2020中考数学几何探究专项训练(倒数第二大题)
2020中考数学几何探究题解析
2020中考数学几何探究题解析分析:第一小题比较简单,一看就知道是个正方形;第二小题看图的话,感觉像是两个线段相等,那么要证明F是CE'中点,而这个时候要注意FE'是在正方形中的,所以要懂得线段的转换;第三小题只有两个线段长度,咋一看感觉应该有难度吧,但是如果善于发现,就很容易找到突破口了。
解答:(1)正方形理由:BE=BE',∠EBE'=∠BE'F=90°所以BE//FE'同时可得EF//BE'所以四边形FEBE'是矩形,同时又邻边相等所以正方形成立;(2)分析的时候已经说了,不能忘记FE'是在刚才的正方形中的,而同时两个线段都在线段CE'上,所以要好好研究这个CE'根据旋转可知CE'=AE而题中刚好又给了DA=DE这不等腰三角形吗有等腰三角形,那么首先就想到了三线合一,干脆画出来如图,作DH⊥AE于H,则AH=EH别忘了刚才的AE=CE'现在AE倒被分成了两个线段的线段,那么如果F是CE'中点,那么CF和FE'不是就和AH、EH一样吗所以我们如果能够得到FE'等于AE的一半不是也行嘛根据条件可以得证△DAH≌△ABE所以AH=BE=BE'现在正方形派上用场了,所以FE'=BE=AH=HE即AE=2FE'那么CE'=2FE'所以CF=FE'(3)这一小题给出的两个线段其实是有联系的,不知道看到这的你是否发现了CF=3,AB=15看看CF在什么位置,不是在刚才的CE'上吗,凑上FE'就刚好变成CE'了,而CE'=AE,同时还有FE'=BE,所以我们如果假设FEBE'的边长为x,那么BE=x,AE=CE'=3+x,AB=15勾股定理走起,可得x²+(3+x)²=15²根据经验可以直接判断BE=9,AE=12,符合3、4、5的比例嘛现在知道了BE和AE,那么题上让求DE,我们可以让DE处于直角三角形,利用勾股定理解决这里可以过D向AE作垂线,也可以过E向AD作垂线,前者刚好能构造出前面用过的全等,所以作DM⊥AE于M那么可得AM=9,DM=12,所以ME=3,那么Rt△DME中,DE=3√17学完这道题,同学们就应该记牢出现正方形的时候,要能想到利用正方形的四边相等进行线段转换,同时有直角的时候千万不能忘记勾股定理。
2020年中考数学 三轮题型专练:几何探究题专项练习(含答案)
2020中考数学 三轮题型专练:几何探究题专项练习(含答案)1. 如图①,在等腰△ABC 中,AB =AC ,∠ABC =α,过点A 作BC 的平行线与∠ABC 的平分线交于点D ,连接CD . (1)求证:AC =AD ;(2)点G 为线段CD 延长线上一点,将GC 绕着点G 逆时针旋转β,与射线BD 交于点E . ①如图②,若α=β,AH ⊥BC 于点H ,求证:△DEG ∽△AHB ; ②如图③,若β=2α,DG =kAD ,求S △DEGS △BCD的值.(用含k 的代数式表示) 第1题图(1)证明:如解图①,∵BD 平分∠ABC , ∴∠1=∠2.∵AD ∥BC ,∴∠2=∠3, ∴∠1=∠3,∴AB =AD . ∵AB =AC ,∴AC =AD .第1题解图①(2)①证明:由题意可得:∠AHB =90°.∵AB =AC ,∠ABC =α, ∴∠ACB =∠ABC =α.∴∠BAC =180°-2α. 由(1)得AB =AC =AD .∴点B 、C 、D 在以A 为圆心,AB 为半径的圆上. ∴∠BDC =12∠BAC =90°-α,∴∠GDE =∠BDC =90°-α, ∵∠G =β=α=∠ABH , ∴∠G +∠GDE =90°. ∴∠DEG =∠AHB =90°, ∴△DEG ∽△AHB ;②解:如解图②,过A 作AH ⊥BC 于点H ,作∠DGE 的平分线GF ,交DE 于F , 由①知∠GDE =90°-α, ∵∠DGE =β=2α,∴∠DGF=α,∴∠ABC=∠DGF=α,∠DFG=180°-∠GDF-∠DGF=90°,∴△DFG∽△AHB.又∵GF为∠DGE的平分线,∴GF为DE的中垂线,∵AB=AD,GD=kAD,∴S△DFGS△AHB=GD2AB2=GD2AD2=k2,又∵S△ABC=S△BCD,S△ABC=2S△AHB,S△DEG=2S△DFG,∴S△DEGS△BCD=k2.第1题解图②2.已知∠ABC=90°,点P为射线BC上任意一点(点P与点B不重合),分别以AB、AP为边在∠ABC的内部作等边△ABE和△APQ,连接QE并延长交BP于点F.(1)如图①,若AB=23,点A、E、P恰好在一条直线上时,求此时EF的长;(2)如图②,当点A、E、P不在一条直线上时,猜想EF与图中的哪条线段相等(不能添加辅助线产生新的线段),并加以证明;(3)若AB=23,设BP=x,以QF为边的等边三角形的面积y,说明等边三角形的面积y随x的变化情况.第2题图解:(1)∵△ABE是等边三角形,∴AE=AB,∠BAE=∠ABE=60°.∵∠ABC=90°,∴∠EBP=∠EPB=30°,∴BE=EP=AE=23,∴点E为AP的中点,∴∠FEP=90°,∴在Rt△FEP中,EF=EP·tan30°=2,∴EF=2;(2)EF=BF,理由如下:∵∠BAP=∠BAE-∠EAP=60°-∠EAP,∠EAQ=∠QAP-∠EAP=60°-∠EAP,∴∠BAP=∠EAQ,在△ABP和△AEQ中,AB =AE ,∠BAP =∠EAQ ,AP =AQ , ∴△ABP ≌△AEQ (SAS). ∴∠AEQ =∠ABP =90°.∴∠BEF =180°-∠AEQ -∠AEB =180°-90°-60°=30°. 又∵∠EBF =90°-60°=30°, ∴∠BEF =∠EBF , ∴EF =BF ;(3)如解图,过点F 作FD ⊥BE 于点D . ∵△ABE 是等边三角形, ∴BE =AB =2 3.由(2)得∠EBF =30°, 在Rt △BDF 中,BD = 3.∴BF =BDcos30°=2.∴EF =BF =2. ∵△ABP ≌△AEQ , ∴QE =BP =x .∴QF =QE +EF =x +2.∴以QF 为边的等边三角形的面积y =12(x +2)·32(x +2) =34(x +2)2 =34x 2+3x + 3. ∵BP =x ,x >0,∴y 随x 的增大而增大.第2题解图3. 在△ABC 中,∠BAC 为锐角,AB >AC ,AD 平分∠BAC 交BC 于点D .(1)如图①,若△ABC 是等腰直角三角形,直接写出线段AC ,CD ,AB 之间的数量关系; (2)如图②,BC 的垂直平分线交AD 的延长线于点E ,交BC 于点F ,连接CE ,BE ,若∠ABE =60°,判断AC ,CE ,AB 之间有怎样的数量关系,并加以证明;(3)如图③,BC 的垂直平分线交AD 的延长线于点E ,交BC 于点F .若AC +AB =3AE ,求∠BAC 的度数.第3题图解:(1)AB =AC +CD .【解法提示】过D 作DE ⊥AB 交AB 于点E ,如解图①所示, ∵AD 平分∠BAC ,DC ⊥AC , ∴CD =DE ,∴Rt △ACD ≌Rt △AED (HL), ∴AC =AE ,∵△ABC 为等腰直角三角形,∴∠B =45°,即△BDE 为等腰直角三角形, ∴CD =DE =EB ,则AB =AE +EB =AC +CD ;第3题解图①(2)AB =AC +CE ;证明:在线段AB 上截取AH =AC ,连接EH ,如解图②所示, ∵AD 平分∠BAC , ∴∠CAE =∠BAE , 在△ACE 和△AHE 中,⎩⎪⎨⎪⎧AC =AH ∠CAE =∠BAE AE =AE, ∴△ACE ≌△AHE (SAS), ∴CE =HE ,∵EF 垂直平分BC , ∴CE =BE ,∴BE =HE , 又∵∠ABE =60°,∴△EHB 是等边三角形, ∴BE =HE =HB ,∴AB =AH +HB =AC +CE ;第3题解图②(3)在线段AB 上截取AH =AC ,连接EH ,作EM ⊥AB 于点M ,如解图③所示,同理可得△ACE ≌△AHE (SAS), ∴CE =HE ,∵EF 垂直平分BC , ∴CE =BE , ∴HE =BE ,∴△EHB 是等腰三角形, ∴HM =BM ,∴AC +AB =AH +AB =AM -HM +AM +MB =2AM , ∵AC +AB =3AE , ∴AM =32AE , 在Rt △AEM 中,cos ∠EAM =AM AE =32, ∴∠EAB =30°,∴∠BAC =2∠EAB =60°.第3题解图③4. 4. 在△ABC 中,∠ABC =2∠ACB ,延长AB 至点D ,使BD =BC ,E 是直线BC 上一点,F 是直线AC 上一点,连接DE 、EF ,且∠DEF =∠DBC . (1)如图①,若∠D =∠EFC =15°,AB =3,求AC 的长;(2)如图②,当∠BAC =45°,点E 在线段BC 的延长线上,点F 在线段AC 的延长线上时,求证:EF =DE ;(3)如图③,当∠BAC =90°,点E 在线段CB 的延长线上,点F 在线段CA 的延长线上时,求CF BE的值.第4题图(1)解:在△BDE 中,∠D +∠DBE +∠BED =180°,∵∠BED +∠DEF +∠FEC =180°,∠DEF =∠DBC ,∠D =∠F =15°, ∴∠D =∠FEC =∠F =15°, ∴∠ACB =∠F +∠CEF =30°,∴∠ABC =2∠ACB =60°,∴∠BAC =90°, 在Rt △ABC 中,AB =3,∠ACB =30°,∴AC =BC 2-AB 2=(23)2-(3)2=3;(2)证明:如解图①,连接CD ,作EM ⊥EB 交AF 于点M ,记AF 交DE 于点O . ∵∠BAC =45°,∠ABC =2∠ACB ,∴∠ABC =90°,∠ACB =∠MCE =∠EMC =45°, ∴EM =EC , ∵BD =BC ,∴∠BDC =∠BCD =45°, ∴∠DCE =∠EMF =135°,∵∠DEF =∠DBC =90°,∠FCD =∠DCA =90°, ∴∠OEF =∠OCD , ∵∠EOF =∠COD ,∴∠OFE =∠ODC ,即∠EFM =∠EDC , 在△EMF 和△ECD 中, ⎩⎪⎨⎪⎧∠EFM =∠EDC ∠EMF =∠DCE ,EM =EC∴△EMF ≌△ECD (AAS), ∴EF =DE ;第4题解图①(3)解:如解图②中,连接CD 、DF ,作NE ⊥CE 交AD 的延长线于点N ,在线段CE 上取一点M ,使得FM =FE .∵∠BAC =90°,∠ABC =2∠ACB , ∴∠ABC =60°,∠ACB =30°, ∵DB =BC ,∴∠DBC =120°,∠BDC =∠BCD =30°,∴∠DBC =∠DEF =120°,∠DCA =∠DCB +∠ACB =60°, ∴∠DEF +∠DCF =180°, ∴E 、F 、C 、D 四点共圆, ∵∠DCE =∠ECF ,∴DE ︵=EF ︵,∴DE =EF =FM ,∵∠NEB =90°,∠NBE =∠ABC =60°, ∴∠N =∠ACM =30°,∵∠DBC =∠BDE +∠DEB =120°,∠DEF =∠DEB +∠FEM =∠DEB +∠FME =120°,∴∠NDE =∠FMC , 在△EDN 和△FMC 中, ⎩⎪⎨⎪⎧∠N =∠FCM ∠NDE =∠FMC DE =FM, ∴△EDN ≌△FMC (AAS), ∴NE =CF ,在Rt △NEB 中, ∵∠NEB =90°,∠N =30°, ∴NE =3BE , ∴CF =3BE . ∴CF BE= 3.第4题解图②5. 在正方形ABCD 中,BD 是一条对角线,点P 在直线CD 上(不与点C 、D 重合),连接AP ,平移△ADP ,使点D 移动到点C ,得到△BCQ ,过点Q 作QH ⊥BD 于H ,连接AH ,PH .(1)如图①,若点P 在线段CD 上,求证:AH =PH ; (2)如图②,若点P 在线段CD 的延长线上,其他条件不变,(1)中的结论是否仍然成立?若成立,请给出证明,否则说明理由;(3)若点P 在线段DC 的延长线上,且∠AHQ =120°,正方形ABCD 的边长为2,求线段DP 的长.第5题图(1)证明:如解图①,连接HC , ∵四边形ABCD 是正方形, ∴∠BDC =45°, 又∵QH ⊥BD ,∴△DHQ 是等腰直角三角形,∴HD =HQ ,∠HDP =∠HQC =45°,由平移的性质可知DP =CQ ,在△HDP 和△HQC 中,⎩⎪⎨⎪⎧HD =HQ ∠HDP =∠HQC DP =QC,∴△HDP ≌△HQC (SAS),∴HP =HC ,根据正方形是轴对称图形得到HA =HC , ∴AH =PH ;第5题解图①(2)解:(1)中的结论仍然成立; 证明:如解图②,连接HC , ∵四边形ABCD 是正方形, ∴∠BDC =45°, 又∵QH ⊥BD ,∴△DHQ 是等腰直角三角形,∴HD =HQ ,∠HDC =∠HQD =45°, ∴∠HDP =∠HQC =135°, 由平移的性质可知DP =CQ , 在△HDP 和△HQC 中,⎩⎪⎨⎪⎧HD =HQ ∠HDP =∠HQC ,PD =CQ∴△HDP ≌△HQC (SAS), ∴HP =HC ,根据正方形是轴对称图形得到HA =HC , ∴AH =PH ;第5题解图②(3)解:如解图③,由(1)知,AH =PH ,∵∠AHD =∠CHD ,第5题解图③∴∠AHP=∠AHD+∠DHP=∠CHD+∠QHC=90°.∴∠HPA=45°,∵∠AHQ=120°,∴∠AHD=∠CHD=30°,∴∠QHP=∠CHD=∠CHP=30°,∵∠HCP=∠HDC+∠CHD=45°+30°=75°,∴∠CPH=180°-∠HCP-∠CHP=180°-75°-30°=75°,∴∠APD=30°,在Rt△ADP中,AD=2,∴DP=2 3.6.如图,已知四边形ABCD是平行四边形,P为DC延长线上一点,AP分别交BD,BC于点M,N.(1)图中相似三角形共有________对;(2)证明:AM2=MN·MP;(3)若AD=6,DC∶CP=2∶1.求BN的长.第6题图(1)解:6.【解法提示】有△AMB∽△PMD,△ADM∽△NBM,△ABN∽△PCN∽△PDA,△ABD∽△CDB,∴共6对相似三角形.(2)证明:∵AD∥BC,∴∠ADM=∠NBM,∠DAM=∠BNM,∴△ADM∽△NBM,∴AMMN=DMBM;∵AB∥DC,∴∠P=∠BAM,∠MDP=∠ABM,∴△PDM∽△ABM,∴PM AM =DM BM , ∴AM MN =PM AM,∴AM 2=MN ·MP ; (3)解:∵AD ∥BC ,∴∠PCN =∠PDA ,又∵∠P =∠P , ∴△PCN ∽△PDA , ∴PC PD =NC AD, ∵DC ∶CP =2∶1,∴PC PD =NC AD =13. 又∵AD =6, ∴NC =2,∴BN =BC -CN =6-2=4.7. 如图,在△ABC 中,∠ABC =90°,F 是AC 的中点,过AC 上一点D 作DE ∥AB ,交BF 的延长线于点E ,AG ⊥BE ,垂足为点G ,连接BD 、AE . (1)求证:△ABC ∽△BGA;(2)若AF =5,AB =8,求FG 的长;(3)当AB =BC ,∠DBC =30°时,求DE BD的值.第7题图(1)证明:∵∠ABC =90°,F 是AC 的中点, ∴BF =12AC =AF,∴∠FAB =∠FBA,∵AG ⊥BE, ∴∠AGB =90°, ∴∠ABC =∠AGB , ∴△ABC ∽△BGA ; (2)解:∵AF =5,∴AC =2AF =10,BF =5, ∵△ABC ∽△BGA , ∴AB AC =BG AB,∴BG =AB 2AC =8210=325,∴FG =BG -BF =325-5=75; (3)解:如解图,延长ED 交BC 于点H ,则DH ⊥BC,∴∠DHC =90°,∵AB =BC ,F 为AC 的中点,∴∠C =45°,∠CBF =45°,∴△DHC 、△BEH 是等腰直角三角形,∴DH =HC ,EH =BH ,设DH =HC =a ,∵∠DBC =30°,∴BD =2a ,BH =3a ,∴EH =3a ,∴DE =(3-1)a,∴DEBD =3-12. 第7题解图8. 如图①,在四边形ABCD 的边AB 上任取一点E (点E 不与A 、B 重合),分别连接ED ,EC ,可以把四边形ABCD 分成三个三角形,如果其中有两个三角形相似,我们就把E 叫做四边形ABCD 边AB 上的“相似点”;如果这三个三角形都相似,我们就把E 叫做四边形ABCD 边AB 上的“强相似点”.(1)如图①,若∠A =∠B =∠DEC =40°,试判断点E 是否是四边形ABCD 的边AB 上的相似点,并说明理由;(2)如图②,在△ABC 中,∠ACB =90°,直角顶点C 在直线DE 上,分别过点A ,B 作AD ⊥DE 于点D ,BE ⊥DE 于点E . 求证:△ADC ∽△CEB .(3)如图③,AD ∥BC ,DP 平分∠ADC ,CP 平分∠BCD 交DP 于点P ,过点P 作AB ⊥AD 于点A ,交BC 于点B . 求证:点P 是四边形ABCD 边AB 上的一个强相似点.第8题图(1)解:点E 是四边形ABCD 边AB 上的相似点.理由如下:∵∠DEC =40°,∴∠DEA +∠CEB =140°,∵∠A =∠B =40°,∴∠ADE +∠AED =140°,∴∠ADE =∠CEB ,∴△ADE ∽△BEC ,∴E 点是四边形ABCD 的边AB 上的相似点;(2)证明:∵∠ACB =90°,∴∠ACD +∠BCE =90°,∵AD ⊥DE ,∴∠ACD +∠CAD =90°,∴∠BCE =∠CAD ,∵∠ADC =∠CEB =90°,∴△ADC ∽△CEB ;(3)证明:∵AD ∥BC ,∴∠ADC +∠BCD =180°,∵DP 平分∠ADC ,CP 平分∠BCD ,∴∠CDP +∠DCP =12(∠ADC +∠BCD )=90°, ∵DA ⊥AB ,∴CB ⊥AB ,∴∠DPC =∠A =∠B =90°,∵∠ADP =∠CDP ,∴△ADP ∽△PDC ,同理△BPC ∽△PDC , ∴△ADP ∽△PDC ∽△BPC ,即点P 是四边形ABCD 边AB 上的一个强相似点.9. 在△ABC 中,AB =a ,AC =b ,点D 、E 分别在AB 、AC 上. (1)如图①,若AD =c ,△ADE 与△ABC 相似,求AE 的长;(2)如图②,若DE ∥BC ,将△ADE 绕点A 旋转α,得到△AMN ,连接BM 、CN ,求证:△ABM ∽△ACN ;(3)在(2)的图形中,若△ABC 是直角三角形,且∠BAC =30°,∠ACB =90°,AB =2,DE 是△ABC 的中位线,如图③,请直接写出BMCN的值. 第9题图(1)解:∵∠DAE =∠BAC ,∴分两种情况:①若∠ADE =∠ABC ,则△ADE ∽△ABC ,∴AD AB =AE AC ,∴ AE =AC ·AD AB =bc a; ②若∠ADE =∠ACB ,则△ADE ∽△ACB ,∴AD AC =AE AB ,∴AE =AB ·AD AC =ac b; (2)证明:∵DE ∥BC ,∴∠ADE =∠ABC ,∠AED =∠ACB ,∴△ADE ∽△ABC ,∴AD AB =AE AC , ∵△AMN 是由△ADE 旋转得到的,∴AM =AD ,AN =AE ,∴AM AB =AN AC ,∵∠BAM =∠CAN =α,∴△ABM ∽△ACN ;(3)解:BM CN =233. 【解法提示】在Rt △ABC 中,AB =2,∠BAC =30°,∠ACB =90°,∴BC =1,AC =3,由(2)知△ABM ∽△ACN ,∴BM CN =ABAC =23=233.10. 如图①,P 是△ABC 的边BC 上的任意一点,M 、N 分别在AB 和AC 边上,且PM =PB ,PN=PC ,则△PBM 和△PCN 叫做“孪生等腰三角形”.(1)如图②,若△ABC 是等边三角形,△PBM 和△PCN 是“孪生等腰三角形”,证明△PMC ≌△PBN ;(2)如图③,若△ABC 为等腰三角形,AB =AC ,△PBM 和△PCN 是“孪生等腰三角形”,证明:BN =CM ;(3)如图④,若(2)中P 点在CB 的延长线上,其他条件不变,是否依然有BN =CM ,若是,请证明,若不是,请说明理由.第10题图(1)证明:∵△ABC 是等边三角形,∴∠ABC =∠ACB =60°,∵△PBM 和△PCN 是“孪生等腰三角形”,∴PM =PB ,PN =PC ,∴△PBM 和△PCN 是等边三角形,∴∠BPM =∠NPC =60°,∴∠BPM +∠MPN =∠NPC +∠MPN ,即∠BPN =∠MPC .在△PMC 和△PBN 中,⎩⎪⎨⎪⎧PM =PB ∠MPC =∠BPN ,PC =PN∴△PMC ≌△PBN (SAS);(2)证明:如题图③,∵△ABC 为等腰三角形,AB =AC ,∴∠ABC =∠ACB ,∵△PBM 和△PCN 是“孪生等腰三角形”,∴PM =PB ,PN =PC ,∴∠PBM =∠PMB ,∠PCN =∠PNC ,∴∠BPM =∠CPN ,∴∠BPM +∠MPN =∠CPN +∠MPN ,∴∠BPN =∠MPC ,在△PMC 和△PBN 中,⎩⎪⎨⎪⎧PM =PB ∠MPC =∠BPN ,PC =PN∴△PMC ≌△PBN (SAS),∴BN =CM ;(3)解:是.证明:如题图④,由(2)易知∠ACB =∠PNC =∠ABC =∠PBM =∠PMB , ∴∠MPB =∠NPC ,在△PMC 和△PBN 中,⎩⎪⎨⎪⎧PM =PB ∠MPC = ∠BPN , PC =PN∴△PMC ≌△PBN (SAS),∴BN =CM .。
2020中考数学重难点题型——12道几何探究题解析 (扫描版)
一、方程类
易错1:方程思想概念不清晰!
