2020九年级数学上册 第二十四章 圆 24.4 弧长和扇形面积(2)教案 (新版)新人教版

合集下载

人教版初三数学上册24.4.1弧长和扇形面积 教学设计

人教版初三数学上册24.4.1弧长和扇形面积 教学设计

24.4.1弧长和扇形面积教学设计碧华学校林喜斌一、教材分析(一)本课的地位和作用本节教材是人教版九年级下册《24.4.1弧长和扇形面积公式》,是在学生学习了圆的有关概念性质、圆心角圆周角等内容之后,对弧长和扇形面积的计算的学习,研究弧长公式、扇形面积公式的推导过程及其在实际问题中的应用。

本节内容的弧长公式和扇形面积公式是以圆的周长和面积公式为依据,通过特殊圆心角到一般圆心角所对的弧长和扇形面积,探索计算公式,并运用它们来计算和解决实际问题,是圆的有关计算中的一个重要问题。

(二)教学目标1、知识目标:经历探索弧长计算公式及扇形面积计算公式的过程;了解弧长计算公式及扇形面积计算公式,并会应用公式解决问题。

2、能力目标:经历探索弧长计算公式及扇形面积计算公式的过程,培养学生的探索能力;了解弧长及扇形面积公式后,能用公式解决问题,训练学生的数学运用能力.3、情感与价值目标:经历探索弧长及扇形面积计算公式.让学生体验教学活动充满着探索与创造,感受数学的严谨性以及数学结论的确定性;通过用弧长及扇形面积公式解决实际问题,让学生体验数学与人类生活的密切联系,激发学生学习数学的兴趣,提高他们的学习积极性,同时提高大家的运用能力.(三)教学重点、难点重点:让学生经历探索弧长及扇形面积计算公式的过程;了解弧长及扇形面积计算公式;会用公式解决问题.难点:探索弧长及扇形面积计算公式;用公式解决实际问题.二、教法设想在本节课教学中,我从学生思维的起点出发,突出教师为主导、学生为主体的教学原则,在组织教学中,我主要采用了多媒体教学和自主探究法,让学生在老师的引导下提出问题,自主探索、合作交流,收获新知;通过尝试应用,巩固实践,来深化新知,感受收获的喜悦。

三、学法研究教学中重视指导学生掌握一些最基本的学习方法和数学思想。

通过本节课的教学,让学生学会观察分析、自主探索、总结归纳的学习方法,掌握转化思想,培养学生的空间想象能力,充分调动学生自己动脑,引导他们自己分析、讨论、得出结论,鼓励他们尝试自己完成解题过程,大胆展示自我。

人教初中数学《弧长和扇形面积 》教案 (公开课获奖)

人教初中数学《弧长和扇形面积   》教案 (公开课获奖)

弧长和扇形面积教学内容24.4弧长和扇形面积〔2〕.教学目标1.了解母线的概念.2.掌握圆锥的侧面积计算公式,并会应用公式解决问题.3.经历探索圆锥侧面积计算公式的过程,开展学生的实践探索能力.教学重点1.经历探索圆锥侧面积计算公式的过程.2.了解圆锥的侧面积计算公式,并会应用公式解决问题.教学难点圆锥侧面积计算公式的推导过程.教学过程一、导入新课师:大家见过圆锥吗?你能举出实例吗?生:见过,如漏斗、蒙古包.师:你们知道圆锥的外表是由哪些面构成的吗?请大家互相交流.生:圆锥的外表是由一个圆面和一个曲面围成的.师:圆锥的曲面展开图是什么形状呢?应怎样计算它的面积呢?本节课我们将解决这些问题.二、新课教学1.圆锥的母线.圆锥是由一个底面和一个侧面围成的几何体,如图,我们把连接圆锥顶点和底面圆周上任意一点的线段叫做圆锥的母线.2.探索圆锥的侧面公式.思考:圆锥的侧面展开图是什么图形?如何计算圆锥的侧面积?如何计算圆锥的全面积?〔1〕如图,沿一条母线将圆锥侧面剪开并展平,容易得到,圆锥的侧面展开图是一个扇形.〔2〕设圆锥的母线长为l,底面圆的半径为r,那么这个扇形的半径为l,扇形的弧长为2πr,因此圆锥的侧面积为πrl,圆锥的全面积为πr(r+l).3.利用圆锥的侧面积公式进行计算.例蒙古包可以近似地看作由圆锥和圆柱组成.如果想用毛毡搭建20个底面积为12 m2,高为3.2 m,外围高1.8 m的蒙古包,至少需要多少平方米的毛毡〔n取3.142,结果取整数〕?解:右图是一个蒙古包的示意图.根据题意,下部圆柱的底面积为12 m 2.高h 2=1.8 m ;上部圆锥的高h 1=-=1.4(m). 圆柱的底面圆的半径r =π12≈1.945(m),侧面积为2π××≈22.10(m 2).圆锥的母线长l =224.1945.1+≈2.404(m),侧面展开扇形的弧长为2π×≈12.28(m),圆锥的侧面积为21××≈14.76(m 2). 因此,搭建20个这样的的蒙古包至少需要毛毡20×+14.76)≈738(m 2). 三、稳固练习教材第114页练习. 四、课堂小结 本节课应该掌握:探索圆锥的侧面展开图的形状,以及面积公式,并能用公式进行计算. 五、布置作业习题24.4 第4、5、7题.15.2.2 分式的加减教学目标明确分式混合运算的顺序,熟练地进行分式的混合运算. 重点难点1.重点:熟练地进行分式的混合运算. 2.难点:熟练地进行分式的混合运算. 3.认知难点与突破方法教师强调进行分式混合运算时,要注意运算顺序,在没有括号的情况下,按从左到右的方向,先乘方,再乘除,然后加减. 有括号要按先小括号,再中括号,最后大括号的顺序.混合运算后的结果分子、分母要进行约分,注意最后的结果要是最简分式或整式.分子或分母的系数是负数时,要把“-〞号提到分式本身的前面. 教学过程例、习题的意图分析1.教科书例7、例8是分式的混合运算. 分式的混合运算需要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,最后结果分子、分母要进行约分,注意最后的结果要是最简分式或整式.2.教科书练习1:写出教科书问题3和问题4的计算结果.这道题与第一节课相照应,也解决了本节引言中所列分式的计算,完整地解决了应用问题. 二、课堂引入1.说出分数混合运算的顺序.2.教师指出分数的混合运算与分式的混合运算的顺序相同. 三、例题讲解〔教科书〕例7 计算[分析] 这道题是分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,最后结果分子、分母要进行约分,注意运算的结果要是最简分式.〔教科书〕例8 计算:[分析] 这道题是分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,注意有括号先算括号内的,最后结果分子、分母要进行约分,注意运算的结果要是最简分式. 四、随堂练习 计算:(1) x x x x x 22)242(2+÷-+- 〔2〕)11()(ba ab b b a a -÷--- 〔3〕)2122()41223(2+--÷-+-a a a a 五、课后练习 1.计算: (1))1)(1(yx xy x y +--+ (2)22242)44122(aaa a a a a a a a -÷-⋅+----+ (3)zxyz xy xyz y x ++⋅++)111(2.计算24)2121(aa a ÷--+,并求出当=a -1的值.六、答案:四、〔1〕2x 〔2〕b a ab- 〔3〕3 五、1.(1)22y x xy - (2)21-a 〔3〕z 1 2.原式=422--a a ,当=a -1时,原式=-31.13.3.1 等腰三角形教学目标〔一〕教学知识点1.等腰三角形的概念.2.等腰三角形的性质.3.等腰三角形的概念及性质的应用.〔二〕能力训练要求1.经历作〔画〕出等腰三角形的过程,•从轴对称的角度去体会等腰三角形的特点.2.探索并掌握等腰三角形的性质.〔三〕情感与价值观要求通过学生的操作和思考,使学生掌握等腰三角形的相关概念,并在探究等腰三角形性质的过程中培养学生认真思考的习惯.重点难点重点:1.等腰三角形的概念及性质.2.等腰三角形性质的应用.难点:等腰三角形三线合一的性质的理解及其应用.教学方法探究归纳法.教具准备师:多媒体课件、投影仪;生:硬纸、剪刀.教学过程Ⅰ.提出问题,创设情境[师]在前面的学习中,我们认识了轴对称图形,探究了轴对称的性质,•并且能够作出一个简单平面图形关于某一直线的轴对称图形,•还能够通过轴对称变换来设计一些美丽的图案.这节课我们就是从轴对称的角度来认识一些我们熟悉的几何图形.来研究:①三角形是轴对称图形吗?②什么样的三角形是轴对称图形?[生]有的三角形是轴对称图形,有的三角形不是.[师]那什么样的三角形是轴对称图形?[生]满足轴对称的条件的三角形就是轴对称图形,•也就是将三角形沿某一条直线对折后两局部能够完全重合的就是轴对称图形.[师]很好,我们这节课就来认识一种成轴对称图形的三角形──等腰三角形.Ⅱ.导入新课[师]同学们通过自己的思考来做一个等腰三角形.AICABI作一条直线L,在L上取点A,在L外取点B,作出点B关于直线L的对称点C,连接AB、BC、CA,那么可得到一个等腰三角形.[生乙]在甲同学的做法中,A 点可以取直线L 上的任意一点.[师]对,按这种方法我们可以得到一系列的等腰三角形.现在同学们拿出自己准备的硬纸和剪刀,按自己设计的方法,也可以用课本探究中的方法,•剪出一个等腰三角形. ……[师]按照我们的做法,可以得到等腰三角形的定义:有两条边相等的三角形叫做等腰三角形.相等的两边叫做腰,另一边叫做底边,两腰所夹的角叫做顶角,底边与腰的夹角叫底角.同学们在自己作出的等腰三角形中,注明它的腰、底边、顶角和底角. [师]有了上述概念,同学们来想一想. 〔演示课件〕1.等腰三角形是轴对称图形吗?请找出它的对称轴. 2.等腰三角形的两底角有什么关系?3.顶角的平分线所在的直线是等腰三角形的对称轴吗?4.底边上的中线所在的直线是等腰三角形的对称轴吗?•底边上的高所在的直线呢? [生甲]等腰三角形是轴对称图形.它的对称轴是顶角的平分线所在的直线.因为等腰三角形的两腰相等,所以把这两条腰重合对折三角形便知:等腰三角形是轴对称图形,它的对称轴是顶角的平分线所在的直线.[师]同学们把自己做的等腰三角形进行折叠,找出它的对称轴,并看它的两个底角有什么关系.[生乙]我把自己做的等腰三角形折叠后,发现等腰三角形的两个底角相等.[生丙]我把等腰三角形折叠,使两腰重合,这样顶角平分线两旁的局部就可以重合,所以可以验证等腰三角形的对称轴是顶角的平分线所在的直线.[生丁]我把等腰三角形沿底边上的中线对折,可以看到它两旁的局部互相重合,说明底边上的中线所在的直线是等腰三角形的对称轴.[生戊]老师,我发现底边上的高所在的直线也是等腰三角形的对称轴. [师]你们说的是同一条直线吗?大家来动手折叠、观察. [生齐声]它们是同一条直线.[师]很好.现在同学们来归纳等腰三角形的性质.[生]我沿等腰三角形的顶角的平分线对折,发现它两旁的局部互相重合,由此可知这个等腰三角形的两个底角相等,•而且还可以知道顶角的平分线既是底边上的中线,也是底边上的高.[师]很好,大家看屏幕. 〔演示课件〕等腰三角形的性质:1.等腰三角形的两个底角相等〔简写成“等边对等角〞〕.2.等腰三角形的顶角平分线,底边上的中线、•底边上的高互相重合〔通常称作“三线合一〞〕.[师]由上面折叠的过程获得启发,我们可以通过作出等腰三角形的对称轴,得到两个全等的三角形,从而利用三角形的全等来证明这些性质.同学们现在就动手来写出这些证明过程〕.〔投影仪演示学生证明过程〕[生甲]如右图,在△ABC 中,AB=AC ,作底边BC 的中线AD ,因为D CA B,,,AB AC BD CD AD AD =⎧⎪=⎨⎪=⎩所以△BAD ≌△CAD 〔SSS 〕. 所以∠B=∠C .[生乙]如右图,在△ABC 中,AB=AC ,作顶角∠BAC 的角平分线AD ,因为,,,AB AC BAD CAD AD AD =⎧⎪∠=∠⎨⎪=⎩所以△BAD ≌△CAD .所以BD=CD ,∠BDA=∠CDA=12∠BDC=90°.[师]很好,甲、乙两同学给出了等腰三角形两个性质的证明,过程也写得很条理、很标准.下面我们来看大屏幕.〔演示课件〕[例1]如图,在△ABC 中,AB=AC ,点D 在AC 上,且BD=BC=AD , 求:△ABC 各角的度数.[师]同学们先思考一下,我们再来分析这个题.[生]根据等边对等角的性质,我们可以得到∠A=∠ABD ,∠ABC=∠C=∠BDC ,•再由∠BDC=∠A+∠ABD ,就可得到∠ABC=∠C=∠BDC=2∠A . 再由三角形内角和为180°,•就可求出△ABC 的三个内角.[师]这位同学分析得很好,对我们以前学过的定理也很熟悉.如果我们在解的过程中把∠A 设为x 的话,那么∠ABC 、∠C 都可以用x 来表示,这样过程就更简捷. 〔课件演示〕[例]因为AB=AC ,BD=BC=AD , 所以∠ABC=∠C=∠BDC . ∠A=∠ABD 〔等边对等角〕.设∠A=x ,那么∠BDC=∠A+∠ABD=2x , 从而∠ABC=∠C=∠BDC=2x .于是在△ABC 中,有∠A+∠ABC+∠C=x+2x+2x=180°, 解得x=36°.在△ABC 中,∠A=35°,∠ABC=∠C=72°.[师]下面我们通过练习来稳固这节课所学的知识. Ⅲ.随堂练习〔一〕课本练习 1、2、3. 练习1. 如图,在以下等腰三角形中,分别求出它们的底角的度数.D CABDC A B(2)120︒36︒(1)答案:〔1〕72° 〔2〕30°2.如图,△ABC 是等腰直角三角形〔AB=AC ,∠BAC=90°〕,AD 是底边BC 上的高,标出∠B 、∠C 、∠BAD 、∠DAC 的度数,图中有哪些相等线段?D CAB答案:∠B=∠C=∠BAD=∠DAC=45°;AB=AC ,BD=DC=AD .3.如图,在△ABC 中,AB=AD=DC ,∠BAD=26°,求∠B 和∠C 的度数.答:∠B=77°,∠C=38.5°.〔二〕阅读课本,然后小结.Ⅳ.课时小结这节课我们主要探讨了等腰三角形的性质,并对性质作了简单的应用.等腰三角形是轴对称图形,它的两个底角相等〔等边对等角〕,等腰三角形的对称轴是它顶角的平分线,并且它的顶角平分线既是底边上的中线,又是底边上的高.我们通过这节课的学习,首先就是要理解并掌握这些性质,并且能够灵活应用它们. Ⅴ.课后作业〔一〕习题13.3 第1、3、4、8题. 〔二〕1.预习课本.2.预习提纲:等腰三角形的判定. Ⅵ.活动与探究如图,在△ABC 中,过C 作∠BAC 的平分线AD 的垂线,垂足为D ,DE ∥AB 交AC 于E .求证:AE=CE .EDCAB过程:通过分析、讨论,让学生进一步了解全等三角形的性质和判定,•等腰三角形的D C A B性质. 结果:证明:延长CD 交AB 的延长线于P ,如图,在△ADP 和△ADC 中,12,,,AD AD ADP ADC ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ADP ≌△ADC .∴∠P=∠ACD . 又∵DE ∥AP , ∴∠4=∠P . ∴∠4=∠ACD . ∴DE=EC .同理可证:AE=DE .∴AE=C E .板书设计一、设计方案作出一个等腰三角形 二、等腰三角形性质 1.等边对等角 2.三线合一 三、例题分析 四、随堂练习 五、课时小结 六、课后作业 备课资料 参考练习1.如果△ABC 是轴对称图形,那么它的对称轴一定是〔 〕 A .某一条边上的高 B .某一条边上的中线 C .平分一角和这个角对边的直线 D .某一个角的平分线 2.等腰三角形的一个外角是100°,它的顶角的度数是〔 〕 A .80° B .20° C .80°和20° D .80°或50° 答案:1.C 2.C3. 等腰三角形的腰长比底边多2 cm ,并且它的周长为16 cm .求这个等腰三角形的边长.解:设三角形的底边长为x cm ,那么其腰长为〔x+2〕cm ,根据题意,得 2〔x+2〕+x=16.解得x=4.所以,等腰三角形的三边长为4 cm 、6 cm 和6 cm .15.2.2 分式的加减教学目标明确分式混合运算的顺序,熟练地进行分式的混合运算. 重点难点1.重点:熟练地进行分式的混合运算. 2.难点:熟练地进行分式的混合运算.E DC A B P3.认知难点与突破方法教师强调进行分式混合运算时,要注意运算顺序,在没有括号的情况下,按从左到右的方向,先乘方,再乘除,然后加减. 有括号要按先小括号,再中括号,最后大括号的顺序.混合运算后的结果分子、分母要进行约分,注意最后的结果要是最简分式或整式.分子或分母的系数是负数时,要把“-〞号提到分式本身的前面. 教学过程例、习题的意图分析1.教科书例7、例8是分式的混合运算. 分式的混合运算需要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,最后结果分子、分母要进行约分,注意最后的结果要是最简分式或整式.2.教科书练习1:写出教科书问题3和问题4的计算结果.这道题与第一节课相照应,也解决了本节引言中所列分式的计算,完整地解决了应用问题. 二、课堂引入1.说出分数混合运算的顺序.2.教师指出分数的混合运算与分式的混合运算的顺序相同. 三、例题讲解〔教科书〕例7 计算[分析] 这道题是分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,最后结果分子、分母要进行约分,注意运算的结果要是最简分式.〔教科书〕例8 计算:[分析] 这道题是分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,注意有括号先算括号内的,最后结果分子、分母要进行约分,注意运算的结果要是最简分式. 四、随堂练习 计算:(1) x x x x x 22)242(2+÷-+- 〔2〕)11()(ba ab b b a a -÷--- 〔3〕)2122()41223(2+--÷-+-a a a a 五、课后练习 1.计算: (1))1)(1(yx xy x y +--+ (2)22242)44122(aaa a a a a a a a -÷-⋅+----+ (3)zxyz xy xyz y x ++⋅++)111(2.计算24)2121(aa a ÷--+,并求出当=a -1的值.六、答案:四、〔1〕2x 〔2〕ba ab- 〔3〕3 五、1.(1)22y x xy - (2)21-a 〔3〕z 12.原式=422--a a ,当=a -1时,原式=-31.。

