC∩α=R,∴平面APR∩α=PR.∵B∈平面APR,C∈平面APR,∴BC⊂平面APR.∵Q∈BC,∴Q∈平面APR,又Q∈α,∴Q∈PR,∴P,Q,R三点共线.点共线问题就是证明三个或三个以上的点在同一条直线上,主要依据是基本事实3.此类问题的证明常用以下两种方法:( 1)首先找出两个平面,然后证明这些点都是这两个平面的公共点,根据基本事实3知这些点都在这两个平面的交线上;( 2)选择其中两点确定一条直线,然后证明其他点也在这条直线上.如图,在正方体ABCD-A1B1C1D1中,点M,N,E,F分别是棱CD,AB,DD1,AA1上的点,若MN与EF交于点Q,求证:D,A,Q三点共线.证明∵MN∩EF=Q,∴Q∈直线MN,Q∈直线EF,又M∈直线CD,N∈直线AB,CD⊂平面ABCD,AB⊂平面ABCD.∴M,N∈平面ABCD,∴MN⊂平面ABCD.∴Q∈平面ABCD.同理,可得EF⊂平面ADD1A1.∴Q∈平面ADD1A1.又平面ABCD∩平面ADD1A1=AD,∴Q∈直线AD,即D,A,Q三点共线.题型五线共点问题例5如图,在三棱柱ABC-A1B1C1中,B1P=2P A1,C1Q=2QA1.求证:直线AA1,BP,CQ相交于一点.[证明]如图,连接PQ.由B1P=2P A1,C1Q=2QA1,得PQ∥B1C1,且PQ=13B1C1.又BC綊B1C1,∴PQ∥BC,且PQ=13BC,∴四边形BCQP为梯形,∴直线BP,CQ相交,设交点为R,则R∈BP,R∈CQ.又BP⊂平面AA1B1B,CQ⊂平面AA1C1C,∴R∈平面AA1B1B,且R∈平面AA1C1C,∴R在平面AA1B1B与平面AA1C1C的交线上,即R∈AA1,∴直线AA1,BP,CQ相交于一点.证明线共点问题的步骤证明三线共点的思路是:先证明两条直线交于一点,再证明第三条直线经过这个点,把问题归结为证明点在直线上的问题.在四面体ABCD中,E,G分别为BC,AB的中点,F在CD上,H在AD上,且有DF∶FC =DH ∶HA =1∶3.求证:EF ,GH ,BD 交于一点.证明 如图所示,连接GE ,HF . ∵E ,G 分别为BC ,AB 的中点,∴GE ∥AC .又DF ∶FC =DH ∶HA =1∶3, ∴HF ∥AC ,∴GE ∥HF , ∴G ,E ,F ,H 四点共面. 又GE =12AC , HF AC =DF DC =14,∴EF 与GH 不平行,∴EF 与GH 相交.延长EF ,GH ,设交点为O ,则O ∈平面ABD ,O ∈平面BCD ,而平面ABD ∩平面BCD =BD ,∴O ∈BD .即EF ,GH ,BD 交于一点O .1.在空间中,下列结论正确的是( ) A .三角形确定一个平面 B .四边形确定一个平面C .一个点和一条直线确定一个平面D .两条直线确定一个平面 答案 A详细解析空间四边形不能确定一个平面,因此B错误;若点在直线上,则有无数个平面,因此C错误;若两条直线重合,则有无数个平面,因此D错误.2.两个平面若有三个公共点,则这两个平面( )A.相交B.重合C.相交或重合D.以上都不对答案 C详细解析若三个点在同一直线上,则两平面可能相交;若这三个点不在同一直线上,则这两个平面重合.3.三条两两平行的直线可以确定平面的个数为( )A.0 B.1 C.0或1 D.1或3答案 D详细解析当三条互相平行的直线共面时,可确定1个平面;当三条互相平行的直线不共面时,可确定3个平面.4.如图,已知正方体ABCD-A1B1C1D1.( 1)AC∩BD=________;( 2)平面AB1∩平面A1C1=________;( 3)A1B1∩B1B∩B1C1=________.答案( 1)O( 2)A1B1( 3)B1详细解析( 1)AC,BD同在平面ABCD中,交于点O.