易错2:一元一次方程和一元二次方程
的概念以及解的情况
易错3:易忽略一元二次方程方程根的存在性
二、函数类
易错4:分析一次函数和二次函数的定义以及与X轴的交点情况
易错5:利用数学结合思想
分析抛物线最值和开口方向问题
易错6:利用数学结合思想
分析抛物线与坐标轴的交点情况
易错7:双曲线形成的简单三角形的面积与反比例系数之间的关系问题
易错8:数形结合,抛物线与坐标轴交点
韦达定理的运用
三、圆类
易错9:优弧和劣弧分类讨论
易错10:求两平行弦之间的距离分类讨论。
中考数学:以三角形为载体的几何压轴问题真题+模拟(原卷版北京专用)
中考数学以三角形为载体的几何压轴问题【方法归纳】北京市中考的倒数第二道大题多数是已三角形为载体的几何综合问题,主要涉及特殊的三角形及相似三角形,这类问题的解决要熟知知各种图形的性质与判定,并且这类题目的解决有时还需要全等三角形和相似三角形、勾股定理、方程思想与分类讨论的相关知识,因此能熟练应用各种知识是解决此类问题的关键.常用到的三角形的知识有:(1)涉及全等问题解题要领:①探求两个三角形全等的条件:SSS,SAS,ASA,AAS及HL,注意挖掘问题中的隐含等量关系,防止误用“SSA”;②掌握并记忆一些基本构成图形中的等量关系;③把握问题中的关键,通过关键条件,发现并添加辅助线.(2)涉及到计算边的关系解题要领:①线段的垂直平分线常常用于构造等腰三角形;②在直角三角形中求边的长度,常常要用到勾股定理;③根据三角形的三边长度,利用勾股定理的逆定理可判断其为直角三角形;④已知直角三角形斜边的中点,考虑运用直角三角形斜边上中线的性质;⑤直角三角形斜边上中线的性质存在逆定理.(3)涉及角平分线问题的解题要领:①已知角的平分线及角平分线上的点到角一边的垂线段,考虑用角平分线的性质;②角平分线的性质常常与三角形的面积相结合.解题要领:(4)涉及到直角三角形方面的解题要领:①已知直角三角形及其锐角求线段长度时,运用锐角三角函数是最常用的方法;②通过等腰三角形的性质,特殊平行四边形的性质及圆的性质构建直角三角形,再运用锐角三角函数求解;③熟记特殊直角三角形的三边关系:30°角的直角三角形的三边的比为1∶∶2,等腰直角三角形的三边关系为1∶1∶;④锐角三角函数也常常作为相似三角形中,求对应边的比值的补充.【典例剖析】【例1】(2021·北京·中考真题)如图,在△ABC中,AB=AC,∠BAC=α,M为BC的中点,点D在MC上,以点A为中心,将线段AD顺时针旋转α得到线段AE,连接BE,DE.(1)比较∠BAE与∠CAD的大小;用等式表示线段BE,BM,MD之间的数量关系,并证明;(2)过点M作AB的垂线,交DE于点N,用等式表示线段NE与ND的数量关系,并证明.6.(2022·北京·中考真题)在△ABC中,∠ACB=90∘,D为△ABC内一点,连接BD,DC,延长DC到点E,使得CE=DC.(1)如图1,延长BC到点F,使得CF=BC,连接AF,EF,若AF⊥EF,求证:BD⊥AF;(2)连接AE,交BD的延长线于点H,连接CH,依题意补全图2,若AB2=AE2+BD2,用等式表示线段CD与CH的数量关系,并证明.【真题再现】1.(2013·北京·中考真题)在△ABC中,AB=AC,∠BAC=α(0°<α<60°),将线段BC绕点B逆时针旋转60°得到线段BD.(1)如图1,直接写出∠ABD的大小(用含α的式子表示);(2)如图2,∠BCE=150°,∠ABE=60°,判断△ABE的形状并加以证明;(3)在(2)的条件下,连接DE,若∠DEC=45°,求α的值.2.(2017·北京·中考真题)在等腰直角△ABC中,∠ACB=90°,P是线段BC上一动点(与点B、C不重合),连接AP,延长BC至点Q,使得CQ=CP,过点Q作QH⊥AP于点H,交AB于点M.(1)若∠P AC=α,求∠AMQ的大小(用含α的式子表示).(2)用等式表示线段MB与PQ之间的数量关系,并证明.3.(2019·北京·中考真题)已知∠AOB=30°,H为射线OA上一定点,OH=√3+1,P为射线OB上一点,M为线段OH上一动点,连接PM,满足∠OMP为钝角,以点P为中心,将线段PM顺时针旋转150°,得到线段PN,连接ON.(1)依题意补全图1;(2)求证:∠OMP=∠OPN;(3)点M关于点H的对称点为Q,连接QP.写出一个OP的值,使得对于任意的点M总有ON=QP,并证明.4.(2020·北京·中考真题)在△ABC中,∠C=90°,AC>BC,D是AB的中点.E为直线上一动点,连接DE,过点D作DF⊥DE,交直线BC于点F,连接EF.(1)如图1,当E是线段AC的中点时,设AE=a,BF=b,求EF的长(用含a,b的式子表示);(2)当点E在线段CA的延长线上时,依题意补全图2,用等式表示线段AE,EF,BF之间的数量关系,并证明.【模拟精练】一、解答题1.(2022·北京市广渠门中学模拟预测)如图,等腰Rt△ABC中,∠BAC=90°,AB=AC,点P为射线BC上一动点(不与点B、C重合),以点P为中心,将线段PC逆时针旋转α角,得到线段PQ,连接AP、BQ、M为线段BQ的中点.(1)若点P在线段BC上,且M恰好也为AP的中点,的值;①依题意在图1中补全图形:②求出此时α的值和BPPC(2)写出一个α的值,使得对于任意线段BC延长线上的点P,总有AP的值为定值,并证明;PM2.(2022·北京房山·二模)如图1,在四边形ABCD中,∠ABC=∠BCD,过点A作AE∥DC交BC边于点E,过点E作EF∥AB交CD边于点F,连接AF,过点C作CH∥AF交AE于点H,连接BH.(1)求证:△ABH≌△EAF;(2)如图2,若BH的延长线经过AF的中点M,求BE的值.EC3.(2022·北京东城·二模)如图,在△ABC中,AB=AC,∠CAB=2α,在△ABC的外侧作直线AP(90°−a<∠PAC<180°−2a),作点C关于直线AP的对称点D,连接AD,BD,BD交直线AP于点E.(1)依题意补全图形;(2)连接CE,求证:∠ACE=∠ABE;(3)过点A作AF⊥CE于点F,用等式表示线段BE,2EF,DE之间的数量关系,并证明.4.(2022·北京·二模)在Rt△ABC中,∠ACB=90°,CD是AB边的中线,DE⊥BC于E,连接CD,点P在射线CB上(与B,C不重合)(1)如果∠A=30°①如图1,DE与BE之间的数量关系是______②如图2,点P在线段CB上,连接DP,将线段DP绕点D逆时针旋转60°,得到线段DF,连接BF,补全图2猜想CP、BF之间的数量关系,并证明你的结论.(2)如图3,若点P在线段CB的延长线上,且∠A=α(0°<α<90°),连接DP,将线段DP 绕点逆时针旋转2α得到线段DF,连接BF,请直接写出DE、BF、BP三者的数量关系(不需证明).5.(2022·北京密云·二模)如图,在等边△ABC中,点D在BA的延长线上,点P是BC边上的一个动点(点P不与点B重合),将线段PD绕点P逆时针旋转60°得到线段PE,连接BE和DE.(1)依据题意,补全图形;(2)比较∠BDE与∠BPE的大小,并证明;(3)用等式表示线段BE、BP与BD之间的数量关系,并证明.6.(2022·北京西城·二模)在△ABC中,AB=AC,过点C作射线CB′,使∠ACB′=∠ACB(点B′与点B在直线AC的异侧)点D是射线CB′上一动点(不与点C重合),点E在线段BC上,且∠DAE+∠ACD=90°.(1)如图1,当点E与点C重合时,AD 与CB′的位置关系是______,若BC=a,则CD的长为______;(用含a的式子表示)(2)如图2,当点E与点C不重合时,连接DE.①用等式表示∠BAC与∠DAE之间的数量关系,并证明;②用等式表示线段BE,CD,DE之间的数量关系,并证明.7.(2022·北京门头沟·二模)如图,在△ABC中,∠ACB = 90°,D是BC的中点,过点C作CE⊥AD,交AD于点E,交AB于点F,作点E关于直线AC的对称点G,连接AG和GC,过点B作BM⊥GC交GC的延长线于点M.(1)①根据题意,补全图形;②比较∠BCF与∠BCM的大小,并证明.(2)过点B作BN⊥CF交CF的延长线于点N,用等式表示线段AG,EN与BM的数量关系,并证明.8.(2022·北京顺义·二模)如图,在△ABC中,∠ACB=90°,AC=BC,P,D为射线AB上两点(点D在点P的左侧),且PD=BC,连接CP.以P为中心,将线段PD逆时针旋转n°(0<n<180)得线段PE.(1)如图1,当四边形ACPE是平行四边形时,画出图形,并直接写出n的值;(2)当n=135°时,M为线段AE的中点,连接PM.①在图2中依题意补全图形;②用等式表示线段CP与PM之间的数量关系,并证明.9.(2022·北京北京·二模)在△ABC中,∠ACB=90°,CA=CB,D是AB的中点,E为边AC上一动点(不与点A,C重合),连接DE,将线段BA绕点B逆时针旋转90°得到线段BF,过点F作FH⊥DE于点H,交射线BC于点G.(1)如图1,当AE<EC时,比较∠ADE与∠BFG的大小;用等式表示线段BG与AE的数量关系,并证明;(2)如图2,当AE>EC时,依题意补全图2,用等式表示线段DE,CG,AC之间的数量关系.10.(2022·北京四中模拟预测)已知,点B是射线AP上一动点,以AB为边作△ABC,∠BCA= 90°,∠A=60°,将射线BC绕点B顺时针旋转120°,得到射线BD,点E在射线BD上,BE+BC= m.(1)如图1,若BE=BC,求CE的长(用含m的式子表示);(2)如图2,点F在线段AB上,连接CF、EF.添加一个条件:AF、BC、BE满足的等量关系为______,使得EF=CF成立,补全图形并证明.11.(2022·北京昌平·二模)如图,已知∠MON=α(0°<α<90°),OP是∠MON的平分线,点A是射线OM上一点,点A关于OP对称点B在射线ON上,连接AB交OP于点C,过点A作ON 的垂线,分别交OP,ON于点D,E,作∠OAE的平分线AQ,射线AQ与OP,ON分别交于点F,G.(1)①依题意补全图形;②求∠BAE度数;(用含α的式子表示)(2)写出一个α的值,使得对于射线OM上任意的点A总有OD=√2AF(点A不与点O重合),并证明.12.(2022·北京海淀·二模)已知AB = BC,∠ABC = 90°,直线l是过点B的一条动直线(不与直线AB,BC重合),分别过点A,C作直线l的垂线,垂足为D,E.(1)如图1,当45°<∠ABD<90°时,①求证:CE +DE =AD;②连接AE,过点D作DH⊥AE于H,过点A作AF∥BC交DH的延长线于点F.依题意补全图形,用等式表示线段DF,BE,DE的数量关系,并证明;(2)在直线l运动的过程中,若DE的最大值为3,直接写出AB的长.13.(2022·北京市十一学校二模)如图,已知∠AOB=60°,点P为射线OA上的一个动点,过点P作PE⊥OB,交OB于点E,点D在∠AOB内,且满足∠DP A=∠OPE,DP+PE=5.(1)当DP=PE时,求DE的长;(2)在点P的运动过程中,请判断射线OA上是否存在一个定点M,使得DM的值不变?并证ME明你的判断.14.(2022·北京平谷·一模)如图,在△ABC中,∠ACB=90°,AC=BC,点D为AB边上一点(不与点A,B重合),作射线CD,过点A作AE⊥CD于E,在线段AE上截取EF=EC,连接BF交CD于G.(1)依题意补全图形;(2)求证:∠CAE=∠BCD;(3)判断线段BG与GF之间的数量关系,并证明.15.(2022·北京房山·一模)已知:等边△ABC,过点B作AC的平行线l.点P为射线AB上一个动点(不与点A,B重合),将射线PC绕点P顺时针旋转60°交直线l于点D.(1)如图1,点P在线段AB上时,依题意补全图形;①求证:∠BDP=∠PCB;②用等式表示线段BC,BD,BP之间的数里关系,并证明;(2)点P在线段AB的延长线上,直接写出线段BC,BD,BP之间的数量关系.16.(2022·北京市第一六一中学分校一模)已知点P为线段AB上一点,将线段AP绕点A 逆时针旋转60°,得到线段AC;再将线段BP绕点B逆时针旋转120°,得到线段BD;连接AD,取AD中点M,连接BM,CM.(1)如图1,当点P在线段CM上时,求证:PM//BD;(2)如图2,当点P不在线段CM上,写出线段BM与CM的数量关系与位置关系,并证明.17.(2022·北京·二模)如图,在等边ΔABC中,点D是边BC的中点,点E是直线BC上一动点,将线段AE绕点E逆时针旋转60°,得到线段EG,连接AG,BG.(1)如图1,当点E与点D重合时.①依题意补全图形;②判断AB与EG的位置关系;(2)如图2,取EG的中点F,写出直线DF与AB夹角的度数以及FD与EC的数量关系,并证明.18.(2022·北京朝阳·一模)在△ABC中,D是BC的中点,且∠BAD≠90°,将线段AB沿AD所在直线翻折,得到线段AB′,作CE∥AB交直线AB′于点E.(1)如图,若AB>AC,①依题意补全图形;②用等式表示线段AB,AE,CE之间的数量关系,并证明;(2)若AB<AC,上述结论是否仍然成立?若成立,简述理由:若不成立,直接用等式表示线段AB,AE,CE之间新的数量关系(不需证明).19.(2022·北京·中国人民大学附属中学分校一模)如图,正方形ABCD中,P为BD上一动点,过点P作PQ⊥AP交CD边于点Q.(1)求证:PA=PQ;(2)用等式表示PB、PD、AQ之间的数量关系,并证明;(3)点P从点B出发,沿BD方向移动,若移动的路径长为4,则AQ的中点M移动的路径长为(直接写出答案).20.(2022·北京·东直门中学模拟预测)在Rt△ABC中,∠ABC=90°,∠BAC=30°.D为边BC上一动点,点E在边AC上,CE=CD.点D关于点B的对称点为点F,连接AD,P 为AD的中点,连接PE,PF,EF.(1)如图1,当点D与点B重合时,写出线段PE与PF之间的位置关系与数量关系;(2)如图2,当点D与点B,C不重合时,判断(1)中所得的关系是否仍然成立?若成立,请给出证明,若不成立,请举出反例.21.(2022·北京西城·一模)已知正方形ABCD,将线段BA绕点B旋转α(0°<α<90°),得到线段BE,连接EA,EC.(1)如图1,当点E在正方形ABCD的内部时,若BE平分∠ABC,AB=4,则∠AEC=______°,四边形ABCE的面积为______;(2)当点E在正方形ABCD的外部时,①在图2中依题意补全图形,并求∠AEC的度数;②作∠EBC的平分线BF交EC于点G,交EA的延长线于点F,连接CF.用等式表示线段AE,FB,FC之间的数量关系,并证明.22.(2022·北京市三帆中学模拟预测)已知:如图所示△ABC绕点A逆时针旋转α得到△ADE (其中点B与点D对应).(1)如图1,点B关于直线AC的对称点为B′,求线段B′E与CD的数量关系;(2)当α=32°时,射线CB与射线ED交于点F,补全图2并求∠AFD.23.(2022·北京市第五中学分校模拟预测)如图,在△ABC中,AB=AC,∠BAC=40°,作射线CM,∠ACM=80°.D上,连接AD,E是AD的中点,C关于点E的对称点为F,连接DF.(1)依题意补全图形;(2)判断AB与DF的数量关系并证明;(3)平面内一点G,使得DG=DC,FG=FB,求∠CDG的值.24.(2022·北京朝阳·模拟预测)如图①,Rt△ABC和Rt△BDE重叠放置在一起,∠ABC=∠DBE=90°,且AB=2BC,BD=2BE.(1)观察猜想:图①中线段AD与CE的数量关系是,位置关系是;(2)探究证明:把△BDE绕点B顺时针旋转到图②的位置,连接AD,CE,判断线段AD与CE的数量关系和位置关系如何,并说明理由;(3)拓展延伸:若BC=√5,BE=1,当旋转角α=∠ACB时,请直接写出线段AD的长度.25.(2022·北京市师达中学模拟预测)四边形ABCD是正方形,将线段CD绕点C逆时针旋转2α(0°<α<45°),得到线段CE,连接DE,过点B作BF⊥DE交DE的延长线于F,连接BE.(1)依题意补全图1;(2)直接写出∠FBE的度数;(3)连接AF,用等式表示线段AF与DE的数量关系,并证明.26.(2012·北京顺义·中考模拟)如图1,在△ABC中,∠ACB为锐角,点D为射线BC上一点,连接AD,以AD为一边且在AD的右侧作正方形ADEF.(1)如果AB=AC,∠BAC=90°.①当点D在线段BC上时(与点B不重合),如图2,线段CF、BD所在直线的位置关系为,线段CF、BD的数量关系为.②当点D在线段BC的延长线上时,如图3,①中的结论是否仍然成立?并说明理由;(2)如图4,如果AB≠AC,∠BAC是锐角,点D在线段BC上,当∠ACB满足什么条件时,CF⊥BC(点C、F不重合),并说明理由.27.(2015·北京·模拟预测)(1)问题发现如图1,△ACB和△DCE均为等边三角形,点A,D,E在同一直线上,连接BE.填空:①∠AEB的度数为;②线段AD,BE之间的数量关系为.(2)拓展探究如图2,△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,点A,D,E在同一直线上,CM为△DCE中DE边上的高,连接BE,请判断∠AEB的度数及线段CM,AE,BE之间的数量关系,并说明理由.(3)解决问题如图3,在正方形ABCD中,CD=√2,若点P满足PD=1,且∠BPD=90°,请直接写出点A到BP的距离.28.(2021·北京·二模)在等腰三角形ABC中,AB=AC,∠BAC=α (0°<α<60°).点P是△ABC内一动点,连接AP,BP,将△APB绕点A逆时针旋转α,使AB边与AC重合,得到△ADC,射线BP与CD或CD延长线交于点M(点M与点D不重合).(1)依题意补全图1和图2;由作图知,∠BAP与∠CAD的数量关系为;(2)探究∠ADM与∠APM的数量关系为;(3)如图1,若DP平分∠ADC,用等式表示线段BM,AP,CD之间的数量关系,并证明.。
中考数学 倒数第二题解答题(按字母顺序排列) 人教新课标版
;
(2)求出 t 为何值时,QM∥AB; (3)设△BMQ 的面积为 S,求 S 与 t 的函数关系式;
A
ND
(4)求出 t 为何值时,△BMQ 为直角三角形. Q
4 / 111
B
MP
C
【备战 2012】中考数学 倒数第二题解答题(按字母顺序排列) 人教新课标版 21.(满分 14 分)
该配件的原材料价格一路攀升,每件配件的原材料价格 y1(元)与月份 x(1≤x≤9,且 x 取整数)之间的函数 关系如下表:
月份 x
1
2
3
4
5
6
7
8
9
价格 y1(元/件) 56
4
20
随着国家调控措施的出台,原材料价格的涨势趋缓,10 至 12 月每件配件的原材料价格 y(2 元)与月份 x(10≤x≤12,
2 / 111
【备战 2012】中考数学 倒数第二题解答题(按字母顺序排列) 人教新课标版 (3)根据 1 至 5 月的总利润 1700 万元得到关系式求值即可. 解答:解:(1)设 y1=kx+b,
则
,解得
,
∴y1=20x+540(1≤x≤9,且 x 取整数);
设 y2=ax+b,则
,解得
,
∴y2=10x+630(10≤x≤12,且 x 取整数);
设直线cd的解析式为ykxb直线cd的解析式为yx1又15bcmdcobmcdocbmdobcdcbmme轴上且bpbm此时满足条件的点p有两个它们是p1025p202作mey轴于点ebmc90则bmebcmbmbc又bmbppebe此时满足条件的点p有一个它是p3以bm为底时作bm的垂直平分线分别交y轴bm由2得bmc90pfcm是bm的中点bp此时满足条件的点p有一个它是p4综上符合条件的点p有四个
2020年九年级中考数学 压轴专题 几何探究题(含答案)
2020中考数学 压轴专题 几何探究题(含答案)1. 我们定义:有一组邻角相等的凸四边形叫做“等邻角四边形”.第1题图(1)概念理解:请你根据定义举一个“等邻角四边形的”例子;(2)问题探究:如图①,在等邻角四边形ABCD 中,∠DAB =∠ABC ,AD 、BC 的中垂线恰好交于AB 边上一点P ,连接AC 、BD ,试探究AC 与BD 的数量关系,并说明理由.(3)应用拓展:如图②,在Rt △ABC 与Rt △ABD 中,∠C =∠D =90°,BC =BD =3,AB =5,将Rt △ABD 绕着点A 顺时针旋转角α(0°)得到Rt △AB ′D ′(如图③),当凸四边形AD ′BC 为“等邻角四边形”时,求出它的面积.解:(1)矩形;(答案不唯一)(2)AC =BD ;如解图①所示,连接PD 、PC , ∵PE 是AD 的垂直平分线,PF 是BC 的垂直平分线, ∴P A =PD ,PB =PC ,∴∠P AD =∠PDA ,∠PBC =∠PCB ,∴∠DPB =180°-∠DP A =∠P AD +∠PDA =2∠P AD ,同理可得∠APC =2∠PBC , ∵∠DAB =∠ABC ,即∠P AD =∠PBC ,∴∠APC =∠DPB ,在△APC 和△DPB 中,⎩⎪⎨⎪⎧PA =PD ∠APC =∠DPB PB =PC,△APC ≌△DPB (SAS), ∴ AC =BD .第1题解图①(3)①当∠AD ′B =∠D ′BC 时,如解图②所示,延长AD ′交CB 的延长线于点E ,过点D ′作DF ⊥CE 于点F , ∠ED ′B =∠EBD ′, ∴EB =ED ′,∵∠C =∠EFD ′,∠EAC =∠ED ′F , ∴△ED ′F ∽△EAC , 则D ′F AC =ED ′AE, 设EB =ED ′=x ,由勾股定理可知,在Rt △ACB 中,AC =AB 2-BC 2=52-32=4,则AD ′=4,CE =3+x ,AE =4+x ,在Rt △ACE 中,AC 2+CE 2=AE 2,即42+(3+x )2=(4+x )2, 整理得:2x -9=0,解得x =92,EB =ED ′=92,∴AE =172,∴D ′F 4=92112,∴D ′F =3617,S 四边形AD ′BC =S △ACE -S △D ′BE =12AC ·CE -12D ′F ·BE =12×4×(3+92)-12×92×3617=15-8117=17417;第1题解图②②当∠D ′BC =90°时,如解图③所示,过点D ′作D ′E ⊥AC ,交AC 于点E , ∴四边形ECBD ′是矩形,∴ED ′=BC =3,在Rt △AED ′中,根据勾股定理得AE =AD′2-ED′2=42-32=7,∵S 四边形AD ′BC =S △AED ′+S 矩形ECBD ′=12AE ·ED ′+EC ·BC =372+12-37=12-372.综上所述,当凸四边形AD 为等邻角四边形时,它的面积为17417或12-372.第1题解图③2. (1)发现 如图①,点A 为线段BC 外一动点,且BC =a ,AB =b .填空:当点A 位于________时,线段AC 的长取得最大值,且最大值为________(用含有a ,b 的式子表示); (2)应用 点A 为线段BC 外一动点,且BC =3,AB =1.如图②所示,分别以AB ,AC 为边作等边三角形ABD 和等边三角形ACE,连接CD,BE.①请找出图中与BE相等的线段,并说明理由;②直接写出线段BE长的最大值;(3)拓展如图③,在平面直角坐标系中,点A的坐标为(2,0),点B的坐标为(5,0),点P为线段AB外一动点,且P A=2,PM=PB,∠BPM=90°.请直接写出线段AM长的最大值及此时点P的坐标.第2题图(1)解:CB的延长线上,a+b;【解法提示】∵点A为线段BC外一动点,且BC=a,AB=b,∴当点A位于CB的延长线上时,线段AC的长取得最大值,且最大值为BC+AB=a+b.(2)解:①DC=BE,理由如下:∵△ABD和△ACE均为等边三角形,∴AD=AB,AC=AE,∠BAD=∠CAE=60°,∴∠BAD+∠BAC=∠CAE+∠BAC,即∠CAD=∠EAB,∴△CAD≌△EAB(SAS),∴DC=BE;②BE长的最大值是4;【解法提示】∵线段BE长的最大值=线段CD的最大值,由(1)知,当线段CD的长取得最大值时,点D在CB 的延长线上,∴CD长的最大值为BD+BC=AB+BC=4.(3)解:AM长的最大值是3+22,点P的坐标是(2-2,2).【解法提示】如解图①,构造△BNP≌△MAP,则NB=AM,P A=PN,∴∠APN=90°,由(1)得出当点N在BA的延长线上时,NB有最大值(如解图②),可得AN=22,∴AM=NB=3+22,过点P作PE⊥x轴于点E,PE=AE=2,∴点P的坐标是(2-2,2).第2题解图3.如图,△ABC是边长为4 cm的等边三角形,边AB在射线OM上,且OA=6 cm.点D从O点出发,沿OM的方向以1 cm/s的速度运动.当D不与点A重合时,将△ACD绕点C逆时针方向旋转60°得到△BCE,连接DE.(1)求证:△CDE是等边三角形;(2)当6<t<10时,△BDE的周长是否存在最小值?若存在,求出△BDE的最小周长;若不存在,请说明理由;(3)当点D在射线OM上运动时,是否存在以D、E、B为顶点的三角形是直角三角形?若存在,求出此时t的值;若不存在,请说明理由.第3题图(1)证明:∵△BCE是由△ACD逆时针旋转60°得到的,∴CD=CE,∠DCE=60°,∴△CDE是等边三角形;(2)解:存在.理由如下:∵△BCE是由△ACD逆时针旋转60°得到的,∴AD=BE,又∵△CDE是等边三角形,∴DE=CD,∴C△BDE=BD+BE+DE=BD+AD+CD=AB+CD,∵AB=4为定值,∴当CD最小,即CD⊥AB时,△BDE的周长最小,∵△ABC是等边三角形,∴当CD最小,即CD⊥AB时,易得CD=23,∴△BDE的最小周长为23+4;(3)解:存在.理由如下:如解图,过点C作CF⊥OM于点F,则CF=23,∴BD=||t-6,t-10,BE=AD=||DE=CD=CF2+DF2=12+(t-8)2,①当∠DEB=90°时,BD2=BE2+DE2,即(t-10)2=(t-6)2+12+(t-8)2,第3题解图解得t1=2,t2=6(不合题意,舍去);②当∠EBD=90°时,DE2=BD2+BE2,即12+(t-8)2=(t-10)2+(t-6)2,解得t3=6,t4=10(两者均不合题意,舍去);③当∠BDE=90°时,BE2=BD2+DE2,即(t-6)2=(t-10)2+12+(t-8)2,解得t5=14,t6=10(舍去).综上所述,存在以D、E、B为顶点的三角形是直角三角形,此时t=2或14.4.如图,将两个全等的直角三角形△ABD、△ACE拼在一起(图①),△ABD不动.(1)若将△ACE绕点A逆时针旋转,连接DE,M是DE的中点,连接MB、MC(图②),证明:MB=MC;(2)若将图①中的CE向上平移,∠CAE不变,连接DE,M是DE的中点,连接MB、MC(图③),判断并直接写出MB、MC的数量关系;(3)在(2)中,若∠CAE的大小改变(图④),其他条件不变,则(2)中的MB、MC的数量关系还成立吗?说明理由.第4题图(1)证明:如解图①,连接AM,由已知得△ABD≌△ACE,第4题解图①∴ AD =AE , AB =AC , ∠BAD =∠CAE , 又∵MD =ME ,∴∠MAD =∠MAE (三线合一), ∴∠MAD -∠BAD =∠MAE -∠CAE , 即∠BAM =∠CAM , 在△ABM 和△ACM 中, ⎩⎪⎨⎪⎧AB =AC ∠BAM =∠CAM AM =AM, ∴△ABM ≌△ACM (SAS ), ∴MB =MC ;第4题解图②(2)解:MB =MC ;【解法提示】如解图②,延长DB 、AE 相交于点E ′,延长EC 交AD 于点F , ∴BD =BE ′,CE =CF ,又∵M 是ED 的中点,B 是DE ′的中点, ∴MB ∥AE ′,∴∠MBC =∠CAE ,同理:MC ∥AD , ∴∠BCM =∠BAD , 又∵∠BAD =∠CAE , ∴∠MBC =∠BCM , ∴MB =MC .(3)解:MB =MC 还成立.理由如下: 如解图③,延长BM 交CE 于点F ,第4题解图③∵CE ∥BD , ∴∠MDB =∠MEF , ∠MBD =∠MFE , 又∵M 是DE 的中点, ∴MD =ME ,在△MDB 和△MEF 中, ⎩⎪⎨⎪⎧∠MBD =∠MFE ∠MDB =∠MEF MD =ME, ∴△MDB ≌△MEF (AAS), ∴MB =MF =12BF ,又∵∠ACE =90°,∴∠BCF =90°, ∴MC =12BF ,∴MB=MC.5.在正方形ABCD中,点E是对角线AC上的动点(与点A,C不重合),连接BE.(1)将射线BE绕点B顺时针方向旋转45°,交直线AC于点F.①依题意补全图①;②小研通过观察、实验,发现线段AE,FC,EF存在以下数量关系:AE与FC的平方和等于EF的平方.小研把这个猜想与同学们进行交流,通过讨论,形成证明该猜想的几种想法:想法1:将线段BF绕点B逆时针旋转90°,得到线段BM,要证AE,FC,EF的数量关系,只需证AE,AM,EM的数量关系.想法2:将△ABE沿BE翻折,得到△NBE,要证AE,FC,EF的关系,只需证EN,FN,EF的关系.…请你参考上面的想法,用等式表示线段AE,FC,EF的数量关系并证明;(一种方法即可)(2)如图②,若将直线..AC于点F.小研完成作图后,发现直线AC上存在三..BE绕点B顺时针旋转135°,交直线条线段(不添加辅助线)满足:其中两条线段的平方和等于第三条线段的平方,请直接用等式表示这三条线段的数量关系.第5题图解:(1)①补全图形,如解图①;图① 图②第5题解图②AE 2+FC 2=EF 2;证明:如解图②,过B 作MB ⊥BF 于点B ,使BM =BF ,连接AM 、EM ,∵四边形ABCD 是正方形,∴∠ABC =90°,∠1=∠2=45°,AB =BC ,∵∠3=45°,∴∠MBE =∠3=45°,在△MBE 和△FBE 中,⎩⎪⎨⎪⎧BM =BF ∠MBE =∠3BE =BE,∴△MBE ≌△FBE (SAS ),∴EM =EF ,∵∠4=90°-∠ABF ,∠5=90°-∠ABF ,∴∠4=∠5,在△AMB 和△CFB 中,⎩⎪⎨⎪⎧BM =BF ∠4=∠5AB =CB,∴△AMB ≌△CFB (SAS),∴AM =FC ,∠6=∠2=45°,∴∠MAE =∠6+∠1=90°,在Rt △MAE 中,AE 2+AM 2=EM 2,∴AE 2+FC 2=EF 2;(2)AF 2+EC 2=EF 2.【解法提示】如解图③,过B 作MB ⊥BE ,使BM =BE ,连接ME 、MF 、AM ,∵直线BE 绕点B 顺时针旋转135°,交直线AC 于点F ,∴∠FBE =45°,∴∠MBF =90°-45°=45°,∴∠FBE =∠MBF ,在△MBF 和△EBF 中,⎩⎪⎨⎪⎧BM =BE ∠MBF =∠FBE ,BF =BF∴△MBF ≌△EBF (SAS),∴MF =EF ,∵∠MBA =90°-∠ABE ,∠EBC =90°-∠ABE ,∴∠MBA =∠EBC ,在△AMB 和△CBE 中,⎩⎪⎨⎪⎧BM =BE ∠MBA =∠EBC AB =CB,∴△AMB ≌△CEB (SAS ),∴AM =EC ,∠BAM =∠BCE =45°,∴∠MAE =∠BAM +∠BAC =90°,∴∠MAF =90°,在Rt △MAF 中,AF 2+AM 2=MF 2,∴AF 2+EC 2=EF 2.第5题解图③6.在△ABC中,AB=AC,∠A=60°,点D是BC边的中点,作射线DE,与边AB交于点E,射线DE绕点D顺时针旋转120°,与直线AC交于点F.(1)依题意补全图形;(2)小华通过观察、实验提出猜想:在点E运动的过程中,始终有DE=DF.