高中数学第二章数列单元综合练习题新人教A版必修5
【人教A版】高中数学必修5教学同步讲练第二章《等比数列前n项和的示解》练习题(含答案)
第二章 数列2.5 等比数列的前n 项和第1课时 等比数列前n 项和的示解A 级 基础巩固一、选择题1.设{a n }是公比为正数的等比数列,若a 1=1,a 5=16,则数列{a n }前7项的和为( )A .63B .64C .127D .1282.已知等比数列{a n }中,a n =2×3n -1,则由此数列的偶数项所组成的新数列的前n 项和S n 的值为( )A .3n -1B .3(3n -1) C.9n -14D.3(9n -1)43.一座七层的塔,每层所点的灯的盏数都等于上面一层的2倍,一共点381盏灯,则底层所点灯的盏数是( )A .190B .191C .192D .1934.已知数列{a n }满足3a n +1+a n =0,a 2=-43,则{a n }的前10项和等于( )A .-6(1-3-10) B.19(1-3-10) C .3(1-3-10)D .3(1+3-10)5.已知数列{a n }满足log 3a n +1=log 3a n +1(n ∈N *),且a 2+a 4+a 6=9,则log 13(a 5+a 7+a 9)的值是( )A .-15B .-5C .5 D.15二、填空题6.在等比数列{a n }中,a 1+a 2=30,a 3+a 4=60,则a 7+a 8=________. 7.设数列{a n }是首项为1,公比为-2的等比数列,则a 1+|a 2|+a 3+|a 4|=________.8.(2016·浙江卷)设数列{a n }的前n 项和为S n .若S 2=4,a n +1=2S n +1,n ∈N *,则a 1=________,S 5=________.三、解答题9.已知等差数列{a n }满足a 2=0,a 6+a 8=-10. (1)求数列{a n }的通项公式;(2)求数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫a n 2n -1的前n 项和.10.数列{a n }满足a 1=1,na n +1=(n +1)a n +n (n +1),n ∈N *.(1)证明:数列⎩⎨⎧⎭⎬⎫a n n 是等差数列;(2)设b n =3n ·a n ,求数列{b n }的前n 项和S n .B级能力提升1.在等比数列{a n}中,a1+a2+…+a n=2n-1(n∈N*),则a21+a22+…+a2n等于()A.(2n-1)2 B.13(2n-1)2C.4n-1 D.13(4n-1)2.设等比数列{a n}的公比为q,前n项和为S n,若S n+1,S n,S n+2成等差数列,则q的值为________.3.等比数列{a n}的前n项和为S n,已知对任意的n∈N*,点(n,S n)均在函数y=b x+r(b>0且b≠1,b,r均为常数)的图象上.(1)求r的值;(2)当b=2时,记b n=n+14a n(n∈N*),求数列{bn}的前n项和T n.第二章 数列2.5 等比数列的前n 项和第1课时 等比数列前n 项和的示解(参考答案)一、选择题1.设{a n }是公比为正数的等比数列,若a 1=1,a 5=16,则数列{a n }前7项的和为( )A .63B .64C .127D .128解析:设数列{a n }的公比为q (q >0),则有a 5=a 1q 4=16, 所以q =2,数列的前7项和为S 7=a 1(1-q 7)1-q =1-271-2=127. 答案:C2.已知等比数列{a n }中,a n =2×3n -1,则由此数列的偶数项所组成的新数列的前n 项和S n 的值为( )A .3n -1B .3(3n -1) C.9n -14D.3(9n -1)4解析:因为a n =2×3n -1,则数列{a n }是以2为首项,3为公比的等比数列,由此数列的偶数项所组成的新数列是以6为首项,以9为公比的等比数列,则前n 项和为S n =6(1-9n )1-9=3(9n -1)4.答案:D3.一座七层的塔,每层所点的灯的盏数都等于上面一层的2倍,一共点381盏灯,则底层所点灯的盏数是( )A .190B .191C .192D .193解析:设最下面一层灯的盏数为a 1,则公比q =12,n =7,由a 1⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫1271-12=381,解得a 1=192.答案:C4.已知数列{a n }满足3a n +1+a n =0,a 2=-43,则{a n }的前10项和等于( )A .-6(1-3-10) B.19(1-3-10) C .3(1-3-10)D .3(1+3-10)解析:因为3a n +1+a n =0,a 2=-43≠0,所以a n ≠0,所以a n +1a n =-13,所以数列{a n }是以-13为公比的等比数列.因为a 2=-43,所以a 1=4,所以S 10=4⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫-13101-⎝ ⎛⎭⎪⎫-13=3(1-3-10).答案:C5.已知数列{a n }满足log 3a n +1=log 3a n +1(n ∈N *),且a 2+a 4+a 6=9,则log 13(a 5+a 7+a 9)的值是( )A .-15B .-5C .5 D.15解析:由log 3a n +1=log 3a n +1(n ∈N *),得log 3a n +1-log 3a n =1且a n >0,即log 3a n +1a n =1,解得a n +1a n =3,所以数列{a n }是公比为3的等比数列.因为a 5+a 7+a 9=(a 2+a 4+a 6)q 3,所以a 5+a 7+a 9=9×33=35.所以log 13(a 5+a 7+a 9)=log 1335=-log 335=-5.答案:B 二、填空题6.在等比数列{a n }中,a 1+a 2=30,a 3+a 4=60,则a 7+a 8=________. 解析:因为a 1+a 2=a 1(1+q )=30,a 3+a 4=a 1q 2(1+q )=60,所以q 2=2,所以a 7+a 8=a 1q 6(1+q )=[a 1(1+q )]·(q 2)3=30×8=240.答案:2407.设数列{a n }是首项为1,公比为-2的等比数列,则a 1+|a 2|+a 3+|a 4|=________.解析:法一:a 1+|a 2|+a 3+|a 4|=1+|1×(-2)|+1×(-2)2+|1×(-2)3|=15. 法二:因为a 1+|a 2|+a 3+|a 4|=|a 1|+|a 2|+|a 3|+|a 4|,数列{|a n |}是首项为1,公比为2的等比数列,故所求代数式的值为1-241-2=15.答案:158.(2016·浙江卷)设数列{a n }的前n 项和为S n .若S 2=4,a n +1=2S n +1,n ∈N *,则a 1=________,S 5=________.解析:a 1+a 2=4,a 2=2a 1+1⇒a 1=1,a 2=3,再由a n +1=2S n +1,a n =2S n -1+1(n ≥2)⇒a n +1-a n =2a n ⇒a n +1=3a n (n ≥2),又a 2=3a 1,所以a n +1=3a n (n ≥1),S 5=1-351-3=121.答案:1 121 三、解答题9.已知等差数列{a n }满足a 2=0,a 6+a 8=-10. (1)求数列{a n }的通项公式;(2)求数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫a n 2n -1的前n 项和.解:(1)设等差数列{a n }的公差为d ,由已知条件可得 ⎩⎨⎧a 1+d =0,2a 1+12d =-10,解得⎩⎨⎧a 1=1,d =-1. 故数列{a n }的通项公式为a n =2-n .(2)设数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫a n 2n -1的前n 项和为S n ,即S n =a 1+a 22+…+a n 2n -1,故S 1=1,S n2=a 12+a 24+…+a n2n . 所以,当n >1时,S n2=a 1+a 2-a 12+…+a n -a n -12n -1-a n 2n =1-⎝ ⎛⎭⎪⎫12+14+…+12n -1-2-n 2n =1-⎝ ⎛⎭⎪⎫1-12n -1-2-n 2n =n 2n ,所以S n =n2n -1,综上,数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫a n 2n -1的前n 项和S n =n2n -1.10.数列{a n }满足a 1=1,na n +1=(n +1)a n +n (n +1),n ∈N *.(1)证明:数列⎩⎨⎧⎭⎬⎫a n n 是等差数列;(2)设b n =3n ·a n ,求数列{b n }的前n 项和S n . (1)证明:由已知可得a n +1n +1=a nn+1, 即a n +1n +1-a nn=1, 所以⎩⎨⎧⎭⎬⎫a n n 是以a 11=1为首项,1为公差的等差数列.(2)解:由(1)得a nn =1+(n -1)·1=n , 所以a n =n 2.从而b n =n ·3n 。
高中数学(人教版)必修五第二章数列综合测试卷
高中数学(人教版)必修五第二章数列综合测试卷本试卷满分150分,其中选择题共75分,填空题共25分,解答题共50分。
试卷难度:0.63一.选择题(共15小题,满分75分,每小题5分)1.(5分)记S n为等差数列{a n}的前n项和.若a4+a5=24,S6=48,则{a n}的公差为()A.1B.2C.4D.82.(5分)我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯()A.1盏B.3盏C.5盏D.9盏3.(5分)几位大学生响应国家的创业号召,开发了一款应用软件.为激发大家学习数学的兴趣,他们推出了“解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案:已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一项是20,接下来的两项是20,21,再接下来的三项是20,21,22,依此类推.求满足如下条件的最小整数N:N>100且该数列的前N项和为2的整数幂.那么该款软件的激活码是()A.440B.330C.220D.1104.(5分)已知数列{a n}、{b n}、{c n},以下两个命题:①若{a n+b n}、{b n+c n}、{a n+c n}都是递增数列,则{a n}、{b n}、{c n}都是递增数列;②若{a n+b n}、{b n+c n}、{a n+c n}都是等差数列,则{a n}、{b n}、{c n}都是等差数列;下列判断正确的是()A.①②都是真命题B.①②都是假命题C.①是真命题,②是假命题D.①是假命题,②是真命题5.(5分)一给定函数y=f(x)的图象在下列图中,并且对任意a1∈(0,1),=f(a n)得到的数列{a n}满足a n+1>a n,n∈N*,则该函数的图象是由关系式a n+1()A.B.C.D.6.(5分)若数列{a n},{b n}的通项公式分别为a n=(﹣1)n+2016•a,b n=2+,且a n<b n,对任意n∈N*恒成立,则实数a的取值范围是()A.B.[﹣1,1)C.[﹣2,1)D.7.(5分)数列{a n}是正项等比数列,{b n}是等差数列,且a6=b7,则有()A.a3+a9≤b4+b10B.a3+a9≥b4+b10C.a3+a9≠b4+b10D.a3+a9与b4+b10大小不确定8.(5分)已知数列{a n}满足:a1=1,a n+1=(n∈N*)若(n∈N*),b1=﹣λ,且数列{b n}是单调递增数列,则实数λ的取值范围是()A.B.λ<1C.D.9.(5分)设△A n B n C n的三边长分别是a n,b n,c n,△A n B n C n的面积为S n,n∈N*,若b1>c1,b1+c1=2a1,b n+1=,则()A.{S n}为递减数列B.{S n}为递增数列C.{S2n﹣1}为递增数列,{S2n}为递减数列D.{S2n﹣1}为递减数列,{S2n}为递增数列10.(5分)《张丘建算经》是我国南北朝时期的一部重要数学著作,书中系统的介绍了等差数列,同类结果在三百多年后的印度才首次出现.书中有这样一个问题,大意为:某女子善于织布,后一天比前一天织的快,而且每天增加的数量相同,已知第一天织布5尺,一个月(按30天计算)总共织布390尺,问每天增加的数量为多少尺?该问题的答案为()A.尺B.尺C.尺D.尺11.(5分)已知数列{a n}为等差数列,S n其前n项和,且a2=3a4﹣6,则S9等于()A.25B.27C.50D.5412.(5分)《九章算术》是我国古代的数字名著,书中《均属章》有如下问题:“今有五人分五钱,令上二人所得与下三人等.问各德几何.”其意思为“已知A、B、C、D、E五人分5钱,A、B两人所得与C、D、E三人所得相同,且A、B、C、D、E每人所得依次成等差数列.问五人各得多少钱?”(“钱”是古代的一种重量单位).在这个问题中,E所得为()A.钱B.钱C.钱D.钱13.(5分)已知等差数列{a n}的前n项和为s n,且S2=10,S5=55,则过点P(n,a n),Q(n+2,a n+2)(n∈N*)的直线的斜率为()A.4B.C.﹣4D.﹣14.(5分)已知等差数列{a n}的前n项和为S n,且S3=9,a2a4=21,数列{b n}满足,若,则n的最小值为()A.6B.7C.8D.915.(5分)已知函数f(x)的图象关于x=﹣1对称,且f(x)在(﹣1,+∞)上单调,若数列{a n}是公差不为0的等差数列,且f(a50)=f(a51),则{a n}的前100项的和为()A.﹣200B.﹣100C.﹣50D.0二.填空题(共5小题,满分25分,每小题5分)16.(5分)等比数列{a n}的各项均为实数,其前n项为S n,已知S3=,S6=,则a8=.17.(5分)等差数列{a n}的前n项和为S n,a3=3,S4=10,则=.18.(5分)“中国剩余定理”又称“孙子定理”.1852年英国来华传教伟烈亚利将《孙子算经》中“物不知数”问题的解法传至欧洲1874年,英国数学家马西森指出此法符合1801年由高斯得出的关于同余式解法的一般性定理,因而西方称之为“中国剩余定理”.“中国剩余定理”讲的是一个关于整除的问题,现有这样一个整除问题:将2至2017这2016个数中能被3除余1且被5除余1的数按由小到大的顺序排成一列,构成数列{a n },则此数列的项数为.19.(5分)已知无穷数列{a n },a 1=1,a 2=2,对任意n ∈N *,有a n +2=a n ,数列{b n }满足b n +1﹣b n =a n (n ∈N *),若数列中的任意一项都在该数列中重复出现无数次,则满足要求的b 1的值为.20.(5分)设数列{a n }的通项公式为a n =n 2+bn ,若数列{a n }是单调递增数列,则实数b 的取值范围为.三.解答题(共5小题,满分50分,每小题10分)21.(10分)对于给定的正整数k ,若数列{a n }满足:a n ﹣k +a n ﹣k +1+…+a n ﹣1+a n +1+…+a n +k ﹣1+a n +k =2ka n 对任意正整数n (n >k )总成立,则称数列{a n }是“P (k )数列”.(1)证明:等差数列{a n }是“P (3)数列”;(2)若数列{a n }既是“P (2)数列”,又是“P (3)数列”,证明:{a n }是等差数列.22.(10分)设{a n }和{b n }是两个等差数列,记c n =max {b 1﹣a 1n ,b 2﹣a 2n ,…,b n ﹣a n n }(n=1,2,3,…),其中max {x 1,x 2,…,x s }表示x 1,x 2,…,x s 这s 个数中最大的数.(1)若a n =n ,b n =2n ﹣1,求c 1,c 2,c 3的值,并证明{c n }是等差数列;(2)证明:或者对任意正数M ,存在正整数m ,当n ≥m 时,>M ;或者存在正整数m ,使得c m ,c m +1,c m +2,…是等差数列.23.(10分)已知等差数列{a n }和等比数列{b n }满足a 1=b 1=1,a 2+a 4=10,b 2b 4=a 5. (Ⅰ)求{a n }的通项公式;(Ⅱ)求和:b 1+b 3+b 5+…+b 2n ﹣1.24.(10分)记S n 为等比数列{a n }的前n 项和.已知S 2=2,S 3=﹣6.(1)求{a n }的通项公式;(2)求S n ,并判断S n +1,S n ,S n +2是否成等差数列.25.(10分)已知{x n }是各项均为正数的等比数列,且x 1+x 2=3,x 3﹣x 2=2. (Ⅰ)求数列{x n }的通项公式;(Ⅱ)如图,在平面直角坐标系xOy 中,依次连接点P 1(x 1,1),P 2(x 2,2)…P n +1(x n +1,n +1)得到折线P 1 P 2…P n +1,求由该折线与直线y=0,x=x 1,x=x n +1所围成的区域的面积T n.高中数学(人教版)必修五第二章数列综合测试卷参考答案与试题解析一.选择题(共15小题,满分75分,每小题5分)1.(5分)(2017•新课标Ⅰ)记S n为等差数列{a n}的前n项和.若a4+a5=24,S6=48,则{a n}的公差为()A.1B.2C.4D.8【考点】85:等差数列的前n项和;84:等差数列的通项公式.【专题】11 :计算题;34 :方程思想;4O:定义法;54 :等差数列与等比数列.【分析】利用等差数列通项公式及前n项和公式列出方程组,求出首项和公差,由此能求出{a n}的公差.【解答】解:∵S n为等差数列{a n}的前n项和,a4+a5=24,S6=48,∴,解得a1=﹣2,d=4,∴{a n}的公差为4.故选:C.【点评】本题考查等差数列的面公式的求法及应用,是基础题,解题时要认真审题,注意等差数列的性质的合理运用.2.(5分)(2017•新课标Ⅱ)我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯()A.1盏B.3盏C.5盏D.9盏【考点】89:等比数列的前n项和;88:等比数列的通项公式.【专题】11 :计算题;34 :方程思想;54 :等差数列与等比数列.【分析】设这个塔顶层有a盏灯,由题意和等比数列的定义可得:从塔顶层依次向下每层灯数是等比数列,结合条件和等比数列的前n项公式列出方程,求出a 的值.【解答】解:设这个塔顶层有a盏灯,∵宝塔一共有七层,每层悬挂的红灯数是上一层的2倍,∴从塔顶层依次向下每层灯数是以2为公比、a为首项的等比数列,又总共有灯381盏,∴381==127a,解得a=3,则这个塔顶层有3盏灯,故选B.【点评】本题考查了等比数列的定义,以及等比数列的前n项和公式的实际应用,属于基础题.3.(5分)(2017•新课标Ⅰ)几位大学生响应国家的创业号召,开发了一款应用软件.为激发大家学习数学的兴趣,他们推出了“解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案:已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一项是20,接下来的两项是20,21,再接下来的三项是20,21,22,依此类推.求满足如下条件的最小整数N:N>100且该数列的前N项和为2的整数幂.那么该款软件的激活码是()A.440B.330C.220D.110【考点】8E:数列的求和.【专题】35 :转化思想;4R:转化法;54 :等差数列与等比数列.【分析】方法一:由数列的性质,求得数列{b n}的通项公式及前n项和,可知当N为时(n∈N+),数列{a n}的前N项和为数列{b n}的前n项和,即为2n ﹣n﹣2,容易得到N>100时,n≥14,分别判断,即可求得该款软件的激活码;方法二:由题意求得数列的每一项,及前n项和S n=2n+1﹣2﹣n,及项数,由题意可知:2n+1为2的整数幂.只需将﹣2﹣n消去即可,分别分别即可求得N的值.【解答】解:设该数列为{a n},设b n=+…+=2n﹣1,(n∈N+),则=a i,由题意可设数列{a n}的前N项和为S N,数列{b n}的前n项和为T n,则T n=21﹣1+22﹣1+…+2n﹣1=2n﹣n﹣2,),数列{a n}的前N项和为数列{b n}的前n项和,可知当N为时(n∈N+即为2n﹣n﹣2,容易得到N>100时,n≥14,A项,由=435,440=435+5,可知S440=T29+b5=230﹣29﹣2+25﹣1=230,故A 项符合题意.B项,仿上可知=325,可知S330=T25+b5=226﹣25﹣2+25﹣1=226+4,显然不为2的整数幂,故B项不符合题意.C项,仿上可知=210,可知S220=T20+b10=221﹣20﹣2+210﹣1=221+210﹣23,显然不为2的整数幂,故C项不符合题意.D项,仿上可知=105,可知S110=T14+b5=215﹣14﹣2+25﹣1=215+15,显然不为2的整数幂,故D项不符合题意.故选A.方法二:由题意可知:,,,…,根据等比数列前n项和公式,求得每项和分别为:21﹣1,22﹣1,23﹣1, (2)﹣1,每项含有的项数为:1,2,3,…,n,总共的项数为N=1+2+3+…+n=,所有项数的和为S n:21﹣1+22﹣1+23﹣1+…+2n﹣1=(21+22+23+…+2n)﹣n=﹣n=2n+1﹣2﹣n,由题意可知:2n+1为2的整数幂.只需将﹣2﹣n消去即可,则①1+2+(﹣2﹣n)=0,解得:n=1,总共有+2=3,不满足N>100,②1+2+4+(﹣2﹣n)=0,解得:n=5,总共有+3=18,不满足N>100,③1+2+4+8+(﹣2﹣n)=0,解得:n=13,总共有+4=95,不满足N>100,④1+2+4+8+16+(﹣2﹣n)=0,解得:n=29,总共有+5=440,满足N >100,∴该款软件的激活码440.故选A.【点评】本题考查数列的应用,等差数列与等比数列的前n项和,考查计算能力,属于难题.4.(5分)(2017•上海模拟)已知数列{a n}、{b n}、{c n},以下两个命题:①若{a n+b n}、{b n+c n}、{a n+c n}都是递增数列,则{a n}、{b n}、{c n}都是递增数列;②若{a n+b n}、{b n+c n}、{a n+c n}都是等差数列,则{a n}、{b n}、{c n}都是等差数列;下列判断正确的是()A.①②都是真命题B.①②都是假命题C.①是真命题,②是假命题D.①是假命题,②是真命题【考点】81:数列的概念及简单表示法.【专题】11 :计算题;35 :转化思想;4O:定义法;5L :简易逻辑.【分析】对于①不妨设a n=2n,b n=3n、c n=sinn,满足{a n+b n}、{b n+c n}、{a n+c n}都是递增数列,但是不满足c n=sinn是递增数列,对于②根据等差数列的性质和定义即可判断.【解答】解:对于①不妨设a n=2n,b n=3n、c n=sinn,∴{a n+b n}、{b n+c n}、{a n+c n}都是递增数列,但c n=sinn不是递增数列,故为假命题,对于②{a n+b n}、{b n+c n}、{a n+c n}都是等差数列,不妨设公差为分别为a,b,c,∴a n+b n﹣a n﹣1﹣b n﹣1=a,b n+c n﹣b n﹣1﹣c n﹣1=b,a n+c n﹣a n﹣1﹣c n﹣1=c,设{a n},{b n}、{c n}的公差为x,y,x,∴则x=,y=,z=,故若{a n+b n}、{b n+c n}、{a n+c n}都是等差数列,则{a n}、{b n}、{c n}都是等差数列,故为真命题,故选:D【点评】本题考查了等差数列的性质和定义,以及命题的真假,属于基础题.5.(5分)(2017•徐汇区校级模拟)一给定函数y=f(x)的图象在下列图中,并且对任意a1∈(0,1),由关系式a n+1=f(a n)得到的数列{a n}满足a n+1>a n,n∈N*,则该函数的图象是()A.B.C.D.【考点】81:数列的概念及简单表示法.【专题】31 :数形结合;51 :函数的性质及应用.=f(a n)得到的数列{a n}满足a n+1>a n(n∈N*),根据点与【分析】由关系式a n+1直线之间的位置关系,我们不难得到,f(x)的图象在y=x上方.逐一分析不难得到正确的答案.=f(a n)>a n知:f(x)的图象在y=x上方.【解答】解:由a n+1故选:A.【点评】本题考查了数列与函数的单调性、数形结合思想方法,考查了推理能力与计算能力,属于基础题.6.(5分)(2017•河东区二模)若数列{a n},{b n}的通项公式分别为a n=(﹣1)n+2016•a,b n=2+,且a n<b n,对任意n∈N*恒成立,则实数a的取值范围是()A.B.[﹣1,1)C.[﹣2,1)D.【考点】82:数列的函数特性.【专题】32 :分类讨论;35 :转化思想;54 :等差数列与等比数列;59 :不等式的解法及应用.【分析】由a n=(﹣1)n+2016•a,b n=2+,且a n<b n,对任意n∈N*恒成立,可得:(﹣1)n+2016•a<2+,对n分类讨论即可得出.【解答】解:a n=(﹣1)n+2016•a,b n=2+,且a n<b n,对任意n∈N*恒成立,∴(﹣1)n+2016•a<2+,n为偶数时:化为a<2﹣,则a<.n为奇数时:化为﹣a<2+,则a≥﹣2.则实数a的取值范围是.故选:D【点评】本题考查了数列通项公式、分类讨论方法、数列的单调性,考查了推理能力与计算能力,属于中档题.7.(5分)(2017•宝清县一模)数列{a n}是正项等比数列,{b n}是等差数列,且a6=b7,则有()A.a3+a9≤b4+b10B.a3+a9≥b4+b10C.a3+a9≠b4+b10D.a3+a9与b4+b10大小不确定【考点】82:数列的函数特性.【专题】54 :等差数列与等比数列.【分析】由于{b n}是等差数列,可得b4+b10=2b7.已知a6=b7,于是b4+b10=2a6.由于数列{a n}是正项等比数列,可得a3+a9=≥=2a6.即可得出.【解答】解:∵{b n}是等差数列,∴b4+b10=2b7,∵a6=b7,∴b4+b10=2a6,∵数列{a n}是正项等比数列,∴a3+a9=≥=2a6,∴a3+a9≥b4+b10.【点评】本题考查了等差数列与等比数列的性质、基本不等式的性质,属于中档题.8.(5分)(2017•湖北模拟)已知数列{a n}满足:a1=1,a n+1=(n∈N*)若(n∈N*),b1=﹣λ,且数列{b n}是单调递增数列,则实数λ的取值范围是()A.B.λ<1C.D.【考点】82:数列的函数特性.【专题】11 :计算题;35 :转化思想;4O:定义法;54 :等差数列与等比数列.【分析】根据数列的递推公式可得数列{+1}是等比数列,首项为+1=2,公=(n﹣2λ)•2n,根据数列的单调性即可求出λ的范围.比为2,再代值得到b n+1【解答】解:∵数列{a n}满足:a1=1,a n+1=(n∈N*),∴=+1,化为+1=+2∴数列{+1}是等比数列,首项为+1=2,公比为2,∴+1=2n,=(n﹣2λ)(+1)=(n﹣2λ)•2n,∴b n+1∵数列{b n}是单调递增数列,>b n,∴b n+1∴(n﹣2λ)•2n>(n﹣1﹣2λ)•2n﹣1,解得λ<1,但是当n=1时,b2>b1,∵b1=﹣λ,∴(1﹣2λ)•2>﹣λ,故选:A.【点评】本题考查了变形利用等比数列的通项公式的方法、单调递增数列,考查了推理能力与计算能力,属于中档题.9.(5分)(2017•海淀区校级模拟)设△A n B n C n的三边长分别是a n,b n,c n,△A nB nC n的面积为S n,n∈N*,若b1>c1,b1+c1=2a1,b n+1=,则()A.{S n}为递减数列B.{S n}为递增数列C.