人教版九年级数学上册24.4弧长和扇形面积(教案)

人教版九年级数学上册24.4弧长和扇形面积(教案)
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解弧长和扇形面积的基本概念。弧长是圆上一段弧的长度,而扇形面积则是圆心角所对的区域。这些概念在工程、地理和日常生活中有着广泛的应用。
2.案例分析:接下来,我们来看一个具体的案例。假设我们要计算一个半径为10米的半圆的弧长,我们将学习如何使用弧长公式来求解。
然而,我也注意到在小组讨论环节,有些小组的参与度并不高,可能是因为问题设置不够贴近学生的实际经验,或者是我没有给予足够的引导。在未来的教学中,我需要针对这一点进行改进,设计更具启发性和参与性的讨论主题。
实践活动虽然增加了学生对知识的直观感受,但在时间分配上似乎有些紧张。有些小组没有足够的时间完成讨论和实验操作,导致成果展示不够充分。我考虑在下次课中,适当延长实践活动的时间,确保每个小组都有足够的机会来展示他们的成果。
(3)教学难点中的弧度与角度转换,学生需要记住π弧度等于180°,因此在计算中如遇到角度制,需要先转换为弧度制。例如,一个圆心角为60°的扇形,其对应的弧度为π/3(60° × π/180)。
(4)在实际应用中,学生需要将问题描述转化为数学表达式。例如,如果一个公园的圆形喷泉半径是3米,需要清洁的部分占整个圆的1/6,学生需要计算出这部分扇形的面积(A = 1/2 × 3² × π/3)。这个过程中,学生需要识别出圆心角是π/3弧度,这是解决问题的关键。
人教版九年级数学上册24.4弧长和扇形面积(教案)
一、教学内容
人教版九年级数学上册第24.4节,本节课将重点探讨以下内容:
1.弧长的概念及其计算公式;
2.弧度的概念及其与角度的转换;
3.扇形的定义及扇形面积的计算公式;
4.应用实例:计算给定圆的半径或弧长,求解扇形面积。

24.4 弧长和扇形面积(共2课时)

24.4 弧长和扇形面积(共2课时)

24.4 弧长和扇形面积(共2课时)第一课时: 弧长和扇形面积教学内容1.n °的圆心角所对的弧长L=180n Rπ 2.扇形的概念;3.圆心角为n °的扇形面积是S 扇形=2360n R π;4.应用以上内容解决一些具体题目. 教学目标了解扇形的概念,理解n•°的圆心角所对的弧长和扇形面积的计算公式并熟练掌握它们的应用.通过复习圆的周长、圆的面积公式,探索n °的圆心角所对的弧长L=2180n R π和扇形面积S 扇=2360n R π的计算公式,并应用这些公式解决一些题目.重点:n °的圆心角所对的弧长L=180n R π,扇形面积S 扇=2360n R π及其它们的应用.难点:两个公式的应用.关键:由圆的周长和面积迁移到弧长和扇形面积公式的过程. 教学过程一、复习引入老师口问,学生口答 1.圆的周长公式是什么? 2.圆的面积公式是什么? 3.什么叫弧长?(1)圆的周长C=2πR (2)圆的面积S 图=πR 2(3)弧长就是圆的一部分. 课件)请同学们独立完成下题:设圆的半径为R ,则: 1.圆的周长可以看作______度的圆心角所对的弧. 2.1°的圆心角所对的弧长是_______. 3.2°的圆心角所对的弧长是_______. 4.4°的圆心角所对的弧长是_______. ……5.n °的圆心角所对的弧长是_______.我们可得到:n °的圆心角所对的弧长为180Rn l π=例1、已知圆弧的半径为50厘米,圆心角为60°,求此圆弧的长度。

说明:没有特别要求,结果保留π。

例2、课本111页例题 课堂练习1、制作弯形管道时,需要先按中心线计算“展直长度”再下料,•试计算如图所示的管道的展直长度,即 AB 的长(结果精确到0.1mm )(幻灯片7).c分析:要求 AB 的弧长,圆心角知,半径知,只要代入弧长公式即可. 解:R=40mm ,n=110∴ AB 的长=180n R π=11040180π⨯≈76.8(mm ) 因此,管道的展直长度约为76.8mm .扇形的定义:由组成圆心角的两条半径和圆心角所对的弧围成的图形是扇形。

教案 弧长和扇形的面积

教案 弧长和扇形的面积

24.4弧长和扇形的面积教学目标(一)知识与技能1.经历探索弧长计算公式及扇形面积计算公式的过程;2.了解弧长计算公式及扇形面积计算公式,并会应用公式解决问题.(二)过程与方法1.经历探索弧长计算公式及扇形面积计算公式的过程,培养学生的探索能力.2.了解弧长及扇形面积公式后,能用公式解决问题,训练学生的数学运用能力.(三)情感与价值观1.经历探索弧长及扇形面积计算公式,让学生体验教学活动充满着探索与创造,感受数学的严谨性以及数学结论的确定性.2.通过用弧长及扇形面积公式解决实际问题,让学生体验数学与人类生活的密切联系,激发学生学习数学的兴趣,提高他们的学习积极性,同时提高大家的运用能力.教学重点1.经历探索弧长及扇形面积计算公式的过程.2.了解弧长及扇形面积计算公式.3.会用公式解决问题.教学难点1.探索弧长及扇形面积计算公式.2.用公式解决实际问题.教学方法学生互相交流探索法教学过程Ⅰ.创设问题情境,引入新课[师] 如图,在运动会的4×100米比赛中,甲和乙分别在第1跑道和第2跑道,为什么他们的起跑线不在同一处?怎样来计算弯道的“展直长度”?学完今天的内容,你就会算了。

今天我们来学习弧长和扇形的面积。

出示学习目标(学生了解学习目标)。

下面请同学们预习课本。

Ⅱ.新课讲解一、探索弧长的计算公式1.半径为R的圆,周长为多少?C=2πR2.1°的圆心角所对弧长是多少?3.n°圆心角所对的弧长是1°圆心角所对的弧长的多少倍?4. n°的圆心角所对弧长l是多少?弧长公式注意:用弧长公式进行计算时,要注意公式中n 的意义.n 表示1°圆心角的倍数,它是不带单位的.下面我们看弧长公式的运用.算一算 已知弧所对的圆心角为90°,半径是4,则弧长为____.典例精析 投影片例例1;制造弯形管道时,要先按中心线计算“展直长度”,再下料,试计算图所示管道的展直长度l.(单位:mm ,精确到1mm) 解:由弧长公式,可得弧AB 的长因此所要求的展直长度l =2×700+1570=2970(mm ).答:管道的展直长度为2970mm .对应练一练:1.已知扇形的圆心角为60°,半径为1,则扇形的弧长为 .2.一个扇形的半径为8cm ,弧长为 cm ,则扇形的圆心角为 .二.扇形及扇形的面积由组成圆心角的两条半径和圆心角所对的弧围成的图形是扇形.1009005001570(mm),180l ⨯⨯π==π≈判一判: 下列图形是扇形吗?[师]扇形的面积公式的推导. 如果圆的半径为R ,则圆的面积为πR 2。

弧长和扇形面积2教案

弧长和扇形面积2教案

课题24.4 弧长和扇形面积(第2课时)【教学目标】(一)教学知识点1.经历探索圆锥侧面积计算公式的过程.2.了解圆锥的侧面积计算公式,并会应用公式解决问题.(二)能力训练要求1.经历探索圆锥侧面积计算公式的过程,发展学生的实践探索能力.2.了解圆锥的侧面积计算公式后,能用公式进行计算,训练学生的数学应用能力.(三)情感与价值观要求1.让学生先观察实物,再想象结果,最后经过实践得出结论,通过这一系列活动,培养学生的观察、想象、实践能力,同时训练他们的语言表达能力,使他们获得学习数学的经验,感受成功的体验.2.通过运用公式解决实际问题,让学生懂得数学与人类生活的密切联系,激发他们学习数学的兴趣,克服困难的决心,更好地服务于实际.【重点难点】重点:1.经历探索圆锥侧面积计算公式的过程.2.了解圆锥的侧面积计算公式,并会应用公式解决问题.难点:经历探索圆锥侧面积计算公式.【教学方法】观察猜想、合作交流、讲练结合【自主复习、预习】【教学过程】一、检查自主复习、预习1.什么是n°的圆心角所对的弧长和扇形面积的计算公式,并请讲讲它们的异同点.2.问题1:一种太空囊的示意图如图所示,•太空囊的外表面须作特别处理,以承受重返地球大气层时与空气摩擦后产生的高热,那么该太空囊要接受防高热处理的面积应由几部分组成的.老师点评:(2)太空囊要接受热处理的面积应由三部分组成;圆锥上的侧面积,•圆柱的侧面积和底圆的面积.这三部分中,第二部分和第三部分我们已经学过,会求出其面积,•但圆锥的侧面积,到目前为止,如何求,我们是无能为力,下面我们来探究它.二、新课导学我们学过圆柱的侧面积是沿着它的母线展开成长方形,同理道理,我们也把连接圆锥顶点和底面圆上任意一点的线段叫做圆锥的母线.(学生分组讨论,提问二三位同学)问题2:与圆柱的侧面积求法一样,沿母锥一条母线将圆锥侧面剪开并展平,容易得到,圆锥的侧面展开图是一个扇形,设圆锥的母线长为L,•底面圆的半径为r,•如图24-115所示,那么这个扇形的半径为________,扇形的弧长为________,•因此圆锥的侧面积为________,圆锥的全面积为________.老师点评:很显然,扇形的半径就是圆锥的母线,•扇形的弧长就是圆锥底面圆的周长.因此,要求圆锥的侧面积就是求展开图扇形面积S=2360n lπ,其中n可由2πr=2180n lπ求得:n=360rl,•∴扇形面积S=2360360rllπ=πrL;全面积是由侧面积和底面圆的面积组成的,所以全面积=πrL+r2.例1.圣诞节将近,某家商店正在制作圣诞节的圆锥形纸帽,已知纸帽的底面周长为58cm,高为20cm,要制作20顶这样的纸帽至少要用多少平方厘米的纸?(结果精确到0.1cm2)分析:要计算制作20顶这样的纸帽至少要用多少平方厘米的纸,只要计算纸帽的侧面积.解:设纸帽的底面半径为rcm,母线长为Lcm,则r=582π2258()202π+≈22.03S纸帽侧=πrL≈12×58×22.03=638.87(cm)638.87×20=12777.4(cm2)所以,至少需要12777.4cm2的纸.例2.已知扇形的圆心角为120°,面积为300πcm2.(1)求扇形的弧长;(2)若将此扇形卷成一个圆锥,则这个圆锥的轴截面面积为多少?分析:(1)由S扇形=2360n Rπ求出R,再代入L=180n Rπ求得.(2)若将此扇形卷成一个圆锥,•扇形的弧长就是圆锥底面圆的周长,就可求圆的半径,其截面是一个以底是直径,•圆锥母线为腰的等腰三角形.解:(1)如图所示:∵300π=2 120 360Rπ∴R=30∴弧长L=12030180π⨯⨯=20π(cm)(2)如图所示:∵20π=20πr∴r=10,R=30900100-2∴S轴截面=12×BC×AD=12×2×10×22(cm2)三、巩固练习(一)基础训练——夯实基础一、课本课本P114 练习1、2、二、选择题.1.圆锥的母线长为13cm,底面半径为5cm,则此圆锥的高线为()A.6cm B.8cm C.10cm D.12cm2.在半径为50cm的圆形铁皮上剪去一块扇形铁皮,•用剩余部分制作成一个底面直径为80cm,母线长为50cm的圆锥形烟囱帽,则剪去的扇形的圆心角度数为()A.228° B.144° C.72° D.36°3.如图所示,圆锥的母线长是3,底面半径是1,A是底面圆周上一点,•从点A出发绕侧面一周,再回到点A的最短的路线长是()A.3.332C.3 D.3(二)提升训练——能力培养1.母线长为L,底面半径为r的圆锥的表面积=_______.2.矩形ABCD的边AB=5cm,AD=8cm,以直线AD为轴旋转一周,•所得圆柱体的表面积是________(用含 的代数式表示)3.粮仓顶部是一个圆锥形,其底面周长为36m,母线长为8m,为防雨需在粮仓顶部铺上油毡,如果按用料的10%计接头的重合部分,那么这座粮仓实际需用________m2的油毡.4.一个圆锥形和烟囱帽的底面直径是40cm,母线长是120cm,•需要加工这样的一个烟囱帽,请你画一画:(1)至少需要多少厘米铁皮(不计接头)(2)如果用一张圆形铁皮作为材料来制作这个烟囱帽,那么这个圆形铁皮的半径至少应是多少?5.如图所示,已知圆锥的母线长AB=8cm,轴截面的顶角为60°,•求圆锥全面积.(三)综合运用——拓展思维如图所示,一个几何体是从高为4m,底面半径为3cm•的圆柱中挖掉一个圆锥后得到的,圆锥的底面就是圆柱的上底面,圆锥的顶点在圆柱下底面的圆心上,•求这个几何体的表面积.四、归纳小结本节课应掌握:1.什么叫圆锥的母线.2.会推导圆锥的侧面积和全面积公式并能灵活应用它们解决问题.五、布置作业P108 8、9【课后反思】。