小华把这个猜想与同学们进行交流,通过讨论,形成了证明该猜想的几种想法:想法1:由点D是BC边的中点,通过构造一边的平行线,利用全等三角形,可证DE=DF;想法2:利用等边三角形的对称性,作点E关于线段AD的对称点P,由∠BAC与∠EDF互补,可得∠AED与∠AFD互补,由等角对等边,可证DE=DF;想法3:由等腰三角形三线合一,可得AD是∠BAC的平分线,由角平分线定理,构造点D到AB,AC的高,利用全等三角形,可证DE=DF;…请你参考上面的想法,帮助小华证明DE=DF(选一种方法即可);(3)在点E运动的过程中,直接写出BE,CF,AB之间的数量关系.解:(1)补全图形,如解图①;第6题解图(2)想法1:证明:如解图②,过点D作DG∥AB,交AC于点G,∵点D是BC边的中点,∴DG=12AB,∴△CDG是等边三角形,∴∠EDB+∠EDG=120°,∵∠FDG+∠EDG=120°,∴∠EDB=∠FDG,∵BD=DG,∠B=∠FGD=60°,∴△BDE≌△GDF,∴DE=DF;想法2:证明:如解图③,连接AD,作点E关于线段AD的对称点P,点P在边AC上,∵点D是BC边的中点,AB=AC,∴直线AD是△ABC的对称轴,∴△ADE≌△ADP,∴DE=DP,∠AED=∠APD,∵∠BAC+∠EDF=180°,∴∠AED+∠AFD=180°,∵∠APD+∠DPF=180°,∴∠AFD=∠DPF,∴DP=DF,∴DE=DF;第6题解图想法3:证明:如解图④,连接AD,过D作DM⊥AB于点M,DN⊥AC于点N,∵点D是BC边的中点,∴AD平分∠BAC,∵DM⊥AB于点M,DN⊥AC于点N,∴DM=DN,∵∠A=60°,∴∠MDE+∠EDN=120°,∵∠FDN+∠EDN=120°,∴∠MDE =∠FDN ,∴Rt △MDE ≌Rt △NDF ,∴DE =DF ;(3)当点F 在AC 边上时,BE +CF =12AB ;当点F 在AC 的延长线上时,BE -CF =12AB . 【解法提示】①当点F 在AC 边上时,如解图⑤,过点D 作DM ⊥AB 于点M ,作DN ⊥AC 于点N , ∵∠B =∠C =60°,BD =DC ,∠BDM =∠CDN =30°,∴△BDM ≌△CDN ,∴BM =CN ,DM =DN ,又∵∠EDF =120°=∠MDN ,∴∠EDM =∠NDF ,又∵∠EMD =∠FND =90°,∴△EDM ≌△FDN ,∴ME =NF ,∴BE +CF =BM +EM +NC -FN =2BM =BD =12AB ;图⑤ 图⑥第6题解图②当点F 在AC 的延长线上时,如解图⑥,过D 作DM ⊥AB 于点M ,作DN ⊥AC 于点N ,∵∠B =∠DCN =60°,BD =DC ,∠BDM =∠CDN =30°,∴△BDM ≌△CDN ,∴BM =CN ,DM =DN ,又∵∠EDF =120°=∠MDN ,∴∠EDM =∠NDF ,又∵∠EMD =∠FND =90°,∴△EDM ≌△FDN ,∴ME =NF ,∴BE -CF =BM +EM -(FN -CN )=2BM =BD =12AB ,综上所述,当点F 在AC 边上时,BE +CF =12AB ;当点F 在AC 的延长线上时,BE -CF =12AB . 7. 我们规定:三角形任意两边的“极化值”等于第三边上的中线和这边一半的平方差.如图①,在△ABC 中,AO 是BC 边上的中线,AB 与AC 的“极化值”就等于AO 2-BO 2的值,可记为ABAC =AO 2-BO 2.第7题图(1)在图①中,若∠BAC =90°,AB =8,AC =6,AO 是BC 边上的中线,则ABAC=________,OCOA=________;(2)如图②,在△ABC中,AB=AC=4,∠BAC=120°,求AB AC、BA BC的值;(3)如图③,在△ABC中,AB=AC,AO是BC边上的中线,点N在AO上,且ON=13A A O,已知ABAC=14,BN BA=10,求△ABC的面积.解:(1)0 ,7;【解法提示】∵∠BAC=90°,AB=8,AC=6,∴BC=AB2+AC2=10,在Rt△ABC中,AO是BC边上的中线,∴AO=BO=5,∴AB AC=AO2-BO2=0,如解图①,取AC的中点D ,连接OD ,则OD ∥AB ,OD =12AB =4,CD =12AC =3,∴OC OA =OD 2-CD 2=16-9=7.第7题解图(2)如解图②,作底边BC 上的中线AE ,由题意可知AE 是∠BAC 的平分线、BC 边上的高. ∵AB =ΑC =4,∠BAC =120°,∴在Rt △ABE 中,∠AEB =90°,∠ABC =30°,∴AE =12×4=2,BE =32×4=23, ∴AB AC =AE 2-BE 2=22-(23)2=-8.过点B作AC边上中线BM,过点M作MN⊥BC于点N,∴AM=CM=1×4=2.2在Rt△MNC中,∠MNC=90°,∠C=30°,×2=1,CN=22-12= 3.∴MN=12∵BC=2BE=43,∴BN=BC-CN=43-3=33,BM2=12+(33)2=28.∴BA BC=BM2-AM2=28-22=24;(3)如解图③,过点B作△ABN的AN边上中线BM,∵在△ABC中,AB=AC,AO是BC边上的中线,点N在AO上,且ON=13AO,第7题解图③∴AM=MN=NO,AO⊥BC,即AO=3NO.∵AB A AC =14,BNBA =10,∴ AO 2-BO 2=14,即(3ON )2-BO 2=9ON 2-BO 2=14,①∵BM 2-MN 2=OM 2+BO 2-MN 2=(2ON )2+BO 2-ON 2=3ON 2+BO 2=10,②由①、②得⎩⎪⎨⎪⎧9ON 2-BO 2=143ON 2+BO 2=10, ∴ON 2=2,即ON =2,BO =2,∴BC =4,AO =32,∴S △ABC =12BC ·AO =12×4×32=6 2. 8. 问题发现:如图①,在△ABC 中,∠ACB =90°,分别以AC 、BC 为边向外侧作正方形ACDE 和正方形BCFG .(1)△ABC和△DCF面积的关系是________;(请在横线上填写“相等”或“不相等”)(2)拓展探究:若∠C≠90°,(1)中的结论还成立吗?若成立,请结合图②给出证明;若不成立,请说明理由;(3)解决问题:如图③,在四边形ABCD中,AC⊥BD,且AC与BD的和为10,分别以四边形ABCD的四条边为边向外侧作正方形ABFE、正方形BCHG、正方形CD JI、正方形DA LK;运用(2)中的结论,图中阴影部分的面积和是否有最大值?如果有,请求出最大值,如果没有,请说明理由.第8题图解:(1)相等;【解法提示】∵四边形ACDE和四边形BCFG是正方形,∴AC=DC,BC=FC,∠ACD=∠BCF=90°,∵∠ACB=90°,∴∠DCF=90°=∠ACB.∴12AC·BC=12DC·CF,∴S△ABC=S△DFC.(2)成立.理由如下:如解图,延长BC到点P,过点A作AP⊥BP于点P,过点D作DQ⊥FC于点Q,∴∠APC=∠DQC=90°.∵四边形ACDE,四边形BCFG均为正方形,∴AC=CD,BC=CF,∠ACP+∠PCD=90°,∠DCQ+∠PCD=90°,∴∠ACP=∠DCQ.第8题解图在△APC 和△DQC 中,⎩⎪⎨⎪⎧∠APC =∠DQC ∠ACP =∠DCQ AC =DC,∴△APC ≌△DQC (AAS),∴AP =DQ .又∵S △ABC =12BC ·AP ,S △DFC =12FC ·DQ , ∴S △ABC =S △DFC ;(3)图中阴影部分的面积和有最大值.理由如下:由(2)中的结论可知:S △K D J =S △ADC ,S △FBG =S △ABC ,S △AE L =S △ABD ,S △CH I =S △BDC ,∴S 阴影=S △K DJ +S △FBG +S △AEL +S △CHI =S △ADC +S △ABC +S △ABD +S △BDC =2S 四边形ABCD .设AC =m ,则BD =10-m ,∵AC ⊥BD ,∴S 四边形ABCD =12AC ·BD =12m ·(10-m )=-12m 2+5m =-12(m -5)2+252. ∵-12<0,∴S四边形ABCD有最大值,最大值为252.=25,∴S阴影=2×252∴阴影部分的面积和有最大值,最大值为25.9.问题背景如图①,在正方形ABCD的内部,作∠DAE=∠ABF=∠BCG=∠CDH,根据三角形全等的条件,易得△DAE ≌△ABF≌△BCG≌△CDH,从而得到四边形EFGH是正方形.类比探究如图②,在正△ABC的内部,作∠BAD=∠CBE=∠ACF,AD,BE,CF两两相交于D,E,F三点(D,E,F 三点不重合).(1)△ABD,△BCE,△CAF是否全等?如果是,请选择其中一对进行证明;(2)△DEF是否为正三角形?请说明理由;(3)进一步探究发现,△ABD的三边存在一定的等量关系,设BD=a,AD=b,AB=c,请探索a,b,c满足的等量关系.第9题图解:(1)△ABD≌△BCE≌△CAF.证明:如解图①,第9题解图①∵△ABC为正三角形,∴∠CAB=∠ABC=∠BCA=60°,AB=BC.∵∠ABD=∠ABC-∠2,∠BCE=∠ACB-∠3,而∠2=∠3,∴∠ABD=∠BCE.又∵∠1=∠2,∴△ABD≌△BCE(ASA);(2)△DEF是正三角形.理由如下:∵△ABD≌△BCE≌△CAF,∴∠ADB=∠BEC=∠CF A,∴∠FDE=∠DEF=∠EFD,∴△DEF是正三角形;(3)如解图②,作AG⊥BD,交BD延长线于点G,第9题解图②由△DEF 是正三角形得到∠ADG =60°,(或者∠ADG =∠1+∠ABD =∠2+∠ABD =60°.)∴在Rt △ADG 中,DG =12b ,AG =32b . ∴在Rt △ABG 中,c 2=(a +12b )2+(32b )2, ∴c 2=a 2+ab +b 2.10. 在△ABC 中,∠ACB =90°,AC =3,BC =4,将△ABC 绕顶点C 顺时针旋转,旋转角为θ(0°<θ<180°),得到△A ′B ′C .(1)设△ACA ′和△BCB ′的面积分别为S 1和S 2.若θ=40°,请求出S 1S 2的值; (2)如图①,设A ′B ′与CB 相交于点D ,且AB ∥CB ′:①求证:CD =B ′D ;②求BD 的长;(3)如图②,设AC 中点为点M ,A ′B ′中点为点N ,连接MN ,MN 是否存在最大值,若存在,求出MN 的值,判断出此时AA ′与BB ′的位置关系;若不存在,请说明理由.第10题图(1)解: ∵△ABC 绕顶点C 顺时针旋转40°,得到△A ′B ′C , ∴CA =CA ′,CB =CB ′,∠ACA ′=∠BCB ′=θ,∴△ACA ′∽△BCB ′,∴S △ACA ′∶S △BCB ′=AC 2∶BC 2=32∶42=9∶16;∴S 1S 2=916; (2)①证明:∵AB ∥B ′C ,∴∠ABC =∠BCB ′;由旋转的性质得∠ABC =∠DB ′C ,即∠BCB ′ =∠DB ′C ;∴CD =B ′D ;②解:根据勾股定理可得A ′B ′=AB =5,据题意可得∠BCB ′ +∠BCA ′ =∠DB ′C +∠CA ′B ′=90°,∴∠BCA ′ =∠CA ′B ′,∴CD =A ′D =B ′D =12A ′B ′=52, ∴ BD =BC -CD =32; (3)解:存在,∵∠A ′CB ′=90°,点M 为AC 的中点,∴CM =12AC =32, ∵△A ′B ′C 是由△ABC 绕顶点C 顺时针旋转所得,∴A ′B ′=AB =5,第10题解图如解图,连接CN ,可得MN ≤CM +CN ,∴只有当点N 在MC 的延长线上时,MN =CM +CN ,此时MN 最大,∵点N 为A ′B ′的中点,∴CN =12 A ′B ′=52,MN =CM +CN =4, 即MN 的最大值为4.此时AA ′⊥BB ′.。
2020中考数学几何探究专项训练(倒数第二大题)
1.如图,△ABC 与△CDE 是等边三角形,连接AD ,取AD 的中点P ,连接BP 并延长至点M ,使PM=BP ,连接AM ,EM ,AE ,将△CDE 绕点C 顺时针旋转.(1)如图1,当点D 在BC 上,点E 在AC 上时,则△AEM 的形状为 ;(2)将△CDE 绕点C 顺时针旋转至图2的位置,请判断△AEM 的形状,并说明理由;(3)若CD=21BC ,将△CDE 由图1位置绕点C 顺时针旋转α(0°≤α<360°),当ME=3CD 时,请直接写出α的值.图1 图2 备用图2.在△ABC 和△ADE 中,BA=BC ,DA=DE ,且∠ABC=∠ADE=α,点E 在△ABC 的内部,连接EC ,EB 和BD ,并且∠ACE+∠ABE=90°.(1)如图1,当α=60°时,线段BD 与CE 的数量关系为 ,线段EA ,EB ,EC 的数量关系为 ;(2)如图2当α=90°时,请写出线段EA ,EB ,EC 的数量关系,并说明理由; (3)在(2)的条件下,当点E 在线段CD 上时,若BC=52,请直接写出△BDE 的面积.3.如图,△ABC 中,AB=BC,BD ⊥AC 于点D,∠FAC=∠ABC ,且∠FAC 在AC 下方.点P,Q 分别是射线BD ,射线AF 上的动点,且点P 不与点B 重合,点Q 不与点A 重合,连接CQ ,过点P 作PE ⊥CQ 于点E ,连接DE,,1)若∠ABC=60°,BP=AQ,①如图1,当点P 在线段BD 上运动时,请直接写出线段DE 和线段AQ 的数量关系和位置关系;②如图2,当点P运动到线段BD的延长线上时,试判断①中的结论是否成立,并说明理由;,2)若∠ABC=2α≠60°,请直接写出当线段BP和线段AQ满足什么数量关系时,能使(1)中①的结论仍然成立(用含α的三角函数表示).4.已知正方形ABCD与正方形CEFG,M是AF的中点,连接DM,EM.(1)如图1,点E在CD上,点G在BC的延长线上,请判断DM,EM的数量关系与位置关系,并直接写出结论;(2)如图2,点E在DC的延长线上,点G在BC上,(1)中结论是否仍然成立?请证明你的结论;(3)将图1中的正方形CEFG绕点C旋转,使D,E,F三点在一条直线上,若AB=13,CE=5,请画出图形,并直接写出MF的长.5.定义:我们知道,四边形的一条对角线把这个四边形分成了两个三角形,如果这两个三角形相似(不全等),我们就把这条对角线叫做这个四边形的“相似对角线”.理解:(1)如图1,已知Rt△ABC在正方形网格中,请你只用无刻度的直尺在网格中找到一点D,使四边形ABCD是以AC为“相似对角线”的四边形(保留画图痕迹,找出3个即可);(2)如图2,在四边形ABCD中,∠ABC=80°,∠ADC=140°,对角线BD平分∠ABC.求证:BD是四边形ABCD的“相似对角线”;(3)如图3,已知FH是四边形EFCH的“相似对角线”,∠EFH=∠HFG=30°,连接EG,若△EFG的面积为2,求FH的长.6.问题:如图①,在Rt△ABC中,AB=AC,D为BC边上一点(不与点B,C重合),将线段AD绕点A逆时针旋转90°得到AE,连接EC,则线段BC,DC,EC之间满足的等量关系式为;探索:如图②,在Rt△ABC与Rt△ADE中,AB=AC,AD=AE,将△ADE绕点A旋转,使点D落在BC边上,试探索线段AD,BD,CD之间满足的等量关系,并证明你的结论;应用:如图③,在四边形ABCD中,∠ABC=∠ACB=∠ADC=45°.若BD=9,CD=3,求AD的长.7.如图(1),已知点G在正方形ABCD的对角线AC上,GE⊥BC,垂足为点E,GF⊥CD,垂足为点F,,1)证明与推断:①求证:四边形CEGF是正方形;②推断:的值为,,2)探究与证明:将正方形CEGF绕点C顺时针方向旋转α角(0°,α,45°),如图(2)所示,试探究线段AG 与BE之间的数量关系,并说明理由:,3)拓展与运用:正方形CEGF在旋转过程中,当B,E,F三点在一条直线上时,如图(3)所示,延长CG 交AD于点H.若AG=6,GH=2,则BC=,8.在△ABC 中,∠ABC=90°,,1)如图1,分别过A,C 两点作经过点B 的直线的垂线,垂足分别为M,N ,求证:△ABM ∽△BCN,,2)如图2,P 是边BC 上一点,∠BAP=∠C,tan ∠PAC=,求tanC 的值;,3)如图3,D 是边CA 延长线上一点,AE=AB,∠DEB=90°,sin ∠BAC=,,直接写出tan ∠CEB 的值.9.在△ABC 中,AB =AC ,∠BAC =120°,以CA 为边在∠ACB 的另一侧作∠ACM =∠ACB ,点D 为射线BC 上任意一点,在射线CM 上截取CE =BD ,连接AD 、DE 、AE .(1)如图1,当点D 落在线段BC 的延长线上时,直接写出∠ADE 的度数;(2)如图2,当点D 落在线段BC (不含边界)上时,AC 与DE 交于点F ,请问(1)中的结论是否仍成立?如果成立,请给出证明;如果不成立,请说明理由;(3)在(2)的条件下,若AB =6,求CF 的最大值.10.问题背景:我们学习等边三角形时得到直角三角形的一个性质:在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半.即:如图1,在Rt△ABC中,∠ACB=90°,∠ABC=30°,则:AC=AB.探究结论:小明同学对以上结论作了进一步研究.(1)如图1,连接AB边上中线CE,由于CE=AB,易得结论:①△ACE为等边三角形;②BE与CE之间的数量关系为BE=CE.(2)如图2,点D是边CB上任意一点,连接AD,作等边△ADE,且点E在∠ACB的内部,连接BE.试探究线段BE与DE之间的数量关系,写出你的猜想并加以证明.(3)当点D为边CB延长线上任意一点时,在(2)条件的基础上,线段BE与DE之间存在怎样的数量关系?请直接写出你的结论BE=DE.拓展应用:如图3,在平面直角坐标系xOy中,点A的坐标为(﹣,1),点B是x轴正半轴上的一动点,以AB为边作等边△ABC,当C点在第一象限内,且B(2,0)时,求C 点的坐标.11.. ,1)操作发现:如图①,小明画了一个等腰三角形ABC,其中AB=AC,在△ABC的外侧分别以AB,AC为腰作了两个等腰直角三角形ABD,ACE,分别取BD,CE,BC的中点M,N,G,连接GM,GN.小明发现了:线段GM与GN的数量关系是__________;位置关系是__________,,2)类比思考:如图②,小明在此基础上进行了深入思考.把等腰三角形ABC换为一般的锐角三角形,其中AB,AC,其它条件不变,小明发现的上述结论还成立吗?请说明理由.,3)深入研究:如图③,小明在(2)的基础上,又作了进一步的探究.向△ABC的内侧分别作等腰直角三角形ABD,ACE,其它条件不变,试判断△GMN的形状,并给与证明.已知,在△ABC中,∠BAC=90°,AB=AC,点D为直线BC上一动点(点D不与B、C重合),以AD为边在AD的上边作正方形ADEF,连接CF.(1)观察猜想:如图1,当点D在线段BC上时,①BC与CF的位置关系为:;②BC、CD、CF之间的数量关系为:.(2)数学思考:如图2,当点D在线段CB的延长线上时,以上①②关系是否成立,请在后面的横线上写出正确的结论.①BC与CF的位置关系为:;②BC、CD、CF之间的数量关系为:.(3)如图3,当点D在线段BC的延长线上时,延长BA交CF于点G,连接GD,若已知AB=2,CD=BC,请求出DG的长(写出求解过程).。
北京市近五年中考数学倒数第二题几何综合题分析
北京市近五年中考数学倒数第二题几何综合题分析先贴上近五年的真题,最好还是先让孩子试着做一做,再看后边的分析。
在上一篇中,我们重点强调了变中抓不变的思想,因为它是我们发现事物规律,提炼出一般性结论和方法的基础。
相信大部分同学做完这五道题都已经发现,每年的题虽然在变,但考察的主要知识点不变,都是围绕全等三角形展开。
而在全等三角形中,考察的知识点有两个:一个是性质;一个是判定。
由于这是压轴题,所以通常两个点都需要涉及,那么命题思路就比较固定了,一般分为三步。
第一步:找出一组简单全等第二步:全等性质的应用第三步:证一组复杂全等(设置简单全等,是为了考察全等性质的应用,通常从简单全等中推出的边角对应相等,会是证明复杂全等的关键。
)当然,无论是全等三角形的性质还是判定,都是围绕边、角对应相等展开的,所以实质上角度关系、边长关系的分析与转化,才是解决问题的关键点。
在我们正式分析每一道题目之前,照例还是先简单梳理一下知识点。
知识点一:全等三角形的性质全等三角形的性质非常简单,课本上就一句话:“全等三角形对应边相等,全等三角形对应角相等”。
不过,我们已经发现,性质应用处在第二步这个纽带环节,所以必须要引起足够的重视。
三角形有三条边三个角,共6组对应,证明全等需要三组对应,那么证明出全等后还可以推出另外三组对应。
建议思路不太清晰的同学一定要将推出的三组对应写出来,再分别看看是否可以跟其它条件结合推出其它边角相等,为第三部证复杂全等做好充足的准备。
知识点二:全等三角形的判定全等三角形的判定,学校讲了五种方法:SSS、SAS、HL、ASA、AAS。
可以再简单归纳一下:一定要找到三组对应;三组对应中至少有一组边对应;如果是两组边对应一组角对应时,角必须是夹角或直角。
相信绝大部分同学对这五种判定方法都非常熟悉,但光熟悉判定方法是远远不够的,因为对于全等三角形判定的考察,难点通常是在添加辅助线构造全等上。
因此,我们对常见辅助线的添法进行了归纳,如倍长中线、截长补短等。
2020年九年级中考数学 几何压轴之几何探究题(含答案)
∴ △ABD≌△ CAF(AAS); 归 纳证明 :∵∠ 1=∠ 2=∠ BAC,∠1=∠BAE+ ∠ ABE, ∠ BAC=∠ BAE+∠ CAF,∠2=∠FCA+∠ CAF, ∴ ∠ABE=∠ CAF,∠BAE=∠FCA, 在 △ABE 和△CAF 中,
8 / 17
知识像烛光,能照亮一个人,也能照亮无数的人。--培根
2. 特 例探究 :如图 ①,已 知在△ABC 中,AB=BC,
∠ ABC=90°,D 为 AC 边 的中点 ,连接 BD,判断△ABD 是什 么三角 形,并 说明理 由;
归 纳证明 :如图 ②,已 知在△ABC 中,AB=BC,∠ ABC=90°,把 Rt△DEF 的 直角顶 点 D 放在 AC 的
中 点上,DE 交 AB 于 M,DF 交 BC 于 N,连接 BD. 证明:DM=DN;
拓 展应用 :在图 ②中,AC=4,其 他条件 都不发 生变化 ,请直接 写出 Rt△DEF 与△ABC 的重 叠部分
的面积.
2 / 17
知识像烛光,能照亮一个人,也能照亮无数的人。--培根
第 2 题图
特例探究 :解:△ABD 是等腰直角三角形.
知识像烛光,能照亮一个人,也能照亮无数的人。--培根
2020 中考数学 几何压轴之几何探究题(含答案)
1. 两个全等的直角三角形 ABC 和 DEF 重叠在一起,其中∠A=60°,AC=1,固定△ABC 不动,将△DEF 进行如下 操作:
(1)操作发现 如图①,△DEF 沿线段 AB 向右平移(即 D 点在线段 AB 内移动),连接 DC、CF、FB,四边形 CDBF 的形状在不断变化,但它的面积不变化,请求出其面积; (2)猜想论证 如图②,当 D 点移到 AB 的中点时,请你猜想四边形 CDBF 的形状,并说明理由; (3)拓展研究 如图③,将△DEF 的 D 点固定在 AB 的中点,然后绕 D 点按顺时针方向旋转△DEF,使 DF 落在 AB 的边上,此时 F 点恰好与 B 点重合,连接 AE,求 sinα 的值.
2020中考数学几何综合探究专题练习(含答案)
2020中考数学几何综合探究专题练习例题1.如图,在等腰梯形仙CD中,AD//BC,AB=DC=5O,AD=75,BC=135,点F从点3出发沿折线段BA-AD-DC以每秒5个单位长度的速度向点C匀速运动,点。
从点。
出发沿线段CB方向以 每秒3个单位长度的速度匀速运动,过点Q向上作射线QK±BC,交折线段CD-ZM-AB于点E,点P、。
同时开始运动,当点F与点C重合时停止运动,点。
也随之停止,设点P、。
运动的时间是,秒(r>0)(1)当点P到达终点C时,求I的值,并指出此时3Q的长;(2)当点P运动到AD上时,I为何值能使PQ。
?(3)设射线好扫过梯形ABCD的面积为S,分别求出点E运动到CD,D4上时,S与t的函数关系式;(不必写出f的取值范围)【答案】⑴7=5。
+;+50=35($)时,点p到达终点。
,此时,QC=35x3=105,所以3Q的长为135—105=30.⑵如图1,PQ//DC,又曷〃8C,则四边形FQC£>为平行四边形,从而PD=QC,由QC=3t,BA+AP=5ti?5得50+75-5r=3r,解得t=—,8125经检验:当r时,有PQ//DC.⑶①当点E在CD上运动时,如图2,分别过点A、。
作AFXBC于点F,DHLBC于点H,则四边形为矩形,且AABF^ADCH,从而FH=AD=Y5,于是BF=CH=30,..Z)H=*=40.又QC=3t,从而QE=QC tanC=3t—=4t(注:用相似三角形求解亦可)CH19■■S=S AQCE=-QE.QC=6t2.②当点E在ZM上运动时,如图1,过点。
作DH.LBC于点H,由①知DH=40,CH=30,又QC=3t,从而ED=QH=QC-CH=3t-3OS=S梯形“庞=!(网+四)质=120—600•4例题2.如图,E 、F 分别是边长为4的正方形ABCD 的边3C, C£>上的点,CE = 1, CF = 一,直线EF 交 3垂足分别为M , N ,设加的延长线于G,过线段FG 上的一个动点H 作HML4G, HNLAD,HM = x,矩形钢切V 的面积为y (1) 求v 与x 之间的函数关系式;(2) 当x 为何值时,矩形雄HN 的面积最大,最大面积为多少?4 【答案】(1)・.・正方形ABCD 的边长为4, CE = 1, CF = — 3BE = 3CF CF 又 AG//CF, AFEC^AGEB, ——=——,BG = 4BG BE义 HM//BEA AHMG^AEBG, —BG BE4 4:.MG =—x, AM =8——x 3 39y =尤 84 9 / \%2 + 8x (0 <x<4)4 4 9(2)V y = --x 2+8x = --(x-3)+12.•.当x = 3时,矩形面积最大,最大面积为12例题3.如图,在平面直角坐标系中,点A(0,O), B(30,2), C(0, 2),动点Z)以每秒1个单位的速度从点。
2020年中考数学复习:几何 专项练习题(含答案)
2020年中考数学复习:几何 专项练习题一、选择题1.如图,直角三角板ABC 的斜边AB=12cm ,∠A=30°,将三角板ABC 绕C 顺时针旋转90°至三角板A ′B ′C ′的位置后,再沿CB 方向向左平移,使点B ′落在原三角板ABC 的斜边AB 上,则三角板A ′B ′C ′平移的距离为( )A.6cmB.4cmC.cmD.cm2.如图,△ABC 和△DEF 是等腰直角三角形,∠C=∠F=90°,AB=2,DE=4.点B 与点D 重合,点A ,B (D ),E 在同一条直线上,将△ABC 沿DE 方向平移,至点A 与点E 重合时停止.设点B ,D 之间的距离为x ,△ABC 与△DEF 重叠部分的面积为y ,则准确反映y 与x 之间对应关系的图象是( )A B C D 二、填空题3.如图,将两块直角三角板的斜边重合,E 是两直角三角形公共斜边AC 的中点.D 、B 分别为直角顶点,连接DE 、BE 、DB ,∠DAC=60°,∠BAC=45°.则∠EDB 的度数为_______.(6-()64.如图,一块直角三角形木板△ABC,将其在水平面上沿斜边AB所在直线按顺时针方向翻滚,使它滚动cm.三、解答题5.如图,在正方形ABCD中,对角线AC与BD相交于点E,AF平分∠BAC,交BD于点F.(1)EF+AC =AB;(2)点C1从点C出发,沿着线段CB向点B运动(不与点B重合),同时点A1从点A出发,沿着BA的延长线运动,点C1与点A1运动速度相同,当动点C1停止运动时,另一动点A1也随之停止运动.如图,AF1平分∠B A1C1,交BD于F1,过F1作F1E1⊥A1C1,垂足为E1,试猜想F1E1,A1C1与AB之间的数量关系,并证明你的猜想.(3)在(2)的条件下,当A1 E1=3,C1 E1=2时,求BD的长.21216.如图,等腰Rt△ABC 中,∠C=90°,AC=6,动点P 、Q 分别从A 、B 两点同时以每秒1个单位长的速度按顺时针方向沿△ABC 的边运动,当Q 运动到A 点时,P 、Q 停止运动.设Q 点运动时间为t 秒,点P 运动的轨迹与PQ 、AQ 围成图形的面积为S.求S 关于t 的函数解析式.7.正方形ABCD中,点F为正方形ABCD 内的点,△BFC 绕着点B 按逆时针方向旋转90°后与△BEA 重合. (1)如图1,若正方形ABCD 的边长为2,BE=1,FC=,求证:AE ∥BF ;(2)如图2,若点F 为正方形ABCD 对角线AC 上的点,且AF :FC=3:1,BC=2,求BF 的长.8.将正方形ABCD 和正方形BEFG 如图1摆放,连DF .∠DMC=_____;∠DMC 的值,并证明你的结论;3∠DMC=_________.请画出图形,并直接写出你的结论(不用证明).9.已知△ABC≌△ADE,∠BAC=∠DAE=90°.(1)如图(1)当C、A、D在同一直线上时,连CE、BD,判断CE和BD位置关系,填空:CE_____BD.(2)如图(2)把△ADE绕点A旋转到如图所示的位置,试问(1)中的结论是否仍然成立,写出你的结论,并说明理由.(3)如图(3)在图2的基础上,将△ACE绕点A旋转一个角度到如图所示的△AC′E′的位置,连接BE′、DC′,过点A作AN⊥BE′于点N,反向延长AN交DC′于点M.求的值.10.将正方形ABCD和正方形CGEF如图1摆放,使D点在CF边上,M为AE中点,(1)连接MD、MF,则容易发现MD、MF间的关系是______________(2)操作:把正方形CGEF绕C点旋转,使对角线CE放在正方形ABCD的边BC的延长线上(CG>BC),取线段AE的中点M,探究线段MD、MF的关系,并加以说明;(3)将正方形CGEF绕点C旋转任意角度后(如图3),其他条件不变,(2)中的结论是否仍成立?直接写出猜想,不需要证明.DMDC交射线ON 于点B ,且使∠APB+∠MON=180°. (1)利用图1,求证:PA=PB ;(2)如图2,若点C 是AB 与OP 的交点,当S △POB =3S △PCB 时,求PB 与PC 的比值;(3)若∠MON=60°,OB=2,射线AP 交ON 于点D ,且满足且∠PBD=∠ABO ,请借助图3补全图形,并求OP 的长.12、在中,过点C 作CE ⊥CD 交AD 于点E,将线段EC 绕点E 逆时针旋转得到线段EF(如图1)(1)在图1中画图探究:①当P 为射线CD 上任意一点(P 1不与C 重合)时,连结EP 1绕点E 逆时针旋转 得到线段EC 1.判断直线FC 1与直线CD 的位置关系,并加以证明;②当P 2为线段DC 的延长线上任意一点时,连结EP 2,将线段EP 2绕点E 逆时针旋转得到线段EC 2.判断直线C 1C 2与直线CD 的位置关系,画出图形并直接写出你的结论.(2)若AD=6,tanB=,AE=1,在①的条件下,设CP 1=,S =,求与之间的函数关系式,并写出自变量的取值范围.