线性代数复习

合集下载

线性代数复习要点

线性代数复习要点

线性代数复习要点线性代数是数学中的一个分支,其研究对象包括向量空间、线性变换、矩阵、线性方程组等。

线性代数广泛应用于各个领域,如物理学、计算机科学、工程学等。

下面是线性代数复习的要点:1.向量和向量空间-向量是指具有大小和方向的量,用箭头表示。

-向量空间是指由一组向量生成的集合,满足加法和数乘运算的封闭性。

-基是一个向量空间中独立且能够生成该向量空间的向量组。

-向量组的线性组合是指对向量组中的向量进行加法和数乘运算的结果。

-向量组的生成子空间是指向量组的所有线性组合所形成的空间。

2.矩阵和线性变换-矩阵是一个按照矩形排列的数。

矩阵的大小由行数和列数确定。

-矩阵的加法和数乘运算定义为对应元素的运算。

-矩阵的转置是指行变为列,列变为行的操作。

-矩阵的乘法是指矩阵的行与列的对应元素相乘后求和的运算。

-线性变换是指将一个向量空间映射到另一个向量空间的变换,保持线性关系。

3.行列式和特征值特征向量-行列式是一个与矩阵相关的数,用于描述矩阵的性质。

-二阶和三阶矩阵的行列式可以通过对应元素相乘后求和的方式计算。

-行列式的值为0表示矩阵不可逆,即不存在逆矩阵。

-特征值是指矩阵对一些向量进行线性变换后,仍然与原向量方向相同的结果。

-特征向量是指通过线性变换后,与其特征值对应的向量。

4.线性方程组的求解-线性方程组是一组线性方程的集合,其中未知量的次数等于方程的个数。

-列向量和矩阵可以表示线性方程组的系数和常数项。

-线性方程组的解可以通过高斯消元法、矩阵的逆等方法进行求解。

-高斯消元法是将方程组化为行阶梯形式,再通过回代求解。

-线性方程组的解可以有唯一解、无解或者无穷多解。

5.特殊矩阵和矩阵的分解-单位矩阵是指主对角线上的元素为1,其余元素为0的矩阵。

-零矩阵是指所有元素均为0的矩阵。

-对角矩阵是指主对角线以外的元素均为0的矩阵。

-逆矩阵是指一个矩阵与其逆矩阵相乘得到单位矩阵。

-矩阵的分解包括LU分解、QR分解、特征值分解等。

线性代数复习要点

线性代数复习要点

2
2、初等变换的性质 (1) 对调变换使得行列式的值反号; (2) 倍乘变换只是放大或缩小行列式的值; (3) 倍加变换不改变行列式的值. 3、加法原理:若行列式的某一行(或列)的元都是两数之和,则此行列式等于两个行列式的和. 4、乘积法则:对任何 n 阶矩阵 A 和 B ,均有 | AB | | Α | | B | . 5、转置运算不改变行列式的值. 三、行列式的计算 1、典型方法:三角化方法、降阶法、归纳法、递推法、分拆法、升阶法. 2、设 A 为 n 阶矩阵, k 为任意数,则 kA k A .
1 * * 1 * T T *
4、 ( A ) ( A ) , ( A ) ( A ) , ( A ) ( A ) .
T 1
AT A 5、 B
T
, T B B
1
A T A
T
BT ;
A1 A 当 A, B 可逆时,有 B
一、行列式的概念
n 阶行列式 A 或 det A 是 n 阶矩阵 A [aij ] 按下述运算法则得到的一个算式: 当 n 1 时, A a11 a11 ; 当 n 2 时,
A a11 A11 a12 A12
这里 A1 j (1)
三、分块矩阵的求逆公式 当 A, B 可逆时,有
, 1 B B
A 1 A
1
B 1 .
A 1 A C 0 B 0
四、重要结论
1
A1 A1CB 1 A 0 , 1 1 B 1 C B B CA
(5) rank
A 0 0 rankA rankB , rank 0 B B

线性代数重点复习(16页)

线性代数重点复习(16页)

齐次线性方程组给出系数矩阵,
1
非齐次线性方程组给出增广矩阵 。
对矩阵进行初等行变换得到行最
2
简形。
3
把行最简形矩阵写回线性方程 组的形式。
4
给出方程组的通解。
若线性方程组的系数带有未知数,需分各种情况讨论,灵活处理。
相似矩阵与二次型 05 Guidance for Final Exams at XXX University in 2025 2025
交向量组,由此便可得到相应的正交变换矩阵和相似对
角矩阵。
2025
马到成功!
XXX大学2025年期末考试指导
2025
公众号:安全生产管理
线性代数复习重点
第一章 行列式 01 Guidance for Final Exams at XXX University in 2025 2025
容易出选择填空题的内容:
(1)求逆序数; (2)含某个因子的项(注意正负号); (3)与余子式或代数余子式相关的内容; (4)已知 |A| 求某个与A相关的行列式。。
第三章 向量空间 03 Guidance for Final Exams at XXX University in 2025 2025
向量空间
本章提到的的性质和定理较多,需要灵活运用。
容易出选择填空题的内容: 二 (1)向量的加法、数乘和内积运算; (2)线性相关和线性无关的定义,以及它们与向量组秩的关系(线性无关意
容易出大题的内容:行列式的计算。 其中,若已知行列式的阶数和每个元素的数值, 则问题很简单,但要注意,对于2阶和3阶行列式, 可用划斜线的方式(对角线法则)来计算。而对于4 阶或更高阶的行列式,不能采用对角线法则计算, 此时必须利用行列式的性质将其化为上三角行列式 从而得出结果,或者当某一行(列)非零元很少时, 运用展开定理将该行(列)展开从而得到经过降阶 的行列式计算。 对于n阶行列式的情形或者行列式元素中出现未 知数,求解的难度较大,需要灵活的结合运用行列 式的性质和展开定理。一般来说,考试中都会出课 本中已有的例题、习题,或者非常相似的题目。

