2017年“大梦杯”福建省初中数学竞赛试题参考答案

合集下载

大梦杯福建省初中数学竞赛试题参考答案及评分标准

大梦杯福建省初中数学竞赛试题参考答案及评分标准

大梦杯福建省初中数学竞赛试题参考答案及评分标准The latest revision on November 22, 20202018年“大梦杯”福建省初中数学竞赛试题 考试时间 2018年3月18日 9∶00-11∶00 满分150分一、选择题(共5小题,每小题7分,共35分)。

每道小题均给出了代号为A ,B ,C ,D 的四个选项,其中有且只有一个选项是正确的。

请将正确选项的代号填入题后的括号里,不填、多填或错填都得0分)1.若关于x 的方程244310x mx m +--=有两个相等的实数根,则32442m m m ++-的值为( )A .3-B .2-C .1-D .12.如图,ABCD 、DEFG 都是正方形,边长分别为m 、n (m n <)。

坐标原点O 为AD 的中点,A 、D 、E 在y 轴上。

若二次函数2y ax =的图像过C 、F 两点,则n m=( )A .31+B .21+C .231-D .221-3.如图,G 为ABC △的重心,点D 在CB 延长线上,且12BD BC =,过D 、G 的直线交AC 于点E ,则AEAC=( ) A .25B .35C .37D .474.如图,H 、O 分别为ABC △的垂心、外心,45BAC ∠=︒,若ABC △外接圆的半径 为2,则AH =( )A .23B .22C .4D .31+5.满足方程22419151x xy y -+=的整数对()x y ,有( ) HOBCA(第4题图)(第2题图)EGB D (第3题图)A .0对B .2对C .4对D .6对 二、填空题(共5小题,每小题7分,共35分)6.已知a ,b ,c 为正整数,且a b c >>。

若b c +,a c +,a b +是三个连续正整数的平方,则222a b c ++的最小值为 。

7.如图,ABCD 为矩形,E 为对角线AC 的中点,A 、B 在x 轴上。

大梦杯福建初中数学竞赛试题参考答案及评分标

大梦杯福建初中数学竞赛试题参考答案及评分标

2018年“大梦杯”福建省初中数学竞赛试题参考答案及评分标准考试时间 2018年3月18日 9∶00-11∶00 满分150分一、选择题(共5小题,每小题7分,共35分)。

每道小题均给出了代号为A ,B ,C ,D 的四个选项,其中有且只有一个选项是正确的。

请将正确选项的代号填入题后的括号里,不填、多填或错填都得0分)1.若关于x 的方程244310x mx m +--=有两个相等的实数根,则32442m m m ++-的值为( )A .3-B .2-C .1-D .1 【答案】 A【解答】依题意,21616(31)0m m =++=△。

因此,2310m m ++=。

∴ 231m m =--,231m m +=-。

∴ 3222442(31)44232123m m m m m m m m m ++-=--++-=+-=--=-。

2.如图,ABCD 、DEFG 都是正方形,边长分别为m 、n (m n <)。

坐标原点O 为AD 的中点,A 、D 、E 在y 轴上。

若二次函数2y ax =的图像过C 、F 两点,则nm=( ) A.1 B1 C.1 D.1 【答案】 B【解答】依题意,点C 坐标为()2mm ,,点F 的坐标为()2mn n -+,。

由二次函数2y ax =的图像过C 、F 两点,得222()2m am m n a n ⎧=⎪⎪⎨⎪+=-⎪⎩,消去a ,得2220n mn m --=。

∴ 2()210n n m m -⨯-=,解得1nm=(舍负根)。

∴1nm=。

(第2题图)3.如图,G 为ABC △的重心,点D 在CB 延长线上,且12BD BC =,过D 、G 的直线交AC 于点E ,则AEAC=( )A .25B .35C .37D .47【答案】 D【解答】如图,连AG ,并延长交BC 于点F 。

∵ G 为ABC △的重心,且12BD BC =, ∴ F 为BC 中点,且21AG GF =,DB BF FC ==。

2017年全国初中数学竞赛试题参考答案(word版)

2017年全国初中数学竞赛试题参考答案(word版)

2017年全国初中数学竞赛试题及参考答案一、选择题1.设非零实数a ,b ,c 满足2302340a b c a b c ++=⎧⎨++=⎩,,则222ab bc caa b c ++++的值为( ). (A )12-(B )0(C )12(D )1【答案】A【解答】由已知得(234)(23)0a b c a b c a b c ++=++-++=,故2()0a b c ++=.于是2221()2ab bc ca a b c ++=-++,所以22212ab bc ca a b c ++=-++. 2.已知a ,b ,c 是实常数,关于x 的一元二次方程20ax bx c ++=有两个非零实根1x ,2x ,则下列关于x 的一元二次方程中,以211x ,221x 为两个实根的是( ). (A )2222(2)0c x b ac x a +-+= (B )2222(2)0c x b ac x a --+= (C )2222(2)0c x b ac x a +--= (D )2222(2)0c x b ac x a ---=【答案】B【解答】由于20ax bx c ++=是关于x 的一元二次方程,则0a ≠.因为12bx x a+=-,12c x x a =,且120x x ≠,所以0c ≠,且 221212222221212()2112x x x x b ac x x x x c +--+==,22221211a x x c⋅=, 于是根据方程根与系数的关系,以211x ,221x 为两个实根的一元二次方程是222220b ac a x x c c--+=,即2222(2)0c x b ac x a --+=. 3.如图,在Rt △ABC 中,已知O 是斜边AB 的中点,CD ⊥AB ,垂足为D ,DE ⊥OC ,垂足为E .若AD ,DB ,CD 的长度都是有理数,则线段OD ,OE ,DE ,AC 的长度中,不一定...是有理数的为( ).(A )OD (B )OE (C )DE(D )AC(第3题)【答案】D【解答】因AD ,DB ,CD 的长度都是有理数,所以,OA =OB =OC =2AD BD+是有理数.于是,OD =OA -AD 是有理数.由Rt △DOE ∽Rt △COD ,知2OD OE OC =,·DC DODE OC =都是有理数,而AC =·AD AB 不一定是有理数. 4.如图,已知△ABC 的面积为24,点D 在线段AC 上,点F在线段BC 的延长线上,且4BC CF =,DCFE 是平行四边形,则图中阴影部分的面积为( ).(A )3 (B )4 (C )6 (D )8【答案】C【解答】因为DCFE 是平行四边形,所以DE //CF ,且EF //DC . 连接CE ,因为DE //CF ,即DE //BF ,所以S △DEB = S △DEC , 因此原来阴影部分的面积等于△ACE 的面积.连接AF ,因为EF //CD ,即EF //AC ,所以S △ACE = S △ACF .因为4BC CF =,所以S △ABC = 4S △ACF .故阴影部分的面积为6.5.对于任意实数x ,y ,z ,定义运算“*”为:()()32233333451160x y x y xy x y x y +++*=+++-,且()x y z x y z **=**,则2013201232****的值为( ). (A )607967(B )1821967(C )5463967(D )16389967【答案】C【解答】设201320124m ***=,则()20132012433m ****=*32323339274593316460m m m m m m ⨯+⨯+⨯+==++++-, 于是()201320123292****=*3223333923929245546310360967⨯⨯+⨯⨯+⨯+==+-.(第3题答题)(第4题答题)(第4题)二、填空题6.设33a =,b 是2a 的小数部分,则3(2)b +的值为 . 【答案】9【解答】由于2123a a <<<<,故32292b a =-=-,因此333(2)(9)9b +==. 7.如图,点D ,E 分别是△ABC 的边AC ,AB 上的点,直线BD 与CE 交于点F ,已知△CDF ,△BFE ,△BCF 的面积分别是3,4,5,则四边形AEFD 的面积是 .【答案】20413【解答】如图,连接AF ,则有:45=3AEF AEF BFE BCF AFD AFD CDF S S S BF S S S FD S ∆∆∆∆∆∆∆++===,354AFD AFD CDF BCF AEF AEF BEF S S S CF S S S FE S ∆∆∆∆∆∆∆++====,解得10813AEF S ∆=,9613AFD S ∆=. 所以,四边形AEFD 的面积是20413. 8.已知正整数a ,b ,c 满足2220+--=a b c ,2380-+=a b c ,则abc 的最大值为 .【答案】2013【解答】由已知2220+--=a b c ,2380-+=a b c 消去c ,并整理得()228666b a a -++=.由a 为正整数及26a a +≤66,可得1≤a ≤3.若1a =,则()2859b -=,无正整数解; 若2a =,则()2840b -=,无正整数解;若3a =,则()289b -=,于是可解得11=b ,5b =. (i )若11b =,则61c =,从而可得311612013abc =⨯⨯=; (ii )若5b =,则13c =,从而可得3513195abc =⨯⨯=. 综上知abc 的最大值为2013.(第7题答题)(第7题)9.实数a ,b ,c ,d 满足:一元二次方程20x cx d ++=的两根为a ,b ,一元二次方程20x ax b ++=的两根为c ,d ,则所有满足条件的数组(),,,a b c d 为 .【答案】(1212),,,--,(00),,,-t t (t 为任意实数)【解答】由韦达定理得,,,.+=-⎧⎪=⎪⎨+=-⎪=⎪⎩a b c ab d c d a cd b由上式,可知b a c d =--=. 若0b d =≠,则1==d a b ,1==bc d,进而2b d a c ==--=-. 若0b d ==,则c a =-,有()(00),,,,,,=-a b c d t t (t 为任意实数). 经检验,数组(1212)--,,,与(00),,,-t t (t 为任意实数)满足条件.10.小明某天在文具店做志愿者卖笔,铅笔每支售4元,圆珠笔每支售7元.开始时他有铅笔和圆珠笔共350支,当天虽然笔没有全部卖完,但是他的销售收入恰好是2017元.则他至少卖出了 支圆珠笔.【答案】207【解答】设x ,y 分别表示已经卖出的铅笔和圆珠笔的支数,则472013350,,+=⎧⎨+<⎩x y x y所以201371(5032)44y y x y -+==-+, 于是14y +是整数.又20134()343503x y y y =++<⨯+, 所以204y >,故y 的最小值为207,此时141x =.三、解答题11.如图,抛物线y =23ax bx +-,顶点为E ,该抛物线与x 轴交于A ,B 两点,与y 轴交于点C ,且OB =OC =3OA .直线113y x =-+与y 轴交于点D .求∠DBC ∠CBE .【解答】将0x =分别代入y =113x -+,23y ax bx =+-知,D (0,1),C (0,3-),所以B (3,0),A (1-,0).直线y =113x -+过点B .将点C (0,3-)的坐标代入y =(1)(3)a x x +-,得1a =.抛物线223y x x =--的顶点为E (1,4-).于是由勾股定理得BC =32,CE =2,BE =25.因为BC 2+CE 2=BE 2,所以,△BCE 为直角三角形,90BCE ∠=︒.因此tan CBE ∠=CE CB =13.又tan ∠DBO =13OD OB =,则∠DBO =CBE ∠.所以,45DBC CBE DBC DBO OBC ∠-∠=∠-∠=∠=︒.(第11题答题)(第11题)12.设△ABC 的外心,垂心分别为O H ,,若B C H O ,,,共圆,对于所有的△ABC ,求BAC ∠所有可能的度数.【解答】分三种情况讨论. (i )若△ABC 为锐角三角形.因为1802BHC A BOC A ∠=︒-∠∠=∠,,所以由BHC BOC ∠=∠,可得1802A A ︒-∠=∠,于是60A ∠=︒.(ii )若△ABC 为钝角三角形.当90A ∠>︒时,因为()1802180BHC A BOC A ∠=︒-∠∠=︒-∠,,所以由180BHC BOC ∠+∠=︒,可得()3180180A ︒-∠=︒,于是120A ∠=︒。

2017初中数学联合竞赛省初赛试题解答及评分标准(八年)

2017初中数学联合竞赛省初赛试题解答及评分标准(八年)
A
)
B
D E
C
2 SADC CD AF 7 12 28 法可得 CE . AD AD 15 5 1 1 6.已知 a = 5 , 那么代数式 a 最大值与最小值之差等于 a a
A. 2. B. 4.
1
( B )
C. 6.
D.8.
解析
欲使代数式
1 a 取到最大值,则 a 0 , 于是 a
(15 分)
(18 分) (20 分) (5 分)
a 2b b2c c2a ab2 bc2 ca 2 (a b)(b c)(c a) 0 .
(a 1)(b 1) (b 1)(c 1) (c 1)(a 1)=k 1 ,
令 ab a b bc b c ac c a =k , 则 因此 [(a 1)(b 1)(c 1)] (k 1) ,
4.设 a,b 是实数,若 a b 2 a 1 4 b 1 5 ,则 a b 的值等于 A. 3 . 解析
a b 2 a 1 4 b 1 5 ( a 1 1)2 ( b 1 2)2 0
a 2 , b 3 a b 1. 5 . 如 图 , 在 △ ABC 中 , AB=13,BC 21, CA 20 . D 是 BC 上 一 点 , 满 足
1 1 1 . 3 1 7 1 7
解析
1 1 1 7 1 7 1 7 1 7 1