图1 备用图13、已知:如图,N 、M 是以O 为圆心,1为半径的圆上的两点,B 是上一动点(B 不与点M 、N 重合),ABCD Y 90o90o 90o43x 11P FC V y y xx ¼MN∠MON=90°,BA ⊥OM 于点A ,BC ⊥ON 于点C ,点D 、E 、F 、G 分别是线段OA 、AB 、BC 、CO 的中点,GF 与CE 相交于点P ,DE 与AG 相交于点Q .(1)四边形EPGQ (填“是”或者“不是”)平行四边形; (2)若四边形EPGQ 是矩形,求OA 的值.14、已知如图,在梯形中,点是的中点,是等边三角形.(1)求证:梯形是等腰梯形;(2)动点、分别在线段和上运动,且保持不变.设 求与的函数关系式;(3)在(2)中,当取最小值时,判断的形状,并说明理由.15、已知正方形ABCD 的边长为6cm ,点E 是射线BC 上的一个动点,连接AE 交射线DC 于点F ,将△ABE 沿直线AE 翻折,点B 落在点B′ 处. (1)当=1 时,CF=______cm , (2)当=2 时,求sin∠DAB′ 的值; (3)当= x 时(点C 与点E 不重合),请写出△ABE 翻折后与正方形ABCD 公共部分的面积y 与x 的关系式,(只要写出结论,不要解题过程).ABCD 24AD BC AD BC ==∥,,,M AD MBC △ABCD P Q BC MC 60MPQ =︒∠PC x MQ y ==,,y x y PQC△CEBECEBECEBE16、在△ABC 中,∠ACB=45º.点D (与点B 、C 不重合)为射线BC 上一动点,连接AD ,以AD 为一边且在AD 的右侧作正方形ADEF .(1)如果AB=AC .如图①,且点D 在线段BC 上运动.试判断线段CF 与BD 之间的位置关系,并证明你的结论.(2)如果AB ≠AC ,如图②,且点D 在线段BC 上运动.(1)中结论是否成立,为什么?(3)若正方形ADEF 的边DE 所在直线与线段CF 所在直线相交于点P ,设AC =,,CD=,求线段CP 的长.(用含的式子表示)17、已知:如图(1),射线射线,是它们的公垂线,点、分别在、 上运动(点与点不重合、点与点不重合),是边上的动点(点与、不重合), 在运动过程中始终保持,且. (1)求证:∽;(2)如图(2),当点为边的中点时,求证:;(3)设,请探究:的周长是否与值有关?若有关,请用含有的代数式表示的周长;若无关,请说明理由.3=BC xx //AM BN AB D C AM BN D A C B E AB E A B EC DE ⊥a AB DE AD ==+ADE ∆BEC ∆E AB CD BC AD =+m AE =BEC ∆m m BEC∆18、已知正方形中,为对角线上一点,过点作交于,连接,为中点,连接. (1)直接写出线段与的数量关系;(2)将图1中绕点逆时针旋转,如图2所示,取中点,连接,你在(1)中得到的结论是否发生变化?写出你的猜想并加以证明.(3)将图1中绕点旋转任意角度,如图3所示,再连接相应的线段,问(1)中的结论是否仍然成立?(不要求证明)参考答案 一、选择题 1.【答案】C. 2.【答案】B. 二、填空题 3.【答案】15°.4.三、解答题5.【答案与解析】(1)证明:如图1,过点F 作FM ⊥AB 于点M ,在正方形ABCD 中,AC ⊥BD 于点E . ∵AF 平分∠BAC , ∴EF=MF , 又∵AF=AF ,ABCD E BD E EF BD ⊥BC F DF G DF EG CG ,EG CG BEF ∆B 45︒DF G EG CG ,BEF ∆B 图3图2图1FEABCDABC DEFGGFED C BA∴Rt △AMF ≌Rt △AEF , ∴AE=AM ,∵∠MFB=∠ABF=45°, ∴MF=MB,MB=EF , ∴EF+AC=MB+AE=MB+AM=AB .(2)E 1F 1,A 1C 1与AB 三者之间的数量关系:E 1F 1+A 1C 1=AB 证明:如图2,连接F 1C 1,过点F 1作F 1P ⊥A 1B 于点P ,F 1Q ⊥BC 于点Q , ∵A 1F 1平分∠BA 1C 1,∴E 1F 1=PF 1;同理QF 1=PF 1,∴E 1F 1=PF 1=QF 1, 又∵A 1F 1=A 1F 1,∴Rt △A 1E 1F 1≌Rt △A 1PF 1, ∴A 1E 1=A 1P ,同理Rt △QF 1C 1≌Rt △E 1F 1C 1, ∴C 1Q=C 1E 1, 由题意:A 1A=C 1C ,∴A 1B+BC 1=AB+A 1A+BC -C 1C=AB+BC=2AB , ∵PB=PF 1=QF 1=QB ,∴A 1B+BC 1=A 1P+PB+QB+C 1Q=A 1P+C 1Q+2E 1F 1, 即2AB=A 1E 1+C 1E 1+2E 1F 1=A 1C 1+2E 1F 1, ∴E 1F 1+A 1C 1=AB . (3)解:设PB=x ,则QB=x , ∵A 1E 1=3,QC 1=C 1E 1=2,Rt △A 1BC 1中,A 1B 2+BC 12=A 1C 12, 即(3+x )2+(2+x )2=52, ∴x 1=1,x 2=-6(舍去), ∴PB=1, ∴E 1F 1=1, 又∵A 1C 1=5,121212126.【答案与解析】当P运动到C点时:t=6当Q运动到A点:t=∴分两种情况讨论(1)当0≤t≤6时,如图:作PH⊥AB于H,则△APH为等腰直角三角形此时AP=t,BQ=t,则AQ=-tPH=APsin45°=t∴S△AQP=AQ·PH=·(-t)·t=t2+3t(2)当6<t≤时,如图:过P过PH⊥AB于H,此时△PBH为等腰直角三角形AC+CP=t,BQ=t∴BP=AC+CB-(AC+CP)=12-t∴PH=BPsin45°=(12-t)∴S四边形AQPC=S△ABC-S△BPQ=AC·BC-BQ·PH=·6·6-·t·(12-t)=18-t+t2=t2-t+18.综上,.7.【答案与解析】(1)证明:∵△BFC绕着点B按逆时针方向旋转90°后与△BEA重合∴BE=BF=1,∠EBF=∠ABC=90°,∠AEB=∠BFC在△BFC中,BC2=22=4∴BF2+FC2=BC2∴∠BFC=90°…(3分)∴∠AEB+∠EBF=180°∴AE ∥BF …(4分)(2)解:∵Rt △ABC 中,AB=BC=2,由勾股定理,得∵AF :FC=3:1,∵△BFC 绕着点B 按逆时针方向旋转90°后与△BEA 重合∵四边形ABCD 是正方形∴∠ABC=90°∴∠BAC+∠ACB=90° ∴∠EAB+∠BAC=90°即∠EAF=90° 在Rt △EBF 中,EF 2=BE 2+BF 2∵BE=BF8.【答案与解析】(1)如图2,连接BF ,∵四边形ABCD 、四边形BEFG 是正方形,∴∠FBC=∠CBD=45°,∴∠CBD=∠GBC=90°,而BF=BG ,BD=BC ,∴△BFD ∽△BGC ,22而∠DMC=180°-∠BCG-∠BCD-∠CDF=180°-∠BDF-∠BCD-∠CDF=180-45°-90°=45°,(2)如图3,∵将图1中的正方形BEFG 绕B 点顺时针旋转45°,DF 的延长线交CG 于M ,∴B 、E 、D 三点在同一条直线上,而四边形ABCD 、四边形BEFG 是正方形,∴△BFD ∽△BGC ,而∠DMC=180°-∠BCG-∠BCD-∠CDF=180°-∠BDF-∠BCD-∠CDF=180-45°-90°=45°,即∠DMC=45°;9.【答案与解析】(1)CE ⊥BD .(2)延长CE 交BD 于M ,设AB 与EM 交于点F .∵∠BAC=∠DAE=90°, ∴∠CAE=∠BAD .又∵△ABC ≌△ADE ,∴AC=AE ,AB=AD , ∴∠ACE=,∠ABD=,∴∠ACE=∠ABD .又∵∠AFC=∠BFM ,∠AFC+∠ACE=90°,∴∠ABD+∠BFM=90°,∴∠BMC=90°,∴CE ⊥BD .(3)过C ′作C ′G ⊥AM 于G ,过D 作DH ⊥AM 交延长线于点H .∵∠∠E ′NA=∠AGC ′=90°,∴∠NE ′A+∠NAE ′=90°,∠NAE ′+∠C ′AG=90°,∴∠NE ′A=∠C ′AG ,∵AE ′=AC ′∴△ANE ′≌△C ′GA (AAS ),∴AN=C ′G .同理可证△BNA ≌△AHD ,AN=DH .∴C ′G=DH .在△C ′GM 与△DHM 中,∠C ′GM=∠DHM=90°,∠C ′MG=∠DMH ,C ′G=DH ,∴△C ′GM ≌△DHM ,∴C ′M=DM ,01802CAE -∠01802BAD -∠10.【答案与解析】如图1,延长DM交FE于N,图1∵正方形ABCD、CGEF,∴CF=EF,AD=DC,∠CFE=90°,AD∥FE,∴∠1=∠2,又∵MA=ME,∠3=∠4,∴△AMD≌△EMN,∴MD=MN,AD=EN.∵AD=DC,∴DC=NE.又∵FC=FE,∴FD=FN.又∵∠DFN=90°,∴FM⊥MD,MF=MD;(2)MD=MF,MD⊥MF.如图2,延长DM交CE于N,连接FD、FN.∵正方形ABCD,∴AD∥BE,AD=DC,∴∠1=∠2.又∵AM=EM,∠3=∠4,∴△ADM≌△ENM,∴AD=EN,MD=MN.∵AD=DC,∴DC=NE.又∵正方形CGEF,∴∠FCE=∠NEF=45°,FC=FE,∠CFE=90°.又∵正方形ABCD,∴∠BCD=90°,∴∠DCF=∠NEF=45°,∴△FDC≌△FNE,∴FD=FN,∠5=∠6,∠DFN=∠5+∠CFN=∠6+∠CFN=90°,∴△DFN为等腰直角三角形,且FM为斜边DN上的中线,∴MD=MF,MD⊥MF;(3)FM⊥MD,MF=MD.如图3,过点E作AD的平行线分别交DM、DC的延长线于N、H,连接DF、FN.∴∠ADC=∠H,AD∥EH,∴∠3=∠4.∵AM=ME,∠1=∠2,∴△AMD≌△EMN,∴DM=NM,AD=EN.∵正方形ABCD、CGEF,∴AD=DC,FC=FE,∠ADC=∠FCG=∠CFE=90°.∴∠H=90°,∠5=∠NEF,DC=NE.∴∠DCF+∠7=∠5+∠7=90°,∴∠DCF=∠5=∠NEF.∵FC=FE,∴△DCF≌△NEF.∴FD=FN,∠DFC=∠NFE.∵∠CFE=90°,∴∠DFN=90°.∴FM⊥MD,MF=MD.11、 【答案】(1)作PE ⊥OM ,PF ⊥ON ,垂足为E 、F ∵四边形OEPF 中,∠OEP=∠OFP=90°, ∴∠EPF+∠MON=180°,已知∠APB+∠MON=180°,∴∠EPF=∠APB ,即∠EPA+∠APF=∠APF+∠FPB ,∴∠EPA=∠FPB , 由角平分线的性质,得PE=PF ,∴△EPA ≌△FPB ,即PA=PB ;(2)∵S △POB =3S △PCB ,∴PO=3PC ,由(1)可知△PAB 为等腰三角形,则∠PBC=(180°-∠APB )=∠MON=∠BOP , 又∵∠BPC=∠OPB (公共角),∴△PBC ∽△POB ,∴, 即PB 2=PO •PC=3PC 2,∴ (3)作BH ⊥OT ,垂足为H ,当∠MON=60°时,∠APB=120°,由PA=PB ,得∠PBA=∠PAB=(180°-∠APB )=30°, 又∵∠PBD=∠ABO ,∠PBD+∠PBA+∠ABO=180°,∴∠ABO=(180°-30°)=75°,则∠OBP=∠ABO+∠ABP=105°, 在△OBP 中,∵∠BOP=30°,∴∠BPO=45°,在Rt △OBH 中,BH=OB=1,OH=, 1212PB PC PO PB=3PB PC=1212123在Rt △PBH 中,PH=BH=1,∴OP=OH+PH=+1.12、【答案与解析】(1)①直线与直线的位置关系为互相垂直.证明:如图1,设直线与直线的交点为.∵线段分别绕点逆时针旋转90°依次得到线段,∴.∵,, ∴. ∴. ∴. ∵,∴, ∴.31FG CD 1FG CD H 1EC EP 、E 1EF EG 、111190PEG CEF EG EP EF EC ∠=∠===°,,1190G EF PEF ∠=-∠°1190PEC PEF ∠=-∠°11G EF PEC ∠=∠11G EF PEC △≌△11G FE PCE ∠=∠EC CD ⊥190PCE ∠=°190G FE ∠=°FDC BAE 图1 G 2 G 1P 1 H P 2∴.∴.∴.②按题目要求所画图形见图1,直线与直线的位置关系为互相垂直.(2)∵四边形是平行四边形,∴.∵, ∴. 可得. 由(1)可得四边形为正方形.∴. ①如图2,当点在线段的延长线上时,∵, ∴. 90EFH ∠=°90FHC ∠=°1FG CD ⊥12G G CD ABCD B ADC ∠=∠461tan 3AD AE B ===,,45tan tan 3DE EBC B =∠==,4CE =EFCH 4CH CE ==1P CH 1114FG CP x PH x ===-,11111(4)22P FG x x S FG PH -=⨯⨯=△D G 1P 1 H C BAE F∴. ②如图3,当点在线段上(不与两点重合)时, ∵, ∴. ∴. ③当点与点重合时,即时,不存在.综上所述,与之间的函数关系式及自变量的取值范围是或. 13、【答案】(1)是.证明:连接OB ,如图①,212(4)2y x x x =->1P CH C H 、1114FG CP x PH x ===-,11111(4)22P FG x x S FG PH -=⨯=△212(04)2y x x x =-+<<1P H 4x =11PFG △y x x 212(4)2y x x x =->212(04)2y x x x =-+<<FG 1 P 1 CAB E D H∵BA ⊥OM ,BC ⊥ON , ∴∠BAO=∠BCO=90°, ∵∠AOC=90°, ∴四边形OABC 是矩形.∴AB ∥OC ,AB=OC ,∵E 、G 分别是AB 、CO 的中点,∴AE ∥GC ,AE=GC ,∴四边形AECG 为平行四边形.∴CE ∥AG ,∵点D 、E 、F 、G 分别是线段OA 、AB 、BC 、CO 的中点,∴GF ∥OB ,DE ∥OB ,∴PG ∥EQ ,∴四边形EPGQ 是平行四边形;(2)解:如图②,∵口EPGQ 是矩形.∴∠AED+∠CEB=90°.又∵∠DAE=∠EBC=90°,∴∠AED=∠BCE .∴△AED ∽△BCE ,∴, AD AE BE BC得y 2=2x 2,又∵OA 2+AB2=OB 2, 即x 2+y 2=12.∴x 2+2x 2=1,14、【答案与解析】(1)证明:∵是等边三角形∴∵是中点∴∵∴∴∴∴梯形是等腰梯形.(2)解:在等边中, ∴ ∴ ∴∴ MBC △60MB MC MBC MCB ===︒,∠∠M AD AM MD =AD BC ∥60AMB MBC ==︒∠∠,60DMC MCB ==︒∠∠AMB DMC △≌△AB DC =ABCD MBC △4MB MC BC ===,60MBC MCB ==︒∠∠,60MPQ =︒∠120BMP BPM BPM QPC +=+=︒∠∠∠∠BMP QPC =∠∠BMP CQP △∽△PC CQ BM BP=∵∴∴∴(3)解:为直角三角形,∵∴当取最小值时,∴是的中点,而∴∴∴为直角三角形.15、【答案与解析】(1)CF=6cm;(2)①如图1,当点E在BC上时,延长AB′交DC于点M,PC x MQ y==,44BP x QC y=-=-,444x yx-=-2144y x x=-+PQC△()21234y x=-+y2x PC==P BC MP BC⊥,60MPQ=︒∠,30CPQ=︒∠,90PQC=︒∠PQC△图1∵ AB ∥CF ,∴ △ABE ∽△FCE ,∴ . ∵ =2, ∴ CF=3. ∵ AB ∥CF,∴∠BAE=∠F .又∠BAE=∠B ′ AE , ∴ ∠B ′ AE=∠F .∴ MA=MF .设MA=MF=k ,则MC=k -3,DM=9-k .在Rt △ADM 中,由勾股定理得:k 2=(9-k)2+62, 解得 k=MA=. ∴ DM=. ∴ sin ∠DAB ′=; ②如图2,当点E 在BC 延长线上时,延长AD 交B ′ E 于点N ,同①可得NA=NE .设NA=NE=m ,则B ′ N=12-m .在Rt △AB ′ N 中,由勾股定理,得m 2=(12-m)2+62, 解得 m=AN=. ∴ B ′N=. ∴ sin ∠DAB ′=. (3)①当点E 在BC 上时,y=; FCAB CE BE =CEBE 13252135=AM DM 1529253='AN N B 18x x 1+图2②当点E 在BC 延长线上时,y=. 16、【答案与解析】(1)结论:CF ⊥BD ; 证明如下:AB=AC ,∠ACB =45º,∴∠ABC=45º.由正方形ADEF 得 AD=AF ,∵∠DAF=∠BAC =90º,∴∠DAB=∠FAC ,∴△DAB ≌△FAC , ∴∠ACF=∠ABD .∴∠BCF=∠ACB+∠ACF= 90º.即 CF ⊥BD .(2)CF ⊥BD .(1)中结论仍成立.理由是:过点A 作AG ⊥AC 交BC 于点G ,∴AC=AG可证:△GAD ≌△CAF ∴∠ACF=∠AGD=45º∠BCF=∠ACB+∠ACF= 90º. 即CF ⊥BD(3)过点A 作AQ ⊥BC 交CB 的延长线于点Q ,①点D 在线段BC 上运动时,∵∠BCA=45º,可求出AQ= CQ=4.∴DQ=4-x ,易证△AQD ∽△DCP ,∴ ,∴, .18x 18x-ΘCP CD DQ AQ =44CP x x =-24x CP x ∴=-+②点D 在线段BC 延长线上运动时,∵∠BCA=45°,∴AQ=CQ=4,∴DQ=4+x .过A 作AQ ⊥BC , ∴∠Q=∠FQC=90°,∠ADQ=∠AFC ,则△AQD ∽△ACF .∴CF ⊥BD ,∴△AQD ∽△DCP ,∴, ∴, . 17、【答案】(1)证明:∵,∴.∴.又∵,∴.∴.∴∽.(2)证明:如图,过点作,交于点,∵是的中点,容易证明. CD DQ AQ 4+4x x =24x CP x ∴=+EC DE ⊥︒=∠90DEC ︒=∠+∠90BEC AED ︒=∠=∠90B A ︒=∠+∠90EDA AED EDA BEC ∠=∠ADE ∆BEC ∆E EF BC //CD F E AB )(21BC AD EF +=在中,∵ ,∴ . ∴ . ∴ .(3)解:的周长,. 设,则.∵ ,∴ .即.∴ . 由(1)知∽,∴ . ∴ 的周长的周长. ∴ 的周长与值无关.18、【答案与解析】(1)(2)(1)中结论没有发生变化,即.证明:连接,过点作于,与的延长线交于点. 在与中,∵,∴.∴.DEC Rt ∆CF DF =CD EF 21=)(21BC AD +CD 21=CD BC AD =+AED ∆DE AD AE ++=m a +=m a BE -=x AD =x a DE -=︒=∠90A 222AD AE DE +=22222x m x ax a +=+-am a x 222-=ADE ∆BEC ∆的周长的周长BEC ∆∆ADE BEAD =m a a m a --=222a m a 2+=BEC ∆⋅+=m a a 2ADE ∆a 2=BEC ∆m CG EG =CG EG =AG G MN AD ⊥M EF N DAG ∆DCG ∆AD CD ADG CDG DG DG =∠=∠=,,DAG DCG ∆∆≌AG CG =在与中,∵, ∴.∴在矩形中,在与中,∵,∴.∴.∴(3)(1)中的结论仍然成立.DMG ∆FNG ∆DGM FGN FG DG MDG NFG ∠=∠=∠=∠,,DMG FNG ∆∆≌MG NG =AENM AM EN =Rt AMG ∆Rt ENG ∆AM EN MG NG ==,AMG ENG ∆∆≌AG EG =EG CG =M N图2A B CDE F GG图3FE A B CD。
中考数学:以四边形为载体的几何压轴问题真题+模拟(原卷版北京专用)
中考数学以四边形为载体的几何压轴问题【方法归纳】北京市中考数学倒数第二道压轴题会以四边形为载体的几何压轴题出现,要求学生理解和掌握平行四边形、矩形、菱形、正方形的性质定理和判定定理,会画出四边形全等变换后的图形,并会结合其他知识解答一些有探索性、开放性的问题,提高解决问题的能力.解决此类问题的关键是要牢牢把握四边形的性质与特征,挖掘相关图形之间的联系,利用所给图形及图形之间形状、大小、位置关系,进行观察、实验、比较、联想、类比、分析、综合等.常用到的矩形、菱形、正方形的解题策略有:(1)对于矩形:①判定四边形是矩形,一般先判定是平行四边形,然后再判定是矩形;②矩形的内角是直角和对角线相等,相对于平行四边形来说是矩形特殊的性质;③利用矩形的性质计算或证明时,常常运用勾股定理,锐角三角函数或相似三角形求解.(2)对于菱形:①判定四边形是菱形,一般先判定是平行四边形,然后再判定是菱形;②菱形的邻边相等和对角线垂直,相对于平行四边形来说是菱形特殊的性质;③利用菱形的性质计算或证明时,常常运用勾股定理,锐角三角函数或相似三角形求解;④求线段和的最小值时,往往运用菱形的轴对称的性质转化为求线段的长度.(3)对于正方形:①判定四边形是正方形,一般先判定是平行四边形,然后再判定是矩形或菱形,最后判定这个四边形是正方形;②正方形是最特殊的四边形,在正方形的计算或证明时,要特别注意线段或角的等量转化.【典例剖析】【例1】(2018·北京·中考真题)如图,在正方形ABCD中,E是边AB上的一动点(不与点A、B重合),连接DE,点A关于直线DE的对称点为F,连接EF并延长交BC于点G,连接DG,过点E作EH⊥DE交DG的延长线于点H,连接BH.(1)求证:GF=GC;(2)用等式表示线段BH与AE的数量关系,并证明.【真题再现】1.(2014·北京·中考真题)在正方形ABCD外侧作直线AP,点B关于直线AP的对称点为E,连接BE,DE,其中DE交直线AP于点F.(1)依题意补全图1.(2)若∠PAB=20°,求∠ADF的度数.(3)如图2,若45°<∠PAB<∠90°,用等式表示线段AB,FE,FD之间的数量关系,并证明.2.(2015·北京·中考真题)在正方形ABCD中,BD是一条对角线.点P在射线CD上(与点C,D不重合),连接AP,平移△ADP,使点D移动到点C,得到△BCQ,过点Q作QH⊥BD于点H,连接AH、PH.(1)若点P在线CD上,如图1,①依题意补全图1;②判断AH与PH的数量关系与位置关系并加以证明;(2)若点P在线CD的延长线上,且∠AHQ=152°,正方形ABCD的边长为1,请写出求DP长的思路.(可以不写出计算结果)3.(2013·北京·中考真题)请阅读下列材料:小明遇到这样一个问题:如图1,在边长为a(a>2)的正方形ABCD各边上分别截取AE=BF=CG=DH=1,当∠AFQ=∠BGM=∠CHN=∠DEP=45°时,求正方形MNPQ的面积.小明发现,分别延长QE,MF,NG,PH交F A,GB,HC,ED的延长线于点R,S,T,W,可得△RQF,△SMG,△TNH,△WPE是四个全等的等腰直角三角形(如图2) .请回答:(1)若将上述四个等腰直角三角形拼成一个新的正方形(无缝隙不重叠),则这个新正方形的边长为_________;(2)求正方形MNPQ的面积;(3)参考小明思考问题的方法,解决问题:如图3,在等边△ABC各边上分别截取AD=BE=CF,,求AD的再分别过点D,E,F作BC,AC,AB的垂线,得到等边△RPQ.若S△RPQ=√33长.4.(2016·北京·中考真题)如图,在四边形ABCD中,∠ABC=90°,AC=AD,M,N分别为AC,CD的中点,连接BM,MN,BN.(1)求证:BM=MN;(2)∠BAD=60°,AC平分∠BAD,AC=2,求BN的长.【模拟精练】1.(2022·北京昌平·模拟预测)两张宽度均为4的矩形纸片按如图所示方式放置(1)如图①,求证:四边形ABCD是菱形.(2)如图②,点P在BC上,PF⊥AD于F,若S四边形ABCD=16√2,PB=2,①求∠BAD的度数;②求DF的长.2.(2021·北京四中模拟预测)如图所示,四边形ABCD为菱形,AB=2,∠ABC=60°,点E为边BC上动点(不含端点),点B关于直线AE的对称点为点F,点G为DF中点,连接AG.(1)依题意,补全图形;(2)点E运动过程中,是否可能EF∥AG?若可能,求BE长;若不可能,请说明理由;(3)连接CG,点E运动过程中,直接写出CG的最小值.3.(2021·北京门头沟·一模)在正方形ABCD中,将边AD绕点A逆时针旋转a(0°<a<90°)得到线段AE,AE与CD延长线相交于点F,过B作BG//AF交CF于点G,连接BE.(1)如图1,求证:∠BGC=2∠AEB;(2)当(45°<a<90°)时,依题意补全图2,用等式表示线段AH,EF,DG之间的数量关系,并证明.4.(2020·北京亦庄实验中学二模)如图,在正方形ABCD中,E是边BC上一动点(不与点B,C重合),连接DE,点C关于直线DE的对称点为C′,连接AC′并延长交直线DE于点P,过点D作DF AP于F.(1)求∠FDP的度数;(2)连接BP,请用等式表示线段BP与线段AF之间的数量关系,并证明.(3)连接PC,若正方形的边长为√2,直接写出△BCP面积的最大值.5.(2020·北京四中模拟预测)在△ABC中,点D在AB边上(不与点B重合),DE⊥BC,垂足为点E,如果以DE为对角线的正方形上的所有点都在△ABC的内部或边上,则称该正方形为△ABC的内正方形.(1)如图,在△ABC中,AB=4,∠B=30°,点D是AB的中点,画出△ABC的内正方形,直接写出此时内正方形的面积;t,0).(2)在平面直角坐标系xOy中,点A(t,2),B(0,0),C(32①若t=2,求△ABC的内正方形的顶点E的横坐标的取值范围;②若对于任意的点D,△ABC的内正方形总是存在,直接写出t的取值范围.6.(2020·北京延庆·一模)四边形ABCD 中,∠A=∠B= 90°,点E在边AB上,点F在AD的延长线上,且点E与点F关于直线CD对称,过点E作EG∥AF交CD于点G,连接FG,DE.(1)求证:四边形DEGF 是菱形;(2)若AB=10,AF=BC=8,求四边形DEGF 的面积.7.(2019·北京·一模)如图1,正方形ABCD中,AB=5,点E为BC边上一动点,连接AE,以AE为边,在线段AE右侧作正方形AEFG,连接CF、DF.设BE=x.(当点E与点B重合时,x的值为0),DF=y,CF=y2.小明根据学习函数的经验,对函数y1、y2随自变量1x的变化而变化的规律进行了探究.下面是小明的探究过程,请补充完整:(1)通过取点、画图、测量、观察、计算,得到了x与y1、y2的几组对应值;(2)在同一平面直角坐标系xOy中,描出补全后的表中各组数值所对应的点(x , y1) , (x , y2),并画出函数y1,y2的图象;(3)结合函数图象2,解决问题:当△CDF为等腰三角形时,BE的长度约为cm.8.(2017·北京顺义·一模)在正方形ABCD和正方形DEFG中,顶点B、D、F在同一直线上,H是BF的中点.(1)如图1,若AB=1,DG=2,求BH的长;(2)如图2,连接AH,GH.小宇观察图2,提出猜想:AH=GH,AH⊥GH.小宇把这个猜想与同学们进行交流,通过讨论,形成了证明该猜想的几种想法:想法1:延长AH交EF于点M,连接AG,GM,要证明结论成立只需证△GAM是等腰直角三角形;想法2:连接AC,GE分别交BF于点M,N,要证明结论成立只需证△AMH≌△HNG.…请你参考上面的想法,帮助小宇证明AH=GH,AH⊥GH.(一种方法即可)9.(2018·北京顺义·一模)如图1,在长方形ABCD中,AB=12cm,BC=10cm,点P从A出发,沿A→B→C→D的路线运动,到D停止;点Q从D点出发,沿D→C→B→A路线运动,到A点停止.若P、Q两点同时出发,速度分别为每秒1cm、2cm,a秒时P、Qcm(P、Q两点速度改变后一直保持此速度,直到两点同时改变速度,分别变为每秒2cm、54停止),如图2是ΔAPD的面积s(cm2)和运动时间x(秒)的图象.(1)求出a值;(2)设点P已行的路程为y1(cm),点Q还剩的路程为y2(cm),请分别求出改变速度后,y1,y2和运动时间x(秒)的关系式;(3)求P、Q两点都在BC边上,x为何值时P,Q两点相距3cm?10.(2021·北京四中模拟预测)在平面直角坐标系xOy中,如果点A,点C为某个菱形的一组对角的顶点,且点A,C在直线y=x上,那么称该菱形为点A,C的“极好菱形”.如图为点A,C的“极好菱形”的一个示意图.已知点M的坐标为(1,1),点P的坐标为(3,3).(1)点E(2,1),F(1,3),G(4,0)中,能够成为点M,P的“极好菱形”的顶点的是;(2)如果四边形MNPQ是点M,P的“极好菱形”.①当点N的坐标为(3,1)时,求四边形MNPQ的面积;②当四边形MNPQ的面积为8,且与直线y=x+b有公共点时,写出b的取值范围.11.(2021·北京四中九年级开学考试)定义:如果一条直线把一个平面图形的面积分成相等的两部分,我们把这条直线称为平面图形的一条面积等分线.(1)如图1,已知△ABC,请用尺规作出△ABC的一条面积等分线.(2)已知:如图2,在平面直角坐标系xOy中,矩形OABC的边OA在x轴的正半轴上、OC在y轴的正半轴上,OA=6,OC=4.①请判断直线y=43x−83是否为矩形OABC的面积等分线,并说明理由;②若矩形OABC的面积等分线与坐标轴所围成的三角形面积为4,请直接写出此面积等分线的函数表达式.(3)如图3,在△ABC中,点A的坐标为(−2,0),点B的坐标为(4,3),点C的坐标为(2,0),点D的坐标(0,−2),求过点D的一条△ABC的面积等分线的解析式.(4)在△ABC中点A的坐标为(−1,0),点B的坐标为(1,0),点C的坐标为(0,1),直线y= ax+b(a>0)是△ABC的一条面积等分线,请直接写出b的取值范围.12.(2021·北京·九年级专题练习)如图,在四边形ABCD中,∠ACB=∠CAD=90°,点E在BC上,AE//DC,EF⊥AB,垂足为F.(1)求证:四边形AECD是平行四边形;(2)若AE平分∠BAC,BE=5,cosB=45,求BF和AD的长.13.(2021·北京·九年级专题练习)如图,在正方形ABCD中,AB=3,M是CD边上一动点(不与D点重合),点D与点E关于AM所在的直线对称,连接AE,ME,延长CB到点F,使得BF=DM,连接EF,AF.(1)依题意补全图1;(2)若DM=1,求线段EF的长;(3)当点M在CD边上运动时,能使△AEF为等腰三角形,直接写出此时tan∠DAM的值.14.(2021·北京石景山·九年级期末)已知矩形MBCD的顶点M是线段AB上一动点,AB=BC,矩形MBCD的对角线交于点O,连接MO,BO.点P为射线OB上一动点(与点B不重合),连接PM,作PN⊥PM交射线CB于点N.(1)如图1,当点M与点A重合时,且点P在线段OB上.①依题意补全图1;②写出线段PM与PN的数量关系并证明.(2)如图2,若∠OMB=α,当点P在OB的延长线上时,请补全图形并直接写出PM与PN的数量关系.15.(2020·北京·北师大实验中学九年级开学考试)如图,在正方形ABCD中,AB=6,M是CD边上一动点(不与D点重合),点D与点E关于AM所在的直线对称,连接AE,ME,延长CB 到点F,使得BF=DM,连接EF,AF.(1)当DM=2时,依题意补全图1;(2)在(1)的条件下,求线段EF的长;(3)当点M在CD边上运动时,能使△AEF为等腰三角形,请直接写出此时DM与AD的数量关系________.16.(2017·全国·九年级专题练习)猜想与证明:如图①摆放矩形纸片ABCD与矩形纸片ECGF,使B,C,G三点在一条直线上,CE在边CD上.