线性代数--总复习

线性代数--总复习
1 λ + 2 1 −4 − 5λ 1 −2
可见, 当λ=-4/5时, R(A)=2, R(A|b)=3, 方程组无解. 当λ≠-4/5, 且λ≠-1时 R(A)=R(A|b)=3, 方程组有唯一解.
当λ=-1时, 有
1 −1 −2 1 1 −1 0 3 ( A | b) → 0 0 1 1 → 0 0 1 1 0 0 1 1 0 0 0 0
第三章 向量 线性关系 秩
1. 理解n维向量的概念以及向量的线性运算; 2. 理解向量组的线性组合与线性表示的概念; 3. 理解向量组线性相关, 线性无关的定义, 了解并会用 向量组线性相关, 线性无关的有关性质及判别法; 4. 理解向量组的极大线性无关组和向量组的秩的概念, 会求向量组的极大无关组和秩,理解向量组等价的概念; 5. 理解矩阵秩的概念及与向量组秩的关系及其计算.
0 2/3 0 B = 6 0 3/ 4 0 0 0 6/ 7
−1
0 3 0 0 1/ 3 0 = 0 2 0 0 1/ 4 0 0 0 1/ 7 0 0 1
49页:10, 11, 12, 18
第六章 矩阵的特征值与特征向量
1. 了解矩阵的特征值和特征向量的概念及其求法; 2. 了解矩阵的特征值和特征向量的性质; 3. 了解相似矩阵的概念及性质; 4. 掌握将(实对称)矩阵(正交)相似对角化的方法.
第七章 二次型
1. 掌握二次型及其矩阵表示, 了解二次型秩的概念, 了解合同变换与合同矩阵的概念, 了解二次型的标准形和 规范形的概念以及惯性定理; 2. 掌握用正交变换化二次型为标准形的方法, 会用 配方法化二次型为标准形; 3. 理解正定二次型和正定矩阵的概念, 掌握其判别法.

线性代数复习

线性代数复习

线性代数复习一、行列式1、概念:余子式,代数余子式(对方阵而言)2、重要性质:|k A|=k n|A|(A为n阶矩阵);行列式的倍加行(列)变换其值不变;3、克拉默法则:※方程组Ax=B,x j=D j/D(D是系数矩阵行列式,D j是常数项替换系数矩阵第j列后得到的矩阵的行列式)二、矩阵1、概念:系数矩阵、增广矩阵、单位矩阵(I、E)、对角矩阵、上(下)三角矩阵、转置矩阵、(反)对称矩阵、伴随矩阵、逆矩阵2、重要性质:(k A)-1=k-1A-1|A-1|=|A|-1(A*)*=|A|n-2A A*A=|A|E矩阵的初等变换:初等矩阵前乘为行变换;后乘为列变换。

初等倍乘矩阵E i(c),表示将A的第i行(列)乘c。

初等倍加矩阵E ij(c),表示将A的第i行(列)乘c加至第j行(列)。

初等对换矩阵E ij表示将A的第i和第j行互换。

A可逆,(A,E)--------对A,E同时做同样的初等行变换--------(E,A-1)3、分块矩阵求行列式A 0 其中A,B为方阵。

|Q|=|A||B|。

0 B0 A 其中A,B为m,n阶方阵。

|Q|=(-1)mn|A||B|。

B 0A B |Q|=|A||D-CA-1B|。

C D三、线性方程组1、概念:线性相关(线性无关)、秩、极大线性无关组、自由未知量2、重要性质:①判断多个向量间的线性相关关系:系数k i不全为零,∑k i a i=0(定义)向量组有一部分向量线性相关,则整个向量组也线性相关。

各向量组成的矩阵A=(a T1,a T2,…,a T n)的行列式为0。

向量组b1,b2,…,b t能被a1,a2,…,a s线性表示且t>s,则b1,b2,…,b t线性相关。

②a4能否被a1,a2,a3(或更多向量)向量组线性表示?(a T1,a T2,a T3)(x1,x2,x3)T= a T4,有解即能线性表示,解即为对应各向量系数。

③矩阵的秩矩阵A m*n的秩等于行秩、等于列秩、恒不大于min{m,n}。

线性代数期末复习

线性代数期末复习

二、相似矩阵 1、相似矩阵的定义与性质。 、相似矩阵的定义与性质。 性质 2、区分矩阵相似、矩阵等价(P.54 定义 1. 15) 、矩阵合 、区分矩阵相似、矩阵等价( 等价 ) 同的概念。 同的概念。
三、矩阵的对角化 1、矩阵可以对角化的判定(定理 4 . 9 及其推论 、 、矩阵可以对角化的判定( 判定 定理 4 . 10 ) 。 2、当矩阵 A 可以对角化时,求出可逆矩阵 P、对角矩阵 、 可以对角化时, 、 Λ,使 P −1 A P = Λ 。 进而, 可以对角化时, 进而,当矩阵 A 可以对角化时,r ( A ) = 矩阵 A 的非零特 征值的个数。 征值的个数。 3、实对称矩阵 A 的对角化:求出正交矩阵 Q、对角矩阵 、实对称矩阵 对角化: 、 Λ , 使 Q− 1 A Q = Λ 。 4、当矩阵 A 可以对角化时,利用矩阵 A 的特征值和特征 、 可以对角化时, 向量, 向量,求出矩阵 A 以及 A k 。
9、练习1. 6 的 3、求解下列矩阵方程: 、练习 求解下列矩阵方程:
2 1 0 5 1 1 (3*)X 1 1 2 = 0 0 − 6 3*) 1 2 5 1 0 − 1
0 0 1 ( − 1 2 − 1 )、 0 2 − 1
16、习题二的 8 : 、 考题有时会更难; 注:① 考题有时会更难; ② 题中方程组的两个解 γ1 ,γ2 可能会以另一种形式给 出: 设 4 × 3 矩阵 A 分块为 A = ( α1 ,α2 ,α3 ) ,其中 α i ∈ R4 ,i = 1,2,3,− α1 + α2 = β ,α1 + α3 = β ,且线性 , , , 方程组 A x = β 满足 r ( A ) = r (A ) = 2 ,试求出该方程组 的全部解。 的全部解。 17、习题二的 10 ; 、 18、习题二的 12 。 、