人教版九年级数学上册24.4《弧长和扇形面积》优秀教学案例

人教版九年级数学上册24.4《弧长和扇形面积》优秀教学案例
(二)问题导向
1.设计一系列问题,引导学生从已知知识出发,逐步探索和发现弧长和扇形面积的计算方法。
2.通过提问、答疑等方式,引导学生深入思考,激发学生的思维活力。
3.鼓励学生提出问题,培养学生的质疑精神和批判性思维。
(三)小组合作
1.组织学生进行小组合作,让学生在讨论和交流中共同解决问题,提高学生的团队合作能力。
人教版九年级数学上册24.4《弧长和扇形面积》优秀教学案例
一、案例背景
本节课为人教版九年级数学上册24.4《弧长和扇形面积》,是在学生掌握了角的概念、圆周率以及圆的方程等知识的基础上进行学习的。通过学习弧长和扇形面积,使学生能够进一步理解圆的相关概念,提高解决实际问题的能力。
九年级的学生已经具备了一定的逻辑思维能力和空间想象力,对于圆的相关知识也有一定的了解。但是,学生在解决实际问题时,往往不能灵活运用所学知识,对于弧长和扇形面积的计算方法容易混淆。因此,在教学过程中,我将以生活实际为出发点,引导学生通过观察、思考、交流、探究等方式,理解和掌握弧长和扇形面积的计算方法,提高学生的数学素养。
四、教学内容与过程
(一)导入新课
1.利用多媒体展示一些日常生活中常见的圆形物体,如硬币、圆桌、地球等,引导学生观察和思考这些物体与弧长和扇形面积的关系。
2.提出问题:“你们知道硬币的弧长是多少吗?圆桌的面积又是多少呢?”激发学生的求知欲。
3.总结:今天我们将学习弧长和扇形面积的计算方法,帮助大家解决这些问题。
(一)情景创设
1.生活情境:以日常生活中常见的圆形物体为例,如硬币、圆桌、地球等,引导学生观察和思考这些物体与弧长和扇形面积的关系。
2.问题情境:设计一些与弧长和扇形面积相关的问题,如计算硬币的弧长、计算扇形的面积等,激发学生的求知欲。

24.4弧长和扇形面积教学设计

24.4弧长和扇形面积教学设计

24.4弧长和扇形面积教学设计学习主题名称:《弧长和扇形面积》主题内容简介:《弧长和扇形面积》是人教版九年级上册第二十四章24.4的内容,在此之前,学生已经学习了“圆的认识”、“与圆有关的位置关系”、“圆内接正多边形”等基础知识,让学生具备推导出弧长和扇形面积的计算公式的奠定了基础。

,这为过渡到本节课的学习起着铺垫作用。

本节内容是本章《圆》的重点计算方面内容,是本章的一个教学难点。

它可以强化学生对前面所学知识的理解,使学生对研究圆的性质的基本方法有一个初步的认识与了解,为后面计算扇形面积、圆锥侧面积表面积等有关问题奠定基础。

学习目标分析知识与技能:1.经历探索弧长计算公式及扇形面积计算公式的过程,培养学生的探索能力。

2.了解弧长计算公式及扇形面积计算公式,并会应用公式解决问题,训练学生的数学应用能力。

过程与方法:1.经历探索的课堂活动模式,富有情趣的体验知识的形成过程,在体验中感受数学。

2.使学生了解公式的同时,体验公式的变式,使学生在合作与竞争中形成良好的数学品质。

情感、态度与价值观:引导学生体验数学与人类生活的密切联系,激发学生学习数学的兴趣,体验学习乐趣,培养良好的学习品质。

学情分析前需知识掌握情况:1、学生的知识技能基础:学生从孩提时代的感觉圆形,到小学的认识圆形,学习过圆周长和面积公式,而这个课题学生在前阶段学完了“圆的认识”、“与圆有关的位置关系”、“圆内接正多边形”的基础上进行的,让学生具备推导出弧长和扇形面积的计算公式的奠定了基础。

2、学生活动经验基础:在相关知识的学习过程中,学生已经经历参与研究探索的情感体验, 自主探索的能力;同时在以前的数学学习中学生已经经历了很多合作学习的过程,具有了一定的合作学习的经验,具备了一定的合作与交流的能力。