( 2)平面AB1与平面A1C1相交,交线为A1B1.( 3)A1B1,B1B,B1C1三条直线交于一点B1.5.如图,△ABC与△A1B1C1不全等,且A1B1∥AB,B1C1∥BC,C1A1∥CA.求证:AA1,BB1,CC1交于一点.证明如图所示,∵B1C1∥BC,∴B1C1与BC确定一个平面,记为平面β.同理,将C1A1与CA所确定的平面记为平面γ. 易知β∩γ=C1C.∵△ABC与△A1B1C1不全等,且A1B1∥AB,∴AA1与BB1相交,设交点为P,P∈AA1,P∈BB1.而AA1⊂γ,BB1⊂β,∴P∈γ,P∈β,∴P在平面β与平面γ的交线上.又β∩γ=C1C,∴P∈C1C,∴AA1,BB1,CC1交于一点.。
五年级上册数学讲义-2019学年第一学期第14讲-平行四边形沪教版
第14讲—平行四边形(一)上次课课后巩固作业处理,建议让学生互批互改,个别错题可以让学生进行分享,针对共性的错题教师讲解为主。
(二)上次预习思考内容讨论分享复习回顾平行四边形章节内容并填空1、两组对边分别__________的四边形叫做平行四边形。
2、从平行四边形的一边上一点向对边画垂线,这点和垂足之间的线段,叫做平行四边形的__________,这条边叫做平行四边形的__________。
3、以平行四边形的一条边为底,可以画很多高,这些高的长度都__________。
看着这个四边形,你能完成上面的填空题吗?加油哦!思考:长方形和正方形是平行四边形吗?为什么?两组对边分别平行的四边形是平行四边形长方形和正方形、菱形都是特殊的平行四边形AE是高,对应的底是____________ BC是底,对应的高是是底,对应的高是___________; 是底,对应的高是_________;是底,对应的高是___________; 是底,对应的高是___________;一、填空1、平行四边形的面积计算公式_____________;2、一个平行四边形的面积是5.6平方厘米,高2.8厘米,这条高所对应的底是_________;3、一个平行四边形的面积是36cm2,底是9cm,与这条底所对应的高是__________.二、选择1、一个平行四边形的面积是0.2平方米,底边的长度是4米,与这条底边相对应的高是A. 20米B. 2米C. 0.5米D. 0.05米2、下图中长方形的面积与平行四边形的面积进行比较的结果是A. 长方形的面积大B. 平行四边形的面积大C. 一样大D. 无法比较三、计算下面各平行四边形的面积。
(1)底12米,高7米;(2)高13分米,底6分米;(3)底2.5厘米,高4厘米四、应用1、一块平行四边形的木板,它的底是3m,高是1.8m,以17.5元/m2计价,它的价格是多少元?2、育才小学校园有一块平行四边形的花圃,它的底是28m,高是23m,如果每m2草坪需要36元,那么铺满整块草坪需要多少钱?,答案:一、1、S=ah;2、2厘米;3、4cm;二、1、D; 2、A三、1、84平方米;2、78平方分米;3、10平方厘米.四、1、91.8;2、23184.让学生回顾本节课所学的重点知识,以学生自我总结为主,学科教师引导为辅,为本次课做一个总结回顾答案:1、6722dm ;2、44.7cm ;3、51平方米,1938千克;4、937只;5、1.2公顷、6400千克; 6、12.8cm ;7、3.584m ;8、144平方厘米;9、0.25米.案例:裁缝店的李阿姨接到一笔订货单:东风小学要在一年级新生中发展150名少先队员,需要做150条红领巾,要买多少布料呢?这可难坏了李阿姨,同学们,你们能帮她解决这个问题吗? 怎么解决?(1)做一条红领巾必须知道什么?参考答案:面积(2)红领巾是什么形状?参考答案:三角形教师此时可以抛出问题我们怎么求三角形的面积呢,我们本节课就来研究三角形的面积如何求。