线性代数期末复习知识点参考

线性代数期末复习知识点参考

行列式1. 行列式的性质性质1 行列式与它的转置行列式相等T D D =.性质2 互换行列式的两行(列),行列式变号.推论1 如果行列式有两行(列)的对应元素完全相同,则此行列式的值为零.性质3 行列式的某一行(列)中所有的元素都乘以同一数k ,等于用数k 乘此行列式.如111213111213212223212223313233313233a a a a a a ka ka ka k a a a a a a a a a = 推论2 如果行列式中有两行(列)元素成比例,则此行列式的值为零.性质4 若行列式的某一行(列)的元素都是两数之和,则这个行列式等于两个行列式之和.如111213111213111213212122222323212223212223313233313233313233a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a ''''''+++=+ 性质5 把行列式的某一行(列)的各元素乘以同一数然后加到另一行(列)对应的元素上去,行列式的值不变.如111213111213212223212223313233311132123313a a a a a a a a a a a a a a a a ka a ka a ka =+++例1 已知,那么( )A.-24B.-12C.-6D.12 答案 B解析2. 余子式与代数余子式在n 阶行列式中,把元素ij a 所在的第i 行和第j 列划去后,留下来的n-1阶行列式叫做元素ij a 的余子式,记作ij M ,i jij ij A (1)M +=-叫做元素ij a 的代数余子式.3. 行列式按行(列)展开法则定理1 行列式的值等于它的任一行(列)的各元素与其对应的代数余子式乘积之和,即1122i i i i in in D a A a A a A =+++或 1122j j j j nj nj D a A a A a A =+++()1,2,,;1,2i n j n ==定理2 行列式任一行(列)的元素与另一行(列)的对应元素的代数余子式乘积之和等于零,即12120,j j i i jn i n a A a A a A +++=或,11220.j j j j nj nj a A a A a A i j +++=≠()1,2,,;1,2i n j n ==例.设3阶矩阵()ij A a =的行列式12A =,ij A 为ij a 的代数余子式.那么313132323333a A a A a A ++=___12____; 213122322333a A a A a A ++=___0___.4. 行列式的计算(1)二阶行列式1112112212212122a a a a a a a a =- (3)对角行列式1212n nλλλλλλ=,n(m 1)21212n n(1)λλλλλλ-=-(4)三角行列式1111121n 2122222n 1122nn n1n2nnnna a a a a a a a a a a a a a a ==(5)消元法:利用行列式的性质,将行列式化成三角行列式,从而求出行列式的值.(6)降阶法:利用行列式的性质,化某行(列)(一般选择有0元素的行或列)只有一个非零元素,再按该行(列)展开,通过降低行列式的阶数求出行列式的值.(7)加边法:行列式每行(列)所有元素的和相等,将各行(列)元素加到第一列(行),再提出公因式,进而求出行列式的值.例:思路:将有0的第三行化为只有一个非0元素a 33=1,按该行展开,D=a 33A 33,不用忘记a 33。

《线性代数》期末复习要点

《线性代数》期末复习要点

《线性代数》期末复习要点第一章行列式1、行列式的计算(略)2、Cramer法则:系数行列式D≠0,则方程租有唯一解。

齐次方程租有非零解,则D=0。

3、Vandermonde行列式。

(略)第二章矩阵1、矩阵的计算(略)2、对称矩阵:A∧T=A。

反称矩阵A∧T=-A。

3、矩阵可逆,则|A|≠0。

4、分块矩阵(略)5、初等变换与初等矩阵(略)6、m×n阶矩阵A,B等价,则当且仅当存在m阶可逆矩阵P和n阶可逆矩阵Q使PAQ=B。

7、(1)可逆矩阵一定满秩,即r=n。

(2)若A的一个r阶子式不等于零,则r(A)≥r,若A的r+1阶子式都为零,则r(A)≤r。

8、矩阵秩的不等式:(1)r(AB)≤min{r(A),r(B)}。

(2)A,B分别为m×n阶和n×k 阶矩阵,r(AB)≥r(A)+r(B)-n。

特别的,当AB=0时,r(A)+r(B)≤n。

(3)A,B 均为m×n阶矩阵,则r(A+B)≤r(A)+r(B)。

第三章n维向量空间1、线性相关:(1)k1,k2,kn不全为0且能使kiα1+k2α2+……+knαn=0成立,则α1,α2,……,αn线性相关。

(2)至少一个向量是其余向量的线性组合。

(3)含零向量的向量组是线性相关的。

(4)n维向量中的两个向量组T1={α1,α2,α3,……,αr},T2={β1,β2,β3,……βs},若T1可由T2线性表示,且r>s,则T1线性相关。

若T1可由T2线性表示但T1线性无关,则r≤s。

(5)n+1个n维向量一定线性相关。

2、(1)零向量自身线性相关。

非零向量自身线性无关。

(2)向量组中一部分线性相关,则整体线性相关,若向量组整体线性无关,则向量组的一部分线性无关。

3、向量组的任意极大线性无关组都与之等价,向量组的任意两个极大线性无关组都等价。

4、矩阵的秩等于其行(列)向量组的秩。

5、向量空间的基与维数,空间向量的坐标(略)6、基变换和坐标变换:{α1,α2,α3,……,αr},{β1,β2,β3,……βsr}是向量空间V的两组基,若有r维方阵C,使[β1,β2,β3,……βs]=[α1,α2,α3,……,αr]C,则称C为从基{α1,α2,α3,……,αr}到基{β1,β2,β3,……βs}的过渡矩阵(基变换矩阵)。

