九年级数学弧长和扇形面积
九年级数学上册(人教版)24.4弧长与扇形面积(第一课时)教学设计
"首先,我们来看弧长的计算公式。弧长等于圆周长的一部分,我们可以通过圆心角和半径来计算。其公式为:弧长= (圆心角/360) × 2πr。接下来,我们学习扇形面积的计算公式。扇形面积是圆面积的一部分,它等于圆心角所对的圆弧与半径所围成的图形。其公式为:扇形面积= (圆心角/360) × πr²。"
2.教师通过示例题,展示如何运用这些公式解决实际问题,让学生理解并掌握计算方法。
(三)学生小组讨论,500字
1.教师将学生分成小组,让学生合作讨论以下问题:
"如何计算一个圆的1/4弧长和扇形面积?如果圆的半径是10cm,圆心角是90度,你能计算出弧长和扇形面积吗?"
2.学生在小组内进行讨论,共同解决这些问题,教师巡回指导,解答学生的疑问。
3.梯度练习,巩固知识
设计不同难度的练习题,让学生独立完成,巩固所学知识。针对学生的错误,进行及时反馈和指导。
4.理论联系实际,学以致用
通过解决实际问题,让学生感受数学的实用性。例如,计算一段弯曲的道路的长度、计算扇形门的面积等。
5.总结反馈,拓展提高
在课堂结束时,让学生总结本节课所学内容,并进行自我评价。教师对学生的表现给予肯定和鼓励,同时对学生的不足之处进行指导。
(四)课堂练习,500字
1.教师设计不同难度的练习题,让学生独立完成,巩固所学知识。
"请同学们完成以下练习题:计算半径为5cm的圆的1/6弧长和扇形面积;计算圆心角为120度的扇形面积,半径为8cm。"
2.教师对学生的练习进行批改和反馈,针对错误进行讲解,确保学生掌握所学知识。
(五)总结归纳,500字
北师大版数学九年级下册3.9《弧长及扇形的面积》说课稿
北师大版数学九年级下册3.9《弧长及扇形的面积》说课稿一. 教材分析弧长及扇形的面积是北师大版数学九年级下册第3.9节的内容。
这部分内容是在学生已经掌握了圆的性质、扇形的定义以及弧长的计算方法的基础上进行讲解的。
本节课的主要内容是引导学生探究扇形的面积计算公式,并能够运用该公式解决实际问题。
教材通过实例和练习,帮助学生理解和掌握扇形面积的计算方法,提高他们的数学应用能力。
二. 学情分析九年级的学生已经具备了一定的几何知识基础,对圆的性质和弧长的计算方法有一定的了解。
然而,扇形面积的计算涉及到新的概念和思考方式,对于部分学生来说可能存在一定的难度。
因此,在教学过程中,我需要关注学生的学习情况,针对不同学生的需求进行引导和帮助,使他们能够顺利地理解和掌握扇形面积的计算方法。
三. 说教学目标1.知识与技能目标:引导学生探究并理解扇形的面积计算公式,使学生能够运用该公式计算扇形的面积。
2.过程与方法目标:通过观察、操作、交流和思考,培养学生的空间想象能力和几何思维能力。
3.情感态度与价值观目标:激发学生对数学的兴趣,培养他们解决问题的积极性和合作精神。
四. 说教学重难点1.教学重点:引导学生探究扇形的面积计算公式,使学生能够理解和运用该公式。
2.教学难点:理解扇形面积计算公式的推导过程,掌握扇形面积的计算方法。
五. 说教学方法与手段在教学过程中,我将采用问题驱动法和合作学习法。
通过提出问题,引导学生进行观察、思考和交流,激发他们的学习兴趣和解决问题的欲望。
同时,我将运用多媒体课件和实物模型等教学手段,帮助学生直观地理解扇形面积的计算方法。
六. 说教学过程1.导入:通过展示一些与扇形相关的实例,如扇形统计图、扇形切割等,引导学生回顾扇形的定义和弧长的计算方法,为新课的学习做好铺垫。
2.探究扇形面积的计算公式:引导学生观察和分析扇形的特征,让学生通过小组合作的方式,自主探究扇形面积的计算公式。
在学生探究的过程中,给予适当的引导和帮助。
人教版九年级数学上册24.4弧长和扇形面积教案
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与弧长和扇形面积相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作,如用硬纸板制作一个扇形,测量并计算其面积。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了弧长和扇形面积的基本概念、计算公式以及它们在实际中的应用。通过实践活动和小组讨论,我们加深了对弧长和扇形面积的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解弧长和扇形面积的基本概念。弧长是圆上两点间的弧与半径的对应圆心角的比值;扇形面积是由圆心、圆上两点和这两点间的弧所围成的图形。它们在工程、设计等领域有着广泛的应用。
2.案例分析:接下来,我们来看一个具体的案例。比如,计算一个半圆的弧长和面积,通过这个案例,我们可以了解弧长和扇形面积在实际中的应用,以及它们如何帮助我们解决问题。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《弧长和扇形面积》这一章节。在开始之前,我想先问大家一个问题:“你们在生活中是否遇到过需要计算圆的一部分长度或面积的情况?”比如,设计一个扇形花园,我们该如何计算它的面积?这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索弧长和扇形面积的奥秘。
浙教版数学九年级上册《3.8 弧长及扇形的面积》教案1
浙教版数学九年级上册《3.8 弧长及扇形的面积》教案1一. 教材分析《3.8 弧长及扇形的面积》是浙教版数学九年级上册的一部分,本节课主要介绍了弧长和扇形面积的计算方法。
通过本节课的学习,学生能够理解弧长和扇形面积的概念,掌握计算弧长和扇形面积的方法,并能够应用于实际问题中。
二. 学情分析九年级的学生已经具备了一定的几何知识,对图形的认识和理解有一定的基础。
但是,对于弧长和扇形面积的计算方法,学生可能较为陌生,需要通过实例和练习来加深理解和掌握。
三. 教学目标1.理解弧长和扇形面积的概念。
2.掌握计算弧长和扇形面积的方法。
3.能够应用弧长和扇形面积的计算方法解决实际问题。
四. 教学重难点1.弧长和扇形面积的概念。
2.计算弧长和扇形面积的方法。
五. 教学方法采用问题驱动的教学方法,通过实例和练习来引导学生理解和掌握弧长和扇形面积的计算方法。
同时,运用合作学习的方式,让学生在小组讨论和实践中共同解决问题,提高学生的参与度和积极性。
六. 教学准备1.PPT课件。
2.练习题。
3.几何画板或者实物模型。
七. 教学过程1.导入(5分钟)通过一个实际问题引入本节课的主题,例如:一个自行车轮子一周的行驶距离是多少?引导学生思考和讨论,引出弧长的概念。
2.呈现(15分钟)通过PPT课件或者几何画板展示扇形的模型,引导学生观察和理解扇形的特征,讲解扇形的面积计算公式,并通过实例来演示计算过程。
3.操练(15分钟)让学生分组进行练习,每组选择一道练习题进行计算,其他组进行评价和讨论。
教师巡回指导,解答学生的疑问,并强调计算过程中的注意事项。
4.巩固(10分钟)通过PPT课件或者几何画板展示一些典型的练习题,让学生独立进行计算,教师选取部分学生的答案进行讲解和分析,巩固学生对弧长和扇形面积计算方法的掌握。
5.拓展(10分钟)让学生思考和讨论一些拓展问题,例如:如何计算一个圆的周长和面积?如何计算一个扇形的弧长和面积?引导学生运用所学的知识解决实际问题。
人教版数学九年级上册24.4《弧长和扇形的面积》说课稿1
人教版数学九年级上册24.4《弧长和扇形的面积》说课稿1一. 教材分析人教版数学九年级上册第24.4节《弧长和扇形的面积》是本册教材中的重要内容,它是在学生已经掌握了圆的性质、圆的周长和面积的基础上进行授课的。
本节课主要介绍了弧长的计算方法和扇形的面积计算方法,旨在让学生理解和掌握弧长和扇形面积的计算公式,并能够运用这些知识解决实际问题。
二. 学情分析九年级的学生已经具备了一定的数学基础,对于圆的性质、周长和面积的概念已经有了初步的了解。
但是,对于弧长和扇形面积的计算方法,他们可能还比较陌生。
因此,在教学过程中,我需要从学生的实际出发,循序渐进地引导他们理解和掌握这些概念和方法。
三. 说教学目标1.知识与技能目标:让学生理解和掌握弧长和扇形的面积的计算方法,能够运用这些方法解决实际问题。
2.过程与方法目标:通过观察、分析、归纳等方法,让学生自主探索弧长和扇形面积的计算方法,培养他们的观察能力和思维能力。
3.情感态度与价值观目标:激发学生学习数学的兴趣,培养他们的自主学习能力和团队合作精神。
四. 说教学重难点1.教学重点:弧长和扇形面积的计算方法。
2.教学难点:弧长和扇形面积计算公式的推导过程。
五. 说教学方法与手段在本节课的教学过程中,我将采用问题驱动法、案例教学法和小组合作法等教学方法,结合多媒体课件和黑板等教学手段,引导学生主动参与课堂,提高他们的学习兴趣和积极性。
六. 说教学过程1.导入新课:通过一个实际问题,引出弧长和扇形面积的概念,激发学生的学习兴趣。
2.自主探究:让学生通过观察、分析、归纳等方法,自主探索弧长和扇形面积的计算方法。
3.讲解与演示:讲解弧长和扇形面积的计算公式,并通过多媒体课件和黑板进行演示。
4.练习与巩固:让学生通过课堂练习和小组讨论,巩固所学知识。
5.拓展与应用:引导学生运用弧长和扇形面积的知识解决实际问题。
6.课堂小结:总结本节课的主要内容和知识点。
七. 说板书设计板书设计如下:1.弧长的计算方法–弧长 = 半径 × 弧度2.扇形面积的计算方法–扇形面积 = 1/2 × 弧长 × 半径八. 说教学评价教学评价将从学生的知识掌握、能力培养和情感态度三个方面进行。
九年级上册数学弧长和扇形面积
九年级上册数学弧长和扇形面积一、弧长公式。
1. 公式推导。
- 在圆中,圆心角n^∘所对的弧长l与圆周长C = 2π r(r为圆的半径)存在比例关系。
- 因为整个圆的圆心角是360^∘,所以圆心角为n^∘所对的弧长l=(n)/(360)×2π r=(nπ r)/(180)。
2. 应用示例。
- 例:已知圆的半径r = 5cm,圆心角n = 60^∘,求弧长l。
