幂的运算提高练习题 3
七年级数学幂的运算
《蓦的运算》提高练习题一、选择题(共5小题,每小题4分,满分20分)1.(4分)(2011春•江都市期末)计算(・2)lw+(-2广所得的结果就是()A.-2驴B.-2C.2WD.22.(4分)(2014春•肥东县校级期中)当m就是正整数时,下列等式成立的有()⑴打七(『)2;⑵广=(疽)“;⑶广=(-丁))(4)^=(・f)・.A.4个B.3个C.2个D.1个3.(4分)(2012春•化州市校级期末)下列运算正确的就是()A.2x+3y二5xyB.(-3x2y)3=-9x*yC.4、3y2.(.§心2)二D・(x・yf4.(4分)a与b佥为相反数,R都不等于0,n为正整数,则下列各组中一定互为相反数的就是()A.a"与b”B.a2"与广C.a2*”与b",D.a*'与・b& '5.(4分)下列等式中正确的个数就是()①a'+a二a°;®(-a)'-(- a)-a-a°;③-a•(-a)-a20;④2+2’二2七A.0个 R.1个 C.2个 D.3个二、填空题供2小题,每小题5分,满分10分)13.(5分)(2009秋•丹棱县期中)计算:x'・x'=;(・])'+(・/)』■14.(5分)(2014春•临清市期中)若2・=5,2n=6,则2.七.三、解答题(共17小题,满分。
分)1.已知3x(x"+5)=3x n,,+45.求x的值.2.(2011春•深阳市校级月考)若l+2+3+・・f=a,求代数式(x-y)(广了)(X-Y)-(x2y-*)(xy”)的值.3.(2010春•高邮市•月考)己知2x+5y=3,求4、・32‘的值.4.已知25°・2U(T=5'・2',求■、n.5.已知a w=5,a o,=25,求a'+a'的值.6.若xf=16,x"=2,求Jr1 的值.7.已知10"=3,10p=5,10r=7,试把105写成底数就是10的亲的形式・8.比较下列一组数的大小.81,27",9619.如果a!+a=0(a^0),求af f2的值.10.(2014春•无锡期中)已知9-1-32n=72,求n的值.16.(2010春•佛山期末)若(aW3=aV\求L的值.17.计算:寸七耻护十+①心")%.如)19.若x=3a',y=-l a2n"L当a=2,n=3时,求a x-ay的值.20.(2008春•昆山希期末)已知:2'=4,u l27x=3'',求x-y的值.21.vt-算:(a■ b)八(b-a)2- (a-b)"・(b-a)5.22.若(a-b2) (a a,"b2n)=ay.!/l'J求m+n的值.23.用简便方法计算:⑴⑵(・0、25),2X4'2(3)0、5-X25X0.125⑷[(0,5)2]3X(23)3<13.1幕的运算》2010年提高练习题参考答案与试题解析一、选择题(共5小题,每小题4分,满分20分)11.(4分)(2011春•江都市期末)计算(-2)件(-2产所得的结果就是(A.-2敦B.-2C.2列D.2考点:有理数的乘方.分析:本题考查有理数的乘方运算,(・2严表示100个(・2)的乘积,所以(・2)叫(-2)5(-2).解答:解:(-2)'°°+(・2)"=(・2)”[(-2)+l]K故选C.点评:乘方就是乘法的特例,乘方的运算可以利用乘法的运算来进行.负数的奇数次慕就是负数,负数的偶数次幕就是正数;・1的奇数次蒂就是・1,・1的偶数次幕就是1.12.(4分)(2014春•肥东县校级期中)当m就是正整数时,下列等式成立的有()(l)a%3)2;⑵a2'=(aT;⑶呻二(・的七⑷a^(・了》.A.4个B. 3个C.2个D.1个考点:慕的乘方与积的乘方.分析:根据基的乘方的运算法则计算即可,同时要注意m的奇偶性.解答:解:根据差的乘方的诞算法则可判断(D(2)都正确;因为负数的偶数次方就是正数,所以(3)a、(・aT正确;(4)aF・a』).只有m为偶数时才正确,当m为奇数时不正确;所以⑴⑵⑶正确.故选B.点评:本题主要考查界的乘方的性质,需要注意负数的奇数次蒂就是负数,偶数次界就是正数.15.(4分)(2012春•化州市校级期末)下列运算正确的就是()A.2x+3y二5xyB.(・3x2y)3=・9x e y3C・4x3y2・(・§xy2)=-2x4y4 D.(x-y)=x・y考点:单项式乘单项式;笊的乘方与积的乘方;多项式乘多项式.分析:根据蒂的乘方与积的乘方、合并同类项的运算法则进行逐■计算即可.解答:解:A、2x与3y不就是同类项,不能合并,故本选项错误;B、应为(-3x03二-27xV,故本选项错误;c、4xV-(-*邛2)=-2x M正确;D、应为(x-y)3=x3-3x2y+3xy2 -矿,故本选项错误.故选C.点评:(1)本题综合考查了整式运算的多个考点,包括合并同类项•积的乘方、单项式的乘法,需要熟练掌握性质与法蚓;(2)同类项的概念就是所含字母相I可,相何字母的指数也相同的项就是同类项,不就是同 类项的一定不能合并.1«. (4分)a 与b 互为相反数,且都不等FO, n 为正整数,则卜.列各组中一定互为相反数的就是()A.I 与1/ &广与广 C.a 2"”与b 2"” D. a 2n ''与-驴…> > > > h t中中中中媲 A B c D U n 考点:有理数的乘方;相反数.分析:两数互为相反数,与为0,所以a+b =0.本题只要把选项中的两个数相加,瞧与就是否为0,若为(),则两数必定互为相反数.解答:解:依题意,得a+b=0,即a=- b.n 为奇数,/+b 』0 ;n 为偶数,a+b=2a r ,错误;g+b"=2武错误;af 2e =0,正确;疽「,-"'=2寸",错误.C.点评:本题考查了相反数的定义及乘方的运算性质.注意:一对相反数的偶次藉相等,奇次器互为相反数.24. (4分)下列等式中正确的个数就是()®a+a 5=a 10:②(-a)6•(- a)3-a^a'°;③-a'•(- a)5^30;④分成迓.A. 0个B. 1个C. 2个D. 3个考点:幕的乘方与积的乘方;整式的加减;同底数蒂的乘法.分析:①利用合并同类项来做;②③都就是利用同底薮案的艰法公式做(注意一个负数的偶次环就是正数,奇次馨就是负数);④利用乘法分配律的逆运算.解答:解:①.・方*土2房故①的答案不正确;② V(-a)e -(-U )3=(-a)9= -a 9,故②的答案不正确;③ V - a*•(- a)3=a 9,故③的答案不正确;④ 牙+2』2 X 25=2g .所以正确的个数就是1,故选B.点评:本题主要利用了合并同类项、同底数幕的乘法、乘法分配律的知识,注意指数的变化.二、填空题(共2小题,每小题5分,满分10分)13. (5分)(2009秋•丹棱县期中)计算:〒项=X ’ ;(-』)%(- a 3)?=0.考点:幕的乘方与积的乘方;同底数帝的乘法.分析:第一小题根据同底数幕的乘法法则计算即可;第二小题利用'希的乘方公式即可解决问题.解答:解:x 2*xW;(-a 2)V(-a a )2=-a fi +a 6=0.点评:此题主要考查了同底数帝的乘法与舔的乘方法则,利用两个法则容易求出结果.14. (5分)(2014春•临清市期中)若2・=5, 2七6,则2"^ 180 .考点:皋的乘方与积的乘方.分析:先逆用同底数同的乘法法则把Z%化成2・・2”・2。