线性代数复习

线性代数复习

三、向量 1、定义: α = ( a1 , a 2 ,L a n ) 、
2、运算及运算律:α 、
(行、列、零、负 向量 行 向量)
±β
kα α T β = [α , β ]
3、线性关系:组合、相关、无关。 、 组合、相关、无关。
4、相关性的判别: 、
1) 定义 与数线性组合为零向量时,系数不全为零。 与数线性组合为零向量时,系数不全为零。 向量个数 2) 构成矩阵 A = (α 1α 2 Lα s ) r ( A) < s (向量个数 ) 3) 个数 维数时 个数=维数时
A −1 =
(AB = BA = E)
A ≠0
a
−1
二阶(三阶 二阶 三阶) 三阶
1 * A A
r
1 = a
A* = ( Aij )T
三阶,三阶以上 三阶 三阶以上 ( A, E ) → L → ( E , A−1 )
5、矩阵的秩: 、 定义: A中不为 0 的子式的最高阶数 定义: 中不为 求法: 求法: 求各阶子式的值 初等变换化为标准形D, 中数 中数1的个数 初等变换化为标准形 ,D中数 的个数 初等变换化为阶梯形B, 中非零行的行数 初等变换化为阶梯形 ,B中非零行的行数 6、分块矩阵的运算规律与技巧: 、 分块三角阵,分块对角阵 分块三角阵,
n
i
= A
对角化的充要条件: 有 对角化的充要条件:A有n 个线性无关的特征向量 熟练掌握:求可逆阵 ,使方阵对角化的方法。 熟练掌握:求可逆阵P,使方阵对角化的方法。
3、实对称阵A 必能找到正交矩阵 使UTAU=Λ 、实对称阵 必能找到正交矩阵U,使 = 掌握求此正交阵的方法。 掌握求此正交阵的方法。 向量的正交化和单位化

线性代数总复习知识点

线性代数总复习知识点

M
M
am1 L amm
0L 0
M
M
0L 0
0L0
M 0 b11 M
L L
Ma
0 b1n
=
11
M am1
L L
a1m
b 11
MM
amm bn1
L L
b1n
M bnn
bn1 L bnn
∗L∗
M ∗
b11 M
L L
Ma
∗ b1n
=
11
M am1
L L
a1m
b 11
MM
amm bn1
L b1n
M L bnn
)
=
1 det
A
2)分块上下三角阵的行列式
det CA
O B
=
det
A

det
B

det
A O
C B
=
det
A

det
B
3)利用
det A = λ1λ2 Lλn
其中 λ1,λ2 ,L,λn 是A的n个特征值。
四、求逆矩阵★★★
1.具体矩阵:
① 2阶矩阵——伴随阵法(公式法)

A
=
a11 a21
n(n−1)
= (−1) 2 a1na2,n−1Lan1
a1n
a2,n−1 NM
a2n M
n(n−1)
= (−1) 2 a1na2,n−1Lan1
an1 L an,n−1 ann
③范德蒙行列式
1 1L1
x 1
x 2
L
xn
Dn =
x2 1
M
∏ x2 2

《线性代数》复习

《线性代数》复习
1 1 0 EX1 求矩阵 A 4 3 0 的特征值 1 0 2
17 2 2 EX2 设 2 14 4 ,求A的特征值与 A 2 4 14
特征向量,并求矩阵U,使得U 1 AU B为对角阵
行列式习题课
一、定义与计算 二、三阶行列式 —— 对角线法则
四阶及四阶以上的行列式 —— 展开定理
D aik Aik a kj Akj
k 1 k 1
n
n
常用:利用性质6化零,利用展开定理降阶相结合 或:利用性质6化为上三角行列式
二、性质 保值 (1)性质1 (2)性质2 (3)性质3 判零 (7)性质2推论 (8)性质4 (9)性质3推论2
行最简阵中单位向量所对应的列向量为列向量组的一个极大无关组
将A的行最简形矩阵中其余向量用单位向量表示,其表示系数即为所求
EX3 利用初等变换求下列向量组的一个极大无关组,并把其 余列向量用极大无关组线性表示
1 1 8 2
2 1 6 0
3 1 9 3
4、线性方程组的解
EX2 已知线性方程组 (1)问 取何值时方程组有解 (2) 有解时求出它的通解并写出对应的基础解系
5、相似矩阵及二次型
向量的内积
设有n 维实向量

,称为向量α与β的内积
内积的性质 设 α β γ 为n 维向量 k为实数 则
(1)对称性: , ,
(2)线性性: , , ,
有非零解
2、矩阵 矩阵的乘法
1、定义
B 若 A (aij )m s , (bij ) sn ,
规定 AB C (cij )mn ,

线性代数总复习

线性代数总复习

性质1
例5---相似矩阵 设3阶矩阵A、B相似,A-1的特征值分别为1,2,3, 求 (1)A的特征值; (2) 解 (1)因为A-1的特征值分别为1,2,3,所以A的特征值
分别为 (2) 因为A、B相似,所以A,B的特征值相同,所以B的 特征值分别为 所以6B-E的特征值为
3---特征向量的性质 1)方阵A的不同特征值所对应的特征向量必线性无关。
1、定义 由m×n个数
排成的m行n列数表
(i=1,2, …,m ; j=1,2, …,n)
称为一个m行n列矩阵, 简称为m×n矩阵,
矩阵的秩(续) 3、关于秩的重要结论:
例题2 ---(矩阵3)

例题3---(逆阵2)

2)
例题3---(逆阵3) 3、设方阵 A满足2A2-5A-8E = 0,证明 A-2E 可逆,
6---例8(1)---几个证明1 1、设A~B,证明: A2~B2; tA-E~tB-E, t是实数
2. 设1,2 是A的两个不同的特征值,1, 2 是相应的 特征向量, 证明:1, 2必线性无关;
3. 设1,2 是A的两个不同的特征值,1, 2 是相应的 特征向量, 证明:1 2 必不是 A的特征向量
3)正交向量组必是线性无关组。
4---n阶方阵A可对角化的条件、方法 1、一个充分必要条件: n阶方阵A可对角化 A有n个线性无关的特征向量 2、两个充分条件: 1)如果A有n个互不相同的特征值,则A必可对角化 2)如果A是实对称矩阵,则A必可用正交矩阵对角化。
3、对角化方法:
4、正交对角化
5---例6---对角化 分别求可逆矩阵P、正交矩阵Q, 将矩阵A对角化。 解 1)
向量4---例题4