{S2n﹣1}为递增数列,{S2n}为递减数列D.{S2n﹣1}为递减数列,{S2n}为递增数列【考点】82:数列的函数特性.【专题】54 :等差数列与等比数列;58 :解三角形;59 :不等式的解法及应用.【分析】由a n=a n可知△A n B n C n的边B n C n为定值a1,由b n+1+c n+1﹣2a1=(b n+c n+1﹣2a n),b1+c1=2a1得b n+c n=2a1,则在△A n B n C n中边长B n C n=a1为定值,另两边A n C n、A n B n的长度之和b n+c n=2a1为定值,由此可知顶点A n在以B n、C n为焦点的椭圆上,根据b n﹣c n+1=(c n﹣b n),得b n﹣c n=,可知n→+∞时b n→c n,+1据此可判断△A n B n C n的边B n C n的高h n随着n的增大而增大,再由三角形面积公式可得到答案.【解答】解:b1=2a1﹣c1且b1>c1,∴2a1﹣c1>c1,∴a1>c1,∴b1﹣a1=2a1﹣c1﹣a1=a1﹣c1>0,∴b1>a1>c1,又b1﹣c1<a1,∴2a1﹣c1﹣c1<a1,∴2c1>a1,∴c1,+c n+1=+a n,∴b n+1+c n+1﹣2a n=(b n+c n﹣2a n),由题意,b n+1∴b n+c n﹣2a n=0,∴b n+c n=2a n=2a1,∴b n+c n=2a1,﹣c n+1=,又由题意,b n+1∴b n﹣(2a1﹣b n+1)==a1﹣b n,b n+1﹣a1=(a1﹣b n)=(b1 +1﹣a1).∴b n=a1+(b1﹣a1),c n=2a1﹣b n=a1﹣(b1﹣a1),=•=单调递增.可得{S n}单调递增.故选:B.【点评】本题主要考查由数列递推式求数列通项、三角形面积海伦公式,综合考查学生分析解决问题的能力,有较高的思维抽象度,属于难题.10.(5分)(2017•汉中二模)《张丘建算经》是我国南北朝时期的一部重要数学著作,书中系统的介绍了等差数列,同类结果在三百多年后的印度才首次出现.书中有这样一个问题,大意为:某女子善于织布,后一天比前一天织的快,而且每天增加的数量相同,已知第一天织布5尺,一个月(按30天计算)总共织布390尺,问每天增加的数量为多少尺?该问题的答案为()A.尺B.尺C.尺D.尺【考点】84:等差数列的通项公式.【专题】11 :计算题;34 :方程思想;4O:定义法;54 :等差数列与等比数列.【分析】由题意,该女子从第一天起,每天所织的布的长度成等差数列,其公差为d,由等差数列的前n项和公式能求出公差.【解答】解:由题意,该女子从第一天起,每天所织的布的长度成等差数列,记为:a1,a2,a3,…,a n,其公差为d,则a1=5,S30=390,∴=390,∴d=.故选:B.【点评】本题查等差数列的公差的求法,是基础题,解题时要认真审题,注意等差数列的性质的合理运用.11.(5分)(2017•徐水县模拟)已知数列{a n}为等差数列,S n其前n项和,且a2=3a4﹣6,则S9等于()A.25B.27C.50D.54【考点】84:等差数列的通项公式.【专题】11 :计算题.【分析】由题意得a2=3a4﹣6,所以得a5=3.所以由等差数列的性质得S9=9a5=27.【解答】解:设数列{a n}的首项为a1,公差为d,因为a2=3a4﹣6,所以a1+d=3(a1+3d)﹣6,所以a5=3.所以S9=9a5=27.故选B.【点评】解决此类题目的关键是熟悉等差数列的性质并且灵活利用性质解题.12.(5分)(2017•安徽模拟)《九章算术》是我国古代的数字名著,书中《均属章》有如下问题:“今有五人分五钱,令上二人所得与下三人等.问各德几何.”其意思为“已知A、B、C、D、E五人分5钱,A、B两人所得与C、D、E三人所得相同,且A、B、C、D、E每人所得依次成等差数列.问五人各得多少钱?”(“钱”是古代的一种重量单位).在这个问题中,E所得为()A.钱B.钱C.钱D.钱【考点】84:等差数列的通项公式.【专题】11 :计算题;21 :阅读型;33 :函数思想;51 :函数的性质及应用;54 :等差数列与等比数列.【分析】设A=a﹣4d,B=a﹣3d,C=a﹣2d,D=a﹣d,E=a,列出方程组,能求出E所得.【解答】解:由题意:设A=a﹣4d,B=a﹣3d,C=a﹣2d,D=a﹣d,E=a,则,解得a=,故E所得为钱.故选:A.【点评】本题考查函数值的求法,是基础题,解题时要认真审题,注意函数性质、等差数列的性质的合理运用.13.(5分)(2017•南开区模拟)已知等差数列{a n}的前n项和为s n,且S2=10,S5=55,则过点P(n,a n),Q(n+2,a n+2)(n∈N*)的直线的斜率为()A.4B.C.﹣4D.﹣【考点】84:等差数列的通项公式.【专题】54 :等差数列与等比数列.【分析】设出等差数列的首项和公差,由已知列式求得首项和公差,代入两点求直线的斜率公式得答案.【解答】解:设等差数列{a n}的首项为a1,公差为d,由S2=10,S5=55,得,解得:.∴过点P(n,a n),Q(n+2,a n+2)的直线的斜率为k=.故选:A.【点评】本题考查等差数列的通项公式,考查等差数列的前n项和,训练了两点求直线的斜率公式,是基础题.14.(5分)(2017•枣阳市校级模拟)已知等差数列{a n}的前n项和为S n,且S3=9,a2a4=21,数列{b n}满足,若,则n的最小值为()A.6B.7C.8D.9【考点】84:等差数列的通项公式.【专题】34 :方程思想;35 :转化思想;54 :等差数列与等比数列;59 :不等式的解法及应用.【分析】设等差数列{a n}的公差为d,由S3=9,a2a4=21,可得3a1+d=9,(a1+d)(a1+3d)=21,可得a n.由数列{b n}满足,利用递推关系可得:=.对n取值即可得出.【解答】解:设等差数列{a n}的公差为d,∵S3=9,a2a4=21,∴3a1+d=9,(a1+d)(a1+3d)=21,联立解得:a1=1,d=2.∴a n=1+2(n﹣1)=2n﹣1.∵数列{b n}满足,∴n=1时,=1﹣,解得b1=.n≥2时,+…+=1﹣,∴=.∴b n=.若,则<.n=7时,>.n=8时,<.因此:,则n的最小值为8.故选:C.【点评】本题考查了等差数列通项公式与求和公式、数列递推关系及其单调性,考查了推理能力与计算能力,属于中档题.15.(5分)(2017•安徽一模)已知函数f(x)的图象关于x=﹣1对称,且f(x)在(﹣1,+∞)上单调,若数列{a n}是公差不为0的等差数列,且f(a50)=f(a51),则{a n}的前100项的和为()A.﹣200B.﹣100C.﹣50D.0【考点】84:等差数列的通项公式.【专题】11 :计算题;35 :转化思想;4O:定义法;54 :等差数列与等比数列.【分析】由函数图象关于x=﹣1对称,由题意可得a50+a51=﹣2,运用等差数列的性质和求和公式,计算即可得到所求和.【解答】解:函数f(x)的图象关于x=﹣1对称,数列{a n}是公差不为0的等差数列,且f(a50)=f(a51),可得a50+a51=﹣2,又{a n}是等差数列,所以a1+a100=a50+a51=﹣2,则{a n}的前100项的和为=﹣100故选:B.【点评】本题考查函数的对称性及应用,考查等差数列的性质,以及求和公式,考查运算能力,属于中档题.二.填空题(共5小题,满分25分,每小题5分)16.(5分)(2017•江苏)等比数列{a n}的各项均为实数,其前n项为S n,已知S3=,S6=,则a8=32.【考点】88:等比数列的通项公式.【专题】34 :方程思想;35 :转化思想;54 :等差数列与等比数列.【分析】设等比数列{a n}的公比为q≠1,S3=,S6=,可得=,=,联立解出即可得出.【解答】解:设等比数列{a n}的公比为q≠1,∵S3=,S6=,∴=,=,解得a1=,q=2.则a8==32.故答案为:32.【点评】本题考查了等比数列的通项公式与求和公式,考查了推理能力与计算能力,属于中档题.17.(5分)(2017•新课标Ⅱ)等差数列{a n}的前n项和为S n,a3=3,S4=10,则=.【考点】8E:数列的求和;85:等差数列的前n项和.【专题】11 :计算题;35 :转化思想;49 :综合法;54 :等差数列与等比数列.【分析】利用已知条件求出等差数列的前n项和,然后化简所求的表达式,求解即可.【解答】解:等差数列{a n}的前n项和为S n,a3=3,S4=10,S4=2(a2+a3)=10,可得a2=2,数列的首项为1,公差为1,S n=,=,则=2[1﹣++…+]=2(1﹣)=.故答案为:.【点评】本题考查等差数列的求和,裂项消项法求和的应用,考查计算能力.18.(5分)(2017•汕头三模)“中国剩余定理”又称“孙子定理”.1852年英国来华传教伟烈亚利将《孙子算经》中“物不知数”问题的解法传至欧洲1874年,英国数学家马西森指出此法符合1801年由高斯得出的关于同余式解法的一般性定理,因而西方称之为“中国剩余定理”.“中国剩余定理”讲的是一个关于整除的问题,现有这样一个整除问题:将2至2017这2016个数中能被3除余1且被5除余1的数按由小到大的顺序排成一列,构成数列{a n},则此数列的项数为134.【考点】81:数列的概念及简单表示法.【专题】11 :计算题;35 :转化思想;4R:转化法;54 :等差数列与等比数列.【分析】由能被3除余1且被5除余1的数就是能被15整除余1的数,运用等差数列通项公式,以及解不等式即可得到所求项数.【解答】解:由能被3除余1且被5除余1的数就是能被15整除余1的数,故a n=15n﹣14.由a n=15n﹣14≤2017得n≤135,∵当n=1时,符合要求,但是该数列是从2开始的,故此数列的项数为135﹣1=134.故答案为:134【点评】本题考查数列模型在实际问题中的应用,考查等差数列的通项公式的运用,考查运算能力,属于基础题19.(5分)(2017•闵行区一模)已知无穷数列{a n},a1=1,a2=2,对任意n∈N*,=a n,数列{b n}满足b n+1﹣b n=a n(n∈N*),若数列中的任意一项都在有a n+2该数列中重复出现无数次,则满足要求的b1的值为2.【考点】81:数列的概念及简单表示法.【专题】35 :转化思想;48 :分析法;5M :推理和证明.【分析】依题意数列{a n}是周期数咧,则可写出数列{a n}的通项,由数列{b n}满足b n﹣b n=a n(n∈N*),可推出b n+1﹣b n=a n=⇒,,+1,,…要使数列中的任意一项都在该数列中重复出现无数次,则b2=b6=b10=…=b2n﹣1,b4=b8=b12=…=b4n,可得b8=b4=3即可,【解答】解:a1=1,a2=2,对任意n∈N*,有a n+2=a n,∴a3=a1=1,a4=a2=2,a5=a3=a1=1,∴a n=﹣b n=a n=,∴b n+1﹣b2n+1=a2n+1=1,b2n+1﹣b2n=a2n=2,∴b2n+2﹣b2n=3,b2n+1﹣b2n﹣1=3∴b2n+2∴b3﹣b1=b5﹣b3=…=b2n+1﹣b2n﹣1=3,b4﹣b2=b6﹣b4=b8﹣b6=…=b2n﹣b2n﹣2=3,b2﹣b1=1,,,,,,,…,=b4n﹣2∵数列中的任意一项都在该数列中重复出现无数次,∴b2=b6=b10=…=b4n﹣2,b4=b8=b12=…=b4n,解得b8=b4=3,b2=3,∵b2﹣b1=1,∴b1=2,故答案为:2【点评】本题考查了数列的推理与证明,属于难题.20.(5分)(2017•青浦区一模)设数列{a n}的通项公式为a n=n2+bn,若数列{a n}是单调递增数列,则实数b的取值范围为(﹣3,+∞).【考点】82:数列的函数特性.【专题】35 :转化思想;54 :等差数列与等比数列;59 :不等式的解法及应用.【分析】数列{a n}是单调递增数列,可得∀n∈N*,a n+1>a n,化简整理,再利用数列的单调性即可得出.【解答】解:∵数列{a n}是单调递增数列,∴∀n∈N*,a n>a n,+1(n+1)2+b(n+1)>n2+bn,化为:b>﹣(2n+1),∵数列{﹣(2n+1)}是单调递减数列,∴n=1,﹣(2n+1)取得最大值﹣3,∴b>﹣3.即实数b的取值范围为(﹣3,+∞).故答案为:(﹣3,+∞).【点评】本题考查了数列的单调性及其通项公式、不等式的解法,考查了推理能力与计算能力,属于中档题.三.解答题(共5小题,满分50分,每小题10分)21.(10分)(2017•江苏)对于给定的正整数k ,若数列{a n }满足:a n ﹣k +a n ﹣k +1+…+a n ﹣1+a n +1+…+a n +k ﹣1+a n +k =2ka n 对任意正整数n (n >k )总成立,则称数列{a n }是“P (k )数列”.(1)证明:等差数列{a n }是“P (3)数列”;(2)若数列{a n }既是“P (2)数列”,又是“P (3)数列”,证明:{a n }是等差数列.【考点】8B :数列的应用.【专题】23 :新定义;35 :转化思想;4R :转化法;54 :等差数列与等比数列.【分析】(1)由题意可知根据等差数列的性质,a n ﹣3+a n ﹣2+a n ﹣1+a n +1+a n +2+a n +3=(a n ﹣3+a n +3)+(a n ﹣2+a n +2)+(a n ﹣1+a n +1)═2×3a n ,根据“P (k )数列”的定义,可得数列{a n }是“P (3)数列”;(2)由已知条件结合(1)中的结论,可得到{a n }从第3项起为等差数列,再通过判断a 2与a 3的关系和a 1与a 2的关系,可知{a n }为等差数列.【解答】解:(1)证明:设等差数列{a n }首项为a 1,公差为d ,则a n =a 1+(n ﹣1)d ,则a n ﹣3+a n ﹣2+a n ﹣1+a n +1+a n +2+a n +3,=(a n ﹣3+a n +3)+(a n ﹣2+a n +2)+(a n ﹣1+a n +1),=2a n +2a n +2a n ,=2×3a n ,∴等差数列{a n }是“P (3)数列”;(2)证明:当n ≥4时,因为数列{a n }是P (3)数列,则a n ﹣3+a n ﹣2+a n ﹣1+a n +1+a n +2+a n +3=6a n ,①,因为数列{a n }是“P (2)数列”,所以a n ﹣3+a n ﹣3+a n +a n +1=4a n ﹣1,②,a n ﹣1+a n +a n +2+a n +3=4a n +1,③,②+③﹣①,得2a n =4a n ﹣1+4a n +1﹣6a n ,即2a n =a n ﹣1+a n +1,(n ≥4),因此n ≥4从第3项起为等差数列,设公差为d ,注意到a 2+a 3+a 5+a 6=4a 4, 所以a 2=4a 4﹣a 3﹣a 5﹣a 6=4(a 3+d )﹣a 3﹣(a 3+2d )﹣(a 3+3d )=a 3﹣d ,因为a1+a2+a4+a5=4a3,所以a1=4a3﹣a2﹣a4﹣a5=4(a2+d)﹣a2﹣(a2+2d)﹣(a2+3d)=a2﹣d,也即前3项满足等差数列的通项公式,所以{a n}为等差数列.【点评】本题考查等差数列的性质,考查数列的新定义的性质,考查数列的运算,考查转化思想,属于中档题.22.(10分)(2017•北京)设{a n}和{b n}是两个等差数列,记c n=max{b1﹣a1n,b2﹣a2n,…,b n﹣a n n}(n=1,2,3,…),其中max{x1,x2,…,x s}表示x1,x2,…,x s这s个数中最大的数.(1)若a n=n,b n=2n﹣1,求c1,c2,c3的值,并证明{c n}是等差数列;(2)证明:或者对任意正数M,存在正整数m,当n≥m时,>M;或者存在正整数m,使得c m,c m+1,c m+2,…是等差数列.【考点】8B:数列的应用;8C:等差关系的确定.【专题】32 :分类讨论;4R:转化法;54 :等差数列与等比数列.【分析】(1)分别求得a1=1,a2=2,a3=3,b1=1,b2=3,b3=5,代入即可求得c1,c2,c3;由(b k﹣na k)﹣(b1﹣na1)≤0,则b1﹣na1≥b k﹣na k,则c n=b1﹣na1=1﹣c n=﹣1对∀n∈N*均成立;﹣n,c n+1(2)由b i﹣a i n=[b1+(i﹣1)d1]﹣[a1+(i﹣1)d2]×n=(b1﹣a1n)+(i﹣1)(d2﹣d1×n),分类讨论d1=0,d1>0,d1<0三种情况进行讨论根据等差数列的性质,即可求得使得c m,c m+1,c m+2,…是等差数列;设=An+B+对任意正整数M,存在正整数m,使得n≥m,>M,分类讨论,采用放缩法即可求得因此对任意正数M,存在正整数m,使得当n≥m时,>M.【解答】解:(1)a1=1,a2=2,a3=3,b1=1,b2=3,b3=5,当n=1时,c1=max{b1﹣a1}=max{0}=0,当n=2时,c2=max{b1﹣2a1,b2﹣2a2}=max{﹣1,﹣1}=﹣1,当n=3时,c3=max{b1﹣3a1,b2﹣3a2,b3﹣3a3}=max{﹣2,﹣3,﹣4}=﹣2,下面证明:对∀n∈N*,且n≥2,都有c n=b1﹣na1,当n∈N*,且2≤k≤n时,则(b k﹣na k)﹣(b1﹣na1),=[(2k﹣1)﹣nk]﹣1+n,=(2k﹣2)﹣n(k﹣1),=(k﹣1)(2﹣n),由k﹣1>0,且2﹣n≤0,则(b k﹣na k)﹣(b1﹣na1)≤0,则b1﹣na1≥b k﹣na k,因此,对∀n∈N*,且n≥2,c n=b1﹣na1=1﹣n,c n+1﹣c n=﹣1,∴c2﹣c1=﹣1,∴c n﹣c n=﹣1对∀n∈N*均成立,+1∴数列{c n}是等差数列;(2)证明:设数列{a n}和{b n}的公差分别为d1,d2,下面考虑的c n取值,由b1﹣a1n,b2﹣a2n,…,b n﹣a n n,考虑其中任意b i﹣a i n,(i∈N*,且1≤i≤n),则b i﹣a i n=[b1+(i﹣1)d1]﹣[a1+(i﹣1)d2]×n,=(b1﹣a1n)+(i﹣1)(d2﹣d1×n),下面分d1=0,d1>0,d1<0三种情况进行讨论,①若d1=0,则b i﹣a i n═(b1﹣a1n)+(i﹣1)d2,当若d2≤0,则(b i﹣a i n)﹣(b1﹣a1n)=(i﹣1)d2≤0,则对于给定的正整数n而言,c n=b1﹣a1n,此时c n+1﹣c n=﹣a1,∴数列{c n}是等差数列;当d2>0,(b i﹣a i n)﹣(b n﹣a n n)=(i﹣n)d2>0,则对于给定的正整数n而言,c n=b n﹣a n n=b n﹣a1n,﹣c n=d2﹣a1,此时c n+1∴数列{c n}是等差数列;此时取m=1,则c1,c2,…,是等差数列,命题成立;②若d1>0,则此时﹣d1n+d2为一个关于n的一次项系数为负数的一次函数,故必存在m∈N*,使得n≥m时,﹣d1n+d2<0,则当n≥m时,(b i﹣a i n)﹣(b1﹣a1n)=(i﹣1)(﹣d1n+d2)≤0,(i∈N*,1≤i≤n),因此当n≥m时,c n=b1﹣a1n,此时c n﹣c n=﹣a1,故数列{c n}从第m项开始为等差数列,命题成立;+1③若d1<0,此时﹣d1n+d2为一个关于n的一次项系数为正数的一次函数,故必存在s∈N*,使得n≥s时,﹣d1n+d2>0,则当n≥s时,(b i﹣a i n)﹣(b n﹣a n n)=(i﹣1)(﹣d1n+d2)≤0,(i∈N*,1≤i ≤n),因此,当n≥s时,c n=b n﹣a n n,此时==﹣a n+,=﹣d2n+(d1﹣a1+d2)+,令﹣d1=A>0,d1﹣a1+d2=B,b1﹣d2=C,下面证明:=An+B+对任意正整数M,存在正整数m,使得n≥m,>M,若C≥0,取m=[+1],[x]表示不大于x的最大整数,当n≥m时,≥An+B≥Am+B=A[+1]+B>A•+B=M,此时命题成立;若C<0,取m=[]+1,当n≥m时,≥An+B+≥Am+B+C>A•+B+C≥M﹣C﹣B+B+C=M,此时命题成立,因此对任意正数M,存在正整数m,使得当n≥m时,>M;综合以上三种情况,命题得证.【点评】本题考查数列的综合应用,等差数列的性质,考查与不等式的综合应用,考查“放缩法”的应用,考查学生分析问题及解决问题的能力,考查分类讨论及转化思想,考查计算能力,属于难题.23.(10分)(2017•北京)已知等差数列{a n}和等比数列{b n}满足a1=b1=1,a2+a4=10,b2b4=a5.(Ⅰ)求{a n}的通项公式;(Ⅱ)求和:b1+b3+b5+…+b2n﹣1.【考点】8E:数列的求和;8M:等差数列与等比数列的综合.【专题】11 :计算题;35 :转化思想;49 :综合法;54 :等差数列与等比数列.【分析】(Ⅰ)利用已知条件求出等差数列的公差,然后求{a n}的通项公式;(Ⅱ)利用已知条件求出公比,然后求解数列的和即可.【解答】解:(Ⅰ)等差数列{a n},a1=1,a2+a4=10,可得:1+d+1+3d=10,解得d=2,所以{a n}的通项公式:a n=1+(n﹣1)×2=2n﹣1.(Ⅱ)由(Ⅰ)可得a5=a1+4d=9,等比数列{b n}满足b1=1,b2b4=9.可得b3=3,或﹣3(舍去)(等比数列奇数项符号相同).∴q2=3,}是等比数列,公比为3,首项为1.{b2n﹣1b1+b3+b5+…+b2n﹣1==.【点评】本题考查等差数列与等比数列的应用,数列求和以及通项公式的求解,考查计算能力.24.(10分)(2017•新课标Ⅰ)记S n为等比数列{a n}的前n项和.已知S2=2,S3=﹣6.(1)求{a n}的通项公式;(2)求S n,并判断S n+1,S n,S n+2是否成等差数列.【考点】8E:数列的求和;89:等比数列的前n项和.【专题】35 :转化思想;4R:转化法;54 :等差数列与等比数列.【分析】(1)由题意可知a3=S3﹣S2=﹣6﹣2=﹣8,a1==,a2==,由a1+a2=2,列方程即可求得q及a1,根据等比数列通项公式,即可求得{a n}的通项公式;(2)由(1)可知.利用等比数列前n项和公式,即可求得S n,分别求得S n+1,S n+2,显然S n+1+S n+2=2S n,则S n+1,S n,S n+2成等差数列.。
2019-2020学年高中数学人教A版必修5练习:第二章 2.2 等差数列 第一课时 等差数列的概念及通项公式 课下检
一、选择题1.{a n }是首项a 1=1,公差d =3的等差数列,如果a n =2 011,则序号n 等于( ) A .668 B .669 C .670D .671解析:∵a n =a 1+(n -1)·d , ∴2 011=1+(n -1)×3,n =671. 答案:D2.等差数列{a n }的公差d <0,且a 2·a 4=12,a 2+a 4=8,则数列{a n }的通项公式是( ) A .a n =2n -2(n ∈N *) B .a n =2n +4(n ∈N *) C .a n =-2n +12(n ∈N *) D .a n =-2n +10(n ∈N *) 解析:由⎩⎪⎨⎪⎧a2·a4=12,a2+a4=8,d<0,⇒⎩⎪⎨⎪⎧ a2=6,a4=2,⇒⎩⎪⎨⎪⎧a1=8,d =-2,所以a n =a 1+(n -1)d =8+(n -1)(-2). 即a n =-2n +10. 答案:D3.设x 是a 与b 的等差中项,x 2是a 2与-b 2的等差中项,则a 、b 的关系是( ) A .a =-bB .a =3bC .a =-b 或a =3bD .a =b =0解析:由等差中项的定义知:x =a +b 2,x 2=a2-b22, ∴a2-b22=(a +b 2)2,即a 2-2ab -3b 2=0. 故a =-b 或a =3b . 答案:C4.在数列{a n }中,a 1=2,2a n +1=2a n +1,则a 101的值是( ) A .52 B .51 C .50D .49解析:∵2a n +1=2a n +1, ∴2(a n +1-a n )=1.即a n +1-a n =12.∴{a n }是以12为公差的等差数列.a 101=a 1+(101-1)×d =2+50=52. 答案:A二、填空题5.等差数列1,-3,-7,-11,…的通项公式是________,它的第20项是________. 解析:数列中a 2=-3,a 1=1,∴d =a 2-a 1=-4. 通项公式为a n =a 1+(n -1)×d =1+(n -1)×(-4) =-4n +5, a 20=-80+5=-75. 答案:a n =-4n +5 -756.已知等差数列{a n }中,a 4=8,a 8=4,则其通项公式a n =________. 解析:∵由a 4=8,a 8=4,得⎩⎪⎨⎪⎧a1+3d =8,a1+7d =4. ∴d =-1,a 1=8-3d =11. ∴a n =a 1+(n -1)d =11-(n -1)=12-n . 答案:12-n7.等差数列{a n }中,首项为33,公差为整数,若前7项均为正数,第7项以后各项都为负数,则数列的通项公式为____________.解析:由题意,得⎩⎪⎨⎪⎧ a7=a1+6d >0,a8=a1+7d <0,即⎩⎪⎨⎪⎧33+6d >0,33+7d <0,得:-336<d <-337,又∵d ∈Z ,∴d =-5.∴a n =33+(n -1)×(-5)=38-5n . 答案:a n =38-5n (n ∈N *) 8.下表给出一个“等差矩阵”:其中每行、每列都是等差数列,a ij 表示位于第i 行第j 列的数,那么a 45=________. 解析:该等差数列第一行是首项为4,公差为3的等差数列:a 1j =4+3(j -1). 第二行是首项为7,公差为5的等差数列:a 2j =7+5(j -1).……第i 行是首项为4+3(i -1),公差为2i +1的等差数列. 因此,a ij =4+3(i -1)+(2i +1)(j -1) =2ij +i +j .故a 45=49. 答案:49 三、解答题9.已知递减等差数列{a n }的前三项和为18,前三项的乘积为66.求数列的通项公式,并判断-34是该数列的项吗?解:法一:设等差数列{a n }的前三项分别为a 1,a 2,a 3.依题意得⎩⎪⎨⎪⎧a1+a2+a3=18,a1·a2·a3=66,∴错误!解得⎩⎪⎨⎪⎧ a1=11,d =-5.或⎩⎪⎨⎪⎧a1=1,d =5.∵数列{a n }是递减等差数列,∴d <0. 故取a 1=11,d =-5,∴a n =11+(n -1)·(-5)=-5n +16 即等差数列{a n }的通项公式为a n =-5n +16. 令a n =-34,即-5n +16=-34,得n =10. ∴-34是数列{a n }的项,且为第10项. 法二:设等差数列{a n }的前三项依次为: a -d ,a ,a +d , 则错误!解得错误!又∵{a n }是递减等差数列,即d <0. ∴取a =6,d =-5.∴{a n }的首项a 1=11,公差d =-5. ∴通项公式a n =11+(n -1)·(-5), 即a n =-5n +16. 令a n =-34,解得n =10.即-34是数列{a n }的项,且为第10项.10.数列{a n }满足a 1=1,a n +1=(n 2+n -λ)a n (n =1,2,…),λ是常数. (1)当a 2=-1时,求λ及a 3的值;(2)是否存在实数λ使数列{a n }为等差数列?若存在,求出λ及数列{a n }的通项公式;若不存在,请说明理由.解:(1)由于a n +1=(n 2+n -λ)a n (n =1,2,…), 且a 1=1.所以当a 2=-1时,得-1=2-λ,故λ=3.从而a3=(22+2-3)×(-1)=-3.(2)数列{a n}不可能为等差数列,证明如下:由a1=1,a n+1=(n2+n-λ)a n,得a2=2-λ,a3=(6-λ)(2-λ),a4=(12-λ)(6-λ)(2-λ).若存在λ,使{a n}为等差数列,则a3-a2=a2-a1,即(5-λ)(2-λ)=1-λ,解得λ=3.于是a2-a1=1-λ=-2,a4-a3=(11-λ)(6-λ)(2-λ)=-24.这与{a n}为等差数列矛盾.所以,不存在λ使{a n}是等差数列.。
高中数学第二章数列训练卷(一)新人教A版必修5(2021年整理)