《幂的运算》练习题及答案
《幂的运算》练习题及答案幂的运算是数学中一个重要的概念,经常在代数和数论等领域出现。
本文将提供一些幂的练习题,并附上详细的答案,帮助读者加深对幂的运算规则的理解。
一、练习题1. 计算以下幂的结果:a) 2^3b) 5^2c) (-3)^4d) 10^0e) 1^1002. 化简以下幂的表达式:a) (2^3)^2b) 4^0c) (-2)^4d) (3^2)^3e) 5^13. 计算以下幂的结果,并写成最简形式:a) 2^(1/2)b) 10^(2/3)c) 8^(3/2)d) 27^(2/3)e) 16^(-1/2)二、答案解析1. 计算以下幂的结果:a) 2^3 = 2 * 2 * 2 = 8b) 5^2 = 5 * 5 = 25c) (-3)^4 = (-3) * (-3) * (-3) * (-3) = 81d) 10^0 = 1 (任何数的0次幂都等于1)e) 1^100 = 1 (任何数的1次幂都等于自身)2. 化简以下幂的表达式:a) (2^3)^2 = 2^(3*2) = 2^6 = 64b) 4^0 = 1 (任何非零数的0次幂均等于1)c) (-2)^4 = 2^4 = 16d) (3^2)^3 = 3^(2*3) = 3^6e) 5^1 = 5 (任何数的1次幂都等于自身)3. 计算以下幂的结果,并写成最简形式:a) 2^(1/2) = √2b) 10^(2/3) ≈ 4.641 (保留三位小数)c) 8^(3/2) = (√8)^3 = 2^3 = 8d) 27^(2/3) = (∛27)^2 = 3^2 = 9e) 16^(-1/2) = 1/√16 = 1/4上述练习题和答案介绍了幂的运算规则,包括幂的计算、幂的化简和带分数指数的幂运算等内容。
通过对这些问题的分析和解答,读者可以更好地理解幂的性质和规律。
总结:幂的运算是数学中一个重要的概念,掌握幂的运算规则对于数学学习和解题非常重要。
幂的运算专项练习50题(有答案)
幂的运算专项练习50题(有答案)1.2. (4ab2)2×(﹣a2b)33.(1);(2)(3x3)2•(﹣x);(3) m2•7mp2÷(﹣7mp);(4)(2a﹣3)(3a+1).4.已知a x=2,a y=3求:a x+y与a2x﹣y的值.5.已知3m=x,3n=y,用x,y表示33m+2n.6.若a=255,b=344,c=433,d=522,试比较a,b,c,d 的大小.7.计算:(﹣2 m2)3+m7÷m.8.计算:(2m2n﹣3)3•(﹣mn﹣2)﹣29.计算:.10.(﹣)2÷(﹣2)﹣3+2×(﹣)0.11.已知:2x=4y+1,27y=3x﹣1,求x﹣y的值.12.若2x+5y﹣3=0,求4x•32y的值.13.已知3×9m×27m=316,求m的值.14.若(a n b m b)3=a9b15,求2m+n的值.15.计算:(x2•x3)2÷x6.16.计算:(a2n)2÷a3n+2•a2.17.若a m=8,a n =,试求a2m﹣3n的值.18.已知9n+1﹣32n=72,求n的值.19.已知x m=3,x n=5,求x2m+n的值.20.已知3m=6,9n=2,求32m﹣4n+1的值.21.(x﹣y)5[(y﹣x)4]3(用幂的形式表示)22.若x m+2n=16,x n=2,(x≠0),求x m+n,x m﹣n的值.23.计算:(5a﹣3b4)2•(a2b)﹣2.24.已知:3m•9m•27m•81m=330,求m的值.25.已知x6﹣b•x2b+1=x11,且y a﹣1•y4﹣b=y5,求a+b的值.26.若2x+3y﹣4=0,求9x﹣1•27y.27.计算:(3a2x4)3﹣(2a3x6)2.28.计算:.29.已知16m=4×22n﹣2,27n=9×3m+3,求(n﹣m)2010的值.30.已知162×43×26=22m﹣2,(102)n=1012.求m+n的值.31.(﹣a)5•(﹣a3)4÷(﹣a)2.32.(a﹣2b﹣1)﹣3•(2ab2)﹣2.33.已知x a+b•x2b﹣a=x9,求(﹣3)b+(﹣3)3的值.34.a4•a4+(a2)4﹣(﹣3x4)235.已知(x5m+n y2m﹣n)3=x6y15,求n m的值.36.已知a m=2,a n=7,求a3m+2n﹣a2n﹣3m的值.37.计算:(﹣3x2n+2y n)3÷[(﹣x3y)2]n38.计算:(x﹣2y﹣3)﹣1•(x2y﹣3)2.39.已知a2m=2,b3n=3,求(a3m)2﹣(b2n)3+a2m•b3n的值40.已知n为正整数,且x3n=7,求(3x2n)3﹣4(x2)3n 的值.41.若n为正整数,且x2n=5,求(3x3n)2﹣34(x2)3n 的值.42.计算:(a2b6)n+5(﹣a n b3n)2﹣3[(﹣ab3)2]n.43..44.计算:a n﹣5(a n+1b3m﹣2)2+(a n﹣1b m﹣2)3(﹣b3m+2)45.已知x a=2,x b=6.(1)求x a﹣b的值.(2)求x2a﹣b 的值.46.已知2a•27b•37c=1998,其中a,b,c为整数,求(a﹣b﹣c)1998的值.47.﹣(﹣0.25)1998×(﹣4)1999.48.(1)(2a+b)2n+1•(2a+b)3•(2a+b)n﹣4(2)(x﹣y)2•(y﹣x)5.49.(1)(3x2y2z﹣1)﹣2•(5xy﹣2z3)2.(2)(4x2yz﹣1)2•(2xyz)﹣4÷(yz3)﹣2.50.计算下列各式,并把结果化为正整数指数幂的形式.(1)a2b3(2a﹣1b3);(2)(a﹣2)﹣3(bc﹣1)3;(3)2(2ab2c﹣3)2÷(ab)﹣2.幂的运算50题参考答案:1.解:原式=4﹣1﹣4=﹣1;2. 原式=16a2b4×(﹣a6b3)=﹣2a8b73.解:(1)原式=(﹣5)×3=﹣15;(2)原式=9x6•(﹣x)=﹣9x7;(3)原式=7m3p2÷(﹣7mp)=﹣m2p;(4)原式=6a2+2a﹣9a﹣3=6a2﹣7a﹣3.故答案为﹣15、﹣9x7、﹣m2p、6a2﹣7a﹣3 4.解:a x+y=a x•a y=2×3=6;a2x﹣y=a2x÷a y=22÷3=5.解:原式=33m×32n,=(3m)3×(3n)2,=x3y26.解:a=(25)11=3211;b=(34)11=8111;c=(43)11=4811;d=(52)11=2511;可见,b>c>a>d7.解:(﹣2m2)3+m7÷m,=(﹣2)3×(m2)3+m6,=﹣8m6+m6,=﹣7m68.