7

1 1
7 1
7
. 7 3
1
A
8. 如图, ABC 、 CDE 均为等边三角形, 且 A, D, E 三 点共线, 点 D 在 A, E 之间, BDE 30 . 则 解析

初中数学竞赛题试卷及答案

初中数学竞赛题试卷及答案

一、选择题(每题5分,共50分)1. 下列各数中,有理数是()A. √9B. √-1C. πD. 0.1010010001……2. 已知a,b是实数,且a+b=0,则下列选项中错误的是()A. a和b互为相反数B. a和b都是0C. ab>0D. ab≤03. 一个等腰三角形的底边长为10cm,腰长为13cm,则该三角形的周长是()A. 32cmB. 34cmC. 36cmD. 38cm4. 若x^2-4x+3=0,则x的值是()A. 1或3B. 2或3C. 1或2D. 2或45. 下列各式中,正确的是()A. 2a + 3b = 2(a + b)B. 2a - 3b = 2(a - b)C. 2a + 3b = 2a + 3bD. 2a - 3b = 2a - 3b6. 已知函数f(x) = 2x - 1,则f(3)的值是()A. 5B. 6C. 7D. 87. 一个长方形的长是8cm,宽是5cm,则该长方形的对角线长是()A. 5cmB. 8cmC. 10cmD. 13cm8. 若a > b,且a + b = 0,则下列选项中正确的是()A. a < 0,b > 0B. a > 0,b < 0C. a = 0,b = 0D. 无法确定9. 下列各式中,分式有意义的条件是()A. 分子为0,分母为0B. 分子为0,分母不为0C. 分子不为0,分母为0D. 分子不为0,分母不为010. 下列图形中,是轴对称图形的是()A. 正方形B. 等边三角形C. 等腰梯形D. 以上都是二、填空题(每题5分,共50分)11. 若a,b是实数,且a + b = 0,则ab的值是______。

12. 一个圆的半径是r,则该圆的周长是______。

13. 若x^2 - 4x + 3 = 0,则x^2 - 4x + 4的值是______。

14. 函数f(x) = 2x - 1的图象是一条______。

“大梦杯”福建省初中数学竞赛试题参考答案及评分标准

“大梦杯”福建省初中数学竞赛试题参考答案及评分标准

2018年“大梦杯”福建省初中数学竞赛试题 考试时间 2018年3月18日 9∶00-11∶00 满分150分一、选择题(共5小题,每小题7分,共35分)。

每道小题均给出了代号为A ,B ,C ,D 的四个选项,其中有且只有一个选项是正确的。

请将正确选项的代号填入题后的括号里,不填、多填或错填都得0分)1.若关于x 的方程244310x mx m +--=有两个相等的实数根,则32442m m m ++-的值为( )A .3-B .2-C .1-D .12.如图,ABCD 、DEFG 都是正方形,边长分别为m 、n (m n <)。

坐标原点O 为AD 的中点,A 、D 、E 在y 轴上。

若二次函数2y ax =的图像过C 、F 两点,则nm=( ) A .31+ B .21+ C .231- D .221-3.如图,G 为ABC △的重心,点D 在CB 延长线上,且12BD BC =,过D 、G 的直线交AC 于点E ,则AEAC=( ) A .25B .35C .37D .474.如图,H 、O 分别为ABC △的垂心、外心,45BAC ∠=︒,若ABC △外接圆的半径 为2,则AH =( )A .23B .22C .4D .31+5.满足方程22419151x xy y -+=的整数对()x y ,有( ) A .0对 B .2对 C .4对 D .6对HOBCA(第4题图)(第2题图) EG(第3题图)6.已知a ,b ,c 为正整数,且a b c >>。

若b c +,a c +,a b +是三个连续正整数的平方,则222a b c ++的最小值为 。

7.如图,ABCD 为矩形,E 为对角线AC 的中点,A 、B 在x 轴上。

若函数4y x=(0x >)的图像过D 、E 两点,则矩形ABCD 的面积为 。

8.如图,ABC △是边长为8的正三角形,D 为AB 边上一点,1O ⊙为ACD △的内切圆,2O ⊙为CDB △的边DB 上的旁切圆。

历届“大梦杯”福建省初中数学竞赛试题及答案

历届“大梦杯”福建省初中数学竞赛试题及答案

由条件易得 △ACE ∽△BAE ,
(第 9 题)
∴ CE AE , AE2 CE EB ,即 AE2 mEB 。 AE BE
结合 AB2 AE2 EB2 ,得 (2 5m)2 mEB EB2 。 (或由射影定理得 BA2 BE BC ,即 (2 5m)2 BE (BE m) ) ∴ EB2 mEB 20m2 0 ,解得 EB 4m 或 EB 5m(舍去)。
将 t 4 代入方程①,解得 x2 8 ,x 2 6 ;t 4 代入方程①,解得 x2 8 ,x 2 10 。
3
3
3
5
5
5
∴ xy 的最大值为 4 ,最小值为 4 。
3
5
因此, M 8 4 20 , m 8 4 12 , M m 20 12 136 。
3
3
5
y 10 ,或 x 2 10 , y 10 时等号成立。
5
5
5
∴ xy 的最小值为 4 , u x2 xy 4y2 2xy 4 的最小值为 12 ,即 m 12 。
5
5
5
∵ 3xy 4xy (x2 4 y2 4) 4 (x 2y)2 4,当且仅当 x 2y ,即 x 2 6 ,y 6 或
不填、多填或错填都得 0 分)
1.在平面直角坐标系 xOy 中,已知点 B(0,2) ,点 A 在 x 轴正半轴上且 BAO 30 。将
△OAB 沿直线 AB 折叠得 △CAB ,则点 C 的坐标为( )
A. (1, 3)
B. ( 3 ,3)
C. (3, 3) D. ( 3 ,1)
2.若实数 a , b 满足 a2 3a 2 , b2 3b 2 ,且 a b ,则 (1 a2 )(1 b2 ) ( )