2018-2019学年高中数学 第二章 数列训练卷(一)新人教A 版必修51 / 1312018-2019学年高中数学 第二章 数列训练卷(一)新人教A 版必修5编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2018-2019学年高中数学 第二章 数列训练卷(一)新人教A 版必修5)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快 业绩进步,以下为2018-2019学年高中数学 第二章 数列训练卷(一)新人教A 版必修5的全部内容。
数列(一)注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
2.选择题的作答:每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效.3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4.考试结束后,请将本试题卷和答题卡一并上交。
一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.在数列{}na中,12=a,1=221n na a++,则101a的值为( )A.49 B.50 C.51D.522.已知等差数列{}na中,7916a a+=,41a=,则12a的值是( ) A.15 B.30 C.31D.643.等比数列{}na中,29a=,5243a=,则{}n a的前4项和为( )A.81 B.120 C.168D.1924.等差数列{}na中,12324a a a++=-,18192078a a a++=,则此数列前20项和等于()A.160 B.180 C.200D.2205.数列{}na中,37 ()na n n+=∈N-,数列{}n b满足113b=,1(72)2n nb b n n+≥=∈N-且,若logn k na b+为常数,则满足条件的k值()A.唯一存在,且为132 / 1323 / 133B .唯一存在,且为3C .存在且不唯一D .不一定存在6.等比数列{}n a 中,2a ,6a 是方程234640x x +=-的两根,则4a 等于( ) A .8 B .8-C .8±D .以上都不对7.若{}n a 是等比数列,其公比是q ,且5a -,4a ,6a 成等差数列,则q 等于( ) A .1或2 B .1或2- C.1-或2D .1-或2-8.设等比数列{}n a 的前n 项和为n S ,若105:1:2S S =,则155:S S 等于( ) A .3:4 B .2:3 C.1:2D .1:39.已知等差数列{}n a 的公差0d ≠且1a ,3a ,9a 成等比数列,则1392410a a a a a a ++++等于( )A .1514B .1213C.1316D .151610.已知{}n a 为等差数列,135105a a a ++=,24699a a a ++=,以n S 表示{}n a 的前n 项和,则使得n S 达到最大值的n 是( ) A .21 B .20 C.19D .1811.设{}n a 是任意等比数列,它的前n 项和,前2n 项和与前3n 项和分别为X ,Y ,Z ,则下列等式中恒成立的是( )A .2X Z Y +=B .()()Y Y X Z Z X =--C .2Y XZ =D .()()Y Y X X Z X =--12.已知数列1,12,21,13,22,31,14,23,32,41,…,则56是数列中的( ) A .第48项 B .第49项 C .第50项D .第51项二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上)1311的等比中项是________.4 / 13414.已知在等差数列{}n a 中,首项为23,公差是整数,从第七项开始为负项, 则公差为______.15.“嫦娥奔月,举国欢庆”,据科学计算,运载“神六”的“长征二号”系列火箭,在点火第一秒钟通过的路程为2 km ,以后每秒钟通过的路程都增加2 km ,在达到离地面240 km 的高度时,火箭与飞船分离,则这一过程大约需要的时间是______秒.16.等比数列{}n a 的公比为q ,其前n 项的积为n T ,并且满足条件11a >,9910010a a ->,99100101a a -<-.给出下列结论:①01q <<;②9910110a a -<;③100T 的值是n T 中最大的;④使1n T >成立的最大自然数n 等于198.其中正确的结论是________.(填写所有正确的序号)三、解答题(本大题共6个小题,共70分,解答应写出文字说明,证明过程或演算步骤)17.(10分)已知{}n a 为等差数列,且36a =-,60a =.(1)求{}n a 的通项公式;(2)若等比数列{}n b 满足18b =-,2123b a a a =++,求{}n b 的前n 项和公式.5 / 13518.(12分)已知等差数列{}n a 中,3716a a =-,460a a +=,求{}n a 的前n 项和S n .19.(12分)已知数列{}2log 1()() n a n *∈N -为等差数列,且13a =,39a =.(1)求数列{}n a 的通项公式;6 / 136(2)证明:213211111n na a a a a a ++++<---.20.(12分)在数列{}n a 中,11a =,122n n n a a =++. (1)设12n n n a b -=.证明:数列{}n b 是等差数列;(2)求数列{}n a 的前n 项和.7 / 13721.(12分)已知数列{}n a 的前n项和为n S ,且11a =,11,2,1(,)23n n a S n +==. (1)求数列{}n a 的通项公式; (2)当()132log 3n n b a =+时,求证:数列11n n b b +⎧⎫⎨⎬⎩⎭的前n 项和1n T nn =+.8 / 13822.(12分)已知数列{}n a 的各项均为正数,对任意n *∈N ,它的前n 项和n S 满足1()()612n n n S a a =++,并且2a ,4a ,9a 成等比数列. (1)求数列{}n a 的通项公式;(2)设11()1n n n n b a a ++=-,n T 为数列{}n b 的前n 项和,求2n T .2018-2019学年必修五第二章训练卷数列(一)答 案一、选择题 1.【答案】D【解析】由1=221n n a a ++得11=2n n a a -+,∴{}n a 是等差数列首项12=a ,公差1=2d ,∴13212)2(n n a n =++-=,∴1011013522a +==.故选D . 2.【答案】A【解析】在等差数列{}n a 中,79412a a a a +=+, ∴1216115a =-=.故选A . 3.【答案】B【解析】由352a a q =得3q =.∴213a a q==,44411133120113q S a q --=⨯=--=.故选B . 4.【答案】B 【解析】∵123181920120219318()()()()()a a a a a a a a a a a a +++++=+++++120()3247854a a +=+=-=,∴12018a a +=.∴12020201802S a a +==.故选B . 5.【答案】B【解析】依题意,133213111127333n n n n b b ---⎛⎫⎛⎫⎛⎫=⋅=⋅= ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭,∴32log 37log 11()3373l g 32o n n k n k ka b n n n -⎛⎫+== ⎪⎭+⎝-+-- 1133log 372log 3k k n ⎛⎫--=+ ⎪⎝⎭, ∵log n k n a b +是常数,∴133log 03k +=,即log 31k =,∴3k =.故选B .6.【答案】A【解析】∵2634a a +=,2664a a ⋅=,∴2464a =, ∵a 2>0,a 6>0,∴a 4=a 2q 2>0,∴a 4=8.故选A . 7.【答案】C【解析】依题意有4652a a a =-,即24442a a q a q =-,而40a ≠,∴220q q --=,1)20()(q q +=-.∴1q =-或2q =.故选C .8.【答案】A【解析】显然等比数列{}n a 的公比1q ≠,则由105510551111221S q q q S q -==+=⇒=--, 故3155315555111132141112S q q S q q ⋅⎛⎫-- ⎪--⎝⎭====⎛⎫---- ⎪⎝⎭.故选A . 9.【答案】C【解析】因为1239a a a =⋅,所以2111()()28a d a a d +=⋅+.所以1a d =.所以1391241013101331316a a a a d a a a a d +++==+++.故选C .10.【答案】B【解析】∵214365(())3)(a a a a a a d -+-+-=, ∴991053d -=.∴2d =-.又∵135136105a a a a d ++=+=,∴139a =. ∴()()221140204002n n n d n n na n S -=+=-+=--+.∴当20n =时,n S 有最大值.故选B . 11.【答案】D【解析】由题意知n S X =,2n S Y =,3n S Z =. 又∵{}n a 是等比数列,∴n S ,2n n S S -,32n n S S -为等比数列, 即X ,Y X -,Z Y -为等比数列, ∴2()()Y X X Z Y ⋅=--, 即222Y XY X ZX XY +-=-, ∴22=Y XY ZX X --,即()()Y Y X X Z X =--.故选D . 12.【答案】C【解析】将数列分为第1组一个,第2组二个,…,第n 组n 个,即11⎛⎫ ⎪⎝⎭,12,21⎛⎫ ⎪⎝⎭,123,,321⎛⎫ ⎪⎝⎭,…,12,,,11n n n ⎛⎫ ⎪-⎝⎭,则第n 组中每个数分子分母的和为1n +,则56为第10组中的第5个,其项数为1239)550(++++=+.故选C .二、填空题13.【答案】1±【解析】11的等比中项为a ,由等比中项的性质可知,)2111a ==,∴1a =±. 14.【答案】4- 【解析】由6723502360a d a d =+≥⎧⎨=+<⎩,解得232356d -≤<-,∵d ∈Z ,∴4d =-. 15.【答案】15【解析】设每一秒钟通过的路程依次为1a ,2a ,3a ,…,n a , 则数列{}n a 是首项12a =,公差2d =的等差数列,由求和公式得()112402n na n d -=+,即(12)240n n n +-=,解得15n =. 16.【答案】①②④【解析】①中,()()9910099100111011a a a a a ⎧--<⎪>⎨⎪>⎩⇒99100101a a >⎧⎨<<⎩100990,1()q a a =∈⇒,∴①正确.②中,29910110010099101011a a a a a a ⎧=⎪⇒⎨<<⎪⎩<,∴②正确. ③中,100991001010090901T T a a T T =⎧⇒⎨<<<⎩,∴③错误.④中,()()()()99198121981198219799100991001T a a a a a a a a a a a =>==,()()199121981991199991011001T a a a a a a a a a ⋅<==,∴④正确.三、解答题17.【答案】(1)212n a n =-;(2)()413n n S =-. 【解析】(1)设等差数列{}n a 的公差为d . ∵36a =-,60a =, ∴112650a d a d +=-⎧⎨+=⎩,解得110a =-,2d =.∴101()2212n a n n =-⨯=-=-. (2)设等比数列{}n b 的公比为q .∵212324b a a a =++=-,18b =-,∴824q -=-,3q =.∴数列{}n b 的前n 项和公式为()111413n n nS q b q-==--. 18.【答案】()9n S n n =-或(9)n S n n -=-.【解析】设{}n a 的公差为d ,则()()11112616350a d a d a d a d ++=-⎧⎪⎨+++=⎪⎩,即22111812164a da d a d⎧++=-⎪⎨=-⎪⎩, 解得182a d =-⎧⎨=⎩,或182a d =⎧⎨=-⎩.因此8()19()n S n n n n n +-=-=-,或81()9()n S n n n n n ==----. 19.【答案】(1)21n n a =+;(2)见解析.【解析】(1)解设等差数列{}2(og )l 1 n a -的公差为d . 由13a =,39a =,得22log 91log 32()(1)d --=+,则1d =. 所以2log 1111()()n a n n +-=⨯-=,即21n n a =+. (2)证明因为11111222n n nn n a a ++==--, ∴12321321111111111112221112222212n n n n n a a a a a a +-⨯+++=++++==-<----.20.【答案】(1)见解析;(2)1()21n n S n -⋅=+.【解析】(1)证明由已知122n n n a a =++,得1111122222nn n nn n n nn a b a b a +-++===+=+.∴11n n b b -=+,又111b a ==.∴{}n b 是首项为1,公差为1的等差数列. (2)解由(1)知,n b n =,12n n n n a b -==.∴12n n a n ⋅=-.∴121122322n n S n +⋅⋅+=⋅++-,两边乘以2得:()11221222122n n n S n n =++⋅+-⋅+⋅⋅-,两式相减得:12112222(21?221)1n n n n n n S n n n ++-=-=-++⋅----=,∴1()21n n S n -⋅=+.21.【答案】(1)21,1132,22n n a n n -⎛⎫≥ =⎧⎪=⨯⎪⎝⎨⎭⎪⎩;(2)见解析. 【解析】(1)解由已知()1112,212n nn n a S a Sn +-⎧=⎪⎪⎨⎪=⎪⎩≥,得()1322n n a a n +≥=.∴数列{}n a 是以2a 为首项,以32为公比的等比数列. 又121111222a S a ===,∴()22322n n a a n -⎛⎫≥ ⎪⎝⎭=⨯.∴21,1132,22n n a n n -⎛⎫≥ =⎧⎪=⨯⎪⎝⎨⎭⎪⎩. (2)证明()11log 3lo 3333=2222g n n n n b a -⎡⎤⎛⎫=⨯=⎢⎥ ⎪⎝⎭⎢⎥⎣⎦+.∴()1111111n n b b n n n n +==-++. ∴12233411111111111111122334n n n T b b b b n b b b b n +⎛⎫⎛⎫⎛⎫⎛⎫++++=-+-+-++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭=-+ 1111nn n=-=++. 22.【答案】(1)32,n a n n *=-∈N ;(2)22186n T n n -=-. 【解析】(1)∵对任意n *∈N ,有1()()612n n n S a a =++,① ∴当1n =时,有1111112()()6S a a a ==++, 解得11a =或2.当2n ≥时,有1111())62(1n n n S a a ---=++.② ①-②并整理得113()()0n n n n a a a a --+--=. 而数列{}n a 的各项均为正数,∴13n n a a --=.当11a =时,(1313)2n a n n +-=-=, 此时2249=a a a 成立;当12=a 时,23=(3=11)n a n n +--,此时2249=a a a 不成立,舍去. ∴32,n a n n *=-∈N . (2)212212233445221n n n n T b b b a a a a a a a a a a =++=-+-++-+21343522121()()()n n n a a a a a a a a a =-+-++--+242666n a a a --=-- 242(6)n a a a ++=-+246261862n nn n +-=-⨯-=-.。
人教A版高中数学必修五第二章2.2等差数列的性质同步检测题
人教A版高中数学必修五第二章2.2等差数列的性质同步检测题一、选择题1.在等差数列{a n}中,若a2=4,a4=2,则a6=()A.-1B.0C.1 D.62.已知等差数列{a n},则使数列{b n}一定为等差数列的是() A.b n=-a n B.b n=a2nC.b n=a n D.b n=1 a n3.在等差数列{a n}中,若a2=1,a6=-1,则a4=() A.-1 B.1C.0 D.-1 24.等差数列{a n}的公差d<0,且a2·a4=12,a2+a4=8,则数列{a n}的通项公式是()A.a n=2n-2(n∈N*) B.a n=2n+4(n∈N*)C.a n=-2n+12(n∈N*) D.a n=-2n+10(n∈N*)5.如果数列{a n}是等差数列,则下列式子一定成立的有()A.a1+a8<a4+a5B.a1+a8=a4+a5C.a1+a8>a4+a5D.a1a8=a4a56.已知数列{a n}为等差数列且a1+a7+a13=4π,则tan(a2+a12)的值为() A. 3 B.±3C.-33D.- 37.等差数列{a n}中,a5+a6=4,则log2(2a1·2a2·…·2a10)=() A.10 B.20C.40 D.2+log25二、填空题8.等差数列{a n}中,a15=33,a25=66,则a35=________.9.在等差数列{a n}中,a3+a7=37,则a2+a4+a6+a8=________.10.在等差数列{a n }中,若a 5=a ,a 10=b ,则a 15=________.11.数列{a n }满足递推关系a n =3a n -1+3n -1(n ∈N *,n ≥2),a 1=5,则使得数列 ⎭⎬⎫⎩⎨⎧+n n m a 3为等差数列的实数m 的值为________. 12.若m ≠n ,两个等差数列m ,a 1,a 2,n 与m ,b 1,b 2,b 3,n 的公差分别为d 1和d 2,则d 1d 2的值为________. 三、解答题13.梯子的最高一级宽33 cm ,最低一级宽110 cm ,中间还有10级,各级宽度依次成等差数列,计算中间各级的宽度.14.若三个数a -4,a +2,26-2a 适当排列后构成递增等差数列,求a 的值和相应的数列.15.两个等差数列5,8,11,…和3,7,11,…都有100项,问它们有多少个共同的项?16.已知数列{a n}的通项公式为a n=pn2+qn(常数p,q∈R).(1)当p和q满足什么条件时,数列{a n}是等差数列?(2)求证:对任意的实数p和q,数列{a n+1-a n}都是等差数列.人教A 版高中数学必修五第二章2.2等差数列的性质同步检测题解析一、选择题1.在等差数列{a n }中,若a 2=4,a 4=2,则a 6=( )A .-1B .0C .1D .6解析:由等差数列的性质得a 6=2a 4-a 2=2×2-4=0,选B.答案:B2.已知等差数列{a n },则使数列{b n }一定为等差数列的是( )A .b n =-a nB .b n =a 2nC .b n =a nD .b n =1a n解析:∵数列{a n }是等差数列,∴a n +1-a n =d (常数).对于A ,b n +1-b n =a n -a n +1=-d ,正确;对于B 不一定正确,如a n =n ,则b n=a 2n =n 2,显然不是等差数列;对于C 和D ,a n 及1a n不一定有意义,故选A. 答案:A3.在等差数列{a n }中,若a 2=1,a 6=-1,则a 4=( )A .-1B .1C .0D .-12解析:∵2a 4=a 2+a 6=1-1=0,∴a 4=0.答案:C4.等差数列{a n }的公差d <0,且a 2·a 4=12,a 2+a 4=8,则数列{a n }的通项公式是( )A .a n =2n -2(n ∈N *)B .a n =2n +4(n ∈N *)C .a n =-2n +12(n ∈N *)D .a n =-2n +10(n ∈N *)解析:由⎪⎩⎪⎨⎧<=+=∙,,,08124242d a a a a ⇒⎩⎨⎧==,,2642a a ⇒⎩⎨⎧-==,,281d a ∴a n =a 1+(n -1)d =8+(n -1)·(-2)=-2n +10.5.如果数列{a n }是等差数列,则下列式子一定成立的有( )A .a 1+a 8<a 4+a 5B .a 1+a 8=a 4+a 5C .a 1+a 8>a 4+a 5D .a 1a 8=a 4a 5解析:由等差数列的性质有a 1+a 8=a 4+a 5,故选B.答案:B6.已知数列{a n }为等差数列且a 1+a 7+a 13=4π,则tan(a 2+a 12)的值为() A . 3 B .±3C .-33 D .- 3解析:由等差数列的性质得a 1+a 7+a 13=3a 7=4π,∴a 7=4π3.∴tan(a 2+a 12)=tan(2a 7)=tan 8π3=tan 2π3=- 3.答案:D7.等差数列{a n }中,a 5+a 6=4,则log 2(2a 1·2a 2·…·2a 10)=( )A .10B .20C .40D .2+log 25解析:由等差数列的性质知a 1+a 2+…+a 10=5(a 5+a 6)=5×4=20,从而log 2(2a 1·2a 2·…·2a 10)=log 2220=20.答案:B二、填空题8.等差数列{a n }中,a 15=33,a 25=66,则a 35=________.解析:由a 25是a 15与a 35的等差中项知2a 25=a 15+a 35,∴a 35=2a 25-a 15=2×66-33=99.答案:999.在等差数列{a n }中,a 3+a 7=37,则a 2+a 4+a 6+a 8=________.解析:由等差数列的性质可知,a 2+a 8=a 4+a 6=a 3+a 7,∴a 2+a 4+a 6+a 8=37×2=74.10.在等差数列{a n }中,若a 5=a ,a 10=b ,则a 15=________.解析:设数列{a n }的公差为d .法一:由题意知⎩⎨⎧=+==+=,,b d a a a d a a 9411015 解得⎪⎪⎩⎪⎪⎨⎧-=-=,,55491a b d b a a∴a 15=a 1+14d =9a -4b 5+14×b -a 5=2b -a .法二:d =a 10-a 510-5=b -a 5, ∴a 15=a 10+5d =b +5×b -a 5=2b -a .法三:∵a 5,a 10,a 15成等差数列,∴a 5+a 15=2a 10.∴a 15=2a 10-a 5=2b -a .答案:2b -a11.数列{a n }满足递推关系a n =3a n -1+3n -1(n ∈N *,n ≥2),a 1=5,则使得数列⎭⎬⎫⎩⎨⎧+n n m a 3为等差数列的实数m 的值为________. 解析:由题设知a n +m 3n -a n -1+m 3n -1=3a n -1+3n -1+m 3n -a n -1+m 3n -1 =3n -1-2m 3n=1-1+2m 3n 为常数, 则1+2m =0,故m =-12.答案:-1212.若m ≠n ,两个等差数列m ,a 1,a 2,n 与m ,b 1,b 2,b 3,n 的公差分别为d 1和d 2,则d 1d 2的值为________. 解析:n -m =3d 1,d 1=13(n -m ).又n -m =4d 2,d 2=14(n -m ).∴d 1d 2=13·(n -m )14·(n -m )=43. 答案:43三、解答题13.梯子的最高一级宽33 cm ,最低一级宽110 cm ,中间还有10级,各级宽度依次成等差数列,计算中间各级的宽度.解析:由题意可设最低一级宽度为a 1,梯子的宽度依次成等差数列,设为{a n },依题意a 12=33,由a 12=a 1+(12-1)d ⇒33=110+11d ,∴d =-7,∴a n =110+(n -1)×(-7),∴a 2=103,a 3=96,a 4=89,a 5=82,a 6=75,a 7=68,a 8=61,a 9=54,a 10=47,a 11=40,故梯子中间各级的宽度依次为103,96,89,82,75,68,61,54,47,40.14.若三个数a -4,a +2,26-2a 适当排列后构成递增等差数列,求a 的值和相应的数列.解析:显然a -4<a +2,(1)若a -4,a +2,26-2a 成等差数列,则(a -4)+(26-2a )=2(a +2),∴a =6,相应的等差数列为:2,8,14.(2)若a -4,26-2a ,a +2成等差数列,则(a -4)+(a +2)=2(26-2a ),∴a =9,相应的等差数列为:5,8,11.(3)若26-2a ,a -4,a +2成等差数列,则(26-2a )+(a +2)=2(a -4),∴a =12,相应的等差数列为:2,8,14.15.两个等差数列5,8,11,…和3,7,11,…都有100项,问它们有多少个共同的项?解析:设两个数列分别为{a n }与{b k }.则a 1=5,d 1=8-5=3,通项公式a n =5+(n -1)·3=3n +2;b 1=3,d 2=7-3=4,通项公式b k =3+(k -1)·4=4k -1.设数列{a n }的第n 项与{b k }的第k 项相同, 即a n =b k ,也就是3n +2=4k -1,∴n =43k -1,而n ∈N *,k ∈N *,∴k 必须为3的倍数,设k =3r (r ∈N *),得n =4r -1.由条件知⎩⎨⎧≤-≤≤≤,,10014110031r r 解得12≤r ≤1014.又r ∈N *,∴1≤r ≤25(r ∈N *).∴共有25个共同的项.16.已知数列{a n }的通项公式为a n =pn 2+qn (常数p ,q ∈R).(1)当p 和q 满足什么条件时,数列{a n }是等差数列?(2)求证:对任意的实数p 和q ,数列{a n +1-a n }都是等差数列. 解析:(1)设数列{a n }是等差数列,则a n +1-a n =[p (n +1)2+q (n +1)]-(pn 2+qn )=2pn +p +q , 若2pn +p +q 是一个与n 无关的常数,则2p =0,即p =0,q ∈R.∴当p =0,q ∈R 时,数列{a n }是等差数列.(2)证明:∵a n +1-a n =2pn +p +q ,∴a n +2-a n +1=2p (n +1)+p +q ,∴(a n +2-a n +1)-(a n +1-a n )=[2p (n +1)+p +q ]-(2pn +p +q )=2p (常数). ∴对任意的实数p 和q ,数列{a n +1-a n }都是等差数列.。
高中数学 第二章 数列 2.4.1 等比数列的概念及通项公式练习 新人教A版必修5-新人教A版高一必