解:(2m2n﹣3)3•(﹣mn﹣2)﹣2=8m6n﹣9•m﹣2n4= 9.解:原式=(﹣4)+4×1=010.解:原式=÷(﹣)+2×1=﹣2+2=011.解:∵2x=4y+1,∴2x=22y+2,∴x=2y+2 ①又∵27y=3x﹣1,∴33y=3x﹣1,∴3y=x﹣1②联立①②组成方程组并求解得,∴x﹣y=312.解:4x•32y=22x•25y=22x+5y∵2x+5y﹣3=0,即2x+5y=3,∴原式=23=813.解:∵3×9m×27m,=3×32m×33m,=31+5m,∴31+5m=316,∴1+5m=16,解得m=314.解:∵(a n b m b)3=(a n)3(b m)3b3=a3n b3m+3,∴3n=9,3m+3=15,解得:m=4,n=3,∴2m+n=27=12815.解:原式=(x5)2÷x6=x10÷x6=x10﹣6=x416.解:(a2n)2÷a3n+2•a2=a4n÷a 3n+2•a2=a4n﹣3n﹣2•a2=a n﹣2•a2=a n﹣2+2=a n17.解:a2m﹣3n=(a m)2÷(a n)3,∵a m=8,a n =,∴原式=64÷=512.故答案为51218.解:∵9n+1﹣32n=9n+1﹣9n=9n(9﹣1)=9n×8,而72=9×8,∴当9n+1﹣32n=72时,9n×8=9×8,∴9n=9,∴n=119.解:原式=(x m)2•x n=32×5=9×5=4520.解:由题意得,9n=32n=2,32m=62=36,故32m﹣4n+1=32m×3÷34n=36×3÷4=2721.解:(x﹣y)5[(y﹣x)4]3=(x﹣y)5[(x﹣y)4]3=(x﹣y)5•(x﹣y)12=(x﹣y)1722.解:∵x m+2n=16,x n=2,∴x m+2n÷x n=x m+n=16÷2=8,x m+2n÷x3n=x m﹣n=16÷23=223.解:(5a﹣3b4)2•(a2b)﹣2=25a﹣6b8•a﹣4b﹣2=25a﹣10b6=24.解:由题意知,3m•9m•27m•81m,=3m•32m•33m•34m,=3m+2m+3m+4m,=330,∴m+2m+3m+4m=30,整理,得10m=30,解得m=325.解:∵x6﹣b•x2b+1=x11,且y a﹣1•y4﹣b=y5,∴,解得:,则a+b=1026.解:∵2x+3y﹣4=0,∴2x+3y=4,∴9x﹣1•27y=32x﹣2•33y=32x+3y﹣2=32=927.解:(3a2x4)3﹣(2a3x6)2=27a6x12﹣4a6x12=23a6x12 28.解:原式=•a2b3=29.解:∵16m=4×22n﹣2,∴(24)m=22×22n﹣2,∴24m=22n﹣2+2,∴2n﹣2+2=4m,∴n=2m①,∵(33)n27n=9×3m+3,∴(33)n=32×3m+3,∴33n=3m+5,∴3n=m+5②,由①②得:解得:m=1,n=2,∴(n﹣m)2010=(2﹣1)2010=130.解:∵162×43×26=28×26×26=220=22m﹣2,(102)n=102n=1012.∴2m﹣2=20,2n=12,解得:m=11,n=6,∴m+n=11+6=1731.原式=(﹣a)5•a12÷(﹣a)2=﹣a5+12÷(﹣a)2=﹣a17÷a2=﹣a15.32.解:(a﹣2b﹣1)﹣3•(2ab2)﹣2=(a6b3)•(a﹣2b﹣4)=a4b﹣1=33.解:∵x a+b•x2b﹣a=x9,∴a+b+2b﹣a=9,解得:b=3,∴(﹣3)b+(﹣3)3=(﹣3)3+(﹣3)3=2×(﹣3)3=2×(﹣27)=﹣54 34.解:原式=a8+a8﹣9x8,=2a8﹣9x835.解:(x5m+n y2m﹣n)3=x15m+3n y6m﹣3n,∵(x5m+n y2m﹣n)3=x6y15,∴,解得:,则n m=(﹣9)3=﹣24336.解:∵a m=2,a n=7,∴a3m+2n﹣a2n﹣3m=(a m)3•(a n)2﹣(a n)2÷(a m)3=8×49﹣49÷8=37.解:(﹣3x2n+2y n)3÷[(﹣x3y)2]n,=﹣27x6n+6y3n÷(﹣x3y)2n,=﹣27x6n+6y3n÷x6n y2n,=﹣27x6y n38.解:(x﹣2•y﹣3)﹣1•(x2•y﹣3)2,=x2y3•x4y﹣6,=x6y﹣3,=39.解:(a3m)2﹣(b2n)3+a2m•b3n,=(a2m)3﹣(b3n)2+a2m•b3n,=23﹣32+2×3,=540.解:原式=27x6n﹣4x6n=23x6n=23(x3n)2=23×7×7=112741.解:∵x2n=5,∴(3x3n)2﹣34(x2)3n=9x6n﹣34x6n=﹣25(x2n)3=﹣25×53=﹣312542.解:原式=a2n b6n+5a2n b6n﹣3(a2b6)n=6a2n b6n﹣3a2n b6n=3a2n b6n43.解:原式=()50x50•()50x100=x15044.解:原式=a n﹣5(a2n+2b6m﹣4)+a3n﹣3b3m﹣6(﹣b3m+2),=a3n﹣3b6m﹣4+a3n﹣3(﹣b6m﹣4),=a3n﹣3b6m﹣4﹣a3n﹣3b6m﹣4,=045.解:(1)∵x a=2,x b=6,∴x a﹣b=x a÷x b=2÷6=;=(2)∵x a=2,x b=6,∴x2a﹣b=(x a)2÷x b=22÷6=46.解:∵2a•33b⋅37c=2×33×37,∴a=1,b=1,c=1,∴原式=(1﹣1﹣1)1998=147.解:原式=﹣()1998×(﹣4)1998×(﹣4),=﹣()1998×41998×(﹣4),=﹣(×4)1998×(﹣4),=﹣1×(﹣4),=448.解:(1)原式=(2a+b)(2n+1)+3+(n﹣4)=(2a+b)3n;(2)原式=﹣(x﹣y)2•(x﹣y)5=﹣(x﹣y)749.解:(1)原式=()﹣2•()2=•=;(2)原式=•÷=•y2z6=150.解:(1)a2b3(2a﹣1b3)=2a2﹣1b3+3=2ab6;(2)(a﹣2)﹣3(bc﹣1)3,=a6b3c﹣3,=;(3)2(2ab2c﹣3)2÷(ab)﹣2,=2(4a2b4c﹣6)÷(a﹣2b﹣2),=8a4b6c﹣6,。
幂的运算提升练习题
幂的运算提升练习题幂的运算是数学中常见且重要的一种运算方式。
它通常以"底数的指数次幂"的形式出现。
幂运算可以帮助我们解决很多实际问题,例如计算复利、处理大数运算等等。
本文将通过一些练习题来提升我们的幂运算能力。
问题一:计算幂的值1. 计算 2的3次幂。
2. 计算 (-3)的2次幂。
3. 计算 5的0次幂。
4. 计算 0的5次幂。
5. 计算 (-2)的4次幂。
问题二:幂运算的性质1. 如果一个数的指数为0,则结果是多少?2. 如果一个数的指数为负数,则结果是多少?3. 如果一个数的底数为1,则结果是多少?4. 任何数的0次幂为多少?问题三:幂运算的乘法和除法1. 计算 2的3次幂乘以2的2次幂。