连结AF,若M为AF的中点,连结DM,ME,试猜想DM与ME的数量关系,并证明你的结论.拓展与延伸:(1)若将“猜想与证明”中的纸片换成正方形纸片ABCD与正方形纸片ECGF,其他条件不变,则DM和ME的关系为__________________;(2)如图②摆放正方形纸片ABCD与正方形纸片ECGF,使点F在边CD上,点M仍为AF的中点,试证明(1)中的结论仍然成立.[提示:直角三角形斜边上的中线等于斜边的一半]①②17.(2020·北京通州·一模)已知线段AB,过点A的射线l⊥AB.在射线l上截取线段AC=AB,连接BC,点M为BC的中点,点P为AB边上一动点,点N为线段BM上一动点.以点P为旋转中心,将△BPN逆时针旋转90°得到△DPE,B的对应点为D,N的对应点为E.(1)当点N与点M重合,且点P不是AB中点时,①据题意在图中补全图形;②证明:以A,M,E,D为顶点的四边形是矩形.(2)连接EM,若AB=4,从下列3个条件中选择1个:①BP=1,②PN=1,③BN=√2,当条件______(填入序号)满足时,一定有EM=EA,并证明这个结论.18.(2020·北京一七一中九年级阶段练习)在四边形ABCD中,∠B+∠D=180°,对角线AC 平分∠BAD.(1)如图1,若∠DAB=120°,且∠B=90°,直接写出线段AD、AB、AC的数量关系.(2)如图2,若将(1)中的条件“∠B=90°”去掉,求边AD、AB与对角线AC的数量关系.请证明.(3)如图3,若∠DAB=2αAD、AB与对角线AC的数量关系(用α来表示)19.(2020·北京四中九年级阶段练习)在菱形ABCD中,∠BAD=60°.(1)如图1,点E为线段AB的中点,连接DE,CE.若AB=4,求线段EC的长.(2)如图2,M为线段AC上一点(不与A,C重合),以AM为边向上构造等边三角形△AMN,线段AN与AD交于点G,连接NC,DM,Q为线段NC的中点.连接DQ,MQ,判断DM与DQ的数量关系,并证明你的结论.(3)在(2)的条件下,若AC=√3,请你直接写出DM+CN的最小值.20.(2020·北京顺义·九年级期末)已知:如图,在正方形ABCD中,点E在AD边上运动,从点A出发向点D运动,到达D点停止运动.作射线CE,并将射线CE绕着点C逆时针旋转45°,旋转后的射线与AB边交于点F,连接EF(1)依题意补全图形;(2)猜想线段DE,EF,BF的数量关系并证明;(3)过点C作CG⊥EF,垂足为点G,若正方形ABCD的边长是4,请直接写出点G运动的路线长.21.(2022·北京·九年级单元测试)图1,菱形ABCD的顶点A,D在直线上,∠BAD=60°,以点A为旋转中心将菱形ABCD顺时针旋转α(0°<α<30°),得到菱形AB′C′D′,B′C′交对角线AC于点M,C′D′交直线l于点N,连接MN.(1)当MN∥B′D′时,求α的大小.(2)如图2,对角线B′D′交AC于点H,交直线l与点G,延长C′B′交AB于点E,连接EH.当△HEB′的周长为2时,求菱形ABCD的周长.22.(2022·北京·九年级单元测试)综合与实践动手操作:第一步:如图1,正方形纸片ABCD沿对角线AC所在直线折叠,展开铺平.在沿过点C的直线折叠,使点B,点D都落在对角线AC上.此时,点B与点D重合,记为点N,且点E,点N,点F三点在同一直线上,折痕分别为CE,CF.如图2.第二步:再沿AC所在的直线折叠,△ACE与△ACF重合,得到图3第三步:在图3的基础上继续折叠,使点C与点F重合,如图4,展开铺平,连接EF,FG,GM,ME,如图5,图中的虚线为折痕.问题解决:(1)在图5中,∠BEC的度数是,AE的值是;BE(2)在图5中,请判断四边形EMGF的形状,并说明理由;(3)在不增加字母的条件下,请你以图中5中的字母表示的点为顶点,动手画出一个菱形(正方形除外),并写出这个菱形:.23.(2019·北京·101中学九年级阶段练习)在平行四边形ABCD中,E是AD上一点,AE=AB,过点E作射线EF,(1)若∠DAB=60°,EF∥AB交BC于点H,请在图1中补全图形,并直接写出四边形ABHE 的形状;(2)如图2,若∠DAB=90°,EF与AB相交,在EF上取一点G,使得∠EGB=∠EAB,连接AG.请在图2中补全图形,并证明点A,E,B,G在同一个圆上;(3)如图3,若∠DAB=α(0°<α<90°),EF与AB相交,在EF上取一点G,使得∠EGB=∠EAB,连接AG.请在图3中补全图形(要求:尺规作图,保留作图痕迹),并求出线段EG、AG、BG 之间的数量关系(用含α的式子表示);24.(2022·北京朝阳·二模)在正方形ABCD中,E为BC上一点,点M在AB上,点N在DC上,且MN⊥DE,垂足为点F.(1)如图1,当点N与点C重合时,求证:MN=DE;(2)将图1中的MN向上平移,使得F为DE的中点,此时MN与AC相交于点H,①依题意补全图2;②用等式表示线段MH、HF,FN之间的数量关系,并证明.25.(2022·北京四中模拟预测)已知,点B是射线AP上一动点,以AB为边作△ABC,∠BCA= 90°,∠A=60°,将射线BC绕点B顺时针旋转120°,得到射线BD,点E在射线BD上,BE+BC= m.(1)如图1,若BE=BC,求CE的长(用含m的式子表示);(2)如图2,点F在线段AB上,连接CF、EF.添加一个条件:AF、BC、BE满足的等量关系为______,使得EF=CF成立,补全图形并证明.。
2020中考数学《几何》压轴大题专练(30道)
2020中考数学《几何》压轴大题专练(30道)1.(2019·安徽省中考模拟)已知如图1,在△ABC 中,△ACB =90°,BC =AC ,点D 在AB 上,DE△AB 交BC 于E ,点F 是AE 的中点(1)写出线段FD 与线段FC 的关系并证明;(2)如图2,将△BDE 绕点B 逆时针旋转α(0°<α<90°),其它条件不变,线段FD 与线段FC 的关系是否变化,写出你的结论并证明;(3)将△BDE 绕点B 逆时针旋转一周,如果BC =4,BE =,直接写出线段BF 的范围.2.(2019·山东省中考模拟)正方形ABCD 中,E 是CD 边上一点,(1)将ADE V 绕点A 按顺时针方向旋转,使AD AB 、重合,得到ABF V ,如图1所示.观察可知:与DE 相等的线段是_______,AFB ∠=∠______.(2)如图2,正方形ABCD 中,P Q 、分别是BC CD 、边上的点,且45PAQ ∠=︒,试通过旋转的方式说明:DQ BP PQ +=(3)在(2)题中,连接BD 分别交{}|2 4 x x ≤≤于M N 、,你还能用旋转的思想说明222BM DN MN +=.3.(2019·内蒙古自治区中考模拟)如图,△ABC 内接于△O ,AB 是△O 的直径,CD 平分△ACB 交△O 于点D ,交AB 于点F ,弦AE △CD 于点H ,连接CE 、OH.(1)延长AB 到圆外一点P ,连接PC ,若PC 2=PB ·PA ,求证:PC 是△O 的切线; (2)求证:CF ·AE=AC ·BC ;(3)若AF BF =32,△O 求tan△AEC 和OH 的长.4.(2017·营口市老边区柳树镇中学中考模拟)如图所示,四边形ABCD 是正方形,M 是AB 延长线上一点.直角三角尺的一条直角边经过点D ,且直角顶点E 在AB 边上滑动(点E 不与点A 、B 重合),另一直角边与△CBM 的平分线BF 相交于点F .(1)如图1,当点E 在AB 边得中点位置时:△通过测量DE 、EF 的长度,猜想DE 与EF 满足的数量关系是 ;△连接点E 与AD 边的中点N ,猜想NE 与BF 满足的数量关系是 ,请证明你的猜想;(2)如图2,当点E 在AB 边上的任意位置时,猜想此时DE 与EF 有怎样的数量关系,并证明你的猜想. 5.(2019·山东省中考模拟)(1)(问题发现)如图1,在Rt△ABC 中,AB =AC =2,△BAC =90°,点D 为BC 的中点,以CD 为一边作正方形CDEF ,点E 恰好与点A 重合,则线段BE 与AF 的数量关系为 (2)(拓展研究)在(1)的条件下,如果正方形CDEF 绕点C 旋转,连接BE ,CE ,AF ,线段BE 与AF 的数量关系有无变化?请仅就图2的情形给出证明; (3)(问题发现)当正方形CDEF 旋转到B ,E ,F 三点共线时候,直接写出线段AF 的长.6.(2019·山东省中考模拟)如图1,在Rt ABC ∆中,90A ∠=︒,AB AC =,点D 、E 分别在边AB 、AC 上,AD AE =,连结DC ,点M 、P 、N 分别为DE 、DC 、BC 的中点.(1)观察猜想图1中,线段PM 与PN 的数量关系是_______,位置关系是_______;(2)探究证明把ADE ∆绕点A 逆时针方向旋转到图2的位置,连结MN 、BD 、CE ,判断PMN ∆的形状,并说明理由;(3)拓展延伸把ADE ∆绕点A 在平面内自由旋转,若4=AD ,10AB =,请直接写出PMN ∆面积的最大值.7.(2018·河南省中考模拟)已知:在ABC V 中,AD 是BC 边上的中线,点E 是AD 的中点;过点A 作//AF BC ,交BE 的延长线于F ,连接CF .()1求证:四边形ADCF 是平行四边形; ()2填空:①当AB AC =时,四边形ADCF 是______形;②当90BAC ∠=o 时,四边形ADCF 是______形.8.(2019·江苏省中考模拟)如图,矩形ABCD 中,6AB =,8BC =,点E 在BC 边的延长线上,连接DE ,过点B 作DE 的垂线,交CD 于点M ,交AD 边的延长线于点N .(1)连接EN ,若BE BD =,求证:四边形BEND 为菱形; (2)在(1)的条件下,求BM 的长;(3)设CE x =,BN y =,求y 关于x 的函数解析式,并直接写出x 的取值范围.9.(2019·河南省中考模拟)如图(1),已知点G 在正方形ABCD 的对角线AC 上,GE△BC ,垂足为点E ,GF△CD ,垂足为点F . (1)证明与推断:△求证:四边形CEGF 是正方形; △推断:AGBE的值为 : (2)探究与证明:将正方形CEGF 绕点C 顺时针方向旋转α角(0°<α<45°),如图(2)所示,试探究线段AG 与BE 之间的数量关系,并说明理由: (3)拓展与运用:正方形CEGF 在旋转过程中,当B ,E ,F 三点在一条直线上时,如图(3)所示,延长CG 交AD 于点H .若AG=6,,则BC= .10.(2018·山东省中考模拟)如图△,在△ABC 中,△BAC=90°,AB=AC ,点E 在AC 上(且不与点A ,C 重合),在△ABC 的外部作△CED ,使△CED=90°,DE=CE ,连接AD ,分别以AB ,AD 为邻边作平行四边形ABFD ,连接AF .(1)请直接写出线段AF ,AE 的数量关系 ;(2)将△CED 绕点C 逆时针旋转,当点E 在线段BC 上时,如图△,连接AE ,请判断线段AF ,AE 的数量关系,并证明你的结论;(3)在图△的基础上,将△CED绕点C继续逆时针旋转,请判断(2)问中的结论是否发生变化?若不变,结合图△写出证明过程;若变化,请说明理由.11.(2019·哈尔滨市双城区第六中学中考模拟)如图,点M是正方形ABCD的边BC上一点,连接AM,点E是线段AM上一点,△CDE的平分线交AM延长线于点F.(1)如图1,若点E为线段AM的中点,BM:CM=1:2,BE,求AB的长;(2)如图2,若DA=DE,求证:BF+DF=AF.12.(2017·湖北省中考模拟)如图1,在矩形ABCD中,E是CB延长线上一个动点,F、G分别为AE、BC的中点,FG与ED相交于点H(1) 求证:HE=HG(2) 如图2,当BE=AB时,过点A作AP△DE于点P连接BP,求PE PAPB的值(3) 在(2)的条件下,若AD=2,△ADE=30°,则BP的长为______________13.(2019·陕西省中考模拟)(1)问题发现如图1,△ACB和△DCE均为等边三角形,点A、D、E在同一条直线上,连接BE.填空:△△AEB的度数为;△线段AD、BE之间的数量关系为.(2)拓展研究如图2,△ACB和△DCE均为等腰直角三角形,△ACB=△DCE=90°,点A、D、E在同一条直线上,CM 为△DCE中DE边上的高,连接BE,请判断△AEB的度数及线段CM、AE、BE之间的数量关系,并说明理由.(3)解决问题如图3,在正方形ABCD中,CD=,若点P满足PD=2,且△BPD=90°,请直接写出点A到BP的距离.14.(2019·浙江省中考模拟)如图,在平面直角坐标系中,矩形OABC的顶点B坐标为(4,6),点P为线段OA上一动点(与点O、A不重合),连接CP,过点P作PE△CP交AB于点D,且PE=PC,过点P 作PF△OP且PF=PO(点F在第一象限),连结FD、BE、BF,设OP=t.(1)直接写出点E的坐标(用含t的代数式表示):;(2)四边形BFDE的面积记为S,当t为何值时,S有最小值,并求出最小值;(3)△BDF能否是等腰直角三角形,若能,求出t;若不能,说明理由.15.(2019·江西省中考模拟)某数学活动小组在研究三角形拓展图形的性质时,经历了如下过程:●操作发现在等腰△ABC中,AB=AC,分别以AB和AC为腰,向△ABC的外侧作等腰直角三角形,如图△所示,连接DE,其中F是DE的中点,连接AF,则下列结论正确的是(填序号即可)△AF=12BC:△AF△BC;△整个图形是轴对称图形;△DE△BC、●数学思考在任意△ABC中,分别以AB和AC为腰,向△ABC的外侧作等腰直角三角形,如图△所示,连接DE,其中F是DE的中点,连接AF,则AF和BC有怎样的数量和位置关系?请给出证明过程●类比探索在任意△ABC中,仍分别以AB和AC为腰,向△ABC的内侧作等腰直角三角形,如图△所示,连接DE,其中F是DE的中点,连接AF,试判断AF和BC的数量和位置关系是否发生改变?并说明理由.16.(2017·湖北省中考模拟)如图1,ABCD为正方形,将正方形的边CB绕点C顺时针旋转到CE,记△BCE=α,连接BE,DE,过点C作CF△DE于F,交直线BE于H.(1)当α=60°时,如图1,则△BHC= ;(2)当45°<α<90°,如图2,线段BH、EH、CH之间存在一种特定的数量关系,请你通过探究,写出这个关系式:(不需证明);(3)当90°<α<180°,其它条件不变(如图3),(2)中的关系式是否还成立?若成立,说明理由;若不成立,写出你认为成立的结论,并简要证明.17.(2018·山东省中考模拟)矩形ABCD中,DE平分△ADC交BC边于点E,P为DE上的一点(PE<PD),PM△PD,PM交AD边于点M.(1)若点F是边CD上一点,满足PF△PN,且点N位于AD边上,如图1所示.求证:△PN=PF;DP;(2)如图2所示,当点F在CD边的延长线上时,仍然满足PF△PN,此时点N位于DA边的延长线上,如图2所示;试问DF,DN,DP有怎样的数量关系,并加以证明.18.(2019·云南省中考模拟)在矩形ABCD中,AB=12,P是边AB上一点,把△PBC沿直线PC折叠,顶点B的对应点是点G,过点B作BE△CG,垂足为E且在AD上,BE交PC于点F(1)如图1,若点E是AD的中点,求证:△AEB△△DEC;(2)如图2,△求证:BP=BF;△当AD=25,且AE<DE时,求cos△PCB的值;△当BP=9时,求BE•EF的值.19.(2018·广东省中考模拟)已知:如图1在Rt△ABC中,△C=90°,AC=8cm,BC=6cm,点P由点B出发沿BA方向向点A匀速运动,速度为2cm/s;同时点Q由点A出发沿AC方向点C匀速运动,速度为lcm/s;连接PQ,设运动的时间为t秒(0<t<5),解答下列问题:(1)当为t何值时,PQ△BC;(2)设△AQP的面积为y(c m2),求y关于t的函数关系式,并求出y的最大值;(3)如图2,连接PC,并把△PQC沿QC翻折,得到四边形PQPC,是否存在某时刻t,使四边形PQP'C 为菱形?若存在,求出此时t的值;若不存在,请说明理由.20.(2018·江苏省中考模拟)如图1,在矩形ABCD中,AD=3,DC=4,动点P在线段DC上以每秒1个单位的速度从点D向点C运动,过点P作PQ△AC交AD于Q,将△PDQ沿PQ翻折得到△PQE. 设点P的运动时间为t(s).(1)当点E落在边AB上时,t的值为;(2)设△PQE与△ADC重叠部分的面积为s,求s与t的函数关系式;(3)如图2,以PE为直径作△O.当△O与AC边相切时,求CP的长.21.(2019·山东省中考模拟)△ABC中,△BAC=90°,AB=AC,点D为直线BC上一动点(点D不与B,C重合),以AD为边在AD右侧作正方形ADEF,连接CF,(1)观察猜想如图1,当点D在线段BC上时,△BC与CF的位置关系为:.△BC,CD,CF之间的数量关系为:;(将结论直接写在横线上)(2)数学思考如图2,当点D在线段CB的延长线上时,结论△,△是否仍然成立?若成立,请给予证明;若不成立,请你写出正确结论再给予证明.(3)拓展延伸如图3,当点D在线段BC的延长线上时,延长BA交CF于点G,连接GE,若已知,CD=14 BC,请求出GE的长.22.(2019·四川省成都市簇锦中学中考模拟)如图,四边形ABCD的顶点在△O上,BD是△O的直径,延长CD、BA交于点E,连接AC、BD交于点F,作AH△CE,垂足为点H,已知△ADE=△ACB.(1)求证:AH是△O的切线;(2)若OB=4,AC=6,求sin△ACB的值;(3)若23DFFO,求证:CD=DH.23.(2019·浙江省中考模拟)如图,在平面直角坐标系中,A(0,4),B(3,4),P 为线段OA 上一动点,过O,P,B 三点的圆交x 轴正半轴于点C,连结AB, PC,BC,设OP=m.(1)求证:当P 与A 重合时,四边形POCB 是矩形.(2)连结PB,求tan△BPC 的值.(3)记该圆的圆心为M,连结OM,BM,当四边形POMB 中有一组对边平行时,求所有满足条件的m 的值.(4)作点O 关于PC 的对称点O',在点P 的整个运动过程中,当点O'落在△APB 的内部(含边界)时,请写出m 的取值范围.24.(2017·内蒙古自治区中考模拟)如图,AB为△O直径,C、D为△O上不同于A、B的两点,△ABD=2△BAC,连接CD.过点C作CE△DB,垂足为E,直线AB与CE相交于F点.(1)求证:CF为△O的切线;(2)当BF=5,3sin5F=时,求BD的长.25.(2019·广西壮族自治区中考模拟)如图,△ABC内接于△O,△CBG=△A,CD为直径,OC与AB相交于点E,过点E作EF△BC,垂足为F,延长CD交GB的延长线于点P,连接BD.(1)求证:PG与△O相切;(2)若EFAC=58,求BEOC的值;(3)在(2)的条件下,若△O的半径为8,PD=OD,求OE的长.26.(2019·内蒙古自治区中考模拟)在Rt△ABC中,BC=9,CA=12,△ABC的平分线BD交AC与点D,DE△DB交AB于点E.(1)设△O是△BDE的外接圆,求证:AC是△O的切线;(2)设△O交BC于点F,连结EF,求EFAC的值.27.(2018·河南省中考模拟)(1)问题:如图1,在四边形ABCD中,点P为AB上一点,△DPC=△A=△B=90°.求证:AD·BC=AP·BP.(2)探究:如图2,在四边形ABCD中,点P为AB上一点,当△DPC=△A=△B=θ时,上述结论是否依然成立.说明理由.(3)应用:请利用(1)(2)获得的经验解决问题:如图3,在△ABD中,AB=6,AD=BD=5.点P以每秒1个单位长度的速度,由点A 出发,沿边AB向点B运动,且满足△DPC=△A.设点P的运动时间为t(秒),当DC的长与△ABD底边上的高相等时,求t 的值.28.(2019·福建省中考模拟)如图,OA是△O的半径,点E为圆内一点,且OA△OE,AB是△O的切线,EB交△O于点F,BQ△AF于点Q.(1)如图1,求证:OE△AB;(2)如图2,若AB=AO,求AFBQ的值;(3)如图3,连接OF,△EOF的平分线交射线AF于点P,若OA=2,cos△PAB=45,求OP的长.29.(2019·江苏省中考模拟)平面上,Rt△ABC与直径为CE的半圆O如图1摆放,△B=90°,AC=2CE =m,BC=n,半圆O交BC边于点D,将半圆O绕点C按逆时针方向旋转,点D随半圆O旋转且△ECD 始终等于△ACB,旋转角记为α(0°≤α≤180°)(1)当α=0°时,连接DE,则△CDE=°,CD=;(2)试判断:旋转过程中BDAE的大小有无变化,请仅就图2的情形给出证明;(3)若m=10,n=8,当α=△ACB时,求线段BD的长;(4)若m=6,n=,当半圆O旋转至与△ABC的边相切时,直接写出线段BD的长.30.(2018·广东省中考模拟)如图,△ABC是△O的内接三角形,点D在»BC上,点E在弦AB上(E不与A重合),且四边形BDCE为菱形.(1)求证:AC=CE;(2)求证:BC2﹣AC2=AB•AC;(3)已知△O的半径为3.△若ABAC=53,求BC的长;△当ABAC为何值时,AB•AC的值最大?2020中考数学《几何》压轴大题专练(30道)参考答案1.(2019·安徽省中考模拟)已知如图1,在△ABC中,△ACB=90°,BC=AC,点D在AB上,DE△AB 交BC于E,点F是AE的中点(1)写出线段FD与线段FC的关系并证明;(2)如图2,将△BDE绕点B逆时针旋转α(0°<α<90°),其它条件不变,线段FD与线段FC的关系是否变化,写出你的结论并证明;(3)将△BDE绕点B逆时针旋转一周,如果BC=4,BE=,直接写出线段BF的范围.【答案】(1)结论:FD=FC,DF⊥CF.理由见解析;(2)结论不变.理由见解析;(3≤BF【解析】解:(1)结论:FD=FC,DF⊥CF.理由:如图1中,⊥⊥ADE=⊥ACE=90°,AF=FE,⊥DF=AF=EF=CF,⊥⊥F AD=⊥FDA,⊥F AC=⊥FC A,⊥⊥DFE=⊥FDA+⊥F AD=2⊥F AD,⊥EFC=⊥F AC+⊥FCA=2⊥F AC,⊥CA=CB,⊥ACB=90°,⊥⊥BAC=45°,⊥⊥DFC=⊥EFD+⊥EFC=2(⊥F AD+⊥F AC)=90°,⊥DF=FC,DF⊥FC.(2)结论不变.理由:如图2中,延长AC到M使得CM=CA,延长ED到N,使得DN=DE,连接BN、BM.EM、AN,延长ME交AN于H,交AB于O.⊥BC⊥AM,AC=CM,⊥BA=BM,同法BE=BN,⊥⊥ABM=⊥EBN=90°,⊥⊥NBA=⊥EBM,⊥⊥ABN⊥⊥MBE,⊥AN=EM,⊥⊥BAN=⊥BME,⊥AF =FE ,AC =CM , ⊥CF =12EM ,FC ⊥EM ,同法FD =12AN ,FD ⊥AN , ⊥FD =FC ,⊥⊥BME +⊥BOM =90°,⊥BOM =⊥AOH , ⊥⊥BAN +⊥AOH =90°, ⊥⊥AHO =90°, ⊥AN ⊥MH ,FD ⊥FC .(3BF ≤≤当点E 落在AB 上时,BF 取得最大值,如图5所示,⊥4BC =,AC BC =,90ACB ∠=︒,⊥AB = ⊥F 是AE 的中点,⊥()1=2EF AB BE -,又BE =⊥()(1122BF BE EF BE AB BE =+=+-==,即BF 的最大值为图5当点E 落在AB 延长线上时,BF 取得长最小值,如图6所示,⊥4BC =,AC BC =,90ACB ∠=︒,⊥AB = ⊥F 是AE 的中点,⊥()1=2AF AB BE +,又BE =⊥()(1122BF AB AF AB AB BE =-=-+==即BF .图6BF ≤≤ 【点睛】本题考查等腰直角三角形的性质、旋转变换、全等三角形的判定和性质、直角三角形斜边中线的性质、三角形中位线定理等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题. 2.(2019·山东省中考模拟)正方形ABCD 中,E 是CD 边上一点,(1)将ADE V 绕点A 按顺时针方向旋转,使AD AB 、重合,得到ABF V ,如图1所示.观察可知:与DE 相等的线段是_______,AFB ∠=∠______.(2)如图2,正方形ABCD 中,P Q 、分别是BC CD 、边上的点,且45PAQ ∠=︒,试通过旋转的方式说明:DQ BP PQ +=(3)在(2)题中,连接BD 分别交{}|2 4 x x ≤≤于M N 、,你还能用旋转的思想说明222BM DN MN +=.【答案】(1)BF ,AED ;(2)证明见解析;(3)证明见解析. 【解析】(1)、⊥⊥ADE 绕点A 按顺时针方向旋转,使AD 、AB 重合,得到⊥ABF ,⊥DE=BF ,⊥AFB=⊥AED .(2)、将⊥ADQ 绕点A 按顺时针方向旋转90°,则AD 与AB 重合,得到⊥ABE ,如图2,则⊥D=⊥ABE=90°, 即点E 、B 、P 共线,⊥EAQ=⊥BAD=90°,AE=AQ ,BE=DQ , ⊥⊥PAQ=45°, ⊥⊥PAE=45° ⊥⊥PAQ=⊥PAE , ⊥⊥APE⊥⊥APQ (SAS ), ⊥PE=PQ , 而PE=PB+BE=PB+DQ , ⊥DQ+BP=PQ ;(3)、⊥四边形ABCD 为正方形, ⊥⊥ABD=⊥ADB=45°,如图,将⊥ADN 绕点A 按顺时针方向旋转90°,则AD 与AB 重合,得到⊥ABK ,则⊥ABK=⊥ADN=45°,BK=DN ,AK=AN , 与(2)一样可证明⊥AMN⊥⊥AMK ,得到MN=MK , ⊥⊥MBA+⊥KBA=45°+45°=90°, ⊥⊥BMK 为直角三角形, ⊥BK 2+BM 2=MK 2, ⊥BM 2+DN 2=MN 2.考点:(1)、旋转的性质;(2)、全等三角形的判定与性质;(3)、勾股定理;(4)、正方形的性质. 3.(2019·内蒙古自治区中考模拟)如图,△ABC 内接于△O ,AB 是△O 的直径,CD 平分△ACB 交△O 于点D ,交AB 于点F ,弦AE △CD 于点H ,连接CE 、OH.(1)延长AB 到圆外一点P ,连接PC ,若PC 2=PB ·PA ,求证:PC 是△O 的切线; (2)求证:CF ·AE=AC ·BC ;(3)若AF BF =32,△O 求tan△AEC 和OH 的长.【答案】(1)见解析;(2)见解析;(3) tan⊥AEC=32,OH =1. 【解析】(1)证明:∵PC 2=PB ·P A ,∵PC PB =PA PC, ∵⊥BPC=⊥APC ,∵⊥PBC ⊥⊥PCA , ∵⊥BAC=⊥PCB ,连接OC ,如图所示,∵AO=OC ,∵⊥ACO=⊥BAC ,∵⊥ACO=⊥PCB. ∵AB 是⊥O 的直径,∵⊥ACB=90°, ∵⊥BCO+⊥ACO=90°,∵⊥BCO+⊥PCB=90°,∵⊥PCO=90°. ∵OC 是半径,∵PC 是⊥O 的切线. (2)证明:∵AB 是⊥O 的直径,∵⊥ACB=90°. ∵CD 平分⊥ACB ,∵⊥ACD=⊥FCB=45°. ∵AE ⊥CD ,∵⊥CAE=45°=⊥FCB. 在⊥ACE 与⊥CFB 中, ⊥CAE=⊥FCB ,⊥AEC=⊥FBC , ∵⊥ACE ⊥⊥CFB ,∵AC CF =AEBC, ∵CF ·AE=AC ·BC.(3)作FM ⊥AC 于M ,FN ⊥BC 于N ,CQ ⊥AB 于Q ,延长AE 、CB 交于点K.∵CD 平分⊥ACB ,∵FM=FN. ∵S ⊥ACF =12AC ·FM=12AF ·CQ , S ⊥BCF =12BC ·FN=12BF ·CQ , ∵ACF BCF S S V V =1·21·2AC FM BC FN =1·21·2CQ AF CQ BF ,∵AF BF =AC BC.∵AB是⊥O的直径,∵⊥ACB=90°且tan⊥ABC=AC BC.∵AFBF=32且⊥AEC=⊥ABC,∵tan⊥AEC=tan⊥ABC=ACBC=32.设AC=3k,BC=2k,∵在Rt⊥ACB中,AB2=AC2+BC2且AB=∵(3k)2+(2k)2=2,∵k=2(k=-2舍去),∵AC=6,BC=4,∵⊥FCB=45°,⊥CHK=90°,∵⊥K=45°=⊥CAE,∵HA=HC=HK,CK=CA=6.∵CB=4,∵BK=6-4=2,∵OA=OB,HA=HK,∵OH是⊥ABK的中位线,∵OH=12BK=1.【点睛】此题考查了切线的判定、圆周角定理、等腰直角三角形的判定和性质、相似三角形的判定和性质、三角形中位线定理等知识的综合应用.4.(2017·营口市老边区柳树镇中学中考模拟)如图所示,四边形ABCD是正方形,M是AB延长线上一点.直角三角尺的一条直角边经过点D,且直角顶点E在AB边上滑动(点E不与点A、B重合),另一直角边与△CBM的平分线BF相交于点F.(1)如图1,当点E在AB边得中点位置时:△通过测量DE、EF的长度,猜想DE与EF满足的数量关系是;△连接点E与AD边的中点N,猜想NE与BF满足的数量关系是,请证明你的猜想;(2)如图2,当点E在AB边上的任意位置时,猜想此时DE与EF有怎样的数量关系,并证明你的猜想.【答案】(1)⊥DE=EF;⊥NE=BF;理由见解析;(2)DE=EF,理由见解析.【解析】解:(1)⊥DE=EF;⊥NE=BF;理由如下:⊥四边形ABCD为正方形,⊥AD=AB,⊥DAB=⊥ABC=90°,⊥N,E分别为AD,AB中点,⊥AN=DN=12AD,AE=EB=12AB,⊥DN=BE,AN=AE,⊥⊥DEF=90°,⊥⊥AED+⊥FEB=90°,又⊥⊥ADE+⊥AED=90°,⊥⊥FEB=⊥ADE,又⊥AN=AE,⊥⊥ANE=⊥AEN,又⊥⊥A=90,⊥⊥ANE=45°,⊥⊥DNE=180°﹣⊥ANE=135°,又⊥⊥CBM=90°,BF平分⊥CBM,⊥⊥CBF=45°,⊥EBF=135°,在⊥DNE和⊥EBF中ADE FEB DN EBDNE EBF ∠=∠⎧⎪=⎨⎪∠=∠⎩,⊥⊥DNE⊥⊥EBF(ASA),⊥DE=EF,NE=BF.(2)DE=EF,理由如下:在DA边上截取DN=EB,连接NE,⊥四边形ABCD是正方形,DN=EB,⊥AN=AE,⊥⊥AEN为等腰直角三角形,⊥⊥ANE=45°,⊥⊥DNE=180°﹣45°=135°,⊥BF平分⊥CBM,AN=AE,⊥⊥EBF=90°+45°=135°,⊥⊥DNE=⊥EBF,⊥⊥NDE+⊥DEA=90°,⊥BEF+⊥DEA=90°,⊥⊥NDE=⊥BEF,在⊥DNE和⊥EBF中ADE FEB DN EBDNE EBF ∠=∠⎧⎪=⎨⎪∠=∠⎩,⊥⊥DNE⊥⊥EBF(ASA),⊥DE=EF.【点睛】本题主要考查正方形的性质、全等三角形的判定与性质等,能正确地根据图1中证明⊥DNE与⊥EBF全等从而得到结论,进而应用到图2是解题的关键.5.(2019·山东省中考模拟)(1)(问题发现)如图1,在Rt△ABC中,AB=AC=2,△BAC=90°,点D为BC的中点,以CD为一边作正方形CDEF,点E恰好与点A重合,则线段BE与AF的数量关系为(2)(拓展研究)在(1)的条件下,如果正方形CDEF绕点C旋转,连接BE,CE,AF,线段BE与AF的数量关系有无变化?请仅就图2的情形给出证明;(3)(问题发现)当正方形CDEF旋转到B,E,F三点共线时候,直接写出线段AF的长.【答案】(1)AF ;(2)无变化;(3﹣1.