线性代数总复习

线性代数总复习

§2 线性代数的“解析理论” §3 线性代数的“几何理论” 线性 代 数 总 复 习§4 线性代数典型证明题§1 线性代数概况1. 线性代数的解析理论——矩阵理论行列式的定义、性质、计算、证明;1/3/4.1行列式、矩阵、线性方程组、二次型 矩阵的定义、性质、运算、初等变换、秩、特征值、特征向量、相似对角化、正交对角化; 方程组的Gauss 消元法、初等变换、基础解系、 通解、特解;二次型的标准化、规范化、惯性指数、正定负定;§1 线性代数概况向量、向量的线性运算;向量间的线性关系;向量组间的关系; 向量与向量组的关系;向量空间;2/3/4.1向量欧氏空间、线性方程组解空间、二次型主轴定理 空间与空间的转换关系:过渡矩阵2. 线性代数的几何理论——空间理论内积运算、欧氏空间;向量的长度、夹角、正交、规范正交向量组; 规范正交基、Schmidt 正交化;线性方程组解空间的结构、二次型的主轴定理; 空间为体,矩阵为用几何是脑力劳动,代数是体力劳动.3/3/4.13. 线性代数主线 ——教学名师 中国科技大学 李尚志1/12/4.2解析理论第一大块:行列式11121 21222 12 n n n n nna a a a a a a a a L L MMOML D =n nnj j j j j nj j j j a a a 12 12 12 ()12 (1)t L L L =- å §2 线性代数的解析理论——矩阵理论11 1122 1122 ,1 ,1,1 i i i i in in j j j j nj nj a n D a A a A a A n a A a A a A n ì = ï =+++> í ï ++> îL L 行列式的性质:(辅导P2) 1.行列式等于0;(4点) 2.行列式的值不变;(4点)3.行列式的值改变;(2点)4.特殊行列式的值。

线性代数复习资料

线性代数复习资料

第一部分、复习纲要1、行列式:掌握行列式的计算:①利用行列式的性质②按行(列)展开③利用已知特征值.2、矩阵及其运算:熟练掌握矩阵的运算(线性运算及矩阵乘法),会用伴随矩阵求逆阵,知道矩阵分块的运算律.3、矩阵的初等变换与线性方程组:熟练掌握用矩阵的初等行变换把矩阵化成行阶梯形和行最简形;掌握用初等变换求可逆矩阵的逆矩阵的方法(包括求B A 1-);熟练掌握用矩阵的初等变换求解线性方程组的方法;会讨论带参数的方程组的解的情况.4、向量组的线性相关性:熟悉一个向量能由一个向量组线性表示这一概念与线性方程组的联系;知道两向量组等价的概念;熟悉向量驵线性相关、线性无关的概念与齐次线性方程组的联系;会用初等变换求向量组的秩和最大无关组;掌握齐次方程组的秩与解空间的维数之间的关系,熟悉基础解系的求法;会求向量组生成的向量空间的维数,会求从旧基到新基的过渡矩阵及向量的一个基下的坐标.5、相似矩阵及二次型:了解内积、长度、正交、规范正交基、正交阵、特征值与特征向量的概念;掌握特征值与特征向量的求法,熟悉特征值的性质;知道矩阵相似、合同的概念及性质,熟悉二次型及其矩阵表示,掌握用正交变换把二次型化为标准型的方法;知道对称阵的性质、可对角化的条件,二次型的正定性及判别法等.第二部分、典型题型一、填空题1、设4阶矩阵A 的秩()2R A =,S 是齐次线性方程组0Ax =的解空间,则S 的维数为__2_____,A 的伴随矩阵*A 的秩是______0_______.2、 已知3阶方阵A 的特征值为1,2,-3,则A 的迹t r A =___0_____,det A =___-6_____,*|32|A A E ++=_____25________,3、n 阶矩阵A 可对角化的充分必要条件是_____A 有n 个线性无关的特征向量_________________.对称阵A 为正定的充分必要条件是________ A 合同于单位矩阵E__________.4、向量组123451122102151,,,,.2031311041ααααα⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥=====⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦它的秩是__3_______,一个最大无关组是_____321,,ααα_______________________.5、 实二次型22212312133924f x x x x x x x =++-+的秩r = ,正惯性指数p = ,它是 定的. 6、设1200250000250038A ⎛⎫ ⎪⎪= ⎪ ⎪⎝⎭,则||A = 1 ,1A -= ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛----2300580000120025 . 7、设n 元线性方程组Ax b =的系数矩阵A 的秩为r ,若此方程组有解,则当 r =n 时,方程组有惟一解;当 r <n 时方程组有无穷多解. 8、矩阵00A C B ⎛⎫=⎪⎝⎭的伴随矩阵*C =___⎪⎪⎭⎫⎝⎛A B 00___________. 9、向量123α⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,321β⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,矩阵T A αβ=,则6A =___A 510___________.10、设A 为n 阶矩阵(n ≥2),*A 为A 的伴随阵,则当()R A n =时,)(*A R = n ___;当()1R A n =-时,)(*A R = _1 _ ;当()1R A n <- 时,)(*A R = 0 .11、设3阶矩阵A 的特征值为2,1,3-,*2B E A =-(其中*A 是A 的伴随矩阵),则B 的行列式||B =__-385____.12、设12243311A t-⎛⎫⎪=- ⎪ ⎪-⎝⎭,并且A 的列向量组线性相关,则t = 3 . 13、已知4维列向量组123451122102151,,,,.2031311041ααααα⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥=====⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦所生成的向量空间为V ,则V的维数dim V = _3____.二、解答题1、设3112513420111533D ---=---,D 的(,)i j 元的代数余子式记作ij A ,求31323334322A A A A +-+. 2、计算n 阶行列式121212333nn n n x x x x x x D x x x ++=+4、设112201102P ⎛⎫ ⎪=- ⎪ ⎪⎝⎭,500010005-⎛⎫ ⎪Λ= ⎪ ⎪⎝⎭,并且AP P =Λ,求100A .5、设202010001P ⎛⎫ ⎪= ⎪ ⎪⎝⎭, 200010002⎛⎫ ⎪Λ= ⎪ ⎪⎝⎭,并且AP P =Λ,求100A .6、非齐次线性方程组123123212322,2,2.x x x x x x x x x λλ-++=-⎧⎪-+=⎨⎪+-=⎩当λ取何值时有解?并求出它的通解.7、非齐次线性方程组13123123,421,642 3.x x x x x x x x λλλ+=⎧⎪++=+⎨⎪++=+⎩当λ取何值时有解?并求出它的通解.8、设方阵A 满足:220A A E --=,证明A 及2A E +都可逆,并求1A -及1(2)A E -+9、设n 阶矩阵A 和B 满足AB A B =+,(i )证明A E -为可逆矩阵;(ii )若350120002A ⎛⎫ ⎪= ⎪ ⎪⎝⎭,求B .10、已知向量11010α⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦,2222a α⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦,,33111α⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦,416b β⎡⎤⎢⎥-⎢⎥=⎢⎥⎢⎥⎣⎦, (a )问a ,b 取何值时,β不能由向量组123,,ααα线性表示?(b )问a ,b 取何值时,β能由向量组123,,ααα线性表示?并且写出其一般表示式.、D 、之和的值求第四行各元素余子式设行列式22350070222204033--=11、求向量组1133α⎛⎫ ⎪= ⎪ ⎪⎝⎭,2121α⎛⎫ ⎪= ⎪ ⎪⎝⎭,3112α⎛⎫ ⎪=- ⎪ ⎪⎝⎭,4213α⎛⎫ ⎪= ⎪ ⎪⎝⎭的一个最大无关组与秩,并把其余向量用最大无关组线性表示.12、已知二次型为 222123232334f x x x x x =+++(1)写出二次型f 的矩阵表达式;(2)求一个正交变换x Py =,把二次型f 化为标准形,并写出该标准形..、ax x x x b x x a x x x x x x x x b a 、通解并在有无穷多解时求其无解或有无穷多解有惟一解线性方程组为何值时问?.123,2)3(,122,0,,1343214324324321⎪⎪⎩⎪⎪⎨⎧-=+++=--+-=++=+++.AP P P ,a a A 、Λ=Λ⎪⎪⎪⎭⎫ ⎝⎛=-1,,6002802214使并求可逆矩阵的值试求常数相似于对角阵若矩阵。