第1课时等比数列的概念及通项公式课后篇巩固探究A组1.若a,b,c成等差数列,则一定()A.是等差数列B.是等比数列C.既是等差数列也是等比数列D.既不是等差数列也不是等比数列解析因为a,b,c成等差数列,所以2b=a+c,于是,所以一定是等比数列.答案B2.在等比数列{a n}中,a2 017=-8a2 014,则公比q等于()A.2B.-2C.±2D.解析由a2 017=-8a2 014,得a1q2 016=-8a1q2 013,所以q3=-8,故q=-2.答案B3.在等比数列{a n}中,a n>0,且a2=1-a1,a4=9-a3,则a4+a5的值为()A.16B.27C.36D.81解析由a2=1-a1,a4=9-a3,得a1+a2=1,a4+a3=9.设公比为q,则q2==9.因为a n>0,所以q=3,于是a4+a5=(a1+a2)q3=27.答案B4.已知等差数列{a n}的公差为2,若a1,a3,a4成等比数列,则a2=()A.-4B.-6C.-8D.-10解析∵a4=a1+6,a3=a1+4,a1,a3,a4成等比数列,∴=a1·a4,即(a1+4)2=a1·(a1+6),解得a1=-8,∴a2=a1+2=-6.故选B.答案B5.已知数列{a n}的前n项和为S n,a1=1,S n=2a n+1,则S n=()A.2n-1B.C.D.解析由S n=2a n+1,得S n=2(S n+1-S n),即2S n+1=3S n,.又S1=a1=1,所以S n=,故选B.答案B6.已知等比数列{a n},a3=3,a10=384,则该数列的通项a n=.解析设公比为q.∵=q7==27,∴q=2.∴a n=a3q n-3=3·2n-3.答案3·2n-37.在数列{a n}中,已知a1=3,且对任意正整数n都有2a n+1-a n=0,则a n=.解析由2a n+1-a n=0,得,所以数列{a n}是等比数列,公比为.因为a1=3,所以a n=3·.答案3·8.在等比数列{a n}中,若a1=,q=2,则a4与a8的等比中项是.解析依题意,得a6=a1q5=×25=4,而a4与a8的等比中项是±a6,故a4与a8的等比中项是±4.答案±49.导学号04994040已知数列{a n}是等差数列,且a2=3,a4+3a5=56.若log2b n=a n.(1)求证:数列{b n}是等比数列;(2)求数列{b n}的通项公式.(1)证明由log2b n=a n,得b n=.因为数列{a n}是等差数列,不妨设公差为d,则=2d,2d是与n无关的常数,所以数列{b n}是等比数列.(2)解由已知,得解得于是b1=2-1=,公比q=2d=24=16,所以数列{b n}的通项公式b n=·16n-1.10.已知数列{a n}满足a1=,且a n+1=a n+(n∈N*).(1)求证:是等比数列;(2)求数列{a n}的通项公式.(1)证明∵a n+1=a n+,∴a n+1-a n+.∴.∴是首项为,公比为的等比数列.(2)解∵a n-,∴a n=.B组1.若a,b,c成等差数列,而a+1,b,c和a,b,c+2都分别成等比数列,则b的值为()A.16B.15C.14D.12解析依题意,得解得答案D2.在等比数列{a n}中,a1=1,公比|q|≠1.若a m=a1a2a3a4a5,则m等于()A.9B.10C.11D.12解析∵a m=a1a2a3a4a5=q·q2·q3·q4=q10=1×q10,∴m=11.答案C3.已知等比数列{a n},各项都是正数,且a1,a3,2a2成等差数列,则=()A.3+2B.1-C.1+D.3-2解析由a1,a3,2a2成等差数列,得a3=a1+2a2.在等比数列{a n}中,有a1q2=a1+2a1q,即q2=1+2q,得q=1+或1-(舍去),所以=q2=(1+)2=3+2.答案A4.已知-7,a1,a2,-1四个实数成等差数列,-4,b1,b2,b3,-1五个实数成等比数列,则=. 解析由题意,得a2-a1==2,=(-4)×(-1)=4.又b2是等比数列中的第3项,所以b2与第1项同号,即b2=-2,所以=-1.答案-15.已知一个等比数列的各项均为正数,且它的任何一项都等于它的后面两项的和,则它的公比q=.解析依题意,得a n=a n+1+a n+2,所以a n=a n q+a n q2.因为a n>0,所以q2+q-1=0,解得q=(q=舍去).答案6.若数列a1,,…,,…是首项为1,公比为-的等比数列,则a5=.解析由题意,得=(-)n-1(n≥2),所以=-=(-)2,=(-)3,=(-)4,将上面的四个式子两边分别相乘,得=(-)1+2+3+4=32.又a1=1,所以a5=32.答案327.已知数列{a n}满足S n=4a n-1(n∈N*),求证:数列{a n}是等比数列,并求出其通项公式.解依题意,得当n≥2时,S n-1=4a n-1-1,所以a n=S n-S n-1=(4a n-1)-(4a n-1-1),即3a n=4a n-1,所以,故数列{a n}是公比为的等比数列.因为S1=4a1-1,即a1=4a1-1,所以a1=,故数列{a n}的通项公式是a n=.8.导学号04994041已知数列{a n}的前n项和S n=2a n+1,(1)求证:{a n}是等比数列,并求出其通项公式;(2)设b n=a n+1+2a n,求证:数列{b n}是等比数列.证明(1)∵S n=2a n+1,∴S n+1=2a n+1+1,S n+1-S n=a n+1=(2a n+1+1)-(2a n+1)=2a n+1-2a n,∴a n+1=2a n.由已知及上式可知a n≠0.∴由=2知{a n}是等比数列.由a1=S1=2a1+1,得a1=-1,∴a n=-2n-1.(2)由(1)知,a n=-2n-1,∴b n=a n+1+2a n=-2n-2×2n-1=-2×2n=-2n+1=-4×2n-1.∴数列{b n}是等比数列.。
第二章数列单元综合测试(人教A版必修5)
第二章数列单元综合测试时间:120分钟 分值:150分第Ⅰ卷(选择题,共60分)1.数列{2n +1}的第40项a 40等于( ) A .9 B .10 C .40D .41解析:a 40=2×40+1=81=9.答案:A2.等差数列{2-3n }中,公差d 等于( ) A .2 B .3 C .-1D .-3解析:设a n =2-3n ,则an +1-a n =[2-3(n +1)]-(2-3n )=-3. 答案:D3.数列{a n }的通项公式是a n =2n ,S n 是数列{a n }的前n 项和,则S 10等于( )A .10B .210C .210-2D .211-2解析:∴数列{a n }是公比为2的等比数列且a 1=2.答案:D4.在等差数列{a n }中,前n 项和为S n ,若a 7=5,S 7=21,那么S 10等于( ) A .55 B .40 C .35D .70解析:设公差为d ,则⎩⎪⎨⎪⎧a 1+6d =5,7a 1+21d =21,解得d =23,a 1=1,则S 10=10a 1+45d =40. 答案:B5.等比数列{a n }的前n 项和为S n ,且4a 1,2a 2,a 3成等差数列.若a 1=1,则S 4等于( ) A .7 B .8 C .15D .16解析:设公比为q ,由于4a 1,2a 2,a 3成等差数列, 则4a 2=4a 1+a 3,所以4q =4+q 2,解得q =2. 所以S 4=a 1(1-q 4)1-q =1-241-2=15.答案:C6.等差数列{a n }的前n 项和为S n, 若a 3+a 17=10,则S 19的值是( ) A .55 B .95 C .100D .不确定解析:a 3+a 17=a 1+a 19,∴S 19=19(a 1+a 19)2=192×10=95.答案:B7.设{a n }是公差为正数的等差数列,若a 1+a 2+a 3=15,a 1a 2a 3=80,则a 11+a 12+a 13=( )A .120B .105C .90D .75解析:{a n }是公差为正数的等差数列,若a 1+a 2+a 3=15,即3a 2=15,则a 2=5. 又a 1a 2a 3=80,∴a 1a 3=(5-d )(5+d )=16,∴d =3.答案:B8.一个只有有限项的等差数列,它前5项的和为34,最后5项的和为146,所有项的和为234,则它的第7项等于( )A .22B .21C .19D .18解析:设该数列有n 项,且首项为a 1,末项为a n, 公差为d .则依题意有⎩⎪⎨⎪⎧5a 1+10d =34,①5a n -10d =146,②a 1+an2·n =234,③①+②可得a 1+a n =36.代入③得n =13.从而有a 1+a 13=36. 又所求项a 7恰为该数列的中间项,∴a 7=a 1+a 132=362=18.故选D.答案:D9.三个不同的实数a ,b ,c 成等差数列,又a ,c ,b 成等比数列,则ab 等于( )A .-2B .2C .-4D .4解析:∵2b =a +c ,∴c =2b -a .∵c 2=ab ,∴a 2-5ab +4b 2=0,∴a =b (舍去)或a =4b ,∴a b=4. 答案:D10.已知等比数列{a n }满足a n >0,n =1,2,…,且a 5·a 2n -5=22n (n ≥3),则当n ≥1时,log 2a 1+log 2a 3+…+log 2a 2n -1等于( )A .n (2n -1)B .(n +1)2C .n 2D .(n -1)2解析:设公比为q ,答案:C11.在一直线上共插有13面小旗,相邻两面小旗之间距离为10 m ,在第一面小旗处有一个人,把小旗全部集中到一面小旗的位置上,每次只能拿一面小旗,要使他走的路程最短,应集中到哪一面小旗的位置上( )A .7B .6C .5D .4解析:图1如图1所示,设将旗集中到第x 面小旗处,则从第一面旗到第x 面旗共走路程为10(x-1)m ,然后回到第二面旗处再到第x 面处的路程是20(x -2)m ,…,从第x -1面到第x 面来回共20 m ,从第x 面处到第x +1面处路程为20 m ,从第x 面到第x +2面处的路程为20×2 m ,….总共的路程为s =10(x -1)+20(x -2)+20(x -3)+…+20×1+20×1+20×2+…+20×(13-x )=10(x -1)+20·(x -2)(x -1)2+20·(13-x )(14-x )2=10[(x -1)+(x -2)(x -1)+(13-x )(14-x )]=10(2x 2-29x +183)=20(x -294)2+31154.∵x ∈N *,∴当x =7时,s 有最小值为780 m , 即将旗集中到第7面小旗处,所走的路程最短. 答案:A12.若数列{a n }是等差数列,首项a 1>0,a 2007+a 2008>0,a 2007·a 2008<0,则使前n 项和S n >0成立的最大自然数n 是( )A .4013B .4014C .4015D .4016解析:由已知a 1>0,a 2007·a 2008<0,可得数列{a n }为递减数列,即d <0,a 2007>0,a 2008<0.利用等差数列的性质及前n 项和公式可得所以使前n 项和S n >0成立的最大自然数n 是4014,选B. 答案:B第Ⅱ卷(非选择题,共90分)二、填空题(每小题5分,共20分)13.数列{a n }中的前n 项和S n =n 2-2n +2,则通项公式a n =________. 解析:当n =1时,a 1=S 1=1;当n >1时,a n =S n -S n -1=(n 2-2n +2)-[(n -1)2-2(n -1)+2]=2n -3. 又n =1时,2n -3≠a 1,所以有a n =⎩⎪⎨⎪⎧1,n =1,2n -3,n >1.答案:a n =⎩⎪⎨⎪⎧1,n =1,2n -3,n >114.设{a n }为公比q >1的等比数列,若a 2006和a 2007是方程4x 2-8x +3=0的两根,则a 2008+a 2009=________.解析:方程4x 2-8x +3=0的两根是12和32,答案:1815.等差数列{a n }中,若S 12=8S 4,且d ≠0,则a 1d等于________.解析:∵S 12=12a 1+66d ,S 4=4a 1+6d ,又S 12=8S 4,∴12a 1+66d =32a 1+48d .∴20a 1=18d ,∴a 1d =1820=910.答案:91016.用[x ]表示不超过x 的最大整数,如[0.78]=0,[3.01]=3,如果定义数列{x n }的通项公式为x n =[n5](n ∈N *),则x 1+x 2+…+x 5n =________.解析:x 5n =[5n5]=[n ]=n ,则x 1+x 2+…+x 5n =5[x 5+x 10+x 15+…+x 5(n -1)]+x 5n =5(1+2+…+n -1)+n =52n 2-32n .答案:52n 2-32n三、解答题(写出必要的计算步骤,只写最后结果不得分,共70分)17.(本小题10分)三个数成等比数列,其积为512,如果第一个数与第三个数各减2,则成等差数列.求这三个数.解:设三数为aq,a ,aq .由题意,得⎩⎪⎨⎪⎧a 3=512,(a q -2)+(aq -2)=2a , 解得⎩⎪⎨⎪⎧a =8,q =2或⎩⎪⎨⎪⎧a =8,q =12.所以这三个数为4,8,16或16,8,4.18.(本小题12分)求和:(a -1)+(a 2-2)+…+(a n -n ),a ≠0. 解:原式=(a +a 2+…+a n )-(1+2+…+n )=(a +a 2+…+a n )-n (n +1)2=⎩⎪⎨⎪⎧a (1-a n )1-a-n (n +1)2(a ≠1),n -n 22(a =1).19.(本小题12分)已知数列{a n }是等差数列,a 2=6,a 5=18;数列{b n }的前n 项和是T n ,且T n +12b n =1.(1)求数列{a n }的通项公式; (2)求证:数列{b n }是等比数列. 解:(1)设{a n }的公差为d ,∴⎩⎪⎨⎪⎧a 1+d =6,a 1+4d =18,解得a 1=2,d =4. ∴a n =2+4(n -1)=4n -2.(2)证明:当n =1时,b 1=T 1,由T 1+12b 1=1,得b 1=23.当n ≥2时,∵T n =1-12b n ,Tn -1=1-12b n -1,∴T n -T n -1=12(bn -1-b n ).∴b n =12(b n -1-b n ).∴b n =13b n -1. ∴{b n }是以23为首项,13为公比的等比数列.20.(本小题12分)假设某市2007年新建住房400万平方米,其中有250万平方米是中低价房.预计在今后的若干年内,该市每年新建住房面积平均比上一年增长8%.另外,每年新建住房中,中低价房的面积均比上一年增加50万平方米.那么,到哪一年底,该市历年所建中低价房的累计面积(以2007年为累计的第一年)等于4750万平方米?解:设n 年后该市每年所建中低价房的面积为a n , 由题意可知{a n }是等差数列,其中a 1=250,d =50,则S n =250n +n (n -1)2×50=25n 2+225n .令25n 2+225n =4750,即n 2+9n -190=0, 解得n =-19或n =10. 又n 是正整数,∴n =10.到2016年底,该市历年所建中低价房的累计面积等于4750万平方米. 21.(本小题12分)设a 1=1,a 2=53,an +2=53an +1-23a n (n ∈N *).(1)令b n =an +1-a n (n ∈N *),求数列{b n }的通项公式;(2)求数列{na n }的前n 项和S n .解:(1)因为b n +1=a n +2-a n +1=53a n +1-23a n -a n +1=23(a n +1-a n )=23b n ,所以数列{b n }是首项为b 1=a 2-a 1=23,公比为23的等比数列,所以b n =(23)n (n =1,2,…).22.(本小题12分)将数列{a n }中的所有项按每一行比上一行多一项的规则排成如下数表:a 1 a 2 a 3 a 4 a 5 a 6 a 7 a 8 a 9 a 10记表中的第一列数a 1,a 2,a 4,a 7,…构成的数列为{b n },b 1=a 1=1.S n 为数列{b n }的前n 项和,且满足2b nb n S n -S 2n=1(n ≥2).(1)证明数列{1S n}成等差数列,并求数列{b n }的通项公式;(2)上表中,若从第三行起,每一行中的数按从左到右的顺序均构成等比数列,且公比为同一个正数.当a 81=-491时,求上表中第k (k ≥3)行所有项的和.解:(1)证明:由已知,当n ≥2时,2b nb n S n -S 2n=1,又因为S n =b 1+b 2+…+b n ,又因为S 1=b 1=a 1=1,所以数列{1S n }是首项为1,公差为12的等差数列.由上可知1S n =1+12(n -1)=n +12,即S n =2n +1.所以当n ≥2时,b n =S n -S n -1=2n +1-2n =-2n (n +1). 因此b n =⎩⎪⎨⎪⎧1,n =1,-2n (n +1),n ≥2. (2)设题表中从第三行起,每行的公比都为q ,且q >0.因为1+2+…+12=12×132=78,所以表中第1行至第12行共含有数列{a n }的前78项.故a 81在表中第13行第三列,因此a 81=b 13·q 2=-491.又b 13=-213×14,所以q =2.记表中第k (k ≥3)行所有项的和为S ,即S =b k (1-q k )1-q =-2k (k +1)·1-2k 1-2=2k (k +1)(1-2k )(k ≥3).。
高中数学 第2章 数列 2_5 等比数列的前n项和 第2课时 数列求和课时作业 新人教A版必修5
2017春高中数学 第2章 数列 2.5 等比数列的前n 项和 第2课时数列求和课时作业 新人教A 版必修5基 础 巩 固一、选择题1.(2016·江苏启东中学期中)已知等差数列{a n }的前n 项和为S n ,a 5=5,S 5=15,则数列{1a n a n +1}的前100项和为导学号 54742500( A )A .100101 B .99101 C .99100D .101100[解析] 设等差数列{a n }的首项为a 1,公差为d . ∵a 5=5,S 5=15,∴⎩⎪⎨⎪⎧a 1+4d =5,5a 1+5× 5-12d =15,解得⎩⎪⎨⎪⎧a 1=1,d =1.∴a n =a 1+(n -1)d =n . ∴1a n a n +1=1n n +1 =1n -1n +1,∴数列{1a n a n +1}的前100项和为(1-12)+(12-13)+…+(1100-1101)=1-1101=100101. 2.数列{a n }的通项公式a n =n cos n π2,其前n 项和为S n ,则S 2016等于导学号 54742501( A )A .1008B .2016C .504D .0[解析] ∵函数y =cosn π2的周期T =2ππ2=4,且第一个周期四项依次为0,-1,0,1. ∴可分四组求和:a 1+a 5+…+a 2013=0,a 2+a 6+...+a 2014=-2-6- (2014)504× -2-20142=-504×1008,∴a 3+a 7+…+a 2015=0,a 4+a 8+…+a 2016=4+8+…+2016=504× 4+20162=504×1010.∴S 2016=0-504×1008+0+504×1010=504×(1010-1008)=1008,故选A . 3.已知数列{a n }:12,13+23,14+24+34,15+25+35+45,…,设b n =1a n a n +1,那么数列{b n }前n 项的和为导学号 54742502( A )A .4(1-1n +1) B .4(12-1n +1)C .1-1n +1D .12-1n +1[解析] ∵a n =1+2+3+…+nn +1=n n +12n +1=n2, ∴b n =1a n a n +1=4n n +1 =4(1n -1n +1).∴S n =4[(1-12)+(12-13)+(13-14)+…+(1n -1n +1)]=4(1-1n +1).4.数列{a n }的通项公式为a n =(-1)n -1·(4n -3),则它的前100项之和S 100等于导学号 54742503( B )A .200B .-200C .400D .-400[解析] S 100=1-5+9-13+…+(4×99-3)-(4×100-3)=50×(-4)=-200. 5.(2016·湖北孝感高中月考)已知数列{a n }是等差数列,a 1=tan225°,a 5=13a 1.设S n 为数列{(-1)n a n }的前n 项和,则S 2016导学号 54742504( C )A .2016B .-2016C .3024D .-3024[解析] ∵a 1=tan225°=1,∴a 5=13a 1=13, ∴数列{a n }的公差d =a 5-a 15-1=13-14=3.∴S 2016=(a 2-a 1)+(a 4-a 3)+(a 6-a 5)+…+(a 2016-a 2015)=1008d =3024.6.数列{a n }满足a n +1+(-1)na n =2n -1,则{a n }的前60项和为导学号 54742505( D )A .3690B .3660C .1845D .1830[解析] 不妨令a 1=1,则a 2=2,a 3=a 5=a 7=…=1,a 4=6,a 6=10,…,所以当n 为奇数时,a n =1;当n 为偶数时,各项构成以2为首项,4为公差的等差数列,所以前60项的和为30+2×30+30× 30-12×4=1830.二、填空题7.数列22,422,623,…,2n 2n ,…前n 项的和为4-n +22n -1.导学号 54742506[解析] 设S n =22+422+623+ (2)2n ①12S n =222+423+624+ (2)2n +1② ①-②得(1-12)S n =22+222+223+224+…+22n -2n 2n +1=2-12n -1-2n 2n +1.∴S n =4-n +22n -1.8.(2015·广东理,10)在等差数列{a n }中,若a 3+a 4+a 5+a 6+a 7=25,则a 2+a 8=10.导学号 54742507[解析] 因为{a n }是等差数列,所以a 3+a 7=a 4+a 6=a 2+a 8=2a 5,a 3+a 4+a 5+a 6+a 7=5a 5=25 即a 5=5,a 2+a 8=2a 5=10.三、解答题9.(2015·山东理,18)设数列{a n }的前n 项和为S n ,已知2S n =3n+3.导学号 54742508 (1)求{a n }的通项公式;(2)若数列{b n }满足a n b n =log 3a n ,求{b n }的前n 项和T n . [解析] (1)因为2S n =3n+3, 所以2a 1=3+3,故a 1=3, 当n ≥2时,2S n -1=3n -1+3,此时2a n =2S n -2S n -1=3n-3n -1=2×3n -1,即a n =3n -1,所以a n =⎩⎪⎨⎪⎧3, n =1.,3n -1,n ≥2.(2)因为a n b n =log 3a n ,所以b 1=13,当n ≥2时,b n =31-nlog 33n -1=(n -1)·31-n.所以T 1=b 1=13;当n ≥2时,T n =b 1+b 2+b 3+…+b n=13+(1×3-1+2×3-2+…+(n -1)×31-n), 所以3T n =1+[1×30+2×3-1+…+(n -1)×32-n].两式相减,得2T n =23+(30+3-1+3-2+…+32-n )-(n -1)×31-n=23+1-31-n1-3-1-(n -1)×31-n =136-6n +32×3n . 所以T n =1312-6n +34×3n经检验,n =1时也适合. 综上可得T n =1312-6n +34×3n .10.(2016·浙江文,17)设数列{a n }的前n 项和为S n .已知S 2=4,a n +1=2S n +1,n ∈N *.导学号 54742509(1)求通项公式a n ;(2)求数列{|a n -n -2|}的前n 项和.[解析] (1)由题意得⎩⎪⎨⎪⎧a 1+a 2=4,a 2=2a 1+1,则⎩⎪⎨⎪⎧a 1=1,a 2=3.又当n ≥2时,由a n +1-a n =(2S n +1)-(2S n -1+1)=2a n ,得a n +1=3a n .所以,数列{a n }的通项公式为a n =3n -1,n ∈N *.(2)设b n =|3n -1-n -2|,n ∈N *,b 1=2,b 2=1.当n ≥3时,由于3n -1>n +2,故b n =3n -1-n -2,设数列{b n }的前n 项和为T n ,则T 1=2,T 2=3. 当n ≥3时,T n =3+9 1-3n -21-3- n +7 n -2 2=3n-n 2-5n +112,所以T n =⎩⎪⎨⎪⎧2,n =1,3n -n 2-5n +112,n ≥2,n ∈N *.能 力 提 升一、选择题11.已知等差数列{a n }和{b n }的前n 项和分别为S n ,T n ,且S n T n =7n +1n +3,则a 2+a 5+a 17+a 22b 8+b 10+b 12+b 16=导学号 54742510( A )A .315B .325C .6D .7[解析] ∵a 2+a 5+a 17+a 22b 8+b 10+b 12+b 16= a 2+a 22 + a 5+a 17 b 8+b 16 + b 10+b 12 =2a 12+2a 112b 12+2b 11=a 11+a 12b 11+b 12=a 1+a 22b 1+b 22,又∵S 22T 22= a 1+a 22 ×22 b 1+b 22 ×22=a 1+a 22b 1+b 22, ∴a 1+a 22b 1+b 22=7×22+122+3=315. ∴a 2+a 5+a 17+a 22b 8+b 10+b 12+b 16=315.12.数列{a n }的通项公式是a n =2sin(n π2+π4),设其前n 项和为S n ,则S 12的值为导学号 54742511( A )A .0B . 2C .- 2D .1[解析] a 1=2sin(π2+π4)=1,a 2=2sin(π+π4)=-1,a 3=2sin(3π2+π4)=-1,a 4=2sin(2π+π4)=1, 同理,a 5=1,a 6=-1,a 7=-1,a 8=1,a 9=1,a 10=-1,a 11=-1,a 12=1,∴S 12=0.13.(2015·江西省质检)已知数列{a n }满足a 1=1,a 2=3,a n +2=3a n (n ∈N *),则数列{a n }的前2015项的和S 2015等于导学号 54742512( A )A .31008-2 B .31008-3 C .32015-2D .32015-3[解析] 因为a 1=1,a 2=3,a n +2a n=3, 所以S 2015=(a 1+a 3+…+a 2015)+(a 2+a 4+…+a 2014)=1-310081-3+3 1-310071-3=31008-2.二、填空题14.等比数列{a n }的前n 项和S n =3n +1+a (a 为常数),b n =1a 2n,则数列{b n }的前n 项和为132×(1-19n ).导学号 54742513 [解析] ∵S n 为等比数列{a n }的前n 项和,且S n =3(3n+a3).∴a3=-1,∴a =-3,∴S n =3n +1-3,∴当n ≥2时,a n =S n -S n -1=(3n +1-3)-(3n-3)=2×3n①,又∵a 1=S 1=6符合①式,∴a n =2×3n, ∴b n =1a 2n =14×9n =14·(19)n,∴{b n }的前n 项和为T n =136×[1- 19 n ]1-19=132×(1-19n ).15.求和1+(1+3)+(1+3+32)+(1+3+32+33)+…+(1+3+…+3n -1)=34(3n-1)-n2.导学号 54742514 [解析] a 1=1,a 2=1+3,a 3=1+3+32,……a n =1+3+32+…+3n -1=12(3n -1),∴原式=12(31-1)+12(32-1)+......+12(3n -1)=12[(3+32+ (3))-n ]=34(3n -1)-n2.三、解答题16.(2015·全国Ⅰ理,17)S n 为数列{a n }的前n 项和.已知a n >0,a 2n +2a n =4S n +3.导学号 54742515(1)求{a n }的通项公式; (2)设b n =1a n a n +1,求数列{b n }的前n 项和.[解析] (1)当n =1时,a 21+2a 1=4S 1+3=4a 1+3,因为a n >0,所以a 1=3, 当n ≥2时,a 2n +2a n -a 2n -1-2a n -1 =4S n +3-4S n -1-3=4a n ,即(a n +a n -1)(a n -a n -1)=2(a n +a n -1), 因为a n >0,所以a n -a n -1=2,所以数列{a n }是首项为3,公差为2的等差数列, 所以a n =2n +1;(2)由(1)知,b n = 12n +1 2n +3=12(12n +1-12n +3), 所以数列{b n }前n 项和为b 1+b 2+…+b n =12[(13-15)+(15-17)+…+(12n +1-12n +3)]=16-14n +6=n3 2n +3. 17.已知数列{a n }和{b n }中,数列{a n }的前n 项和为S n .若点(n ,S n )在函数y =-x 2+4x 的图象上,点(n ,b n )在函数y =2x的图象上.导学号 54742516(1)求数列{a n }的通项公式; (2)求数列{a n b n }的前n 项和T n . [解析] (1)由已知得S n =-n 2+4n , ∵当n ≥2时,a n =S n -S n -1=-2n +5, 又当n =1时,a 1=S 1=3,符合上式. ∴a n =-2n +5.(2)由已知得b n =2n,a n b n =(-2n +5)·2n.T n =3×21+1×22+(-1)×23+…+(-2n +5)×2n ,2T n =3×22+1×23+…+(-2n +7)×2n +(-2n +5)×2n +1.两式相减得T n =-6+(23+24+…+2n +1)+(-2n +5)×2n +1=231-2n -11-2+(-2n +5)×2n +1-6=(7-2n )·2n +1-14.。