新教材人教A版数学必修第二册学案:第8章8.4.1 平面Word版含解析
8.4空间点、直线、平面之间的位置关系8.4.1平面学习任务核心素养1.了解平面的概念,掌握平面的画法及表示方法.(难点)2.能用符号语言描述空间点、直线、平面之间的位置关系.(重点)3.能用图形、文字、符号三种语言描述三个公理,理解三个公理的地位与作用.(难点、易错点)1.通过对平面有关概念的学习,培养直观想象的数学素养.2.通过平面基本性质的应用,培养逻辑推理、直观想象的数学素养.宁静的湖面、海面,生活中的课桌面、黑板面,一望无垠的草原给你什么样的感觉?问题:(1)生活中的平面有大小之分吗?(2)几何中的“平面”是怎样的?知识点1平面平面的描述性概念几何里所说的“平面”,就是从生活中一些物体中抽象出来的.平面是向四周无限延展的画法水平放置常把平行四边形的一边画成横向竖直放置常把平行四边形的一边画成竖向记法(1)用希腊字母α,β,γ等表示平面,如平面α、平面β、平面γ等,并将它写在代表平面的平行四边形的一个角内(2)用代表平面的平行四边形的四个顶点的大写英文字母作为这个平面的名称,如平面ABCD(3)用代表平面的平行四边形的相对的两个顶点的大写英文字母作为这个平面的名称,如平面AC,平面BD1.一个平面能否把空间分成两部分?[提示]因为平面是无限延展的,所以一个平面能把空间分成两部分.1.下列说法正确的是________.(填序号)(1)平面的形状是平行四边形;(2)任何一个平面图形都是一个平面;(3)两个平面相交的画法中,一个平面被另一个平面遮住时,被遮部分的线段应画成虚线或不画;(4)三角形、圆、平行四边形都可以表示平面.(3)(4)[(1)不正确.平面常用平行四边形表示,但不是平行四边形,平面是无限延展的.(2)不正确.平面图形与平面是两个不同的概念,平面图形具有大小、面积等属性,而平面则没有,平面是无限延展的,不可度量的.(3)正确.符合直观图画法的规则.(4)正确.三角形、圆、平行四边形都是平面图形,都可以表示平面.]知识点2点、直线、平面之间的位置关系文字语言表达图形语言表达符号语言表达点A在直线l上A∈l点B在直线l外B∉l点A在平面α内A∈α点P在平面α外P∉α直线l在平面α内l⊂α直线l不在平面α内l⊄α平面α与β相交于直线lα∩β=l2.如图,点A________平面ABC;点A________平面BCD;BD________平面ABD;平面ABC∩平面BCD=________.[答案]∈∉⊂BC知识点3平面的基本事实及推论(1)基本事实:基本事实内容图形符号基本事实1过不在一条直线上的三个点,有且只有一个平面A,B,C三点不共线⇒存在唯一的平面α使A,B,C∈α基本事实2如果一条直线上的两个点在一个平面内,那么这条直线在这个平面内A∈l,B∈l,且A∈α,B∈α⇒l⊂α基本事实3如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线P∈α,且P∈β⇒α∩β=l,且P∈l(2)基本事实1的推论.①②③推论1经过一条直线和这条直线外一点,有且只有一个平面(图①).推论2经过两条相交直线,有且只有一个平面(图②).推论3经过两条平行直线,有且只有一个平面(图③).2.(1)如何理解基本事实1中的“有且只有一个”?(2)两个不重合的平面可能存在有限个公共点吗?(3)如果两个不重合的平面有无数个公共点,那么这些公共点有什么特点?[提示](1)这里的“有”是说图形存在,“只有一个”是说图形唯一,本公理强调的是存在性和唯一性两个方面,因此“有且只有一个”,必须完整地使用,不能仅用“只有一个”来代替“有且只有一个”,否则就没有表达存在性.