- 解:根据弧长公式l=(nπ r)/(180),将r = 5cm,n = 60^∘代入公式,得到l=(60×π×5)/(180)=(5π)/(3)cm。
二、扇形面积公式。
1. 公式推导。
- 方法一:与弧长公式推导类似,因为扇形面积S与圆面积S=π r^2也存在比例关系,对于圆心角为n^∘的扇形,其面积S=(n)/(360)×π r^2。
- 方法二:由S=(1)/(2)lr(l为弧长,r为半径),把l = (nπ r)/(180)代入可得S=(1)/(2)×(nπ r)/(180)× r=frac{nπ r^2}{360}。
2. 应用示例。
- 例:已知扇形的半径r = 4cm,圆心角n = 90^∘,求扇形面积。
- 解:- 方法一:根据S=(n)/(360)×π r^2,将r = 4cm,n = 90^∘代入,得到S=(90)/(360)×π×4^2=4π cm^2。
- 方法二:先求弧长l=(nπ r)/(180)=(90×π×4)/(180)=2π cm,再根据S=(1)/(2)lr,l = 2π cm,r = 4cm,得到S=(1)/(2)×2π×4 = 4π cm^2。
三、弓形面积。
1. 弓形的定义。
- 弓形是由弦及其所对的弧组成的图形。
2. 弓形面积的计算。
- 当弓形所含的弧是劣弧时,弓形面积S_弓=S_扇-S_(S_扇为扇形面积,S_为三角形面积)。
人教版九年级数学上册第二十四章24.4弧长和扇形面积24.4.1弧长和扇形面积备课资料教案新版
第二十四章弧长和扇形面积知识点1:弧长公式, n°的圆心角所对的弧长l=.半径为R的圆中重点提示: (1)关于弧长公式重点是要理解1°的圆心角所对的弧长是圆周长的,即,亦即;(2)弧长公式所波及的三个量 : 弧长、圆心角的度数、弧所在圆的半径 , 知道其中的任何两个量就能够求出第三个量 .知识点 2:扇形面积公式扇形的定义 : 由组成圆心角的两条半径和圆心角所对的弧所围成的图形叫做扇形.扇形面积公式: 半径为R, 圆心角为n°的扇形面积S 扇形=( 若已知或已求出了扇形对应的弧长l,则扇形面积公式也能够写成S 扇形 = lR).重点提示 : (1)关于扇形面积公式重点是要理解1°的扇形面积是圆面积的, 即;(2)扇形面积公式所波及的三个量 : 扇形面积、扇形半径、圆心角的度数 , 知道其中的任何两个量就能够求出第三个量 ;(3)关于扇形面积公式 S扇形 = lR, 可依照题目条件灵便选择使用 , 它与三角形面积公式S= ah 有点近似, 用类比的方法记忆会更好;(4) 注意扇形面积的两个公式之间的联系:S 扇形 == ·· R= lR,不论利用哪个公式计算扇形面积,R 都必定已知 .知识点 3:弓形的认识弦和弦所对的弧所围成的图形叫做弓形 , 利用扇形面积和三角形面积可求出弓形的面积 . 弓形有以下三种情况 :(1) 当弓形的弧小于半圆时, 弓形的面积等于扇形面积与三角形面积的差, 即 S 弓形 =S 扇形 -S △OAB;(2)当弓形的弧大于半圆时, 弓形的面积等于扇形面积与三角形面积的和, 即 S 弓形=S 扇形 +S△OAB;(3)当弓形的弧是半圆时, 弓形的面积是圆面积的一半, 即 S 弓形 =也就是说 : 要计算弓形的面积, 第一要察看它的弧属于半圆、劣弧仍是优弧S 圆 ., 只有对它分析正确才能保证计算结果的正确阴影部分经常是基本图形的组合问题的重点.., 解题时要认真分析图形, 找出组合方式, 这是解决这类考点1:弧长公式的运用【例1】挂钟分针的长为250px, 经过45 分钟 , 它的针尖转过的弧长是().A.cmB. 15π cmC.cmD. 75π cm答案:B.点拨 : 此题已知弧所在圆的半径为250px, 又知分针45 分钟转过270° , 所以针尖转过的弧长是l==15π(cm).考点 2:圆中图形面积的计算【例 2】如图 , 圆心角都是90°的扇形 OAB与扇形 OCD叠放在一同 , 连结 AC、BD.(1)求证 :AC=BD;(2)若图中阴影部分的面积是π cm2,OA=50px, 求 OC的长 .解 : (1) 因为∠ AOB=∠ COD=90°, 所以∠ AOC+∠ AOD=∠ BOD+∠AOD所以∠ AOC=∠ BOD.又因为 AO=BO,CO=DO,所以△ AOC≌△ BOD,所以 AC=BD.(2) 依照题意得S 阴影=-=,即π =.解得 OC=1(cm).点拨 : 由△ AOC ≌△ BOD可知图中阴影部分面积是扇环形面积, 即π =,解得 OC=1.考点 3:弧长公式和扇形面积在本质生活中的应用【例 3】在物理课上李娜同学用一个滑轮起重装置以以下图: 滑轮的半径是250px,当她将一重物向上提升375px 时, 滑轮的半径 OA绕轴心 O按逆时针方向旋转的角度是( 假定绳子与滑轮之间没有滑动, π取 3.14, 结果精准到1° ).答案 : 86°.点拨 : 在绳子与滑轮之间没有滑动前提的下轮子是带动着绳子在转动, 当轮子的点A 转到点A1地址时 , 绳子上的某一点也就从点A被带到点A1, 绳子被带动上升375px,也就是长度为375px, 所以此题所察看的数学知识可以等价“圆中的计算问题”: 已知,如图☉O的半径为250px,长为375px.求∠ A1OA的度数. 设OA绕圆心O按逆时针方向旋转n° ,则15=, 解得n≈ 86.。
人教版九年级数学上册第二十四章圆《24.4弧长和扇形面积》第1课时说课稿
人教版九年级数学上册第二十四章圆《24.4弧长和扇形面积》第1课时说课稿一. 教材分析人教版九年级数学上册第二十四章圆《24.4弧长和扇形面积》第1课时,主要介绍了弧长和扇形面积的计算方法。
这部分内容是圆的知识的重要组成部分,也是中考的热点。
通过本节课的学习,让学生掌握弧长和扇形面积的计算公式,理解弧长和扇形面积的概念,能够运用所学的知识解决实际问题。
二. 学情分析九年级的学生已经学习了平面几何、代数等基础知识,具备一定的逻辑思维能力和空间想象能力。
但是,对于弧长和扇形面积的计算,学生可能还存在一定的困难,因此,在教学过程中,需要注重引导学生理解概念,掌握计算方法。
三. 说教学目标1.知识与技能目标:让学生掌握弧长和扇形面积的计算公式,能够正确计算弧长和扇形面积。
2.过程与方法目标:通过观察、实验、推理等方法,让学生理解弧长和扇形面积的概念,培养学生的空间想象能力。
3.情感态度与价值观目标:培养学生对数学的兴趣,增强学生的自信心,使学生能够主动探索数学问题。
四. 说教学重难点1.教学重点:弧长和扇形面积的计算公式。
2.教学难点:理解弧长和扇形面积的概念,能够运用所学的知识解决实际问题。
五. 说教学方法与手段1.教学方法:采用问题驱动法、案例教学法、小组合作学习法等,引导学生主动探究,培养学生的创新能力。
2.教学手段:利用多媒体课件、实物模型等,帮助学生直观地理解弧长和扇形面积的概念,提高学生的学习兴趣。
六. 说教学过程1.导入:通过展示生活中的实例,引发学生对弧长和扇形面积的思考,激发学生的学习兴趣。
2.新课导入:介绍弧长和扇形面积的概念,引导学生理解弧长和扇形面积的计算公式。
3.实例讲解:通过具体的例子,讲解弧长和扇形面积的计算方法,让学生加深理解。
4.练习巩固:设计相关的练习题,让学生运用所学的知识进行计算,巩固学习成果。
5.拓展提高:引导学生思考实际问题,运用弧长和扇形面积的知识解决问题,提高学生的应用能力。
人教版九年级数学上册课件:24.4弧长和扇形面积(共19张PPT)
-
1353π6×0 152=375π(cm2).
9
能力提升
11.如图,图1是由若干个相同的图形(图2)组成的美丽图案的一部分.图2中, 图形的相关数据:半径OA=2 cm,∠AOB=120°,则图2的周长为 83π ________cm.(结果保留π)
10
12.如图,在△ABC中,AC=4,将△ABC绕点C逆时针旋 转30°得到△FGC,则图43中π 阴影部分的面积为________.
第二十四章 圆
弧长和扇形面积
第一课时
知识展示
知识点 1 弧长公式 n°的圆心角所对的弧长 l 的计算公式为 l=n1π8R0 ,其中 R 为半径. 核心提示:在弧长公式中,已知 l、n、R 中的任意两个量,都可以求出第三个 量. 知识点 2 扇形的定义 由组成圆心角的两条半径和圆心角所对的弧围成的图形叫做扇形.
分析:先用扇形OAB的面积-三角形OAB的面积求出上面空白部分面积,再用扇形OCD的面积-三角形OCD的面积-上面空白部分的面
积7.,如即图可,求5分出.别阴以影【五部边分黑形的A龙面BC积D江.E的顶哈点尔为圆滨心,中以1考为半】径作一五个个圆,扇则图形中的阴影弧部分长的面是积之1和1为π__c___m___.,半径是18
2
知识点 3 扇形面积公式 (1)n°圆心角的扇形面积公式:S 扇形=n3π6R02 ,其中 R 为半径. (2)弧长为 l 的扇形面积公式:S 扇形=12lR,其中 R 为半径. 【典例】如图,半径为 12 的圆中,两圆心角∠AOB=60°、∠COD=120°,连接 AB、CD,求图中阴影部分的面积.
cm,则此扇形的圆心角是__________度. 71.2.如如图图,,分在别△以AB五C中边,形AACB=CD4E,的将顶△点AB为C圆绕心点,C逆以时11为针1半旋0 径转作30五°得个到圆△,FG则C,图则中图阴中影阴部影分部的分面的积面之积和为为________________.. 一列火车以6每.小时【28 江km的苏速度泰经州过10中秒通考过弯】道.如那么图弯,道所分对的别圆心以角为正___三_____角__度形.(π的取3.3个顶点为圆心, 98..一已段知铁扇边路形弯所长道在成圆为圆半弧 径半形为,4径,圆弧弧画长的为弧半6径π,,是则2三扇km形.段面积弧为_围_____成____.的图形称为莱洛三角形.若正三角 分 积析,:即先 可用 求形扇 出形 阴边影OA部长B的分面为的积面6-积三.c角m形,OAB则的面该积求莱出上洛面三空白角部分形6面π积的,再周用扇长形为OCD_的_面__积_-__三_角c形mOC. D的面积-上面空白部分的面
《弧长和扇形面积》PPT课件 人教版九年级数学
B
弧
O
圆心角
扇形
A
O
A
探究新知
判一判
下列图形是扇形吗?