对微课的认识:对于农村的中学生而言,微课对大家来讲比较陌生的,之前还没接触过微课。

但近几年手机电脑等网络产品的普及有利于学生对微课这一辅助教学工具的接受。

九年级数学上册 第二十四章圆教案 人教新课标版

九年级数学上册 第二十四章圆教案 人教新课标版

第二十四章圆单元要点分析教学内容1.本单元数学的主要内容.(1)圆有关的概念:垂直于弦的直径,弧、弦、圆心角、圆周角.(2)与圆有关的位置关系:点和圆的位置关系,直线与圆的位置关系,•圆和圆的位置关系.(3)正多边形和圆.(4)弧长和扇形面积:弧长和扇形面积,圆锥的侧面积和全面积.2.本单元在教材中的地位与作用.学生在学习本章之前,已通过折叠、对称、平移旋转、推理证明等方式认识了许多图形的性质,积累了大量的空间与图形的经验.本章是在学习了这些直线型图形的有关性质的基础上,进一步来探索一种特殊的曲线──圆的有关性质.通过本章的学习,对学生今后继续学习数学,尤其是逐步树立分类讨论的数学思想、归纳的数学思想起着良好的铺垫作用.本章的学习是高中的数学学习,尤其是圆锥曲线的学习的基础性工程.教学目标1.知识与技能(1)了解圆的有关概念,探索并理解垂径定理,探索并认识圆心角、弧、•弦之间的相等关系的定理,探索并理解圆周角和圆心角的关系定理.(2)探索并理解点和圆、直线与圆以及圆与圆的位置关系:了解切线的概念,•探索切线与过切点的直径之间的关系,能判定一条直线是否为圆的切线,会过圆上一点画圆的切线.(3)进一步认识和理解正多边形和圆的关系和正多边的有关计算.(4)熟练掌握弧长和扇形面积公式及其它们的应用;•理解圆锥的侧面展开图并熟练掌握圆锥的侧面积和全面积的计算.2.过程与方法(1)积极引导学生从事观察、测量、平移、旋转、推理证明等活动.•了解概念,理解等量关系,掌握定理及公式.(2)在教学过程中,鼓励学生动手、动口、动脑,并进行同伴之间的交流.(3)在探索圆周角和圆心角之间的关系的过程中,•让学生形成分类讨论的数学思想和归纳的数学思想.(4)通过平移、旋转等方式,认识直线与圆、圆与圆的位置关系,•使学生明确图形在运动变化中的特点和规律,进一步发展学生的推理能力.(5)探索弧长、扇形的面积、•圆锥的侧面积和全面积的计算公式并理解公式的意义、理解算法的意义.3.情感、态度与价值观经历探索圆及其相关结论的过程,发展学生的数学思考能力;通过积极引导,帮助学生有意识地积累活动经验,获得成功的体验;利用现实生活和数学中的素材,设计具有挑战性的情景,激发学生求知、探索的欲望. 教学重点1.平分弦(不是直径)的直径垂直于弦,•并且平分弦所对的两条弧及其运用. 2.在同圆或等圆中,相等的圆心角所对的弧相等,•所对的弦也相等及其运用. 3.在同圆或等圆中,同弧或等弧所对的圆周角相等,•都等于这条弧所对的圆心角的一半及其运用.4.半圆(或直径)所对的圆周角是直角,90•°的圆周角所对的弦是直径及其运用. 5.不在同一直线上的三个点确定一个圆.6.直线L 和⊙O 相交⇔d<r ;直线L 和圆相切⇔d=r ;直线L 和⊙O 相离⇔d>r 及其运用.7.圆的切线垂直于过切点的半径及其运用.8.•经过半径的外端并且垂直于这条半径的直线是圆的切线并利用它解决一些具体问题.9.从圆外一点可以引圆的两条切线,它们的切线长相等,•这一点和圆心的连线平分两条切线的夹角及其运用.10.两圆的位置关系:d 与r 1和r 2之间的关系:外离⇔d>r 1+r 2;外切⇔d=r 1+r 2;相交⇔│r 2-r 1│<d<r 1+r 2;内切⇔d=│r 1-r 2│;内含⇔d<│r 2-r 1│.11.正多边形和圆中的半径R 、边心距r 、中心角θ之间的等量关系并应用这个等量关系解决具体题目.12.n °的圆心角所对的弧长为L=180n R π,n °的圆心角的扇形面积是S扇形=2360n R π及其运用这两个公式进行计算.13.圆锥的侧面积和全面积的计算. 教学难点1.垂径定理的探索与推导及利用它解决一些实际问题.2.弧、弦、圆心有的之间互推的有关定理的探索与推导,•并运用它解决一些实际问题.3.有关圆周角的定理的探索及推导及其它的运用. 4.点与圆的位置关系的应用. 5.三点确定一个圆的探索及应用. 6.直线和圆的位置关系的判定及其应用. 7.切线的判定定理与性质定理的运用. 8.切线长定理的探索与运用. 9.圆和圆的位置关系的判定及其运用.10.正多边形和圆中的半径R 、边心距r 、中心角θ的关系的应用.11.n 的圆心角所对的弧长L=180n R π及S 扇形=2360n R π的公式的应用.12.圆锥侧面展开图的理解. 教学关键1.积极引导学生通过观察、测量、折叠、平移、旋转等数学活动探索定理、•性质、“三个”位置关系并推理证明等活动.2.关注学生思考方式的多样化,注重学生计算能力的培养与提高.3.在观察、操作和推导活动中,使学生有意识地反思其中的数学思想方法,•发展学生有条理的思考能力及语言表达能力. 单元课时划分本单元教学时间约需13课时,具体分配如下: 24.1 圆 3课时 24.2 与圆有关的位置关系 4课时 24.3 正多边形和圆 1课时 24.4 弧长和扇形面积 2课时 教学活动、习题课、小结 3课时24.1 圆第一课时教学内容1.圆的有关概念.2.垂径定理:平分弦(不是直径)的直径垂直于弦,•并且平分弦所对的两条弧及其它们的应用.教学目标了解圆的有关概念,理解垂径定理并灵活运用垂径定理及圆的概念解决一些实际问题.从感受圆在生活中大量存在到圆形及圆的形成过程,讲授圆的有关概念.利用操作几何的方法,理解圆是轴对称图形,过圆心的直线都是它的对称轴.通过复合图形的折叠方法得出猜想垂径定理,并辅以逻辑证明加予理解.重难点、关键1.重点:垂径定理及其运用.2.难点与关键:探索并证明垂径定理及利用垂径定理解决一些实际问题.教学过程一、复习引入(学生活动)请同学口答下面两个问题(提问一、两个同学)1.举出生活中的圆三、四个.2.你能讲出形成圆的方法有多少种?老师点评(口答):(1)如车轮、杯口、时针等.(2)圆规:固定一个定点,固定一个长度,绕定点拉紧运动就形成一个圆.二、探索新知从以上圆的形成过程,我们可以得出:在一个平面内,线段OA绕它固定的一个端点O旋转一周,•另一个端点所形成的图形叫做圆.固定的端点O叫做圆心,线段OA叫做半径.以点O为圆心的圆,记作“⊙O”,读作“圆O”.学生四人一组讨论下面的两个问题:问题1:图上各点到定点(圆心O)的距离有什么规律?问题2:到定点的距离等于定长的点又有什么特点?老师提问几名学生并点评总结.(1)图上各点到定点(圆心O)的距离都等于定长(半径r);(2)到定点的距离等于定长的点都在同一个圆上.因此,我们可以得到圆的新定义:圆心为O,半径为r的圆可以看成是所有到定点O 的距离等于定长r的点组成的图形.同时,我们又把①连接圆上任意两点的线段叫做弦,如图线段AC,AB;②经过圆心的弦叫做直径,如图24-1线段AB;③圆上任意两点间的部分叫做圆弧,简称弧,“以A、C为端点的弧记作 AC”,读作“圆弧 AC”或“弧AC”.大于半圆的弧(如图所示 ABC叫做优弧,•小于半圆的弧(如图所示) AC或 BC叫做劣弧.④圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫做半圆.(学生活动)请同学们回答下面两个问题.1.圆是轴对称图形吗?如果是,它的对称轴是什么?•你能找到多少条对称轴?2.你是用什么方法解决上述问题的?与同伴进行交流.(老师点评)1.圆是轴对称图形,它的对称轴是直径,•我能找到无数多条直径. 3.我是利用沿着圆的任意一条直径折叠的方法解决圆的对称轴问题的.因此,我们可以得到:(学生活动)请同学按下面要求完成下题:.如图,AB是⊙O的一条弦,作直径CD,使CD⊥AB,垂足为M(1)如图是轴对称图形吗?如果是,其对称轴是什么? (2)你能发现图中有哪些等量关系?说一说你理由. (老师点评)(1)是轴对称图形,其对称轴是CD .(2)AM=BM , AC BC=, AD BD =,即直径CD 平分弦AB ,并且平分 AB 及 ADB . 这样,我们就得到下面的定理:下面我们用逻辑思维给它证明一下: 已知:直径CD 、弦AB 且CD ⊥AB 垂足为M求证:AM=BM , AC BC=, AD BD =. 分析:要证AM=BM ,只要证AM 、BM 构成的两个三角形全等.因此,只要连结OA 、•OB 或AC 、BC 即可.证明:如图,连结OA 、OB ,则OA=OB 在Rt △OAM 和Rt △OBM 中OA OBOM OM=⎧⎨=⎩ ∴Rt △OAM ≌Rt △OBM ∴AM=BM∴点A 和点B 关于CD 对称 ∵⊙O 关于直径CD 对称∴当圆沿着直线CD 对折时,点A 与点B 重合, AC 与 BC 重合, AD 与 BD 重合. ∴ AC BC=, AD BD = 进一步,我们还可以得到结论:(本题的证明作为课后练习)例1.如图,一条公路的转弯处是一段圆弦(即图中 CD,点O 是 CD 的圆心,•其中CD=600m ,E 为 CD上一点,且OE ⊥CD ,垂足为F ,EF=90m ,求这段弯路的半径. 分析:例1是垂径定理的应用,解题过程中使用了列方程的方法,这种用代数方法解决几何问题即几何代数解的数学思想方法一定要掌握.B解:如图,连接OC设弯路的半径为R ,则OF=(R-90)m ∵OE ⊥CD∴CF=12CD=12³600=300(m )根据勾股定理,得:OC 2=CF 2+OF 2即R 2=3002+(R-90)2解得R=545 ∴这段弯路的半径为545m . 三、巩固练习教材P86 练习 P88 练习. 四、应用拓展例2.有一石拱桥的桥拱是圆弧形,如图24-5所示,正常水位下水面宽AB=•60m ,水面到拱顶距离CD=18m ,当洪水泛滥时,水面宽MN=32m 时是否需要采取紧急措施?请说明理由.分析:要求当洪水到来时,水面宽MN=32m•是否需要采取紧急措施,•只要求出DE 的长,因此只要求半径R ,然后运用几何代数解求R . 解:不需要采取紧急措施设OA=R ,在Rt △AOC 中,AC=30,CD=18 R 2=302+(R-18)2R 2=900+R 2-36R+324 解得R=34(m )连接OM ,设DE=x ,在Rt △MOE 中,ME=16 342=162+(34-x )2162+342-68x+x 2=342x 2-68x+256=0 解得x 1=4,x 2=64(不合设) ∴DE=4∴不需采取紧急措施.五、归纳小结(学生归纳,老师点评) 本节课应掌握: 1.圆的有关概念;2.圆是轴对称图形,任何一条直径所在直线都是它的对称轴. 3.垂径定理及其推论以及它们的应用. 六、布置作业1.教材P94 复习巩固1、2、3.2.车轮为什么是圆的呢?3.垂径定理推论的证明.4.选用课时作业设计.24.1 圆(第2课时)教学内容1.圆心角的概念.2.有关弧、弦、圆心角关系的定理:在同圆或等圆中,•相等的圆心角所对的弧相等,所对的弦也相等.3.定理的推论:在同圆或等圆中,如果两条弧相等,•那么它们所对的圆心角相等,所对的弦相等.在同圆或等圆中,如果两条弦相等,那么它们所对的圆心角相等,所对的弧也相等.教学目标了解圆心角的概念:掌握在同圆或等圆中,圆心角、弦、弧中有一个量的两个相等就可以推出其它两个量的相对应的两个值就相等,及其它们在解题中的应用.通过复习旋转的知识,产生圆心角的概念,然后用圆心角和旋转的知识探索在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等,最后应用它解决一些具体问题.重难点、关键1.重点:定理:在同圆或等圆中,相等的圆心角所对的弧相等,•所对弦也相等及其两个推论和它们的应用.2.难点与关键:探索定理和推导及其应用.教学过程一、复习引入(学生活动)请同学们完成下题.已知△OAB,如图所示,作出绕O点旋转30°、45°、60°的图形.ABO老师点评:绕O点旋转,O点就是固定点,旋转30°,就是旋转角∠BOB′=30°.二、探索新知如图所示,∠AOB的顶点在圆心,像这样顶点在圆心的角叫做圆心角.(学生活动)请同学们按下列要求作图并回答问题:如图所示的⊙O中,分别作相等的圆心角∠AOB•和∠A•′OB•′将圆心角∠AOB绕圆心O旋转到∠A′OB′的位置,你能发现哪些等量关系?为什么?B'AB= ''A B,AB=A′B′理由:∵半径OA与O′A′重合,且∠AOB=∠A′OB′∴半径OB与OB′重合∵点A与点A′重合,点B与点B′重合A B重合,弦AB与弦A′B′重合∴ AB与 ''A B,AB=A′B′∴ AB= ''因此,在同一个圆中,相等的圆心角所对的弧相等,所对的弦相等.在等圆中,相等的圆心角是否也有所对的弧相等,所对的弦相等呢?•请同学们现在动手作一作.(学生活动)老师点评:如图1,在⊙O和⊙O′中,•分别作相等的圆心角∠AOB和∠A′O′B′得到如图2,滚动一个圆,使O与O′重合,固定圆心,将其中的一个圆旋转一个角度,使得OA与O′A′重合.B'A '(1) (2) 你能发现哪些等量关系?说一说你的理由? 我能发现: AB = ''A B ,AB=A /B/.现在它的证明方法就转化为前面的说明了,•这就是又回到了我们的数学思想上去呢──化归思想,化未知为已知,因此,我们可以得到下面的定理:同样,还可以得到:在同圆或等圆中,如果两条弧相等,那么它们所对的圆心角相等,•所对的弦也相等. 在同圆或等圆中,如果两条弦相等,那么它们所对的圆心角相等,•所对的弧也相等. (学生活动)请同学们现在给予说明一下. 请三位同学到黑板板书,老师点评.例1.如图,在⊙O 中,AB 、CD 是两条弦,OE ⊥AB ,OF ⊥CD ,垂足分别为EF . (1)如果∠AOB=∠COD ,那么OE 与OF 的大小有什么关系?为什么?(2)如果OE=OF ,那么 AB 与 CD的大小有什么关系?AB 与CD 的大小有什么关系?•为什么?∠AOB 与∠COD 呢?D分析:(1)要说明OE=OF ,只要在直角三角形AOE 和直角三角形COF 中说明AE=CF ,即说明AB=CD ,因此,只要运用前面所讲的定理即可.(2)∵OE=OF ,∴在Rt △AOE 和Rt △COF 中, 又有AO=CO 是半径,∴Rt △AOE ≌Rt•△COF ,∴AE=CF,∴AB=CD,又可运用上面的定理得到 AB= CD 解:(1)如果∠AOB=∠COD,那么OE=OF理由是:∵∠AOB=∠COD∴AB=CD∵OE⊥AB,OF⊥CD∴AE=12AB,CF=12CD∴AE=CF又∵OA=OC∴Rt△OAE≌Rt△OCF∴OE=OF(2)如果OE=OF,那么AB=CD, AB= CD,∠AOB=∠COD 理由是:∵OA=OC,OE=OF∴Rt△OAE≌Rt△OCF∴AE=CF又∵OE⊥AB,OF⊥CD∴AE=12AB,CF=12CD∴AB=2AE,CD=2CF∴AB=CD∴ AB= CD,∠AOB=∠COD三、巩固练习教材P89 练习1 教材P90 练习2.四、应用拓展例2.如图3和图4,MN是⊙O的直径,弦AB、CD•相交于MN•上的一点P,•∠APM=∠CPM.(1)由以上条件,你认为AB和CD大小关系是什么,请说明理由.(2)若交点P在⊙O的外部,上述结论是否成立?若成立,加以证明;若不成立,请说明理由.NP(3) (4)分析:(1)要说明AB=CD,只要证明AB、CD所对的圆心角相等,•只要说明它们的一半相等.上述结论仍然成立,它的证明思路与上面的题目是一模一样的.解:(1)AB=CD理由:过O作OE、OF分别垂直于AB、CD,垂足分别为E、F∵∠APM=∠CPM∴∠1=∠2OE=OF连结OD、OB且OB=OD∴Rt△OFD≌Rt△OEB∴DF=BE根据垂径定理可得:AB=CD(2)作OE⊥AB,OF⊥CD,垂足为E、F∵∠APM=∠CPN且OP=OP,∠PEO=∠PFO=90°∴Rt△OPE≌Rt△OPF∴OE=OF连接OA、OB、OC、OD易证Rt△OBE≌Rt△ODF,Rt△OAE≌Rt△OCF∴∠1+∠2=∠3+∠4∴AB=CD五、归纳总结(学生归纳,老师点评)本节课应掌握:1.圆心角概念.2.在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,•那么它们所对应的其余各组量都部分相等,及其它们的应用.六、布置作业1.教材P94-95 复习巩固4、5、6、7、8.2.选用课时作业设计.24.1 圆(第3课时)教学内容1.圆周角的概念.2.圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,•都等于这条弦所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径及其它们的应用.教学目标1.了解圆周角的概念.2.理解圆周角的定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,•都等于这条弧所对的圆心角的一半.3.理解圆周角定理的推论:半圆(或直径)所对的圆周角是直角,90•°的圆周角所对的弦是直径.4.熟练掌握圆周角的定理及其推理的灵活运用.设置情景,给出圆周角概念,探究这些圆周角与圆心角的关系,运用数学分类思想给予逻辑证明定理,得出推导,让学生活动证明定理推论的正确性,最后运用定理及其推导解决一些实际问题.重难点、关键1.重点:圆周角的定理、圆周角的定理的推导及运用它们解题.2.难点:运用数学分类思想证明圆周角的定理.3.关键:探究圆周角的定理的存在.教学过程一、复习引入(学生活动)请同学们口答下面两个问题.1.什么叫圆心角?2.圆心角、弦、弧之间有什么内在联系呢?老师点评:(1)我们把顶点在圆心的角叫圆心角.A(2)在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,•那么它们所对的其余各组量都分别相等.刚才讲的,顶点在圆心上的角,有一组等量的关系,如果顶点不在圆心上,它在其它的位置上?如在圆周上,是否还存在一些等量关系呢?这就是我们今天要探讨,要研究,要解决的问题. 二、探索新知问题:如图所示的⊙O ,我们在射门游戏中,设E 、F 是球门,•设球员们只能在 EF所在的⊙O 其它位置射门,如图所示的A 、B 、C 点.通过观察,我们可以发现像∠EAF 、∠EBF 、∠ECF 这样的角,它们的顶点在圆上,•并且两边都与圆相交的角叫做圆周角. 现在通过圆周角的概念和度量的方法回答下面的问题. 1.一个弧上所对的圆周角的个数有多少个? 2.同弧所对的圆周角的度数是否发生变化? 3.同弧上的圆周角与圆心角有什么关系? (学生分组讨论)提问二、三位同学代表发言. 老师点评:1.一个弧上所对的圆周角的个数有无数多个.2.通过度量,我们可以发现,同弧所对的圆周角是没有变化的. 3.通过度量,我们可以得出,同弧上的圆周角是圆心角的一半.下面,我们通过逻辑证明来说明“同弧所对的圆周角的度数没有变化,•并且它的度数恰好等于这条弧所对的圆心角的度数的一半.”(1)设圆周角∠ABC 的一边BC 是⊙O 的直径,如图所示 ∵∠AOC 是△ABO 的外角 ∴∠AOC=∠ABO+∠BAO ∵OA=OB ∴∠ABO=∠BAO ∴∠AOC=∠ABO∴∠ABC=12∠AOC(2)如图,圆周角∠ABC 的两边AB 、AC 在一条直径OD的两侧,那么∠ABC=12∠AOC 吗?请同学们独立完成这道题的说明过程.C老师点评:连结BO 交⊙O 于D 同理∠AOD 是△ABO 的外角,∠COD 是△BOC 的外角,•那么就有∠AOD=2∠ABO ,∠DOC=2∠CBO ,因此∠AOC=2∠ABC .(3)如图,圆周角∠ABC 的两边AB 、AC 在一条直径OD 的同侧,那么∠ABC=12∠AOC 吗?请同学们独立完成证明.老师点评:连结OA 、OC ,连结BO 并延长交⊙O 于D ,那么∠AOD=2∠ABD ,∠COD=2∠CBO ,而∠ABC=∠ABD-∠CBO=12∠AOD-12∠COD=12∠AOC现在,我如果在画一个任意的圆周角∠AB ′C ,•同样可证得它等于同弧上圆心角一半,因此,同弧上的圆周角是相等的.从(1)、(2)、(3),我们可以总结归纳出圆周角定理:在同圆或等圆中,同弧等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半. 进一步,我们还可以得到下面的推导:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径. 下面,我们通过这个定理和推论来解一些题目.例1.如图,AB 是⊙O 的直径,BD 是⊙O 的弦,延长BD 到C ,使AC=AB ,BD 与CD 的大小有什么关系?为什么?分析:BD=CD ,因为AB=AC ,所以这个△ABC 是等腰,要证明D 是BC 的中点,•只要连结AD 证明AD 是高或是∠BAC 的平分线即可. 解:BD=CD理由是:如图24-30,连接AD ∵AB 是⊙O 的直径 ∴∠ADB=90°即AD ⊥BC 又∵AC=AB ∴BD=CD 三、巩固练习1.教材P92 思考题. 2.教材P93 练习. 四、应用拓展例2.如图,已知△ABC 内接于⊙O ,∠A 、∠B 、∠C 的对边分别设为a ,b ,c ,⊙O 半径为R ,求证:sin a A =sin b B =sin cC=2R .分析:要证明sin a A =sin b B =sin c C =2R ,只要证明sin a A =2R ,sin b B =2R ,sin c C=2R ,即sinA=2a R ,sinB=2b R ,sinC=2cR,因此,十分明显要在直角三角形中进行.证明:连接CO 并延长交⊙O 于D ,连接DB ∵CD 是直径 ∴∠DBC=90° 又∵∠A=∠D在Rt △DBC 中,sinD=BC DC ,即2R=sin aA同理可证:sin b B =2R ,sin cC =2R∴sin a A =sin b B =sin cC=2R五、归纳小结(学生归纳,老师点评) 本节课应掌握: 1.圆周角的概念;2.圆周角的定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,•都相等这条弧所对的圆心角的一半;3.半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径. 4.应用圆周角的定理及其推导解决一些具体问题. 六、布置作业1.教材P95 综合运用9、10、11 拓广探索12、13.2.选用课时作业设计.24.2 与圆有关的位置关系(第1课时)教学内容1.设⊙O的半径为r,点P到圆心的距离OP=d,则有:点P在圆外⇔d>r;点P在圆上⇔d=r;点P在圆内⇔d<r.2.不在同一直线上的三个点确定一个圆.3.三角形外接圆及三角形的外心的概念.4.反证法的证明思路.教学目标1.理解并掌握设⊙O的半径为r,点P到圆心的距离OP=d,则有:点P在圆外⇔d>r;点P在圆上⇔d=r;点P在圆内⇔d<r及其运用.2.理解不在同一直线上的三个点确定一个圆并掌握它的运用.3.了解三角形的外接圆和三角形外心的概念.4.了解反证法的证明思想.复习圆的两种定理和形成过程,并经历探究一个点、两个点、•三个点能作圆的结论及作图方法,给出不在同一直线上的三个点确定一个圆.接下去从这三点到圆心的距离逐渐引入点P•到圆心距离与点和圆位置关系的结论并运用它们解决一些实际问题.重难点、关键1.•重点:点和圆的位置关系的结论:不在同一直线上的三个点确定一个圆其它们的运用.2.难点:讲授反证法的证明思路.3.关键:由一点、二点、三点、•四点作圆开始导出不在同一直线上的三个点确定一个圆.教学过程一、复习引入(学生活动)请同学们口答下面的问题.1.圆的两种定义是什么?2.你能至少举例两个说明圆是如何形成的?3.圆形成后圆上这些点到圆心的距离如何?4.如果在圆外有一点呢?圆内呢?请你画图想一想.老师点评:(1)在一个平面内,线段OA绕它固定的一个端点O旋转一周,•另一个端点A所形成的图形叫做圆;圆心为O,半径为r的圆可以看成是所有到定点O的距离等于定长r的点组成的图形.(2)圆规:一个定点,一个定长画圆.(3)都等于半径.(4)经过画图可知,圆外的点到圆心的距离大于半径;•圆内的点到圆心的距离小于半径.二、探索新知由上面的画图以及所学知识,我们可知:设⊙O的半径为r,点P到圆心的距离为OP=d则有:点P在圆外⇒d>r点P在圆上⇒d=r点P在圆内⇒d<r反过来,也十分明显,如果d>r⇒点P在圆外;如果d=r⇒点P在圆上;如果d<r⇒点P在圆内.因此,我们可以得到:这个结论的出现,对于我们今后解题、判定点P是否在圆外、圆上、圆内提供了依据.下面,我们接下去研究确定圆的条件:(学生活动)经过一点可以作无数条直线,经过二点只能作一条直线,那么,经过一点能作几个圆?经过二点、三点呢?请同学们按下面要求作圆.(1)作圆,使该圆经过已知点A,你能作出几个这样的圆?(2)作圆,使该圆经过已知点A、B,你是如何做的?你能作出几个这样的圆?其圆心的分布有什么特点?与线段AB有什么关系?为什么?(3)作圆,使该圆经过已知点A、B、C三点(其中A、B、C三点不在同一直线上),•你是如何做的?你能作出几个这样的圆?老师在黑板上演示:(1)无数多个圆,如图1所示.(2)连结A、B,作AB的垂直平分线,则垂直平分线上的点到A、B的距离都相等,都满足条件,作出无数个.其圆心分布在AB的中垂线上,与线段AB互相垂直,如图2所示.lBAB(1) (2) (3)(3)作法:①连接AB、BC;②分别作线段AB、BC的中垂线DE和FG,DE与FG相交于点O;③以O为圆心,以OA为半径作圆,⊙O就是所要求作的圆,如图3所示.在上面的作图过程中,因为直线DE与FG只有一个交点O,并且点O到A、B、C•三个点的距离相等(中垂线上的任一点到两边的距离相等),所以经过A、B、C三点可以作一个圆,并且只能作一个圆.也就是,经过三角形的三个顶点可以做一个圆,这个圆叫做三角形的外接圆.外接圆的圆心是三角形三条边垂直平分线的交点,叫做这个三角形的外心.下面我们来证明:经过同一条直线上的三个点不能作出一个圆.证明:如图,假设过同一直线L上的A、B、C三点可以作一个圆,设这个圆的圆心为P,那么点P既在线段AB的垂直平分线L1,又在线段BC的垂直平分线L2,•即点P为L1与L2点,而L1⊥L,L2⊥L,这与我们以前所学的“过一点有且只有一条直线与已知直线垂直”矛盾.所以,过同一直线上的三点不能作圆.上面的证明方法与我们前面所学的证明方法思路不同,它不是直接从命题的已知得出结论,而是假设命题的结论不成立(即假设过同一直线上的三点可以作一个圆),由此经过推理得出矛盾,由矛盾断定所作假设不正确,从而得到命题成立.这种证明方法叫做反证法.在某些情景下,反证法是很有效的证明方法.例1.某地出土一明代残破圆形瓷盘,如图所示.为复制该瓷盘确定其圆心和半径,请在图中用直尺和圆规画出瓷盘的圆心.。