【解析】解:(1)在Rt⊥ABC 中,AB=AC=2,根据勾股定理得,,点D 为BC 的中点,⊥AD=12,⊥四边形CDEF 是正方形,,⊥BE=AB=2,AF ,故答案为AF ;(2)无变化;如图2,在Rt⊥ABC 中,AB=AC=2,⊥⊥ABC=⊥ACB=45°,⊥sin⊥ABC=CA CB =,在正方形CDEF 中,⊥FEC=12⊥FED=45°,在Rt⊥CEF 中,sin⊥FEC=CF CE = ⊥CFCACE CB =,⊥⊥FCE=⊥ACB=45°,⊥⊥FCE ﹣⊥ACE=⊥ACB ﹣⊥ACE ,⊥⊥FCA=⊥ECB ,⊥⊥ACF⊥⊥BCE ,⊥BECBAF CA = ,AF ,⊥线段BE 与AF 的数量关系无变化;(3)当点E 在线段AF 上时,如图2,由(1)知,,在Rt⊥BCF 中,CF=,,根据勾股定理得,,⊥BE=BF ﹣,由(2)知,AF ,1,当点E 在线段BF 的延长线上时,如图3,在Rt⊥ABC 中,AB=AC=2,⊥⊥ABC=⊥ACB=45°,⊥sin⊥ABC=CA CB =, 在正方形CDEF 中,⊥FEC=12⊥FED=45°,在Rt⊥CEF 中,sin⊥FEC=CF CE =,⊥CF CA CE CB = , ⊥⊥FCE=⊥ACB=45°,⊥⊥FCB+⊥ACB=⊥FCB+⊥FCE ,⊥⊥FCA=⊥ECB ,⊥⊥ACF⊥⊥BCE ,⊥BE CB AF CA= ,AF ,由(1)知,,在Rt⊥BCF 中,CF=,,根据勾股定理得,,,由(2)知,AF ,.即:当正方形CDEF 旋转到B ,E ,F 三点共线时候,线段AF ﹣1.6.(2019·山东省中考模拟)如图1,在Rt ABC ∆中,90A ∠=︒,AB AC =,点D 、E 分别在边AB 、AC 上,AD AE =,连结DC ,点M 、P 、N 分别为DE 、DC 、BC 的中点.(1)观察猜想图1中,线段PM 与PN 的数量关系是_______,位置关系是_______;(2)探究证明把ADE ∆绕点A 逆时针方向旋转到图2的位置,连结MN 、BD 、CE ,判断PMN ∆的形状,并说明理由;(3)拓展延伸把ADE ∆绕点A 在平面内自由旋转,若4=AD ,10AB =,请直接写出PMN ∆面积的最大值.【答案】(1)PM PN =,PM PN ⊥;(2)PMN ∆是等腰直角三角形,理由见解析;(3)PMN ∆面积的最大值为492. 【解析】解:(1)⊥点P 、N 是CD 、BC 的中点⊥//PN BD ,12PN BD = ⊥点P 、M 是CD 、DE 的中点⊥//CE PM ,12PM CE = ⊥AB AC =,AD AE =⊥BD CE =⊥PM PN =⊥//PN BD⊥DPN ADC ∠=∠⊥//PM CE⊥DPM DCA ∠=∠⊥90BAC ∠=︒⊥90ADC ACD ∠+∠=︒⊥90MPN DPM DPN DCA ADC ∠=∠+∠=∠+=︒⊥PM PN ⊥(2)结论:PMN V 是等腰直角三角形.证明:由旋转知,BAD CAE ∠=∠⊥AB AC =,AD AE =⊥()ABD ACE SAS △≌△⊥ABD ACE ∠=∠,BD CE =⊥由三角形中位线的性质可知,12PN BD =,12PM CE =⊥PM PN =⊥PMN V 是等腰三角形⊥同(1)的方法得,//PM CE 、DPM DCE ∠=∠同(1)的方法得, //PN BD 、PNC DBC ∠=∠⊥DPN DCB PNC DCB DBC ∠=∠+∠=∠+∠⊥MPN DPM DPN ∠=∠+∠DCE DCB DBC =∠+∠+∠BCE DBC =∠+∠ACB ACE DBC =∠+∠+∠ACB ABD DBC =∠+∠+∠ACB ABC =∠+∠⊥90BAC ∠=︒⊥90ACB ABC ∠+∠=︒⊥90MPN ∠=︒⊥PMN V 是等腰直角三角形;(3)⊥由(2)得,PMN V 是等腰直角三角形,⊥MN 最大时,PMN V 的面积最大⊥//DE BC 且DE 在顶点A 上面时,MN AM AN =+最大值,连接AM ,AN ,如图:⊥在ADE V 中,4AD AE ==,90DAE ∠=︒⊥AM =⊥在ABC V 中,10AB AC ==,90BAC ∠=︒⊥AN =⊥MN AM AN =+最大值⊥(22211114922242PMN S PM MN ==⋅⋅=⨯=V 最大值. 故答案是:(1)PM PN =,PM PN ⊥;(2)PMN V 是等腰直角三角形,理由见解析;(3)PMN V 面积的最大值为492【点睛】本题考查了三角形中位线的判定和性质、等腰直角三角形的判定和性质、旋转的性质以及求最大面积问题等知识点,属压轴题目,综合性较强.7.(2018·河南省中考模拟)已知:在ABC V 中,AD 是BC 边上的中线,点E 是AD 的中点;过点A 作//AF BC ,交BE 的延长线于F ,连接CF . ()1求证:四边形ADCF 是平行四边形;()2填空:①当AB AC =时,四边形ADCF 是______形;②当90BAC ∠=o 时,四边形ADCF 是______形.【答案】(1)见解析;(2)⊥矩;⊥菱.【解析】证明://AF BC Q ,.AFE EBD ∴∠=∠在AEF V 和DEB V 中AFE DBE FEA BED AE DE ∠=⎧⎪∠=∠⎨⎪=⎩Q ,AEF ∴V ⊥().DEB AAS V.AF BD ∴=AF DC ∴=.又//AF BC Q ,∴四边形ADCF 为平行四边形;()2①当AB AC =时,四边形ADCF 是矩形;②当90BAC ∠=o 时,四边形ADCF 是菱形.故答案为矩,菱.【点睛】此题主要考查了平行四边形的判定以及全等三角形的判定与性质,得出AEF V ⊥DEB V 是解题关键. 8.(2019·江苏省中考模拟)如图,矩形ABCD 中,6AB =,8BC =,点E 在BC 边的延长线上,连接DE ,过点B 作DE 的垂线,交CD 于点M ,交AD 边的延长线于点N .(1)连接EN ,若BE BD =,求证:四边形BEND 为菱形;(2)在(1)的条件下,求BM 的长;(3)设CE x =,BN y =,求y 关于x 的函数解析式,并直接写出x 的取值范围.【答案】(1)见解析;(2)BM =;(3)y x=,902x <<. 【解析】解:(1)证明:⊥BD=BE ,BM⊥DE⊥⊥DBN=⊥EBN⊥四边形ABCD 是矩形,AD⊥BC⊥⊥ DNB=⊥EBN⊥⊥DBN=⊥DNB⊥BD=DN又⊥ BD=BE⊥BE=DN 又⊥AD⊥BC⊥四边形DBEN 是平行四边形又⊥BD=BE ⊥平行四边形DBEN 是菱形(2)由(1)可得,-BC=2⊥在Rt⊥DCE 中,由题意易得⊥MBC=⊥EDC ,又⊥DCE=⊥BCD=90°⊥⊥BCM⊥⊥DCE⊥BC BMDC DE =⊥86=(3)由题意易得⊥BNA=⊥EDC ,⊥A=⊥DCE=90°⊥⊥NAB⊥⊥DCE ⊥BN AB DE CE=6x=0<x<92 【点睛】此题主要考查勾股定理和三角形相似的综合应用9.(2019·河南省中考模拟)如图(1),已知点G 在正方形ABCD 的对角线AC 上,GE△BC ,垂足为点E ,GF△CD ,垂足为点F .(1)证明与推断:△求证:四边形CEGF 是正方形;△推断:AG BE的值为 : (2)探究与证明:将正方形CEGF 绕点C 顺时针方向旋转α角(0°<α<45°),如图(2)所示,试探究线段AG 与BE 之间的数量关系,并说明理由:(3)拓展与运用:正方形CEGF 在旋转过程中,当B ,E ,F 三点在一条直线上时,如图(3)所示,延长CG 交AD 于点H .若AG=6,,则BC= .【答案】(1)⊥四边形CEGF 是正方形;;(2)线段AG 与BE 之间的数量关系为BE ;(3)【解析】(1)⊥⊥四边形ABCD 是正方形,⊥⊥BCD=90°,⊥BCA=45°,⊥GE⊥BC 、GF⊥CD ,⊥⊥CEG=⊥CFG=⊥ECF=90°,⊥四边形CEGF 是矩形,⊥CGE=⊥ECG=45°,⊥EG=EC ,⊥四边形CEGF 是正方形;⊥由⊥知四边形CEGF 是正方形,⊥⊥CEG=⊥B=90°,⊥ECG=45°,⊥CG CE,GE⊥AB ,⊥AGCGBE CE ==;(2)连接CG ,由旋转性质知⊥BCE=⊥ACG=α,在Rt⊥CEG 和Rt⊥CBA 中,CE CG 、CB CA ,⊥CG CE =CACB =⊥⊥ACG⊥⊥BCE ,⊥AGCABE CB ==⊥线段AG 与BE 之间的数量关系为BE ;(3)⊥⊥CEF=45°,点B 、E 、F 三点共线,⊥⊥BEC=135°,⊥⊥ACG⊥⊥BCE ,⊥⊥AGC=⊥BEC=135°,⊥⊥AGH=⊥CAH=45°,⊥⊥CHA=⊥AHG ,⊥⊥AHG⊥⊥CHA , ⊥AG GH AHAC AH CH ==,设BC=CD=AD=a ,则a ,则由AGGHAC AH =得=,⊥AH=23 a,则DH=AD﹣AH=13a,3a,⊥由AG AHAC CH=23a=解得:故答案为【点睛】本题考查了正方形的性质与判定,相似三角形的判定与性质等,综合性较强,有一定的难度,正确添加辅助线,熟练掌握正方形的判定与性质、相似三角形的判定与性质是解题的关键. 10.(2018·山东省中考模拟)如图△,在△ABC中,△BAC=90°,AB=AC,点E在AC上(且不与点A,C 重合),在△ABC的外部作△CED,使△CED=90°,DE=CE,连接AD,分别以AB,AD为邻边作平行四边形ABFD,连接AF.(1)请直接写出线段AF,AE的数量关系;(2)将△CED绕点C逆时针旋转,当点E在线段BC上时,如图△,连接AE,请判断线段AF,AE的数量关系,并证明你的结论;(3)在图△的基础上,将△CED绕点C继续逆时针旋转,请判断(2)问中的结论是否发生变化?若不变,结合图△写出证明过程;若变化,请说明理由.【答案】AE;(2)AE,证明详见解析;(3)结论不变,AE,理由详见解析.【解析】解:(1)如图⊥中,结论:AE .理由:⊥四边形ABFD 是平行四边形,⊥AB=DF ,⊥AB=AC ,⊥AC=DF ,⊥DE=EC ,⊥AE=EF ,⊥⊥DEC=⊥AEF=90°,⊥⊥AEF 是等腰直角三角形,⊥AF=AE .(2)如图⊥中,结论:AE .理由:连接EF ,DF 交BC 于K .⊥四边形ABFD 是平行四边形,⊥AB⊥DF ,⊥⊥DKE=⊥ABC=45°,⊥EKF=180°﹣⊥DKE=135°,⊥⊥ADE=180°﹣⊥EDC=180°﹣45°=135°,⊥⊥EKF=⊥ADE ,⊥⊥DKC=⊥C ,⊥DK=DC ,⊥DF=AB=AC ,⊥KF=AD ,在⊥EKF 和⊥EDA 中,{EK DKEKF ADE KF AD=∠=∠=,⊥⊥EKF⊥⊥EDA ,⊥EF=EA ,⊥KEF=⊥AED ,⊥⊥FEA=⊥BED=90°,⊥⊥AEF 是等腰直角三角形,⊥AF=AE .(3)如图⊥中,结论不变,AE .理由:连接EF ,延长FD 交AC 于K .⊥⊥EDF=180°﹣⊥KDC ﹣⊥EDC=135°﹣⊥KDC ,⊥ACE=(90°﹣⊥KDC )+⊥DCE=135°﹣⊥KDC ,⊥⊥EDF=⊥ACE ,⊥DF=AB ,AB=AC ,⊥DF=AC在⊥EDF 和⊥ECA 中,DF AC EDF ACE DE CE =∠=⎪∠⎧⎪⎨⎩=,⊥⊥EDF⊥⊥ECA ,⊥EF=EA ,⊥FED=⊥AEC ,⊥⊥FEA=⊥DEC=90°,⊥⊥AEF 是等腰直角三角形,⊥AF=AE .【点睛】本题考查四边形综合题,综合性较强.11.(2019·哈尔滨市双城区第六中学中考模拟)如图,点M 是正方形ABCD 的边BC 上一点,连接AM ,点E 是线段AM 上一点,△CDE 的平分线交AM 延长线于点F .(1)如图1,若点E 为线段AM 的中点,BM :CM =1:2,BE,求AB 的长;(2)如图2,若DA =DE ,求证:BF+DF=AF .【答案】(1)AB=6;(2)证明见解析.【解析】解:(1)设BM=x,则CM=2x,BC=3x,⊥BA=BC,⊥BA=3x.在Rt⊥ABM中,E为斜边AM中点,⊥AM=2BE=.由勾股定理可得AM2=MB2+AB2,即40=x2+9x2,解得x=2.⊥AB=3x=6.(2)延长FD交过点A作垂直于AF的直线于H点,过点D作DP⊥AF于P点.⊥DF平分⊥CDE,⊥⊥1=⊥2.⊥DE=DA,DP⊥AF⊥⊥3=⊥4.⊥⊥1+⊥2+⊥3+⊥4=90°,⊥⊥2+⊥3=45°.⊥⊥DFP =90°﹣45°=45°.⊥AH =AF .⊥⊥BAF+⊥DAF =90°,⊥HAD+⊥DAF =90°,⊥⊥BAF =⊥DAH .又AB =AD ,⊥⊥ABF⊥⊥ADH(SAS).⊥AF =AH ,BF =DH .⊥Rt⊥FAH 是等腰直角三角形,⊥HF .⊥HF =DH+DF =BF+DF ,⊥BF+DF =AF .【点睛】本题是四边形的综合题,考查了正方形的性质、勾股定理、全等三角形的判定与性质及等腰直角三角形的性质等知识点,熟练运用相关知识是解决问题的关键.12.(2017·湖北省中考模拟)如图1,在矩形ABCD 中,E 是CB 延长线上一个动点,F 、G 分别为AE 、BC 的中点,FG 与ED 相交于点H(1) 求证:HE =HG(2) 如图2,当BE =AB 时,过点A 作AP △DE 于点P 连接BP ,求PE PA PB-的值 (3) 在(2)的条件下,若AD =2,△ADE =30°,则BP 的长为______________【答案】(1)证明见解析;(2)PE PA PB -=;(3)BP 【解析】(1)延长BC 至M ,且使CM =BE ,连接AM ,⊥⊥ABM⊥⊥DCE (SAS )⊥⊥DEC =⊥AMB⊥EB =CM ,BG =CG⊥G 为EM 的中点⊥FG 为⊥AEM 的中位线⊥FG⊥AM⊥⊥HGE =⊥AMB =⊥HEG⊥HE =HG(2) 过点B 作BQ⊥BP 交DE 于Q由八字型可得:⊥BEQ =⊥BAP⊥⊥BEQ⊥⊥BAP (ASA )⊥PA =QE⊥PE PAPE EQPQPB PB PB --===(3) ⊥⊥ADE =⊥CED =30°⊥CE⊥BE +BC =CD +2CD ,CD 1⊥DE =2CD =2⊥⊥ADE =30°⊥AP =EQ =1,DP⊥PQ=2-11⊥BP=213.(2019·陕西省中考模拟)(1)问题发现如图1,△ACB 和△DCE 均为等边三角形,点A 、D 、E 在同一条直线上,连接BE .填空:△△AEB 的度数为 ;△线段AD 、BE 之间的数量关系为 .(2)拓展研究如图2,△ACB 和△DCE 均为等腰直角三角形,△ACB =△DCE =90°,点A 、D 、E 在同一条直线上,CM 为△DCE 中DE 边上的高,连接BE ,请判断△AEB 的度数及线段CM 、AE 、BE 之间的数量关系,并说明理由.(3)解决问题如图3,在正方形ABCD 中,CD =,若点P 满足PD =2,且△BPD =90°,请直接写出点A 到BP 的距离.【答案】(1)⊥60o ;⊥AD BE =;(2)902AEB AE BE CM ∠==+o ,,理由见解析;(3)点A 到BP. 【解析】 解:(1)⊥如图1.⊥⊥ACB 和⊥DCE 均为等边三角形,⊥CA =CB ,CD =CE ,⊥ACB =⊥DCE =60°,⊥⊥ACD =⊥BCE .在⊥ACD 和⊥BCE 中,⊥AC BC ACD BCE CD CE =⎧⎪∠=∠⎨⎪=⎩,⊥⊥ACD⊥⊥BCE(SAS),⊥⊥ADC=⊥BEC.⊥⊥DCE为等边三角形,⊥⊥CDE=⊥CED=60°.⊥点A,D,E在同一直线上,⊥⊥ADC=120°,⊥⊥BEC=120°,⊥⊥AEB=⊥BEC﹣⊥CED=60°.故答案为60°.⊥⊥⊥ACD⊥⊥BCE,⊥AD=BE.故答案为AD=BE.(2)⊥AEB=90°,AE=BE+2CM.理由:如图2.⊥⊥ACB和⊥DCE均为等腰直角三角形,⊥CA=CB,CD=CE,⊥ACB=⊥DCE=90°,⊥⊥ACD=⊥BCE.在⊥ACD和⊥BCE中,⊥CA CBACD BCECD CE=⎧⎪∠=∠⎨⎪=⎩,⊥⊥ACD⊥⊥BCE(SAS),⊥AD=BE,⊥ADC=⊥BEC.⊥⊥DCE为等腰直角三角形,⊥⊥CDE=⊥CED=45°.⊥点A,D,E在同一直线上,⊥⊥ADC=135°,⊥⊥BEC=135°,⊥⊥AEB=⊥BEC﹣⊥CED=90°.⊥CD=CE,CM⊥DE,⊥DM=ME.⊥⊥DCE=90°,⊥DM=ME=CM,⊥AE=AD+DE=BE+2CM.(3)点A到BP的距离为12.理由如下:⊥PD=1,⊥点P在以点D为圆心,1为半径的圆上.⊥⊥BPD=90°,⊥点P在以BD为直径的圆上,⊥点P是这两圆的交点.⊥当点P在如图3⊥所示位置时,连接PD、PB、P A,作AH⊥BP,垂足为H,过点A作AE⊥AP,交BP于点E,如图3⊥.⊥四边形ABCD是正方形,⊥⊥ADB=45°.AB=AD=DC=BC,⊥BAD=90°,⊥BD=2.⊥DP=1,⊥BP.⊥⊥BPD=⊥BAD=90°,⊥A、P、D、B在以BD为直径的圆上,。
江西省2020届中考数学单元专题练之几何探究题含答案解析
江西省2020届中考数学单元专题练之几何探究题【题型解读】几何探究题为江西近10年的必考题型,题位在解答题最后两道题中的一道.考查类型有:(1)操作探究问题(3次);(2)旋转探究问题(3次);(3)新定义探究问题(2次);(4)动点探究问题(2次);主要设问有:(1)求线段长;(2)判断图形的形状;(3)求角度;(4)判断两条线段的数量和位置关系并证明.类型一操作探究问题1.如图,在正方形ABCD中,点E、F是正方形内两点,BE∥DF,EF⊥BE.为探索研究这个图形的特殊性质,某数学学习小组经历了如下过程:●初步体验如图①,连接BD,若BE=DF,求证:EF与BD互相平分.●规律探究(1)在图①中,(BE+DF)2+EF2=________AB2;(2)如图②,若BE≠DF,其他条件不变,(1)中的数量关系是否会发生变化?如果不会,请证明你的结论;如果会发生变化,请说明理由.●拓展应用如图③,若AB=4,∠DPB=135°,2BP+2PD=46,求PD的长.第1题图2. 如图①,将长为10的线段OA绕点O旋转90°得到OB,点A的运动轨迹为,P是半径OB上的一动点,Q 是上的一动点,连接PQ.发现:当∠POQ=________时,PQ有最大值,最大值为________;思考:(1)如图②,若P是OB中点,且QP⊥OB于点P,求的长;(2)如图③,将扇形AOB沿折痕AP折叠,使点B的对应点恰好落在OA的延长线上,求阴影部分的面积;探究:如图④,将扇形OAB沿PQ折叠,使折叠后的恰好与半径OA相切,切点为C,若OP=6,求点O到折痕PQ的距离.第2题图3. 综合与实践 问题情境:数学研究课上,老师带领大家探究《折纸中的数学问题》时,出示如图①所示的长方形纸条ABCD ,其中AD =BC =1,AB =CD =5.然后在纸条上任意画一条截线段MN ,将纸片沿MN 折叠,MB 与DN 交于点K ,得到△MNK ,如图②所示:深入探究: (1)若∠1=70°,求∠MKN 的度数;(2)试判断△MNK 的形状;若改变折痕MN 的位置,△MNK 的形状是否发生变化,请说明理由; 拓展应用:(3)爱动脑筋的小明在研究△MNK 的面积时,发现KN 边上的高始终是个不变的值.根据这一发现,他很快研究出△KMN 的面积最小值为12,求此时∠1的度数;(4)小明继续动手操作,发现了△MNK 面积的最大值.请你求出这个最大值.第3题图4. 如图,在矩形ABCD 中,将矩形折叠,使点B 落在边AD (含端点)上,落点记为点E ,这时折痕与边BC 或者边CD (含端点)交于点F ,然后展开铺平,连接BE 、EF .(1)操作发现:①在矩形ABCD 中,任意折叠所得的△BEF 是一个______三角形; ②当折痕经过点A 时,cos ∠BEF 的值为________; (2)深入探究:在矩形ABCD中,AB=3,BC=23,①当△BEF是等边三角形时,求出BE的长度;②在任意折叠中,△BEF的面积是否存在最大值,若存在,求出EF的长;若不存在,请说明理由.第4题图5. 如图①,已知△ABC中,∠BAC=90°,AB=AC,在∠BAC内部作∠MAN=45°,AM、AN分别交BC于点M、N.【操作】(1)将△ABM绕点A逆时针旋转90°,使AB边与AC边重合,把旋转后点M的对应点记作点Q,得到△ACQ,请在图①中画出△ACQ;(不写画法)【探究】(2)在(1)中所作图的基础上,连接NQ,①求证:MN=NQ;②写出线段BM,MN和NC之间满足的数量关系,并简要说明理由;【拓展】如图②,在等腰△DEF中,∠EDF=45°,DE=DF,点P是EF边上任意一点(不与点E,F重合),连接DP,以DP为腰向两侧分别作顶角均为45°的等腰△DPG和等腰△DPH,分别交DE、DF于点K、L,连接GH,分别交DE、DF于点S、T,(3)线段GS,ST和TH之间满足的数量关系是________;(4)设DK=a,DE=b,求DP的值.(用a、b表示)第5题图6.现有三角形纸板ABC, AC=BC=6,∠ACB=90°,将该三角形纸板放在足够大的圆中移动,⊙O交直线AB 于点D,连接DO并延长交⊙O于点E,连接AE.(1)操作发现:如图①,当⊙O经过A、C两点,且圆心O在△ABC内部时,连接CD、CE,①试判断CD与CE的数量关系,并说明理由;②求AE+AD的值;(2)数学思考:如图②,当⊙O经过A、C两点,且圆心O在△ABC外部时,连接CD、CE,求AE-AD的值;(3)问题解决:如图③,点F为CA延长线上一点,且AC=3AF.当⊙O经过A,F两点,且圆心O在△ABC外部时,连接DF,EF,①猜想AE、AD之间的数量关系,并证明;②连接CE ,是否存在△AEC 为直角三角形?若存在,请直接写出⊙O 的半径;若不存在,请说明理由.第6题图类型二 旋转探究问题1. 在△ABC 中,∠ACB =90°,AC =3,BC =4,将△ABC 绕顶点C 顺时针旋转,旋转角为θ(0°<θ<180°),得到△A ′B ′C .(1)设△ACA ′和△BCB ′的面积分别为S 1和S 2.若θ=40°,请求出S 1S 2的值;(2)如图①,设A ′B ′与CB 相交于点D ,且AB ∥CB ′: ①求证:CD =B ′D ; ②求BD 的长;(3)如图②,设AC 中点为点M ,A ′B ′中点为点N ,连接MN ,MN 是否存在最大值,若存在,求出MN 的值,判断出此时AA ′与BB ′的位置关系;若不存在,请说明理由.第1题图2. 如图①,在△ABC中,AC=BC=22,∠ACB=90°,点D、E分别是AC、BC的中点,将△CDE绕点C逆时针旋转得到△CD′E′,旋转角为α,连接AD′、BE′.(1)如图①,若0°<α<90°.①求证:AD′=BE′;②当AD′∥CE′时,求BE′的长;(2)如图②,若90°<α<180°,当点D′落在线段BE′上时,求sin∠CBE′的值;(3)如图③,将△CDE绕点C旋转一周,在旋转过程中,若AD′与直线BE′相交于点P,M为AB的中点,那么在整个旋转过程中,求PM扫过的图形面积.第2题图3. 如图①,边长为6的等边△ABC中,点D在AB边上(不与点A,B重合),点E在BC边上(不与点B,C重合).第一次操作:将线段DE绕点E顺时针旋转,当点D落在三角形上时,记为点F;第二次操作:将线段EF绕点F顺时针旋转,当点E落在三角形上时,记为点G;依次操作下去….(1)如图②中的四边形DEFG是经过三次操作后得到的,且DE⊥EC.①四边形DEFG的形状为________;②若BE=CF,求线段DE的长;(2)若经过两次操作可得到△DEF如图③.①请判断△DEF的形状为________,此时AD与BE的数量关系是________;②以①中的结论为前提,设AD的长为x,△DEF的面积为y,求y与x的函数关系式;(3)若经过多次操作可得到首尾顺次相接的多边形,其最大边数是多少?它可能是正多边形吗?如果是,请直接写出其边长;如果不是,请说明理由.第3题图4. 已知△ABC与△DEF均为透明的完全一样的等腰直角三角板,且AC=BC=2,∠C=∠E=90°.在数学活动课上,小颖同学用这两块三角板进行探究活动.操作:使点D落在线段AB的中点处并使DF过点B(如图①),然后将△DEF绕点D顺时针旋转,直至点E落在CB的延长线上时结束操作,在此过程中,射线ED与射线CA交于点N,射线CB与DF相交于点M,连接MN(如图②,图③).(1)如图②,若AB∥MN,求证:△ADN≌△BDM;(2)如图②,在以上操作过程中,求证:AN·BM的值不会发生变化;(3)①如图③,在以上操作过程中,ND始终平分∠ANM吗?若平分,请加以证明;若不平分,请说明理由;②设AN=m,请直接写出△DMN的面积(用含m的式子表示).第4题图5. 如图①,把边长为2的正方形纸片ABCD沿对角线BD剪开,将△BCD平移得到△DEF,使得BC边与AD 边重合,如图②所示,固定△ABC,将△EFD绕点A顺时针旋转,当ED边与AB边重合时,旋转停止.不考虑旋转开始和结束时重合的情况,设ED、EF(或它们的延长线)分别交BC(或它的延长线)于G、H点,如图③所示.(1)图②四边形ABCF的形状是________,连接BF,则BF=________;(2)在旋转过程中,∠CEF+∠CHE的度数为________;(3)设CG=x,BH=y,求y关于x的函数关系式(只要求根据图③所示的情况说明理由);(4)当x为何值时,△AGH是等腰三角形?(直接写出答案,不必说明理由)第5题图6.将两张完全相同的平行四边行纸片按如图①所示放置(其中点E在BC上,点A在BG上,AB=BE=4,BC=BG=23+2,∠B=60°,▱ABCD固定不动,将▱GBEF绕点B顺时针旋转,旋转角为α(0°<α<360°).(1)如图①,连接AF,求AF的长.(2)如图②,当▱GBEF绕点B旋转到点F与点D重合时,AD与BG相交于点M,BC与ED相交于点N,求证:四边形BMDN是菱形.(3)如图③,在旋转过程中,当旋转角α为多少度时,以点C,G,D,F为顶点的四边形是正方形?是矩形?请给予证明.第6题图类型三新定义探究问题1. 如图①,P为△ABC内一点,连接P A、PB、PC,若△PBC与△CAB相似,那么就称点P为△ABC的黄金点.(1)在下列三角形中,一定没有黄金点的是()A. 锐角三角形B. 钝角三角形C. 等腰三角形D. 直角三角形(2)如图②,已知Rt△ABC中,∠ACB=90°,∠ABC>∠A,CD是AB上的中线,过点B作BE⊥CD,垂足为点E,试说明点E是△ABC的黄金点;(3)如图③,在Rt△ABC中,∠ACB=90°,∠BAC=30°,BC=4.①若点P1是△ABC的黄金点,求AP1的长;②若点P1是△ABC的黄金点,点P2是△P1BC的黄金点,点P3是△P1P2C的黄金点,点P4是△P1P2P3的黄金点,…,以此类推,请求出△P2016P2017P2018的周长.第1题图2. 我们知道若线段上的一个点把这条线段分割为两部分,其中一部分与全长之比等于5-12时,则这个点称为黄金分割点.类比三角形中线的定义,我们规定:连接一个顶点和它对边的黄金分割点的线段叫做这个三角形的黄金线.(1)如图①,已知CD 是△ABC 的黄金线(AD >BD ),△ABC 的面积为4,则△BCD 的面积为________; (2)如图②,在△ABC 中,∠A =36°,AB =AC =1,过B 点作BD 平分∠ABC ,与AC 相交于点D ,求证:BD 是△ABC 的黄金线;(3)如图③, BE 、CD 是△ABC 的黄金线(AD >BD ,AE >CE ),BE 、CD 相交于点O . ①设△BOD 与△COE 的面积分别为S 1、S 2,试猜想S 1、S 2的数量关系,并说明理由;②求ODCD的值.第2题图3.如果在两个相似但不全等的三角形中,其中一个三角形的一边等于另一个三角形的一边,那么,我们称这两个三角形为梦幻三角形,例如:(如图①所示)△ABC 的三边长分别为a 、b 、c ,(如图②所示)△A 1B 1C 1的三边长分别为a 1、b 1、c 1,且△ABC ∽△A 1B 1C 1,c =a 1,那么我们将△ABC 与△A 1B 1C 1称为梦幻三角形.(1)若△ABC 与△A 1B 1C 1为梦幻三角形,且相似比为k (k >1),求证:a =kc ;(2)如图③,在△ABC 中,∠ACB =80°,∠B =60°,CD 平分∠ACB 交AB 于点D ,求证:△CBD 与△ABC 为梦幻三角形;(3)如图④,△ABC 内接于⊙O ,且AB 为⊙O 的直径,∠ACB 的平分线交⊙O 于点D ,过点D 作⊙O 的切线PD 交CA 的延长线于点P ,过点C 作CF ⊥PD 于点F ,与AD 相交于点E ,且△ACE 与△ADC 刚好构成梦幻三角形.①若AE ·AD =36,BC =8,求线段AD 的长;②若CDAB=m ,请直接写出PC 与PD 的数量关系(用含m 的式子表示,不必说明理由).第3题图4.阅读理解如图①,在正n 边形A 1A 2A 3…A n 的边A 2A 3上任取一不与点A 2重合的动点B 2,并以线段A 1B 2为边在线段A 1A 2上方作一正n 边形A 1B 2B 3…B n ,把正n 边形A 1B 2B 3…B n 叫正n 边形A 1A 2A 3…A n 的准位似图形,点A 3称为准位似中心.特例论证(1)如图②,已知正三角形A 1A 2A 3的准位似图形为正三角形A 1B 2B 3,试证明:随着点B 2的运动,∠B 3A 3A 1的大小始终不变.数学思考(2)如图③,已知正方形A 1A 2A 3A 4的准位似图形为正方形A 1B 2B 3B 4,随着点B 2的运动,∠B 3A 3A 4的大小是否始终不变?若不变,请求出∠B 3A 3A 4的大小;若改变,请说明理由.归纳猜想(3)在图①的情况下:①试猜想∠B 3A 3A 4的大小是否会发生改变?若不改变,用含n 的代数式表示出∠B 3A 3A 4的大小(不要求证明);若会改变,请说明理由;②∠B 3A 3A 4+∠B 4A 4A 5+∠B 5A 5A 6+…+∠B n A n A 1=________.(用含n 的代数式表示)第4题图类型四 动点探究问题1.在四边形OABC 中,AB ∥OC ,∠OAB =90°, ∠OCB =60°,AB =2,OA =2 3.(1)如图①,连接OB ,请直接写出OB 的长度;(2)如图②,过点O 作OH ⊥BC 于点H .动点P 从点H 出发,沿线段HO 向点O 运动,动点Q 从点O 出发,沿线段OA 向点A 运动,两点同时出发,速度都为每秒1个单位长度,设点P 运动的时间为t 秒,△OPQ 的面积为S (平方单位).①求S 与t 之间的函数关系式;②设PQ 与OB 交于点M ,当△OPM 为等腰三角形时,试求出△OPQ 的面积S 的值.第1题图2. 如图,点O 为正方形ABCD 的中心,AB =2,点E 为AB 上的一动点,DF ⊥DE 于点D ,DF 与BC 的延长线相交于点F . OM ⊥DE 于点M , ON ⊥DF 于点N .(1)求证:DE =DF ;(2)在点E 的运动过程中,OM 2+ON 2是否是一个定值,如果是,请求出 OM 2+ON 2的值,若不是,请说明理由;(3)如图②,若DE 与AC 相交于点P ,DF 的延长线与AC 的延长线相交于点Q ,求证:AP CQ =DPDQ.第2题图3. 如图①,在等腰△ABC中,∠BAC=90°,AB=AC,点D是BC边上的动点,P为AB边上的动点,连接DP,以DP为边构造△DEP,∠DPE=90°,PD=PE.(1)如图②,若点P与点A重合,①求证:CD=BE;②猜想BD、CD与PD之间的数量关系,并说明理由;(2)如图③,若BP=2AP时,AC=62,设DP2=y,BD=x.①求y关于x的函数关系式;②连接CP,请问是否存在△CDP为等腰三角形?若存在,请求出△DPE的面积;若不存在,请说明理由.第3题图4. 如图,在锐角△ABC中,AB=8,BC=6,CD⊥AB于点D,点E是AC的中点,连接DE.