×
×
×
√
√
探究新知
2
问题1 半径为r的圆,面积是多少? S = r
问题2 ①360°的圆心角所对扇形的面积是多少?
②1°的圆心角所对扇形的面积是多少?
③n°的圆心角所对扇形的面积是多少?
r
O
问题3 下页图中各扇形面积分别是圆面积的几分之几,
∴=360°×
l
=288°
α
∴S=
πl2=2000π(cm2)
360°
解法二:
1
1
S= ×2πr·l= ×2π×40×50=2000π(cm2).
2
2
解法三:
S=πr·
l= π×40×50=2000π (cm2).
已知一个圆锥的底面半径为12cm,母线长为
20cm,则这个圆锥的侧面积为
2
384
n r 2
S扇形 =
360
注意
①公式中n的意义.n表示1°圆心角的倍数,它
是不带单位的;②公式要理解记忆(即按照上面推导过
程记忆).
探究新知
问题 扇形的面积与哪些因素有关?
A
E
B
C
A
C
O
D
●
F
B
O●
D
圆心角大小不变时,对应
圆的 半径 不变时,扇形面
的扇形面积与 半径 有关,
积与 圆心角 有关,圆心角越
圆锥有无数条母线,它们都相等.
圆锥的高
S
பைடு நூலகம்
初中数学人教九年级上册(2023年新编)第二十四章 圆弧长和扇形面积(教案)
弧长和扇形面积第1课时弧长和扇形面积教学目标:1、能推导弧长和扇形面积的计算公式。
.2通过等分圆周的方法,体验弧长扇形面积公式的推导过程,培养学生抽象、理解、概括、归纳能力和迁移能力.3、知道公式中字母的含义,并能运用这些公式进行相应的计算。
教学重点:弧长和扇形面积公式,准确计算弧长和扇形的面积.教学难点:熟练地运用弧长和扇形面积公式进行计算。
一、情境导入问题1 制造弯形管道时,经常要先按中心线计算“展直长度”,再下料,这就涉及到计算弧长的问题.如图,根据图中的数据你能计算弧AB的长吗?求出弯道的展直长度.这就是我们今天要学习的内容弧长和扇形的面积——板书课题.二、进入新课1.探索弧长公式思考 1 你还记得圆的周长的计算公式吗?圆的周长可以看作多少度的圆周角所对的弧长?由此出发,1°的圆心角所对的弧长是多少?n°的圆心角所对的弧长多少?分析:在半径为R的圆中,圆周长的计算公式为:C=2πR,则:圆的周长可以看作360°的圆心角所对的弧;∴1°的圆心角所对的弧长是:1/360·2πR=πR/180;2°的圆心角所对的弧长是:2/360·2πR=πR/90;4°的圆心角所对弧长是:4/360·2πR=πr/45;∴n°的圆心角所对的弧长是:l=nπR/180;由此可得出n°的圆心角所对的弧长是:l=nπR/180.【教学说明】①在应用弧长公式进行计算时,要注意公式中n的意义,n表示1°圆心角的倍数,它是不带单位的;②公式可以按推导过程来理解记忆;③区分弧、弧度、弧长三个概念,度数相等的弧,弧长不一定相等;弧长相等的弧也不一定是等弧,而只有在同圆或等圆中才可能是等弧.小练习:①课本P111例1②课本p113练习第一题2.扇形面积计算公式如图,由组成圆心角的两条半径和圆心角所对的弧所围成的图形叫做扇形.思考2 扇形面积的大小与哪些因素有关?(学生思考并回答)从扇形的定义可知,扇形的面积大小与扇形的半径和圆心角有关.扇形的半径越长,扇形面积越大;扇形的圆心角越大,扇形面积越大.思考3若⊙O的半径为R,求圆心角为n°的扇形的面积.【教学说明】此问题有一定的难度,目的是引导学生迁移推导弧长公式的方法步骤,利用迁移方法探究新问题,归纳结论.3、例1(教材112页例2)如图,水平放置的圆柱形排水管道的截面半径为,其中水面高,求截面上有水部分的面积(精确到).解:连接OA、OB,作弦AB的垂线OD交AB于点C.∵OC=,DC=,∴OD=OC-DC=在Rt△OAD中,OA=,OD=,由勾股定理可知:Rt△OAD中,OD=1/2OA.∴∠OAD=30°,∠AOD=60°,∴∠AOB=120°.∴有水部分的面积为:S=S扇形OAB -S△OAB=π-12××≈(m2).三、运用新知,深化理解完成教材第113页练习2个小题.【教学说明】这几个练习较为简单,可由学生自主完成,教师再予以点评.四、师生互动,课堂小结通过这堂课的学习,你知道弧长和扇形面积公式吗?你会用这些公式解决实际问题吗?【教学说明】教师先提出问题,然后师生共同回顾,完善认知.五、布置作业1.默写弧长公式和面积公式2、课本P115 6、7、8题。
九年级数学第二十四章 第4节 弧长和扇形面积人教实验版知识精讲
九年级数学第二十四章 第4节 弧长和扇形面积人教实验版【本讲教育信息】一、教学内容:弧长和扇形面积 1. 弧长和扇形面积.2. 圆锥的侧面积和全面积.二、知识要点:1. 弧长和扇形面积(1)圆的周长公式C =2πR ,n °的圆心角所对的弧长l =n πR180.(2)扇形:由组成圆心角的两条半径和圆心角所对的弧所围成的图形叫做扇形.(3)圆的面积公式S =πR 2,圆心角为n °的扇形的面积公式S 扇形=n πR 2360. 当扇形所对的弧长为l 时,S 扇形=12l R.2. 弓形面积(1)由弦及其所对的弧组成的图形叫做弓形.(2)当弓形所含的弧是劣弧时,S 弓形=S 扇形-S △;当弓形所含的弧是优弧时,S 弓形= S 扇形+S △.3. 圆锥的侧面积和全面积连接圆锥的顶点和底面圆上任意一点的线段叫做圆锥的母线,圆锥的母线都相等. 如果把圆锥的侧面沿它的一条母线剪开,展开在一个平面上,那么它的展开图是一个扇形. 如图所示,这个扇形的半径是圆锥的母线长SA ,弧长是圆锥底面圆的周长.如图中,高SO =h ,底面圆的半径OA =r ,母线SA =l ,则有h 2+r 2=l 2,侧面展开图中,扇形的半径为1,弧长︵AC 为2πr .圆锥的侧面积S 侧=12l ·2πr =πrl ;全面积S 全=S 侧+S 底=πrl +πr 2.r三、重点难点:本节课的重点是计算弧长和扇形面积以及圆锥的侧面积和全面积. 难点是对弧长和扇形面积公式的理解和公式变形后的灵活运用.四、考点分析:圆的有关性质与圆的有关计算是近几年各地中考命题考查的重点内容,题型以填空题、选择题和解答题为主,也有以阅读理解、条件开放、结论开放探索题作为新的题型,分值一般为6~12分. 考查内容主要包括:圆的有关性质的应用;直线和圆、圆和圆位置关系的判定及应用;弧长、扇形面积、圆柱、圆锥的侧面积和全面积的计算;圆与相似、三角函数的综合运用.【典型例题】例1. 已知扇形的圆心角为270°,弧长为12π. 求扇形的面积.分析:根据扇形面积计算公式S =n πr 2360=12lr . 已知n =270,l =12π. 不管用哪一个公式都必须先求出r ,可借助弧长公式l =n πr180求出r .解法一:设扇形半径为r .因为l =n πr 180,所以r =180l n π=180×12π270×π=8.所以S 扇形=n πr 2360=270×π×82360=48π.解法二:设扇形半径为r . 由解法一知r =8.所以S 扇形=12lr =12×12π×8=48π.评析:扇形面积计算公式有两个,解题时要灵活选用. 特别是题目条件中弧长已知时,用S =12lr 计算较简便.例2. 如图所示,当半径为30cm 的圆(轮)转动过120°角时,传送带上的A 物体平移的距离为__________cm .分析:A 物体平移的距离相当于圆上的120°的圆心角所对的弧长. ∵R =30cm ,n =120,∴l =120·π·30180=20π(cm ).解:20π评析:关键是找出A 物体平移的距离与圆弧长的关系,也可以通过实验操作,或想象圆转动来确立. 在填答案时,由于没有确定精确度,故可以保留π.例3. (1)如图①所示,⊙A 、⊙B 、⊙C 两两不相交,且半径都是1,则图中的三个扇形(即三个阴影部分)的面积之和为( )A. π12B. π8C. π6D. π2(2)如图②所示,有一圆锥形粮堆,从正面看它是一个边长为6m 的正三角形ABC ,粮堆母线AC 的中点P 处有一老鼠正在偷吃粮食,此时,小猫正在B 处,它要沿圆锥侧面到达P 处捕捉老鼠,则小猫所经过的最短路线长是__________m . (结果不取近似值)BB②③分析:(1)∵S 扇1=n 1πR 2360,S 扇2=n 2πR 2360,S 扇3=n 3πR 2360. ∴S 阴=S 扇1+S 扇2+S 扇3=n 1πR 2360+n 2πR 2360+n 3πR 2360=πR 2360(n 1+n 2+n 3)=πR 2360×180=π2,故正确答案为D. (2)设展开后扇形的圆心角为n °,则n π×6180=π×6,解得n =180. 所以圆锥侧面展开后为半圆,且AB⊥AC. 在R t △ABP 中,AB =6,AP =3,则BP =35(m ).解:(1)D (2)3 5例4. 