2017-2018学年福建省八年级(上)竞赛数学试卷及答案与解析

2017-2018学年福建省八年级(上)竞赛数学试卷及答案与解析

2017-2018学年福建省八年级(上)竞赛数学试卷;一、选择题(每小题5分,共40分)1.下列四组数据中,不能作为直角三角形的三边长的是()A.7,24,25 B.6,8,10 C.9,12,15 D.3,4,62.设M=(x﹣3)(x﹣7),N=(x﹣2)(x﹣8),则M与N的关系为()A.M<N B.M>N C.M=N D.不能确定3.观察下列等式:31=3,32=9,33=27,34=81,35=243,36=729,37=2187…,解答下列问题:3+32+33+…+32015的末位数字是()A.1 B.3 C.7 D.94.若实数x、y、z满足(x﹣z)2﹣4(x﹣y)(y﹣z)=0,则下列式子一定成立的是()A.x+y+z=0 B.x+y﹣2z=0 C.y+z﹣2x=0 D.z+x﹣2y=05.已知△ABC中,AB=AC,高BD、CE交于点O,连接AO,则图中全等三角形的对数为()A.3 B.4 C.5 D.66.如图,在△ABC中,∠C=90°,∠BAC=30°,AB=8,AD平分∠BAC,点PQ分别是AB、AD边上的动点,则PQ+BQ的最小值是()A.4 B.5 C.6 D.77.点P(3,﹣5)关于y轴对称的点的坐标为()A.(﹣3,﹣5)B.(5,3) C.(﹣3,5)D.(3,5)8.下列四个命题中,真命题有()①两条直线被第三条直线所截,内错角相等.②如果∠1和∠2是对顶角,那么∠1=∠2.③三角形的一个外角大于任何一个内角.④如果x2>0,那么x>0.A.1个 B.2个 C.3个 D.4个二、填空题(每小题5分,共40分);9.若2a3x b y+5与5a2﹣4y b2x是同类项,则xy=.10.如图,直线l∥m,将含有45°角的三角板ABC的直角顶点C放在直线m上,则∠1+∠2的度数为.11.如果(a2+b2+2)(a2+b2﹣2)=45,则a2+b2的值为.12.已知(a+25)2=1000,则(a+15)(a+35)的值为.13.计算(1﹣)()﹣(1﹣﹣)()的结果是.14.如图,在△ABC中,I是三内角平分线的交点,∠BIC=130°,则∠A=.15.如图钢架中,焊上等长的13根钢条来加固钢架,若AP1=P1P2=P2P3=…=P13P14=P14A,则∠A的度数是.16.如图,AB=AC,则数轴上点C所表示的数为.三、解答题(每小题10分,共40分)17.已知:3a=2,3b=6,3c=18,试确定a、b、c之间的数量关系.18.已知a=2015x+2014,b=2015x+2015,c=2015x+2016.求a2+b2+c2﹣ab﹣bc﹣ca的值.19.如图,△ABC是边长为6的等边三角形,P是AC边上一动点,由A向C运动(与A、C不重合),Q是CB延长线上一点,与点P同时以相同的速度由B向CB延长线方向运动(Q不与B重合),过P作PE⊥AB于E,连接PQ交AB于D.(1)当∠BQD=30°时,求AP的长;(2)当运动过程中线段ED的长是否发生变化?如果不变,求出线段ED的长;如果变化请说明理由.20.已知△ABC中,∠A:∠B:∠C=3:4:2,AD、BE是角平分线.求证:AB+BD=AE+BE.2017-2018学年福建省八年级(上)竞赛数学试卷参考答案与试题解析一、选择题(每小题5分,共40分)1.下列四组数据中,不能作为直角三角形的三边长的是()A.7,24,25 B.6,8,10 C.9,12,15 D.3,4,6【考点】勾股数.【分析】根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个三角形是直角三角形.如果没有这种关系,这个就不是直角三角形.【解答】解:A、72+242=252,符合勾股定理的逆定理,故能作为直角三角形的三边长;B、62+82=102,符合勾股定理的逆定理,故能作为直角三角形的三边长;C、92+122=152,符合勾股定理的逆定理,故能作为直角三角形的三边长;D、32+42≠62,不符合勾股定理的逆定理,故不能作为直角三角形的三边长.故选D.2.设M=(x﹣3)(x﹣7),N=(x﹣2)(x﹣8),则M与N的关系为()A.M<N B.M>N C.M=N D.不能确定【考点】多项式乘多项式.【分析】根据多项式乘多项式的运算法则进行计算,比较即可得到答案.【解答】解:M=(x﹣3)(x﹣7)=x2﹣10x+21,N=(x﹣2)(x﹣8)=x2﹣10x+16,M﹣N=(x2﹣10x+21)﹣(x2﹣10x+16)=5,则M>N.故选:B.3.观察下列等式:31=3,32=9,33=27,34=81,35=243,36=729,37=2187…,解答下列问题:3+32+33+…+32015的末位数字是()A.1 B.3 C.7 D.9【考点】尾数特征.【分析】根据31=3,32=9,33=27,34=81,35=243,36=729,37=2187…得出3+32+33+34…+32015的末位数字相当于:3+7+9+1+…+3+7+9,进而得出末尾数字.【解答】解:∵31=3,32=9,33=27,34=81,35=243,36=729,37=2187…∴末尾数,每4个一循环,∵2015÷4=503…3,∴3+32+33+34…+32015的末位数字相当于:3+7+9+1+…+3+7+9=(3+9+7+1)×503+19=10079的末尾数为9.故选:D.4.若实数x、y、z满足(x﹣z)2﹣4(x﹣y)(y﹣z)=0,则下列式子一定成立的是()A.x+y+z=0 B.x+y﹣2z=0 C.y+z﹣2x=0 D.z+x﹣2y=0【考点】完全平方公式.【分析】首先将原式变形,可得x2+z2+2xz﹣4xy+4xz+4y2﹣4yz=0,则可得(x+z﹣2y)2=0,则问题得解.【解答】解:∵(x﹣z)2﹣4(x﹣y)(y﹣z)=0,∴x2+z2﹣2xz﹣4xy+4xz+4y2﹣4yz=0,∴x2+z2+2xz﹣4xy+4y2﹣4yz=0,∴(x+z)2﹣4y(x+z)+4y2=0,∴(x+z﹣2y)2=0,∴z+x﹣2y=0.故选:D.5.已知△ABC中,AB=AC,高BD、CE交于点O,连接AO,则图中全等三角形的对数为()A.3 B.4 C.5 D.6【考点】等腰三角形的性质;全等三角形的判定.【分析】根据等腰三角形的性质以及全等三角形的判定和性质定理解答.【解答】解:∵高BD、CE交于点O,∴∠AEO=∠ADO=90°,图中的全等三角形有:①在△AEC与Rt△ADB中,,∴△AEC≌△ADB(AAS),∴∠ABO=∠ACO,∵AB=AC,∴∠ABC=∠ACB,∴∠CBO=∠BCO,∴OB=OC;②在△ABO与Rt△ACO中,,∴△ABO≌△ACO(SSS),∴∠BAO=∠CAO,③在△AEO与Rt△ADO中,,∴△AEO≌△ADO(AAS),④在△BOE与△COD中,,∴△BOE≌△COD(AAS);⑤在△BCE与△CBD中,∴△BCE≌△CBD(AAS).共有5对.故选C.6.如图,在△ABC中,∠C=90°,∠BAC=30°,AB=8,AD平分∠BAC,点PQ分别是AB、AD边上的动点,则PQ+BQ的最小值是()A.4 B.5 C.6 D.7【考点】轴对称﹣最短路线问题;含30度角的直角三角形.【分析】如图,作点P关于直线AD的对称点P′,连接QP′,由△AQP≌△AQP′,得PQ=QP′,欲求PQ+BQ的最小值,只要求出BQ+QP′的最小值,即当BP′⊥AC 时,BQ+QP′的值最小,此时Q与D重合,P′与C重合,最小值为BC的长.【解答】解:如图,作点P关于直线AD的对称点P′,连接QP′,在△AQP和△AQP′中,,∴△AQP≌△AQP′,∴PQ=QP′∴欲求PQ+BQ的最小值,只要求出BQ+QP′的最小值,∴当BP′⊥AC时,BQ+QP′的值最小,此时Q与D重合,P′与C重合,最小值为BC的长.在Rt△ABC中,∵∠C=90°,AB=8,∠BAC=30°,∴BC=AB=4,∴PQ+BQ的最小值是4,故选A.7.点P(3,﹣5)关于y轴对称的点的坐标为()A.(﹣3,﹣5)B.(5,3) C.(﹣3,5)D.(3,5)【考点】关于x轴、y轴对称的点的坐标.【分析】根据关于y轴对称点的坐标特点:横坐标互为相反数,纵坐标不变可直接得到答案.【解答】解:点P(3,﹣5)关于y轴对称的点的坐标为(﹣3,﹣5),故选:A.8.下列四个命题中,真命题有()①两条直线被第三条直线所截,内错角相等.②如果∠1和∠2是对顶角,那么∠1=∠2.③三角形的一个外角大于任何一个内角.④如果x2>0,那么x>0.A.1个 B.2个 C.3个 D.4个【考点】命题与定理.【分析】根据平行线的性质对①进行判断;根据对顶角的性质对②进行判断;根据三角形外角性质对③进行判断;根据非负数的性质对④进行判断.【解答】解:两条平行直线被第三条直线所截,内错角相等,所以①错误;如果∠1和∠2是对顶角,那么∠1=∠2,所以②正确;三角形的一个外角大于任何一个不相邻的内角,所以③错误;如果x2>0,那么x≠0,所以④错误.故选A.二、填空题(每小题5分,共40分)9.若2a3x b y+5与5a2﹣4y b2x是同类项,则xy=﹣2.【考点】同类项.【分析】根据同类项的定义,含有相同的字母,相同字母的指数相同,即可列出关于x和y的方程组,求得x和y的值,进而求得代数式的值.【解答】解:根据题意得:,解得:,则xy=2×(﹣1)=﹣2.故答案为﹣2.10.如图,直线l∥m,将含有45°角的三角板ABC的直角顶点C放在直线m上,则∠1+∠2的度数为45°.【考点】平行线的性质.【分析】首先过点B作BD∥l,由直线l∥m,可得BD∥l∥m,由两直线平行,内错角相等,可得出∠2=∠3,∠1=∠4,故∠1+∠2=∠3+∠4,由此即可得出结论.【解答】解:过点B作BD∥l,∵直线l∥m,∴BD∥l∥m,∴∠4=∠1,∠2=∠3,∴∠1+∠2=∠3+∠4=∠ABC,∵∠ABC=45°,∴∠1+∠2=45°.故答案为:45°.11.如果(a2+b2+2)(a2+b2﹣2)=45,则a2+b2的值为7.【考点】换元法解一元二次方程.【分析】根据题意,可以设a2+b2=m,从而可以求得m的值,进而求得a2+b2的值,注意a2+b2的值不小于0.【解答】解:设a2+b2=m,则(m+2)(m﹣2)=45,∴m2﹣4=45,解得,m=7或m=﹣7,∴a2+b2=7或a2+b2=﹣7(舍去),故答案为:712.已知(a+25)2=1000,则(a+15)(a+35)的值为900.【考点】平方差公式.【分析】将(a+15)(a+35)变形为(a+25﹣10)(a+25+10),根据平方差公式得到原式=(a+25)2﹣100,再将(a+25)2=1000整体代入即可求解.【解答】解:(a+15)(a+35)=(a+25﹣10)(a+25+10)=(a+25)2﹣100,∵(a+25)2=1000,∴原式=1000﹣100=900.故答案为:900.13.计算(1﹣)()﹣(1﹣﹣)()的结果是.【考点】整式的混合运算.【分析】设a=1﹣﹣﹣﹣,b=+++,然后根据整式的乘法与加减混合运算进行计算即可得解.【解答】解:设a=1﹣﹣﹣﹣,b=+++,则原式=a(b+)﹣(a﹣)•b=ab+a﹣ab+b=(a+b),∵a+b=1﹣﹣﹣﹣++++=1,∴原式=.故答案为:.14.如图,在△ABC中,I是三内角平分线的交点,∠BIC=130°,则∠A=80°.【考点】三角形内角和定理.【分析】先根据角平分线的定义得到∠IBC=∠ABC,∠ICB=∠ACB,再根据三角形内角和定理得∠BIC+∠IBC+∠ICB=180°,则∠BIC=180°﹣(∠ABC+∠ACB),由于∠ABC+∠ACB=180°﹣∠A,所以∠BIC=90°+∠A,然后把∠BIC=130°代入计算可得到∠A的度数.【解答】解:∵BI、CI分别平分∠ABC、∠ACB,∴∠IBC=∠ABC,∠ICB=∠ACB,∵∠BIC+∠IBC+∠ICB=180°,∴∠BIC=180°﹣(∠IBC+∠ICB)=180°﹣(∠ABC+∠ACB),∵∠A+∠ABC+∠ACB=180°,∴∠ABC+∠ACB=180°﹣∠A,∴∠BIC=180°﹣=90°+∠A,∵∠BIC=130°,∴90°+∠A=130°∴∠A=80°.故答案为:80°.15.如图钢架中,焊上等长的13根钢条来加固钢架,若AP1=P1P2=P2P3=…=P13P14=P14A,则∠A的度数是12°.【考点】等腰三角形的性质.【分析】设∠A=x,根据等边对等角的性质以及三角形的一个外角等于与它不相邻的两个内角的和求出∠AP7P8,∠AP8P7,再根据三角形的内角和定理列式进行计算即可得解.【解答】解:设∠A=x,∵AP1=P1P2=P2P3=…=P13P14=P14A,∴∠A=∠AP2P1=∠AP13P14=x,∴∠P2P1P3=∠P13P14P12=2x,∴∠P3P2P4=∠P12P13P11=3x,…,∠P7P6P8=∠P8P9P7=7x,∴∠AP7P8=7x,∠AP8P7=7x,在△AP7P8中,∠A+∠AP7P8+∠AP8P7=180°,即x+7x+7x=180°,解得x=12°,即∠A=12°.故答案为:12°.16.如图,AB=AC,则数轴上点C所表示的数为﹣1.【考点】勾股定理;实数与数轴.【分析】根据勾股定理列式求出AB的长,即为AC的长,再根据数轴上的点的表示解答.【解答】解:由勾股定理得,AB==,∴AC=,∵点A表示的数是﹣1,∴点C表示的数是﹣1.故答案为:﹣1.三、解答题(每小题10分,共40分)17.已知:3a=2,3b=6,3c=18,试确定a、b、c之间的数量关系.【考点】幂的乘方与积的乘方.【分析】根据同底数幂的乘法以及幂的乘方即可列出等式求出a、b、c之间的数量关系.【解答】解:∵2×18=62,∴3a×3c=(3b)2,∴3a+c=32b,∴a+c=2b18.已知a=2015x+2014,b=2015x+2015,c=2015x+2016.求a2+b2+c2﹣ab﹣bc﹣ca的值.【考点】因式分解的应用.【分析】原式变形后,利用完全平方公式配方后,将已知等式代入计算即可求出值.【解答】解:∵a=2015x+2014,b=2015x+2015,c=2015x+2016,∴a﹣b=﹣1,b﹣c=﹣1,a﹣c=﹣2,则原式=(2a2+2b2+2c2﹣2ab﹣2bc﹣2ac)= [(a﹣b)2+(b﹣c)2+(a﹣c)2]=×(1+1+4)=3.19.如图,△ABC是边长为6的等边三角形,P是AC边上一动点,由A向C运动(与A、C不重合),Q是CB延长线上一点,与点P同时以相同的速度由B向CB延长线方向运动(Q不与B重合),过P作PE⊥AB于E,连接PQ交AB于D.(1)当∠BQD=30°时,求AP的长;(2)当运动过程中线段ED的长是否发生变化?如果不变,求出线段ED的长;如果变化请说明理由.【考点】等边三角形的性质;全等三角形的判定与性质;含30度角的直角三角形.【分析】(1)由△ABC是边长为6的等边三角形,可知∠ACB=60°,再由∠BQD=30°可知∠QPC=90°,设AP=x,则PC=6﹣x,QB=x,在Rt△QCP中,∠BQD=30°,PC=QC,即6﹣x=(6+x),求出x的值即可;(2)作QF⊥AB,交直线AB于点F,连接QE,PF,由点P、Q做匀速运动且速度相同,可知AP=BQ,再根据全等三角形的判定定理得出△APE≌△BQF,再由AE=BF,PE=QF且PE∥QF,可知四边形PEQF是平行四边形,进而可得出EB+AE=BE+BF=AB,DE=AB,由等边△ABC的边长为6可得出DE=3,故当点P、Q运动时,线段DE的长度不会改变.【解答】解:(1)∵△ABC是边长为6的等边三角形,∴∠ACB=60°,∵∠BQD=30°,∴∠QPC=90°,设AP=x,则PC=6﹣x,QB=x,∴QC=QB+BC=6+x,∵在Rt△QCP中,∠BQD=30°,∴PC=QC,即6﹣x=(6+x),解得x=2,∴AP=2;(2)当点P、Q同时运动且速度相同时,线段DE的长度不会改变.理由如下:作QF⊥AB,交直线AB于点F,连接QE,PF,又∵PE⊥AB于E,∴∠DFQ=∠AEP=90°,∵点P、Q速度相同,∴AP=BQ,∵△ABC是等边三角形,∴∠A=∠ABC=∠FBQ=60°,在△APE和△BQF中,∵∠AEP=∠BFQ=90°,∴∠APE=∠BQF,,∴△APE≌△BQF(AAS),∴AE=BF,PE=QF且PE∥QF,∴四边形PEQF是平行四边形,∴DE=EF,∵EB+AE=BE+BF=AB,∴DE=AB,又∵等边△ABC的边长为6,∴DE=3,∴点P、Q同时运动且速度相同时,线段DE的长度不会改变.20.已知△ABC中,∠A:∠B:∠C=3:4:2,AD、BE是角平分线.求证:AB+BD=AE+BE.【考点】全等三角形的判定与性质.【分析】延长AB到F,使BF=BD,连DF,首先证明△ADF≌△ADC,推出AF=AC,由BE是角平分线,推出∠CBE=∠ABC=40°推出∠EBD=∠C,推出BE=EC,推出BE+AE=EC+AE=AC=AF=AB+BF=AB+BD.【解答】证明:延长AB到F,使BF=BD,连DF,∴∠F=∠BDF,∵∠A:∠B:∠C=3:4:2,∴∠ABC=80°,∠ACB=40°,∴∠F=40°,∠F=∠ACB,∵AD是平分线,∴∠BAD=∠CAD,在△ADF和△ADC中,,∴△ADF≌△ADC,∴AF=AC,∵BE是角平分线,∴∠CBE=∠ABC=40°∴∠EBD=∠C,∴BE=EC,∴BE+AE=EC+AE=AC=AF=AB+BF=AB+BD.∴AB+BD=AE+BE.2017年3月1日。

2017年全国初中数学联合竞赛福建省赛区初赛试题参考答案及评分标准(1)

2017年全国初中数学联合竞赛福建省赛区初赛试题参考答案及评分标准(1)

l 4a2b2 (a2 b2 c2 )2 ,则 l ( p a)( p b)( p c)
(D)
A. 8. 解析
B. 16.
C.32.
D.64.
l
4a2b2 (a2 b2 c2 )2
8(2ab a2 b2 c2 )(2ab a2 b2 c2 )
因此, AHE ≌ ABC ,则 HE BC , 所以
EG
GH
HE

BA BC
12 5 17 ,故 SBCE

1 2
BC EG

1 517 2

85 2
.
9. 设 A、B、C 为 1—9 中的任意数字, BC,CA, AB 都表示两位数, 那么
D
E H
D G
A BC BCA C AB 一定能被11 整除.
(a b c a)(a b c b)(a b c c)
(a b c)(a b c)(a b c)
2
2
2
8[(a b)2 c2 ][c2 (a b)2 ] 8(a b c)(a b c)(a b c)(a b c)
解析一 由二次函数的三项系数特征和 y1 0 ,可画出二次函数的图象,由图可得 y2 大
于 0.
解析二 由于 x m 时, y m2 2m a2 0 ,即
(m 1)2 (1 a2 ) 0 ,得到 1 a2 m 1 1 a2 ,
于是, m 2 1 1 a2 0 ,由此得到当 x m+2 时
(C)
A. 2015.
B.2016.