初中数学人教九年级上册(2023年新编)第二十四章 圆弧长和扇形面积(教案)

初中数学人教九年级上册(2023年新编)第二十四章 圆弧长和扇形面积(教案)

弧长和扇形面积第1课时弧长和扇形面积教学目标:1、能推导弧长和扇形面积的计算公式。

.2通过等分圆周的方法,体验弧长扇形面积公式的推导过程,培养学生抽象、理解、概括、归纳能力和迁移能力.3、知道公式中字母的含义,并能运用这些公式进行相应的计算。

教学重点:弧长和扇形面积公式,准确计算弧长和扇形的面积.教学难点:熟练地运用弧长和扇形面积公式进行计算。

一、情境导入问题1 制造弯形管道时,经常要先按中心线计算“展直长度”,再下料,这就涉及到计算弧长的问题.如图,根据图中的数据你能计算弧AB的长吗?求出弯道的展直长度.这就是我们今天要学习的内容弧长和扇形的面积——板书课题.二、进入新课1.探索弧长公式思考 1 你还记得圆的周长的计算公式吗?圆的周长可以看作多少度的圆周角所对的弧长?由此出发,1°的圆心角所对的弧长是多少?n°的圆心角所对的弧长多少?分析:在半径为R的圆中,圆周长的计算公式为:C=2πR,则:圆的周长可以看作360°的圆心角所对的弧;∴1°的圆心角所对的弧长是:1/360·2πR=πR/180;2°的圆心角所对的弧长是:2/360·2πR=πR/90;4°的圆心角所对弧长是:4/360·2πR=πr/45;∴n°的圆心角所对的弧长是:l=nπR/180;由此可得出n°的圆心角所对的弧长是:l=nπR/180.【教学说明】①在应用弧长公式进行计算时,要注意公式中n的意义,n表示1°圆心角的倍数,它是不带单位的;②公式可以按推导过程来理解记忆;③区分弧、弧度、弧长三个概念,度数相等的弧,弧长不一定相等;弧长相等的弧也不一定是等弧,而只有在同圆或等圆中才可能是等弧.小练习:①课本P111例1②课本p113练习第一题2.扇形面积计算公式如图,由组成圆心角的两条半径和圆心角所对的弧所围成的图形叫做扇形.思考2 扇形面积的大小与哪些因素有关?(学生思考并回答)从扇形的定义可知,扇形的面积大小与扇形的半径和圆心角有关.扇形的半径越长,扇形面积越大;扇形的圆心角越大,扇形面积越大.思考3若⊙O的半径为R,求圆心角为n°的扇形的面积.【教学说明】此问题有一定的难度,目的是引导学生迁移推导弧长公式的方法步骤,利用迁移方法探究新问题,归纳结论.3、例1(教材112页例2)如图,水平放置的圆柱形排水管道的截面半径为,其中水面高,求截面上有水部分的面积(精确到).解:连接OA、OB,作弦AB的垂线OD交AB于点C.∵OC=,DC=,∴OD=OC-DC=在Rt△OAD中,OA=,OD=,由勾股定理可知:Rt△OAD中,OD=1/2OA.∴∠OAD=30°,∠AOD=60°,∴∠AOB=120°.∴有水部分的面积为:S=S扇形OAB -S△OAB=π-12××≈(m2).三、运用新知,深化理解完成教材第113页练习2个小题.【教学说明】这几个练习较为简单,可由学生自主完成,教师再予以点评.四、师生互动,课堂小结通过这堂课的学习,你知道弧长和扇形面积公式吗?你会用这些公式解决实际问题吗?【教学说明】教师先提出问题,然后师生共同回顾,完善认知.五、布置作业1.默写弧长公式和面积公式2、课本P115 6、7、8题。

【精】 《弧长和扇形面积(第2课时)》精品教案

【精】 《弧长和扇形面积(第2课时)》精品教案

《弧长和扇形面积(第2课时)》精品教案课题24.4弧长和扇形面积(2)单元第二十四章学科数学年级九年级上学习目标情感态度和价值观目标培养学生的观察、想象、实践能力,获得数学学习经验,懂的数学与生活的密切联系。

能力目标通过设置情景和复习扇形面积的计算方法探索圆锥侧面积和全面积的计算公式以及应用它解决现实生活中的一些实际问题。

知识目标 1.了解圆锥母线的概念.2.理解圆锥侧面积计算公式,理解圆锥全面积的计算方法,并会应用。

重点圆锥侧面积和全面积的计算公式的探索与运用。

难点探索圆锥侧面积计算公式。

学法自主探索、合作交流、启发引导教法情景教学法、活动探究法;教学过程教学环节教师活动学生活动设计意图导入新课一、复习引入回忆n°的圆心角所对的弧长公式和扇形面积公式,并讲讲它们的区别与联系.这节课主要探究圆锥的侧面积计算方法. 通过回顾上节课的主要知识,引导学生巩固重点,引出课题。

通过知识回顾,巩固重点,提出问题,激发学生的学习兴趣。

讲授新课二、探究新知活动1:圆锥的有关概念1.圆锥的形成①一个底面和一个侧面围成的;②一个直角三角形绕一条直角边所在直线旋转一周得到的.引导学生思考圆锥的形成,学生按教师要求操作,观察,思考,通过探索圆锥的概念,将学生的思维从生活中走进2.把连接圆锥顶点和底面圆上任意一点的线段叫做圆锥的母线.3圆锥的高:连接底面圆圆心和圆锥顶点的线段.4圆锥的侧面(曲面)和底面(圆)活动2:圆锥的侧面积问题:圆锥的侧面是一个曲面,无法直接求其面积.圆柱的侧面也是一个曲面,因为展开图是一个长方形,所以求圆柱的侧面积就是求其展开图的面积.类似的,利用圆锥的侧面展开图求其侧面的面积可以吗?圆锥的侧面展开图是什么图形?沿圆锥一条母线将圆锥侧面剪开并展平,圆锥的侧面展开图是一个以圆锥的顶点为圆心,母线为半径的扇形.如图所示,设圆锥的母线长为l,•底面圆的半径为r,•那么这个扇形的半径为_____,扇形的弧长为______,因此圆锥的侧面积为_______.扇形的弧长:2πr,圆锥的侧面积:注意:计算时需搞清圆锥与侧面展开扇形之间几个量的对应关系:交流,教师给出圆锥的母线、圆锥的高等定义。

24.4 弧长和扇形公式(第二课时)(教学设计)九年级数学上册同步备课系列(人教版)

24.4 弧长和扇形公式(第二课时)(教学设计)九年级数学上册同步备课系列(人教版)