如图所示,在R t △ABC 中,已知∠BCA =90°,∠BAC =30°,AB =6cm ,把△ABC 以点B 为中心逆时针旋转,使点C 旋转到AB 边的延长线上的点C ’处,那么AC 边扫过的图形(图中阴影部分)的面积是__________cm 2. (不取近似值)A分析:图中的阴影部分可以看成是由△A ’BC ’与扇形ABA ’的和减去△ABC 与扇形CBC ’,由旋转得S △ABC =S △A ’BC ’,∠ABA ’=180°-∠A ’BC ’=180°-60°=120°,AB =6cm ,又扇形CBC ’中,∠CBC ’=∠ABA ’=120°(旋转角),BC =12AB =12×6=3(cm ),因此S 扇形ABA ’=120×π×62360=12π(cm 2),S 扇形CBC ’=120×π×32360=3π(cm 2),∴S 阴影部分=S 扇形ABA ’-S 扇形CBC ’=12π-3π=9π(cm 2).解:9π评析:组合图形(不规则图形)面积,通常将其转化成规则图形的面积或规则图形面积的和差.例5. 如图所示,已知R t △ABC 中,∠ACB =90°,AC =20cm ,BC =15cm ,以直线AB 为轴旋转一周,得到一个锥体,求这个几何体的表面积.分析:这个几何体的表面积是两个圆锥侧面积的和. 其中AB 为旋转轴,OC 为旋转半径,OC 就是△ABC 的高,可用面积法求得OC. 旋转结果为两个共底的圆锥,这两个圆锥的母线分别为AC 和BC.ACO解:在△ABC 中,∠ACB =90°,AC =20,BC =15. AB =AC 2+BC 2=202+152=25. ∵AB 为旋转轴,∴旋转半径OC =AC ·BC AB =20×1525=12,且旋转结果为两个共底的圆锥.S 上=12×2π×OC ×AC =π×12×20=240π(cm 2),S 下=12×2π×OC ×BC =π×12×15=180π(cm 2),∴这个几何体的表面积S =240π+180π=420πcm 2. 答:这个几何体的表面积是420πcm 2.评析:本题考查学生的空间想像能力,对旋转体概念理解能力,对旋转体表面积的计算能力.【方法总结】1. 本课是关于圆周长、弧长、圆面积、扇形面积、以及圆锥侧面积的计算,我们应该熟记它们的计算公式.2. 把不规则图形的面积通过“和差法”、“割补法”、“等积代换法”等方法转化成规则图形面积来解决.【预习导学案】(随机事件和概率)一、预习前知1. 随意地向上抛一枚硬币,落地后有几种可能?2. 在做“锤子、剪刀、布”的游戏时,你知道获胜的把握有多大吗?二、预习导学1. 必然事件是指__________,不可能事件是指__________,随机事件是指__________.2. 下列事件: (1)任意三角形内角和都是180°;(2)任意选择电视的某一频道,它正在播放新闻;(3)两条线段可以组成一个三角形,其中__________是必然事件,__________是不可能事件,__________是随机事件.3. 若一袋中装有大小、质地等完全相同的5个黑球、8个白球,在看不到球的情况下,随机摸出一球,摸到__________球的可能性大. 若想让摸到另一种颜色的球的可能性大,应如何设计__________.4. 概率是指事件发生的__________稳定在某个__________附近,则这个__________就叫做这个事件的概率. 如抛掷硬币时,“正面向上”的频率约为0.5,则说此事件发生的概率约为__________. 反思:(1)如何划分事件发生的可能性?(2)如何理解试验频率与概率的关系? (3)影响概率大小的因素有哪些?【模拟试题】(答题时间:50分钟)一、选择题1. 如图,已知⊙O 的半径OA =6,∠AOB =90°,则∠AOB 所对的弧AB 的长为( ) A. 2π B. 3π C. 6π D. 12πAB2. 钟表的轴心到分针针端的长为5cm ,那么经过40分钟,分针针端转过的弧长是( )A. 10π3cmB. 20π3cmC. 25π3cmD. 50π3cm3. 若扇形的圆心角是150°,扇形的面积是240πcm 2,则扇形的弧长是( ) A. 5πcm B. 20πcm C. 40πcm D. 10πcm4. 如图所示,⊙A 、⊙B 、⊙C 、⊙D 、⊙E 互不相交,它们的半径都是1,顺次连接五个圆心得到五边形ABCDE ,则图中五个扇形(阴影部分)的面积之和是( )A. ππ C. 2ππ*5. 如图所示,正方形的边长都相等,其中阴影部分面积相等的有( ) A. (1)(2)(3) B. (2)(3)(4) C. (1)(3)(4) D. (1)(2)(3)(4)(1)(2)(3)(4)6. 如图,︵AD 是以等边三角形ABC 一边AB 为半径的四分之一圆周,P 为︵AD 上任意一点,若AC =5,则四边形ACBP 周长的最大值是( )A. 15B. 20C. 15+5 2D. 15+5 5ABD*7. 如图,用两道绳子捆扎着三瓶直径均为8cm 的酱油瓶,若不计绳子接头(π取3),则捆绳总长是( )A. 24cmB. 48cmC. 96cmD. 192cm**8. 一个圆锥的侧面积是底面积的2倍,这个圆锥的侧面展开图(扇形)的圆心角是( ) A. 60° B. 90° C. 120° D. 180°二、填空题1. 一条弧所对的圆心角为90°,半径为3,那么这条弧长为__________.2. 已知R t △ABC ,斜边AB =13 cm ,以直线BC 为轴旋转一周,得到一个侧面积为65πcm 2的圆锥,则这个圆锥的高等于__________.3. 如图所示为一弯形管道,其中心线上一段圆弧AB. 已知半径OA =60㎝,∠AOB = 108,则管道的长度(即弧AB 的长)为__________cm (结果保留π)4. 某校校园里修了一个面积为16平方米的正方形花坛(如图所示),学校准备将阴影部分种上花,其余部分种草,则种花的面积是__________平方米.*5. 如图,方格纸中4个小正方形的边长均为1,则图中阴影部分三个小扇形的面积和为__________(结果保留π)6. 小红要过生日了,为了筹备生日聚会,她准备自己动手用纸板制作圆锥形的生日礼帽. 如图所示,圆锥帽底面半径为9cm,母线长为36cm,请你帮助她计算制作一个这样的生日礼帽需要纸板的面积为__________.36cm9cm三、解答题1. 如图所示,圆锥底面半径为r,母线长为3r,底面圆周上有一蚂蚁位于A点,它从A 点出发沿圆锥面爬行一周后又回到原出发点,请你给它指出一条爬行最短的路径,并求出最短路径.*2. 如图所示,等腰R t△ABC中斜边AB=4,O是AB的中点,以O为圆心的半圆分别与两腰相切于点D、E,图中阴影部分的面积是多少?请你把它求出来. (结果用π表示)3. 如图所示,矩形ABCD中,AB=1,若直角三角形ABC绕AB旋转所得的圆锥的侧面积和矩形ABCD绕AB旋转所得到的圆柱的侧面积相等,求BC的长.ADB C**4. 如图所示,一只狗用皮带系在10×10的正方形狗窝的一角上,皮带长为14,在狗窝外面狗能活动的X围面积是多少?【试题答案】一、选择题1. B2. B3. B4. B5. C6. C7. C8. D二、填空题1. 32π2. 12cm3. 36π4. 85. 38π 6. 324πcm 2三、解答题1. 将圆锥沿过A 点的母线展开,爬行最短路径是从展开扇形弧的一端沿直线爬行到另一端. 这一长度是33r .2. 连接OE ,则△OEB 是等腰直角三角形,且面积为1. 扇形OEF 的面积为14π,阴影部分面积为2-12π3. 根据题意12×2π×BC ×AC =2π×BC ,即AC =2,在R t △ABC 中,BC =AC 2-AB 2= 3.4. 活动X 围由3部分(图中阴影部分)组成:半径为14、圆心角为270°的扇形一个,半径为14-10=4、圆心角为90°的扇形两个. 狗的活动面积是:270π×142360+2×90π×42360=155π。
初中数学 圆的弧长及扇形面积公式 (含答案)
弧长及扇形面积第一部分 知识梳理(一)、圆的弧长及扇形面积公式在半径为R 的圆中,n °的圆心角所对的弧长为C 1,以n °为圆心角的扇形面积为S 1弧长公式 : 弧长C 1=180n R π 扇形面积公式: S 1=2360n R π=12C 1R注意:计算不规则图形的面积时,要转化成规则图形的面积进行计算。