福建省2017年中学考试数学试卷(含问题详解)

福建省2017年中学考试数学试卷(含问题详解)

2017年福建省中考数学试题第Ⅰ卷一、选择题:本题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.3的相反数是( ) A .-3 B .13-C .13D .3 2.如图,由四个正方体组成的几何体的左视图是( )A .B .C .D .3.用科学计数法表示136 000,其结果是( )A .60.13610⨯B .51.3610⨯C .313610⨯D .613610⨯ 4.化简2(2)x 的结果是( )A .4x B .22x C . 24x D .4x 5.下列关于图形对称性的命题,正确的是( ) A .圆既是轴对称性图形,又是中心对称图形 B .正三角形既是轴对称图形,又是中心对称图形 C .线段是轴对称图形,但不是中心对称图形 D .菱形是中心对称图形,但不是轴对称图形 6. 不等式组:⎩⎨⎧>+≤-0302x x 的解集是( )A .32x -<≤B .32x -≤<C . 2x ≥D .3x <-7.某校举行“汉字听写比赛”,5个班级代表队的正确答题数如图.这5个正确答题数所组成的一组数据的中位数和众数分别是( )A .10,15B .13,15C .13,20D .15,158.如图,AB 是O e 的直径,,C D 是O e 上位于AB 异侧的两点.下列四个角中,一定与ACD ∠互余的角是( )A .ADC ∠B .ABD ∠C . BAC ∠D .BAD ∠9.若直线1y kx k =++经过点(,3)m n +和(1,21)m n +-,且02k <<,则n 的值可以是( ) A .3 B .4 C .5 D .610.如图,网格纸上正方形小格的边长为1.图中线段AB 和点P 绕着同一个点做相同的旋转,分别得到线段A B ''和点P ',则点P '所在的单位正方形区域是( )A .1区B .2区C .3区D .4区第Ⅱ卷(共90分)二、填空题:本题共6小题,每小题4分,共24分.11.计算023--= .12. 如图,ABC ∆中,,D E 分别是,AB AC 的中点,连线DE ,若3DE =,则线段BC 的长等于 .13.一个箱子装有除颜色外都相同的2个白球,2个黄球,1个红球.现添加同种型号的1个球,使得从中随机抽取1个球,这三种颜色的球被抽到的概率都是13,那么添加的球是 . 14.已知,,A B C 是数轴上的三个点,且C 在B 的右侧.点,A B 表示的数分别是1,3,如图所示.若2BC AB =,则点C 表示的数是 .15.两个完全相同的正五边形都有一边在直线l 上,且有一个公共顶点O ,其摆放方式如图所示,则AOB ∠ 等于 度.16. 已知矩形ABCD 的四个顶点均在反比例函数1y x=的图象上,且点A 的横坐标是2,则矩形ABCD 的面积为 .三、解答题 :本题共9小题,共86分.解答应写出文字说明、证明过程或演算步骤.17. 先化简,再求值:1)11(2-⋅-a aa ,其中12-=a .18. 如图,点,,,B E C F 在一条直线上,,,AB DE AC DF BE CF ===.求证: A D ∠=∠.19.如图,ABC ∆中,90,BAC AD BC ∠=⊥o,垂足为D .求作ABC ∠的平分线,分别交,AD AD 于P ,Q 两点;并证明AP AQ =.(要求:尺规作图,保留作图痕迹,不写作法)20.我国古代数学著作《孙子算经》中有“鸡兔同笼”问题:“今有鸡兔同笼,上有三十五头,下有九十四足.问鸡兔各几何.”其大意是:“有若干只鸡和兔关在同一笼子里,它们一共有35个头,94条腿.问笼中的鸡和兔各有多少只?”试用列方程(组)解应用题的方法求出问题的解.21.如图,四边形ABCD 内接于O e ,AB 是O e 的直径,点P 在CA 的延长线上,45CAD ∠=o.(Ⅰ)若4AB =,求弧CD 的长;(Ⅱ)若弧BC =弧AD ,AD AP =,求证:PD 是O e 的切线.22.小明在某次作业中得到如下结果:2222sin 7sin 830.120.990.9945+≈+=o o , 2222sin 22sin 680.370.93 1.0018+≈+=o o , 2222sin 29sin 610.480.870.9873+≈+=o o , 2222sin 37sin 530.600.80 1.0000+≈+=o o , 222222sin 45sin 45()()122+≈+=o o . 据此,小明猜想:对于任意锐角α,均有22sin sin (90)1αα+-=o.(Ⅰ)当30α=o时,验证22sin sin (90)1αα+-=o是否成立;(Ⅱ)小明的猜想是否成立?若成立,若成立,请给予证明;若不成立,请举出一个反例.23.自2016年国庆后,许多高校均投放了使用手机就可随用的共享单车.某运营商为提高其经营的A品牌共享单车的市场占有率,准备对收费作如下调整:一天中,同一个人第一次使用的车费按0.5元收取,每增加一次,当次车费就比上次车费减少0.1元,第6次开始,当次用车免费.具体收费标准如下:使用次数0 1 2 3 4 5(含5次以上) 累计车费0 0.5 0.9 a b 1.5同时,就此收费方案随机调查了某高校100名师生在一天中使用A品牌共享单车的意愿,得到如下数据:使用次数0 1 2 3 4 5人数 5 15 10 30 25 15(Ⅰ)写出,a b的值;(Ⅱ)已知该校有5000名师生,且A品牌共享单车投放该校一天的费用为5800元.试估计:收费调整后,此运营商在该校投放A品牌共享单车能否获利? 说明理由.24.如图,矩形ABCD 中,6,8AB AD ==,,P E 分别是线段AC 、BC 上的点,且四边形PEFD 为矩形.(Ⅰ)若PCD ∆是等腰三角形时,求AP 的长; (Ⅱ)若2AP =,求CF 的长.25.已知直线m x y +=2与抛物线2Y ax ax b =++有一个公共点(1,0)M ,且a b <. (Ⅰ)求抛物线顶点Q 的坐标(用含a 的代数式表示); (Ⅱ)说明直线与抛物线有两个交点; (Ⅲ)直线与抛物线的另一个交点记为N .(ⅰ)若211-≤≤-a ,求线段MN 长度的取值范围; (ⅱ)求QMN ∆面积的最小值.。

初三数学竟赛试题及答案

初三数学竟赛试题及答案

初三数学竟赛试题及答案初三数学竞赛试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是无理数?A. 2B. πC. 0.5D. √42. 一个数的立方等于它本身,这个数是:A. 0B. 1C. -1D. 0, 1, -13. 如果一个三角形的两边长分别为3和4,第三边长x满足的条件是:A. 1 < x < 7B. 0 < x < 7C. 1 < x < 5D. 0 < x < 54. 一个圆的直径是10cm,那么它的半径是:A. 5cmB. 10cmC. 20cmD. 15cm5. 一个数的相反数是它本身,这个数是:A. 0B. 1C. -1D. 任意数6. 一个数的绝对值是它本身,这个数是:A. 0B. 正数C. 负数D. 0或正数7. 一个数的倒数是它本身,这个数是:A. 1B. -1C. 0D. 1或-18. 一个数的平方根是它本身,这个数是:A. 0B. 1C. -1D. 0, 1, -19. 一个数的立方根是它本身,这个数是:A. 0B. 1C. -1D. 0, 1, -110. 一个数的平方是它本身,这个数是:A. 0B. 1C. -1D. 0, 1二、填空题(每题4分,共20分)11. 如果一个数的平方是25,那么这个数是______。

12. 一个数的绝对值是5,那么这个数是______。

13. 一个数的倒数是1/2,那么这个数是______。

14. 一个数的平方根是3,那么这个数是______。

15. 一个数的立方根是2,那么这个数是______。

三、解答题(每题10分,共50分)16. 计算:(3+2√2)(3-2√2)。

17. 证明:对于任意实数a和b,(a+b)^2 = a^2 + 2ab + b^2。

18. 已知一个等腰三角形的两边长分别为5和8,求第三边的长度。

19. 一个圆的面积是π,求这个圆的半径。

20. 解方程:x^2 - 5x + 6 = 0。

“大梦杯”福建省初中数学竞赛试题参考答案.docx

“大梦杯”福建省初中数学竞赛试题参考答案.docx

2019 年“大梦杯”福建省初中数学竞赛试题参考答案考试时间2019 年 3 月 17 日9∶00-11∶00满分 150 分一、(共 5 小,每小 7 分,共 35 分)。

每道小均出了代号 A ,B, C,D 的四个,其中有且只有一个是正确的。

将正确的代号填入后的括号里,不填、多填或填都得0 分)1.若一次函数y x 2 与反比例函数y 4的像交于 A(x1,y1) , B( x2,y2 ) 两点,xx1 x2y1 y2的()A .8B.6C.6D.8【答案】Dy x2【解答】由4,得x22x40⋯⋯⋯⋯⋯①。

yx依意,x1, x2是方程①的两根,于是 x1x22 , x1 x2 4 。

∴x1 x2y1 y24416416x1 x2x1x2x1 x28。

x1x242.如,△ABCO 的内接三角形, D BC 中点, EOA 中点,ABC40 ,BCA80,OED 的大小()A .15B.18C.20D.22【答案】C【解答】如, OC 。

(第 2 )由 ABC40 ,BCA80 ,得BAC60。

∵ D BC 中点,∴OD BC ,DOC 1。

BOCBAC 602∴OCD 30, OD 1OC 。

2又 E OA 中点,∴OE 1OA OD 。

2(第 2 答)合ABC 40,知EOD AOC COD 2 40 60 140 ,1OED 1(180EOD )1(180140 )20。

223.已知二次函数 f ( x)2x2ax b ,若 f (a) f (b1) ,其中 a b 1 ,则 f(1) f (2) 的值为()A .8B.10C.12D.14【答案】A【解答】由已知条件及二次函数图像的对称性,知a b 1a。

于是, 3a2b 2 。

24所以, f (1) f (2)(2a b)(82a b)3a2b102108 。

4.如图,在四边形ABCD中,AB BC , BCD 120,CD DA ,且 BC 6 , CD 3 ,则四边形 ABCD 外接圆的面积为()A .7B.21C.63D.84【答案】B【解答】如图,设 BC 、 AD 的延长线交于点 P 。

2017年福建省初中毕业生学业考试数学试题(附答案解析)

2017年福建省初中毕业生学业考试数学试题(附答案解析)