24.4 弧长和扇形公式(第二课时)教学设计一、内容和内容解析1.内容本节课是人教版《义务教育教科书•数学》九年级上册(以下统称“教材”)第二十四章“圆”24.4 弧长和扇形公式(第二课时),内容包括:圆锥的侧面积.2.内容解析圆锥的侧面展开图是平面图形与空间几何体相互转换的教学内容,是培养学生空间想象能力和动手操作能力的重要内容.由于圆锥的侧面展开图是一个扇形,因此,利用弧长和扇形面积公式,可通过计算它的展开图的面积求得圆锥的侧面积,进而可以求出其全面积.结合圆锥侧面积和全面积的学习,有助于培养学生的空间想象能力.基于以上分析,确定本节课的教学重点是:计算圆锥的侧面积和全面积.二、目标和目标解析1.目标1)理解圆锥的相关概念.2)理解圆锥侧面积的计算公式,并会运用公式解决问题.2.目标解析达成目标1)的标志是:理解圆锥、圆锥的高、圆锥的母线、圆锥的侧面积、圆锥的全面积等概念.达成目标2)的标志是:理解圆锥侧面积的计算公式,并会运用公式解决问题.三、教学问题诊断分析本节课学习圆锥的侧面积和全面积,是弧长和扇形面积公式的应用,在研究圆锥侧面展开图时,需要学生具备一定的空间观念,能认识立体图形与平面图形之间的联系,并利用这种关系进行分析,这对学生来说是一个难点.本节课的教学难点是:圆锥侧面积公式的推导.四、教学过程设计(一)探究新知【问题一】观察下面几何体,你发现了什么?师生活动:教师提出问题,学生通过观察图形发现以上几何体都是由一个底面和一个侧面围成的几何体.从而教师给出圆锥、母线、圆锥的高的概念.【设计意图】理解圆锥、母线、圆锥的高的概念【问题二】观察下图,你觉得圆锥的高与底面、底面圆心有什么关系?师生活动:学生通过观察图形发现:圆锥的高通过底面的圆心,并垂直于底面.【问题三】圆锥的母线有多少条?你发现了什么?师生活动:学生通过观察图形发现:圆锥的母线有无数条,它们的长都相等.【问题四】圆锥的底面圆半径r、高h、母线l三者之间有什么关系呢?师生活动:先由学生通过观察图形给出自己的见解,再由教师引导与总结得出:圆锥的母线l、圆锥的高h、圆锥底面圆半径r恰好构成一个直角三角形,所以圆锥可以看做是一个直角三角形绕它的一条直角边旋转一周所构成的图形,满足l2=h2+r2,利用这一关系,已知任意两个量,可以求出第三个量.【设计意图】让学生理解圆锥的母线l、圆锥的高h、圆锥底面圆半径r恰好构成一个直角三角形,满足l2=h2+r2.【问题五】将一个扇形纸片的两条半径重合,所围成的几何体是_____________.师生活动:学生通过动手操作,给出答案(圆锥体).【问题六】圆锥体展开后是什么样子的呢?师生活动:学生根据本节课所学,可以得出:圆锥体展开图由一个扇形(圆锥的侧面)和一个圆(圆锥的底面)组成.【问题七】展开的扇形弧长和底面圆之间有什么关系呢?师生活动:学生根据本节课所学,可以得出:扇形的弧长=底面圆的周长.【问题八】圆锥侧面展开图是扇形,这个扇形的半径与圆锥中的哪一条线段相等?师生活动:学生根据本节课所学,可以得出:扇形的半径与圆锥中的母线相等.【问题九】如何计算圆锥的侧面积?l×2πr= πr l(r表示圆锥底面的半径,l表示圆锥的母线长)师生活动:S扇形= 12【设计意图】让学生理解圆锥侧面积计算公式的推导过程.(二)典例分析与针对训练例1 已知圆锥的底面半径为5 cm,母线长为13 cm,则这个圆锥的侧面积是___________cm2【针对训练】1. 已知圆锥的底面圆半径为3cm,高为4cm,则圆锥的侧面积是________cm2.2. 已知圆锥的母线长为5cm,侧面积为15π cm2,则这个圆锥的底面圆半径为_____cm.3. 圆锥的底面半径是5cm,侧面展开图的圆心角是180°,圆锥的高是()A.5 √3cm B.10cm C.6cm D.5cm4. 若一个圆锥的侧面积是底面积的2倍,则圆锥侧面展开图的扇形的圆心角为()A.120° B.180°C.240°D.300°5. 如图,是某几何体的三视图及相关数据,则该几何体的侧面积是()A.10π B.15πC.20πD.30π6. 如图,聪聪用一张半径为6cm、圆心角为120°的扇形纸片做成一个圆锥,则这个圆锥的高为()A.4√2cm B.2√2cm C.2√3cm D.√3cm7.若把一个半径为12cm,圆心角为120°的扇形做成圆锥的侧面,则这个圆锥的底面圆的半径是_______,圆锥的高是__________,侧面积是____________.【设计意图】利用圆锥侧面积公式进行计算.(三)探究新知【问题十】如何计算圆锥的表面积?师生活动:学生根据本节课所学,可以得出:S表=S扇+S底=πr l+πr2 .【设计意图】让学生掌握圆锥表面积的计算方法.(四)典例分析与针对训练例2 蒙古包可以近似地看成由圆锥和圆柱组成的.如果想用毛毡搭建20个底面积为12m2,高为3.2 m,外围高1.8m的蒙古包,至少需要多少m2的毛毡?(π取3.142,结果取整数).【针对训练】1. 如图,蒙古包可近似看作由圆锥和圆柱组成,若用毛毡搭建一个底面圆面积为25πm2,圆柱高为3m,圆锥高为2m的蒙古包,则需要毛毡的面积是()A.(30+5√29)πm2B.40πm2C.(30+5√21)πm2D.55πm22. 用铁皮制作圆锥形容器盖,其尺寸要求如图所示.(1)求圆锥的高;(2)求所需铁皮的面积S(结果保留π).3. 如图,锚标浮筒是打捞作业中用来标记锚或沉船位置的,它的上下两部分是圆锥,中间是圆柱(单位:mm),电镀时,如果每平方米用锌0.11kg,电镀100个这样的锚标浮筒,需要用多少锌?【设计意图】考查学生对计算圆锥表面积方法的掌握情况.(五)直击中考1.(2023·山东东营中考真题)如果圆锥侧面展开图的面积是15π,母线长是5,则这个圆锥的底面半径是()A.3B.4C.5D.6⏜的长为()2.(2023·湖南中考真题)如图,圆锥底面圆的半径为4,则这个圆锥的侧面展开图中AA′A.4πB.6πC.8πD.16π3.(2023·浙江宁波中考真题)如图,圆锥形烟囱帽的底面半径为30cm,母线长为50cm,则烟囱帽的侧面积为cm2.(结果保留π)4.(2023·四川内江中考真题)如图,用圆心角为120°半径为6的扇形围成一个圆锥的侧面(接缝忽略不计),则这个圆锥的高是.5.(2023·湖南娄底中考真题)如图,在△ABC中,AC=3,AB=4,BC边上的高AD=2,将△ABC绕着BC所在的直线旋转一周得到的几何体的表面积为.【设计意图】通过对最近几年的中考试题的训练,使学生提前感受到中考的内容,进一步了解考点.(六)归纳小结1.通过本节课的学习,你学会了哪些知识?2.简述圆锥的相关概念?3.简述与圆锥面积计算的相关公式?(七)布置作业P114:练习第1题,第2题P115:习题24.4 第5题,第9题五、教学反思。

人教版九年级数学上册第二十四章圆《24.4弧长和扇形面积》第1课时教学设计

人教版九年级数学上册第二十四章圆《24.4弧长和扇形面积》第1课时教学设计

人教版九年级数学上册第二十四章圆《24.4弧长和扇形面积》第1课时教学设计一. 教材分析人教版九年级数学上册第二十四章圆《24.4弧长和扇形面积》是学生在学习了角的度量、圆的性质、圆的周长等知识的基础上,进一步探究圆的弧长和扇形面积的计算。

这一节内容不仅是前面学习内容的延续,也为后面学习圆锥、圆柱等几何体提供了基础。

教材通过生活中的实例,引导学生探究弧长和扇形面积的计算公式,让学生感受数学与生活的紧密联系,提高学生学习数学的兴趣。

二. 学情分析九年级的学生已经具备了一定的几何知识,对圆的基本概念和性质有一定的了解。

但是,对于弧长和扇形面积的计算,学生可能还比较陌生。

因此,在教学过程中,需要引导学生通过实际操作、探究活动等,理解和掌握弧长和扇形面积的计算方法。

三. 教学目标1.理解弧长和扇形面积的概念。

2.掌握弧长和扇形面积的计算公式。

3.能够运用弧长和扇形面积的知识解决实际问题。

四. 教学重难点1.重点:弧长和扇形面积的计算公式。

2.难点:弧长和扇形面积公式的推导过程。

五. 教学方法1.采用问题驱动的教学方法,引导学生通过实际问题,探究弧长和扇形面积的计算方法。

2.利用几何画板等软件,直观展示弧长和扇形的计算过程,帮助学生理解。

3.采用小组合作学习的方式,让学生在合作中交流、讨论,提高学生的合作能力。

六. 教学准备1.准备相关的教学课件、几何画板软件。

2.准备一些实际的例子,用于引导学生探究。

3.准备一些练习题,用于巩固所学知识。

七. 教学过程1.导入(5分钟)通过一个生活中的实例,如自行车轮子的周长,引出弧长的概念。

提问:如何计算这个弧长?引导学生思考,为下面的学习做好铺垫。

2.呈现(10分钟)利用几何画板软件,展示一个圆的扇形,让学生直观地感受弧长和扇形面积的计算过程。

通过软件的动态演示,引导学生探究弧长和扇形面积的计算公式。

3.操练(10分钟)让学生分组合作,利用准备好的实际例子,计算弧长和扇形面积。

人教版数学九年级上册说课稿24.4《弧长及扇形的面积》

人教版数学九年级上册说课稿24.4《弧长及扇形的面积》

人教版数学九年级上册说课稿24.4《弧长及扇形的面积》一. 教材分析《弧长及扇形的面积》是人教版数学九年级上册第24章的一部分,这一部分的内容是在学生已经掌握了圆的性质、弧长和扇形的基础上进行进一步的拓展。

本节课的主要内容是让学生了解弧长和扇形面积的计算方法,能够运用这些方法解决实际问题。

教材通过引入实际问题,激发学生的学习兴趣,让学生在解决问题的过程中自然地引入弧长和扇形面积的概念,从而达到理解并掌握知识的目的。

二. 学情分析九年级的学生已经具备了一定的逻辑思维能力和解决问题的能力,对于圆的性质、弧长等知识也有一定的了解。

但是,对于弧长和扇形面积的计算方法,学生可能还比较陌生,需要通过实例和练习来进一步理解和掌握。

此外,学生可能对于实际问题的解决还缺乏一定的思路和方法,需要教师的引导和启发。

三. 说教学目标1.知识与技能目标:让学生了解弧长和扇形面积的计算方法,能够运用这些方法解决实际问题。

2.过程与方法目标:通过引入实际问题,让学生在解决问题的过程中自然地引入弧长和扇形面积的概念,培养学生的逻辑思维能力和解决问题的能力。

3.情感态度与价值观目标:激发学生对数学的兴趣,培养学生的团队合作意识和积极进取的精神。

四. 说教学重难点1.教学重点:弧长和扇形面积的计算方法。

2.教学难点:如何将实际问题与弧长和扇形面积的计算方法相结合,解决实际问题。

五. 说教学方法与手段1.教学方法:采用问题驱动法、案例教学法和小组合作学习法,引导学生通过自主学习、合作交流来掌握知识。

2.教学手段:利用多媒体课件、实物模型和练习题,帮助学生直观地理解弧长和扇形面积的概念,提高学生的学习兴趣和参与度。

六. 说教学过程1.导入:通过展示一些实际问题,如桥梁的跨度、扇形的面积等,激发学生的学习兴趣,引导学生思考如何解决这些问题。

2.新课导入:介绍弧长和扇形面积的概念,引导学生通过自主学习来理解这些概念。

3.案例分析:通过分析一些具体的案例,让学生了解弧长和扇形面积的计算方法,并能够运用这些方法解决问题。

2022年人教版九年级数学上册第二十四章 圆教案 弧长和扇形面积 (第2课时)

2022年人教版九年级数学上册第二十四章 圆教案  弧长和扇形面积 (第2课时)

24.4 弧长和扇形的面积第2课时一、教学目标【知识与技能】通过实物演示让学生知道圆锥的侧面展开图是扇形;知道圆锥各部分的名称,能够计算圆锥的侧面积和全面积.【过程与方法】通过展开圆锥知道圆锥的全面积是扇形和底面圆形,通过制作圆锥,理解圆锥与扇形和圆之间的关系,进一步体会数学中的转化思想,培养学生动手操作能力和分析问题解决问题的能力.【情感态度与价值观】通过把圆锥展开和制作圆锥,理解事物之间的联系,激发学生动手的欲望和积极思考的兴趣.二、课型新授课三、课时第2课时,共2课时。

四、教学重难点【教学重点】计算圆锥的侧面积和全面积.【教学难点】圆锥侧面展开的扇形和底面圆之间有关元素的计算.五、课前准备课件、图片、直尺、圆规等.六、教学过程(一)导入新课教师问:下面图片是什么形状的?你会求它们的面积吗?(出示课件2)学生观察思考.(板书课题)(二)探索新知探究一圆锥及相关概念出示课件4,5:教师展示圆锥的图片及圆锥形成过程,学生初步认定圆锥各部分的名称.出示课件6,7:教师归纳:圆锥的母线:我们把连接圆锥的顶点S和底面圆上任一点的连线SA,SB 等叫做圆锥的母线.圆锥有无数条母线,它们都相等.圆锥的高:从圆锥的顶点到圆锥底面圆心之间的距离是圆锥的高.如果用r表示圆锥底面的半径,h表示圆锥的高线长,l表示圆锥的母线长,那么r、h、l之间数量关系是:r2+h2=l2.填一填:(出示课件8)根据下列条件求值(其中r、h、l分别是圆锥的底面半径、高线、母线长)(1)l=2,r=1则h=_______.(2)h=3,r=4,则l=_______.(3)l=10,h=8,则r=_______.学生独立思考后,自主解答:(1;(2)5;(3)6.探究二圆锥的侧面展开图教师问:圆锥的侧面展开图是什么图形?(出示课件9)学生答:圆锥的侧面展开图是扇形.出示课件10:教师问:1.沿着圆锥的母线,把一个圆锥的侧面展开,得到一个扇形,这个扇形的弧长与底面的周长有什么关系?2.圆锥侧面展开图是扇形,这个扇形的半径与圆锥中的哪一条线段相等?出示课件11:通过概念对比,学生进一步明确:圆锥侧面展开图扇形的半径=母线的长;圆锥侧面展开图扇形的弧长=底面周长.出示课件12:师生共同展示圆锥的侧面积计算公式的推导: ∵12S lR =侧(l 为弧长,R 为扇形的半径),12.2S r l π=⋅⋅侧 ∴侧面S =πlr (r 表示圆锥底面的半径,l 表示圆锥的母线长).教师归纳:圆锥的全面积计算公式:全底侧2 S =S +S =πr +πrl出示课件13:例1 一个圆锥的侧面展开图是一个圆心角为120°、弧长为20π的扇形,试求该圆锥底面的半径及它的母线的长.学生独立思考后师生共同解答.解:设该圆锥的底面的半径为r,母线长为a.220r ππ=, 可得r=10. 又12020180a ππ⨯⨯=, 可得a=30.巩固练习:(出示课件14)如图所示的扇形中,半径R=10,圆心角θ=144°,用这个扇形围成一个圆锥的侧面.(1)则这个圆锥的底面半径r= .(2)这个圆锥的高h= .学生独立思考后自主解答:⑴4;⑵出示课件15,16:例2 如图,圆锥形的烟囱帽,它的底面直径为80cm,母线为50cm.在一块大铁皮上裁剪时,如何画出这个烟囱帽的侧面展开图?求出该侧面展开图的面积.学生独立思考后师生共同解答.解:该烟囱的侧面展开图是扇形,如图所示.设该扇形的面积为S.方法一:×2πl∵2πr= α360°=288°∴α=360°× rl∴S=α360°πl 2=2000π(cm 2)方法二:S= 12×2πr ·l=12×2π×40×50=2000π(cm 2).方法三:S=πr ·l=π×40×50=2000π(cm 2).巩固练习:(出示课件17)已知一个圆锥的底面半径为12cm,母线长为20cm,则这个圆锥的侧面积为 ,全面积为 .学生独立思考后自主解答:πcm 2240;πcm 2384.出示课件18,19:例3 蒙古包可以近似地看作由圆锥和圆柱组成,如果想用毛毡搭建20个底面积为35m 2,高为3.5m,外围高为1.5m 的蒙古包,至少需要多少平方米的毛毡(精确到1m 2)?学生思考交流后,师生共同解答.解:如图是一个蒙古包示意图.根据题意,下部圆柱的底面积为35m 2,高为1.5m ;上部圆锥的高为3.5-1.5=2(m ).3.34m ≈, 圆柱的侧面积为2π×3.34×1.5≈31.46(平方米),()3.89m .≈侧面展开扇形的弧长为()2 3.3420.98m π⨯≈,圆锥的侧面积为()21 3.8920.9840.81m 2⨯⨯≈, 20×(31.46+40.81)≈1446(平方米).答:至少需要1446平方米的毛毡.巩固练习:(出示课件20)圆锥形烟囱帽(如图)的母线长为80cm,高为38.7cm,求这个烟囱帽的面积(π取3.14,结果保留2个有效数字).学生独立思考后自主解答.解:∵l=80,h=38.7,∴r=∴S 侧=πrl ≈3.14×70×80≈1.8×104(cm 2).答:烟囱帽的面积约为1.8×104cm 2.(三)课堂练习(出示课件21-25)1.如图,蒙古包可近似地看作由圆锥和圆柱组成,若用毛毡搭建一个底面圆面积为25πm 2,圆柱高为3m,圆锥高为2m 的蒙古包,则需要毛毡的面积是( )A .()πm 2 B .40πm 2C.(m 2 D .55πm 2.707.38802222≈-=-hl2.圆锥的底面半径为3cm,母线长为6cm,则这个圆锥侧面展开图扇形的圆心角是_______.3.一个扇形,半径为30cm,圆心角为120度,用它做成一个圆锥的侧面,那么这个圆锥的底面半径为_____ .2.如图,在平行四边形ABCD中,∠B=60°,⊙C的半径为3,则图中阴影部分的面积是()A.πB.2πC.3πD.6π3.已知弧所对的圆心角为90°,半径是4,则弧长_____.4.已知圆锥的底面的半径为3cm,高为4cm,则它的侧面积是_____,全面积是_____.5.如图,已知圆锥的母线长AB=8cm,轴截面的顶角为60°,求圆锥全面积.6.(1)在半径为10的圆的铁片中,要裁剪出一个直角扇形,求能裁剪出的最大的直角扇形的面积?(2)若用这个最大的直角扇形恰好围成一个圆锥,求这个圆锥的底面圆的半径?(3)能否从最大的余料③中剪出一个圆做该圆锥的底面?请说明理由.参考答案:1.A2.180°3.10cm4.15πcm2;24πcm25.解:∵AB=AC,∠BAC=60°, ∴△ABC是等边三角形.∴AB=BC=AC=8cm.∴S侧=πrl=π×4×8=32π(cm2), S底=πr2=π×4×4=16π(cm2),∴S全=S侧+S底=48π(cm2).6.解:(1)连接BC,则BC=20,∵∠BAC=90°,AB=AC,∴AB=AC=∴S 扇形=(29050360ππ⨯=;(2)圆锥侧面展开图的弧长为:90180π⨯⨯,r ∴= (3)延长AO 交⊙O 于点F,交扇形于点E,EF=最大半径为.r <所以不能.(四)课堂小结通过这堂课的学习,你知道弧长和扇形面积公式吗?你会用这些公式解决实际问题吗?(五)课前预习预习下节课(25.1.1)的相关内容.七、课后作业配套练习册内容八、板书设计:九、教学反思:1.本节课从观察圆锥图片开始,通过猜想侧面展开图的形状,然后由老师具体操作验证结论的正确性,并能运用所学知识推导出圆锥的侧面积和全面积公式,培养了学生观察、猜想、探索等方面的能力.2.本小节教材是复习圆周长公式推出弧长公式,复习圆面积公式推出扇形面积公式,是在小学基础知识上的提升,圆柱和圆锥的侧面积的计算,是将立体图形化为平面图形,通过具体操作,学生可以获得直观的感受,对于学习高中立体几何,会大有帮助.。