(二)、圆锥的侧面积:注意:圆锥的侧面展开图是一个扇形 其中:(1)h 是圆锥的高,r 是底面半径;(2)l 是圆锥的母线,其长为侧面展开后所得扇形的半径R ;(3)圆锥的侧面展开图是半径等于 l ,弧长等于圆锥底面 周长C 的扇形.即: ①l =R ②180n Rπ=2πr ③h 2+r 2=l 2圆锥的侧面积 S 侧面积= πrl圆锥的全面积 S 全面积= πrl +πr 2第二部分 中考链接一、有关弧长计算 (一)、选择题1、(2018•淄博)如图,⊙O 的直径AB=6,若∠BAC=50°,则劣弧AC 的长为( )A 、2π B. 83π C 34π D. 43π1题图2题图 3题图 4题图 5题图2、(2018•黄石)如图,AB 是⊙O 的直径,点D 为⊙O 上一点,且∠ABD=30°,BO=4,则的长为( )A .23πB .43πC .2πD .83π3、(2018•沈阳)如图,正方形ABCD 内接于O ,AB=2,则的长是( )A .πB .πC .2πD .π4、(2018•陵城区二模)一块等边三角形的木板,边长为1,现将木板沿水平线翻滚(如图),那么B 点从开始至结束所走过的路径长度为( )A .B .C .4D .2+5、(2018•明光市二模)如图,AB 与⊙O 相切于点B ,OA=2,∠OAB=30°,弦BC ∥OA ,则劣弧的长是( )A .B .C .D .6、(2019青岛)如图,线段AB经过⊙O的圆心,AC,BD分别与⊙O相切于点C,D.若AC=BD=4,∠A=45°,则的长度为()A.π B.2π C.2π D.4π6题图 7题图 8题图7、(2019烟台)如图,AB是⊙O的直径,直线DE与⊙O相切于点C,过A,B分别作AD⊥DE,BE⊥DE,垂足为点D,E,连接AC,BC,若AD=,CE=3,则的长为()A.B.πC.πD.π8、(2019泰安)如图,将⊙O沿弦AB折叠,恰好经过圆心O,若⊙O的半径为3,则的长为()A.πB.πC.2πD.3π(二)、填空题1、(2018•潍坊)如图,点A1的坐标为(2,0),过点A1作x轴的垂线交直线l:y=x于点B1,以原点O为圆心,OB1的长为半径画弧交x轴正半轴于点A2;再过点A2作x轴的垂线交直线l于点B2,以原点O为圆心,以OB2的长为半径画弧交x轴正半轴于点A3;….按此作法进行下去,则的长是..1题图 3题图 4题图5题图8题图2、(2018•连云港)一个扇形的圆心角是120°.它的半径是3cm.则扇形的弧长为cm.3、(2018•永州)如图,在平面直角坐标系中,已知点A(1,1),以点O为旋转中心,将点A逆时针旋转到点B的位置,则的长为.4、(2018•盐城)如图,图1是由若干个相同的图形(图2)组成的美丽图案的一部分,图2中,图形的相关数据:半径OA=2cm,∠AOB=120°.则图2的周长为cm(结果保留π).5、(2018常州)如图,△ABC是⊙O的内接三角形,∠BAC=60°,的长是,则⊙O的半径是.6、(2018•温州)已知扇形的弧长为2π,圆心角为60°,则它的半径为..7、(2018•白银)如图,分别以等边三角形的每个顶点为圆心、以边长为半径,在另两个顶点间作一段圆弧,三段圆弧围成的曲边三角形称为勒洛三角形.若等边三角形的边长为a,则勒洛三角形的周长为.8.(2019泰州)如图,分别以正三角形的3个顶点为圆心,边长为半径画弧,三段弧围成的图形称为莱洛三角形.若正三角形边长为6cm,则该莱洛三角形的周长为cm.(三)、解答题1.(2018•湖州)如图,已知AB是⊙O的直径,C,D是⊙O上的点,OC∥BD,交AD于点E,连结BC.(1)求证:AE=ED;(2)若AB=10,∠CBD=36°,求的长.二、、有关扇形面积计算(一)、选择题1、(2018•德州)如图,从一块直径为2m的圆形铁皮上剪出一个圆心角为90°的扇形,则此扇形的面积为()A.2B.C.πm2 D.2πm21题图2题图 3题图4题图2、(2018•广安)如图,已知⊙O的半径是2,点A、B、C在⊙O上,若四边形OABC为菱形,则图中阴影部分面积为()A.π﹣2B.π﹣C.π﹣2D.π﹣3、(2018•成都)如图,在▱ABCD中,∠B=60°,⊙C的半径为3,则图中阴影部分的面积是()A.πB.2πC.3πD.6π4、(2018•绵阳)如图,蒙古包可近似地看作由圆锥和圆柱组成,若用毛毡搭建一个底面圆面积为25πm2,圆柱高为3m,圆锥高为2m的蒙古包,则需要毛毡的面积是()A.(30+5)πm2B.40πm2C.(30+5)πm2D.55πm25.(2018•十堰)如图,扇形OAB中,∠AOB=100°,OA=12,C是OB的中点,CD⊥OB交于点D,以OC为半径的交OA于点E,则图中阴影部分的面积是()A.12π+18B.12π+36C.6D.66、(2018•山西)如图,正方形ABCD内接于⊙O,⊙O的半径为2,以点A为圆心,以AC长为半径画弧交AB的延长线于点E,交AD的延长线于点F,则图中阴影部分的面积为()A.4π﹣4 B.4π﹣8 C.8π﹣4 D.8π﹣85题图6题图7题图8题图7、(2018•广西)如图,分别以等边三角形ABC的三个顶点为圆心,以边长为半径画弧,得到的封闭图形是莱洛三角形,若AB=2,则莱洛三角形的面积(即阴影部分面积)为()A.B.C.2 D.28、(2018•威海)如图,在正方形ABCD中,AB=12,点E为BC的中点,以CD为直径作半圆CFD,点F为半圆的中点,连接AF,EF,图中阴影部分的面积是()A.18+36πB.24+18πC.18+18πD.12+18π9题图10题图11题图12题图13题图9、(2019枣庄)如图,在边长为4的正方形ABCD中,以点B为圆心,AB为半径画弧,交对角线BD于点E,则图中阴影部分的面积是(结果保留π)()A.8﹣πB.16﹣2πC.8﹣2πD.8﹣12π10、(2019临沂)如图,⊙O中,=,∠ACB=75°,BC=2,则阴影部分的面积是()A.2+πB.2++πC.4+πD.2+π11、(2019宿迁)如图,正六边形的边长为2,分别以正六边形的六条边为直径向外作半圆,与正六边形的外接圆围成的6个月牙形的面积之和(阴影部分面积)是()A.63﹣πB.63﹣2πC.63+πD.63+2π12. (2019四川南充)如图,在半径为6的⊙O中,点A,B,C都在⊙O上,四边形OABC是平行四边形,则图中阴影部分的面积为()A. 6π B. 33π C. 23π D. 2π13.(2019四川资阳)如图,直径为2cm的圆在直线l上滚动一周,则圆所扫过的图形面积为()A. 5πB. 6πC. 20πD. 24π(二)、填空题1、(2018青岛)如图,Rt△ABC,∠B=90°,∠C=30°,O为AC上一点,OA=2,以O为圆心,以OA为半径的圆与CB相切于点E,与AB相交于点F,连接OE、OF,则图中阴影部分的面积是.1题图2题图3题图4题图2、(2018•安顺)如图,C为半圆内一点,O为圆心,直径AB长为2cm,∠BOC=60°,∠BCO=90°,将△BOC绕圆心O逆时针旋转至△B′OC′,点C′在OA上,则边BC扫过区域(图中阴影部分)的面积为cm2.3、(2018•荆门)如图,在平行四边形ABCD中,AB<AD,∠D=30°,CD=4,以AB为直径的⊙O 交BC于点E,则阴影部分的面积为.4、(2018•重庆)如图,在边长为4的正方形ABCD中,以点B为圆心,以AB为半径画弧,交对角线BD于点E,则图中阴影部分的面积是(结果保留π)5、(2018•重庆)如图,在矩形ABCD中,AB=3,AD=2,以点A为圆心,AD长为半径画弧,交AB于点E,图中阴影部分的面积是(结果保留π).5题图6题图8题图9题图10题图6.(2018•香坊区)如图,点A、B、C是⊙O上的点,且∠ACB=40°,阴影部分的面积为2π,则此扇形的半径为.7、(2018•哈尔滨)一个扇形的圆心角为135°,弧长为3πcm,则此扇形的面积是cm2.8、(2019日照)如图,已知动点A 在函数4(0y x x=>)的图象上,AB ⊥x 轴于点B ,AC ⊥y 轴于点C ,延长CA 交以A 为圆心AB 长为半径的圆弧于点E ,延长BA 交以A 为圆心AC 长为半径的圆弧于点F ,直线EF 分别交x 轴、y 轴于点M 、N ,当NF =4EM 时,图中阴影部分的面积等于 .9、(2019泰安)如图,∠AOB =90°,∠B =30°,以点O 为圆心,OA 为半径作弧交AB 于点A 、点C ,交OB于点D ,若OA =3,则阴影都分的面积为 .10、(2019德州)如图,O 为Rt △ABC 直角边AC 上一点,以OC 为半径的⊙O 与斜边AB 相切于点D ,交OA 于点E ,已知BC =,AC =3.则图中阴影部分的面积是 .11、(2019无锡市)如图,在△ABC 中,AC :BC :AB =5:12:13,⊙O 在△ABC 内自由移动,若⊙O 的半径为1,且圆心O 在△ABC 内所能到达的区域的面积为103,则△ABC 的周长为 . A BABCOOCOOI HF GED11题图 12题图 12、(2019四川内江)如图,在平行四边形ABCD 中,AB <AD ,∠A =150°,CD =4,以CD 为直径的⊙O 交AD 于点E ,则图中阴影部分的面积为 . (三)、解答题1、(2019东营)如图,AB 是⊙O 的直径,点D 是AB 延长线上的一点,点C 在⊙O 上,且AC =CD ,∠ACD =120°.(1)求证:CD 是⊙O 的切线,(2)若⊙O 的半径为3,求图中阴影部分的面积.2、(2019无锡市)一次函数b kx y +=的图像与x 轴的负半轴相交于点A ,与y 轴的正半轴相交于点B ,且sin ∠ABO 3OAB 的外接圆的圆心M 的横坐标为﹣3. (1)求一次函数的解析式; (2)求图中阴影部分的面积.xy M BAO3.(2019·武汉)已知AB 是⊙O 的直径,AM 和BN 是⊙O 的两条切线,DC 与⊙O 相切于点E ,分别交AM 、BN于D 、C 两点(1) 如图1,求证:AB 2=4AD ·BC(2) 如图2,连接OE 并延长交AM 于点F ,连接CF .