2017年福建省初中毕业生学业考试数学试题一、选择题:本题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(4分)3的相反数是()A.﹣3 B.﹣C.D.32.(4分)如图,由四个正方体组成的几何体的左视图是()A.B.C.D.3.(4分)用科学记数法表示136 000,其结果是()A.0.136×106B.1.36×105C.136×103D.136×1064.(4分)化简(2x)2的结果是()A.x4B.2x2C.4x2D.4x5.(4分)下列关于图形对称性的命题,正确的是()A.圆既是轴对称图形,又是中心对称图形B.正三角形既是轴对称图形,又是中心对称图形C.线段是轴对称图形,但不是中心对称图形D.菱形是中心对称图形,但不是轴对称图形6.(4分)不等式组:的解集是()A.﹣3<x≤2 B.﹣3≤x<2 C.x≥2 D.x<﹣37.(4分)某校举行“汉字听写比赛”,5个班级代表队的正确答题数如图.这5个正确答题数所组成的一组数据的中位数和众数分别是()A.10,15 B.13,15 C.13,20 D.15,158.(4分)如图,AB是⊙O的直径,C,D是⊙O上位于AB异侧的两点.下列四个角中,一定与∠ACD互余的角是()A.∠ADC B.∠ABD C.∠BAC D.∠BAD9.(4分)若直线y=kx+k+1经过点(m,n+3)和(m+1,2n﹣1),且0<k<2,则n的值可以是()A.3 B.4 C.5 D.610.(4分)如图,网格纸上正方形小格的边长为1.图中线段AB和点P绕着同一个点做相同的旋转,分别得到线段A'B'和点P',则点P'所在的单位正方形区域是()A.1区B.2区C.3区D.4区二、填空题:本题共6小题,每小题4分,共24分.11.(4分)计算|﹣2|﹣30= .12.(4分)如图,△ABC中,D,E分别是AB,AC的中点,连接DE.若DE=3,则线段BC的长等于.13.(4分)一个箱子装有除颜色外都相同的2个白球,2个黄球,1个红球.现添加同种型号的1个球,使得从中随机抽取1个球,这三种颜色的球被抽到的概率都是,那么添加的球是.14.(4分)已知A,B,C是数轴上的三个点,且C在B的右侧.点A,B表示的数分别是1,3,如图所示.若BC=2AB,则点C表示的数是.15.(4分)两个完全相同的正五边形都有一边在直线l上,且有一个公共顶点O,其摆放方式如图所示,则∠AOB等于度.16.(4分)已知矩形ABCD的四个顶点均在反比例函数y=的图象上,且点A的横坐标是2,则矩形ABCD的面积为.三、解答题:本题共9小题,共86分.解答应写出文字说明、证明过程或演算步骤.17.(8分)先化简,再求值:(1﹣)•,其中a=﹣1.18.(8分)如图,点B、E、C、F在一条直线上,AB=DE,AC=DF,BE=CF.求证:∠A=∠D.19.(8分)如图,△ABC中,∠BAC=90°,AD⊥BC,垂足为D.求作∠ABC的平分线,分别交AD,AC于P,Q两点;并证明AP=AQ.(要求:尺规作图,保留作图痕迹,不写作法)20.(8分)我国古代数学著作《孙子算经》中有“鸡兔同笼”问题:“今有鸡兔同笼,上有三十五头,下有九十四足.问鸡兔各几何.”其大意是:“有若干只鸡和兔关在同一笼子里,它们一共有35个头,94条腿.问笼中的鸡和兔各有多少只?”试用列方程(组)解应用题的方法求出问题的解.21.(8分)如图,四边形ABCD内接于⊙O,AB是⊙O的直径,点P在CA的延长线上,∠CAD=45°.(Ⅰ)若AB=4,求的长;(Ⅱ)若=,AD=AP,求证:PD是⊙O的切线.22.(10分)小明在某次作业中得到如下结果:sin27°+sin283°≈0.122+0.992=0.9945,sin222°+sin268°≈0.372+0.932=1.0018,sin229°+sin261°≈0.482+0.872=0.9873,sin237°+sin253°≈0.602+0.802=1.0000,sin245°+sin245°≈()2+()2=1.据此,小明猜想:对于任意锐角α,均有sin2α+sin2(90°﹣α)=1.(Ⅰ)当α=30°时,验证sin2α+sin2(90°﹣α)=1是否成立;(Ⅱ)小明的猜想是否成立?若成立,请给予证明;若不成立,请举出一个反例.23.(10分)自2016年国庆后,许多高校均投放了使用手机就可随用的共享单车.某运营商为提高其经营的A品牌共享单车的市场占有率,准备对收费作如下调整:一天中,同一个人第一次使用的车费按0.5元收取,每增加一次,当次车费就比上次车费减少0.1元,第6次开始,当次用车免费.具体收费标准如下:使用次数012345(含5次以上)累计车费00.50.9a b 1.5同时,就此收费方案随机调查了某高校100名师生在一天中使用A品牌共享单车的意愿,得到如下数据:使用次数012345人数51510302515(Ⅰ)写出a,b的值;(Ⅱ)已知该校有5000名师生,且A品牌共享单车投放该校一天的费用为5800元.试估计:收费调整后,此运营商在该校投放A品牌共享单车能否获利?说明理由.24.(12分)如图,矩形ABCD中,AB=6,AD=8,P,E分别是线段AC、BC上的点,且四边形PEFD为矩形.(Ⅰ)若△PCD是等腰三角形时,求AP的长;(Ⅱ)若AP=,求CF的长.25.(14分)已知直线y=2x+m与抛物线y=ax2+ax+b有一个公共点M(1,0),且a<b.(Ⅰ)求抛物线顶点Q的坐标(用含a的代数式表示);(Ⅱ)说明直线与抛物线有两个交点;(Ⅲ)直线与抛物线的另一个交点记为N.(ⅰ)若﹣1≤a≤﹣,求线段MN长度的取值范围;(ⅱ)求△QMN面积的最小值.参考答案一、选择题:本题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(4分)(2017•长春)3的相反数是()A.﹣3 B.﹣C.D.3分析&根据相反数的定义即可求出3的相反数.解答&解:3的相反数是﹣3故选A.点评&相反数的定义是:如果两个数只有符号不同,我们称其中一个数为另一个数的相反数,特别地,0的相反数还是0.2.(4分)(2017•福建)如图,由四个正方体组成的几何体的左视图是()A.B.C.D.分析&直接利用三视图的画法,从左边观察,即可得出选项.解答&解:图形的左视图为:,故选B.点评&此题主要考查了三视图的画法,正确掌握三视图观察的角度是解题关键.3.(4分)(2017•福建)用科学记数法表示136 000,其结果是()A.0.136×106B.1.36×105C.136×103D.136×106分析&科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥1时,n是非负数;当原数的绝对值<1时,n 是负数.解答&解:用科学记数法表示136 000,其结果是1.36×105,故选:B.点评&此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.(4分)(2017•福建)化简(2x)2的结果是()A.x4B.2x2C.4x2D.4x分析&利用积的乘方法则:把每一个因式分别乘方,再把所得的幂相乘.解答&解:(2x)2=4x2,故选:C.点评&此题主要考查了积的乘方,关键是掌握计算法则.5.(4分)(2017•福建)下列关于图形对称性的命题,正确的是()A.圆既是轴对称图形,又是中心对称图形B.正三角形既是轴对称图形,又是中心对称图形C.线段是轴对称图形,但不是中心对称图形D.菱形是中心对称图形,但不是轴对称图形分析&分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案.解答&解:A、圆既是轴对称图形,又是中心对称图形,故A符合题意;B、正三角形既是轴对称图形,不是中心对称图形,故B不符合题意;C、线段是轴对称图形,是中心对称图形,故C不符合题意;D、菱形是中心对称图形,是轴对称图形,故D符合题意;故选:A.点评&主要考查命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.6.(4分)(2017•福建)不等式组:的解集是()A.﹣3<x≤2 B.﹣3≤x<2 C.x≥2 D.x<﹣3分析&求出每个不等式的解集,再求出不等式组的解集,解答&解:解不等式①得:x≤2,解不等式②得:x>﹣3,∴不等式组的解集为:﹣3<x≤2,故选A.点评&本题考查了一元一次不等式组的解法:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.7.(4分)(2017•福建)某校举行“汉字听写比赛”,5个班级代表队的正确答题数如图.这5个正确答题数所组成的一组数据的中位数和众数分别是()A.10,15 B.13,15 C.13,20 D.15,15分析&根据中位数和众数的定义分别进行解答即可.解答&解:把这组数据从小到大排列:10、13、15、15、20,最中间的数是15,则这组数据的中位数是15;15出现了2次,出现的次数最多,则众数是15.故选:D.点评&此题考查了中位数和众数,将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数)叫做这组数据的中位数;众数是一组数据中出现次数最多的数.8.(4分)(2017•福建)如图,AB是⊙O的直径,C,D是⊙O上位于AB异侧的两点.下列四个角中,一定与∠ACD互余的角是()A.∠ADC B.∠ABD C.∠BAC D.∠BAD分析&由圆周角定理得出∠ACB=∠ACD+∠BCD=90°,∠BCD=∠BAD,得出∠ACD+∠BAD=90°,即可得出答案.解答&解:连接BC,如图所示:∵AB是⊙O的直径,∴∠ACB=∠ACD+∠BCD=90°,∵∠BCD=∠BAD,∴∠ACD+∠BAD=90°,故选:D.点评&本题考查了圆周角定理;熟记圆周角定理是解决问题的关键.9.(4分)(2017•福建)若直线y=kx+k+1经过点(m,n+3)和(m+1,2n﹣1),且0<k<2,则n的值可以是()A.3 B.4 C.5 D.6分析&根据题意列方程组得到k=n﹣4,由于0<k<2,于是得到0<n﹣4<2,即可得到结论.解答&解:依题意得:,∴k=n﹣4,∵0<k<2,∴0<n﹣4<2,∴4<n<6,故选C.点评&考查了一次函数的图象与系数的关系,注重考察学生思维的严谨性,易错题,难度中等.10.(4分)(2017•福建)如图,网格纸上正方形小格的边长为1.图中线段AB 和点P绕着同一个点做相同的旋转,分别得到线段A'B'和点P',则点P'所在的单位正方形区域是()A.1区B.2区C.3区D.4区分析&根据旋转的性质连接AA′、BB′,分别作AA′、BB′的中垂线,两直线的交点即为旋转中心,从而得出线段AB和点P是绕着同一个该点逆时针旋转90°,据此可得答案.解答&解:如图,连接AA′、BB′,分别作AA′、BB′的中垂线,两直线的交点即为旋转中心,由图可知,线段AB和点P绕着同一个该点逆时针旋转90°,∴点P逆时针旋转90°后所得对应点P′落在4区,故选:D.点评&本题主要考查旋转,熟练掌握旋转的性质得出图形的旋转中心及旋转方向是解题的关键.二、填空题:本题共6小题,每小题4分,共24分.11.(4分)(2017•福建)计算|﹣2|﹣30= 1 .分析&首先利用零指数幂的性质以及绝对值的性质分别化简得出答案.解答&解:原式=2﹣1=1.故答案为:1.点评&此题主要考查了实数运算,正确化简各数是解题关键.12.(4分)(2017•福建)如图,△ABC中,D,E分别是AB,AC的中点,连接DE.若DE=3,则线段BC的长等于 6 .分析&直接根据三角形的中位线定理即可得出结论.解答&解:∵△ABC中,D,E分别是AB,AC的中点,∴DE是△ABC的中位线.∵DE=3,∴BC=2DE=6.故答案为:6.点评&本题考查的是三角形中位线定理,熟知三角形的中位线平行于第三边,并且等于第三边的一半是解答此题的关键.13.(4分)(2017•福建)一个箱子装有除颜色外都相同的2个白球,2个黄球,1个红球.现添加同种型号的1个球,使得从中随机抽取1个球,这三种颜色的球被抽到的概率都是,那么添加的球是红球.分析&根据已知条件即可得到结论.解答&解:∵这三种颜色的球被抽到的概率都是,∴这三种颜色的球的个数相等,∴添加的球是红球,故答案为:红球.点评&本题考查了概率公式,熟练掌握概率的概念是解题的关键.14.(4分)(2017•福建)已知A,B,C是数轴上的三个点,且C在B的右侧.点A,B表示的数分别是1,3,如图所示.若BC=2AB,则点C表示的数是7 .分析&先利用点A、B表示的数计算出AB,再计算出BC,然后计算点C到原点的距离即可得到C点表示的数.解答&解:∵点A,B表示的数分别是1,3,∴AB=3﹣1=2,∵BC=2AB=4,∴OC=OA+AB+BC=1+2+4=7,∴点C表示的数是7.故答案为7.点评&本题考查了数轴:所有的有理数都可以用数轴上的点表示,但数轴上的点不都表示有理数.(一般取右方向为正方向,数轴上的点对应任意实数,包括无理数.)15.(4分)(2017•福建)两个完全相同的正五边形都有一边在直线l上,且有一个公共顶点O,其摆放方式如图所示,则∠AOB等于108 度.分析&根据多边形的内角和,可得∠1,∠2,∠3,∠4,根据等腰三角形的内角和,可得∠7,根据角的和差,可得答案.解答&解:如图,由正五边形的内角和,得∠1=∠2=∠3=∠4=108°,∠5=∠6=180°﹣108°=72°,∠7=180°﹣72°﹣72°=36°.∠AOB=360°﹣108°﹣108°﹣36°=108°,故答案为:108.点评&本题考查了多边形的内角与外角,利用多边形的内角和得出每个内角是解题关键.16.