2. 计算 4的3次幂除以4的2次幂。
3. 计算 3的4次幂乘以3的负2次幂。
4. 计算 6的负3次幂除以6的负4次幂。
问题四:幂运算的加法和减法1. 计算 2的3次幂加上3的2次幂。
2. 计算 4的3次幂减去2的4次幂。
3. 计算 5的负2次幂加上3的负3次幂。
4. 计算 6的4次幂减去2的负3次幂。
问题五:幂运算的混合运算1. 计算 2的3次幂乘以3的2次幂再除以2的3次幂。
2. 计算 4的2次幂加上3的3次幂再乘以2的负2次幂。
3. 计算 5的2次幂减去3的负2次幂再乘以4的3次幂。
4. 计算 6的负2次幂加上2的负3次幂再除以3的负4次幂。
通过解答以上问题,可以提升我们的幂运算能力,并加深对幂运算性质的理解。
幂运算在数学中扮演着重要的角色,熟练掌握幂运算对于进一步学习和应用数学知识都具有重要意义。
幂的运算不仅仅是纯粹的算术运算,更是逻辑思维和问题解决能力的锻炼。
通过解决这些练习题,我们可以培养抽象思维和逻辑推理能力,提高数学素养。
同时,幂的运算能够帮助我们更好地理解数学概念和解决实际问题,例如计算利息、处理大数运算等等,对于学习和应用数学知识都具有重要意义。
在解答问题的过程中,我们可以运用一些技巧,例如利用指数的乘法和除法规则、运用负指数的性质等等。
(完整版)《幂的运算》练习题及答案
《幂的运算》提高练习题一、选择题1、计算(﹣2)100+(﹣2)99所得的结果是()A、﹣299B、﹣2C、299D、22、当m是正整数时,下列等式成立的有()(1)a2m=(a m)2;(2)a2m=(a2)m;(3)a2m=(﹣a m)2;(4)a2m=(﹣a2)m.A、4个B、3个C、2个D、1个3、下列运算正确的是()A、2x+3y=5xyB、(﹣3x2y)3=﹣9x6y3C 、D、(x﹣y)3=x3﹣y34、a与b互为相反数,且都不等于0,n为正整数,则下列各组中一定互为相反数的是()A、a n与b nB、a2n与b2nC、a2n+1与b2n+1D、a2n﹣1与﹣b2n﹣15、下列等式中正确的个数是()①a5+a5=a10;②(﹣a)6•(﹣a)3•a=a10;③﹣a4•(﹣a)5=a20;④25+25=26.A、0个B、1个C、2个D、3个二、填空题6、计算:x2•x3=_________;(﹣a2)3+(﹣a3)2= _________ .7、若2m=5,2n=6,则2m+2n= _________ .三、解答题8、已知3x(x n+5)=3x n+1+45,求x的值。
9、若1+2+3+…+n=a,求代数式(x n y)(x n﹣1y2)(x n﹣2y3)…(x2y n﹣1)(xy n)的值.10、已知2x+5y=3,求4x•32y的值.11、已知25m•2•10n=57•24,求m、n.12、已知a x=5,a x+y=25,求a x+a y的值.13、若x m+2n=16,x n=2,求x m+n的值.14、比较下列一组数的大小.8131,2741,961 15、如果a2+a=0(a≠0),求a2005+a2004+12的值.16、已知9n+1﹣32n=72,求n的值.18、若(a n b m b)3=a9b15,求2m+n的值.19、计算:a n﹣5(a n+1b3m﹣2)2+(a n﹣1b m﹣2)3(﹣b3m+2)20、若x=3a n,y=﹣,当a=2,n=3时,求a n x﹣ay 的值.21、已知:2x=4y+1,27y=3x﹣1,求x﹣y的值.22、计算:(a﹣b)m+3•(b﹣a)2•(a﹣b)m•(b﹣a)523、若(a m+1b n+2)(a2n﹣1b2n)=a5b3,则求m+n的值.24、用简便方法计算:(1)(2)2×42 (2)(﹣0.25)12×412(3)0.52×25×0.125(4)[()2]3×(23)3答案与评分标准一、选择题(共5小题,每小题4分,满分20分)1、计算(﹣2)100+(﹣2)99所得的结果是()A、﹣299B、﹣2C、299D、2考点:有理数的乘方。
(完整版)《幂的运算》习题精选及答案
《幂的运算》提高练习题一、选择题1、计算(﹣2)100+(﹣2)99所得的结果是()A、﹣299B、﹣2C、299D、22、当m是正整数时,下列等式成立的有()(1)a2m=(a m)2;(2)a2m=(a2)m;(3)a2m=(﹣a m)2;(4)a2m=(﹣a2)m.A、4个B、3个C、2个D、1个3、下列运算正确的是()A、2x+3y=5xyB、(﹣3x2y)3=﹣9x6y3C 、D、(x﹣y)3=x3﹣y34、a与b互为相反数,且都不等于0,n为正整数,则下列各组中一定互为相反数的是()A、a n与b nB、a2n与b2nC、a2n+1与b2n+1D、a2n﹣1与﹣b2n﹣15、下列等式中正确的个数是()①a5+a5=a10;②(﹣a)6•(﹣a)3•a=a10;③﹣a4•(﹣a)5=a20;④25+25=26.A、0个B、1个C、2个D、3个二、填空题6、计算:x2•x3=_________;(﹣a2)3+(﹣a3)2= _________ .7、若2m=5,2n=6,则2m+2n= _________ .三、解答题8、已知3x(x n+5)=3x n+1+45,求x的值。
9、若1+2+3+…+n=a,求代数式(x n y)(x n﹣1y2)(x n﹣2y3)…(x2y n﹣1)(xy n)的值.10、已知2x+5y=3,求4x•32y的值.11、已知25m•2•10n=57•24,求m、n.12、已知a x=5,a x+y=25,求a x+a y的值.13、若x m+2n=16,x n=2,求x m+n的值.14、比较下列一组数的大小.8131,2741,96115、如果a2+a=0(a≠0),求a2005+a2004+12的值.16、已知9n+1﹣32n=72,求n的值.18、若(a n b m b)3=a9b15,求2m+n的值.19、计算:a n﹣5(a n+1b3m﹣2)2+(a n﹣1b m﹣2)3(﹣b3m+2)20、若x=3a n,y=﹣,当a=2,n=3时,求a n x﹣ay 的值.21、已知:2x=4y+1,27y=3x﹣1,求x﹣y的值.22、计算:(a﹣b)m+3•(b﹣a)2•(a﹣b)m•(b﹣a)523、若(a m+1b n+2)(a2n﹣1b2n)=a5b3,则求m+n的值.24、用简便方法计算:(1)(2)2×42(2)(﹣0.25)12×412(3)0.52×25×0.125(4)[()2]3×(23)3答案与评分标准一、选择题(共5小题,每小题4分,满分20分)1、计算(﹣2)100+(﹣2)99所得的结果是()A、﹣299B、﹣2C、299D、2考点:有理数的乘方。
幂的运算提高练习题培优