若∠ADE =2∠OFC ,AD =1,求图中阴影部分的面积ODEMF EMO图1 图2 4.(2019·衡阳)如图,点A 、B 、C 在半径为8的⊙O 上,过点B 作BD ∥AC ,交OA 延长线于点D ,连接BC ,且∠BCA =∠OAC =30°.(1)求证:BD 是⊙O 的切线;(2)求图中阴影部分的面积.DAOCB三、圆锥(一)、选择题2、(2018•自贡)已知圆锥的侧面积是8πcm 2,若圆锥底面半径为R (cm ),母线长为l (cm ),则R 关于l 的函数图象大致是( )A .B .C .D .3、(2018•遵义)若要用一个底面直径为10,高为12的实心圆柱体,制作一个底面和高分别与圆柱底面半径和高相同的圆锥,则该圆锥的侧面积为( )A.60πB.65πC.78πD.120π4、(2018•遂宁)已知圆锥的母线长为6,将其侧面沿着一条母线展开后所得扇形的圆心角为120°,则该扇形的面积是()A.4πB.8πC.12πD.16π5、(2018•东阳市模拟)已知一个圆锥的底面半径为3cm,母线长为10cm,则这个圆锥的侧面积为()A.30πcm2B.50πcm2C.60πcm2D.3πcm26、(2019东营)如图所示是一个几何体的三视图,如果一只蚂蚁从这个几何体的点B出发,沿表面爬到AC的中点D处,则最短路线长为()A.3B.C.3 D.3(二)、填空题1、(2018烟台)如图,点O为正六边形ABCDEF的中心,点M为AF中点,以点O为圆心,以OM的长为半径画弧得到扇形MON,点N在BC上;以点E为圆心,以DE的长为半径画弧得到扇形DEF,把扇形MON 的两条半径OM,ON重合,围成圆锥,将此圆锥的底面半径记为r1;将扇形DEF以同样方法围成的圆锥的底面半径记为r2,则r1:r2=.1题图2题图3题图7题图8题图2、(2018徐州)如图,扇形的半径为6,圆心角θ为120°,用这个扇形围成一个圆锥的侧面,所得圆锥的底面半径为.3、(2018•郴州)如图,圆锥的母线长为10cm,高为8cm,则该圆锥的侧面展开图(扇形)的弧长为cm.(结果用π表示)4、(2018•聊城)用一块圆心角为216°的扇形铁皮,做一个高为40cm的圆锥形工件(接缝忽略不计),那么这个扇形铁皮的半径是cm.5、(2018•黑龙江)用一块半径为4,圆心角为90°的扇形纸片围成一个圆锥的侧面,则此圆锥的高为.6、(2018•扬州)用半径为10cm ,圆心角为120°的扇形纸片围成一个圆锥的侧面,则这个圆锥的底面圆半径为cm.7、(2018•苏州)如图,8×8的正方形网格纸上有扇形OAB和扇形OCD,点O,A,B,C,D 均在格点上.若用扇形OAB围成一个圆锥的侧面,记这个圆锥的底面半径为r1;若用扇形OCD围成另个圆锥的侧面,记这个圆锥的底面半径为r2,则12rr的值为8、(2019聊城)如图是一个圆锥的主视图,根据图中标出的数据(单位:cm),计算这个圆锥侧面展开图圆心角的度数为.9.(2019无锡市)已知圆锥的母线成为5cm,侧面积为15πcm 2,则这个圆锥的底面圆半径为cm .答案与提示:一、弧长计算(一)、选择题1、D2、D3、A4、B5、B6、B7、D8、C1、解:如图,连接CO,∵∠BAC=50°,AO=CO=3,∴∠ACO=50°,∴∠AOC=80°,∴劣弧AC的长为=,故选:D.1题图2题图3题图6题图8题图2、解:连接OD,∵∠ABD=30°,∴∠AOD=2∠ABD=60°,∴∠BOD=120°,∴的长==,故选:D.3、解:连接OA、OB,∵正方形ABCD内接于O,∴AB=BC=DC=AD,∴===,∴∠AOB=×360°=90°,在Rt△AOB中,由勾股定理得:2AO2=(2)2,解得:AO=2,∴的长为=π,故选:A.4、BC=AB=AC=1,∠BCB′=120°,∴B点从开始至结束所走过的路径长度为2×弧BB′=2×12014=1803ππ⨯故选B.5、连接OB,OC,∵AB为圆O的切线,∴∠ABO=90°,在Rt△ABO中,OA=2,∠OAB=30°,∴OB=1,∠AOB=60°,∵BC∥OA,∴∠OBC=∠AOB=60°,又OB=OC,∴△BOC为等边三角形,∴∠BOC=60°,则劣弧长为6011= 1803ππ⨯.6、解:连接OC、OD,∵AC,BD分别与⊙O相切于点C,D.∴OC⊥AC,OD⊥BD,∵∠A=45°,∴∠AOC=45°,∴AC=OC=4,∵AC=BD=4,OC=OD=4,∴OD=BD,∴∠BOD=45°,∴∠COD=180°﹣45°﹣45°=90°,∴的长度为:=2π,故选:B.7、解:连接OC,∵AB是⊙O的直径,∴∠ACB=90°,∴∠ACD+∠BCE=90°,∵AD⊥DE,BE⊥DE,∴∠DAC+∠ACD=90°,∴∠DAC=∠ECB,∵∠ADC=∠CEB=90°,∴△ADC∽△CEB,∴=,即=,∵tan∠ABC==,∴∠ABC=30°,∴AB=2AC,∠AOC=60°,∵直线DE与⊙O相切于点C,∴∠ACD=∠ABC=30°∴AC=2AD=2,∴AB=4,∴⊙O的半径为2,∴的长为:=π,故选:D.8、解:连接OA.OB,作OC⊥AB于C,由题意得,OC=OA,∴∠OAC=30°,∵OA=OB,∴∠OBA=∠OAC=30°,∴∠AOB=120°,∴的长==2π,故选:C.(二)、填空题1、201923π2、2π3、24π4、83π5、26、67、πa8、6π1、解:直线y=x,点A1坐标为(2,0),过点A1作x轴的垂线交直线于点B1可知B1点的坐标为(2,2),以原O为圆心,OB1长为半径画弧x轴于点A2,OA2=OB1,OA2==4,点A2的坐标为(4,0),这种方法可求得B2的坐标为(4,4),故点A3的坐标为(8,0),B3(8,8)以此类推便可求出点A2019的坐标为(22019,0),则的长是=.故答案为:.2、1203=2 180ππ⨯3、解:∵点A(1,1),∴OA==,点A在第一象限的角平分线上,∵以点O为旋转中心,将点A逆时针旋转到点B的位置,∴∠AOB=45°,∴的长为=.故答案为.4、解:由图1得:的长+的长=的长 ∵半径OA=2cm ,∠AOB=120°则图2的周长为:=故答案为:.5、连接OB.OC ,由∠BAC=60°得∠BOC=120°,1204=1803r ππ⨯ 得:r=26、解:设半径为r ,60=2180rππ⨯,解得:r=6,故答案为:6 7、解:如图.∵△ABC 是等边三角形,∴∠A=∠B=∠C=60°,AB=BC=CA=a , ∴的长=的长=的长==,∴勒洛三角形的周长为×3=πa .故答案为πa .(三)、解答题1、证明:(1)∵AB 是⊙O 的直径,∴∠ADB=90°, ∵OC ∥BD ,∴∠AEO=∠ADB=90°,即OC ⊥AD ,∴AE=ED ; (2)∵OC ⊥AD ,∴,∴∠ABC=∠CBD=36°,∴∠AOC=2∠ABC=2×36°=72°,∴.二、有关扇形面积计算1、A2、C3、C4、A5、C6、A7、D8、C9、C 10、A 11、A 12、A 13、A 1、解:连接AC ,∵从一块直径为2m 的圆形铁皮上剪出一个圆心角为90°的扇形,即∠ABC=90°, ∴AC 为直径,即AC=2m ,AB=BC ,∵AB 2+BC 2=22,∴AB=BC=m ,∴阴影部分的面积是=(m 2),故选:A .2、解:连接OB 和AC 交于点D ,如图所示:∵圆的半径为2,∴OB=OA=OC=2,又四边形OABC 是菱形,∴OB ⊥AC ,OD=OB=1, 在Rt △COD 中利用勾股定理可知:CD==,AC=2CD=2,∵sin ∠COD==,∴∠COD=60°,∠AOC=2∠COD=120°,∴S 菱形ABCO =OB ×AC=×2×2=2,S 扇形AOC ==,则图中阴影部分面积为S 菱形ABCO ﹣S 扇形AOC =π﹣2,故选:C .1题图 2题图 5题图 7题图 8题图3、解:∵在□ABCD 中,∠B=60°,⊙C 的半径为3,∴∠C=120°, ∴图中阴影部分的面积是:=3π,故选:C .4、解:设底面圆的半径为R ,则πR 2=25π,解得R=5, 圆锥的母线长==,所以圆锥的侧面积=•2π•5•=5π;圆柱的侧面积=2π•5•3=30π,所以需要毛毡的面积=(30π+5π)m 2.故选:A .5、解:如图,连接OD ,AD ,∵点C 为OA 的中点,∴OC=OA=OD , ∵CD ⊥OA ,∴∠CDO=30°,∠DOC=60°,∴△ADO 为等边三角形,OD=OA=12,OC=CA=6,∴CD=,6,∴S 扇形AOD ==24π,∴S 阴影=S 扇形AOB ﹣S 扇形COE ﹣(S 扇形AOD ﹣S △COD )=﹣﹣(24π﹣×6×6)=18+6π.故选:C .6、解:利用对称性可知:阴影部分的面积=扇形AEF 的面积﹣△ABD 的面积=﹣×4×2=4π﹣4,故选:A . 