人教版九年级数学上册教案设计:24.4 弧长和扇形面积

人教版九年级数学上册教案设计:24.4 弧长和扇形面积

24.4弧长和扇形面积一、内容和内容解析1.内容弧长和扇形面积.2.内容解析弧长和扇形面积公式是与圆有关的计算中的两个常用公式.应用弧长和扇形面积公式可以计算一些与圆有关的图形的周长和面积,也可以解决一些简单的实际问题.学习这两个公式也为圆锥侧面积公式打下了基础.弧长公式是在圆周长公式的基础上,借助部分与整体之间的联系推导出来的.运用相同的研究方法,可以在圆面积公式的基础上推导出扇形面积公式,进而通过弧长公式表示扇形面积.基于以上分析,确定本节课的教学重点是:弧长和扇形面积公式的推导及应用.教学难点是:推导弧长和扇形面积公式的过程.二、目标和目标解析1.目标(1)理解弧长和扇形面积公式,并会计算弧长、扇形的面积.(2)在弧长和扇形面积计算公式的探究过程中,感受转化、类比的数学思想.2.目标解析达成目标(1)的标志是:学生能够理解1°的圆心角所对的弧长等于圆周长的3601,所对的扇形面积等于圆面积的3601;能够发现n °的圆心角所对的弧长和扇形面积都是1°的圆心角所对的弧长和扇形面积的n 倍;能利用弧长表示扇形面积,能利用公式计算弧长和扇形面积.达成目标(2)的标志是:在弧长和扇形面积公式的推导过程中,发现弧长与圆周长、扇形面积与圆面积都是部分与整体之间的关系,从而将计算弧长和扇形面积的问题转化为求圆周长和圆面积的一部分来解决,体会转化、类比的数学思想.三、教学问题诊断分析圆的周长和面积公式都是学生已经掌握的内容,学生能够感知到弧长和扇形面积分别与圆周长和圆面积有关,但是对于公式推导过程中圆心角的作用不易理解.教师可以利用特殊情况进行引导:先知道360°的圆心角所对的弧长即圆的周长;然后求1°的圆心角所对的弧长,再通过求2°的圆心角所对的弧长,逐渐认识到弧长;最后探索n °的圆心角所对的弧长,并通过n °圆心角与1°圆心角的倍数关系得出弧长公式.扇形面积公式的推导过程也类似.基于以上分析,本节课的教学难点是:推导弧长和扇形面积公式的过程.突破难点的关键是教师运用部分与整体之间的联系来推导弧长公式,再运用类比的思想引导学生推导扇形面积公式.四、教学过程设计1.创设情境,导入新知(预计时间2分钟)师生活动:教师播放视频,学生观看视频.观看后教师提出问题:在奥运会比赛中各国选手进入弯道后所跑的路线是什么几何图形?为什么各国选手的出发点不一样?学生回答问题,从而引出课题.设计意图:教师通过引导学生观看视频,能初步感知到弧长和这条弧所对的圆心角和圆的大小(半径)有关,同时激发学生的爱国热情和学习兴趣,为新课做铺垫.2.推导并应用弧长公式(预计时间15分钟)问题1 (1)半径为R 的圆周长公式是什么?(2)半径为R 的圆面积公式是什么?(3)什么是弧?(4)圆的周长可以看作是多少度的圆心角所对的弧长?师生活动:教师提出问题,学生回答问题(1)、(2)、(3).对于问题(4)学生能够感知弧长与半径和圆心角有关,但不容易推导出弧长公式,此时教师趁机引出课题.设计意图:教师确立延伸目标,让学生独立思考,为本课学习做好准备.教师追问1: (5)在同圆或等圆中,每一个 1°的圆心角所对的弧长有怎样的关系?(6) 1°的圆心角所对的弧长是多少?(7) n °的圆心角所对的弧长是多少?师生活动:教师引导学生回答问题(5)——-(7):(5)相等,(6)圆周长的3601,(7)1°圆心角所对弧长的n 倍. 教师追问2:(8)你会计算半径为 R ,1°的圆心角所对的弧长吗?(9)你会计算半径为R ,2°的圆心角所对的弧长吗?师生活动:教师引导学生获得(8),(9)的解答;(8)1°的弧长是圆周长的3601,为1803602R R ππ=;(9)2°是1°的2倍,所以弧长也是1°的弧长的2倍,为901802R R ππ=⨯.设计意图:引导学生关注圆心角的大小,让学生出体验由特殊到一般的弧长公式的推导过程.教师追问3:(10)你会计算半径为 R ,n °的圆心角所对的弧长吗?师生活动:学生独立思考,n °的圆心角所对的弧长是1°的圆心角所对弧长的n 倍,半径为R 的圆的周长是2πR ,利用1°的圆心角所对的弧长180R π,再乘n ,就可以得到n °的圆心角所对的弧长为180R n l π=.此时教师还要强调公式中n 的意义,n 表示1°圆心角的倍数,它是不带单位的,公式中的180也是不带单位的.设计意图:让学生经历从整体到部分的研究过程,从圆周长公式出发推导出弧长公式. 教师追问4:弧长的大小由哪些量决定?师生活动:学生独立思考,在弧长公式180R n l π=中,180和π是常量,n 和R 是变量,弧的长度与圆心角和圆的大小(半径)有关,当圆的大小一定时,圆心角越大,弧长越大;当圆心角的度数一定时,圆越大,弧的长也越大.设计意图:通过辨析弧长公式,让学生加深对公式的理解.例1 制造弯形管道时,经常要先按中心线计算“展直长度”,再下料,试计算图中所示的管道的展直长度 L (结果取整数).师生活动:(1)学生分析题中条件和解题思路:管道由三个图形组成(两条线段和一段弧),要求展直长度L ,需要知道两条线段长和弧长;其中线段长已知,要求弧长需要知道圆心角和半径;而圆心角和半径题目都已经给出了,由弧长公式即可直接求出弧长,进而可求出展直长度L.(2)学生独立完成解体过程,一名学生板书,师生共同交流.设计意图:通过实际问题,加深学生对弧长公式的认识.3.推导扇形面积公式(预计时间10分钟)问题2 在小学的时候我们曾经研究过扇形,你还记得小学时扇形的定义吗?师生活动:教师提出问题,学生思考后回答.教师指出扇形的特征是:由组成圆心角的两条半径和圆心角所对的弧所围成的图形,然后引导学生判断下列图形哪些是扇形?设计意图:加深学生对扇形定义的理解,能准确的判断出扇形.教师追问:同学们既然已经学过扇形了,知道扇形是由组成圆心角的两条半径和圆心角所对的弧所围成的图形,可以发现,扇形的面积除了与圆的半径有关外,还与组成扇形的圆心角的大小有关,圆心角越大,扇形面积也越大,那么如何计算扇形的面积呢?你能否类比研究弧长公式的方法推导出扇形面积公式吗?师生活动:教师利用多媒体给出推导弧长公式的问题,学生独立思考并讨论.类比弧长公式的研究过程,可以发现在半径为R 的圆中,,360°的圆心角所对的扇形的面积就是圆面积S=πR ²,所以1°的圆心角所对的扇形面积是圆面积πR ²的3601,即3602R π,则n °的圆心角所对的扇形面积为360n 2R S π=扇形. 设计意图:类比弧长公式的发现过程,由学生独立思考,归纳出扇形的面积公式,同时让学生体会类比的数学思想.问题3 比较扇形面积公式360n 2R S π=扇形和弧长公式180R n l π=,你能利用弧长表示扇形面积吗? 师生活动:学生独立思考.通过观察可以发现扇形面积公式3602R n π中,分子含有因式n πR ,则分子n πR ²可以写成R R n ∙π;分母360可以写成180×2.所以可以用弧长来表示扇形的面积,lR R R R S 212180n 360n 2=⋅==ππ扇形,其中l 为扇形的弧长,R 为圆的半径. 同时教师强调当已知弧长L 和半径R ,求扇形面积时,应选用lR S 21=扇;当已知半径和圆心角的度数,求扇形面积时,应选用360n 2R S π=扇形. 设计意图:通过对比弧长和扇形面积公式,让学生发现可以通过弧长来表示扇形面积,为圆锥的侧面积公式的推导作准备..4.练习、巩固弧长和扇形面积公式(预计时间10分钟)例2如图2,水平放置的圆柱形排水管道的截面半径是0.6 m ,其中水面高 0.3 m ,求截面上有水部分的面积(结果保留小数点后两位).教师追问:(1)你能否在图中标出截面半径和水高?(2)分析截面上有水部分图形的形状,如何求它的面积?(3)要求扇形面积,还需要求出公式中的哪个量?要求三角形的面积,还需要求出哪个量?(4)由已知中半径和水面高,怎样求圆心角和弦长?师生活动:(1)教师通过问题引导学生分析解题思路,并画出相应的图形(图3).然后分析有水部分的形状为弓形,从而确定了弓形面积的计算方法(扇形面积-三角形面积).进而通过已知求出相应线段和圆心角即可解决本题.(2)师生共同分析板书解题过程. 设计意图:结合具体例子介绍弓形的面积,加深学生对扇形面积公式的认识,同时小结不规则图形的解法,若图形为不规则图形时,要把它转化为规则图形来解决.例2变式 如图4、水平放置的圆柱形排水管道的截面半径是0.6cm ,其中水面高0.9cm ,求截面上有水部分的面积.(精确到0.01cm )师生活动:教师把例2的图形调过来,变成优弧弓形,学生根据例2的解题经验,了解到优弧弓形的面积的计算方法(扇形面积+三角形面积),教师引导学生口述解决问题,然后总结所有弓形面积的计算方法:如图5,若弓形为半圆,则221R S π=弓形; 若弓形AMB 的面积小于半圆的面积,则OAB OAB S S S ∆-=扇形弓形;若弓形AMB 的面积大于半圆的面积,则OAB OAB S S S ∆+=扇形弓形.图4练习 教科书第113页练习第1,2,3题.师生活动:学生在练习本上完成,教师巡视、指导.然后小组内交流、评价,教师派代表发言.设计意图:例1是对弧长公式进行辨析,半径和圆心角的大小都对弧长的大小有影响.练习2是巩固弧长公式.练习3是巩固扇形面积公式.5.小结(预计时间3分钟)教师与学生一起回顾本节课所学的主要内容,并请学生回答以下问题:(1)本节课我们主要研究了哪些内容?你有什么收获?在推导弧长和扇形面积公式的时,体现了哪些数学思想?(2)弧长与圆周长、扇形面积与圆面积之间有什么联系?设计意图:通过小结,使学生梳理本节课所学内容,把握本节课的核心——弧长和扇形面积公式,并体会部分与整体之间的联系,及类比、转化的数学思想.6.布置作业(预计时间1分钟)教科书习题24.3第4,6,8题.五.目标检测设计(10分)(预计时间4分钟)(注:1、2、4题各2分,3题4分.A 、B 层次的全部完成,C 层次的只需完成1、2即可)1.已知扇形的圆心角为120°,半径为6,则扇形的弧长是( )A .3πB .4πC .5πD .6π2.已知扇形的圆心角为100°,半径为6cm ,则这个扇形的面积为( )A .6πB .10πC .12πD .20π3.已知扇形的半径为3cm,扇形的弧长为πcm,则该扇形的面积是 2cm ,扇形的圆心角为 °.4.如图6,在正方形ABCD 中,分别以B ,D 为圆心,以正方形的边长a 为半径画弧,形成树叶型(阴影部分)图案,如图,则树叶型图案的面积为( )A.πaB.2πaC.a 21D.3a设计意图:考查学生对弧长和扇形面积公式的掌握.分层布置,体现了让不同学生在数学中都有不同发展的理念.。