高中数学第二章数列2.5等比数列的前n项和第一课时等比数列的前n项和练习(含解析)新人教A版必修5
高中数学第二章数列2.5等比数列的前n项和第一课时等比数列的前n项和练习(含解析)新人教A版必修51.等比数列{a n}的各项都是正数,若a1=81,a5=16,则它的前5项和是( B )(A)179 (B)211 (C)248 (D)275解析:由16=81×q4,q>0得q=,所以S5==211.故选B.2.在等比数列{a n}中,若a4,a8是方程x2-4x+3=0的两根,则a6的值是( A )(A)(B)-(C)±(D)±3解析:依题意得,a4+a8=4,a4a8=3,故a4>0,a8>0,因此a6>0(注:在一个实数等比数列中,奇数项的符号相同,偶数项的符号相同),a6==.故选A.3.等比数列{a n}的前n项和为S n,已知S3=a2+10a1,a5=9,则a1等于( C )(A)(B)-(C)(D)-解析:设等比数列{a n}的公比为q,由S3=a2+10a1得a1+a2+a3=a2+10a1,即a3=9a1,所以q2=9,又a5=a1q4=9,所以a1=.故选C.4.等比数列{a n}中,a3=3S2+2,a4=3S3+2,则公比q等于( C )(A)2 (B)(C)4 (D)解析:因为a3=3S2+2,a4=3S3+2,所以a4-a3=3(S3-S2)=3a3,即a4=4a3,所以q==4,故选C.5.等比数列{a n}的前n项和S n=3n-a,则实数a的值为( B )(A)0 (B)1 (C)3 (D)不存在解析:法一当n≥2时,a n=S n-S n-1=3n-3n-1=2·3n-1,==3.又a1=S1=3-a,a2=2×3=6,则=.因为{a n}是等比数列,所以=3,得a=1.故选B.法二由等比数列前n项和公式知,3n系数1与-a互为相反数,即-a=-1,则a=1.故选B.6.在14与之间插入n个数组成等比数列,若各项和为,则数列的项数为( B )(A)4 (B)5 (C)6 (D)7解析:设公比为q,由等比数列的前n项和公式及通项公式得解之,得则数列的项数为5.故选B.7.中国古代数学著作《算法统宗》中有这样一个问题:“三百七十八里关,初步健步不为难,次日脚痛减一半,六朝才得到其关,要见次日行里数,请公仔细算相还.”其大意为“有一个人走378里路,第一天健步行走,从第二天起脚痛,每天走的路程为前一天的一半,走了6天后到达目的地.”则该人最后一天走的路程为( C )(A)24里(B)12里(C)6里(D)3里解析:记每天走的路程里数为{a n},易知{a n}是公比q=的等比数列,S6=378,S6==378,所以a1=192,所以a6=192×=6,故选C.8.设S n为等比数列{a n}的前n项和,若a1=1,且3S1,2S2,S3成等差数列,则a n= .解析:由3S1,2S2,S3成等差数列知,4S2=3S1+S3,可得a3=3a2,所以公比q=3,故等比数列通项a n=a1q n-1=3n-1.答案:3n-19.在等比数列{a n}中,已知a1+a2+a3=1,a4+a5+a6=-2,则该数列的前15项和S15= .解析:记b1=a1+a2+a3,b2=a4+a5+a6,…,b5=a13+a14+a15,依题意{b n}构成等比数列,其首项b1=1,公比为q==-2,则{b n}的前5项和即为{a n}的前15项和S15==11.答案:1110.在等比数列{a n}中,公比q=,且log2a1+log2a2+…+log2a10=55,则a1+a2+…+a10= .解析:据题意知log2(·q1+2+…+9)=log2(·q45)=55,即=2100.又a n>0,所以a1=210,所以S10=211-2.答案:211-211.已知等比数列前20项和是21,前30项和是49,则前10项和是.解析:由S10,S20-S10,S30-S20成等比数列,所以(S20-S10)2=S10·(S30-S20),即(21-S10)2=S10(49-21).所以S10=7或S10=63.答案:7或6312.已知数列{a n} 的前n项和为S n,a1=1,S n=2a n+1,求S n的值.解:因为S n=2a n+1,所以n≥2时,S n-1=2a n.因为a n=S n-S n-1=2a n+1-2a n,所以3a n=2a n+1,所以=.又因为S1=2a2,所以a2=,所以=,所以{a n}从第二项起是以为公比的等比数列.所以S n=a1+a2+a3+…+a n=1+=()n-1.13.知{a n}是等差数列,满足a1=3,a4=12,数列{b n}满足b1=4,b4=20,且{b n-a n}为等比数列.(1)求数列{a n}和{b n}的通项公式;(2)求数列{b n}的前n项和.解:(1)设等差数列{a n}的公差为d,由题意得d===3,所以a n=a1+(n-1)d=3n(n=1,2,…).设等比数列{b n-a n}的公比为q,由题意得q3===8,解得q=2.所以b n-a n=(b1-a1)q n-1=2n-1.从而b n=3n+2n-1(n=1,2,…).(2)由(1)知b n=3n+2n-1(n=1,2,…).数列{3n}的前n项和为n(n+1),数列{2n-1}的前n项和为=2n-1.所以数列{b n}的前n项和为n(n+1)+2n-1.14.已知数列{a n}满足a1=1,a n+1=3a n+1.(1)求证是等比数列,并求{a n}的通项公式;(2)求证++…+<.证明:(1)由a n+1=3a n+1得a n+1+=3(a n+).又a1+=,所以是首项为,公比为3的等比数列.所以a n+=,因此{a n}的通项公式为a n=.(2)由(1)知=.因为当n≥1时,3n-1≥2×3n-1,所以≤.于是++…+≤1++…+=(1-)<.所以++…+<.15.数列{a n}中,已知对任意n∈N*,a1+a2+a3+…+a n=3n-1,则+++…+等于( B )(A)(3n-1)2(B)(9n-1)(C)9n-1 (D)(3n-1)解析:因为a1+a2+…+a n=3n-1,n∈N*,n≥2时,a1+a2+…+a n-1=3n-1-1,所以当n≥2时,a n=3n-3n-1=2·3n-1,又n=1时,a1=2适合上式,所以a n=2·3n-1,故数列{}是首项为4,公比为9的等比数列.因此++…+==(9n-1).故选B.16.已知S n是等比数列{a n}的前n项和,若存在m∈N*,满足=9,=,则数列{a n}的公比为( B )(A)-2 (B)2 (C)-3 (D)3解析:设公比为q,若q=1,则=2,与题中条件矛盾,故q≠1.因为==q m+1=9,所以q m=8.所以==q m=8=,所以m=3,所以q3=8,所以q=2.故选B.17.设各项都是正数的等比数列{a n},S n为前n项和且S10=10,S30=70,那么S40= .解析:依题意,知数列{a n}的公比q≠-1,数列S10,S20-S10,S30-S20,S40-S30成等比数列,因此有(S20-S10)2=S10(S30-S20),即(S20-10)2=10(70-S20),故S20=-20或S20=30;又S20>0,因此S20=30,S20-S10=20,S30-S20=40,故S40-S30=80,S40=150.答案:15018.已知等差数列{a n}的首项a1=1,公差d>0,且第2项,第5项,第14项分别是等比数列{b n}的第2项,第3项,第4项.(1)求数列{a n}与{b n}的通项公式;(2)设数列{c n}对于任意n∈N*均有+++…+=a n+1成立,求c1+c2+c3+…+c2 015+c2 016的值. 解:(1)依题意得b2=a2=a1+d,b3=a5=a1+4d,b4=a14=a1+13d,由等比中项得(1+4d)2=(1+d)(1+13d),解得d=2或d=0(舍去),因此a n=1+2(n-1)=2n-1,b2=3,b3=9,b4=27,故数列{b n}是首项为1,公比为3的等比数列.因此b n=3n-1.(2)因为+++…+=a n+1,所以当n≥2时,+++…+=a n,两式作差得=a n+1-a n=d,又d=2,故c n=2×3n-1,又=a2,所以c1=3,因此数列c n=。
2019_2020学年高中数学第二章数列2.3.1等差数列的前n项和练习(含解析)新人教A版必修5
第11课时 等差数列的前n 项和知识点一 等差数列前n 项和公式的简单应用1.已知等差数列{a n }中,a 2=7,a 4=15,则S 10等于( ) A .100 B .210 C .380 D .400 答案 B 解析 ∵d =a 4-a 24-2=15-72=4,又a 2=a 1+d =7,∴a 1=3.∴S 10=10a 1+10×92d =10×3+45×4=210.故选B .2.在等差数列{a n }中,S 10=120,则a 2+a 9=( ) A .12 B .24 C .36 D .48 答案 B 解析 ∵S 10=10a 1+a 102=5(a 2+a 9)=120,∴a 2+a 9=24.3.设S n 是等差数列{a n }的前n 项和,若S 7=35,则a 4=( ) A .8 B .7 C .6 D .5 答案 D 解析 ∵S 7=a 1+a 72×7=35,∴a 1+a 7=10,∴a 4=a 1+a 72=5.知识点二 “知三求二”问题4.等差数列{a n }中,a 1=1,a 3+a 5=14,其前n 项和S n =100,则n =( ) A .9 B .10 C .11 D .12 答案 B解析 a 1=1,a 3+a 5=2a 1+6d =14,∴d =2,∴S n =n +n n -12×2=100.∴n =10.5.设等差数列{a n }的前n 项和为S n ,若a 6=S 3=12,则{a n }的通项a n =________. 答案 2n解析 由已知⎩⎪⎨⎪⎧a 1+5d =12,3a 1+3d =12⇒⎩⎪⎨⎪⎧a 1=2,d =2.故a n =2n .知识点三 a n 与S n 的关系6.已知数列{a n }的通项公式为a n =2-3n ,则{a n }的前n 项和S n 等于( ) A .-32n 2+n 2 B .-32n 2-n2C .32n 2+n 2D .32n 2-n 2 答案 A解析 易知{a n }是等差数列且a 1=-1,所以S n =n a 1+a n2=n 1-3n2=-32n 2+n2.故选A .7.已知等差数列{a n }的前n 项和S n =n 2+n ,则过P (1,a 1),Q (2,a 2)两点的直线的斜率是( )A .1B .2C .3D .4 答案 B解析 ∵S n =n 2+n ,∴a 1=S 1=2,a 2=S 2-S 1=6-2=4.∴过P ,Q 两点直线的斜率k =a 2-a 12-1=4-21=2.8.已知{a n }的前n 项之和S n =2n+1,则此数列的通项公式为________.答案 a n =⎩⎪⎨⎪⎧3n =1,2n -1n ≥2解析 当n =1时,a 1=S 1=2+1=3, 当n ≥2时,a n =S n -S n -1=2n +1-(2n -1+1)=2n -1,又21-1=1≠3,所以a n =⎩⎪⎨⎪⎧3n =1,2n -1n ≥2.易错点一 等差数列的特点考虑不周全9.已知数列{a n }的前n 项和S n =n 2+3n +2,判断{a n }是否为等差数列.易错分析 本题容易产生如下错解:∵a n =S n -S n -1=(n 2+3n +2)-[(n -1)2+3(n -1)+2]=2n +2.a n +1-a n =[2(n +1)+2]-(2n +2)=2(常数),∴数列{a n }是等差数列.需注意:a n =S n -S n -1是在n ≥2的条件下得到的,a 1是否满足需另外计算验证. 解 a 1=S 1=6;当n ≥2时,a n =S n -S n -1=(n 2+3n +2)-[(n -1)2+3(n -1)+2]=2n +2,∴a n =⎩⎪⎨⎪⎧6n =1,2n +2n ≥2,显然a 2-a 1=6-6=0,a 3-a 2=2,∴{a n }不是等差数列.易错点二 忽略对项数的讨论10.已知等差数列{a n }的第10项为-9,前11项和为-11,求数列{|a n |}的前n 项和T n . 易错分析 对于特殊数列求和,往往要注意项数的影响,要对部分特殊项进行研究,否则计算易错.解 设等差数列{a n }的首项为a 1,公差为d ,前n 项和为S n ,则⎩⎪⎨⎪⎧a 1+9d =-9,11a 1+11×102d =-11,解得⎩⎪⎨⎪⎧a 1=9,d =-2,所以a n =9-2(n -1)=11-2n . 由a n >0,得n <112,则从第6项开始数列各项均为负数,那么 ①当n ≤5时,数列{a n }的各项均为正数,T n =n a 1+a n 2=n 9+11-2n 2=n (10-n );②当n ≥6时,T n =|a 1|+|a 2|+…+|a n |=-(a 1+a 2+…+a n )+2(a 1+a 2+…+a 5)=-S n +2S 5=n 2-10n +2×(10×5-52)=n 2-10n +50.所以T n =⎩⎪⎨⎪⎧n 10-n ,1≤n ≤5,n 2-10n +50,n ≥6.一、选择题1.在各项均不为零的等差数列{a n }中,若a n +1-a 2n +a n -1=0(n ≥2),则S 2n -1-4n =( ) A .-2 B .0 C .1 D .2 答案 A解析 ∵{a n }是等差数列,∴2a n =a n -1+a n +1(n ≥2).又a n +1-a 2n +a n -1=0(n ≥2),∴2a n-a 2n =0.∵a n ≠0,∴a n =2,∴S 2n -1-4n =(2n -1)×2-4n =-2.故选A .2.《九章算术》是我国第一部数学专著,下有源自其中的一个问题:“今有金箠(chuí),长五尺,斩本一尺,重四斤,斩末一尺,重二斤.问金箠重几何?”其意思为:“今有金杖(粗细均匀变化)长5尺,截得本端1尺,重4斤,截得末端1尺,重2斤.问金杖重多少?”则答案是( )A .14斤B .15斤C .16斤D .18斤 答案 B解析 由题意可知等差数列中a 1=4,a 5=2,则S 5=a 1+a 5×52=4+2×52=15, ∴金杖重15斤.故选B .3.一个等差数列的项数为2n ,若a 1+a 3+…+a 2n -1=90,a 2+a 4+…+a 2n =72,且a 1-a 2n =33,则该数列的公差是( )A .3B .-3C .-2D .-1 答案 B解析 由⎩⎪⎨⎪⎧a 1+a 3+…+a 2n -1=na 1+n n -12×2d =90,a 2+a 4+…+a2n=na 2+n n -12×2d =72,得nd =-18.又a 1-a 2n =-(2n -1)d =33,所以d =-3.4.一同学在电脑中打出如下图案:○●○○●○○○●○○○○●○○○○○●…若将此图案依此规律继续下去,那么在前120个中的●的个数是( )A .12B .13C .14D .15 答案 C解析 S =(1+2+3+…+n )+n =n n +12+n ≤120,∴n (n +3)≤240,∴n =14.故选C .5.在小于100的自然数中,所有被7除余2的数之和为( ) A .765 B .665 C .763 D .663 答案 B解析 ∵a 1=2,d =7,2+(n -1)×7<100,∴n <15.∴n =14,S 14=14×2+12×14×13×7=665.二、填空题6.已知数列{a n }的前n 项和S n =n 2+1,则a 1+a 5=________. 答案 11解析 由S n =n 2+1,得a 1=12+1=2,a 5=S 5-S 4=(52+1)-(42+1)=9.∴a 1+a 5=2+9=11.7.S n 是等差数列{a n }的前n 项和,若S n S 2n =n +14n +2,则a 3a 5=________.答案 35解析 ∵S n 是等差数列{a n }的前n 项和,S n S 2n =n +14n +2, ∴S 1S 2=a 1a 1+a 1+d =26=13,∴3a 1=2a 1+d ,∴a 1=d ,∴a 3a 5=a 1+2d a 1+4d =3d 5d =35.8.在等差数列{a n }中,a 23+a 28+2a 3a 8=9,且a n <0,则S 10=________. 答案 -15解析 由a 23+a 28+2a 3a 8=9得(a 3+a 8)2=9, ∵a n <0,∴a 3+a 8=-3. ∴S 10=10a 1+a 102=10a 3+a 82=10×-32=-15. 三、解答题9.设{a n }为等差数列,S n 为数列{a n }的前n 项和,已知S 7=7,S 15=75,T n 为数列⎩⎨⎧⎭⎬⎫S n n 的前n 项和,求T n .解 设等差数列{a n }的公差为d ,∵S 7=7,S 15=75,∴⎩⎪⎨⎪⎧7a 1+21d =7,15a 1+105d =75,即⎩⎪⎨⎪⎧a 1+3d =1,a 1+7d =5,解得⎩⎪⎨⎪⎧a 1=-2,d =1,∴S n n =a 1+12(n -1)d =-2+12(n -1), ∵S n +1n +1-S n n =12, ∴数列S n n 是等差数列,其首项为-2,公差为12,∴T n =n ×(-2)+n n -12×12=14n 2-94n . 10.已知{a n }是等差数列,公差为d ,首项a 1=3,前n 项和为S n ,令c n =(-1)nS n (n ∈N *),{c n }的前20项和T 20=330.数列{b n }满足b n =2(a -2)dn -2+2n -1,a ∈R .(1)求数列{a n }的通项公式;(2)若b n +1≤b n ,n ∈N *,求a 的取值范围. 解 (1)设等差数列的公差为d ,因为c n =(-1)nS n ,所以T 20=-S 1+S 2-S 3+S 4+…+S 20=330, 则a 2+a 4+a 6+…+a 20=330,则10(3+d )+10×92×2d =330,解得d =3,所以a n =3+3(n -1)=3n . (2)由(1)知b n =2(a -2)3n -2+2n -1,b n +1-b n=2(a -2)3n -1+2n-[2(a -2)3n -2+2n -1]=4(a -2)3n -2+2n -1=4·3n -2⎣⎢⎡⎦⎥⎤a -2+12⎝ ⎛⎭⎪⎫23n -2,由b n +1≤b n ⇔(a -2)+12⎝ ⎛⎭⎪⎫23n -2≤0⇔a ≤2-12⎝ ⎛⎭⎪⎫23n -2,因为2-12⎝ ⎛⎭⎪⎫23n -2随着n 的增大而增大,所以n =1时,2-12⎝ ⎛⎭⎪⎫23n -2最小值为54,所以a ≤54.。
2018-2019学年高中数学 第二章 数列 专题2.4 等比数列试题 新人教A版必修5
2.4 等比数列1.等比数列的定义一般地,如果一个数列从第2项起,每一项与它的前一项的比等于___________,那么这个数列叫做等比数列,这个常数叫做等比数列的公比,公比通常用字母q 表示(0)q ≠.定义也可叙述为:在数列{}n a 中,若1(n na q q a +=为常数且0)q ≠,则{}n a 是等比数列. 2.等比中项如果在a 与b 中间插入一个数G ,使a ,G ,b 成等比数列,那么___________叫做a 与b 的等比中项.3.等比数列的通项公式设等比数列{}n a 的首项为1a ,公比为q ,则这个等比数列的通项公式是1______(,0)n a a q =≠.4.等比数列与指数函数 (1)等比数列的图象等比数列{}n a 的通项公式11n n a a q -=还可以改写为1nn a a q q=⋅,当1q ≠且10a ≠时,x y q =是指数函数,1x a y q q =⋅是指数型函数,因此数列{}n a 的图象是函数1xa y q q=⋅的图象上一些孤立的点.例如,教材第50页【探究】(2),12n n a -=的图象如下图所示.(2)等比数列的单调性已知等比数列{}n a 的首项为1a ,公比为q ,则 ①当101a q >⎧⎨>⎩或1001a q <⎧⎨<<⎩时,{}n a 是___________数列;②当1001a q >⎧⎨<<⎩或101a q <⎧⎨>⎩时,{}n a 是___________数列;③当1q =时,{}n a 为常数列(0)n a ≠;④当0q <时,{}n a 为摆动数列,所有的奇数项(偶数项)同号,奇数项与偶数项异号. K 知识参考答案: 1.同一常数2.G3.11n a q- 4.递增 递减等比数列的判定与证明判断数列{}n a 是否为等比数列的方法: (1)定义法:判断1n na a +是否为常数; (2)等比中项法:判断11(,2)n nn n a a n n a a +-=∈≥*N 是否成立; (3)通项公式法:若数列{}n a 的通项公式形如(0)nn a tq tq =≠,则数列{}n a 是等比数列.(1)若{}n a 的通项公式为212n n a -=,试判断数列{}n a 是否为等比数列.(2)若,,,a b c d 成等比数列,,,a b b c c d +++均不为零,求证:,,a b b c c d +++成等比数列.【答案】(1){}n a 是等比数列,证明见解析;(2),,a b b c c d +++成等比数列,证明见等比数列的通项公式及应用(1)在等比数列{}n a中,若474,32,a a==则na=____________;(2)在等比数列{}n a中,已知253636,72,a a a a+=+=若1024na=,则n=____________.与q ,即可写出数列{}n a 的通项公式;(2)当已知等比数列{}n a 中的某项,求出公比q 后,可绕过求1a 而直接写出其通项公式,即(,)n mn m a a qm n -=∈*N .等比数列的性质的应用若数列{}n a 是公比为q 的等比数列,由等比数列的定义可得等比数列具有如下性质:(1)若m n p q +=+,则m n p q a a a a =;若2m n r +=,则2(,)m n r a a a m n,p,q,r =∈*N .推广:1211;n n i n i a a a a a a -+-===L L ①②若m n t p q r++=++,则m n t p q r a a a a a a =.(2)若,,m n p 成等差数列,则,,m n p a a a 成等比数列. (3)数列{}(0)n a ≠λλ仍是公比为q 的等比数列;数列1{}n a 是公比为1q的等比数列; 数列{}||n a 是公比为||q 的等比数列;若数列{}n b 是公比为q'的等比数列,则数列{}n n a b 是公比为qq'的等比数列. (4)23,,,,k k m k m k m a a a a +++L 成等比数列,公比为m q .(5)连续相邻k 项的和(或积)构成公比为(k q 或2)k q 的等比数列.已知等比数列{}n a 满足0,n a >(1)若1237894,9,a a a a a a ==则456a a a =_____________; (2)若25253(3)n n a a n -⋅=≥,则当1n ≥时,3133321log log log n a a a -+++=L _____________.【答案】(1)6;(2)2n .【解析】(1)方法1:因为31231322789798()4,()a a a a a a a a a a a a a ====389,a ==由递推公式构造等比数列求数列的通项公式(1)形如1(1,0)n n a pa q p pq +=+≠≠的递推关系式①利用待定系数法可化为1n a +-()11n q q p a p p =---,当101qa p-≠-时,数列{}1n qa p--是等比数列; ②由1n n a pa q +=+,1(2)n n a pa q n -=+≥,两式相减,得11()n n n n a a p a a +--=-,当210a a -≠时,数列1{}n n a a +-是公比为p 的等比数列.(2)形如+1(,0)nn n a ca d c d cd =+≠≠的递推关系式除利用待定系数法直接化归为等比数列外,也可以两边同时除以1n d +,进而化归为等比数列.(1)在数列{}n a 中,111,36,n n a a a +==+则数列{}n a 的通项公式为n a =_____________;(2)在数列{}n a 中,1111,63,n n n a a a ++==+则数列{}n a 的通项公式为n a =_____________.忽略等比数列中所有项不为零导致错误已知等比数列{}n a 的前三项分别为,22,33a a a ++,则a =_____________.【错解】因为22a +为a 与33a +的等比中项,所以2(22)(33)a a a +=+,解得1a =-或4-.【错因分析】若1a =-,则,22,33a a a ++这三项为1,0,0-,不符合等比数列的定义. 【正解】因为22a +为a 与33a +的等比中项,所以2(22)(33)a a a +=+,解得1a =-或4-.由于1a =-时,220,330a a +=+=,所以1a =-应舍去,故4a =-.【名师点睛】因为等比数列中各项均不为零,所以解题时一定要注意将所求结果代入题中验证,若所求结果使等比数列中的某些项为零,则一定要舍去.忽略等比数列中项的符号导致错误在等比数列{}n a 中,246825a a a a =,则19a a =_____________.【错解】因为{}n a 为等比数列,所以192846a a a a a a ==,由246825a a a a =可得219()25a a =,故195a a =±.【错因分析】错解中忽略了在等比数列中,奇数项或偶数项的符号相同这一隐含条件. 【正解】因为{}n a 为等比数列,所以192846a a a a a a ==,由246825a a a a =可得219()25a a =,故195a a =±.又在等比数列中,所有的奇数项的符号相同,所以190a a >,所以195a a =.