(4分)(2017•福建)已知矩形ABCD的四个顶点均在反比例函数y=的图象上,且点A的横坐标是2,则矩形ABCD的面积为.分析&先根据点A在反比例函数y=的图象上,且点A的横坐标是2,可得A(2,),再根据B(,2),D(﹣,﹣2),运用两点间距离公式求得AB和AD的长,即可得到矩形ABCD的面积.解答&解:如图所示,根据点A在反比例函数y=的图象上,且点A的横坐标是2,可得A(2,),根据矩形和双曲线的对称性可得,B(,2),D(﹣,﹣2),由两点间距离公式可得,AB==,AD==,∴矩形ABCD的面积=AB×AD=×=,故答案为:.点评&本题主要考查了反比例函数图象上点的坐标特征以及矩形的性质的综合应用,解决问题的关键是画出图形,依据两点间距离公式求得矩形的边长.三、解答题:本题共9小题,共86分.解答应写出文字说明、证明过程或演算步骤.17.(8分)(2017•福建)先化简,再求值:(1﹣)•,其中a=﹣1.分析&根据分式的运算法则即可求出答案.解答&解:当a=﹣1时原式=•==点评&本题考查分式的运算,解题的关键是熟练运用分式的运算法则,本题属于基础题型.18.(8分)(2017•福建)如图,点B、E、C、F在一条直线上,AB=DE,AC=DF,BE=CF.求证:∠A=∠D.分析&证明BC=EF,然后根据SSS即可证明△ABC≌△DEF,然后根据全等三角形的对应角相等即可证得.解答&证明:如图,∵BE=CF,∴BC=EF,在△ABC和△DEF中,,∴△ABC≌△DEF(SSS).∴∠A=∠D.点评&本题考查了全等三角形的判定与性质,证明线段相等常用的方法是证明所在的三角形全等.19.(8分)(2017•福建)如图,△ABC中,∠BAC=90°,AD⊥BC,垂足为D.求作∠ABC的平分线,分别交AD,AC于P,Q两点;并证明AP=AQ.(要求:尺规作图,保留作图痕迹,不写作法)分析&根据角平分线的性质作出BQ即可.先根据垂直的定义得出∠ADB=90°,故∠BPD+∠PBD=90°.再根据余角的定义得出∠AQP+∠ABQ=90°,根据角平分线的性质得出∠ABQ=∠PBD,再由∠BPD=∠APQ可知∠APQ=∠AQP,据此可得出结论.解答&解:BQ就是所求的∠ABC的平分线,P、Q就是所求作的点.证明:∵AD⊥BC,∴∠ADB=90°,∴∠BPD+∠PBD=90°.∵∠BAC=90°,∴∠AQP+∠ABQ=90°.∵∠ABQ=∠PBD,∴∠BPD=∠AQP.∵∠BPD=∠APQ,∴∠APQ=∠AQP,∴AP=AQ.点评&本题考查的是作图﹣基本作图,熟知角平分线的作法和性质是解答此题的关键.20.(8分)(2017•福建)我国古代数学著作《孙子算经》中有“鸡兔同笼”问题:“今有鸡兔同笼,上有三十五头,下有九十四足.问鸡兔各几何.”其大意是:“有若干只鸡和兔关在同一笼子里,它们一共有35个头,94条腿.问笼中的鸡和兔各有多少只?”试用列方程(组)解应用题的方法求出问题的解.分析&设鸡有x只,兔有y只,根据等量关系:上有三十五头,下有九十四足,可分别得出方程,联立求解即可得出答案.解答&解:设鸡有x只,兔有y只,鸡有一个头,两只脚,兔有1个头,四只脚,结合上有三十五头,下有九十四足可得:,解得:.答:鸡有23只,兔有12只.点评&此题考查了二元一次方程的知识,解答本题的关键是仔细审题,根据等量关系得出方程组,难度一般.21.(8分)(2017•福建)如图,四边形ABCD内接于⊙O,AB是⊙O的直径,点P 在CA的延长线上,∠CAD=45°.(Ⅰ)若AB=4,求的长;(Ⅱ)若=,AD=AP,求证:PD是⊙O的切线.分析&(Ⅰ)连接OC,OD,由圆周角定理得到∠COD=2∠CAD,∠CAD=45°,于是得到∠COD=90°,根据弧长公式即可得到结论;(Ⅱ)由已知条件得到∠BOC=∠AOD,由圆周角定理得到∠AOD=45°,根据等腰三角形的性质得到∠ODA=∠OAD,求得∠ADP=CAD=22.5°,得到∠ODP=∠ODA+∠ADP=90°,于是得到结论.解答&解:(Ⅰ)连接OC,OD,∵∠COD=2∠CAD,∠CAD=45°,∴∠COD=90°,∵AB=4,∴OC=AB=2,∴的长=×π×2=π;(Ⅱ)∵=,∴∠BOC=∠AOD,∵∠COD=90°,∴∠AOD=45°,∵OA=OD,∴∠ODA=∠OAD,∵∠AOD+∠ODA=∠OAD=180°,∴∠ODA=67.5°,∵AD=AP,∴∠ADP=∠APD,∵∠CAD=∠ADP+∠APD,∠CAD=45°,∴∠ADP=CAD=22.5°,∴∠ODP=∠ODA+∠ADP=90°,∴PD是⊙O的切线.点评&本题考查了切线的判定,圆内接四边形的性质,弧长的计算,正确的作出辅助线是解题的关键.22.(10分)(2017•福建)小明在某次作业中得到如下结果:sin27°+sin283°≈0.122+0.992=0.9945,sin222°+sin268°≈0.372+0.932=1.0018,sin229°+sin261°≈0.482+0.872=0.9873,sin237°+sin253°≈0.602+0.802=1.0000,sin245°+sin245°≈()2+()2=1.据此,小明猜想:对于任意锐角α,均有sin2α+sin2(90°﹣α)=1.(Ⅰ)当α=30°时,验证sin2α+sin2(90°﹣α)=1是否成立;(Ⅱ)小明的猜想是否成立?若成立,请给予证明;若不成立,请举出一个反例.分析&(1)将α=30°代入,根据三角函数值计算可得;(2)设∠A=α,则∠B=90°﹣α,根据正弦函数的定义及勾股定理即可验证.解答&解1:(1)当α=30°时,sin2α+sin2(90°﹣α)=sin230°+sin260°=()2+()2=+=1;(2)小明的猜想成立,证明如下:如图,在△ABC中,∠C=90°,设∠A=α,则∠B=90°﹣α,∴sin2α+sin2(90°﹣α)=()2+()2===1.点评&本题主要考查特殊锐角的三角函数值及正弦函数的定义,熟练掌握三角函数的定义及勾股定理是解题的关键.23.(10分)(2017•福建)自2016年国庆后,许多高校均投放了使用手机就可随用的共享单车.某运营商为提高其经营的A品牌共享单车的市场占有率,准备对收费作如下调整:一天中,同一个人第一次使用的车费按0.5元收取,每增加一次,当次车费就比上次车费减少0.1元,第6次开始,当次用车免费.具体收费标准如下:使用次数012345(含5次以上)累计车费00.50.9a b 1.5同时,就此收费方案随机调查了某高校100名师生在一天中使用A品牌共享单车的意愿,得到如下数据:使用次数012345人数51510302515(Ⅰ)写出a,b的值;(Ⅱ)已知该校有5000名师生,且A品牌共享单车投放该校一天的费用为5800元.试估计:收费调整后,此运营商在该校投放A品牌共享单车能否获利?说明理由.分析&(Ⅰ)根据收费调整情况列出算式计算即可求解;(Ⅱ)先根据平均数的计算公式求出抽取的100名师生每人每天使用A品牌共享单车的平均车费,再根据用样本估计总体求出5000名师生一天使用共享单车的费用,再与5800比较大小即可求解.解答&解:(Ⅰ)a=0.9+0.3=1.2,b=1.2+0.2=1.4;(Ⅱ)根据用车意愿调查结果,抽取的100名师生每人每天使用A品牌共享单车的平均车费为:×(0×5+0.5×15+0.9×10+1.2×30+1.4×25+1.5×15)=1.1(元),所以估计5000名师生一天使用共享单车的费用为:5000×1.1=5500(元),因为5500<5800,故收费调整后,此运营商在该校投放A品牌共享单车不能获利.点评&考查了样本平均数,用样本估计总体,(Ⅱ)中求得抽取的100名师生每人每天使用A品牌共享单车的平均车费是解题的关键.24.(12分)(2017•福建)如图,矩形ABCD中,AB=6,AD=8,P,E分别是线段AC、BC上的点,且四边形PEFD为矩形.(Ⅰ)若△PCD是等腰三角形时,求AP的长;(Ⅱ)若AP=,求CF的长.分析&(Ⅰ)先求出AC,再分三种情况讨论计算即可得出结论;(Ⅱ)方法1、先判断出OC=ED,OC=PF,进而得出OC=OP=OF,即可得出∠OCF=∠OFC,∠OCP=∠OPC,最后判断出△ADP∽△CDF,得出比例式即可得出结论.方法2、先判断出∠CEF=∠FDC,得出点E,C,F,D四点共圆,再判断出点P也在此圆上,即可得出∠DAP=∠DCF,此后同方法1即可得出结论.解答&解:(Ⅰ)在矩形ABCD中,AB=6,AD=8,∠ADC=90°,∴DC=AB=6,∴AC==10,要使△PCD是等腰三角形,①当CP=CD时,AP=AC﹣CP=10﹣6=4,②当PD=PC时,∠PDC=∠PCD,∵∠PCD+∠PAD=∠PDC+∠PDA=90°,∴∠PAD=∠PDA,∴PD=PA,∴PA=PC,∴AP=AC=5,③当DP=DC时,如图1,过点D作DQ⊥AC于Q,则PQ=CQ,∵S△ADC=AD•DC=AC•DQ,∴DQ==,∴CQ==,∴PC=2CQ=,∴AP=AC﹣PC=10﹣=;所以,若△PCD是等腰三角形时,AP=4或5或;(Ⅱ)方法1、如图2,连接PF,DE,记PF与DE的交点为O,连接OC,∵四边形ABCD和PEFD是矩形,∴∠ADC=∠PDF=90°,∴∠ADP+∠PDC=∠PDC+∠CDF,∴∠ADP=∠CDF,∵∠BCD=90°,OE=OD,∴OC=ED,在矩形PEFD中,PF=DE,∴OC=PF,∵OP=OF=PF,∴OC=OP=OF,∴∠OCF=∠OFC,∠OCP=∠OPC,∵∠OPC+∠OFC+∠PCF=180°,∴2∠OCP+2∠OCF=180°,∴∠PCF=90°,∴∠PCD+∠FCD=90°,在Rt△ADC中,∠PCD+∠PA D=90°,∴∠PAD=∠FCD,∴△ADP∽△CDF,∴,∵AP=,∴CF=.方法2、如图,∵四边形ABCD和DPEF是矩形,∴∠ADC=∠PDF=90°,∴∠ADP=∠CDF,∵∠DGF+∠CDF=90°,∴∠EGC+∠CDF=90°,∵∠CEF+∠CGE=90°,∴∠CDF=∠FEC,∴点E,C,F,D四点共圆,∵四边形DPEF是矩形,∴点P也在此圆上,∵PE=DF,∴,∴∠ACB=∠DCF,∵AD∥BC,∴∠ACB=∠DAP,∴∠DAP=∠DCF,∵∠ADP=∠CDF,∴△ADP∽△CDF,∴,∵AP=,∴CF=.点评&此题是四边形综合题,主要考查了矩形的性质,勾股定理,等腰三角形的性质,相似三角形的判定和性质,解(Ⅰ)的关键是分三种情况讨论计算,解(Ⅱ)的关键是判断出△ADP∽△CDF,是一道中考常考题.25.(14分)(2017•福建)已知直线y=2x+m与抛物线y=ax2+ax+b有一个公共点M(1,0),且a<b.(Ⅰ)求抛物线顶点Q的坐标(用含a的代数式表示);(Ⅱ)说明直线与抛物线有两个交点;(Ⅲ)直线与抛物线的另一个交点记为N.(ⅰ)若﹣1≤a≤﹣,求线段MN长度的取值范围;(ⅱ)求△QMN面积的最小值.分析&(Ⅰ)把M点坐标代入抛物线解析式可得到b与a的关系,可用a表示出抛物线解析式,化为顶点式可求得其顶点坐标;(Ⅱ)由直线解析式可先求得m的值,联立直线与抛物线解析式,消去y,可得到关于x的一元二次方程,再判断其判别式大于0即可;(Ⅲ)(i)由(Ⅱ)的方程,可求得N点坐标,利用勾股定理可求得MN2,利用二次函数性质可求得MN长度的取值范围;(ii)设抛物线对称轴交直线与点E,则可求得E点坐标,利用S△QMN =S△QEN+S△QEM可用a表示出△QMN的面积,再整理成关于a的一元二次方程,利用判别式可得其面积的取值范围,可求得答案.解答&解:(Ⅰ)∵抛物线y=ax2+ax+b过点M(1,0),∴a+a+b=0,即b=﹣2a,∴y=ax2+ax+b=ax2+ax﹣2a=a(x+)2﹣,∴抛物线顶点Q的坐标为(﹣,﹣);(Ⅱ)∵直线y=2x+m经过点M(1,0),∴0=2×1+m,解得m=﹣2,联立直线与抛物线解析式,消去y可得ax2+(a﹣2)x﹣2a+2=0(*)∴△=(a﹣2)2﹣4a(﹣2a+2)=9a2﹣12a+4,由(Ⅰ)知b=﹣2a,且a<b,∴a<0,b>0,∴△>0,∴方程(*)有两个不相等的实数根,∴直线与抛物线有两个交点;(Ⅲ)联立直线与抛物线解析式,消去y可得ax2+(a﹣2)x﹣2a+2=0,即x2+(1﹣)x﹣2+=0,∴(x﹣1)[x﹣(﹣2)]=0,解得x=1或x=﹣2,∴N点坐标为(﹣2,﹣6),(i)由勾股定理可得MN2=[(﹣2)﹣1]2+(﹣6)2=﹣+45=20(﹣)2,∵﹣1≤a≤﹣,∴﹣2≤≤﹣1,∴MN2随的增大而减小,∴当=﹣2时,MN2有最大值245,则MN有最大值7,当=﹣1时,MN2有最小值125,则MN有最小值5,∴线段MN长度的取值范围为5≤MN≤7;(ii)如图,设抛物线对称轴交直线与点E,∵抛物线对称轴为x=﹣,∴E(﹣,﹣3),∵M(1,0),N(﹣2,﹣6),且a<0,设△QMN的面积为S,∴S=S△QEN +S△QEM=|(﹣2)﹣1|•|﹣﹣(﹣3)|=﹣﹣,∴27a2+(8S﹣54)a+24=0(*),∵关于a的方程(*)有实数根,∴△=(8S﹣54)2﹣4×27×24≥0,即(8S﹣54)2≥(36)2,∵a<0,∴S=﹣﹣>,∴8S﹣54>0,∴8S﹣54≥36,即S≥+,当S=+时,由方程(*)可得a=﹣满足题意,∴当a=﹣,b=时,△QMN面积的最小值为+.点评&本题为二次函数的综合应用,涉及函数图象的交点、二次函数的性质、根的判别式、勾股定理、三角形的面积等知识.在(1)中由M的坐标得到b与a 的关系是解题的关键,在(2)中联立两函数解析式,得到关于x的一元二次方程是解题的关键,在(3)中求得N点的坐标是解题的关键,在最后一小题中用a表示出△QMN的面积是解题的关键.本题考查知识点较多,综合性较强,难度较大.。