《幂的运算》提高练习题一、选择题(共5小题,每小题4分,满分20分)1、计算(﹣2)100+(﹣2)99所得的结果是()A、﹣299B、﹣2C、299D、22、当m是正整数时,下列等式成立的有()(1)a2m=(a m)2;(2)a2m=(a2)m;(3)a2m=(﹣a m)2;(4)a2m=(﹣a2).A、4个B、3个C、2个D、1个3、下列运算正确的是()A、2x+3y=5xyB、(﹣3x2y)3=﹣9x6y3xx2)=﹣2x4x4D、(x﹣y)3=x3﹣y3C、4x3x2?(﹣124、a与b互为相反数,且都不等于0,n为正整数,则下列各组中一定互为相反数的是()A、a n与b nB、a2n与b2nC、a2n+1与b2n+1D、a2n﹣1与﹣b2n﹣15、下列等式中正确的个数是()①a5+a5=a10;②(﹣a)6?(﹣a)3?a=a10;③﹣a4?(﹣a)5=a20;④25+25=26.A、0个B、1个C、2个D、3个二、填空题(共2小题,每小题5分,满分10分)6、计算:x2?x3= _________ ;(﹣a2)3+(﹣a3)2= _________ .7、若2m=5,2n=6,则2m+2n= _________ .三、解答题(共17小题,满分70分)8、已知3x(x n+5)=3x n+1+45,求x的值.9、若1+2+3+…+n=a,求代数式(x n y)(x n﹣1y2)(x n﹣2y3)…(x2y n﹣1)(xy n)的值.10、已知2x+5y=3,求4x?32y的值.11、已知25m?2?10n=57?24,求m、n.12、已知a x=5,a x+y=25,求a x+a y的值.13、若x m+2n=16,x n=2,求x m+n的值.14、已知10a=3,10β=5,10γ=7,试把105写成底数是10的幂的形式_________ .15、比较下列一组数的大小.8131,2741,96116、如果a2+a=0(a≠0),求a2005+a2004+12的值.17、已知9n+1﹣32n=72,求n的值.18、若(a n b m b)3=a9b15,求2m+n的值.19、计算:a n﹣5(a n+1b3m﹣2)2+(a n﹣1b m﹣2)3(﹣b3m+2)20、若x=3a n,y=﹣1x2x﹣1,当a=2,n=3时,求a n x﹣ay的值.21、已知:2x=4y+1,27y=3x﹣1,求x﹣y的值.22、计算:(a﹣b)m+3?(b﹣a)2?(a﹣b)m?(b﹣a)523、若(a m+1b n+2)(a2n﹣1b2n)=a5b3,则求m+n的值.24、用简便方法计算:(1)(21)2×42 (2)(﹣0.25)12×4124)2]3×(23)3(3)0.52×25×0.125(4)[(12答案与评分标准一、选择题(共5小题,每小题4分,满分20分)1、计算(﹣2)100+(﹣2)99所得的结果是()A、﹣299B、﹣2C、299D、2考点:有理数的乘方。
幂的运算练习题及答案
《幂的运算》提咼练习题一、选择题1计算(-2) 100+ (- 2) 99所得的结果是( )A、- 299B、- 2C、299D、22、当m是正整数时,下列等式成立的有( )(1) a2m= (a m) 2; (2) a2m= (a2) m; (3) a2m= (-a m) 2;2m / 2、m(4) a = (- a ).A、4个B、3个C、2个D、1个3、下列运算正确的是( )A、2x+3y=5xyB、(- 3x2y) 3= - 9x6y3.321 2、n 4 44x y • ( -^xy ) = -2x yC、/D、(x-、3 3 3y) =x - y 各组中一定互为相反数的是( )n n 2n 2nA、a 与bB、a 与b2n+1 2n+1 2n -1 2n -1C、a 与bD、a 与-b5、下列等式中正确的个数是( )①a5+a5=a10;②(-a) 6? (- a) 3?a=a10;③-a4?(-④ 25+25=26.A、0个B、1个C、2个D、3个二、填空题6、计算:x2?x3= _______ ; (—a2)3+ (- a3) 2= __7、若2m=5 , 2n=6,贝U 2m+2n= _______ .三、解答题、5 20a) =a ;4、a与b互为相反数,且都不等于 0, n为正整数,则下列9、若 1+2+3+ …+n=a ,求代数式(x n y) (x n1y2) (x n 2y3)…(x2y n1) (xy n)的值. 12、已知 a x=5 , a x+y=25,求 a x+a y的值.m+2n n m+n13、若 x =16 , x =2,求 x 的值.10、已知 2x+5y=3,求 4x?32y的值.14、比较下列一组数的大小. 8131, 2741, 961 11、已知25m210n=57?24,求m、n.n - 5 / n+1 3m - 2、 2 / n -1. m - 2、 319、计算:a (a b ,15、如果 a 2+a=0 (a^ 0),求 a 2005+a 2004+12 的值.1 2n -1 n 尹 20、若 x=3a , y=- ,当 a=2, n=3 时,求 的值.16、已知 9n+1 - 32n =72,求 n的值. 21、已知:2=^1,27=3 1,求 x-y 的值. 18、若(a n b m b) 3=a 9b 15,求 2m+n 的值./ n+i.3m - 2、 2 / n T.m - 2、 3 , . 3m+2 (ab ) + (a b ) (-b n a x- ay22、计算: (a-b) m+3? (b - a) 2? (a- b) m? (b - a)23、若(a m+1b n+2) (a2n- 1b2n) =a5b3,则求 m+n 的值.12 12(2) (- 0.25) X 424、用简便方法计算:1(1) (2 b 2X42(3) 0.52X 25 X 0.125。
幂的运算 提高培优练习题
幂的运算提高培优练习题幂的运算提高培优练题例题:例1.已知 $3x(x+5)=3x^{n+1}+45$,求 $x$ 的值。
例2.若 $1+2+3+。
+n=a$,求代数式值。
例3.已知 $2x+5y-3=0$,求 $4x\cdot 32y$ 的值。
例4.已知 $25m\cdot 2\cdot 10n=57\cdot 24$,求 $m$、$n$。
例5.已知 $ax=5$,$ax+y=25$,求 $ax+ay$ 的值。
例6.若 $xm+2n=16$,$xn=2$,求 $xm+n$ 的值。
例7.已知 $10a=3$,$10b=5$,$10c=7$,试把 $105$ 写成底数是 $10$ 的幂的形式。
例8.比较下列一组数的大小:$8131$,$2741$,$961$。
例9.如果 $a^2+a=0$($a\neq 0$),求$a^{2009}+a^{2008}+12$ 的值。
例10.已知 $9n+1-32n=72$,求 $n$ 的值。
练:1.计算 $(-2)^{100}+(-2)^{99}$ 所得的结果是()A。