线性代数复习总结(重点精心整理)

线性代数复习总结(重点精心整理)

线性代数复习总结大全第一章 行列式二三阶行列式N 阶行列式:行列式中所有不同行、不同列的n 个元素的乘积的和n nn nj j j j j j j j j nij a a a a ...)1(21212121)..(∑-=τ(奇偶)排列、逆序数、对换行列式的性质:①行列式行列互换,其值不变。

(转置行列式T D D =) ②行列式中某两行(列)互换,行列式变号。

推论:若行列式中某两行(列)对应元素相等,则行列式等于零。

③常数k 乘以行列式的某一行(列),等于k 乘以此行列式。

推论:若行列式中两行(列)成比例,则行列式值为零; 推论:行列式中某一行(列)元素全为零,行列式为零。

④行列式具有分行(列)可加性⑤将行列式某一行(列)的k 倍加到另一行(列)上,值不变 行列式依行(列)展开:余子式ij M 、代数余子式ij ji ij M A +-=)1(定理:行列式中某一行的元素与另一行元素对应余子式乘积之和为零。

克莱姆法则:非齐次线性方程组 :当系数行列式0≠D 时,有唯一解:)21(n j DD x j j ⋯⋯==、齐次线性方程组 :当系数行列式01≠=D 时,则只有零解 逆否:若方程组存在非零解,则D 等于零 特殊行列式:①转置行列式:332313322212312111333231232221131211a a a a a a a a a a a a a a a a a a → ②对称行列式:ji ij a a =③反对称行列式:ji ij a a -= 奇数阶的反对称行列式值为零④三线性行列式:333122211312110a a a a a a a 方法:用221a k 把21a 化为零,。

化为三角形行列式 ⑤上(下)三角形行列式: 行列式运算常用方法(主要)行列式定义法(二三阶或零元素多的) 化零法(比例)化三角形行列式法、降阶法、升阶法、归纳法、第二章 矩阵n *(零矩阵、负矩阵、行矩阵、列矩阵、n 阶方阵、相等矩阵) ---------交换、结合律 数乘n m ij ka kA *)(=---------分配、结合律乘法nm lkj ik n l kj l m ik b a b a B A *1**)()(*)(*∑==注意什么时候有意义一般AB=BA ,不满足消去律;由AB=0,不能得A=0或B=0 转置A A T T =)( TT T B A B A +=+)( T T kA kA =)( TT T A B AB =)((反序定理) 方幂:2121k k k kA AA +=2121)(k k k k A A +=矩阵:对角矩阵:若AB 都是N 阶对角阵,k 是数,则kA 、A+B 、 数量矩阵:相当于一个数(若……)单位矩阵、上(下)三角形矩阵(若……) 对称矩阵 反对称矩阵阶梯型矩阵:每一非零行左数第一个非零元素所在列的下方 注:把分出来的小块矩阵看成是元素阶方阵,若存在N 阶矩阵B 的AB=BA=I 则称A 是可逆的, B A=-1(非|A|=0、伴随矩阵)2.、非零k 乘某一行(列)3、将某行(列)的K 倍加到另 初等矩阵都可逆倍乘阵 倍加阵) ⎪⎪⎭⎫ ⎝⎛=O OO I D rr 矩阵的秩r(A):满秩矩阵 降秩矩阵 若A 可逆,则满秩若A 是非奇异矩阵,则r (AB )=r (B ) 初等变换不改变矩阵的秩求法:1定义2转化为标准式或阶梯形矩阵与行列式的联系与区别:都是数表;行列式行数列数一样,矩阵不一样;行列式最终是一个数,只要值相等,就相等,矩阵是一个数表,对应元素相等才相等;矩阵n ij n ij a k ka )()(=,行列式nij n nija k ka =逆矩阵注:①AB=BA=I 则A 与B 一定是方阵 ②BA=AB=I 则A 与B 一定互逆; ③不是所有的方阵都存在逆矩阵;④若A 可逆,则其逆矩阵是唯一的。