确定一个平面中的“确定”是“有且只有一个”的同义词,也就是存在性和唯一性这两个方面的,这个术语今后学习中会经常出现.(2)不能.要么没有公共点,要么有无数个公共点.(3)这些公共点落在同一条直线上.3.空间任意四点最多可以确定平面的个数是()A.1B.2C.3D.4D[空间任意四点最多可以确定平面的个数是4,例如空间任意四点为三棱锥A-BCD的顶点时,可以确定平面ABC,平面ABD,平面ACD,平面BCD.]类型1立体几何三种语言的相互转化【例1】用符号表示下列语句,并画出图形.(1)平面α与β相交于直线l,直线a与α,β分别相交于点A,B;(2)点A,B在平面α内,直线a与平面α交于点C,点C不在直线AB上.[解](1)用符号表示:α∩β=l,a∩α=A,a∩β=B,如图.(2)用符号表示:A∈α,B∈α,a∩α=C,C∉AB,如图.三种语言的转换方法(1)用文字语言、符号语言表示一个图形时,首先仔细观察图形有几个平面、几条直线且相互之间的位置关系如何,试着用文字语言表示,再用符号语言表示.(2)要注意符号语言的意义.如点与直线的位置关系只能用“∈”或“∉”,直线与平面的位置关系只能用“⊂”或“⊄”.(3)由符号语言或文字语言画相应的图形时,要注意实线和虚线的区别.[跟进训练]1.用符号语言表示下列语句,并画出图形:(1)三个平面α,β,γ相交于一点P,且平面α与平面β相交于P A,平面α与平面γ相交于PB,平面β与平面γ相交于PC;(2)平面ABD与平面BDC相交于BD,平面ABC与平面ADC相交于AC.[解](1)符号语言表示:α∩β∩γ=P,α∩β=P A,α∩γ=PB,β∩γ=PC,图形表示:如图①.(2)符号语言表示:平面ABD∩平面BDC=BD,平面ABC∩平面ADC=AC,图形表示:如图②.类型2点、线共面问题【例2】如图,已知:a⊂α,b⊂α,a∩b=A,P∈b,PQ∥a,求证:PQ⊂α.[解]∵PQ∥a,∴PQ与a确定一个平面β.∴直线a⊂β,点P∈β.∵P∈b,b⊂α,∴P∈α.又∵a⊂α,∴α与β重合.∴PQ⊂α.解决点线共面问题的基本方法[跟进训练]2.求证:两两相交且不过同一点的三条直线必在同一个平面内.[解]已知:AB∩AC=A,AB∩BC=B,AC∩BC=C.求证:直线AB,BC,AC共面.证明:法一:因为AC∩AB=A,所以直线AB,AC可确定一个平面α.因为B∈AB,C∈AC,所以B∈α,C∈α,故BC⊂α.因此直线AB,BC,AC都在平面α内,所以直线AB,BC,AC共面.法二:因为A不在直线BC上,所以点A和直线BC可确定一个平面α.因为B∈BC,所以B∈α,又A∈α,所以AB⊂α.同理AC⊂α,故直线AB,BC,AC共面.法三:因为A,B,C三点不在同一条直线上,所以A,B,C三点可以确定一个平面α.因为A∈α,B∈α,所以AB⊂α,同理BC⊂α,AC⊂α,故直线AB,BC,AC共面.类型3点共线、线共点问题【例3】如图,已知平面α,β,且α∩β=l.设梯形ABCD中,AD∥BC,且AB⊂α,CD⊂β.求证:AB,CD,l共点(相交于一点).1.如图,在正方体ABCD-A1B1C1D1中,设A1C∩平面ABC1D1=E.能否判断点E在平面A1BCD1内?[提示]如图,连接BD1,∵A1C∩平面ABC1D1=E,∴E∈A1C,E∈平面ABC1D1.∵A1C⊂平面A1BCD1,∴E∈平面A1BCD1.2.上述问题中,你能证明B,E,D1三点共线吗?[提示]由于平面A1BCD1与平面ABC1D1交于直线BD1,又E∈BD1,根据基本事实3可知B,E,D1三点共线.[证明]因为梯形ABCD中,AD∥BC,所以AB,CD是梯形ABCD的两腰.所以AB,CD必定相交于一点.设AB∩CD=M.又因为AB⊂α,CD⊂β,所以M∈α,M∈β.所以M∈α∩β.又因为α∩β=l,所以M∈l.