$-2$ B。
$2$ C。
$-299$ D。
$299$2.当 $n$ 是正整数时,下列等式成立的有()(1)$a^{2m}=(a^m)^2$(2)$a^{2m}=(a^2)^m$(3)$a^{2m}=(-a^m)^2$ A。
4个 B。
3个 C。
2个 D。
1个3.计算:$(-a^2)^3+(-a^3)^2$。
4.若 $2^m=5$,$2^n=6$,则 $2^{m+n}=$。
5.下列运算正确的是()A。
$2x+3y=5xy$ B。
$(-3x^2y)^3=-9x^6y^3$ C。
$4x^3y^2\cdot (-xy^2)=-2x^4y^4$ D。
$(x-y)^3=x^3-y^3$6.若 $(anbmb)^3=a^9b^{15}$,求 $2m+n$ 的值。
7.计算:$an-5(an+1b^{3m-2})^2+(an-1b^{m-2})^3(-b^{3m+2})a^{2m}=(-a^2)^m$。
幂的运算提高练习题
幂的运算提⾼练习题幂的运算提⾼练习题例1.已知,求x的值.例2.若1+2+3+…+n=a,求代数式的值.例3.已知2x+5y-3=0,求的值.例4.已知,求m、n.例5.已知的值.例6.若的值.例7.已知试把105写成底数是10的幂的形式.例8.⽐较下列⼀组数的⼤⼩.例9.如果.例10.已知,求n的值.1.计算所得的结果是()A.-2B.2C.-D.2.当n是正整数时,下列等式成⽴的有()(1)(2)(3)(4)A.4个B.3个C.2个D.1个3.计算:=.4.若,,则=.5.下列运算正确的是()A.B.C.D.6.若.7.10.13.⽤简便⽅法计算:1.3 2.3.8 4.m=2,n=3 5.10 6.8 7.8.9、12 10.1 11. D2. B3. 04. 180 5. C 6. 128 7. 08. C 9. 224 10. 3(A )D CB A(B )D CBA (C )D CBA(D )DCB A11. 12. 13. (1)81 (2)1 (3)1 (4)84.a 与b 互为相反数,且都不等于0,n 为正整数,则下列各组中⼀定互为相反数的是() A .a n 与b nB .a 2n 与b 2nC .a 2n+1与b 2n+1D .a 2n-1与-b 2n-117.已知9n+1-32n =72,求n 的值. 18.若(a n b m b )3=a 9b 15,求2m+n 的值.19.计算:a n-5(a n+1b 3m-2)2+(a n-1b m-2)3(-b 3m+2) 20.若x=3a n ,y=-21 a 2n-1,当a=2,n=3时,求a n x-ay 的值. 21.已知:2x =4y+1,27y =3x-1,求x-y 的值. 22.计算:(a-b )m+3?(b-a )2?(a-b )m ?(b-a )5 23.若(a m+1b n+2)(a 2n-1b 2n )=a 5b 3,则求m+n 的值.平⾯图形的认识(⼆) 提⾼练习班级:________姓名:___________⼀、选择题:(每题3分,共30分)其中⼀个四边形平移得到的是: ( )2、在下列各图的△ABC 中,正确画出AC 边上的⾼的图形是:( )3、如图,在宽为20m ,长为30m 的矩形地⾯上修建两条同样宽的道路,余下部分作为耕地.根(D )D据图中数据,计算耕地的⾯积为:( ) A 、600m2B 、551m2C 、550m2D 、500m 24、将⼀张长⽅形纸⽚如图所⽰折叠后,再展开.如果∠1=56°,那么∠2等于: ( )A 、56°B 、68°C 、62°D 、66°同的三⾓形,则围成的三⾓形共有:( ) A 、1个B 、2个C 、3个D 、4个 7、下列叙述中,正确的有:( )①三⾓形的⼀个外⾓等于两个内⾓的和;②⼀个五边形最多有3个内⾓是直⾓;③任意⼀个三⾓形的三条⾼所在的直线相交于⼀点,且这点⼀定在三⾓形的内部;④ΔABC 中,若∠A=2∠B=3∠C ,则这个三⾓形ABC 为直⾓三⾓形. A 、0个D 、3个 8、如图,OP∥QR∥ST ,则下列各式中正确的是:( )A 、∠1+∠2+∠3=180°B 、∠1+∠2-∠3=90°C 、∠1-∠2+∠3=90°D 、∠2+∠3-∠1=180°第3题图21第4题图9、如图是⼀块电脑主板的⽰意图,每⼀转⾓处都是直⾓,数据如图所⽰,则该主板的周长是:( )A 、88mmB 、96mm10、⼀幅三⾓板如图所⽰叠放在⼀起,则图中∠α的度数为: ( )A 、75°B 、60°C 、65°D 、55°⼆、填空题(每题2分,共20分)1、如图,⾯积为6cm 2的直⾓三⾓形ABC 沿BC ⽅向平移⾄三⾓形DEF 的位置,平移距离是BC 的2倍,则图中四边形ACED 的⾯积为_______ cm 2.2、如图,l 1∥l 2,AB ⊥l 2,垂⾜为O ,BC 交l 2于点E ,若∠ABC=140°,则∠1=_____°.3、光线a 照射到平⾯镜CD 上,然后在平⾯镜AB 和CD 之间来回反射,这时光线的⼊射⾓等于反射⾓。
幂的运算练习题及答案
幂的运算练习题及答案幂的运算练习题及答案幂的运算在数学中占据着重要的地位,它是一种简洁而有效的表示方式,广泛应用于各个领域。
在这篇文章中,我们将通过一系列练习题来巩固和加深对幂运算的理解和应用。
1. 计算下列幂的值:a) 2^3b) 5^2c) (-3)^4d) 10^0解答:a) 2^3 = 2 × 2 × 2 = 8b) 5^2 = 5 × 5 = 25c) (-3)^4 = (-3) × (-3) × (-3) × (-3) = 81d) 10^0 = 1 (任何数的0次方都等于1)2. 化简下列幂的表达式:a) 2^5 × 2^3b) 4^2 ÷ 4^(-1)c) (3^2)^3解答:a) 2^5 × 2^3 = 2^(5+3) = 2^8 = 256b) 4^2 ÷ 4^(-1) = 4^(2-(-1)) = 4^3 = 64c) (3^2)^3 = 3^(2×3) = 3^6 = 7293. 计算下列幂的值,并写出结果的科学计数法表示:a) 10^6 × 10^(-3)b) (2 × 10^5)^2c) 5^(-2) ÷ 5^(-4)解答:a) 10^6 × 10^(-3) = 10^(6-3) = 10^3 = 1000 (科学计数法表示为1.0 × 10^3)b) (2 × 10^5)^2 = 2^2 × (10^5)^2 = 4 × 10^(5×2) = 4 × 10^10c) 5^(-2) ÷ 5^(-4) = 5^(2-(-4)) = 5^6 (科学计数法表示为3.125 × 10^3)4. 利用幂运算简化下列表达式:a) 2 × 2 × 2 × 2 × 2 × 2b) 3 × 3 × 3 × 3 × 3c) 10 × 10 × 10 × 10解答:a) 2 × 2 × 2 × 2 × 2 × 2 = 2^6 = 64b) 3 × 3 × 3 × 3 × 3 = 3^5 = 243c) 10 × 10 × 10 × 10 = 10^4 = 100005. 计算下列幂的值,并化简结果:a) (4^3 × 2^5) ÷ (8^2)b) (5^2 × 3^4) ÷ (15^2)c) (2^(-3) × 4^2) ÷ (8^(-1))解答:a) (4^3 × 2^5) ÷ (8^2) = (4^3× 2^5) ÷ (4^2) = 4^(3-2) × 2^(5-2) = 4^1 × 2^3 = 4 × 8 = 32b) (5^2 × 3^4) ÷ (15^2) = (5^2 × 3^4) ÷ (5^2 × 3^2) = 3^(4-2) = 3^2 = 9c) (2^(-3) × 4^2) ÷ (8^(-1)) = (2^(-3) × 2^4) = 2^1 = 2通过以上的练习题,我们对幂的运算有了更深入的理解。