线性代数复习提纲

线性代数复习提纲

线性代数复习提纲第一章行列式本章重点是行列式的计算,对于n阶行列式的定义只需了解其大概的意思。

要注重学会利用行列式的各条性质及按行(列)展开等基本方法来简化行列式的计算,对于计算行列式的技巧毋需作过多的探索。

1、行列式的性质(1)行列式与它的转置行列式相等,即D = D T。

(2)互换行列式的两行(列),行列式变号。

(3)行列式中如有两行(列)相同或成比例,则此行列式为零。

(4)行列式的某一行(列)中所有元素都乘以同一数k,等于用数k乘此行列式;换句话说,若行列式的某一行(列)的各元素有公因子k,则k可提到行列式记号之外。

(5)把行列式某一行(列)的各元素乘以同一数k,然后加到另一行(列)上,行列式的值不变。

(6)若行列式的某一行(列)的各元素均为两项之和,则此行列式等于两个行列式之和2、行列式的按行(按列)展开(1)代数余子式:把n 阶行列式中i , j 元a .j 所在的 第i 行和第j 列划掉后所剩的n -1阶行列式称为i , j _i + j元3ij 的余子式,记作M ij ;记Aj 二-1 M ij ,则称 Aj 为i , j 元a ij 的代数余子式。

(2)按行(列)展开定理:n 阶行列式等于它的任意一行(列)的各元素与 对应于它们的代数余子式的乘积之和 ,即可按第i 行 展开:D = a i i Ai a i 2A 2 …a^A n , (1 = 1,2,...,n ) 也可按第j 列展开:…a nj A nj , (j = 1,2,..., n )(3)行列式中任意一行(列)的各元素与另一行的 对应元素的代数余子式乘积之和等于零,即 a i 1 A j 1 a i 2 A j 2…a in A jn = 0, (i = j ); 或 a 1i A 1 j a 2i A 2 j …a ni A , (i = j )D3、 克拉默法则:X 厂一L , (i = 1,2,..., n ),其中D j 是D把D 中第i 列元素用方程右端项替代后所得到的行列 式。

线性代数各章复习重点汇总

线性代数各章复习重点汇总

线性代数各章复习重点汇总线性代数是数学的一个重要分支,研究向量空间、线性变换、线性方程组等概念和性质。

下面是线性代数各章的复习重点汇总。

1.线性方程组:-线性方程组的基本概念和性质,包括齐次线性方程组、非齐次线性方程组等。

-线性方程组的解的存在性与唯一性,以及求解线性方程组的方法(高斯消元法、矩阵求逆法、克拉默法则等)。

-线性方程组的等价关系与等价变换。

2.矩阵与行列式:-矩阵的基本概念和性质,如矩阵的加法、减法、乘法等运算。

-方阵的特殊性质,如对称矩阵、反对称矩阵、单位矩阵等。

-行列式的定义和性质,包括行列式的展开定理、行列式的性质推导等。

3.向量空间:-向量空间的定义和性质,如线性相关性、线性无关性、基、维数等。

-子空间的概念和性质,包括子空间的交、和、直和等操作。

-线性组合、张成空间、极大线性无关组等概念。

4.线性变换与矩阵:-线性变换的定义和性质,包括线性变换的特征值、特征向量等。

-线性变换的矩阵表示,以及矩阵与线性变换之间的转换关系。

-线性变换的合成、逆变换等操作,以及线性变换的标准形式(例如,矩阵的对角化)。

5.特征值与特征向量:-特征值与特征向量的定义和性质,包括特征值的重数、特征向量的线性无关性等。

-特征值与特征向量的计算方法,如特征方程的求解、特征值的代入等。

-特征值与特征向量的应用,如对角化矩阵、相似矩阵等。

6.正交性与标准正交基:-向量的正交性和标准正交性的概念和性质,包括向量的点积、向量的夹角等。

-标准正交基的定义和求解方法,如施密特正交化过程等。

-正交矩阵的定义和性质,以及正交矩阵与标准正交基之间的关系。

以上是线性代数各章的复习重点汇总,希望能够帮助你理清知识重点,并提高复习效率。

祝你取得好成绩!。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1 1 2 3 1 7 0 2 2 5 4 4
消元解法的一般步骤 2
第二步:运用行变换,将第一列除第一个外 的其它元素都化成零:
ai1 第一行乘以 加到第i行上(i>1); a11
1 1 2 3 1 7 0 2 2 5 4 4
向量 1
定义: n 个实数组成的有序数组称为 n 维向 量,如:
(a1 , a2 ,,a n ),
称为 n 维行向量,其中 ai 称为向量 的第 i 个分量。
行向量可以看作 1 n 的行矩阵。
向量 2
向量有时也写成一列,称之为n维列向量, 如
a1 a2 , a n
足方程组中
0 d r 1
这个等式,故方程组无解。
注:条件 d r 1 0 等价于:增广矩阵的秩比系 数矩阵的秩要大,即
r ( A b) r ( A).
线性方程组的解 3
d r 1 0 时,如果有
r=n,则方程有唯一解。
注1:条件 d r 1 0等价于:增广矩阵的秩与系 数矩阵的秩相等; 注2:条件r=n等价于:系数矩阵可以化为上 三角矩阵,且对角线上元素都不为零,从而 有
第一章 行列式 2
行列式按行(列)展开
代数余子式的计算
利用行列式的性质计算行列式
第一章 行列式 3
a11 x1 a12 x 2 a1 n x n 0 a x a x a x 0 21 1 22 2 2n n a n1 x1 a n 2 x 2 a nn x n 0
列向量可以看作 n 1 的列矩阵。
自由未知量 1
回忆:对以下方程组
a11 x1 a12 x 2 a1n x n b1 a x a x a x b 21 1 22 2 2n n 2 a m 1 x1 a m 2 x 2 a mn x n bm