【名师点睛】在等比数列中,奇数项或者偶数项的符号相同.因此,在求等比数列的某一项或者某些项时要注意这些项的正负问题,要充分挖掘题目中的隐含条件.1.已知1,,,,5a b c 五个数成等比数列,则b 的值为A .3BC.D .522.在等比数列{}n a 中,112a =,12q =,132n a =,则项数n 为 A .3 B .4 C .5D .63.已知等比数列{}n a 为递增数列,若10a >,且212()3n n n a a a ++-=,则数列{}n a 的公比q =A .2或12B .2C .12D .2-4.已知数列{}n b 是等比数列,9b 是1和3的等差中项,则216b b = A .16 B .8 C .2D .45.已知等比数列{}n a 中,3462,16a a a ==,则101268a a a a --的值为A .2B .4C .8D .166.在等比数列{}n a 中,若48,a a 是方程2430x x -+=的两根,则6a 的值是 A.BC.D .3±7.已知三个数成等比数列,它们的积为27,它们的平方和为91,则这三个数的和为 A .13B .-7C .-7或13D .无法求解8.已知0a b c <<<,且,,a b c 是成等比数列的整数,n 为大于1的整数,则下列关于log a n ,log b n ,log c n 的说法正确的是A .成等差数列B .成等比数列C .各项的倒数成等差数列D .以上都不对9.已知数列{}n a 满足13n n a a +=,且2469a a a ++=,则15793log ()a a a ++=____________.10.在等比数列{}n a 中,21a =,公比1q ≠±.若135,4,7a a a 成等差数列,则6a 的值是_____________.11.在等比数列{}n a 中,572a a =,2103a a +=,则124a a =_____________. 12.已知单调递减的等比数列{}n a 满足23428a a a ++=,且32a +是2a ,4a 的等差中项,则公比q =_____________,通项公式为n a =_____________.13.已知等比数列{}n a 中,2766a a +=,36128a a =,求等比数列{}n a 的通项公式n a .14.已知数列}{n a 满足递推式)2(121≥+=-n a a n n ,其中415a =.(1)求321,,a a a ;(2)求证:数列{1}n a +为等比数列.15.已知数列{}n a 与等比数列{}n b 满足3()n an b n =∈*N .(1)试判断{}n a 是何种数列; (2)若813a a m +=,求1220b b b L .16.已知{}n a 是等比数列,且263a a +=,61012a a +=,则812a a +=A .B .24C .D .4817.已知等差数列{}n a 和等比数列{}n b 的首项都是1,公差和公比都是2,则=++432b b b a a aA .24B .25C .26D .2718.若等比数列{}n a 的各项均为正数,且310119122e a a a a +=(e 为自然对数的底数),则12ln ln a a ++⋅⋅⋅+20ln a =A .50B .40C .30D .2019.各项均为正的等比数列{}n a 中,4a 与14a的等比中项为,则27211log log a a +的值为A .4B .3C .2D .120.已知等差数列{}n a 和等比数列{}n b 的首项都是1,公差和公比都是2,则234a a a b b b ++=A .24B .25C .26D .8421.在等比数列{}n a 中,27a =,公比1q ≠±.若135,4,7a a a 成等差数列,则21n a +=____________.22.已知数列{}n a 满足132(2)n n a a n -=+≥,且12a =,则n a =_____________. 23.已知1,,,4a b --成等差数列,1,,,,4m n t --成等比数列,则b an-=______________. 24.等差数列{}n a 的各项均为正数,13a =,前n 项和为n S ,{}n b 为等比数列,11b =,且2264,b S =33960b S =. (1)求n a 与n b ; (2)求和:12111nS S S +++.25.已知数列{}n a 的前n 项和为n S ,在数列{}n b 中,11b a =,1(2)n n n b a a n -=-≥,且n n a S n +=.(1)设1n n c a =-,求证:{}n c 是等比数列; (2)求数列{}n b 的通项公式.26.(2018北京文)“十二平均律”是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做出了重要贡献.十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于.若第一个单音的频率f ,则第八个单音频率为 ABC.fD.27.(2016四川理)某公司为激励创新,计划逐年加大研发资金投入.若该公司2015年全年投入研发资金130万元,在此基础上,每年投入的研发资金比上一年增长12%,则该公司全年投入的研发资金开始超过200万元的年份是 (参考数据:lg 1.12≈0.05,lg 1.3≈0.11,lg2≈0.30) A .2018年 B .2019年 C .2020年D .2021年28.(2017北京理)若等差数列{}n a 和等比数列{}n b 满足11–1a b ==,448a b ==,则22a b =______________. 29.(2017新课标全国Ⅲ理)设等比数列{}n a 满足a 1+a 2=–1,a 1–a 3=–3,则a 4=______________.30.(2018新课标全国Ⅰ文)已知数列{}n a 满足11a =,12(1)n n na n a +=+,设nn a b n=. (1)求1b ,2b ,3b ;(2)判断数列{}n b 是否为等比数列,并说明理由; (3)求{}n a 的通项公式.31.(2016新课标全国Ⅲ文)已知各项都为正数的数列{}n a 满足11a =,21(21)n n n a a a +---120n a +=.(1)求23,a a ;(2)求{}n a 的通项公式.1.【答案】B【解析】设等比数列的公比为q .由题意得,215b b =⨯⇒=,又2210b q q =⨯=>,所以b =B .2.【答案】C【解析】根据等比数列通项公式11n n a a q-=⋅有1111()3222n -=⋅,解得5n =,故选C .5.【答案】B【解析】由题意得246516a a a ==,所以54a =±,因为32a =,所以54a =,所以2532a q a ==,所以91141012115768114a a a q a q q a a a q a q--===--,故选B . 6.【答案】B【解析】由48,a a 是方程2430x x -+=的两根有484840,3a a a a +=>=,故48,a a 都为正数,而26483a a a ==,所以6a =,由于2640a a q =>,所以6a =,故选B . 7.【答案】C【解析】由题意,可设这三个数分别为aq,a ,aq ,则22222222739999191aa aq a q q a a a q q q ⎧⋅⋅==⎧⎪⎪⎪⇒⎨⎨++=⎪⎪++=⎩⎪⎩239a q =⎧⇒⎨=⎩或2319a q =⎧⎪⎨=⎪⎩,所以3q =±或13q =±,故这三个数为1,3,9或-1,3,-9或9,3,1或-9,3,-1.故这三个数的和为13或-7.故选C .9.【答案】−5【解析】因为13n n a a +=,所以数列{}n a 是以3为公比的等比数列,335579246()393a a a q a a a ∴++=++=⨯=,∴15793log ()5a a a ++=-.10.【答案】149【解析】由题意得342231511878778107=+⇒=+⇒-+=⇒=a a a q q q q q q 或21=q (舍去),从而461.49a q == 11.【答案】2或21【解析】由等比数列性质知57210=2a a a a =,又2103a a +=,所以21a =,102a =或22a =,101a =,所以1012422a a a a ==或21. 12.【答案】12 61()2n - 【解析】由题意得,3243332(2)2(2)288a a a a a a +=+⇒++=⇒=,所以2481208202a a q q q +=⇒+=⇒=或2(舍去),所以通项公式为3631()2n n n a a q --==.13.【答案】12n n a -=或82nn a -=.【解析】设等比数列的首项为1a ,公比为q , 由题意得272727362766,66,2,64128128a a a a a a a a a a +=+==⎧⎧⎧⇒⇒⎨⎨⎨===⎩⎩⎩或2764,2.a a =⎧⎨=⎩所以55722a q a ==或512,即2q =或12, 所以2122n n n a a q--==或22812n n n a a q --==.故等比数列{}n a 的通项公式为12n n a -=或82nn a -=.14.【答案】(1)11a =,23a =,37a =;(2)见解析.【解析】(1)由121n n a a -=+及415a =知432115,a a =+= 解得,73=a 同理可得.1,312==a a(2)由121+=-n n a a 可得2211+=+-n n a a ,)1(211+=+-n n a a ,{1}n a +是以211=+a 为首项,2为公比的等比数列.(2)因为120813a a a a m +=+=,所以1220a a a +++=L ()120202a a +=10m ,所以2012201210122033333a a a a a am b b b +++===L L L .16.【答案】B【解析】由题意知4446102626261243a a a q a q q a a a a ++====++,则22q =, 所以222812610610()21224a a a q a q q a a +=+=+=⨯=,故选B . 17.【答案】B【解析】等比数列}{n b 首项是1,公比是2,所以2342,4,8b b b ===,等差数列{}n a 的首项是1,公差是2,所以2342481311311225b b b a a a a a a a d ++=++=+=+⨯=,故选B . 18.【答案】C【解析】在等比数列中,q p n m a a a a q p n m =⇒+=+,所以3310119121011101122e e a a a a a a a a +==⇒=,由对数的运算可知1220ln ln ln a a a ++⋅⋅⋅+12201202191011ln()ln[()()()]a a a a a a a a a =⋅⋅⋅=1031011ln()10ln e 30a a ===,故选C .19.【答案】B【解析】由4a 与14a的等比中项为4148a a =,所以27211271124142log log log log log 83a a a a a a +====,故选B . 20.【答案】D【解析】等差数列{}n a 首项是1,公差是2,所以2343,5,7a a a ===,等比数列{}n b 首项是1,公比是2,所以23424635722284a a a b b b b b b ++=++=++=,故选D . 21.【解析】由题意得342231511878778107=+⇒=+⇒-+=⇒=a a a q q q q q q 或21=q (舍去),从而2211117777nn n n a q +-=⨯=⨯=. 22.【答案】31n -【解析】1132(2),2n n a a n a -=+≥=,1113(1),13n n a a a -∴+=++=,即数列{1}n a +是以3为首项、3为公比的等比数列,则nn a 31=+,即13-=nn a . 23.【答案】12【解析】因为1,,,4a b --成等差数列,设公差为d ,所以4(1)141b a d ----===--,因为1,,,,4m n t --成等比数列,所以2(1)(4)4n =-⨯-=, 即2n =±,由于n 与1,4--同号,所以0n <,所以2n =-,所以1122b a n --==-. 24.【答案】(1)21n a n =+,18n n b -=;(2)32342(1)(2)n n n +-++. 【解析】(1)设{}n a 的公差为d ,{}n b 的公比为q , 则0d>,3(1)n a n d =+-,1n n b q -=,依题意有23322(93)960,(6)64,S b d q S b d q ⎧=+=⎨=+=⎩解得2,8d q =⎧⎨=⎩或6,5403d q ⎧=-⎪⎪⎨⎪=⎪⎩(舍去),故32(1)21n a n n =+-=+,18n n b -=.(2)35(21)(2)n S n n n =++++=+,所以121111111132435(2)n S S S n n +++=++++⨯⨯⨯+11111111(1)2324352n n =-+-+-++-+ 1111(1)2212n n =+--++ 323.42(1)(2)n n n +=-++ 25.【答案】(1)见解析;(2)1()2nn b =.【解析】(1)因为n n a S n += ①,所以111n n a S n +++=+ ②,②−①得111n n n a a a ++-+=,所以121n n a a +=+, 所以12(1)1n n a a +-=-,所以11112n n a a +-=-,所以{1}n a -是等比数列.因为首项111c a =-,111a a +=,所以112a =,所以112c =-, 所以{}n c 是以12-为首项,12为公比的等比数列. (2)由(1)可知1111()()()222n n n c -=-⋅=-,所以111()2n n n a c =+=-.故当2n ≥时,111111111()[1()]()()()22222n n n n nn n n b a a ---=-=---=-=.又1112b a ==代入上式也符合,所以1()2n nb =.26.【答案】D【解析】因为每一个单音与前一个单音频率比为,所以*1(2,)n n a n n -=≥∈N , 又1a f =,则7781a a q f ===,故选D .【名师点睛】本题考查等比数列的实际应用,解决本题的关键是能够判断单音成等比数列.等比数列的判断方法主要有如下两种: (1)定义法,若1*(0,)n n a q q n a +=≠∈N 或1*(0,2,)n n aq q n a n -≠≥∈=N , 数列{}n a 是等比数列;(2)等比中项公式法,若数列{}n a 中,0n a ≠且*2123,()n n n a a a n n --≥∈=⋅N ,则数列{}n a 是等比数列.28.【答案】1【解析】设等差数列的公差和等比数列的公比分别为d 和q ,则3138d q -+=-=,求得2,3q d =-=,那么221312a b -+==. 29.【答案】8-【解析】设等比数列{}n a 的公比为q ,很明显1q ≠-,结合等比数列的通项公式和题意可得方程组:1212131(1)1(1)3a a a q a a a q +=+=-⎧⎨-=-=-⎩①②,由②①可得:2q =-,代入①可得11a =,由等比数列的通项公式可得3418a a q ==-.30.【答案】(1)11b =,22b =,34b =;(2)数列{}n b 是等比数列,理由见解析;(3)1·2n n a n -=.【解析】(1)由条件可得12(1)n n n a a n++=, 将1n =代入得214a a =,而11a =,所以24a =. 将2n =代入得323a a =,所以312a =. 从而11b =,22b =,34b =.31.【答案】(1)41,2132==a a ;(2)121-=n n a . 【解析】(1)由题意得41,2132==a a . (2)由02)12(112=---++n n n n a a a a ,得)1()1(21+=++n n n n a a a a . 因为{}n a 的各项都为正数,所以211=+n n a a , 故{}n a 是首项为1,公比为21的等比数列,因此121-=n n a .。
新人教A版必修5期中复习(2)《数列》
高二数学期中复习(2)《数列》 2010.11一.选择题1.在等比数列中,32,31,891===q a a n ,则项数n 为 (A )3(B )4 (C )5 (D )62.在等差数列{}n a 中,1910a a +=,则5a 的值为 (A )5 (B )6 (C )8 (D )103.等比数列{}n a 中,===+q a a a a 则,8,63232(A )2 (B )21 (C )2或21 (D )-2或21- 4.设数列{}n a 的前n 项和2n S n =,则8a 的值为(A )15 (B) 16 (C) 49 (D )64 5.设等比数列{}n a 的公比2q =,前n 项和为n S ,则42S a = (A ) 2 (B ) 4 (C )152 (D ) 1726. 已知{}n a 是等差数列,1010a =,其前10项和1070S =, 则其公差d =( ) (A)23-(B)13-(C)13(D)237.已知数列{}n a 的前n 项和29n S n n =-,第k 项满足58k a <<,则k = (A) 9 ( B) 8 (C)7 (D)68. 已知0x >,0y >,x a b y ,,,成等差数列,x c d y ,,,成等比数列,则2()a b cd+的最小值是( ) (A)0 (B)1 (C)2(D)49.等比数列前n 项和为54,前2n 项和为60,则前3n 项和为(A )66 (B )64 (C )2663 (D )260310.在数列{}n a 中,21n n n a a a ++=+,122,5a a ==,则6a 的值是 (A )-3 (B )32 (C ) 31 (D )1911数列{}n a 中,121321,,,...,n n a a a a a a a ----…是首项为1,公比为31的等比数列,则n a 等(A )23(1-n 31) (B )23(1-131-n )(C )32(1-n 31) (D )32(1-131-n )12. 已知等比数列{}n a 满足0,1,2,n a n >=,且25252(3)n n a a n -⋅=≥,则当1n ≥时,2123221log log log n a a a -+++=(A)(21)n n - (B)2(1)n + (C)2n (D)2(1)n -二.填空题:13.在等差数列}{n a 中,6,7253+==a a a ,则____________6=a . 14. 若数列{}n a 满足:111,2()n n a a a n N *+==∈,则5a = .15. 等比数列{n a }的公比0q >,已知2a =1,216n n n a a a +++=,则{n a }的前4项和4S = .16.三个互不相等的实数,1,a b 依次成等差数列,且22,1,a b 依次成等比数列,则11a b+= .二.填空题(每小题4分,共16分)13. 14. 15. 16. 三.解答题17.设等差数列{}n a 满足35a =,109a =-. (1)求{}n a 的通项公式;(2)求{}n a 的前n 项和n S 及n S 最大值.18.数列}{n a 的前n 项为n S ,23()n n S a n n N *=-∈.(1)证明:数列{}3+n a 是等比数列; (2)求数列{}n a 的通项公式n a .19.数列}{n a 是首项为14a =的等比数列,n S 为前n 项和,且324,,S S S 成等差数列. (1)求{}n a 的通项公式; (2)若2log n n b a =,设n T 为数列11n n b b +⎧⎫⎨⎬⋅⎩⎭的前n 项和,求证:12nT <.20.在数列{}n a 中,11a =,122n n n a a +=+. (Ⅰ)设12nn n a b -=.证明:数列{}n b 是等差数列; (Ⅱ)求数列{}n a 的前n 项和n S .高二数学期中复习(2)《数列》 2010.111-12 BACAC DBDDC AC 13.13 14.16 15.15216. 2± 17. (1)211n a n =-+;(2)28n S n n =-+,当5n =时取得最大值25. 18.解:(1)由n a S n n 32-=,得)2)(1(3211≥--=--n n a S n n ,则有3221--=-n n n a a a ,即)2(321≥+=-n a a n n .所以132(3)(2)n n a a n -+=+≥, ,32111-==a S a 31=∴a ,所以1360a +=≠,由此可得23120a +=≠,以此类推30n a +≠, 所以132(2)3n n a n a -+=≥+,∴数列{}3+n a 是以6为首项,2为公比的等比数列. (2),32111-==a S a 31=∴a .由(1)知112)3(3-⋅+=+n n a a ,323-⋅=∴n n a . 19.(1)解:由已知324,,S S S 成等差数列可得2342S S S S -=-, 334a a a ∴-=+ 432,a a ∴=- 2q ∴=-11422()()()n n n a n N -+*∴=⨯-=-∈(2)证明:21log n n b a n ==+, 111111212()()n n b b n n n n +∴==-⋅++++111111233412111222n T n n n ∴=-+-++-++=-<+20 (1)证明:122n n n a a +=+, 11122n nn n a a +-∴=+, ∴11n n b b +=+, 则n b 为等差数列,11b =,n b n =,12n n a n -=⋅.(2)1221022)1(232221--⨯+⨯-++⨯+⨯+⨯=n n n n n Sn n n n n S 22)1(23222121321⨯+⨯-++⨯+⨯+⨯=-两式相减,得1222222121210+-⨯=----⨯-⨯=-n n n n n n n S。
新版高中数学人教A版必修5习题:第二章数列 习题课1(1)
习题课(一)求数列的通项公式课时过关·能力提升基础巩固1在数列1,2,2,3,3,3,4,4,4,4,…中,第25项为().A.2B.6C.7D.8解析:1+2+3+4+…+n=n(n+1)2,当n=6时,共21项,故第25项为7.答案:C2在数列{a n}中,a1=2,a n+1=3a n+2,则a2 016的值为().A.32 015B.32 015-1C.32 016D.32 016-1答案:D3数列17,29,311,413,…的一个通项公式是().A.a n=n2n+3B.an=n2n-3C.a n=n2n+5D.an=n2n-5答案:C4已知数列{a n}满足a n+2=a n+1+a n,若a1=1,a5=8,则a3等于().A.1B.2C.3D.72解析:由a n+2=a n+1+a n ,a 1=1,a 5=8,得a 3=a 2+1,a 4=a 3+a 2,消去a 2得a 4=2a 3-1.又a 5=a 4+a 3=8,即8=3a 3-1,所以a 3=3.故选C . 答案:C5已知数列前n 项和S n =2n 2-3n+1,n ∈N *,则它的通项公式为 . 解析:当n=1时,a 1=S 1=0;当n ≥2时,a n =S n -S n-1=2n 2-3n+1-[2(n-1)2-3(n-1)+1]=4n-5, 故a n ={0,n =1,4n -5,n ≥2.答案:a n ={0,n =1,4n -5,n ≥26在数列{a n }中,a 1=1,a 2=5,a n+2=a n+1-a n (n ∈N *),则a 2 016= . 解析:∵a 1=1,a 2=5,a n+2=a n+1-a n ,∴a 1=1,a 2=5,a 3=4,a 4=-1,a 5=-5,a 6=-4,a 7=1,a 8=5. ∴数列{a n }是周期数列,周期为6. ∴a 2016=a 6×336=a 6=-4.答案:-47在数列{a n }中,a 1=2,a n+1=a n +n+1,则通项a n = . 解析:∵a n+1=a n +n+1,∴a n+1-a n =n+1.∴a 2-a 1=2,a 3-a 2=3,a 4-a 3=4,…,a n -a n-1=n ,各式相加得a n -a 1=2+3+4+…+n =(n+2)(n -1)2. 又a 1=2,∴a n =(n+2)(n -1)2+2=n 2+n+22.答案:n 2+n+228已知数列{a n }的前n 项和为S n ,且满足log 2(S n +1)=n+1,则a n = . 解析:∵log 2(S n +1)=n+1,∴S n =2n+1-1.当n=1时,a 1=S 1=3;当n ≥2时,a n =S n -S n-1=2n+1-2n =2n .∵当n=1时,上式不满足, ∴a n ={3,n =1,2n ,n ≥2.答案:{3,n =1,2n ,n ≥29根据下列条件,求数列的通项公式a n . (1)在数列{a n }中,a 1=1,a n+1=a n +2n ;(2)在数列{a n }中,a n+1=n+2n·a n ,a 1=4. 解(1)∵a n+1=a n +2n ,∴a n+1-a n =2n .∴a 2-a 1=2,a 3-a 2=22,a 4-a 3=23,…,a n -a n-1=2n-1,以上各式两边分别相加得a n -a 1=2+22+23+…+2n-1=2(1-2n -1)1-2=2n −2.又a 1=1,∴a n =2n -2+1=2n -1.(2)∵a n+1=n+2n ·a n ,∴a n+1a n=n+2n .∴a2a1=31,a3a2=42,a4a3=53,a5a4=64,…,a na n-1=n+1n-1.以上各式两边分别相乘得a n a1=n(n+1)1×2=n(n+1)2.又a1=4,∴a n=2n(n+1).10已知{a n}是公差为3的等差数列,数列{b n}满足b1=1,b2=13,anbn+1+bn+1=nbn.(1)求{a n}的通项公式;(2)求{b n}的前n项和.解(1)由已知,a1b2+b2=b1,b1=1,b2=13,得a1=2.所以数列{a n}是首项为2,公差为3的等差数列,通项公式为a n=3n-1.(2)由(1)和a n b n+1+b n+1=nb n得b n+1=b n3,因此{b n}是首项为1,公比为13的等比数列.记{b n}的前n项和为S n,则S n=1-(13)n1-13=32−12×3n-1.能力提升1在数列{a n}中,a n+1=a n1+3a n,a1=2,则a4等于().A.165B.219C.85D.87答案:B2已知数列{a n}的前n项和S n=n2-2n,则a2+a18等于().A.36B.35C.34D.33解析:a2+a18=S2-S1+S18-S17=(22-2×2)-(12-2×1)+(182-2×18)-(172-2×17)=34.答案:C3已知n∈N*,给出4个表达式:①a n={0,n为奇数,1,n为偶数,②an=1+(-1)n2,③an=1+cosnπ2,④an=|sin nπ2|.其中能作为数列:0,1,0,1,0,1,0,1,…的通项公式的是().A.①②③B.①②④C.②③④D.①③④解析:经检验知①②③都是所给数列的通项公式,故选A.答案:A4已知在数列{a n}中,a1=1,(2n+1)a n=(2n-3)a n-1(n≥2),则数列{a n}的通项公式为. 解析:由(2n+1)a n=(2n-3)a n-1,可得a na n-1=2n-32n+1(n≥2),所以a2a1=15,a3a2=37,a4a3=59,a5a4=711,…,a na n-1=2n-32n+1(n≥2).上述各式左右两边分别相乘得a na1=1×3(2n-1)(2n+1)(n≥2),故a n=3(2n-1)(2n+1)(n≥2).又a1=1满足上式,所以数列{a n}的通项公式为a n=3(2n-1)(2n+1)(n∈N*).答案:a n=3(2n-1)(2n+1)★5若数列{a n}满足a1=23,a2=2,3(an+1−2an+an−1)=2,则数列{an}的通项公式为.解析:由3(a n+1-2a n+a n-1)=2可得a n+1-2a n+a n-1=23,即(a n+1-a n)-(a n-a n-1)=23,所以数列{a n+1-a n}是以a2-a1=43为首项,23为公差的等差数列,所以a n+1-a n=43+23(n−1)=23(n+1).故a n=a1+(a2-a1)+(a3-a2)+…+(a n-a n-1)=a1+23(2+3+⋯+n)=13n(n+1).答案:a n=13n(n+1)6已知在数列{a n}中,a n+1=2a n+3·2n+1,且a1=2,则数列{a n}的通项公式为. 解析:∵a n+1=2a n+3·2n+1,∴a n+12n+1=a n2n+3,即a n+12n+1−a n2n=3.∴数列{a n2n}是公差为3的等差数列.又a12=1,∴a n2n=1+3(n−1),∴a n=(3n-2)·2n.答案:a n=(3n-2)·2n7已知数列{a n}满足a1=1,a n+1=3a n+1.(1)证明{a n+12}是等比数列,并求{an}的通项公式;(2)证明1a1+1a2+⋯+1a n<32.(1)解由a n+1=3a n+1,得a n+1+12=3(a n+12).又a1+12=32,所以{a n+12}是首项为32,公比为3的等比数列.a n+12=3n2,因此{a n}的通项公式为a n=3n-12.(2)证明由(1)知1a n =23n-1.因为当n≥1时,3n-1≥2×3n-1,所以13n-1≤12×3n-1.于是1a1+1a2+⋯+1a n≤1+13+⋯+13n-1=32(1-13n)<32.所以1a1+1a2+⋯+1a n<32.★8设数列{a n}的前n项和为S n,且S n=4a n-3(n=1,2,…).(1)证明:数列{a n}是等比数列;(2)若数列{b n}满足b n+1=a n+b n(n=1,2,…),b1=2,求数列{b n}的通项公式.(1)证明因为S n=4a n-3(n=1,2,…),所以S n-1=4a n-1-3(n=2,3,…),当n≥2时,a n=S n-S n-1=4a n-4a n-1,整理,得a na n-1=43.由S n=4a n-3,令n=1,得a1=4a1-3,解得a1=1.所以数列{a n }是首项为1,公比为43的等比数列.(2)解由(1)得a n =(43)n -1,由b n+1=a n +b n (n=1,2,…),得b n+1-b n =(43)n -1.则b n =b 1+(b 2-b 1)+(b 3-b 2)+…+(b n -b n-1)=2+1-(43)n -11-43=3×(43)n -1−1.。