幂的运算(提高练习题)
幂的运算(提高练习题)幂的运算(提高练习题)1. 概述幂是数学中常用的运算符号,用于表示一个数被自身乘若干次。
幂运算在数学、物理和计算机科学等领域中都有广泛应用。
本文将介绍幂运算的几个重要性质和应用,并提供一些提高练习题供读者练习。
2. 幂运算的定义和性质2.1 幂运算的定义对于实数a和正整数n,幂运算表示为a的n次幂,记作a^n。
其中a称为底数,n称为指数。
2.2 幂运算的性质2.2.1 幂的乘法法则对于任意的实数a和正整数n、m,有以下性质:a^n * a^m = a^(n+m)2.2.2 幂的除法法则对于任意的实数a和正整数n、m(其中m≠0),有以下性质:a^n / a^m = a^(n-m)2.2.3 幂的乘方法则对于任意的实数a和正整数n、m,有以下性质:(a^n)^m = a^(n*m)2.2.4 幂的相反数的乘方对于任意的非零实数a和正偶数n,有以下性质:(-a)^n = a^n(当n为正偶数时)3. 幂运算的应用幂运算在数学和实际问题中都有广泛应用,下面介绍几个常见的应用场景。
3.1 几何中的幂运算在几何学中,幂运算用于计算面积、体积等几何量。
例如,计算正方形的面积可以使用幂运算:边长为a的正方形的面积是a^2。
3.2 物理中的幂运算在物理学中,幂运算用于表示物理量的倍增或倍减关系。
例如,速度的平方可以表示为v^2,表示速度v被自身乘以2次。
3.3 计算机科学中的幂运算在计算机科学中,幂运算用于设计和实现数据结构、算法等。
例如,二叉树的高度可以通过幂运算来计算:一个二叉树的高度为h,那么它最多包含2^h个节点。
4. 提高练习题下面是一些幂运算的提高练习题,供读者巩固和应用所学知识。
4.1 计算题(1) 计算2^3 * 2^-2的值。
(2) 计算(-5)^4 * (-5)^3的值。
(3) 若a^2 = 16,则a的值是多少?4.2 应用题(1) 一辆车以每小时60公里的速度行驶,行驶2小时后,它的行驶里程是多少?(2) 在一个正方形花坛中,每条边上种植了相同的玫瑰花,已知花坛的面积是12平方米,求每条边的长度。
幂函数的运算专项练习50题(有答案)
幂函数的运算专项练习50题(有答案)以下是50道关于幂函数运算的练题,每题都有详细的答案供参考。
1. 计算 2^3。
答案:2^3 = 8。
2. 计算 (-3)^4。
答案:(-3)^4 = 81。
3. 计算 (4^2)^3。
答案:(4^2)^3 = 4^6 = 4096。
4. 计算 (2^3)(2^4)。
答案:(2^3)(2^4) = 2^(3+4) = 2^7 = 128。
5. 计算 (2^3)^4。
答案:(2^3)^4 = 2^(3*4) = 2^12 = 4096。
6. 计算 (2^3)/2。
答案:(2^3)/2 = 2^(3-1) = 2^2 = 4。
7. 计算 (2^4)/(2^2)。
答案:(2^4)/(2^2) = 2^(4-2) = 2^2 = 4。
8. 计算 (-5^2)-3.答案:(-5^2)-3 = (-25)-3 = -28。
9. 计算 (-5)^2-3.答案:(-5)^2-3 = 25-3 = 22。
10. 计算 (-2)^3-(-2)^2.答案:(-2)^3-(-2)^2 = -8-4 = -12。
11. 计算 (-3)^2-(-3)^3.答案:(-3)^2-(-3)^3 = 9-(-27) = 36。
12. 计算 (2^3)^2/2^2.答案:(2^3)^2/2^2 = 2^6/2^2 = 64/4 = 16。
13. 计算 (2^3)^2/2^3.答案:(2^3)^2/2^3 = 2^6/2^3 = 64/8 = 8。
14. 计算 (2^3)^2-(2^2)^3.答案:(2^3)^2-(2^2)^3 = 2^6-2^6 = 64-64 = 0。
...(以下省略)这些练题旨在帮助您熟悉幂函数的运算规则和性质,通过练可以更好地掌握幂函数的计算方法。
每一题都有详细的答案解析,如果您有任何疑问或需要进一步讲解,请随时向我提问。
祝您练习顺利!。
初二幂的运算练习题答案
初二幂的运算练习题答案1. 习题一:(1) 计算 $2^3$。
解:根据指数的定义,$2^3$ 表示把 2 相乘 3 次,即 $2^3 = 2 \times 2 \times 2 = 8$。
(2) 计算 $(-2)^4$。
解:根据指数的定义,$(-2)^4$ 表示把 -2 相乘 4 次,即 $(-2)^4 = (-2) \times (-2) \times (-2) \times (-2) = 16$。
(3) 计算 $(-3)^2$。
解:根据指数的定义,$(-3)^2$ 表示把 -3 相乘 2 次,即 $(-3)^2 = (-3) \times (-3) = 9$。
(4) 计算 $0^5$。
解:根据指数的定义,任何数的 0 次幂都等于 1,所以 $0^5 = 0$。
2. 习题二:(1) 计算 $(2^3)^4$。
解:根据幂的运算法则,$(a^m)^n$ 等于把 $a^m$ 相乘 n 次,所以$(2^3)^4 = 2^{3 \times 4} = 2^{12} = 4096$。
(2) 计算 $2^{3+4}$。
解:根据幂的运算法则,$a^{m+n}$ 等于 $a^m$ 与 $a^n$ 的乘积,所以 $2^{3+4} = 2^7 = 128$。
(3) 计算 $(2^3) \times (2^4)$。
解:根据幂的运算法则,$a^m \times a^n$ 等于 $a^{m+n}$,所以$(2^3) \times (2^4) = 2^{3+4} = 2^7 = 128$。
3. 习题三:(1) 计算 $(2 \times 3)^4$。
解:根据乘法的运算法则,$(a \times b)^n$ 等于 $a^n \times b^n$,所以 $(2 \times 3)^4 = 2^4 \times 3^4 = 16 \times 81 = 1296$。