x1 a12 x 2 a1 r xr d 1 a1 ( r 1) xr 1 a1 n xn a11 a 22 x 2 a 2 r x r d 2 a 2 ( r 1 ) x r 1 a 2 n x n a rr x r d r a r ( r 1 ) x r 1 a rn x n
性质:矩阵的秩与其转置矩阵的秩相等。
第三章 线性方程组
消元解法的一般步骤 1
首先写出方程组的增广矩阵 第一步:如果 a11 0 则进行下一步;否则将 增广矩阵的第一行与另一行互换,使第一行 第一列的元素不为零;
1 7 如: 0 2 1 1 2 3 2 5 4 4
a11 0 0 0 0 0 a12 a 22 0 0 0 0 r a1 a 2r a rr 0 0 0 ( r 1) a1 n a1 a a 2( r 1) 2n a a r ( r 1) rn 0 0 0 0 0 0 d r 1 0 0 d1 d2 dr
Ax 0
的一个基础解系,则该方程组的全部解可 以表示为
c1v1 c2v2 cs v s
的形式,其中 c1 , c2 ,, cs 为任意常数。
齐次线性方程组解的结构 5
求方程组 Ax 0 基础解系的一般方法: 1、 将增广矩阵化为阶梯状; 2、 确定自由未知量; 3、 每次取一个自由未知量赋值为 1,其 它自由未知量赋值 0,从而得到方程 的一个解;如此得到的解向量组就是 基础解系。
Ax b,
的增广矩阵 ( A, b) 化为阶梯状矩阵,然后在左 边的系数矩阵 A 中找线性无关的 r 个列,选 取方式为: 第一个元素非零,其他元素为零的列; 第二个元素非零,下面的元素都为零的列; ………………… 第 r 个元素非零,下面的元素都为零的列。
齐次线性方程组解的结构 1
性质:齐次线性方程组
非齐次线性方程组解的结构 1
定义:在非齐次线性方程组
Ax b 中,如果用 0 代替 b ,所得到的齐次线性方
程组
Ax 0
称为方程组 Ax b 的导出组。
非齐次线性方程组解的结构 2
性质:非齐次线性方程组
Ax b
的解有下列性质: v 1 是 Ax 0 的解, 1、 如果 u1 是 Ax b 的解, 则 u1 v1 也是 Ax b 的解; 2、 如 果 u1 , u2 是 Ax b 的 解 , 则 u1 u2 是 Ax 0 的解。
2
定理:如果齐次线性方程组 2 的系数行 列式 D 0则齐次线性方程组 2 没有非 零解.
第一章 行列式 4
练习:k取何值时,下面的齐次方程组 仅有零解?
kx y z 0 x ky z 0 2 x y z 0
第二章 矩阵 1
1 1 2 3 1 7 0 2 0 7 8 10
消元解法的一般步骤 3
第三步:如果 a22 0 则进行下一步;否则将 增广矩阵的第二行与另一行(不能是第一行) 互换,使第二行第二列的元素不为零;
第四步:运用行变换,将第二列除第一、二 个外的其它元素都化成零:
线性方程组的解 1
通过消元法所得的阶梯形方程组与原方程组 的解完全相同。
分析阶梯形方程组的形式,共有以下情 形: 1、 d r 1 0 ; 2、 d r 1 0 :包含两种情况:r=n 和 r<n。
线性方程组的解 2
d r 1 0 时,无论 x1 , x2 ,, xn 如何取值,都无法满
第二章 矩阵 4
定义:对矩阵进行以下三种变换,称为矩阵的 初等变换: 交换矩阵的两行(列); 以一个非零的数k乘矩阵的某一行(列); 把矩阵某一行的l倍加到另外一行(列)上。
定义:对单位矩阵施以初等变换所得到的矩阵, 称为初等矩阵。
第二章 矩阵 5
定理:方阵A可逆的充分必要条件是它可以表 示为若干初等矩阵的乘积。
ai 2 第二行乘以 加到第i行上(i>2); a 22
消元解法的一般步骤 4
1 1 2 3 1 7 0 2 0 7 8 10
1 1 2 3 7 0 2 1 0 0 23 69 2 2
对第三行直到m行进行类似的操作,直到得 到如下阶梯形式的矩阵:
cij aik bkj ai 1b1 j ai 2b2 j ail blj ,
k 1 l
( i 1,2, m; j 1,2,, n)
并记为 C AB .
第二章 矩阵 3
定义:若方阵的行列式不等于零,则称该 方阵为非奇异的。
定理: n 阶方阵 A (aij ) 可逆的充要条件是: A 是非奇异的。且其逆矩阵为 1 * 1 A A. A
两个矩阵 A (aij ), B (bij ) 为同型矩 阵,并且对应元素相等,即
aij bij i 1,2,, m; j 1,2,, n,
则称矩阵A与B相等,记作
A B.
第二章 矩阵 2
定义:设矩阵 A (aik )ml 的列数与 B (bkj )ln 的行数相同,则定义其乘积矩阵 C (cij )mn 为以下元素组成的 m n 矩阵:
d r 1 0 时, 如果有
r<n, 则方程有无穷多个解,
且解的形式为:
x1 k1 k1( r 1) c1 k1n cn r x k k c k c 2 2 2 ( r 1 ) 1 2 n n r x r k r k r ( r 1) c1 k rn cn r x r 1 c1 xr 2 c2 x c n r n
最后的矩阵所对应的阶梯形方程组为:
x1 a12 x 2 a1 r xr a1 ( r 1) x r 1 a1 n xn d1 a11 a x a x a x a x d 22 2 2 r r 2 ( r 1 ) r 1 2 n n 2 a rr x r a r ( r 1 ) x r 1 a rn x n d r 0 d r 1 00 00
r ( A b) r ( A) n.
d r 1 0 时,如果有
r<n,则方程可以化为
x1 a12 x 2 a1 r x r a1 ( r 1) x r 1 a1 n xn d1 a11 a 22 x 2 a 2 r x r a 2 ( r 1 ) x r 1 a 2 n x n d 2 a rr x r a r ( r 1 ) x r 1 a rn x n d r
Ax 0
的解有下列性质: 1解; 2、 如果 v 是方程组的解,则对任意常数 c , cv 也是方程组的解。
齐次线性方程组解的结构 2
定义:如果 v1 , v2 , , vs 是齐次线性方程组
Ax 0
的解向量组的一个极大无关组,则称
v1 , v2 , , v s
是方程组的一个基础解系。
齐次线性方程组解的结构 3
定理:如果是齐次线性方程组
Ax 0
的系数矩阵 Amn 的秩
r ( A) r n
则方程组的基础解系存在,且每个基础解 系中,恰含有 n r 个向量。
齐次线性方程组解的结构 4
如果 v1 , v2 , , vs 是齐次线性方程组
当系数矩阵的秩=增广矩阵的秩时,方程有解。
相关文档
最新文档