2017 年全国初中数学联合竞赛试题参考答案及评分标准

2017 年全国初中数学联合竞赛试题参考答案及评分标准

2017年全国初中数学联合竞赛试题参考答案及评分标准说明:评阅试卷时,请依据本评分标准.第一试,选择题和填空题只设7分和0分两档;第二试各题,请按照本评分标准规定的评分档次给分.如果考生的解答方法和本解答不同,只要思路合理,步骤正确,在评卷时请参照本评分标准划分的档次,给予相应的分数.第一试(A)一、选择题:(本题满分42分,每小题7分)1.已知实数,,a b c 满足213390a b c ++=,3972a b c ++=,则32b ca b++= ( )A. 2.B. 1.C. 0.D. 1-. 【答】B.已知等式可变形为2(2)3(3)90a b b c +++=,3(2)(3)72a b b c +++=,解得218a b +=,318b c +=,所以32b ca b+=+ 1.2.已知△ABC 的三边长分别是,,a b c ,有以下三个结论:(1 (2)以222,,a b c 为边长的三角形一定存在;(3)以||1,||1,||1a b b c c a -+-+-+为边长的三角形一定存在.其中正确结论的个数为 ( ) A .0. B .1. C .2. D .3. 【答】C.不妨设a b c ≥≥,则有b c a +>.(1)因为b c a +>,所以b c a ++,即22>>边长的三角形一定存在;(2)以2,3,4a b c ===为边长可以构成三角形,但以2224,9,16a b c ===为边长的三角形不存在; (3)因为a b c ≥≥,所以||11,||11,||11a b a b b c b c c a a c -+=-+-+=-+-+=-+,故三条边中||1c a -+大于或等于其余两边,而||1||111a b b c a b b c -++-+=-++-+()()()()111||1a c a c c a -++>-+=-+=,故以||1a b -+,||1b c -+,||1c a -+为边长的三角形一定存在.3.若正整数,,a b c 满足a b c ≤≤且2()abc a b c =++,则称(,,)a b c 为好数组.那么,好数组的个数为 ( )A. 1. B .2. C .3. D .4. 【答】C.若(,,)a b c 为好数组,则2()6abc a b c c =++≤,所以6ab ≤.显然,a 只能为1或2. 若a =2,由6ab ≤可得2b =或3,2b =时可得4c =,3b =时可得52c =(不是整数); 若a =1,则2(1)bc b c =++,于是可得(2)(2)6b c --=,可求得(,,)a b c =(1,3,8)或(1,4,5).综合可知:共有3个好数组,分别为(2,2,4),(1,3,8)和(1,4,5). 4.设O 是四边形ABCD 的对角线AC 、BD 的交点,若180BAD ACB ∠+∠=︒,且3BC =,4AD =,5AC =,6AB =,则DOOB= ( ) A. 109. B. 87. C. 65. D. 43.【答】A.过B 作//BE AD ,交AC 的延长线于点E ,则180ABE BAD ∠=︒-∠ACB =∠,所以△ABC ∽△AEB ,所以AC BCAB EB=,所以 631855AB BC EB AC ⋅⨯===. 再由//BE AD ,得4101895DO AD OB BE ===.5.设A 是以BC 为直径的圆上的一点,AD BC ⊥于点D ,点E 在线段DC 上,点F 在CB 的延长线上,满足BAF CAE ∠=∠.已知15BC =,6BF =,3BD =,则AE = ( )A.B.C..D.【答】B. 如图,因为BAF CAE ∠=∠,所以BAF BAE CAE BAE ∠+∠=∠+∠,即90FAE BAC ∠=∠=︒.又因为AD BC ⊥,故2AD DE DF DB DC =⋅=⋅.而639DF BF BD =+=+=,15312DC BC BD =-=-=,所以29312AD DE =⋅=⋅,所以6AD =,4DE =.从而AE ==6.对于正整数n ,设n a1232001111a a a a ++++= ( ) A.1917. B. 1927. C. 1937. D. 1947.【答】A.对于任意自然数k ,2211()24k k k +=++不是整数,所以,对于正整数n12一定不是整数.设m1|2m <,1m ≥. 易知:当1m ≥时,1|2m <⇔2211()()22m n m -<<+⇔221144m m n m m -+<<++.于是可知:对确定的正整数m ,当正整数n 满足221m m n m m -+≤≤+时,m即n a m =.所以,使得n a =m 的正整数n 的个数为2m .注意到2213131822001414210+=<<+=,因此,12200,,,a a a 中,有:2个1,4个2,6个3,8个4,……,26个13,18个14.所以123200111111111191246261812313147a a a a ++++=⨯+⨯+⨯++⨯+⨯=.二、填空题:(本题满分28分,每小题7分) 1.=a 的值为_______.【答】8.由所给等式可得32(1a =.令x =,则0x ≥,且21a x =-,于是有322(1)(1)x x +=-,整理后因式分解得2(3)(1)0x x x -+=,解得10x =,23x =,31x =-(舍去),所以1a =-或8a =. 验证可知:1a =-是原方程的增根,8a =是原方程的根. 所以,8a =.2.如图,平行四边形ABCD 中,72ABC ∠=︒,AF BC ⊥于点F ,AF 交BD 于点E ,若2DE AB =,则AED ∠=_______.【答】66︒.取DE 的中点M ,在Rt △ADE 中,有12AM EM DE AB ===.设AED α∠=,则1802AME α∠=︒-,18ABM α∠=-︒. 又ABM AMB ∠=∠,所以180218αα︒-=-︒,解得66α=︒.3.设,m n 是正整数,且m n >.若9m与9n的末两位数字相同,则m n -的最小值为 . 【答】10.由题意知,999(91)mnnm n--=⋅-是100的倍数,所以91m n --是100的倍数,所以9m n -的末两位数字是01,显然,m n -是偶数,设2m n t -=(t 是正整数),则29981m nt t -==.计算可知:281的末两位数字是61,381的末两位数字是41,481的末两位数字是21,581的末两位数字是01.所以t 的最小值为5,从而可得m n -的最小值为10.4.若实数,x y 满足3331x y xy ++=,则22x y +的最小值为 . 【答】12. 因为333322031()(1)333x y xy x y x y xy xy =++-=++---+ 22(1)[()()(1)(1)]3(1)x y x y x y xy x y =+-+-+⋅-+--+-B22(1)(1)x y x y xy x y =+-+-+++2221(1)[()(1)(1)]2x y x y x y =+--++++,所以1x y ==-或1x y +=. 若1x y ==-,则22x y +=2. 若1x y +=,则22222111[()()][1()]222x y x y x y x y +=++-=+-≥,当且仅当12x y ==时等号成立.所以,22x y +的最小值为12.第一试(B)一、选择题:(本题满分42分,每小题7分)1.已知二次函数2(0)y ax bx c c =++≠的图象与x 轴有唯一交点,则二次函数3233y a x b x c =++的图象与x 轴的交点个数为 ( )A .0.B .1.C .2.D .不确定. 【答】C.因为二次函数2y ax bx c =++的图象与x 轴有唯一交点,所以2140b ac ∆=-=,所以240b ac =≠.故二次函数3233y a x b x c =++的判别式323363623211()4(4)()1616b a c b ac b b ∆=-=-=-61516b = 0>,所以,二次函数3233y a x b xc =++的图象与x 轴有两个交点.2.题目和解答与(A )卷第1题相同.3. 题目和解答与(A )卷第3题相同.4.已知正整数,,a b c 满足26390a b c --+=,260a b c -++=,则222a b c ++= ( ) A. 424. B. 430. C. 441. D. 460. 【答】C.由已知等式消去c 整理得22(9)3(1)75a b -+-=,所以23(1)75b -≤,又b 为正整数,所以16b ≤≤. 若b =1,则2(9)75a -=,无正整数解; 若b =2,则2(9)72a -=,无正整数解; 若b =3,则2(9)63a -=,无正整数解; 若b =4,则2(9)48a -=,无正整数解; 若b =5,则2(9)27a -=,无正整数解;若b =6,则2(9)0a -=,解得9a =,此时18c =.因此,9a =,b =6,18c =,故222a b c ++==441.5.设O 是四边形ABCD 的对角线AC 、BD 的交点,若180BAD ACB ∠+∠=︒,且3BC =,4AD =,5AC =,6AB =,则DOOB= ( ) A. 43. B. 65. C. 87. D. 109.【答】D.解答过程与(A )卷第4题相同. 6.题目和解答与(A )卷第5题相同. 二、填空题:(本题满分28分,每小题7分) 1.题目和解答与(A )卷第1题相同.2.设O 是锐角三角形ABC 的外心,,D E 分别为线段,BC OA 的中点,7ACB OED ∠=∠,5ABC OED ∠=∠,则OED ∠=_________. 【答】10︒.如图,设OED x ∠=,则5A B C x ∠=,7ACB x ∠=,DOC ∠=18012BAC x ∠=︒-,10AOC x ∠=,所以1802AOD x ∠=︒-,180(1802)ODE x x x ∠=︒--︒-=,所以1122OD OE OA OC ===,所以60DOC ∠=︒,从而可得10x =︒.3. 题目和解答与(A )卷第3题相同.4. 题目和解答与(A )卷第4题相同.第二试 (A )一、(本题满分20分)已知实数,x y 满足3x y +=,221112x y x y +=++,求55x y +的值. 解 由221112x y x y +=++可得2233222()x y x y x y x y xy +++=+++. 设xy t =,则222()292x y x y xy t +=+-=-,332()[()3]3(93)x y x y x y xy t +=++-=-,代入上式可得22(392)3(93)t t t t +-=-++,解得1t =或3t =. ……………………10分当3t =时,3xy =,又3x y +=,故,x y 是一元二次方程2330m m -+=的两实数根,但易知此方程没有实数根,不合题意. ……………………15分当1t =时,1xy =,又3x y +=,故,x y 是一元二次方程2310m m -+=的两实数根,符合题意.此时552233222()()()(92)[3(93)]3123x y x y x y x y x y t t t +=++-+=-⋅--=.……………………20分二、(本题满分25分)如图,△ABC 中,AB AC >,45BAC ∠=︒,E 是BAC ∠的外角平分线与△ABC 的外接圆的交点,点F 在AB 上且EF AB ⊥.已知1AF =,5BF =,求△ABC 的面积.解 在FB 上取点D ,使FD =AF ,连接ED 并延长,交△ABC 的外接圆于点G.由EF ⊥AD ,AF =FD 知△AED 是等腰三角形,所以∠AED =1802︒-∠EAD =∠BAC , ……………………10分所以 AG BC =,所以 AC BG=,所以AC =BG. ……………………15分 又∠BGE =∠BAE =∠ADE =∠BDG ,所以BG =BD ,所以AC =BD =5-1=4, ……………………20分 △ABC 的AB边上的高sin 45h AC =︒=所以,△ABC的面积11622S AB h =⋅⋅=⨯⨯= ……………………25分三、(本题满分25分)求所有的正整数数对(,)a b ,使得34938ba =⨯+. 解 显然, 4938b⨯+为奇数,所以a 为奇数.又因为33493849385b a =⨯+≥⨯+>,所以5a >. ……………………5分 由34938b a =⨯+可得38493b a -=⨯,即22(2)(24)73ba a a -++=⨯. ……………………10分 设2(2,24)a a a d -++=,则d 为奇数.注意到224(2)(4)12a a a a ++=-++,所以|12d ,所以d =1或3. ……………………15分若d =1,则有2227,243,b a a a ⎧-=⎪⎨++=⎪⎩或2223,247,b a a a ⎧-=⎪⎨++=⎪⎩均无正整数解. ……………………20分若d =3,则有221237,243,b a a a -⎧-=⨯⎪⎨++=⎪⎩或12223,2437,b a a a -⎧-=⎪⎨++=⨯⎪⎩解得11a =,3b =.所以,满足条件的正整数对只有一个,为(11,3). ……………………25分第二试 (B )一、(本题满分20分)已知实数,,a b c 满足a b c ≤≤,16a b c ++=,22211284a b c abc +++=,求c 的值.解 设a b x +=,ab y =,依题意有2212(16)(16)1284x y x y x -+-+-=,整理得 21(8)(8)8x y x -=-, 所以8x =或8(8)y x =-. ……………………10分(1)若8x =,则8a b +=,此时c =8.(2)若8(8)y x =-,即8(8)ab a b =+-,则(8)(8)0a b --=,所以8a =或8b =.当8a =时,结合a b c ≤≤可得24a b c ++≥,与16a b c ++=矛盾. 当8b =时,结合a b c ≤≤及16a b c ++=可得0a =,8c =.综合可知:8c =. ……………………20分二、(本题满分25分)求所有的正整数m ,使得21221m m --+是完全平方数.解 当m =1时,212211m m --+=是完全平方数. ……………………5分当1m >时,设212221m m n --+=(n 为正整数).注意到2112112122212(2)221(21)(2)m m m m m m ------+=⋅-⋅+=-+,故可得12122(21)(2)m m n ---+=, ……………………10分所以22212112(21)(21)(21)m m m m n n n ----=--=+--+. ……………………15分设121m x n -=-+,121m y n -=+-,则x y <,222m xy -=,所以,x y 均为2的方幂.……………………20分又22m y x -=-被4除余数为2,所以,只可能2x =,2m y =,故22222m m -⨯=,解得3m =.综上可知:满足条件的正整数m 有两个,分别为1和3. ……………………25分 三、(本题满分25分)如图,O 为四边形ABCD 内一点,OAD OCB ∠=∠,OA OD ⊥,OB OC ⊥.求证:2222AB CD AD BC +=+.证明 由题设条件可知90AOD BOC ∠=∠=︒,又O A D O C B ∠=∠,所以△AOD ∽△COB , ……………………5分所以OD AO OB CO =,从而OC AO OB OD=. ……………………10分 又AOC AOB BOC AOB AOD DOB ∠=∠+∠=∠+∠=∠,所以△AOC ∽△DOB ,所以OAC ODB ∠=∠. ……………………15分设AC 和BD 交于点P ,则90APD AOD ∠=∠=︒,所以AC DB ⊥, ……………………20分所以222222222222()()()()AB CD AP PB PD PC AP PD PB PC AD BC +=+++=+++=+. ……………………25分B。