人教A版高中数学必修五第二章 数列测试题 (1).docx
高中数学学习材料唐玲出品姓名______ 学号_______ 班级______ 第二章 数列测试题 (1)命题 洞口三中 方锦昌一、选择题 1、设{}n a 是等差数列,若273,13a a ==,则数列{}n a 前8项的和为( )A.128B.80C.64D.562、记等差数列的前n 项和为n S ,若244,20S S ==,则该数列的公差d =( )A 、2B 、3C 、6D 、7 3、设等比数列{}n a 的公比2q =,前n 项和为n S ,则42S a =( ) A .2B .4C .215 D .217 4、设等差数列{}n a 的前n 项和为n S ,若39S =,636S =,则789a a a ++=( ) A .63 B .45 C .36 D .275、在数列{}n a 中,12a =, 11ln(1)n n a a n+=++,则n a =( )A .2ln n +B .2(1)ln n n +-C .2ln n n +D .1ln n n ++ 6、若等差数列{}n a 的前5项和525S =,且23a =,则7a =( )(A )12 (B )13 (C )14 (D )15 7、已知{}n a 是等比数列,41252==a a ,,则12231n n a a a a a a ++++=( ) (A )16(n --41) (B )16(n --21) (C )332(n --41) (D )332(n--21)8、非常数数列}{n a 是等差数列,且}{n a 的第5、10、20项成等比数列,则此等比数列的公比为 ( ) A .51 B .5 C .2 D .219、已知数列}{n a 满足)(133,0*11N n a a a a n n n ∈+-==+,则20a =( )A .0B .3-C .3D .23 10、在单位正方体ABCD-A 1B 1C 1D 1中,黑、白两只蚂蚁均从点A 出发,沿棱向前爬行,每爬完一条棱称为“爬完一段”,白蚂蚁的爬行路线是AA 1⇒A 1D 1⇒D 1C 1⇒…;黑蚂蚁的爬行路线是AB ⇒BB 1⇒B 1C 1⇒…,它们都遵循以下的爬行规则:所爬行的第i+2段与第i 段所在的直线必为异面直线(其中i 为自然数),设黑、白蚂蚁都爬完2008段后各自停止在正方体的某个顶点处,则此时两者的距离为 ( )A 1B 2C 3D 0二、填空题 11.已知{}n a 为等差数列,3822a a +=,67a =,则5a =____________ 12.设数列{}n a 中,112,1n n a a a n +==++,则通项n a = ___________。
人教A版2019高中数学必修5练习:第二章_数列2.5.2等比数列前n项和的性质及应用_含答案
第2课时等比数列前n项和的性质及应用课后篇巩固探究A组1.在各项都为正数的等比数列{a n}中,首项a1=3,前3项和为21,则a3+a4+a5等于()A.33B.72C.84D.189S3=a1(1+q+q2)=21,且a1=3,得q+q2-6=0.因为q>0,所以q=2.故a3+a4+a5=q2(a1+a2+a3)=22·S3=84.2.已知数列{a n}的前n项和S n=a n-1(a是不为零且不等于1的常数),则数列{a n}()A.一定是等差数列B.一定是等比数列C.或者是等差数列,或者是等比数列D.既不是等差数列,也不是等比数列S n=a n-1符合S n=-Aq n+A的形式,且a≠0,a≠1,所以数列{a n}一定是等比数列.3已知{a n}是等比数列,a1=1,a4=,则a1a2+a2a3+…+a n a n+1等于()A.2(1-4-n)B.2(1-2-n)C. (1-4-n)D. (1-2-n)q,∵=q3=,∴q=.∵a1=1,∴a n a n+1=1××1×=21-2n.故a1a2+a2a3+a3a4+…+a n a n+1=2-1+2-3+2-5+…+21-2n== (1-4-n).4.我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯”.意思是:一座七层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯()A.2盏B.3盏C.5盏D.6盏a盏灯,由题意知第七层至第一层的灯的盏数构成一个以a为首项,以2为公比的等比数列,由等比数列的求和公式可得=381,解得a=3,故顶层有3盏灯.5.已知一个等比数列共有3m项,若前2m项之和为15,后2m项之和为60,则这个等比数列的所有项的和为()A.63B.72C.75D.87已知S2m=15,S3m-S m=60,又(S2m-S m)2=S m(S3m-S2m)=S m(S m+60-S2m),解得S m=3,所以603=63.3m6.在各项均为正数的等比数列{a n}中,a1=2,a2,a4+2,a5成等差数列,S n是数列{a n}的前n项和,则S10-S4=.题意有2(a4+2)=a2+a5,设公比为q,则有2(2q3+2)=2q+2q4,解得q=2.于是S10-S4==2 016.7.已知数列{a n}满足a1=1,a n+1·a n=2n(n∈N*),则S2 018=.a n+1·a n=2n(n∈N*),a1=1,∴a2=2,a3=2.又a n+2·a n+1=2n+1,∴=2,∴数列{a n}的奇数项与偶数项分别成等比数列,公比为2,首项分别为1,2.∴S2 018=(a1+a3+…+a2 017)+(a2+a4+…+a2 018)==3·21 009-3.1 009-38.已知一件家用电器的现价是2 000元,如果实行分期付款,一年后还清,购买后一个月第一次付款,以后每月付款一次,每次付款数相同,共付12次,月利率为0.7%,并按复利计算,那么每期应付款元.(参考数据:1.00711≈1.080,1.00712≈1.087,1.0711≈2.105,1.0712≈2.252)x元,第n期付款后欠款A n元,则A1=2 000(1+0.007)-x=2 000×1.007-x,A2=(2 000×1.007-x)×1.007-x=2 000×1.0072-1.007x-x,……A12=2 000×1.00712-(1.00711+1.00710+…+1)x,因为A12=0,所以2 000×1.00712-(1.00711+1.00710+…+1)x=0,解得x=≈175,即每期应付款175元.9.在等差数列{a n}中,a2+a7=-23,a3+a8=-29.(1)求数列{a n}的通项公式;(2)设数列{a n+b n}是首项为1,公比为|a2|的等比数列,求{b n}的前n项和S n.设等差数列{a n}的公差为d,依题意得a3+a8-(a2+a7)=2d=-6,从而d=-3.所以a2+a7=2a1+7d=-23,解得a1=-1.所以数列{a n}的通项公式为a n=-3n+2.(2)由(1)得a2=-4,所以|a2|=4.而数列{a n+b n}是首项为1,公比为4的等比数列.所以a n+b n=4n-1,即-3n+2+b n=4n-1,所以b n=3n-2+4n-1,于是S n=[1+4+7+…+(3n-2)]+(1+4+42+…+4n-1)=.10.导学号04994050已知数列{a n}的前n项和为S n,且a1=1,a n+1=S n,n∈N*,求:(1)a2,a3,a4的值及数列{a n}的通项公式;(2)a2+a4+a6+…+a2n的值.由a1=1,a n+1=S n,n=1,2,3,…,得21=a1=,a3=S2= (a1+a2)=,a4=S3= (a1+a2+a3)=.由a n+1-a n=(S n-S n-1)= a n(n≥2),得a n+1=a n(n≥2),∵a2=,∴a n=(n≥2).∴数列{a n}的通项公式为a n=(2)由(1)可知,a2,a4,…,a2n是首项为,公比为,项数为n的等比数列,∴a2+a4+a6+…+a2n=.B组1.在等比数列{a n}中,a1+a2+a3+a4+a5=3,=15,则a1-a2+a3-a4+a5的值是A.3B.C.-D.5题意可知等比数列{a n}的公比q≠1,则a1+a2+…+a5==3,+…+=15,∴=5,∴a1-a2+a3-a4+a5==5.2.已知某公司今年获利5 000万元,如果以后每年的利润都比上一年增加10%,那么总利润达3亿元大约还需要()(参考数据:lg 1.01≈0.004,lg 1.06≈0.025,lg 1.1≈0.041,lg 1.6≈0.204)A.4年B.7年C.12年D.50年据题意知每年的利润构成一个等比数列{a n},其中首项a1=5 000,公比110%=1.1,S n=30 000.于是得到=30 000,整理得1.1n=1.6,两边取对数,得n lg 1.1=lg 1.6,解得n=≈5,故还需要4年.3.已知等比数列{a n}的公比为q,其前n项和为S n,前n项之积为T n,且满足a1>1,a2 016a2017>1,<0,则下列结论正确的是()A.q<0B.a2 016a2 018-1>0C.T2 016是数列{T n}中的最大数D.S2 016>S2 017,得a2 016>1,a2 017<1,所以前2 016项均大于1,0<q<1,S2 016<S2 017,T2 016是数列{T n}中的最大数,a2 016a2 018与1的大小关系无法确定.故选C.4已知等比数列{a n},其前n项和为S n,若S30=13S10,S10+S30=140,则S20等于.q≠1 (否则S30=3S10),由所以q20+q10-12=0,所以q10=3(负值舍去),故S20==S10×(1+q10)=10×(1+3)=40.5.已知等比数列{a n}的前n项和为S n,且S n=b n+1-2(b>0,b≠1),则a4=.n≥2时,a n=S n-S n-1=(b-1)·b n.因为a1=S1=b2-2,所以(b-1)b=b2-2,解得b=2,因此S n=2-2,于是a4=S4-S3=16.6.导学号04994051如图,作边长为3的正三角形的内切圆,在这个圆内作内接正三角形,然后作新三角形的内切圆,……如此下去,则前n个内切圆的面积和为.×3=,面积为π,第二个内切圆的半径为,面积为π,……这些内切圆的面积组成一个等比数列,首项为π,公比为,故前n个内切圆的面积之和为π.π7.已知正项等差数列{a n}的公差不为0,a2,a5,a14恰好是等比数列{b n}的前三项,a2=3.(1)求数列{a n},{b n}的通项公式;(2)记数列{b n}的前n项和为T n,若对任意的n∈N*,k≥3n-6恒成立,求实数k的取值范围.设公差为d,根据题意知d≠0,a2=a1+d,a5=a1+4d,a14=a1+13d.∵(a1+4d)2=(a1+d)(a1+13d),a1+d=3,∴3d2-6d=0,∴d=2(d=0舍去).又a2=3,d=2,∴a1=1,a n=2n-1.∵b1=a2=3,b2=a5=9,b3=a14=27,∴b n=3n.(2)由(1)知b1=3,q=3.∵T n=,∴k≥3n-6对n∈N*恒成立.∴k≥对n∈N*恒成立.令c n=,c n-c n-1=,当n≤3时,c n>c n-1,当n≥4时,c n<c n-1,∴(c n)max=c3=,故k≥.8.导学号04994052已知等差数列{a n}的前n项和为S n,且a2=8,S4=40.数列{b n}的前n项和为T n,且T n-2b n+3=0,n∈N*.(1)求数列{a n},{b n}的通项公式;(2)设c n=求数列{c n}的前2n+1项和P2n+1.由题意知,解得∴a n=4n.∵T n-2b n+3=0,∴当n=1时,b1=3,当n≥2时,T n-1-2b n-1+3=0,两式相减,得b n=2b n-1(n≥2),故数列{b n}为等比数列,且b n=3·2n-1.(2)由(1)知c n=∴P2n+1=(a1+a3+…+a2n+1)+(b2+b4+…+b2n)==22n+1+4n2+8n+2.。
2019_2020学年高中数学第二章数列能力测试新人教A版必修5
第二章 数列能力检测满分150分.考试时间120分钟.一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.(2019年山西太原期末)数列1,3,6,10,…的一个通项公式是( ) A .a n =n n +12B .a n =n n -12C .a n =n 2-(n -1) D .a n =n 2-1【答案】A【解析】观察数列1,3,6,10,…,可以发现1=1,3=1+2,6=1+2+3,10=1+2+3+4,…,第n 项为1+2+3+4+…+n =n n +12.∴a n =n n +12.故选A .2.已知等差数列{a n }的前n 项和为S n 且满足S 33-S 22=1,则数列{a n }的公差d 是( )A .-2B .-1C .1D .2【答案】D【解析】由S 33-S 22=1得a 1+a 2+a 33-a 1+a 22=a 1+d -2a 1+d 2=d2=1,∴d =2.3.已知3,a +2,b +4成等比数列,1,a +1,b +1成等差数列,则等差数列的公差为( ) A .4或-2 B .-4或2 C .4 D .-4【答案】C【解析】∵3,a +2,b +4成等比数列,1,a +1,b +1成等差数列,∴(a +2)2=3(b +4),2(a +1)=1+b +1,联立解得⎩⎪⎨⎪⎧a =-2,b =-4或⎩⎪⎨⎪⎧ a =4,b =8.当⎩⎪⎨⎪⎧a =-2,b =-4时,a +2=0,与3,a +2,b +4成等比数列矛盾,应舍去;当⎩⎪⎨⎪⎧a =4,b =8时,等差数列的公差为(a +1)-1=a =4.故选C .4.已知等差数列{a n }的公差d <0,若a 4·a 6=24,a 2+a 8=10,则该数列的前n 项和S n的最大值为( )A .50B .40C .45D .35【答案】C【解析】∵a 4+a 6=a 2+a 8=10,a 4·a 6=24,d <0,∴⎩⎪⎨⎪⎧a 4=6,a 6=4.∴d =a 6-a 46-4=-1,∴a n =a 4+(n -4)d =10-n .∴当n =9或10时S n 取到最大值,S 9=S 10=45.5.公差不为0的等差数列{a n },其前23项和等于其前10项和,a 8+a k =0,则正整数k =( )A .24B .25C .26D .27【答案】C【解析】由题意设等差数列{a n }的公差为d ,d ≠0,∵其前23项和等于其前10项和,∴23a 1+23×222d =10a 1+10×92d ,变形可得13(a 1+16d )=0.∴a 17=a 1+16d =0.由等差数列的性质可得a 8+a 26=2a 17=0,∴k =26.故选C .6.已知各项为正的等比数列{a n }中,a 4与a 14的等比中项为22,则a 7a 9a 11=( ) A .16 B .16 2 C .32 D .32 2【答案】B【解析】∵各项为正的等比数列{a n }中,a 4与a 14的等比中项为22,∴a 4a 14=(22)2=8.∴a 7a 11=a 29=8.∴a 7a 9a 11=16 2.故选B .7.如果数列{a n }满足a 1=2,a 2=1且a n -1-a n a n -1=a n -a n +1a n +1(n ≥2),则这个数列的第10项等于( )A .129B .1210 C .110 D .15【答案】D 【解析】∵a n -1-a n a n -1=a n -a n +1a n +1,∴1-a n a n -1=a n a n +1-1,a n a n -1+a n a n +1=2,∴1a n -1+1a n +1=2a n ,故⎩⎨⎧⎭⎬⎫1a n 是等差数列.又d =1a 2-1a 1=12,∴1a 10=12+9×12=5,故a 10=15.8.设等差数列{a n }的前n 项和为S n ,若2a 8=6+a 11,则S 9的值等于( ) A .54 B .45 C .36 D .27【答案】A【解析】∵2a 8=a 5+a 11,2a 8=6+a 11,∴a 5=6.∴S 9=9a 5=54.9.已知各项都为正数的等比数列{a n }中,a 2a 4=4,a 1+a 2+a 3=14,则满足a n ·a n +1·a n +2>19的最大正整数n 的值为( ) A .3 B .4 C .5 D .6【答案】B【解析】∵a 2a 4=4,a n >0,∴a 3=2.∴a 1+a 2=12.∴⎩⎪⎨⎪⎧a 1+a 1q =12,a 1q 2=2,消去a 1,得1+qq2=6.∵q >0,∴q =12.∴a 1=8,∴a n =8×⎝ ⎛⎭⎪⎫12n -1=24-n .∴不等式a n a n +1a n +2>19化为29-3n>19,当n=4时,29-3×4=18>19,当n =5时,29-3×5=164<19.故选B . 10.(2019年内蒙古包头模拟)已知各项均为正数的数列{a n }的前n 项和为S n ,且S n 满足n (n +1)S 2n +(n 2+n -1)S n -1=0(n ∈N *),则S 1+S 2+…+S 2019=( )A .12 019 B .12 020 C .2 0182 019 D .2 0192 020【答案】D【解析】∵n (n +1)S 2n +(n 2+n -1)S n -1=0(n ∈N *),∴(S n +1)[n (n +1)S n -1]=0.又S n>0,∴n (n +1)S n -1=0,∴S n =1nn +1=1n -1n +1.∴S 1+S 2+…+S 2 019=⎝ ⎛⎭⎪⎫1-12+⎝ ⎛⎭⎪⎫12-13+…+⎝⎛⎭⎪⎫12 019-12 020=2 0192 020.11.已知数列3,7,11,…,139与2,9,16,…,142,则它们所有公共项的个数为( ) A .4 B .5 C .6 D .7【答案】B【解析】由题意可知数列3,7,11,…,139的通项公式为a n =4n -1,139是数列第35项.数列2,9,16,…,142的通项公式为b m =7m -5,142是数列第21项.设数列3,7,11,…,139的第n 项与数列2,9,16,…,142的第m 项相同,则4n -1=7m -5,n =7m -44=7m 4-1,∴m为4的倍数且m 不大于21,n 不大于35.由此可知,m 只能为4,8,12,16,20.此时n 的对应值为6,13,20,27,34.∴公共项的个数为5.故选B .12.(2019年福建厦门模拟)已知等差数列{a n }的公差d ≠0,{a n }的部分项ak 1,ak 2,…,ak n 构成等比数列,若k 1=1,k 2=5,k 3=17,则k n =( )A .2×3n -1-1 B .2×3n -1+1C .2×3n-1 D .2×3n+1【答案】A【解析】设等比数列ak 1,ak 2,…,ak n 的公比为q .因为k 1=1,k 2=5,k 3=17,所以a 1·a 17=a 25,即a 1(a 1+16d )=(a 1+4d )2,化简得a 1d =2d 2.又d ≠0,得a 1=2d ,所以q =a 5a 1=a 1+4da 1=2d +4d2d=3.一方面,ak n 作为等差数列{a n }的第k n 项,有ak n =a 1+(k n -1)d =2d +(k n -1)d =(k n +1)d ;另一方面,ak n 作为等比数列的第n 项,又有ak n =ak 1·q n -1=a 1·3n -1=2d ·3n -1,所以(k n +1)d =2d ·3n -1.又d ≠0,所以k n =2×3n -1-1.二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上) 13.(2017年新课标Ⅲ)设等比数列{a n }满足a 1+a 2=-1,a 1-a 3=-3,则a 4=________. 【答案】-8【解析】设{a n }的公比为q ,则⎩⎪⎨⎪⎧a 1+a 2=a 11+q =-1,a 1-a 3=a 11-q2=-3,解得⎩⎪⎨⎪⎧a 1=1,q =-2,∴a 4=a 1q 3=-8.14.等比数列{a n }的前n 项和为S n ,已知S 1,2S 2,3S 3成等差数列,则{a n }的公比为________. 【答案】13【解析】∵S 1,2S 2,3S 3成等差数列,∴4S 2=S 1+3S 3.a n =a 1qn -1,即4(a 1+a 1q )=a 1+3(a 1+a 1q +a 1q 2),解得q =13.15.已知数列{a n }满足a n +1=12+a n -a 2n 且a 1=12,则该数列的前 2 017项的和等于________.【答案】3 0252【解析】∵a 1=12,a n +1=12+a n -a 2n ,∴a 2=1,从而a 3=12,a 4=1,即得a n =⎩⎪⎨⎪⎧12,n =2k -1k ∈N +,1,n =2k k ∈N +,故数列的前2 017项的和S 2 017=1 008×1+1 009×12=3 0252.16.(2018年江苏)已知集合A ={x |x =2n -1,n ∈N *},B ={x |x =2n ,n ∈N *}.将A ∪B 的所有元素从小到大依次排列构成一个数列{a n }.记S n 为数列{a n }的前n 项和,则使得S n >12a n +1成立的n 的最小值为________.【答案】27【解析】B ={2,4,8,16,32,64,128…},与A 相比,元素间隔大,所以从S n 中加了几个B 中元素考虑.1个:n =1+1=2,S 2=3,12a 3=36;2个:n =2+2=4,S 4=10,12a 5=60;3个:n =4+3=7,S 7=30,12a 8=108;4个:n =8+4=12,S 12=94,12a 13=204;5个:n =16+5=21,S 21=318,12a 22=396;6个:n =32+6=38,S 38=1 150,12a 39=780.发现21≤n ≤38时S n -12a n +1与0的大小关系发生变化,以下采用二分法查找:S 30=687,12a 31=612,所以所求n 应在22~29之间,S 25=462,12a 26=492,所以所求n 应在25~29之间,S 27=546,12a 28=540,所以所求n 应在25~27之间,S 26=503,12a 27=516.因为S 27>12a 28,而S 26<12a 27,所以使得S n >12a n+1成立的n 的最小值为27.三、解答题(本大题共6个小题,共70分,解答应写出文字说明,证明过程或演算步骤.) 17.(本小题满分10分)(2017年北京)已知等差数列{a n }和等比数列{b n }满足a 1=b 1=1,a 2+a 4=10,b 2b 4=a 5.(1)求{a n }的通项公式; (2)求和:b 1+b 3+b 5+…+b 2n -1. 【解析】(1)设等差数列{a n }的公差为d . 因为a 2+a 4=10,∴2a 1+4d =10. 解得d =2. 所以a n =2n -1.(2)设等比数列{b n }的公比为q . 因为b 2b 4=a 5,所以b 21q 4=9. 解得q 2=3. 所以b 2n -1=b 1q2n -2=3n -1.从而b 1+b 3+b 5+…b 2n -1=1+3+32+…+3n -1=3n-12.18.(本小题满分12分)已知{a n }为等差数列,前n 项和为S n ,S 5=S 6且a 3=-6. (1)求数列{a n }的通项公式;(2)若等比数列{b n }满足b 2=6,6b 1+b 3=-5a 3,求{b n }的前n 项和T n .【解析】(1)由已知可得a 6=0,设等差数列的公差为d ,由题意可得⎩⎪⎨⎪⎧a 1+2d =-6,a 1+5d =0,解得d =2,a 1=-10,∴数列{a n }的通项公式为a n =2n -12. (2)设{b n }的公比为q ,由题设得⎩⎪⎨⎪⎧b 1q =6,6b 1+b 1q 2=30,解得⎩⎪⎨⎪⎧b 1=3,q =2或⎩⎪⎨⎪⎧b 1=2,q =3.1-2当b 1=2,q =3时,T n =21-3n1-3=3n-1.19.(本小题满分12分)等差数列{a n }满足:a 2+a 4=6,a 6=S 3,其中S n 为数列{a n }的前n 项和.(1)求数列{a n }的通项公式;(2)若k ∈N *且a k ,a 3k ,S 2k 成等比数列,求k 值. 【解析】(1)设等差数列{a n }的首项为a 1,公差为d , 由a 2+a 4=6,a 6=S 3,得⎩⎪⎨⎪⎧2a 1+4d =6,a 1+5d =3a 1+3d ,解得⎩⎪⎨⎪⎧a 1=1,d =1.∴a n =1+1×(n -1)=n . (2)S 2k =2k +2k2k -12=2k 2+k , 由a k ,a 3k ,S 2k 成等比数列,得 9k 2=k (2k 2+k ),解得k =4.20.(本小题满分12分)已知数列{a n }是公差不为零的等差数列,a 1=2且a 2,a 4,a 8成等比数列.(1)求数列{a n }的通项公式;(2)若{b n -(-1)na n }是等比数列且b 2=7,b 5=71,求数列{b n }的前n 项和T n . 【解析】(1)设数列{a n }的公差为d (d ≠0), ∵a 1=2且a 2,a 4,a 8成等比数列, ∴a 24=a 2a 8,即(2+3d )2=(2+d )(2+7d ), 解得d =2或d =0(舍去).∴a n =a 1+(n -1)d =2+2(n -1)=2n .(2)令c n =b n -(-1)na n ,设数列{c n }的公比为q , ∵b 2=7,b 5=71,a n =2n ,∴c 2=b 2-a 2=7-2×2=3,c 5=b 5+a 5=71+2×5=81.∴q 3=c 5c 2=813=27,故q =3.∴c n =c 2·q n -2=3×3n -2=3n -1,即b n -(-1)n a n =3n -1,∴b n =3n -1+(-1)n·2n .则T n =b 1+b 2+b 3+…+b n =(30+31+…+3n -1)+[-2+4-6+…+(-1)n·2n ],1-322当n 为奇数时,T n =1-3n1-3+2×n -12-2n =3n-2n -32.∴T n=⎩⎪⎨⎪⎧3n+2n -12,n 为偶数,3n-2n -32,n 为奇数.21.(本小题满分12分)(2019年山东莱芜模拟)已知等比数列{a n }满足a n +1+a n =9·2n -1,n ∈N *.(1)求数列{a n }的通项公式;(2)设b n =na n ,求数列{b n }的前n 项和为S n . 【解析】(1)设等比数列{a n }的公比为q . ∵a n +1+a n =9·2n -1,∴a 2+a 1=9,a 3+a 2=18.∴q =a 3+a 2a 2+a 1=189=2. 又2a 1+a 1=9,∴a 1=3. ∴a n =3·2n -1,n ∈N *.(2)b n =na n =3n ·2n -1,∴13S n =1×20+2×21+…+(n -1)×2n -2+n ×2n -1.① ∴23S n =1×21+2×22+…+(n -1)×2n -1+n ×2n.② ①-②,得-13S n =1+21+22+…+2n -1-n ×2n =1-2n1-2-n ×2n =(1-n )2n-1.∴S n =3(n -1)2n+3.22.(本小题满分12分)数列{a n }是公比为12的等比数列且1-a 2是a 1与1+a 3的等比中项,前n 项和为S n ;数列{b n }是等差数列,b 1=8,其前n 项和T n 满足T n =nλ·b n +1(λ为常数且λ≠1).(1)求数列{a n }的通项公式及λ的值; (2)比较1T 1+1T 2+1T 3+…+1T n 与12S n 的大小.【解析】(1)由题意得,(1-a 2)2=a 1(1+a 3), ∴(1-a 1q )2=a 1(1+a 1q 2). ∵q =12,∴a 1=12,∴a n =⎝ ⎛⎭⎪⎫12n.∵⎩⎪⎨⎪⎧T 1=λb 2,T 2=2λb 3,∴⎩⎪⎨⎪⎧8=λ8+d ,16+d =2λ8+2d .∴λ=12,d =8.(2)由(1)得b n =8n ,∴T n =4n (n +1). ∴1T n =14⎝ ⎛⎭⎪⎫1n -1n +1. 令C n =1T 1+1T 2+…+1T n=14⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1-12+⎝ ⎛⎭⎪⎫12-13+…+⎝ ⎛⎭⎪⎫1n -1n +1 =14⎝ ⎛⎭⎪⎫1-1n +1,∴18≤C n <14. ∵S n =12⎝ ⎛⎭⎪⎫1-12n 1-12=1-⎝ ⎛⎭⎪⎫12n,∴12S n =12⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫12n ,∴14≤12S n <12. ∴C n <12S n .。