(2) 计算 $\left(\frac{1}{2}\right)^3$。
幂的运算总结性练习题
幂的运算总结性练习题幂运算是数学中常见且重要的运算方法之一。
它的原理是将一个数字乘以自己多次,通过指数来表示运算的次数。
在实际应用中,幂运算常用于表示面积、体积、复利计算等方面。
为了巩固对幂运算的理解和运用,下面给出一些幂运算的练习题,帮助读者巩固相关知识点。
题目一:计算幂1. 计算 2^3。
2. 计算 4^2。
3. 计算 5^0。
4. 计算 6^1。
5. 计算 3^4。
题目二:幂的运算规则1. 计算 (2^3)^2。
2. 计算 2^(3+2)。
3. 计算 (4^2)^(1/2)。
4. 计算 2^(3-2)。
5. 计算 (6^3)^(-1)。
题目三:幂运算的性质1. 把一个数的幂的幂记作数的幂的幂的幂,简化表达式2^(2^3)。
2. 计算 2^0+2^1+2^2+2^3+2^4。
题目四:应用题1. 小明每年年末将10000元存入银行,年利率为5%。
存款连续存5年,计算五年后小明的本息合计。
2. 若一个正方形的边长为a,计算正方形的面积。
3. 若一个圆的半径为r,计算圆的周长。
4. 若一个正方体的边长为a,计算正方体的体积。
5. 若一个长方体的长、宽、高分别为a、b、c,计算长方体的体积。
以上练习题旨在通过计算幂的运算,帮助读者熟悉幂运算的基本概念、运算规则和性质,并将其应用于实际问题中。
通过多次练习,读者将对幂运算有更深入的理解和熟练的运用。
建议读者在完成练习题后,自行核对答案,找出自己的错误,并尝试录入实际数值进行计算,提高运算的准确性和速度。
幂的运算练习题
幂的运算练习题幂的运算练习题在数学中,幂是一种常见的运算方式。
它可以表示一个数的多次乘积,也可以用于解决各种实际问题。
在这篇文章中,我们将通过一些练习题来巩固和加深对幂运算的理解。
1. 计算幂的基本运算a) 计算2的3次幂。
b) 计算4的平方根的平方。
c) 计算5的0次幂。
解答:a) 2的3次幂等于2 × 2 × 2,结果为8。
b) 4的平方根是2,2的平方等于4。
c) 5的0次幂等于1,任何数的0次幂都等于1。
2. 幂的乘法和除法a) 计算2的4次幂乘以3的2次幂。
b) 计算8的3次幂除以2的6次幂。
解答:a) 2的4次幂等于2 × 2 × 2 × 2,结果为16。
3的2次幂等于3 × 3,结果为9。
因此,2的4次幂乘以3的2次幂等于16 × 9,结果为144。
b) 8的3次幂等于8 × 8 × 8,结果为512。
2的6次幂等于2 × 2 × 2 × 2 × 2 × 2,结果为64。
因此,8的3次幂除以2的6次幂等于512 ÷ 64,结果为8。
3. 幂的零次方和负次方a) 计算3的零次幂。
b) 计算2的负2次幂。
解答:a) 3的零次幂等于1,根据前面的解答可知,任何数的零次幂都等于1。
b) 2的负2次幂等于1 ÷ (2 × 2),结果为1/4,即0.25。
4. 幂的混合运算a) 计算(2的3次幂)的平方。
b) 计算(3的2次幂)的平方根。
解答:a) 2的3次幂等于8,8的平方等于8 × 8,结果为64。
b) 3的2次幂等于9,9的平方根等于3。
通过以上练习题,我们可以看到幂运算的一些基本规律和特点。
幂运算在数学中有着广泛的应用,特别是在代数、几何和物理等领域。
掌握幂运算的基本概念和运算规则,对于理解和解决各种数学问题非常重要。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
幂的运算提高练习题
【典型例题】
例1. 已知453)5(31+=++n n x x x ,求x 的值.
例2. 已知2x +5y -3=0,求y
x 324∙的值.
例3. 已知472510225∙=∙∙n m ,求m 、n .
例4. (1)已知y x y x x a a a a +==+求,25,5的值. (2)若n m n n m x x x ++==求,2,162的值.
例5. 已知,710,510,310===c b a 试把105写成底数是10的幂的形式.
例6. 比较下列一组数的大小.61413192781,,
例7. 已知7239
21=-+n n ,求n 的值.
【模拟试题】
1.计算9910022)()(-+-所得的结果是( ) A.-2 B.2 C.-992 D.992
2.当n 是正整数时,下列等式成立的有( )
(1)22)(m m a a = (2)m m a a )(22= (3)22)(m m a a -= (4)m m a a )(22-=
A.4个 B.3个 C.2个 D.1个 3.计算:2332)()(a a -+-= .
4.若52=m ,62=n ,则n m 22+= .
5.下列运算正确的是( ) A .xy y x 532=+ B .36329)3(y x y x -=-C .
442232)2
1(4y x xy y x -=-⋅ D .333)(y x y x -=- 6.若3521221))(b a b a b a
n n n m =-++(,则求m +n 的值.
7、若n 是正整数,当a=-1时,-(-a 2n )2n+1等于( )
A 、1
B 、-1
C 、0
D 、1或-1
8、已知a x =
21,b k =-31,求31 (a 2)x ÷(b 3)k 的值。
9、已知2m =5 , 2n =7,求 2
4m+2n 的值。
10、已知x
6b -·x 21b +=x 11,且y 1a -·y b 4-=y 5,求a+b 的值.
11、已知a m =2, a n =7,求a
3m+2n –a 2n-3m 的值。
12、已知27
93⨯⨯m m 3=,求m 的值
13、用简便方法计算 (1)()5.1)32(2000⨯1999()19991-⨯ (2) )1(1699711111-⎪⎭
⎫ ⎝⎛⎪⎭⎫ ⎝⎛11
14、已知:3x =2,求3x+2的值.
15、若644×83=2x ,求x 的值。
16、已知a=355,b=444,c=533,请把a ,b ,c 按大小排列.
17、若x 3=-8a 6b 9,求x 的值。
18、已知x n =5,y n =3,求(xy )3n 的值.
19、已知 x m = 2 , x n =3,求下列各式的值:(1)x m+n (2) x 2m x 2n (3) x 3m+2n
20、已知10
5,106αβ==,求2310αβ+的值
21.如果 ()
mn n m a a =- 成立,则( ) A 、m 是偶数,n 是奇数 B 、m 、n 都是奇数 C 、m 是奇数,n 是偶数 D 、n 是偶数 22.已知,122,62,32===c
b a 求a, b,
c 之间的关系。
23.若ab ac -=-=21,,求()()222
abc ca --+-的值。