(1)如图①,①当DE∥BC时,则cos∠B的值为________;②当DE⊥AC时,求sin∠B的值;(2)设△ACD的面积为S,求S-AC2的最大值;(3)如图②,M、F为线段AB上的两动点,在运动的过程中,EF始终与CM平行,延长FE到点P,随着∠B 的变化,是否存在∠DEP=k∠A(k为正整数)?若存在,请直接写出tan∠MCA的取值范围;若不存在,请说明理由.第4题图江西省2020届中考数学单元专题练之几何探究题答案全解全析类型一操作探究问题1. 解:●初步体验证明:如解图①,连接BD 交EF 于点O ,连接DE 、BF ,第1题解图∵BE =DF ,BE ∥DF ,∴四边形BFDE 是平行四边形, ∴EF 与BD 互相平分. ●规律探究 (1) 2;(2)(1)中的数量关系不会发生变化.理由如下:如解图①,过点D 作BE 的垂线,与BE 的延长线交于点M ,连接BD ,第1题解图①∵BE ∥DF ,EF ⊥BE ,DM ⊥BM , ∴EF ∥DM ,∴四边形EFDM 是矩形,∴DF =EM ,EF =DM ,BM =BE +DF , ∵在正方形ABCD 中,∴BD =2AB ,∵BD 2=BM 2+DM 2,∴(BE +DF )2+EF 2=2AB 2. ●拓展应用如解图②,过点P 作EP ⊥DP ,过点B 作BE ⊥EP ,第1题解图②∵∠DPB =135°, ∴∠EPB =45°,即△EBP 为等腰直角三角形, ∴PB =2BE ,∵2BP +2PD =46,∴2·2BE +2PD =46, ∴BE +PD =26,设PE =BE =x ,则有(BE +PD )2+x 2= 2AB 2,即(26)2+x 2=32, 解得x =±22(负值舍去), ∴PD =26-BE =26-2 2. 2. 解:发现:90°,102;【解法提示】∵点Q 在AB ︵上,点P 在OB 上,∴当PQ 取最大值时,点Q 与点A 重合,点P 与点B 重合, 此时∠POQ =90°,PQ =OA 2+OB 2=10 2.思考:(1)如解图①,连接OQ ,则OP =12OB =12OQ ,∵QP ⊥OB , ∴cos ∠QOP =OP OQ =12∴∠QOP =60°,∴l BQ ︵=60180π×10=103π ;第2题解图①(2)由折叠的性质可得,BP =B ′P ,AB ′=AB =102, 在Rt △B ′OP 中,OP 2+(102-10)2=(10-OP )2, 解得OP =102-10, S 阴影=S 扇形AOB -2S △AOP =90360π×102-2×12×10× (102-10)=25π-1002+100;探究:如解图②,找点O 关于PQ 的对称点O ′,连接OO ′、O ′B 、O ′C 、O ′P ,OO ′与PQ 交于点M ,则OM =O ′M ,OO ′⊥PQ ,O ′P =OP =6,第2题解图②∵点O ′是B ′Q ︵所在圆的圆心, ∴O ′C =OB =10,∵折叠后的B ′Q ︵恰好与半径OA 相切于C 点, ∴O ′C ⊥AO , ∴O ′C ∥OB ,∴四边形OCO ′B 是矩形,在Rt △O ′BP 中,O ′B =62-42=2 5在Rt △OBO ′中,OO ′=102+(25)2=230, ∴OM =12OO ′=12×230=30,即点O 到折痕PQ 的距离为30.3. 解:深入探究:(1)∵折叠前的四边形ABCD 是矩形, ∴AM ∥DN ,∴∠KNM =∠KMN =∠1=70°,∴∠MKN =40°;(2)△MNK 为等腰三角形;不发生变化; 理由如下:∵AM ∥DN , ∴∠1=∠MNK ,∵将纸片沿MN 折叠, ∴∠1=∠KMN , ∴∠MNK =∠KMN , ∴KM =KN ,∴△MNK 始终为等腰三角形;拓展应用:(3)如解图①,当△KMN 的面积最小值为12时,KN =KM =BC =1,∴KM ⊥KN ,第3题解图①∵∠NMB =∠KMN ,∠KMB =90°, ∴∠1=∠NMB =45°,同理将纸条向下折叠时,∠1=∠NMB =135°, ∴∠1=45°或∠1=135°; (4)分两种情况:情况一:如解图②,将矩形纸片对折,使点B 与D 重合,此时点K 也与D 重合,第3题解图②设MK =MB =x ,则AM =5-x ,在Rt △AMK 中,由勾股定理得12+(5-x )2=x 2, 解得x =2.6,∴MK =NK =2.6,(由(2)可得) ∴S △MNK =12×1×2.6=1.3;情况二:如解图③,将矩形纸片沿对角线AC 对折,此时折痕即为AC ,第3题解图③设MK =AK =CK =x ,则DK =5-x . 同理可得MK =NK =2.6, ∵MD =1,∴S △MNK =12×1×2.6=1.3,∴△MNK 的面积最大值为1.3. 4. 解:(1)①等腰;【解法提示】由折叠的性质可知BF =EF ,∴△BEF 为等腰三角形.②22; 【解法提示】由折叠的性质可知∠BEF =∠EBF =45°, ∴cos ∠BEF =22; (2)①当△BEF 是等边三角形时,则∠ABE =30°, ∵AB =3,∴cos ∠ABE =AB BE =32,∴BE =2;②根据题意可得矩形ABCD 的面积为6; 第一种情况:当点F 在边BC 上时,此时可得S △BEF ≤12S 矩形ABCD ,即当点F 与点C 重合时,S △BEF 存在最大值,最大值为3;由折叠可知CE =CB =23,即EF = 23; 第二种情况:当点F 在边CD 上时,如解图,过点F 作FH ∥BC 交AB 于点H ,交BE 于点K ,第4题解图∵S △EKF =12KF ·AH ≤12HF ·AH =12S 矩形AHFD ,S △BKF =12KF ·BH ≤12HF ·BH =12S 矩形BCFH ,∴S △BEF ≤12S 矩形ABCD =3,即当点F 为CD 中点时,△BEF 的面积最大,此时,点E 与点A 重合,△BEF 面积最大为3, ∴EF =AD 2+DF 2= (23)2+(32)2=512, 综上所述,当△BEF 的最大面积为3时,EF 的长为23或512. 5. (1) 解:如解图①,△ACQ 即为所求;第5题解图①(2)①证明:由旋转可得,△ABM ≌ △ACQ ,∴AM =AQ ,∠BAM =∠CAQ , ∵∠MAN =45°,∠BAC = 90°, ∴∠BAM +∠NAC =45°, ∴∠CAQ +∠NAC =45°,即∠NAQ =45°, 在△MAN 和△QAN 中,⎩⎪⎨⎪⎧AM =AQ ∠MAN =∠QAN ,AN =AN∴△MAN ≌△QAN (SAS ), ∴MN =NQ ;② 解:MN 2=BM 2+NC 2; 理由如下:由①中可知,MN =NQ ,MB =CQ ,又∵∠NCQ =∠NCA +ACQ =∠NCA +∠ABM =45°+45°=90°, ∴在Rt △NCQ 中,NQ 2=CQ 2+NC 2,即MN 2=BM 2+NC 2; (3)解:ST 2=GS 2+TH 2;【解法提示】如解图③,连接SP 、PT ,用(2)中的方法可证△DGS ≌△DPT ,△GSP ≌△PTH , ∴GS =PT ,TH =SP ,由题意易知GH ⊥PD ,△SPT 为直角三角形, ∴ST 2=PT 2+SP 2=GS 2+TH 2.(4)解:如解图③,∵DE =DF ,DG =DP ,∠EDF =∠GDP =45°,第5题解图③∴∠DPK =∠DEP , 又∵∠PDK =∠EDP , ∴△DPK ∽△DEP , ∴DP DE =DKDP,即DP 2=DK ·DE , ∵DK =a , DE =b ,∴DP =ab.6. 解: (1)①CD =CE ,理由如下: ∵AC =BC =6,∠ACB =90°, ∴∠CAB =45°,∴∠CED =∠CAB =45°, 又∵DE 是⊙O 的直径, ∴∠ECD =90°,∴∠CDE =∠CED =45°, ∴CD =CE ;②由题意可得∠ECD =∠ACB =90°, ∴∠ECA =∠BCD ,又∵AC =BC =6,CD =CE , ∴△ECA ≌△DCB , ∴AE =BD ,∴AE +AD =BD +AD =AB ,在Rt △ABC 中,由勾股定理可得AB =62,即AE +AD 的值为62; (2)∵DE 是⊙O 的直径,∴∠DAE=∠DCE=90°,又∵AC=BC,∠ACB=90°,∴∠CAB=∠B=45°,∠ECA=∠DCB,∠CEA=∠ADC∴∠EAC=∠B=45°,∴△ECA≌△DCB,∴AE=BD,∴AE-AD=BD-AD=AB,在Rt△ABC中,由勾股定理可得AB=62,即AE-AD的值为62;(3)①AD-AE=22,证明如下:第6题解图①∵DE是⊙O的直径,∴∠DFE=90°,如解图①,过点F作FM⊥AF于点F,交AD于点M,∴∠DFM=∠EF A,又∵∠MAF=∠CAB=45°,∴∠AMF=45°,∴AF=MF,又∵∠FDM=∠FEA,∴△FDM≌△FEA(AAS),∴AE=DM,∴AD-AE=AD-DM=AM,由AC=3AF,AC=6可得AF=2,在Rt△AMF中,由勾股定理可得AM=22,即AD-AE的值为22;②存在,⊙O的半径为5.6或17.【解法提示】由①可得CF=8,如解图②,当∠ECA=90°时,△AEC为直角三角形,可证EC=AC=6,在Rt△ECF中,由勾股定理可得EF=10,在Rt△EDF中,由勾股定理可得DE=102,即⊙O的半径为52,如解图③,当∠AEC=90°时,△AEC为直角三角形,过点E作EH⊥AC于点H,可得EH=AH=3,∴FH=5,第6题解图在Rt△EHF中,由勾股定理可得EF=34,在Rt △EDF 中,由勾股定理可得DE =217,即⊙O 的半径为17.类型二 旋转探究问题1. (1)解: ∵△ABC 绕顶点C 顺时针旋转40°,得到△A ′B ′C , ∴CA =CA ′,CB =CB ′,∠ACA ′=∠BCB ′=θ, ∴△ACA ′∽△BCB ′,∴S △ACA ′∶S △BCB ′=AC 2∶BC 2=32∶42=9∶16; ∴S 1S 2=916; (2)①证明:∵AB ∥B ′C , ∴∠ABC =∠BCB ′;由旋转的性质得∠ABC =∠DB ′C , 即∠BCB ′ =∠DB ′C ; ∴CD =B ′D ;②解:根据勾股定理可得A ′B ′=AB =5,据题意可得∠BCB ′ +∠BCA ′ =∠DB ′C +∠CA ′B ′=90°, ∴∠BCA ′ =∠CA ′B ′,∴CD =A ′D =B ′D =12A ′B ′=52 ,∴ BD =BC -CD =32;(3)解:存在,∵∠A ′CB ′=90°,点M 为AC 的中点, ∴CM =12AC =32,∵△A ′B ′C 是由△ABC 绕顶点C 顺时针旋转所得,∴A ′B ′=AB =5,第1题解图如解图,连接CN ,可得MN ≤CM +CN ,∴只有当点N 在MC 的延长线上时,MN =CM +CN ,此时MN 最大, ∵点N 为A ′B ′的中点,∴CN =12 A ′B ′=52,MN =CM +CN =4,即MN 的最大值为4.此时AA ′⊥BB ′.2. (1)证明:①∵AC =BC ,D , E 分别是 AC ,BC 的中点, ∴CD =CE ,由旋转可得∠D ′CE ′=∠DCE =90°,CD =CD ′,CE =CE ′, ∴∠ACD ′=∠BCE ′,CD ′=CE ′, ∴△ACD ′≌ △BCE ′, ∴AD ′=BE ′;②解:∵AD ′∥CE ′,∴∠AD ′C =∠E ′CD ′=90°,∵AC =2CD ′,∴∠CAD ′=30°, ∴ AD ′=cos 30°×AC =32×22=6, 由①得BE ′=AD ′= 6 ;第2题解图①(2)解:根据题意可得CD ′=CE ′= 2 ,∵△CD ′E ′是等腰直角三角形,CD ′=CE ′= 2 , ∴D ′E ′=2,如解图①,作CK ⊥BE ′于点K .可得KD ′=E ′K , ∴CK =12D ′E ′=1,∴sin ∠CBE ′=CK BC =122=24;(3)解:如解图②,连接PM ,由(1)得△ACD ′≌ △BCE ′,第2题解图②∴∠P AC =∠E ′BC ,AD ′=BE ′, 又∠P AC +∠ACB =∠PBC +∠APB , ∴∠APB =∠ACB =90°, 设AD ′=x ,则BD ′=x -2,在△ABD ′中可得AD ′2+BD ′2=AB 2,即x 2+(x -2)2=42, 解得x 1=7+1,x 2=-7+1 (舍去), ∴BD ′=7-1, ∴S △BD ′M =S △ABD′2=(7+1)(7-1)4=32, 由轴对称性可得PM 扫过的图形面积为:180π×22360-32×2=2π-3.3. 解: (1)①正方形;【解法提示】由旋转性质可知DE =EF =FG =DG , ∴四边形DEFG 为菱形, ∴DG ∥BC . 又∵DE ⊥EC ,∴四边形DEFG 为正方形. ②∵四边形DEFG 为正方形, ∴DG ∥BC .∴∠ADG =∠B ,∠AGD =∠C . ∵△ABC 为等边三角形, ∴∠B =∠C =60°.∴△ADG 为等边三角形.∴AD = DG =DE .又∵BD =DE sin ∠B =DE sin 60°=233DE ,∴BD +AD =233DE +DE =6.解得DE =1823+3=123-18.(2)①等边三角形,相等;②据题意可得△ADF ≌△BED ≌△CFE ,AD =x ,BD =6-x , 如解图①,过点D 作DG ⊥BC 于点G , 可得DG =sin ∠B ·BD =32(6-x ), y =S △ABC -3S △BDE =12×33×6-3×x 2×32(6-x ),化简得y =334x 2-932x +9 3.图①图②第3题解图(3)如解图②,经过多次操作可得到首尾顺次相接的多边形,其最大边数是6,它可能为正多边形,边长为2. 4. (1)证明:据题意可得∠CAB =∠CBA ,AD =BD , ∴∠NAB =∠MBA ,又∵AB ∥MN ,AC =BC , ∴AC AN =BC BM,即AN =BM , ∴△ADN ≌△BDM (SAS );(2)证明:据题意可得AD =BD =2, 由(1)得∠NAB =∠MBA =135°,∠EDM = 45°,∴∠AND +∠ADN =∠EDB +∠BDM =45°, ∴∠AND =∠BDM , ∴△ADN ∽△BMD , ∴AD BM =ANBD,即AN ·BM =AD ·BD =2·2=2, ∴AN ·BM 的值不会发生变化;(3)解:①平分.证明:由(2)可得∠ADN +∠BDM =45°, ∴∠MDN =∠DAN =135°, 又∵△ADN ∽△BMD ,∴AN BD =ND DM , 又∵AD =BD , ∴AN AD =ND DM, ∴△ADN ∽△DNM ,∴∠AND =∠DNM ,即ND 始终平分∠ANM ; ②S △DMN =m 2+2m +22m;【解法提示】由(2)可得:AN ·BM =2,AN =m , ∴BM =2m,如解图,分别过点D 作AC 、MN 、CM 的垂线,垂足分别为H 、H ′、H ″ ,第4题解图∵ND 平分∠ANM ,且DH ⊥CA ,DH ′⊥MN 在Rt △ABC 中,DH ∥BC ,AD =BD 可得DH ′=DH =BC2=1,同理DH ″=1,∴S △DMN =S △CMN -S △ADN -S △ABC -S △DMB =12·CN ·CM -12·AN ·DH -12·AC ·BC -12·BM ·DH ″=12×(2+m )×(2+2m )-12×m ×1-12×2×2-12×2m ×1 =m 2+2m +22m.∴△DMN 的面积为m 2+2m +22m.5. 解:(1)平行四边形;25;【解法提示】依题意可知,正方形ABCD 沿对角线剪开后为第5题解图①两个等腰直角三角形,当ED 边与AB 边重合时,AB =DF ,BC =EF ,∴四边形ABCF 是平行四边形,设AD 与BF 交于点O ,如解图①,可知AO =DO =12AD =1,∴BO =AB 2+AO 2=5,∴BF =2 5.(2)45°或135°;【解法提示】当△EFD 转到如解图②所示的位置时,∠CEF +∠CHE =∠ACB =45°;当△EFD 旋转到如解图③所示的位置时,∠CEF +∠CHE =180°-∠C =135°,综上可知,∠CEF +∠CHE 的度数为45°或135°.第5题解图(3)由题意知∠DEF =∠ACB =∠B =45°, ∴∠DAC +∠CAH =45°,∠AHB +∠CAH =∠ACB =45°, ∴∠DAC =∠AHB ,∴△AGC ∽△HAB , ∴AC HB =GCAB ,∴2y =x 2,∴y =4x(0≤x <22); (4)当x 为2或2时,△AGH 是等腰三角形. 【解法提示】由题意可得△AGC ∽△HGA .∴要使△AGH 是等腰三角形,只要△AGC 是等腰三角形即可.第5题解图分三种情况讨论,①如解图④,当CG =AG ,此时CG =2, ②如解图⑤,当CG =AC ,此时CG =2,③如解图⑥,当AG =AC ,此时ED 与AB 重合,不合题意,舍去. 综上所述,当x =2或2时,△AGH 是等腰三角形.6. (1)解:如解图①,连接DF ,过点F 作FH ⊥AD 于点H .第6题解图①∵四边形ABCD 和四边形BEFG 是平行四边形. ∴AK ∥BE ,AB ∥EK .∴四边形ABEK 是平行四边形. ∵AB =BE ,∴四边形ABEK 是菱形.∴DK =FK =23+2-4=23-2,∠FKD =∠AKE =∠B =60°,∴△FKD 是等边三角形. ∵FH ⊥AD ,∴KH =12DK =3-1,FH =3-3,在Rt △AFH 中,AH =4+3-1=3+3, ∴AF =AH 2+FH 2=(3+3)2+(3-3)2=24=2 6.(2)证明:∵四边形ABCD 和四边形GBEF 是平行四边形, ∴BM ∥DN ,DM ∥BN ,∴四边形BMDN 是平行四边形.∵∠A =∠G ,∠AMB =∠GMD ,AB =GD . ∴△ABM ≌△GDM (AAS ). ∴BM =DM .∴四边形BMDN 是菱形.(3)解:①如解图①,当旋转角α为30°时,四边形CGDF 是正方形(此时也是矩形).第6题解图②证明:∵BG =BC ,∠ABG =∠α=30°, ∴∠GBC =60°-30°=30°, ∴∠BGC =∠BCG =75°, ∴∠GCO =∠CGO =45°, ∴OG =OC ,∠GOC =90°,如解图②,过点G 作GN ⊥BC 于点N , 在Rt △BNG 中,∠GBC =30°, ∴GN =12BG =3+1,BN =3GN =3+ 3.∴NC =BC -BN =23+2-(3+3)=3-1. ∴GC =GN 2+NC 2=(3+1)2+(3-1)2=8=22,∴OG =OC =CG 2=222=2,∴OD =OF =4-2=2, ∴OD =OC =OG =OF , ∴四边形CGDF 是矩形, ∵GF ⊥CD ,∴四边形CGDF 是正方形;②如解图③,当旋转角α为300°时,四边形CGFD 是矩形.第6题解图③证明:∵∠α=300°,∴点E 与点A 重合,∠CBG =120°. ∵BC =BG ,∴∠BCG =∠BGC =30°. ∴∠GCD =120°-30°=90°.∵四边形ABCD 和四边形GBEF 是平行四边形, ∴CD ∥AB ,AB ∥GF ,AB =CD ,AB =GF , ∴CD ∥GF ,CD =GF ,∴四边形CGFD 是平行四边形, ∵∠GCD =90°,∴四边形CGFD 是矩形.类型三 新定义探究问题1. 解: (1)C ;(2)∵在Rt △ABC 中,∠ACB =90°,CD 是AB 上的中线, ∴CD =12AB ,∴CD =BD ,∴∠BCE =∠ABC , ∵BE ⊥CD , ∴∠BEC =90°, ∴∠BEC =∠ACB , ∴△BCE ∽△ABC ,∴点E 是△ABC 的黄金点;(3)①据题意可得∠P 1CB =60°,∠BP 1C =90°,AC =43, ∴P 1C =cos ∠P 1CB ·BC =cos 60°·BC =2,如解图,过点P 1作P 1D ⊥AC 于点D ,连接AP 1,可得∠P 1CD =30°, ∴P 1D =12P 1C =1,CD = 3 ,∴ AD =AC -CD =33,在Rt △AP 1D 中,根据勾股定理可得AP 1=(33)2+12=27;第1题解图②据题意可得△P 1BC ∽△CAB , ∴C △P 1BC C △CAB=BC AB =12,同理可得C △P 2CP 1C △P 1BC =P 1C BC =12,即 C △P 2CP 1C △CAB=P 1C AB =14, ∴C △P 2016P 2017P 2018C △CBA=P 2017P 2018AB =122016,可得△CAB 的周长为12+43, ∴△P 2016P 2017P 2018的周长为3+3220142. (1)解: 6-25;【解法提示】∵CD 是△ABC 的黄金线(AD >BD ), ∴AD AB =5-12, ∵S △ABC =4, ∴S △ADC =5-12×4=25-2, ∴S △BCD =S △ABC -S △ADC =6-25; (2)证明:∵∠A =36°,AB =AC , ∴∠ABC =∠C =72°,∵过点B 作BD 平分∠ABC ,与AC 相交于点D , ∴∠CBD =∠A =36°,∠BDC =∠C =72°, ∴AD =BD =BC , ∴△BCD ∽△ABC , ∴CD BC =BDAC ,即1-AD BC =1-BC BC =BC 1, 解得BC =5-12, ∴AD =5-12, ∴AD AC =5-12, ∴D 点是AC 的黄金分割点, ∴BD 是△ABC 的黄金线; (3)解:①S 1=S 2.理由如下:如解图,连接ED ,第2题解图据题意得:AD AB =AEAC =5-12,∴S △ABE S △ABC =S △ACD S △ABC=5-12,∴S △ABE =S △ACD ,∴ S △COE =S △BOD ,即S 1=S 2;②由①得AD AB =AE AC, 又∵∠A 为公共角, ∴△ADE ∽△ABC , ∴∠DEA =∠BCA ,DE BC =AEAC =5-12, ∴DE ∥BC ,∴△ODE ∽△OCB , ∴OD OC =DEBC =5-12, ∴OD CD =5-15+1=(5-1)24. 3. (1)证明:根据题意可得△ABC ∽△A 1B 1C 1,且相似比为k (k >1), ∴aa 1=k ,即a =ka 1, 又∵c =a 1, ∴a =kc ;(2)证明:根据题意得∠A =40°, ∵CD 平分∠ACB ,∴∠BCD =12∠ACB =40°,即∠BCD =∠A ,又∵∠B =∠B , ∴△CBD ∽△ABC , 又∵BC 是公共边,∴△CBD 与△ABC 为梦幻三角形;(3)解:①∵△ACE 与△ADC 刚好构成梦幻三角形, ∴△ACE ∽△ADC , ∴AC AD =AEAC,即AC 2=AE ·AD =36, ∴AC =6,∵AB 为⊙O 的直径, ∴∠ACB =90°, 又∵BC =8,∴由勾股定理可得AB =10, 如解图,连接OD ,又∵∠ACB 的平分线交⊙O 于点D , ∴∠ACD =45°, ∴∠AOD =90°,∴∠OAD =∠ADO =45°,∵OD =5, ∴AD =52; ②PCPD=2m ;第3题解图【解法提示】根据题意可得AD =22AB , ∴CD AD =CD 2AB2=2·CD AB =2m , ∵PD 是⊙O 的切线, ∴∠ODP =90°, ∴∠ADP =45°,即∠ADP =∠PCD , 又∵∠P =∠P ,∴△ADP ∽△DCP ,且DP 为两三角形的公共边, ∴PC PD =CDDA=2m . 4. (1)证明:∵△A 1A 2A 3与△A 1B 2B 3都是正三角形, ∴A 1A 2=A 1A 3,A 1B 2=A 1B 3,∠A 2A 1A 3=∠B 2A 1B 3=60°, ∴∠A 2A 1B 2=∠A 3A 1B 3,∴△A 2A 1B 2≌△A 3A 1B 3(SAS ), ∴∠B 3A 3A 1=∠A 2=60°;∴随着点B 2的运动,∠B 3A 3A 1的大小始终不变,为60°. (2)解:∠B 3A 3A 4的大小不变.如解图,在边A 1A 2上取点D ,使A 1D =A 3B 2,连接B 2D .第4题解图∵四边形A 1A 2A 3A 4与四边形A 1B 2B 3B 4都是正方形, ∴A 1B 2=B 2B 3,∠A 1B 2B 3=∠A 1A 2A 3=90°, ∴∠A 3B 2B 3+∠A 1B 2A 2=90°, ∠A 2A 1B 2+∠A 1B 2A 2=90°, ∴∠A 3B 2B 3=∠A 2A 1B 2, ∴△A 3B 2B 3≌△DA 1B 2, ∴∠B 2A 3B 3=∠A 1DB 2, ∵A 1A 2=A 2A 3,A 1D =A 3B 2, ∴A 2B 2=A 2D .又∵∠A 1A 2A 3=90°,∴△DA 2B 2为等腰直角三角形, ∴∠A 1DB 2=135°, ∴∠B 2A 3B 3=135°, ∵∠A 4A 3A 2=90°, ∴∠B 3A 3A 4=45°,∴∠B 3A 3A 4的大小始终不变,为45°; (3)解:①∠B 3A 3A 4的大小不会发生改变,始终为180°n ;②90°(n -1)(n -2)n.【解法提示】∠B 3A 3A 4+∠B 4A 4A 5+B 5A 5A 6+…+∠B n A n A 1=180°n ×1+180°n ×2+180°n ×3+…180°n ×(n -2)=180°n ×[1+2+3+…+(n -2)]=90°(n -1)(n -2)n.类型四 动点探究问题1. 解:(1)OB =4;(2)①∵AB =2,OB =4,∠OAB =90°,∴∠ABO =60°,又∵∠OCB =60°,∴△BOC 为等边三角形, ∴OH =OBcos 30°=4×32=23, ∴OP =OH -PH =23-t ,如解图①,过P 点作PE ⊥OA ,垂足为点E ,第1题解图①则EP =OPcos 30°=3-32t , ∴S =12·OQ ·EP =12·t ·(3-32t )=-34t 2+32t (0<t <23);②若△OPM 为等腰三角形:(ⅰ)若OM =PM ,如解图②,则∠MPO =∠MOP =∠POC ,第1题解图②∴PQ ∥OC ,过点P 作PK ⊥OC 于点K , ∴OQ =PK =OP 2,即t =3-t2,解得:t =233,此时S =-34×(233)2+32×233=233; (ⅱ)若OP =OM ,如解图③,则∠OPM =∠OMP =75°,第1题解图③∴∠OQP =∠OMP -∠QOM =75°-30°=45°,此时EQ =EP ,即t -(3-12t )=3-32t ,解得:t =2, 此时S =-34×22+32×2=3-3;(ⅲ)若OP =PM ,∠POM =∠PMO =∠AOB ,则PQ ∥OA ,此时点Q 在AB 上,不满足题意,舍去.综上所述,当△OPM 为等腰三角形时,△OPM 的面积为233或2.2. (1)证明:根据题意得AD =CD ,∠ADC =∠DCF =∠DAB =90°, 又∵DF ⊥DE 于点D , ∴∠ADE =∠CDF , ∴△ADE ≌△CDF , ∴DE =DF ;(2)解: OM 2+ON 2 的值为定值;理由:∵OM ⊥DE 于点M , ON ⊥DF 于点N , ∴四边形DMON 为矩形, ∴DN =OM ,如解图①,连接OD ,可得OM 2+DM 2=OD 2,即OM 2+ON 2=OD 2,第2题解图①∵点O 为正方形ABCD 的中心,AB =2,∴OD =2,即OM 2+ON 2=OD 2=2; (3)证明:由正方形的性质可得∠DAC =45°,如解图②,过点Q 作C ′Q ⊥AQ 于点Q ,QC ′与DC 的延长线相交于点C ′,第2题解图②可得∠C ′=45°,即∠DAC =∠C ′,CQ =C ′Q , 又∠ADE +∠EDC =∠QDC ′+∠EDC =90°, ∴∠ADE =∠QDC ′, ∴△ADP ∽△C ′DQ , ∴AP C ′Q =AP CQ =DPDQ. 3. (1)①证明:据题意可得∠EAB +∠BAD =∠CAD +∠BAD =90°, ∴∠EAB =∠CAD , 又AB =AC ,AD =AE , ∴△ABE ≌△ACD , ∴CD =BE ;②解:猜想:CD 2+BD 2=2PD 2.理由:据题意可得∠ABC =∠C =45°, 由①可得∠ABE =∠C =45°, 即∠EBD =90°,∴BE 2+BD 2=PE 2+PD 2,即CD 2+BD 2=2PD 2;(2)解:①据题意可得BP =42,如解图,过点P 作PF ∥AC ,PF 与BC 相交于点F ,第3题解图可得BF =BP sin 45°=42×22=8, 由(1)可得△PBE ≌△PFD ,∴DF =BE ,∠ABE =∠PFD =45°,∴∠EBD =90°,∴BE 2+BD 2=PE 2+PD 2,∴DF 2+BD 2=2PD 2,即2y =x 2+(8-x )2,化简得y =x 2-8x +32;②存在;理由如下:据题意可得BC =12,CD =12-x ,AP =22, 在Rt △ACP 中,可得:CP =(62)2+(22)2=45, 当CD =DP 时,△CDP 为等腰三角形,此时,可得 y =12-x ,即x 2-8x +32=(12-x )2,解得x =7,∴y =x 2-8x +32=72-8×7+32=25,∴S △DPE =252; 当CP =CD 时,△CDP 为等腰三角形;此时,可得12-x =45,解得x =12-45,∴y =x 2-8x +32=(12-45)2-8×(12-45)+32=160-645,∴S △DPE =160-6452=80-325, 综上,△DPE 的面积为252或(80-325). 4. 解:(1)① 23; 【解法提示】∵E 是AC 的中点,∴当DE ∥BC 时,D 为AB 的中点,即BD =12AB =4, 又∵CD ⊥AB ,∴cos ∠B =BD BC =46=23. ②∵点E 是AC 的中点,∴当DE ⊥AC 时,DE 为AC 的垂直平分线,∴CD =AD ,设CD =AD =x ,则BD =8-x ,在Rt △BCD 中,根据勾股定理得:(8-x )2+x 2=62,解得x 1=4+2,x 2=4-2,∴sin ∠B =CD BC =4+26或4-26; (2)∵CD ⊥AB ,∴ S -AC 2=AD ·CD 2-(AD 2+CD 2)=-(AD 2+CD 2-2AD ·CD )-3AD ·CD 2, ∴ S -AC 2=-(AD -CD )2-3AD ·CD 2, ∴当AD =CD 时,S -AC 2的值最大,最大值为-3AD ·CD 2, 由(1)可知:-3AD ·CD 2= -3×(4-2)22=122-27; (3)34<tan ∠MCA <377. 【解法提示】当∠ABC 为直角时,根据勾股定理可得AC =10,此时可得 tan ∠A =BC AB =68=34. 当∠ACB 为直角时,根据勾股定理可得AC =27 ,此时可得tan ∠A =BC AC =627=377. ∵△ABC 是锐角三角形,∴34<tan ∠A <377. 由题意可知∠DEP =∠DEC +∠CEP =2∠A +∠CEP ,又∵∠DEP =k ∠A ,且k 为正整数,∴k =3,即∠CEP =∠AEF =∠A ,又∵EF 始终与CM 平行,∴∠MCA =∠AEF =∠A ,∴ 34<tan ∠MCA <377.。
专题15 几何探究型问题-2020年中考数学真题分专题训练(湖南专版)(教师版含解析)