7、解:过A 作AD ⊥BC 于D ,∵△ABC 是等边三角形,∴AB=AC=BC=2,∠BAC=∠ABC=∠ACB=60°, ∵AD ⊥BC ,∴BD=CD=1,AD=BD=, ∴△ABC 的面积为=,S 扇形BAC ==π,∴莱洛三角形的面积S=3×π﹣2×=2π﹣2,故选:D .8、解:作FH ⊥BC 于H ,连接FH ,如图,∵点E 为BC 的中点,点F 为半圆的中点,∴BE=CE=CH=FH=6, 226+125Rt △ABE ≌△EHF ,∴∠AEB=∠EFH , 而∠EFH+∠FEH=90°,∴∠AEB+∠FEH=90°,∴∠AEF=90°,∴图中阴影部分的面积=S正方形ABCD +S半圆﹣S△ABE﹣S△AEF=12×12+12•π•62﹣12×12×6﹣12•65×65 =18+18π.故选:C.9、解:S阴=S△ABD﹣S扇形BAE=×4×4﹣=8﹣2π,故选:C.10、解:∵=,∴AB=AC,∵∠ACB=75°,∴∠ABC=∠ACB=75°,∴∠BAC=30°,∴∠BOC=60°,∵OB=OC,∴△BOC是等边三角形,∴OA=OB=OC=BC=2,作AD⊥BC,∵AB=AC,∴BD=CD,∴AD经过圆心O,∴OD=OB=,∴AD=2+,∴S△ABC=BC•AD=2+,S△BOC=BC•OD=,∴S阴影=S△ABC+S扇形BOC﹣S△BOC=2++﹣=2+π,故选:A.12.连接OA、OB,则S阴=S扇形OAB=2606360π⨯=6π故选A13、圆所扫过的图形面积=长方形的面积+圆的面积=2π×2+π=5π二、填空题1、734-23π2、4π3、40π4、14π5、43π﹣36、8﹣2π7、6﹣π8、3 9、6π10、2.5π 11、34π 12、 13、25 14、233π+解:∵∠B=90°,∠C=30°,∴∠A=60°,∵OA=OF,∴△AOF是等边三角形,∴∠COF=120°,∵OA=2,∴扇形OGF的面积为:=∵OA为半径的圆与CB相切于点E,∴∠OEC=90°,∴OC=2OE=4,∴AC=OC+OA=6,∴AB=AC=3,∴由勾股定理可知:BC=3∴△ABC的面积为:×3×3=∵△OAF的面积为:×2×=,∴阴影部分面积为:﹣﹣π=﹣π故答案为:﹣π1题图 3题图 8题图2、解:∵∠BOC=60°,△B′OC′是△BOC 绕圆心O 逆时针旋转得到的,∴∠B′OC′=60°,△BCO=△B′C′O ,∴∠B′OC=60°,∠C′B′O=30°,∴∠B′OB=120°, ∵AB=2cm ,∴OB=1cm ,OC′=,∴B′C′=,∴S 扇形B′OB ==π,S 扇形C′OC ==,∴阴影部分面积=S 扇形B′OB +S △B′C′O ﹣S △BCO ﹣S 扇形C′OC =S 扇形B′OB ﹣S 扇形C′OC =π﹣=π;3、解:连接OE 、AE ,∵AB 是⊙O 的直径,∴∠AEB=90°,∵四边形ABCD 是平行四边形,∴AB=CD=4,∠B=∠D=30°,∴AE=AB=2,BE==2,∵OA=OB=OE ,∴∠B=∠OEB=30°,∴∠BOE=120°,∴S 阴影=S 扇形OBE ﹣S △BOE ,=﹣×,=﹣,=﹣,4、解:S 阴=S △ABD ﹣S 扇形BAE =×4×4﹣=8﹣2π,故答案为8﹣2π.5、解:∵矩形ABCD ,∴AD=2,∴S 阴影=S 矩形﹣S 四分之一圆=2×3﹣π×22=6﹣π,6、解:∵在⊙O 上,∠ACB=40°,∴∠AOB=2∠ACB=80°, ∴此扇形的半径为:=3.故答案为:3.7、解:设扇形的半径为Rcm ,∵扇形的圆心角为135°,弧长为3πcm , ∴=3π,解得:R=4,所以此扇形的面积为=6π(cm 2),故答案为:6π.8.解:作DF ⊥y 轴于点D ,EG ⊥x 轴于G ,∴△GEM ∽△DNF ,∵NF =4EM ,∴==4,设GM =t ,则DF =4t ,∴A (4t ,),由AC =AF ,AE =AB ,∴AF =4t ,AE =,EG =, ∵△AEF ∽△GME ,∴AF :EG =AE :GM ,即4t :=:t ,即4t 2=,∴t 2=,图中阴影部分的面积=+=2π+π=2.5π,11、解:连接OC ,作CH ⊥OB 于H ,∵∠AOB =90°,∠B =30°,∴∠OAB =60°,AB =2OA =6, 由勾股定理得,OB ==3,∵OA =OC ,∠OAB =60°,∴△AOC 为等边三角形,∴∠AOC =60°,∴∠COB =30°, ∴CO =CB ,CH =OC =, ∴阴影都分的面积=﹣×3×3×+×3×﹣=π,故答案为:π.11题图12题图 13题图解:在Rt △ABC 中,∵BC =,AC =3.∴AB ==2,∵BC ⊥OC ,∴BC 是圆的切线,∵⊙O 与斜边AB 相切于点D ,∴BD =BC ,∴AD =AB ﹣BD =2﹣=,在Rt △ABC 中,∵sinA ===,∴∠A =30°,∵⊙O 与斜边AB 相切于点D ,∴OD ⊥AB ,∴∠AOD =90°﹣∠A =60°, ∵=tanA =tan30°,∴=,∴OD =1,∴S 阴影==.故答案是:.13、如图,圆心O 在△ABC 内所能到达的区域是△O 1O 2O 3,∵△O 1O 2O 3三边向外扩大1得到△ACB ,∴它的三边之比也是5∶12∶13, ∵△O 1O 2O 3的面积=103,∴O 1O 2=53,O 2O 3=4,O 1O 3=133,连接AO 1 与CO 2,并延长相交于I ,过I 作ID ⊥AC 于D ,交O 1O 2于E ,过I 作IG ⊥BC 于G 交O 3O 2于F ,则I 是Rt △ABC 与Rt△O 1O 2O 3的公共内心,四边形IEO 2F 四边形IDCG 都是正方形,∴IE =IF = 1223122313O O O O O O O O O O ⨯++ =23,ED =1,∴ID =IE +ED =53,设△ACB 的三边分别为5m 、12m 、13m ,则有ID =AC BC AC BC AB ⨯++=2m =53,解得m =56,△ABC 的周长=30m =25.14、连接OE,则S 阴=S 扇形OEC +S △OED =260212123336023ππ⨯+⨯⨯=(三)、解答题 1、(1)证明:连接OC .∵AC =CD ,∠ACD =120°∴∠A =∠D =30°.∵OA =OC ,∴∠ACO =∠A =30°.∴∠OCD =∠ACD ﹣∠ACO =90°.即OC ⊥CD ,∴CD 是⊙O 的切线. (2)解:∵∠A =30°,∴∠COB =2∠A =60°.∴S 扇形BOC =,在Rt △OCD 中,CD =OC ,∴,∴,∴图中阴影部分的面积为.2、作MN ⊥OB,垂足为N,连接OM,则MN=12OA=3,OA=6 ,A(-6,0)由sin ∠ABO 3则∠A=60°tan ∠BAO=OBOA∴3 ∴B (0,3)设直线AB:y=kx+b,将A,B 点的坐标代入得:3,b=3∴3x+3 S 阴=S 扇形MAO -S △MAO 2120(23)1634332ππ⨯-⨯-3、证明:(1)如图1,连接OD ,OC ,OE .∵AD ,BC ,CD 是⊙O 的切线, ∴OA ⊥AD ,OB ⊥BC ,OE ⊥CD ,AD =ED ,BC =EC ,∠ODE =12∠ADC ,∠OCE =12∠BCD ∴AD //BC ,∴∠ODE +∠OCE =12(∠ADC +∠BCD )=90°, ∵∠ODE +∠DOE =90°,∴∠DOE =∠OCE . 又∵∠OED =∠CEO =90°,∴△ODE ∽△COE .∴OE ECED OE=,OE 2=ED ·EC ∴4OE 2=4AD ·BC ,∴AB 2=4AD ·BC (2)解:如图2,由(1)知∠ADE =∠BOE ,∵∠ADE =2∠OFC ,∠BOE =∠2COF ,∴∠COF =∠OFC ,∴△COF 等腰三角形。
人教版九年级数学上册《弧长和扇形面积》圆PPT课件(第1课时)
创设情境
探究新知
应用新知
巩固新知
做一做
弧长公式
:
l=
π
180
1.在半径为24 cm的圆中,30°的圆心角所对的弧长为 4π cm,
60°的圆心角所对的弧长为 8π cm,120°的圆心角所对的弧
长为
16π cm.
2.半径为6 cm的圆中,75°的圆心角所对的弧长是 2.5π cm;
D.80°
,扇形OAB的面积为15π,则
(
巩固新知
π,半径是6,那么此扇形的
AB 所对的圆心角是( B )
课堂小结
布置作业
A.120°
B.72°
C.36°
D.60°
创设情境
随堂练习
3.如图,水平放置的圆柱形排水管道的截面半径是0.6 m,其中水
探究新知
面高0.9 m,求截面上有水部分的面积(结果保留小数点后两位).
线,垂足为D,交
于点C,连接
O●
巩固新知
课堂小结
布置作业
AC.
∵OC=0.6 m,DC=0.3 m,
∴OD=OC-DC=0.3(m).
∴OD=DC.
又AD⊥DC,
∴AD是线段OC的垂直平分线.
∴AC=AO=OC.
A
D
C
B
创设情境
典型例题
【例2】如图,水平放置的圆柱形排水管道的截面半径是0.6m,
探究新知
圆心角
有关,
创设情境
典型例题
【例1】制造弯形管道时,要先按中心线计算“展直长度”,
探究新知
再下料,试计算图所示管道的展直长度L (结果取整数) .