即AB,CD,l共点(相交于一点).1.证明三点共线的方法(1)首先找出两个平面,然后证明这三点都是这两个平面的公共点,根据基本事实3可知,这些点都在两个平面的交线上.(2)选择其中两点确定一条直线,然后证明另一点也在此直线上.2.证明三线共点的步骤(1)首先说明两条直线共面且交于一点.(2)说明这个点在另两个平面上,并且这两个平面相交.(3)得到交线也过此点,从而得到三线共点.[跟进训练]3.三个平面α,β,γ两两相交于三条直线,即α∩β=c,β∩γ=α,γ∩α=b,若直线a和b不平行,求证:a,b,c三条直线必相交于同一点.[证明]如图,∵α∩γ=b,β∩γ=a,∴a⊂γ,b⊂γ.∵直线a和b不平行,∴a,b必相交.设a∩b=P,则P∈a,P∈b.∵a⊂β,b⊂α,∴P∈β,P∈α.又α∩β=c,∴P∈c.故a,b,c三条直线必相交于同一点.1.下列空间图形画法错误的是()A B C DD[遮挡部分应画成虚线或不画,故D错.]2.如果点A在直线a上,而直线a在平面α内,点B在平面α内,则可以表示为()A.A⊂a,a⊂α,B∈αB.A∈a,a⊂α,B∈αC.A⊂a,a∈α,B⊂αD.A∈a,a∈α,B∈αB[点A在直线a上,而直线a在平面α内,点B在平面α内,表示为A∈a,a⊂α,B∈α.]3.下列说法正确的是()A.镜面是一个平面B.一个平面长10 m,宽5 mC.一个平面的面积是另一个平面面积的2倍D.所有的平面都是无限延展的D[镜面可以抽象成平面,但不是平面,所以选项A不正确;平面没有大小,所以选项B和选项C都不正确,故选D.]4.不重合的三条直线,若相交于一点,最多能确定________个平面.3[三条直线相交于一点,最多可确定3个平面,如图所示,直线a,b,c相交于点A,直线a,b确定平面α,直线b,c确定平面β,直线a,c确定平面γ,共3个平面.]5.如图,已知D,E是△ABC的边AC,BC上的点,平面α经过D,E两点,若直线AB与平面α的交点是P,求证:点P在直线DE上.[证明]因为P∈AB,AB⊂平面ABC,所以P∈平面ABC.又P∈α,平面ABC∩平面α=DE,所以P∈直线DE.所以点P在直线DE上.回顾本节知识,自我完成以下问题:(1)如何用符号表示空间点、线、面的位置关系?(2)3个基本事实的内容是什么?各有什么作用?(3)基本事实1的3个推论是什么?有什么作用?(4)如何证明点、线共面问题?(5)如何证明点共线、线共面问题?。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
a b
C
D
7
两平行线间 两平行线间的距离 线间的距离
在例 2 中, 线段 AC 的长 是点A到直线 是点A到直线 b 的距离 ; BD的 同样, 线段BD的长是点 B 到 的距离, 直线 b 的距离, 且 AC = BD. a b C D A B
因此 , 如果两条直线平行 , 则其中一条直线上任意一 如果两条直线 其中一条直线 点到另一条直线的距离 点到另一条直线的距离相等 . 称为平行线之间的距离.. 称为平行线之间的距离.. 个距离称为平行线 的距离.. 这个距离称为平行线之间的距离.. “平行线间的距离 ” 平行线间 线间的距离
30cm 124° 124° 56° 56° B 32cm C 2、如图,∠BAC= 107° BAC= 107° A D 3、 如 图 , 26° 26° B 47° 47° C
B 5cm 1 2 9cm F C
3
A
5cm 9cm E 3
平分 ABC, 平分∠ = 4cm .
AB的长度分别为 3 厘米, 4厘米, 5厘米 , 求其他各边以 AB的 度分别为 厘米, 4厘米 5厘米 求其他各边 厘米, 及两条对 及两条对角线的长度 .