初中数学《弧长和扇形面积教案》教案基于学科核心素养的教学设计及教学反思

初中数学《弧长和扇形面积教案》教案基于学科核心素养的教学设计及教学反思
2.会正确计算弧长和扇形的面积,熟练的运用两个公式进行相关计算。
过程与方法
思考、探究弧长和扇形面积的计算公式,培养学生的数学应用意识,分析问题和解决问题的能力。
情感、态度与价值观
体验数学学习活动的思考和探索过程,感受数学学习中数形结合的思想,提高解决实际问题的能力。
教学重点与难点
重点会计算弧长和扇形的面积
(4)n°圆心角所对的弧长是多少?(n°的圆心角所对的弧长是1°的圆心角所对的弧长的n倍,/)
由此可得弧长公式:/
3、先独立完成计算,再逐一讲解。
(二)扇形面积公式
1、认识扇形及其定义,并学会判断什么图形是扇形?
2、自主学习,合作探究
(1)如果圆的半径为R,则圆的面积是多少?(πR2)
(2)360o圆心角所对应的扇形面积为多少?(πR2)
2、自主学习,合作探究
/
得出弧长公式:/
3、精讲例题
例1一段弧的半径是50厘米,所对的圆心角为60o,求此弧的长度。
解:由弧长公式得/(厘米)
答:此弧的长度为/厘米。
例2制造弯形管道时,经常要先按中心线计算“展直长度”,再下料,试计算图所示管道的展直长度L(单位:mm,结果取整数)
/
解:由弧长公式得/
A./B.2πC.3πD.12π
3、若扇形的面积为3π,圆心角为60°,则该扇形的半径为()。(2015)
A.3B.9C./D./
(五)小结
(六)布置作业
1、P113练习1、2在课本上完成;
2、P115第1(1)、(2)和第6题。
(一)弧长公式
1、引出“弧及弧长”
2、自主学习,合作探究,完成探究问题,得出弧长计算公式。
学生学情分析

人教版数学九年级上册24.4.1《弧长和扇形面积》说课稿

人教版数学九年级上册24.4.1《弧长和扇形面积》说课稿

人教版数学九年级上册24.4.1《弧长和扇形面积》说课稿一. 教材分析人教版数学九年级上册第24章《弧长和扇形面积》是本章的最后一节内容,本节课的主要内容是引导学生探究弧长和扇形面积的计算方法,进一步加深学生对圆的相关知识的理解。

教材通过生活中的实例,让学生感受弧长和扇形面积的实际应用,从而激发学生的学习兴趣。

接下来,我将结合教材内容,分析本节课的教学内容。

二. 学情分析在进入九年级上册的学习之前,学生已经掌握了圆的基本知识,如圆的周长、直径、半径等,他们对圆的知识有一定的了解。

然而,弧长和扇形面积的概念对于学生来说可能较为抽象,需要通过具体实例和实际操作来进一步理解。

此外,学生可能对计算弧长和扇形面积的公式记忆不牢,需要老师在课堂上进行引导和巩固。

三. 说教学目标根据教材内容和学情分析,我设定了以下教学目标:1.让学生理解弧长和扇形面积的概念,掌握计算弧长和扇形面积的方法。

2.培养学生运用数学知识解决实际问题的能力。

3.提高学生的合作交流能力,培养他们积极参与课堂活动的习惯。

四. 说教学重难点根据教材内容和学情分析,我确定了以下教学重难点:1.重点:让学生掌握弧长和扇形面积的计算方法,能够运用这些方法解决实际问题。

2.难点:让学生理解弧长和扇形面积的概念,以及如何将这些抽象的概念运用到实际问题中。

五. 说教学方法与手段为了达到教学目标,突破重难点,我计划采用以下教学方法与手段:1.采用问题驱动的教学方法,引导学生通过自主探究、合作交流来解决问题。

2.利用多媒体课件,展示实例和操作过程,帮助学生直观地理解弧长和扇形面积的概念。

3.运用练习题和实际问题,让学生在实践中运用所学知识,巩固学习成果。

六. 说教学过程接下来,我将详细阐述教学过程。

1.导入:以生活中的实例引入弧长和扇形面积的概念,激发学生的学习兴趣。

2.新课讲解:讲解弧长和扇形面积的计算方法,引导学生通过自主探究、合作交流来理解这些方法。

九年级数学: 24.4《弧长和扇形的面积》说课稿

九年级数学: 24.4《弧长和扇形的面积》说课稿

《弧长和扇形的面积》说课稿一、说教材分析:(一)、说教材的地位与作用:本节课的教学内容是义务教育课程标准实验教科书,人教版九年级上册第24章《圆》中的“弧长和扇形面积”,从孩提时代的感觉圆形,到小学的认识图形,再到如今的系统学习,学生对圆的认识正在发生着质的变化。

这节课是学生在前阶段学习了“圆的认识”“与圆有关的位置、关系”“正多边形和圆”的基础上进行的拓展与延伸。

本课时在中考中占有一定的分值,掌握好这部分内容就是中考制胜的法宝,针对知识的形成过程,本节课创造性的使用教材,本节课的主要内容是在小学阶段学过的圆周长和面积公式的基础上,采用由特殊到一般的方法探索弧长及扇形面积公式,利用小组合作的方式让学生更好的理解弧长和扇形的面积的形成过程,让学生充分体验知识的形成过程,也注重数学方法的渗透。

并运用公式解决一些具体问题,为学生的学习及生活更好地运用数学作准备。

对学生以后学习用动态解决数学问题的学习起到了铺垫作用。

(二)说教学目标1、知识与技能(1)经历探索弧长计算公式及扇形面积计算公式的过程;(2)了解弧长计算公式及扇形面积计算公式,并会应用公式解决问题。

2、过程与方法(1)经历探索弧长计算公式及扇形面积计算公式的过程,培养学生的探索能力。

(2)了解弧长及扇形面积公式后,能用公式解决问题,训练学生的数学运用能力。

3、情感态度与价值观(1)经历探索弧长及扇形面积计算公式.让学生体验教学活动充满着探索与创造,感受数学的严谨性以及数学结论的确定性。

(2)通过用弧长及扇形面积公式解决实际问题,让学生体验数学与人类生活的密切联系,激发学生学习数学的兴趣,提高他们的学习积极性,同时提高大家的运用能力。

(三)说教学重、难点重点:弧长公式,扇形面积的推导及公式的应用。

难点:运用弧长和扇形的面积,计算组合图形的面积。

(四)说教法针对九年级学生年龄特点和心理特点,以及他们现有的知识水平,通过小组合作与交流尝试练习促进共同进步,并用肯定的语言进行鼓励,激励学生。

2020九年级数学上册 第二十四章 圆 24.4 弧长和扇形面积(2)教案 (新版)新人教版

2020九年级数学上册 第二十四章 圆 24.4 弧长和扇形面积(2)教案 (新版)新人教版

弧长和扇形面积课题: 24.4弧长和扇形面积(2)课时 1 课时教学设计课标要求会计算圆的弧长、扇形的面积教材及学情分析 1、教材分析:学生在学习本章之前,已通过折叠、对称、平移、旋转、推理证明等方式认识了许多图形的性质,积累了大量的空间与图形的经验.本章是在学习了这些直线型图形的有关性质的基础上,进一步来探索一种特殊的曲线──圆的有关性质.通过本章的学习,对学生今后继续学习数学,尤其是逐步树立分类讨论的数学思想、归纳的数学思想起着良好的铺垫作用.本章的学习是高中的数学学习,尤其是圆锥曲线的学习的基础性工程.学情分析:2、九年级学生已具备一定知识储备和认知能力。

但学生的基础较差,中等、差等生较多,优等生较少。

课堂上,多数学生表现欲不强,发言不积极,怕回答错问题;学生应用知识灵活解决问题的能力较差,在几何证明题中,不会抓住已知条件进行论证推理。

因此,在教学中,注重学生学习方法的培养,通过学生实践、探究、合作交流来完成本节课的教学。

课时教学目标1.了解母线的概念.2.掌握圆锥的侧面积计算公式,并会应用公式解决问题.3.经历探索圆锥侧面积计算公式的过程,发展学生的实践探索能力.重点1.经历探索圆锥侧面积计算公式的过程.2.了解圆锥的侧面积计算公式,并会应用公式解决问题.难点圆锥侧面积计算公式的推导过程提炼课题圆锥侧面积公的推导及其应用教法学法指导合作探究法引导启发法练习法教具准备课件教学过程提要环节学生要解决的问题或完成的任务师生活动设计意图引入新课一、复习:二、由生活中的圆锥形象导入新课一、复习:1、弧长怎么计算?说一说弧长的计算公式。

2、扇形的面积怎么计算?说一说扇形面积的计算公式?3、弧长公式和扇形面积公式有什么区别?二、导入新课师:大家见过圆锥吗?你能举出实例吗?生:见过,如漏斗、蒙古包.师:你们知道圆锥的表面是由哪些面构成的吗?请大家互相交流.巩固上节课所学的知识,为本节课做铺垫。

教学过程三、圆锥侧面积公式的推导1、圆锥侧面积公式2、问题的解决:用圆锥侧面积公式计算搭建一个蒙古包所需要的材料生:圆锥的表面是由一个圆面和一个曲面围成的.师:圆锥的曲面展开图是什么形状呢?应怎样计算它的面积呢?本节课我们将解决这些问题.三、新课教学:1.圆锥的母线.圆锥是由一个底面和一个侧面围成的几何体,如图,我们把连接圆锥顶点和底面圆周上任意一点的线段叫做圆锥的母线.2.探索圆锥的侧面公式.思考:圆锥的侧面展开图是什么图形?如何计算圆锥的侧面积?如何计算圆锥的全面积?(1)如图,沿一条母线将圆锥侧面剪开并展平,容易得到,圆锥的侧面展开图是一个扇形.(2)设圆锥的母线长为l,底面圆的半径为r,那么这个扇形的半径为l,扇形的弧长为2πr,因此圆锥的侧面积为πrl,圆锥的全面积为πr(r+l).3.利用圆锥的侧面积公式进行计算.例蒙古包可以近似地看作由圆锥和圆柱组成.如果想用毛毡搭建20个底面积为12 m2,高为3.2 m,外围高1.8 m的蒙古包,至少需要多少平方米的毛毡(n取3.142,结果取整数)?由由蒙古包表面积计算导入新课,激发学生学习本节知识的欲望探究圆锥侧面积的计算方法考查圆锥侧面积公式的应用教学过程四、巩固练习:圆锥的母线长l=224.1945.1 ≈2.404(m),侧面展开扇形的弧长为2π×1.945≈12.28(m),圆锥的侧面积为21×2.404×12.28≈14.76(m2).因此,搭建20个这样的的蒙古包至少需要毛毡20×(22.10+14.76)≈738(m2).三、巩固练习:利用所学的新知识解决实际问题,考查学生对所学知识的应用能力。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第2课时圆锥的侧面积和全面积
※教学目标※
【知识与技能】
掌握圆锥的特征,弄清圆锥侧面展开图中各元素与圆锥中各元素之间的对应关系;会推导、计算圆锥的侧面积和全面积.
【过程与方法】
通过对圆锥侧面积的推导,体会空间图形平面化的数学方法;发展类比和转化的数学思想;进一步培养空间观念.
【情感态度】
通过对实际问题的分析,体会数学的实用价值;在小组活动中培养合作交流能力和探究精神.
【教学重点】
1.理解圆锥侧面积和全面积的公式及其有关计算.
2.培养学生空间观念及空间图形与平面图形相互转化的思想.
【教学难点】
1.利用圆锥的侧面积和全面积的公式解决实际问题.
2.圆锥侧面展开图(扇形)中各元素与圆锥各元素之间的关系.
※教学过程※
一、情境导入
(课件出示生活中常见的圆锥的图片)圆锥可以看作是一个直角三角形绕它的一条直角边旋转一周所成的图形.你知道圆锥各部分的名称吗?
二、探索新知
1.圆锥的相关概念
连接圆锥顶点和低面圆周上任意一点的线段叫做圆锥的母线.
沿一条母线将圆锥侧面剪开并展平,容易得到,圆锥的侧面展开图是一个扇形.
问题圆锥有多少条母线?圆锥的母线有什么性质?
(圆锥有无数条母线,圆锥的母线长相等.)
2.圆锥的侧面积和全面积
设圆锥的母线长为l,底面圆的半径为r,那么这个扇形的半径为l,扇形的弧长为 2πr ,因此
圆锥的侧面积为1
2
2
ππ
r l rl
=
g g,圆锥的全面积为()
22
πππ
rl r r l r
+=+ .
三、掌握新知
例蒙古包可以近似地看作由圆锥和圆柱组成.如果想用毛毡搭建20个底面积为12m2,高为3.2m,外围高1.8m的蒙古包,至少需要多少平方米的毛毡 (π取3.142,结果取整数) ?
解:如图是一个蒙古包的示意图.
根据题意,下部圆柱的底面积为12m2,高h2=1.8m;上部圆锥的高
h1=3.2-1.8=1.4(m).圆柱的底面半径r=12
π
≈1.954(m),侧面积为2π×1.954×1.8≈22.10(m2).圆锥的母线长l=22
1.954 1.4
≈2.404(m),侧面展开扇形的弧长为
2π×1.954≈12.28(m2),圆锥的侧面积为1
2
×2.404×12.28≈14.76(m2).因此,搭建20个这样的蒙古包至少
需要毛毡20×(22.10+14.76)≈738(m2).
四、巩固练习
1.已知圆锥的高是30cm,母线长是50cm,则圆锥的侧面积是 .
2.已知圆锥的底面半径为4cm,高为3cm,则这个圆锥的侧面积为 cm2.
3.圆锥的底面直径为80cm.母线长为90cm,它的全面积为 .
4.扇形的半径为30,圆心角为120°用它做一个圆锥模型的侧面,这个圆锥的底面半径为,高为 .
答案:1.2000πcm2 2.20π 3.520πcm2 4.10,202
五、归纳小结
本节课你学到了什么知识?你有什么认识?
※布置作业※
从教材习题21.3中选取.
※教学反思※
1.在本节课从观察圆锥模型开始,通过猜想侧面展开图的形状,然后由老师具体操作验证结论的正确性,并能运用所学知识推导出圆锥的侧面积和全面积公式,培养了学生观察、猜想、探索等方面的能力.
2.本小节教材是复习圆周长公式推出弧长公式,复习圆面积公式推出扇形面积公式,是在小学基础知识上的提升,圆柱和圆锥的侧面积计算,是将立体图形转化为平面图形,通过具体操作,学生可以获得直观的感受,对于学习高中立体几何有很大的帮助.。

相关文档
最新文档