大梦杯福建初中数学竞赛试题参考答案及评分标

大梦杯福建初中数学竞赛试题参考答案及评分标

2018年“大梦杯”福建省初中数学竞赛试题参考答案及评分标准考试时间 2018年3月18日 9∶00-11∶00 满分150分一、选择题(共5小题,每小题7分,共35分)。

每道小题均给出了代号为A ,B ,C ,D 的四个选项,其中有且只有一个选项是正确的。

请将正确选项的代号填入题后的括号里,不填、多填或错填都得0分)1.若关于x 的方程244310x mx m +--=有两个相等的实数根,则32442m m m ++-的值为( )A .3-B .2-C .1-D .1 【答案】 A【解答】依题意,21616(31)0m m =++=△。

因此,2310m m ++=。

∴ 231m m =--,231m m +=-。

∴ 3222442(31)44232123m m m m m m m m m ++-=--++-=+-=--=-。

2.如图,ABCD 、DEFG 都是正方形,边长分别为m 、n (m n <)。

坐标原点O 为AD 的中点,A 、D 、E 在y 轴上。

若二次函数2y ax =的图像过C 、F 两点,则nm=( ) A.1 B1 C.1 D.1 【答案】 B【解答】依题意,点C 坐标为()2mm ,,点F 的坐标为()2mn n -+,。

由二次函数2y ax =的图像过C 、F 两点,得222()2m am m n a n ⎧=⎪⎪⎨⎪+=-⎪⎩,消去a ,得2220n mn m --=。

∴ 2()210n n m m -⨯-=,解得1nm=(舍负根)。

∴1nm=。

(第2题图)3.如图,G 为ABC △的重心,点D 在CB 延长线上,且12BD BC =,过D 、G 的直线交AC 于点E ,则AEAC=( )A .25B .35C .37D .47【答案】 D【解答】如图,连AG ,并延长交BC 于点F 。

∵ G 为ABC △的重心,且12BD BC =, ∴ F 为BC 中点,且21AG GF =,DB BF FC ==。

初三竞赛数学试题及答案

初三竞赛数学试题及答案

初三竞赛数学试题及答案一、选择题(每题5分,共30分)1. 若a,b,c是三角形的三边长,且满足a^2 + b^2 = c^2,那么这个三角形是:A. 锐角三角形B. 直角三角形C. 钝角三角形D. 不能确定2. 已知x^2 - 5x + 6 = 0,求x的值:A. 2, 3B. -2, 3C. -3, 2D. 1, 43. 一个圆的半径为r,若圆的周长为2πr,则圆的面积是:A. πr^2B. 2πrC. πrD. r^24. 函数y = 3x - 2的图象与x轴交点的坐标是:A. (0, -2)B. (2/3, 0)C. (0, 0)D. (2, -3)5. 若一个数的平方根等于它本身,那么这个数是:A. 0B. 1C. -1D. 0或16. 已知一个长方体的长、宽、高分别是a、b、c,那么它的对角线的长度是:A. √(a^2 + b^2)B. √(a^2 + b^2 + c^2)C. √(a^2 + b^2 + c)D. √(a + b + c)二、填空题(每题5分,共20分)1. 一个数的立方根是它本身,这个数可以是______。

2. 一个数的绝对值是它本身,这个数是______。

3. 一个数的相反数是它本身,这个数是______。

4. 一个数的倒数是它本身,这个数是______。

三、解答题(每题10分,共50分)1. 已知一个等差数列的首项a1=2,公差d=3,求这个数列的前10项的和。

2. 解不等式:2x - 5 > 3x - 1。

3. 证明:对于任意正整数n,n^3 - n^2 - n + 1能被6整除。

4. 已知一个直角三角形的两条直角边长分别是6和8,求斜边的长度。

5. 一个圆的半径为5,求圆的内接正六边形的边长。

答案:一、选择题1. B2. A3. A4. B5. A6. B二、填空题1. 0, 1, -12. 非负数3. 04. ±1三、解答题1. 等差数列前n项和公式为S_n = n/2 * (a1 + an),其中an = a1 + (n-1)d。

大梦杯数学竞赛试题

大梦杯数学竞赛试题

大梦杯数学竞赛试题大梦杯数学竞赛是一项旨在激发学生对数学兴趣和提高数学能力的重要赛事。

本次竞赛试题涵盖了从基础算术到高等数学的多个领域,旨在全面考察参赛者的数学素养和解决问题的能力。

一、选择题(每题3分,共30分)1. 下列哪个数是最小的正整数?A. 0B. 1C. 2D. -12. 如果一个圆的半径是5厘米,那么它的周长是多少?A. 10π cmB. 20π cmC. 30π cmD. 40π cm3. 一个数的平方根是4,这个数是多少?A. 16B. 8C. 4D. 24. 以下哪个表达式等价于 \(2^3 + 3^2\)?A. \(2 \times 3 + 3\)B. \(2 \times 2 \times 2 + 9\)C. \(2 \times 2 + 3 \times 3\)D. \(2 + 3 \times 3\)5. 如果一个三角形的三边长分别为3, 4, 5,那么这个三角形是:A. 等边三角形B. 等腰三角形C. 直角三角形D. 非直角三角形6. 一个数的立方根是2,这个数是多少?A. 8B. 4C. 6D. 27. 以下哪个选项是正确的不等式?A. \(2 > 3\)B. \(-1 \leq 0\)C. \(5 < 2\)D. \(0 \geq 1\)8. 以下哪个分数是最接近0的?A. \(\frac{1}{2}\)B. \(\frac{1}{4}\)C. \(\frac{1}{8}\)D. \(\frac{1}{16}\)9. 一个数的倒数是它自己,这个数是:A. 1B. -1C. 0D. 210. 如果一个数的绝对值是5,那么这个数可能是:A. 5B. -5C. 5或-5D. 0二、填空题(每题4分,共20分)1. 一个直角三角形的两个直角边长分别为3和4,斜边长为 ________。

2. 将分数 \(\frac{2}{3}\) 转换为小数是 ________。

2017年大梦杯福建省初中数学竞赛试题

2017年大梦杯福建省初中数学竞赛试题

2017年“大梦杯”福建省初中数学竞赛试题参考答案 考试时间 2017年3月19日 9∶00-11∶00 满分150分一、选择题(共5小题,每小题7分,共35分)。

每道小题均给出了代号为A ,B ,C ,D 的四个选项,其中有且只有一个选项是正确的。

请将正确选项的代号填入题后的括号里,不填、多填或错填都得0分)1.设a =1a a+的整数部分为( ) A .1 B .2 C .3 D .4 【答案】 B【解答】由2226a =+-=,知a =于是1a a +=2111()62866a a +=++=+,214()9a a <+<。

因此,1a a+的整数部分为2。

(注:a ==+==) 2.方程22()32x x x +=-的所有实数根之和为( ) A .1 B .3 C .5 D .7 【答案】 A 【解答】方程22()32x x x +=-化为2222(2)3(2)x x x x -+=-。

即3251060x x x -+-=,2(1)(46)0x x x --+=。

解得1x =。

经检验1x =是原方程的根。

∴ 原方程所有实数根之和为1。

3.如图,A 、B 、C 三点均在二次函数2y x =的图像上,M 为线段AC 的中点,BM y ∥轴,且2MB =。

设A 、C 两点的横坐标分别为1t 、2t (21t t >),则21t t -的值为( )A .3B ..±.【答案】 D【解答】依题意线段AC 的中点M 的坐标为221212()22t t t t ++,。

(第3题)由BM y ∥轴,且2BM =,知B 点坐标为221212(2)22t t t t ++-,。

由点B 在抛物线2y x =上,知22212122()22t t t t++-=。

整理,得22221211222282t t t t t t +-=++,即221()8t t -=。

结合21t t >,得21t t -=4.如图,在Rt ABC △中,90ABC ∠=︒,D 为线段BC 的中点,E 在线段AB 内,CE 与AD 交于点F 。

2018年大梦杯福建省初中数学竞赛试题参考答案及评分标

2018年大梦杯福建省初中数学竞赛试题参考答案及评分标

年“大梦杯”福建省初中数学竞赛试卷参考答案及评分标准考试时间 年月日 ∶-∶ 满分分一、选择题(共小题,每小题分,共分)。

每道小题均给出了代号为,,,的四个选项,其中有且只有一个选项是正确的。

请将正确选项的代号填入题后的括号里,不填、多填或错填都得分).若关于x 的方程244310x mx m +--=有两个相等的实数根,则32442m m m ++-的值为( ).3- .2- .1- . 【答案】【解答】依题意,21616(31)0m m =++=△。

因此,2310m m ++=。

∴ 231m m =--,231m m +=-。

∴ 3222442(31)44232123m m m m m m m m m ++-=--++-=+-=--=-。

.如图,ABCD 、DEFG 都是正方形,边长分别为m 、n (m n <)。

坐标原点O 为AD 的中点,A 、D 、E 在y 轴上。

若二次函数2y ax =的图像过C 、F 两点,则nm=( ).11.1.1 【答案】【解答】依题意,点C 坐标为()2mm ,,点F 的坐标为()2mn n -+,。

由二次函数2y ax =的图像过C 、F 两点,得222()2m am m n a n ⎧=⎪⎪⎨⎪+=-⎪⎩,消去a ,得2220n mn m --=。

∴ 2()210n n m m -⨯-=,解得1nm=(舍负根)。

∴1nm=。

(第题图).如图,G 为ABC △的重心,点D 在CB 延长线上,且12BD BC =,过D 、G 的直线交AC 于点E ,则AE AC=( ).25 .35 .37 .47【答案】【解答】如图,连AG ,并延长交BC 于点F 。

∵ G 为ABC △的重心,且12BD BC =, ∴ F 为BC 中点,且21AG GF =,DB BF FC ==。

过点F 作FM DE ∥,交AC 于点M 。

则13CM CF CE CD ==,21AE AG EM GF ==。

“大梦杯”福建省初中数学竞赛试题参考答案

“大梦杯”福建省初中数学竞赛试题参考答案

2019年“大梦杯”福建省初中数学竞赛试题参考答案考试时间2019年3月17日9∶00-11∶00满分150分一、选择题(共5小题,每小题7分,共35分)。

每道小题均给出了代号为A ,B ,C ,D 的四个选项,其中有且只有一个选项是正确的。

请将正确选项的代号填入题后的括号里,不填、多填或错填都得0分)1.若一次函数2y x =+与反比例函数4y x=的图像交于11()A x y ,,22()B x y ,两点,则1212x x y y +的值为()A .8B .6C .6-D .8-【答案】D【解答】由24y x y x =+⎧⎪⎨=⎪⎩,得2240x x +-=……………①。

依题意,1x ,2x 是方程①的两根,于是122x x +=-,124x x =-。

∴121212121212441616484x x y y x x x x x x x x +=+⋅=+=-+=--。

2.如图,ABC △为圆O 的内接三角形,D 为BC 中点,E 为OA 中点,40ABC ∠=︒,80BCA ∠=︒,则OED ∠的大小为()A .15︒B .18︒C .20︒D .22︒【答案】C【解答】如图,连结OC 。

由40ABC ∠=︒,80BCA ∠=︒,得60BAC ∠=︒。

∵D 为BC 中点,∴OD BC ⊥,1602DOC BOC BAC ∠=∠=∠=︒。

∴30OCD ∠=︒,12OD OC =。

又E 为OA 中点,∴12OE OA OD ==。

结合40ABC ∠=︒,知24060140EOD AOC COD ∠=∠+∠=⨯︒+︒=︒,(第2题图)(第2题答题图)11(180)(180140)2022OED EOD ∠=︒-∠=︒-︒=︒。

3.已知二次函数2()2f x x ax b =++,若()(1)f a f b =+,其中1a b ≠+,则(1)(2)f f +的值为()A .8B .10C .12D .14【答案】A【解答】由已知条件及二次函数图像的对称性,知124a b a++=-。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档