提示: 提示:
A
D
A
B
O B C D
O C
9
5
想一想
想一想
在笔直的铁轨上, 在笔直的铁轨上, 夹在两根铁 轨之间的枕木是否一样长 ?
6
由生活实际 由生活实际到数学抽象 实际到数学抽象
例2 已知直线a ∥b, 过直线 a 上任意 已知直线 两点A 作垂线, 两点A 、 B 分别向直线 b 作垂线, 于点C 交直线 b于点C、点 D . (1) 线段AC 、 BD所在的直线有 BD所在的直 所在的直线 的位置关 怎样的位置关系 ? (2) 比较线段AC 、 BD 的长短 . 较线段 A B
=
“ 平行线间的垂线段的长 ” 平行线间的垂线段的长 线间的垂
平行线间的距离处处相等. 平行线间的距离处处相等. 线间的距离处处相等
8
议一议\随堂练习 随堂练习
议 一 议
举出生活中的几个实例, 举出生活中的几个实例, 反映 “平行线之间的垂线段处处相等 ” 的几何事实. 的几何事实. 随堂练习
□ ABCD 的两条对角线相交 O, OA,OB, 的两条对
北师大•八年级《 数学(上)》 编辑此外添加标题文本
1
《数学》( 北师大.七年级 下册 ) 数学》 北师大.
回 回顾顾与思考 思考 定义与性质———— 与性质 1、平行四边形的 对边平行; ( 定义 ) 平行四边 对边平行 平行; B 2、平行四边形的 对边相等;( 性质 ) 平行四边 对边相等 相等; 3、平行四边形的 对角相等; ( 性质 ) 平行四边 角相等; 4、平行四边形的 对角线 相等 ; 平行四边 ⊙平行四边形的 邻角互补 平行四边 ;
A C D
利用定义与性质 利用定义与性质解题————
1、已知平行四边形的 一角,可求 另外三个角 ; 已知平行四 平行四边 一角, 另外两条边 1、已知平行四边形的 两邻边,可求 另外两条边 ; 已知平行四 平行四边 邻边,
2
练一练
1 、看图说话: 看图说话: A 32cm 56° 56° D 124° 124° 30cm
做 一 做做 做 一
P86
如图 4—3 , □ ABCD 的两条对角线AC、BD相交于 的两条对 AC、BD相交于 点O。 D A (1) 图中有哪些三角形是全等的? 中有哪些三角形是全等的? 有哪些线段是相等的? 有哪些线段是相等的? (2) 能设法验证你的结论吗? B 验证你的结论吗? 你的结论吗 你可以用测量的方法, 你可以用测量的方法,也可以用复制 纸片并借助旋转的方法. 纸片并借助旋转的方法.
图 4—3 C O
OA = OC ; OB= OD。 OB=
想一想
由本题 由本题你又 能得出平行四边 能得出平行四边 形怎样的性质 形怎样的性质。? 平行四边形的性质 平行四边形的性质: 平行四边形的对 互相平分。 平行四边形的对角线互相平分。
4
利用定义、性质解题 利用定义、
例1 如图 , 四边形 ABCD 是平行四边形 , DB ⊥ AD, 是平行四边 求 BC , CD 及 OB 的长.。 A 8 D 分析 (1)在□ ABCD 中, O 10 AD 的对边; BC是 对边; BC是 B C 对边; CD是 CD是 AB 的对边; 阅读 p100 解 AD、 因为 AD、AB 已知 , 所以,利用平行四边形的性质 对边相等 可求出它们 所以,利用平行四边形的性质 “对边相等 ” 可求出它们; (2) 点 O 是 平行四边形两对角线的交点 , 平行四边形两对 利用平行四边形的性质 平行四边形两对 利用平行四边形的性质 “ 平行四边形两对角线互相平分 ” 可知OB BD的一半 OB是 的一半。 可知OB是BD的一半。 (3) 求 BD 的长 应摆在 △ ADB 中用 勾股 定理来计算。 应摆在 定理来计