A
数学九年级上册专题24.10 弧长与扇形的面积-重难点题型(人教版)(学生版)
专题24.10 弧长与扇形的面积-重难点题型【人教版】【知识点1 弧长与扇形的面积】【题型1 弧长的计算】【例1】(2021•庐阳区校级模拟)如图,▱ABCD中,∠C=110°,AB=2,以AB为直径的⊙O交BC于点E,则AÊ的长为()A.π9B.7π18C.7π9D.2π9【变式1-1】(2021•毕节市)某小区内的消防车道有一段弯道,如图,弯道的内外边缘均为圆弧,AB̂,CD̂所在圆的圆心为O,点C,D分别在OA,OB上.已知消防车道半径OC=12m,消防车道宽AC=4m,∠AOB =120°,则弯道外边缘AB̂的长为()圆的周长圆的弧长圆的面积扇形面积2C rπ=180n rlπ=2S rπ=213602n rS rlπ==r为圆的半径;n为弧所对的圆心角的度数;l为扇形的弧长rn︒lA .8πmB .4πmC .323πm D .163πm【变式1-2】(2021•余姚市一模)如图,四边形ABCD 的顶点B ,C ,D 都在⊙A 上,AD ∥BC ,∠BAD =140°,AC =3,则BĈ的弧长为( )A .53πB .52πC .32πD .56π【变式1-3】(2020秋•西湖区期末)如图,将正方形ABCD 绕着点A 逆时针旋转得到正方形AEFG ,点B 的对应点E 落在正方形ABCD 的对角线上,若AD =3√3,则CF̂的长为( )A .3√6π8B .3√6π4C .3√3π8D .3√3π4【题型2 弧长计算中的最值问题】【例2】(2021•安阳二模)如图,半圆O 的直径AB =2cm ,AC ̂=2BC ̂,点E 是BC ̂上一个动点,弦DE ∥AB ,OF ⊥AB 交DE 于点F ,OH =EF ,则图中阴影部分周长的最大值为 cm .【变式2-1】(2021•辽宁模拟)如图,在扇形BOC 中,∠BOC =60°,OD 平分∠BOC 交弧BC 于点D .点E为半径OB上一动点.若OB=2,则阴影部分周长的最小值为.【变式2-2】(2021•邓州市一模)如图,AB是⊙O的直径,且AB=10,过点O作OC⊥AB交⊙O于点C,̂所围成的图形周长最小值为.∠CAD=30°,点P是直径AB上的动点,求PC,PD,CD【变式2-3】(2021•诸城市二模)如图,以BC为直径作圆O,A,D为圆周上的点,AD∥BC,AB=CD=AD=1.若点P为BC垂直平分线MN上的一动点,则阴影部分图形的周长最小值为.【题型3 扇形面积的计算】【例3】(2021•东营)如图,在▱ABCD中,E为BC的中点,以E为圆心,BE长为半径画弧交对角线AC于点F,若∠BAC=60°,∠ABC=100°,BC=4,则扇形BEF的面积为.【变式3-1】(2021•宜昌)“莱洛三角形”是工业生产中加工零件时广泛使用的一种图形.如图,以边长为2厘米的等边三角形ABC的三个顶点为圆心,以边长为半径画弧,三段圆弧围成的图形就是“莱洛三角形”,该“莱洛三角形”的面积为平方厘米.(圆周率用π表示)̂上【变式3-2】(2021•邵阳县模拟)如图,半圆的直径AB长为6cm,O是圆心,C是半圆上的点,D是AC的点,若∠ADC=108°,则扇形OAC的面积为.(结果保留π.)【变式3-3】(2021•霍邱县一模)如图,从一块半径是√13cm的圆形铁皮(⊙O面)上剪出一个圆心角(∠BAC)为60°的扇形BAC,点B和点C在⊙O的圆周上,若OA=2cm,则所剪出扇形的面积等于cm2.【题型4 求不规则图形阴影部分的面积】【例4】(2021•南关区校级二模)扇子在我国已经有三、四千年的历史,中国扇文化有丰富的文化底蕴.如图,扇形纸扇完全打开后,外侧两竹条AB、AC夹角为150°.AB的长为30cm,扇面BD的长为20cm,则扇面的面积为cm2.【变式4-1】(2021•洛阳一模)如图,在扇形AOB中,∠AOB=90°,OA=2,以OB为直径作半圆,圆心为点C,过点C作OA的平行线分别交两弧于点D、E,则阴影部分的面积为.【变式4-2】(2021•河南模拟)如图1,是一枚残缺的古代钱币,如图2,经测量发现,钱币完好部分的弧长为3π,其内部正方形ABCD的边长为1.已知正方形ABCD的中心与⊙O的圆心重合,且点E,F分别是边BC,CD的延长线与⊙O的交点,则图中阴影部分的面积为.【变式4-3】(2021•卫辉市二模)已知,如图,扇形AOB中,∠AOB=120°,OA=4,若以点A为圆心,AO长为半径画弧交弧AB于点C,过点C作CD⊥OA,垂足为点D,则图中阴影部分的面积为.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
所以:r R
360
(2)因为圆锥的母线长=扇形的半径 所以圆锥的高h为:h R2 r2
R2 ( R )2
360
例2、一个圆锥形零件的母线长为a,底面的半径 为r,求这个圆锥形零件的侧面积和全面积.
解 圆锥的侧面展开后是一个扇形,该扇
形的半径为a,扇形的弧长为2πr,所以
一、弧长的计算公式
l n 2r nr
360
180
二、扇形面积计算公式
s
n r 2
360
或s
1 lr 2
圆锥的高
圆锥
我们把连接圆锥的顶点S和底 面圆上任一点的连线SA,SB 等叫做圆锥的母线
连接顶点S与底面圆的圆心O S 的线段叫做圆锥的高
母线 A
Or
思考:圆锥的母线和圆 锥的高有那些性质?
圆锥的全面积就是它的侧面积与它的底 面积的和。
例1:如图所示的扇形中,半径R=10,圆心角θ=144° 用这个扇形围成一个圆锥的侧面.
(1)求这个圆锥的底面半径r;
(2)求这个圆锥的高(精确到0.1) A
C
B
O
解:(1)因为此扇形的弧长=它所 围成圆锥的底面圆周长 所以有 2 r R
l
图 23.3.6
思考与探索:
将一个圆锥的侧面沿它的一 条母线剪开铺平,思考圆锥中的 各元素与它的侧面展开图中的各 元素之间的关系
圆锥的侧面积
圆锥的侧面展开图
圆锥的侧面展开图 是一个什么图形?
扇形
扇形的半径是什么? 圆锥的母线长
扇形的弧长是什么? 圆锥底面圆的周长
这个扇形的面 积如何求?
圆锥的侧面积就是弧长为圆锥底面的周 长、半径为圆锥的一条母线的长的扇形 面积。
S侧=
1
2×2πr×a=πra;
S底=πr2; S=πra+πr2.
答:这个圆锥形零件的侧面积为πra, 全面积为πra+πr2
圆锥的侧面积与全面积
S 侧 =πrl
(r表示圆锥底面的半径, l 表示圆锥的母线长 ) 圆锥的侧面积与底面积的和叫做圆锥的全
面积(或表面积).
s全 s侧 s底 rl r2
பைடு நூலகம்
/ 时彩人工计划软件
各样、千姿百态の翠竹。只是现在展现在他眼前の那种翠竹,却是他从别曾见识过!翠竹,翠竹,只有是翠绿の竹竿,翠绿の竹叶才能称之为翠竹,但是此时展现在他眼前の那各竹子, 根本别是翠竹,却是黑灰色の!是“墨竹”!当水清充分验证咯王爷喜欢の图案是翠竹之后,画好花样,就是选绣线。面对那洁白の绢帕,假设再绣上翠绿の竹子,白底绿叶,美则美 矣,却是过于直白。而且白绿两色都是亮色,她努力地回想咯壹下,他并别是很喜欢亮色の衣饰。虽然她别想刻意地讨好他,但也别想存心去丢怡然居の脸。在众人都已经晓得她の女 红很是出挑之后,她故意表现得庸俗别堪,别要说王爷,就是福晋也会认为:您那别是成心跟爷作对吗?第壹卷 第617章 沦陷开弓没什么回头箭,既然已经答应咯福晋姐姐去做咯, 那就壹定要尽力做好才是。于是水清按照自己の想法,依着自己の审美情趣和喜好,选择咯黑色和灰色の绣线,绣出来の竹子仿佛就是壹幅水墨画,清雅、别致、素净。望着绣好の墨 竹,她左看看,右看看,总觉得意犹未尽,于是她又很俏皮地绣上咯几各才刚刚冒出尖尖角の小小竹笋,最后又别出心裁地点缀咯几根枯枝败叶。王爷天生就喜欢那种素雅清淡の风格, 极别喜欢那种大红大绿の喧闹,实际上,他最钟意の颜色竟然是世人极别喜爱の黑色。所以当他见到那平生从未见过の,绣出来の水墨画般の“翠竹”,别,“墨竹”,他壹下子就喜 欢上咯那各帕子,简直就是爱别释手!其实,水清哪里晓得他最喜欢の颜色就是黑色?她只是按照自己の审美情趣,为他绣画咯壹各水墨竹韵而已。看着看着,他忽然对那各帕子产生 咯壹种似曾相识の感觉,别由自主地就拉开咯抽屉。那里有“婉然”应他所邀做给他の荷包,虽然是别同の物件,别同の花样,别同の绣法,可是那含蓄、内敛、别事张扬,又极尽品 味の风格却是如出壹辙!他有些恍惚咯,那两样东西有啥啊关系吗?继而他又自我解嘲般地摇咯摇头:婉然跟淑清,完全就是八竿子打别着の两各人,她们之间能有啥啊关系呢?那水 墨画般の帕子实在是让他爱别释手,以至于当即就带在咯身上。此刻听见淑清又提起咯那各帕子,再望向淑清手中攥着の绢帕,因为擦试茶水而被弄脏,心疼得他直说: “确实是很花 费咯心思の生辰礼,唉,您怎么用它擦试茶水呢!用哪各别好,非要用那各!”壹听他如此珍惜那块帕子,淑清の心头立即涌上壹种苦尽甘来、百感交集,甚至是喜极而泣の感觉。为 咯进壹步证实她の猜测,更是要亲口听他说出来,于是淑清又明知故问地追问咯壹句:“爷喜欢吗?”被淑清步步紧逼の他,终于别得别承认道:“嗯,喜欢,爷确实很喜欢。您,您 是怎么想到の?”“爷,妾身与您成婚多年,假设您の那点儿喜好都别清楚,妾身枉与您夫妻壹场呢。您の壹切,妾身都记得,别管是现在,还是将来,妾身壹辈子都别会忘记。别管 爷の心在哪里,妾身の心,永远都在您那里……”“清儿,爷,谢您,有の时候,爷可能太忙咯,没顾上多来看看您,希望您别要太在意……”“爷,您可千万别要那么说,那样说, 妾身真の就是没什么脸面咯。”壹各是对他の百般示好壹点儿都别领情の冷脸没钕,壹各是别管他对她如何,她永远只会对他壹如既往地深深爱恋の曾经挚爱;壹各是将他の生辰礼忘 到脑后の糊涂诸人,壹各是如此心细如发、投其所好地送上水墨竹绢帕の痴心女子,强烈对比之下,他又别是壹各薄情寡恩之人,怎么可能继续对淑清冷脸冷面,又怎么可能对她の壹 片痴心无动于衷?他,只有沦陷。第壹卷 第618章 调包望着身边早已熟睡の王爷,淑清发誓明天壹定要好好拜谢菩萨,感谢菩萨保佑,让她再次将爷成功地留在咯自己の身边。壹辈 子都别需要为争宠而费心思の淑清第壹次被迫为生存而战,面对物是人非の局面,连日来她の心中充满咯无尽の悲哀,此时此刻,当她真实地面对初战告捷の巨大成果之时,自然是喜 极而泣。当她从菊香の手中接过水清即将送到朗吟阁の生辰礼,迫别急待地打开之后,简直就是大失所望!那是啥啊东西?黑乎乎跟块破布似の!待她
B
如果用r表示圆锥底面的半径, h表示圆锥的高
l 线长, 表示圆锥的母线长,那么r,h, l 之间有
怎样的数量关系呢?
h ll
r
由勾股定理得:
r2+h2=l 2
填空: 根据下列条件求值(其中r、h、l
分别是圆锥的底面半径、高线、母线长)
(1) l = 2,r=1 则 h=____3___
(2) l = 10, h = 8 则r=__6_____