高中数学第二章数列2.4.1等比数列的概念及通项公式练习(含解析)新人教A版必修5
第13课时等比数列的概念及通项公式知识点一等比数列的定义1.数列m,m,m,…一定( )A.是等差数列,但不是等比数列B.是等比数列,但不是等差数列C.是等差数列,但不一定是等比数列D.既是等差数列,又是等比数列答案 C解析当m=0时,数列是等差数列,但不是等比数列;当m≠0时,数列既是等差数列,又是等比数列.故选C.2.若正数a,b,c依次成公比大于1的等比数列,则当x>1 时,log a x,log b x,log c x( ) A.依次成等差数列B.依次成等比数列C.各项的倒数依次成等差数列D.各项的倒数依次成等比数列答案 C解析1log a x+1log c x=log x a+log x c=log x(ac)=log x b2=2log x b=2log b x,∴1log a x,1log b x,1log c x成等差数列.知识点二等比数列的通项公式3.一批设备价值a万元,由于使用磨损,每年比上一年价值降低b%,则n年后这批设备的价值为( )A.na(1-b%) B.a(1-nb%)C.a(1-b%)n D.a[1-(b%)n]答案 C解析依题意可知第一年后的价值为a(1-b%),第二年后的价值为a(1-b%)2,依此类推形成首项为a(1-b%),公比为1-b%的等比数列,则可知n年后这批设备的价值为a(1-b %)n .故选C .4.在等比数列{a n }中,a n >0,且a 2=1-a 1,a 4=9-a 3,则a 4+a 5的值为( ) A .16 B .27 C .36 D .81 答案 B解析 由已知,得⎩⎪⎨⎪⎧a 1+a 2=1,a 3+a 4=9.∴q 2(a 1+a 2)=9,∴q 2=9.∵a n >0,∴q =3. ∴a 4+a 5=q (a 3+a 4)=3×9=27.知识点三 等比数列的证明5.已知数列{a n }的首项a 1=t >0,a n +1=3a n 2a n +1,n ∈N *,若t =35,求证1a n-1是等比数列并求出{a n }的通项公式.解 由题意知a n >0,1a n +1=2a n +13a n , 1a n +1=13a n +23, 1a n +1-1=131a n -1,1a 1-1=23, 所以数列1a n -1是首项为23,公比为13的等比数列.1a n -1=2313n -1=23n ,a n =3n3n +2.知识点四 等比中项及应用6.已知一等比数列的前三项依次为x ,2x +2,3x +3,那么-1312是此数列的第________项( )A .2B .4C .6D .8 答案 B解析 由x ,2x +2,3x +3成等比数列,可知(2x +2)2=x (3x +3),解得x =-1或-4,又当x =-1时,2x +2=0,这与等比数列的定义相矛盾.∴x =-4.∴该数列是首项为-4,公比为32的等比数列,其通项a n =-4×32n -1,由-4×32n -1=-1312,得n =4.7.若互不相等的实数a ,b ,c 成等差数列,a 是b ,c 的等比中项,且a +3b +c =10,则a 的值是( )A .1B .-1C .-3D .-4 答案 D解析 由题意,得⎩⎪⎨⎪⎧2b =a +c ,a 2=bc ,a +3b +c =10,解得a =-4,b =2,c =8.8.在等比数列{a n }中,若a 4a 5a 6=27,则a 3与a 7的等比中项是________. 答案 ±3解析 由等比中项的定义知a 25=a 4a 6,∴a 35=27. ∴a 5=3,∴a 1q 4=3,∴a 3a 7=a 21q 8=32,因此a 3与a 7的等比中项是±3.易错点一 忽略对等比中项符号的讨论9.若1,x ,y ,z ,16这五个数成等比数列,则y 的值为( ) A .4 B .-4 C .±4 D.2易错分析 对于本题的求解,若仅注意到y 是1与16的等比中项,会很快得出y 2=16,进一步得出y =±4,从而导致错解.答案 A解析 由于⎩⎪⎨⎪⎧x 2=1·y ,y 2=1×16⇒y =4,故选A .易错点二 忽略等比数列中公比可正可负10.已知一个等比数列的前4项之积为116,第2项与第3项的和为2,则这个等比数列的公比为________.易错分析 本题易错设四个数分别为a q 3,a q,aq ,aq 3公比为q 2相当于规定了这个等比数列各项要么同正,要么同负而错算出公比为3±22.答案 3±22或-5±2 6解析 设这4个数为a ,aq ,aq 2,aq 3(其中aq ≠0),由题意得⎩⎪⎨⎪⎧a ·aq ·aq 2·aq 3=116,aq +aq 2=2,所以⎩⎪⎨⎪⎧a 2q 3=±14,a 2q +q 22=2.所以a 2q 3a 2q +q 22=±18, 整理得q 2-6q +1=0或q 2+10q +1=0, 解得q =3±22或q =-5±26.一、选择题1.若等比数列{a n }满足a n a n +1=16n,则公比为( ) A .2 B .4 C .8 D .16 答案 B解析 由a n a n +1=16n ,知a 1a 2=16,a 2a 3=162,后式除以前式得q 2=16,∴q =±4.∵a 1a 2=a 21q =16>0,∴q >0,∴q =4.2.在数列{a n }中,a 1=1,点(a n ,a n +1)在直线y =2x 上,则a 4的值为( ) A .7 B .8 C .9 D .16 答案 B解析 ∵点(a n ,a n +1)在直线y =2x 上,∴a n +1=2a n .∵a 1=1≠0,∴a n ≠0.∴{a n }是首项为1,公比为2的等比数列,∴a 4=1×23=8.3.已知等比数列a 1,a 2,…a 8各项为正,且公比q ≠1,则( ) A .a 1+a 8=a 4+a 5 B .a 1+a 8<a 4+a 5 C .a 1+a 8>a 4+a 5D .a 1+a 8与a 4+a 5大小关系不能确定 答案 C解析 由题意可知,a 1>0,q >0,a 1+a 8-a 4-a 5=a 1(1+q 7-q 3-q 4)=a 1[1-q 3-q 4(1-q 3)]=a 1[(1-q 3)(1-q 4)]>0.∴a 1+a 8>a 4+a 5.故选C .4.一个数分别加上20,50,100后得到的三个数成等比数列,其公比为( ) A .53 B .43 C .32 D .12 答案 A解析 设这个数为x ,则(50+x )2=(20+x )·(100+x ),解得x =25.∴这三个数分别为45,75,125,公比q 为7545=53.5.在如下表格中,每格填上一个数字后,使每一横行成等差数列,每一纵列成等比数列,则a +b +c 的值为( )A .1B .2C .3D .98答案 D解析 按题意要求,每一横行成等差数列,每一纵列成等比数列填表如图,故a =12,b =38,c =14,则a +b +c =98.故选D .二、填空题6.一个直角三角形的三边成等比数列,则较小锐角的正弦值是________. 答案5-12解析 设该直角三角形的三边分别为a ,aq ,aq 2(q >1),则(aq 2)2=(aq )2+a 2,∴q 2=5+12.较小锐角记为θ,则sin θ=1q 2=5-12. 7.我国古代数学著作《九章算术》有如下问题:“今有人持金出五关,前关二税一,次关三而税一,次关四而税一,次关五而税一,次关六而税一,并五关所税,适重一斤.问本持金几何”其意思为“今有人持金出五关,第1关收税金12,第2关收税金13,第3关收税金14,第4关收税金15,第5关收税金16,5关所收税金之和,恰好1斤重,设这个人原本持金为x ,按此规律通过第8关”,则第8关需收税金为________.答案172x 解析 第1关收税金:12x ;第2关收税金:13⎝ ⎛⎭⎪⎫1-12x =12×3x ;第3关收税金:14⎝ ⎛⎭⎪⎫1-12-16x =13×4x ;…,可得第8关收税金:18×9x ,即172x . 8.各项均为正数的等比数列{a n }中,a 2-a 1=1.当a 3取最小值时,数列{a n }的通项公式a n =________.答案 2n -1解析 设等比数列的公比为q (q >0), 由a 2-a 1=1,得a 1(q -1)=1,所以a 1=1q -1. a 3=a 1q 2=q 2q -1=1-1q 2+1q(q >0), 而-1q 2+1q =-⎝ ⎛⎭⎪⎫1q -122+14, ①当q =2时①式有最大值14,所以当q =2时a 3有最小值4. 此时a 1=1q -1=12-1=1. 所以数列{a n }的通项公式a n =2n -1.故答案为2n -1.三、解答题9.等比数列{a n }中,已知a 1=2,a 4=16. (1)求数列{a n }的通项公式;(2)若a 3,a 5分别为等差数列{b n }的第3项和第5项,试求数列{b n }的通项公式及前n 项和S n .解 (1)设{a n }的公比为q , 由已知得16=2q 3,解得q =2, ∴a n =a 1qn -1=2n.(2)由(1)得a 3=8,a 5=32,则b 3=8,b 5=32,设{b n }的公差为d ,则有⎩⎪⎨⎪⎧b 1+2d =8,b 1+4d =32,解得⎩⎪⎨⎪⎧b 1=-16,d =12.从而b n =-16+12(n -1)=12n -28, ∴数列{b n }的前n 项和S n =n -16+12n -2=6n 2-22n .10.数列{a n }满足a 1=-1,且a n =3a n -1-2n +3(n =2,3,…). (1)求a 2,a 3,并证明数列{a n -n }是等比数列; (2)求a n .解 (1)a 2=3a 1-2×2+3=-4,a 3=3a 2-2×3+3=-15.下面证明{a n -n }是等比数列: 证明:由a n =3a n -1-2n +3可得a n -n =3[a n -1-(n -1)],因为a 1-1=-2≠0,所以a n -n ≠0, 所以a n +1-n +a n -n=3a n -n ++3-n +a n -n=3a n -3na n -n=3(n =1,2,3,…). 又a 1-1=-2,所以{a n -n }是以-2为首项,3为公比的等比数列. (2)由(1)知a n -n =-2·3n -1,所以a n =n -2·3n -1.。
2020_2021学年高中数学第二章数列2.3.1等差数列的前n项和同步作业含解析新人教A版必修52
等差数列的前n项和(30分钟60分)一、选择题(每小题5分,共30分)1.已知等差数列{a n}的前10项和为30,a6=8,则a100=( )A.100B.958C.948D.18【解析】选C.设等差数列{a n}的公差为d,由已知解得所以a100=-42+99×10=948.2.已知等差数列{a n}的公差为3,且a1+a3=8,则数列{a n}的前4项的和S4的值为( ) A.10B.16C.22D.35【解析】选C.因为等差数列{a n}的公差为3,且a1+a3=8,所以2a1+2×3=8,所以a1=1,所以S4=4×1+×3=22.3.(2019·某某高二检测)已知等差数列的前n项和S n,且S3=S5=15,则S7=() A.4B.7C.14D.【解析】选B.等差数列的前n项和为S n,且S3=S5=15,所以a4+a5=0,所以2a1+7d=0.再根据S3=3a1+3d=15,可得a1=7,d=-2,则S7=7a1+d=49+21×(-2)=7.4.(2019·某某高一检测)在等差数列{a n}中,若a3+a4+a5+a6+a7=45,则S9=() A.45B.162C.81D.【解析】选C.因为在等差数列{a n}中,a3+a4+a5+a6+a7=5a5=45,所以a5=9.所以S9==9a5=81.5.等差数列{a n}的前n项和为S n,若=,则下列结论中正确的是( )A.=2B.=C.=D.=【解析】选C.由已知S n=a n,S n-1=a n-1(n≥2),两式相减可得a n=a n-a n-1(n≥2),化简得=(n≥2),当n=3时,=.6.数列{a n}的前n项和S n=2n2+n(n∈N*),则a n=( )A.2n-1B.2n+1C.4n-1D.3n+2【解析】选C.因为数列{a n}的前n项和S n=2n2+n,所以当n≥2时,a n=S n-S n-1=2n2+n-[2(n-1)2+(n-1)]=4n-1,当n=1时,a1=S1=3,符合上式,所以综上a n=4n-1.二、填空题(每小题5分,共10分)7.设等差数列{a n}的前n项和为S n,S3=6,S4=12,则S6=________.【解析】方法一:设数列{a n}的首项为a1,公差为d,由S3=6,S4=12,得解得所以S6=6a1+15d=30.方法二:因为{a n}为等差数列,可设前n项和S n=An2+Bn,由S3=6,S4=12得解得即S n=n2-n,所以S6=36-6=30.答案:308.设等差数列{a n}的前n项和为S n,若S8=32,则a2+2a5+a6=__________.【解析】因为S8=32,所以=32.可得a4+a5=a1+a8=8,则a2+2a5+a6=2(a4+a5)=2×8=16.答案:16三、解答题(每小题10分,共20分)9.在各项为正的等差数列{a n}中,已知公差d=2,a n=11,S n=35,求a1和n.【解析】由题意得即解得或(舍去)故10.已知数列{a n}的前n项和为S n,a1=1,a n≠0,a n a n+1=λS n-1,其中λ为常数.(1)证明:a n+2-a n=λ.(2)是否存在λ,使得{a n}为等差数列?并说明理由.【解析】(1)由a n a n+1=λS n-1知,a n+1a n+2=λS n+1-1,两式相减得,a n+1(a n+2-a n)=λa n+1,又因为a n+1≠0,所以a n+2-a n=λ.(2)存在.由a1=1,a1a2=λa1-1,得a2=λ-1,由(1)知,a3=λ+1.令2a2=a1+a3,解得λ=4.所以a n+2-a n=4,由此可得,{a2n-1}是首项为1,公差为4的等差数列,a2n-1=1+(n-1)·4=4n-3; {a2n}是首项为3,公差为4的等差数列,a2n=3+(n-1)·4=4n-1.所以a n=2n-1,a n+1-a n=2.因此存在λ=4,使得{a n}为等差数列.(45分钟75分)一、选择题(每小题5分,共25分)1.已知等差数列{1-3n},则公差d等于( )A.1B.3C.-3D.n【解析】选C.因为a n=1-3n,所以a1=-2,a2=-5,所以d=a2-a1=-3.2.设等差数列{a n}的前n项和为S n,若S17=255,a10=20,则数列{a n}的公差为( ) A.3B.4C.5D.6【解析】选C.根据等差数列的求和公式,可得S17=×17=17a9=255,可得a9=15,又a10=20,所以d=a10-a9=20-15=5.3.等差数列中,S n是前n项和,若a3+a8=5,S9=45,则S11=( )A.0B.10C.20D.25【解析】选A.设等差数列的首项为a1,公差为d,因为,所以,即,解得,则S11=25×11-×5=0.故选A.4.已知等差数列{a n}中,a2=6,a5=15,若b n=a2n,则数列{b n}的前5项和等于( ) A.30B.45C.90D.186【解析】选C.因为所以故所以a n=a1+(n-1)d=3n,故b n=a2n=6n,则因此{b n}的前5项和为S5=5×6+×6=90.5.(2019·定州高一检测)记等差数列{a n}的前n项和为S n,若a5=3,S13=91,则S11=( ) A.36B.72C.55D.110【解析】选C.因为S13==13a7=91,所以a7=7,因为a5=3,所以a5+a7=10,因为a1+a11=a5+a7=10,所以S11==55.二、填空题(每小题5分,共20分)6.(2019·全国卷Ⅲ)记S n为等差数列{a n}的前n项和,a1≠0,a2=3a1,则=________.【解析】设该等差数列的公差为d,因为a2=3a1,所以a1+d=3a1,故d=2a1(a1≠0,d≠0),所以====4.答案:47.若数列{a n}的前n项和S n=n2-8n,n=1,2,3,…,则满足a n>0的n的最小值为________.【解析】(1)当n=1时,a1=S1=12-8=-7.(2)当n>1时,由S n=n2-8n得:S n-1=(n-1)2-8(n-1)=n2-10n+9,两式相减,得:a n=2n-9,n=1也符合,由a n=2n-9>0,得:n>4.5,所以,满足a n>0的n的最小值为5.答案:58.已知数列{a n}的前n项和S n=n2-2n+3,则a n=________.【解析】当n=1时,a1=S1=2,当n≥2,a n=S n-S n-1=n2-2n-(n-1)2+2(n-1)=2n-3,故a n=答案:9.我国古代,9是数字之极,代表尊贵之意,所以中国古代皇家建筑中包含许多与9相关的设计.例如,天坛圆丘的地面由扇环形的石板铺成(如图所示),最高一层是一块天心石,围绕它的第一圈有9块石板,从第二圈开始,每一圈比前一圈多9块,共有9圈,则前9圈的石板总数是________.【解析】因为最高一层的中心是一块天心石,围绕它的第一圈有9块石板,从第二圈开始,每一圈比前一圈多9块,共有9圈,则每圈的石板数构成一个以9为首项,以9为公差的等差数列,所以a n=9n,当n=9时,第9圈共有81块石板,所以前9圈的石板总数S9=(9+81)=405.答案:405三、解答题(每小题10分,共30分)10.等差数列{a n}的前n项和记为S n,已知a10=30,a20=50.(1)求通项a n.(2)令S n=242,求n.【解析】(1)由a n=a1+(n-1)d,a10=30,a20=50,得方程组解得所以a n=2n+10.(2)由S n=na1+·d,S n=242,得方程12n+×2=242,解得n=11或n=-22(舍去),即n=11.11.设a1,d为实数,首项为a1,公差为d的等差数列{a n}的前n项和为S n,满足S5S6+15=0.(1)若S5=5,求S6及a1.(2)求d的取值X围.【解析】(1)由题意知S6=-=-3,a6=S6-S5=-8,所以解得a1=7. 综上,S6=-3,a1=7.(2)因为S5S6+15=0,所以(5a1+10d)(6a1+15d)+15=0,即2+9da1+10d2+1=0,所以(4a1+9d)2=d2-8,所以d2≥8.故d的取值X围为d≤-2或d≥2.12.(2017·某某高考)对于给定的正整数k,若数列{a n}满足a n-k+a n-k+1+…+a n-1+a n+1+…+a n+k-1+a n+k=2ka n对任意正整数n(n>k)总成立,则称数列{a n}是“P(k)数列”.(1)证明:等差数列{a n}是“P(3)数列”.(2)若数列{a n}既是“P(2)数列”,又是“P(3)数列”,证明:{a n}是等差数列.【证明】(1)因为是等差数列,设其公差为d,则a n=a1+(n-1)d,从而,当n≥4时,a n-k+a n+k=a1+(n-k-1)d+a1+(n+k-1)d=2a1+2(n-1)d=2a n,k=1,2,3,所以a n-3+a n-2+a n-1+a n+1+a n+2+a n+3=6a n,因此等差数列是“P数列”.(2)数列既是“P数列”,又是“P数列”,因此,当n≥3时,a n-2+a n-1+a n+1+a n+2=4a n,①当n≥4时,a n-3+a n-2+a n-1+a n+1+a n+2+a n+3=6a n.②由①知,a n-3+a n-2=4a n-1-(a n+a n+1),③a n+2+a n+3=4a n+1-(a n-1+a n),④将③④代入②,得a n-1+a n+1=2a n,其中n≥4,所以a3,a4,a5,…是等差数列,设其公差为d′.在①中,取n=4,则a2+a3+a5+a6=4a4,所以a2+a3+a3+2d′+a3+3d′=4(a3+d′),即a2=a3-d′,在①中,取n=3,则a1+a2+a4+a5=4a3,因为a3=a2+d′,所以a1+a2+a2+2d′+a2+3d′=4(a2+d′), 即a1=a2-d′,所以数列{a n}是等差数列.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高二数学必修五数列单元综合练习题
一、选择题:
1.在等差数列{a n }中,若4612a a +=,n S 是数列{a n }的前n 项和,9S 则的值为 (A )48 (B)54 (C)60 (D)66 2.在等比数列{}n a 中,若0n a >且3764a a =,5a 的值为
(A )2 (B )4 (C )6 (D )8
3.设{}n a 是等差数列,1359a a a ++=,69a =,则这个数列的前6项和等于( ) A.12
B.24
C.36 D.48
4.在等差数列{}n a 中,若34567a +a +a +a +a =450,则28a +a = ( ) A.45
B.75
C.180
D.300
5.在等比数列{}n a 中,如果69a =6,a =9,那么3a 为( ) (A ) 4 (B)
2
3 (C)
9
16 (D) 2
6.数列{}n a 中,123,6,a a ==且12n n n a a a ++=+,则2004a =( ) A.3 B.-3 C.-6 D.6
7.数列n {a }中,对任意自然数n ,n 12n a +a ++a =21⋅⋅⋅-,则22
212n
a +a ++a
⋅⋅⋅等于( )
A.()
2
n
2-1
B.
()2
n
12-13
C.n
4-1
D.
()n
14
-13
8.在各项均为正数的等比数列{a n }中,若a 5·a 6=9,则log 3a 1+log 3a 2+…+log 3a 10= ( )
A .12
B .10
C .8
D .2+log 35
9.数列 的前n 项和为 ( )
A .
B .
C .
D .
10.已知一等差数列的前四项的和为124,后四项的和为156,又各项和为210,则此等差数列共有( )
A 、8项
B 、7项
C 、6项
D 、5项 二、填空题:
11.已知数列{a n }是等比数列,其前n 项和为S n =5n
+k ,则常数k=
12. 若n S 是数列}{n a 的前n 项的和,2
n S n =,则=++765a a a ___
}2
32{3
--n n 2
2124---n n 22724--+n n 22236-+-n n 32128-+-n n
13.设n S 为等差数列{}n a 的前n 项和,若5,10105-==S S ,则公差为 14.等差数列n {a }的公差0d ≠,且139a a a ,,成等比数列,则
1392410
a a a a a a ++++的值
是 。
15. 数列{a n }中,a 1=8,a 4=2且满足a n +2=2a n +1-a n ,(n ∈N *
).则数列{a n }的通项公式
16已知{a n }为等差数列,若a 3+a 5+a 12+a 19+a 21=15,则S 23= 三.解答题:
17、求和:(1) 在数列{}n a 中,32,n a n =+求这个数列自第50到第150项之和. (2) 求数列11111,2
,3
,,,2
4
8
2
n
n
……
的前n 项和.
18.在数列}{n a 中,12112,,1-=+++==n n n n S a a a a S a (*
N ∈n ,且2≥n ). (1)求证:数列}{n S 是等比数列; (2)求数列}{n a 的通项公式.
19、已知数列{a n }的前n 项和S n =14n-n 2
(+∈N n ),数列{b n }满足b n =∣a n ∣(+∈N n ), (1)求当n 为何正整数时a n 最大,并求a n 最大值; (2)求数列{b n }的前n 项和T n
20、.数列{}n a 的前n 项和21n n S a =-,数列{}n b 满足:*
113()n n n b b a b n N +==+∈,
(1) 证明数列{}n a 为等比数列; (2)求数列{}n b 的前n 项和n T 。