2020年中考真题分项汇编(湖南)专题15 几何探究型问题1. (2020年湖南长沙中考)如图,点P 在以MN 为直径的半圆上运动(点P 不与M 、N 重合),PQ ⊥MN ,NE 平分∠MNP ,交PM 于点E ,交PQ 于点F 。
(1)=+PMPEPQ PF (2)若MN PM PN •=2,则=NQMQ【答案】(1)1 (2)21-5【解析】(2)由射影定理:MN QN PN •=2∵MN PM PN •=2∴QN=PM 设QN=PM=m MQ=x 则 MN MQ PM •=2215(2)51(2)15()(2-==∴---=∴+=∴a x QN MQ aa x a x x m 舍去)或2.(2020年湖南岳阳中考)如图,AB 为半⊙O 的直径,M ,C 是半圆上的三等分点,8AB =,BD 与半⊙O 相切于点B ,点P 为AM 上一动点(不与点A ,M 重合),直线PC 交BD 于点D ,BE OC ⊥于点E ,延190901=+=+∴==∴===∴∴=∴∠=∠=∠∴︒=∠+∠︒=∠+∠∠=∠∴∠=∴⊥PM PE PM ME PM PE PQ PF PQPFPQ EG PM ME PFGF EG PE PEGF PF PE EFP QFN PEF MNE QFN PNE PEN MNEPNE MNP NE EPEG PF EG GF MN EG 为菱形四边形,∵,平分∵,∥。
,连接)如图:作(长BE 交PC 于点F ,则下列结论正确的是______________.(写出所有正确结论的序号) ①PB PD =;②BC 的长为43π;③45DBE ∠=︒;④BCF PFB △∽△;⑤CF CP ⋅为定值.【答案】②⑤【解析】①先根据圆的切线的性质可得90ABD ∠=︒,再根据半圆上的三等分点可得60COB ∠=︒,然后根据圆周角定理可得30BPC ∠=︒,最后假设PB PD =,根据角的和差、三角形的外角性质可得30AOP ∠=︒,这与点P 为AM 上一动点相矛盾,由此即可得;②根据弧长公式即可得;③先根据等边三角形的性质可得30OBE ∠=︒,再根据角的和差即可得;④先根据三角形的外角性质可得PFB BCF CBF ∠=∠+∠,从而可得对应角PFB ∠与BCF ∠不可能相等,由此即可得;⑤先根据相似三角形的判定与性质可得CF CBCB CP=,从而可得2CF CP CB ⋅=,再根据等边三角形的性质可得4CB OB ==,由此即可得. 【详解】如图,连接OPBD 与半⊙O 相切于点B 90ABD ∴∠=︒C 是半圆上的三等分点1180603COB ∴∠=⨯︒=︒OB OC =BOC ∴是等边三角形由圆周角定理得:1302BPC COB ∠=∠=︒ 假设PB PD =,则1(180)752PBD D BPC ∠=∠=︒-∠=︒15ABP ABD PBD ∴∠=∠-∠=︒230AOP ABP ∴∠=∠=︒又点P 为AM 上一动点AOP ∴∠不是一个定值,与30AOP ∠=︒相矛盾即PB 与PD 不一定相等,结论①错误8AB =142OB OC AB ∴=== 则BC 的长为41806043ππ⨯=,结论②正确 BOC 是等边三角形,BE OC ⊥11603022OBE CBE OBC ∴∠=∠=∠=⨯︒=︒903060OB DBE ABD E ∠=∠-=︒-︒=∴∠︒,则结论③错误PFB BCF CBF BCF ∠=∠+∠>∠,即对应角PFB ∠与BCF ∠不可能相等BCF ∴与PFB △不相似,则结论④错误 在BCF 和PCB 中,30CBF CPB BCF PCB ∠=∠=︒⎧⎨∠=∠⎩BCF PCB ∴~CF CBCB CP∴=,即2CF CP CB ⋅= 又BOC 是等边三角形,4OB =4CB OB ∴==2416CF CP ∴⋅==即CF CP ⋅为定值,结论⑤正确 综上,结论正确的是②⑤ 故答案为:②⑤.3.(2020年湖南湘西中考)问题背景:如图1,在四边形ABCD 中,90BAD ∠=︒,90BCD ∠=︒,BA BC =,120ABC ∠=︒,60MBN ∠=︒,MBN ∠绕B 点旋转,它的两边分别交AD 、DC 于E 、F .探究图中线段AE ,CF ,EF 之间的数量关系.小李同学探究此问题的方法是:延长FC 到G ,使CG AE =,连接BG ,先证明BCG BAE △≌△,再证明BFC BFE △≌△,可得出结论,他的结论就是_______________; 探究延伸1:如图2,在四边形ABCD 中,90BAD ∠=︒,90BCD ∠=︒,BA BC =,2ABC MBN ∠=∠,MBN ∠绕B 点旋转,它的两边分别交AD 、DC 于E 、F .上述结论是否仍然成立?请直接写出结论(直接写出“成立”或者“不成立”),不要说明理由.探究延伸2:如图3,在四边形ABCD 中,BA BC =,180BAD BCD ∠+∠=︒,2ABC MBN ∠=∠,MBN ∠绕B 点旋转,它的两边分别交AD 、DC 于E 、F .上述结论是否仍然成立?并说明理由.实际应用:如图4,在某次军事演习中,舰艇甲在指挥中心(O 处)北偏西30的A 处舰艇乙在指挥中心南偏东70︒的B 处,并且两舰艇到指挥中心的距离相等接到行动指令后,舰艇甲向正东方向以75海里/小时的速度前进,同时舰艇乙沿北偏东50︒的方向以100海里/小时的速度前进,1.2小时后,指挥中心观测到甲、乙两舰艇分别到达E 、F 处,且指挥中心观测两舰艇视线之间的夹角为70︒,试求此时两舰艇之间的距离.【答案】EF=AE+CF .探究延伸1:结论EF=AE+CF 成立.探究延伸2:结论EF=AE+CF 仍然成立.实际应用:210海里. 【解析】 【分析】延长FC 到G ,使CG AE =,连接BG ,先证明BCG BAE △≌△,可得BG=BE ,∠CBG=∠ABE ,再证明BGF BEF △≌△,可得GF=EF ,即可解题;探究延伸1:延长FC 到G ,使CG AE =,连接BG ,先证明BCG BAE △≌△,可得BG=BE ,∠CBG=∠ABE ,再证明BGF BEF △≌△,可得GF=EF ,即可解题;探究延伸2:延长FC 到G ,使CG AE =,连接BG ,先证明BCG BAE △≌△,可得BG=BE ,∠CBG=∠ABE ,再证明BGF BEF △≌△,可得GF=EF ,即可解题;实际应用:连接EF ,延长AE ,BF 相交于点C ,然后与探究延伸2同理可得EF=AE+CF ,将AE 和CF 的长代入即可.【详解】解:EF=AE+CF理由:延长FC 到G ,使CG AE =,连接BG ,在△BCG 和△BAE 中,90BC BA BCG BAE CG AE =⎧⎪∠=∠=︒⎨⎪=⎩,∴BCG BAE △≌△(SAS ),∴BG=BE ,∠CBG=∠ABE , ∵∠ABC=120°,∠MBN=60°,∴∠ABE+∠CBF=60°,∴∠CBG+∠CBF=60°, 即∠GBF=60°,在△BGF 和△BEF 中,BG BE GBF EBF BF BF =⎧⎪∠=∠⎨⎪=⎩,∴△BGF ≌△BEF (SAS ),∴GF=EF , ∵GF=CG+CF=AE+CF ,∴EF=AE+CF . 探究延伸1:结论EF=AE+CF 成立.理由:延长FC 到G ,使CG AE =,连接BG ,在△BCG 和△BAE 中,90BC BA BCG BAE CG AE =⎧⎪∠=∠=︒⎨⎪=⎩,∴BCG BAE △≌△(SAS ), ∴BG=BE ,∠CBG=∠ABE ,∵∠ABC=2∠MBN ,∴∠ABE+∠CBF=12∠ABC ,∴∠CBG+∠CBF=12∠ABC ,即∠GBF=12∠ABC , 在△BGF 和△BEF 中,BG BEGBF EBF BF BF =⎧⎪∠=∠⎨⎪=⎩,∴△BGF ≌△BEF (SAS ),∴GF=EF , ∵GF=CG+CF=AE+CF ,∴EF=AE+CF . 探究延伸2:结论EF=AE+CF 仍然成立. 理由:延长FC 到G ,使CG AE =,连接BG ,∵180BAD BCD ∠+∠=︒,∠BCG+∠BCD=180°,∴∠BCG=∠BAD 在△BCG 和△BAE 中,BC BA BCG BAE CG AE =⎧⎪∠=∠⎨⎪=⎩,∴BCG BAE △≌△(SAS ),∴BG=BE ,∠CBG=∠ABE , ∵∠ABC=2∠MBN ,∴∠ABE+∠CBF=12∠ABC ,∴∠CBG+∠CBF=12∠ABC , 即∠GBF=12∠ABC ,在△BGF 和△BEF 中, BG BE GBF EBF BF BF =⎧⎪∠=∠⎨⎪=⎩,∴△BGF ≌△BEF (SAS ),∴GF=EF ,∵GF=CG+CF=AE+CF , ∴EF=AE+CF .实际应用:连接EF ,延长AE ,BF 相交于点C ,∵∠AOB=30°+90°+(90°-70°)=140°,∠EOF=70°,∴∠EOF=12∠AOB∵OA=OB,∠OAC+∠OBC=(90°-30°)+(70°+50°)=180°,∴符合探索延伸中的条件∴结论EF= AE+CF仍然成立即EF=75×1.2+100×1.2=210(海里)答:此时两舰艇之间的距离为210海里.4.(2020年湖南常德中考)已知D是Rt△ABC斜边AB的中点,∠ACB=90°,∠ABC=30°,过点D作Rt△DEF使∠DEF=90°,∠DFE=30°,连接CE并延长CE到P,使EP=CE,连接BE,FP,BP,设BC与DE交于M,PB与EF交于N.(1)如图1,当D,B,F共线时,求证:①EB=EP;②∠EFP=30°;(2)如图2,当D,B,F不共线时,连接BF,求证:∠BFD+∠EFP=30°.【分析】(1)①证明△CBP是直角三角形,根据直角三角形斜边中线可得结论;②根据同位角相等可得BC∥EF,由平行线的性质得BP⊥EF,可得EF是线段BP的垂直平分线,根据等腰三角形三线合一的性质可得∠PFE=∠BFE=30°;(2)如图2,延长DE到Q,使EQ=DE,连接CD,PQ,FQ,证明△QEP≌△DEC(SAS),则PQ=DC=DB,由QE=DE,∠DEF=90°,知EF是DQ的垂直平分线,证明△FQP≌△FDB(SAS),再由EF是DQ的垂直平分线,可得结论.【解答】证明(1)①∵∠ACB=90°,∠ABC=30°,∴∠A=90°﹣30°=60°,同理∠EDF=60°,∴∠A=∠EDF=60°,∴AC∥DE,∴∠DMB=∠ACB=90°,∵D 是Rt △ABC 斜边AB 的中点,AC ∥DM ,∴21==AB BD BC BM , 即M 是BC 的中点,∵EP =CE ,即E 是PC 的中点,∴ED ∥BP , ∴∠CBP =∠DMB =90°,∴△CBP 是直角三角形,∴BE =21PC =EP ; ②∵∠ABC =∠DFE =30°,∴BC ∥EF ,由①知:∠CBP =90°, ∴BP ⊥EF ,∵EB =EP ,∴EF 是线段BP 的垂直平分线,∴PF =BF , ∴∠PFE =∠BFE =30°;(2)如图2,延长DE 到Q ,使EQ =DE ,连接CD ,PQ ,FQ ,∵EC =EP ,∠DEC =∠QEP ,∴△QEP ≌△DEC (SAS ),则PQ =DC =DB , ∵QE =DE ,∠DEF =90°∴EF 是DQ 的垂直平分线,∴QF =DF , ∵CD =AD ,∴∠CDA =∠A =60°,∴∠CDB =120°,∴∠FDB =120°﹣∠FDC =120°﹣(60°+∠EDC )=60°﹣∠EDC =60°﹣∠EQP =∠FQP , ∴△FQP ≌△FDB (SAS ),∴∠QFP =∠BFD ,∵EF 是DQ 的垂直平分线, ∴∠QFE =∠EFD =30°,∴∠QFP +∠EFP =30°, ∴∠BFD +∠EFP =30°.5.(2020年湖南湘潭中考)算筹是在珠算发明以前我国独创并且有效的计算工具,为我国古代数学的发展做出了很大的贡献.在算筹计数法中,以“纵式”和“横式”两种方式来表示数字如图:表示多位数时,个位用纵式,十位用横式,百位用纵式,千位用横式,以此类推,遇零则置空.示例如下:67286708,则表示的数是________.【答案】8167【分析】根据算筹计数法来计数即可. 【详解】解:根据算筹计数法,表示的数是:8167故答案为:81676. 2020年湖南怀化中考)定义:对角线互相垂直且相等的四边形叫做垂等四边形. (1)下面四边形是垂等四边形的是____________(填序号) ①平行四边形;②矩形;③菱形;④正方形(2)图形判定:如图1,在四边形ABCD 中,AD ∥BC ,AC BD ⊥,过点D 作BD 垂线交BC 的延长线于点E ,且45DBC ∠=︒,证明:四边形ABCD 是垂等四边形.(3)由菱形面积公式易知性质:垂等四边形的面积等于两条对角线乘积的一半.应用:在图2中,面积为24的垂等四边形ABCD 内接于⊙O 中,60BCD ∠=︒.求⊙O 的半径.【答案】(1)④;(2)证明过程见解析;③4【解析】(1)根据垂等四边形的性质对每个图形判断即可;(2)根据已知条件可证明四边形ACED 是平行四边形,即可得到AC=DE ,再根据等腰直角三角形的性质即可得到结果;(3)过点O 作OE BD ⊥,根据面积公式可求得BD 的长,根据垂径定理即可得到答案.【详解】(1)①平行四边形的对角线互相平分但不垂直和相等,故不是;②矩形对角线相等但不垂直;③菱形的对角线互相垂直但不相等;④正方形的对角线互相垂直且相等,故正方形是垂等四边形; (2)∵AC BD ⊥,ED BD ⊥,∴AC ∥DE, 又∵AD ∥BC ,∴四边形ADEC 是平行四边形,∴AC=DE ,又∴45DBC ∠=︒,∴△BDE 是等腰直角三角形, ∴BD=DE ,∴BD=AC ,∴四边形ABCD 是垂等四边形.(3)如图,过点O 作OE BD ⊥,∴四边形ABCD 是垂等四边形,∴AC=BD ,又∴垂等四边形的面积是24,,根据垂等四边形的面积计算方法得:AC BD == 又∵60BCD ∠=︒,∴60DOE ∠=︒,设半径为r ,根据垂径定理可得:在∴ODE 中,OD=r ,DE=∴4sin 60DEr ===︒,∴O 的半径为4.7. (2020年湖南省衡阳市中考)如图1,平面直角坐标系xOy 中,等腰ABC ∆的底边BC 在x 轴上,8BC =,顶点A 在y 的正半轴上,2OA =,一动点E 从(3,0)出发,以每秒1个单位的速度沿CB 向左运动,到达OB 的中点停止.另一动点F 从点C 出发,以相同的速度沿CB 向左运动,到达点O 停止.已知点E 、F 同时出发,以EF 为边作正方形EFGH ,使正方形EFGH 和ABC ∆在BC 的同侧.设运动的时间为t 秒(0t ≥).(1)当点H 落在AC 边上时,求t 的值;(2)设正方形EFGH 与ABC ∆重叠面积为S ,请问是存在t 值,使得9136S =?若存在,求出t 值;若不存在,请说明理由;(3)如图2,取AC 的中点D ,连结OD ,当点E 、F 开始运动时,点M 从点O出发,以每秒的速度沿OD DC CD DO ---运动,到达点O 停止运动.请问在点E 的整个运动过程中,点M 可能在正方形EFGH 内(含边界)吗?如果可能,求出点M 在正方形EFGH 内(含边界)的时长;若不可能,请说明理由.【答案】(1)t=1;(2)存在,143t =,理由见解析;(3)可能,3455t ≤≤或4533t ≤≤或35t ≤≤理由见解析 【解析】(1)用待定系数法求出直线AC 的解析式,根据题意用t 表示出点H 的坐标,代入求解即可;(2)根据已知,当点F 运动到点O 停止运动前,重叠最大面积是边长为1的正方形的面积,即不存在t ,使重叠面积为9136S =,故t ﹥4,用待定系数法求出直线AB 的解析式,求出点H 落在BC 边上时的t 值,求出此时重叠面积为169﹤9136,进一步求出重叠面积关于t 的表达式,代入解t 的方程即可解得t 值; (3)由已知求得点D (2,1),AC=OD=OC=OA=结合图形分情况讨论即可得出符合条件的时长.【详解】(1)由题意,A(0,2),B(-4,0),C(4,0),设直线AC 的函数解析式为y=kx+b ,将点A 、C 坐标代入,得:402k b b +=⎧⎨=⎩,解得:122k b ⎧=-⎪⎨⎪=⎩, ∴直线AC 的函数解析式为122y x =-+, 当点H 落在AC 边上时,点E(3-t ,0),点H (3-t ,1),将点H 代入122y x =-+,得: 11(3)22t =--+,解得:t=1; (2)存在,143t =,使得9136S =. 根据已知,当点F 运动到点O 停止运动前,重叠最大面积是边长为1的正方形的面积,即不存在t ,使重叠面积为9136S =,故t ﹥4, 设直线AB 的函数解析式为y=mx+n ,将点A 、B 坐标代入,得:402m n n -+=⎧⎨=⎩,解得:122m n ⎧=⎪⎨⎪=⎩, ∴直线AC 的函数解析式为122y x =+, 当t ﹥4时,点E (3-t ,0)点H (3-t ,t -3),G(0,t -3), 当点H 落在AB 边上时,将点H 代入122y x =+,得: 13(3)22t t -=-+,解得:133t =; 此时重叠的面积为221316(3)(3)39t -=-=, ∵169﹤9136,∴133﹤t ﹤5, 如图1,设GH 交AB 于S ,EH 交AB 于T,将y=t -3代入122y x =+得:1322t x -=+, 解得:x=2t -10,∴点S(2t -10,t -3),将x=3-t 代入122y x =+得:11(3)2(7)22y t t =-+=-, ∴点T 1(3,(7))2t t --,∴AG=5-t ,SG=10-2t ,BE=7-t ,ET=1(7)2t -, 211(7)24BET S BE ET t ∆==-, 21(5)2ASG S AG SG t ∆==- 所以重叠面积S=AOB BET ASG S S S ∆∆∆--=4-21(7)4t --2(5)t -=2527133424t t -+-, 由2527133424t t -+-=9136得:1143t =,29215t =﹥5(舍去), ∴143t =;(3)可能,35≤t≤1或t=4. ∵点D 为AC 的中点,且OA=2,OC=4,∴点D (2,1),AC=易知M 点在水平方向以每秒是4个单位的速度运动;当0﹤t ﹤12时,M 在线段OD 上,H 未到达D 点,所以M 与正方形不相遇; 当12﹤t ﹤1时, 12+12÷(1+4)=35秒, ∴t =35时M 与正方形相遇,经过1÷(1+4)=15秒后,M 点不在正方行内部,则3455t ≤≤; 当t=1时,由(1)知,点F 运动到原E 点处,M 点到达C 处; 当1≤t≤2时,当t=1+1÷(4-1)=43秒时,点M 追上G 点,经过1÷(4-1)=13秒,点M 都在正方形EFGH 内(含边界),4533t ≤≤ 当t=2时,点M 运动返回到点O 处停止运动,当 t=3时,点E 运动返回到点O 处, 当 t=4时,点F 运动返回到点O 处,当35t ≤≤时,点M 都在正方形EFGH 内(含边界), 综上,当3455t ≤≤或4533t ≤≤或35t ≤≤时,点M 可能在正方形EFGH 内(含边界).8. (2020年湖南岳阳中考)如图1,在矩形ABCD 中,6,8AB BC ==,动点P ,Q 分别从C 点,A 点同时以每秒1个单位长度的速度出发,且分别在边,CA AB 上沿C A →,A B →的方向运动,当点Q 运动到点B 时,,P Q 两点同时停止运动,设点P 运动的时间为()t s ,连接PQ ,过点P 作PE PQ ⊥,PE 与边BC 相交于点E ,连接QE .(1)如图2,当5t s =时,延长EP 交边AD 于点F .求证:AF CE =;(2)在(1)的条件下,试探究线段,,AQ QE CE 三者之间的等量关系,并加以证明;(3)如图3,当94t s >时,延长EP 交边AD 于点F ,连接FQ ,若FQ 平分AFP ∠,求AF CE的值.【答案】(1)证明见解析;(2)222AQ CE QE +=,证明见解析;(3)65. 【解析】(1)先根据运动速度和时间求出5CP =,再根据勾股定理可得10AC =,从而可得5AP CP ==,然后根据矩形的性质可得//AD BC ,从而可得FAP ECP ∠=∠,AFP CEP ∠=∠,最后根据三角形全等的判定定理与性质即可得证;(2)如图(见解析),连接FQ ,先根据(1)三角形全等的性质可得FP EP =,再根据垂直平分线的判定与性质可得QF QE =,然后根据勾股定理、等量代换即可得证;(3)先根据角平分线的性质得出AQ PQ =,再根据直角三角形全等的判定定理与性质得出AQF PQF ∠=∠,然后根据等腰三角形的三线合一得出110,22t OA AP OQ AP -==⊥,又分别在Rt ABC 和Rt AOQ 中,利用余弦三角函数可求出t 的值,从而可得CP 、AP 的长,最后根据平行线分线段成比例定理即可得.【详解】(1)由题意得:155CP =⨯=四边形ABCD 是矩形//,90AD BC BAD B ∴∠=∠=︒FAP ECP ∴∠=∠,AFP CEP ∠=∠6,8AB BC ==10AC ∴=5AP AC CP ∴=-=在AFP 和CEP △中,5FAP ECP AFP CEP AP CP ∠=∠⎧⎪∠=∠⎨⎪==⎩()AFP CEP AAS ∴≅AF CE ∴=;(2)222AQ CE QE +=,证明如下:如图,连接FQ由(1)已证:AFP CEP ≅ FP EP ∴=PE PQ ⊥∴PQ 是线段EF 的垂直平分线QF QE ∴=在Rt AFQ 中,由勾股定理得:222AQ AF QF +=则222AQ CE QE +=;(3)如图,设FQ 与AC 的交点为点O由题意得:AQ t =,CP t =,10AP AC CP t =-=-FQ 平分AFP ∠,,QA AD PE PQ ⊥⊥AQ PQ ∴=(角平分线的性质)APQ ∴△是等腰三角形在AFQ △和PFQ △中,AQ PQ FQ FQ=⎧⎨=⎩ ()AFQ PFQ HL ∴≅AQF PQF ∴∠=∠,即OQ 是AQP ∠的角平分线110,22t OA OP AP OQ AP -∴===⊥(等腰三角形的三线合一) 在Rt ABC 中,63cos 105AB BAC AC ∠=== 在Rt AOQ 中,cos OA OAQ AQ ∠=,即1032cos 5t BAC t -=∠= 解得50()11t s = 505060,10111111CP AP ∴==-= //AD BC ,即//AF CE65AF AP CE CP ∴== 故AF CE 的值为65.9. (2020年湖南株洲中考)如图所示,BEF 的顶点E 在正方形ABCD 对角线AC 的延长线上,AE 与BF 交于点G ,连接AF 、CF ,满足ABF CBE △≌△.(1)求证:90EBF ∠=︒.(2)若正方形ABCD 的边长为1,2CE =,求tan AFC ∠的值.【答案】(1)见解析;(2)2【解析】(1)已知ABF CBE △≌△,根据全等三角形的对应角相等可得ABF CBE ∠=∠,再由90ABF CBF ∠+∠=︒,可得90CBF CBE ∠+∠=︒,即可证得90EBF ∠=︒;(2)由ABF CBE △≌△,根据全等三角形的对应角相等可得AFB CEB ∠=∠,由对顶角相等可得FGA EGB ∠=∠,即可证得90FAC EBF ∠=∠=︒;又因正方形边长为1,2CE =,可得AC =,2AF CE ==.在Rt △AFC 中,即可求得tan 2AFC ∠=. 【详解】(1)证明:∵ABF CBE △≌△,∴ABF CBE ∠=∠,∵90ABF CBF ∠+∠=︒,∴90CBF CBE ∠+∠=︒,∴90EBF ∠=︒.(2)∵ABF CBE △≌△,∴AFB CEB ∠=∠,∵FGA EGB ∠=∠,∴90FAC EBF ∠=∠=︒,∵正方形边长为1,2CE =.∴AC =2AF CE ==.∴tan 2AFC ∠=.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.如图,△ABC 与△CDE 是等边三角形,连接AD ,取AD 的中点P ,连接BP 并延长至点M ,使PM=BP ,连接AM ,EM ,AE ,将△CDE 绕点C 顺时针旋转.
(1)如图1,当点D 在BC 上,点E 在AC 上时,则△AEM 的形状为 ;
(2)将△CDE 绕点C 顺时针旋转至图2的位置,请判断△AEM 的形状,并说明理由;
(3)若CD=
2
1BC ,将△CDE 由图1位置绕点C 顺时针旋转α(0°≤α<360°),当ME=3CD 时,请直接写出α的值.
图1 图2 备用图
2.在△ABC 和△ADE 中,BA=BC ,DA=DE ,且∠ABC=∠ADE=α,点E 在△ABC 的内部,连接EC ,EB 和BD ,并且∠ACE+∠ABE=90°.
(1)如图1,当α=60°时,线段BD 与CE 的数量关系为 ,线段EA ,EB ,EC 的数量关系
为 ;
(2)如图2当α=90°时,请写出线段EA ,EB ,EC 的数量关系,并说明理由; (3)在(2)的条件下,当点E 在线段CD 上时,若BC=52,请直接写出△BDE 的面积.
3.如图,△ABC 中,AB=BC,BD ⊥AC 于点D,∠FAC=∠ABC ,且∠FAC 在AC 下方.点P,Q 分别是射线BD ,射线AF 上的动点,且点P 不与点B 重合,点Q 不与点A 重合,连接CQ ,过点P 作PE ⊥CQ 于点E ,连接DE,
,1)若∠ABC=60°,BP=AQ,
①如图1,当点P 在线段BD 上运动时,请直接写出线段DE 和线段AQ 的数量关系和位置
关系;
②如图2,当点P运动到线段BD的延长线上时,试判断①中的结论是否成立,并说明理由;,2)若∠ABC=2α≠60°,请直接写出当线段BP和线段AQ满足什么数量关系时,能使(1)中①的结论仍然成立(用含α的三角函数表示).
4.已知正方形ABCD与正方形CEFG,M是AF的中点,连接DM,EM.
(1)如图1,点E在CD上,点G在BC的延长线上,请判断DM,EM的数量关系与位置关系,并直接写出结论;
(2)如图2,点E在DC的延长线上,点G在BC上,(1)中结论是否仍然成立?请证明你的结论;
(3)将图1中的正方形CEFG绕点C旋转,使D,E,F三点在一条直线上,若AB=13,CE=5,请画出图形,并直接写出MF的长.
5.定义:
我们知道,四边形的一条对角线把这个四边形分成了两个三角形,如果这两个三角形相似(不全等),我们就把这条对角线叫做这个四边形的“相似对角线”.
理解:
(1)如图1,已知Rt△ABC在正方形网格中,请你只用无刻度的直尺在网格中找到一点D,使四边形ABCD是以AC为“相似对角线”的四边形(保留画图痕迹,找出3个即可);
(2)如图2,在四边形ABCD中,∠ABC=80°,∠ADC=140°,对角线BD平分∠ABC.
求证:BD是四边形ABCD的“相似对角线”;
(3)如图3,已知FH是四边形EFCH的“相似对角线”,∠EFH=∠HFG=30°,连接EG,若△EFG的面积为2,求FH的长.
6.问题:如图①,在Rt△ABC中,AB=AC,D为BC边上一点(不与点B,C重合),将线段AD绕点A逆时针旋转90°得到AE,连接EC,则线段BC,DC,EC之间满足的等量关系式为;
探索:如图②,在Rt△ABC与Rt△ADE中,AB=AC,AD=AE,将△ADE绕点A旋转,使点D落在BC边上,试探索线段AD,BD,CD之间满足的等量关系,并证明你的结论;
应用:如图③,在四边形ABCD中,∠ABC=∠ACB=∠ADC=45°.若BD=9,CD=3,求AD的长.
7.如图(1),已知点G在正方形ABCD的对角线AC上,GE⊥BC,垂足为点E,GF⊥CD,垂足为点F,
,1)证明与推断:
①求证:四边形CEGF是正方形;
②推断:的值为,
,2)探究与证明:
将正方形CEGF绕点C顺时针方向旋转α角(0°,α,45°),如图(2)所示,试探究线段AG 与BE之间的数量关系,并说明理由:
,3)拓展与运用:
正方形CEGF在旋转过程中,当B,E,F三点在一条直线上时,如图(3)所示,延长CG 交AD于点H.若AG=6,GH=2,则BC=,
8.在△ABC 中,∠ABC=90°,
,1)如图1,分别过A,C 两点作经过点B 的直线的垂线,垂足分别为M,N ,求证:△ABM ∽△BCN,
,2)如图2,P 是边BC 上一点,∠BAP=∠C,tan ∠PAC=,求tanC 的值;
,3)如图3,D 是边CA 延长线上一点,AE=AB,∠DEB=90°,sin ∠BAC=,
,直接写出tan ∠CEB 的值.
9.在△ABC 中,AB =AC ,∠BAC =120°,以CA 为边在∠ACB 的另一侧作∠ACM =∠ACB ,点D 为射线BC 上任意一点,在射线CM 上截取CE =BD ,连接AD 、DE 、AE .
(1)如图1,当点D 落在线段BC 的延长线上时,直接写出∠ADE 的度数;
(2)如图2,当点D 落在线段BC (不含边界)上时,AC 与DE 交于点F ,请问(1)中的结论是否仍成立?如果成立,请给出证明;如果不成立,请说明理由;
(3)在(2)的条件下,若AB =6,求CF 的最大值.
10.
问题背景:我们学习等边三角形时得到直角三角形的一个性质:在直角三角形中,如果
一个锐角等于30°,那么它所对的直角边等于斜边的一半.即:如图1,在Rt△ABC中,∠
ACB=90°,∠ABC=30°,则:AC=AB.
探究结论:小明同学对以上结论作了进一步研究.
(1)如图1,连接AB边上中线CE,由于CE=AB,易得结论:①△ACE为等边三角形;②
BE与CE之间的数量关系为BE=CE.
(2)如图2,点D是边CB上任意一点,连接AD,作等边△ADE,且点E在∠ACB的内部,连接BE.试探究线段BE与DE之间的数量关系,写出你的猜想并加以证明.
(3)当点D为边CB延长线上任意一点时,在(2)条件的基础上,线段BE与DE之间存在怎样的数量关系?请直接写出你的结论BE=DE.
拓展应用:如图3,在平面直角坐标系xOy中,点A的坐标为(﹣,1),点B是x轴正半轴上的一动点,以AB为边作等边△ABC,当C点在第一象限内,且B(2,0)时,求C 点的坐标.
11.. ,1)操作发现:如图①,小明画了一个等腰三角形ABC,其中AB=AC,在△ABC的外侧分别以AB,AC为腰作了两个等腰直角三角形ABD,ACE,分别取BD,CE,BC的中点M,N,G,连接GM,GN.小明发现了:线段GM与GN的数量关系是__________;位置关系是__________,
,2)类比思考:
如图②,小明在此基础上进行了深入思考.把等腰三角形ABC换为一般的锐角三角形,其中AB,AC,其它条件不变,小明发现的上述结论还成立吗?请说明理由.
,3)深入研究:
如图③,小明在(2)的基础上,又作了进一步的探究.向△ABC的内侧分别作等腰直角三角形ABD,ACE,其它条件不变,试判断△GMN的形状,并给与证明.
已知,在△
ABC中,∠BAC=90°,AB=AC,点D为直线BC上一动点(点D不与B、C重合),以AD为边在AD的上边作正方形ADEF,连接CF.
(1)观察猜想:如图1,当点D在线段BC上时,①BC与CF的位置关系为:;
②BC、CD、CF之间的数量关系为:.
(2)数学思考:如图2,当点D在线段CB的延长线上时,以上①②关系是否成立,请在后面的横线上写出正确的结论.①BC与CF的位置关系为:;②BC、CD、CF之间的数量关系为:.
(3)如图3,当点D在线段BC的延长线上时,延长BA交CF于点G,连接GD,若已知AB=2,CD=BC,请求出DG的长(写出求解过程).。