本科线性代数总复习

本科线性代数总复习
本科线性代数总复习

本科线性代数总复习

第一章行列式一、单项选择题1.二阶行列式k?122k?1≠0的充分必要条件是A.k≠-1B.k≠3C.k≠-1且k≠3 D.k≠-1或≠3 答案:C a1b1ac2.设行列式11aba2b2=1,a2c2=2,则11?c1a2b2?c2=A.-3B.-1C.1 D.3 答案:D ?3.如果方程组?3x1?kx2?x3?0?4x?2?x3?0有非零解,则k= ?4x2?kx3?0A.-2 B.-1答案: B a11a12a13a115a11?2a12a134.设行列式D=a21a22a23=3,D1=a215a21?2a22a23,则D1的值为?110A.-2B.-1 C. 1 D. 2 答案: C a11a12a132a112a122a136.已知a21a22a23=3,那么a21a22a23= a31a32a33?2a31?2a32?2a33A.-24

B.-12

C.-6 答案:B 二、填空

题 1 )a112a124a226a323a136a239a33a11a12a1 3a23a337.已知3阶行列式2a213a31=6,则aa2221a31a32=_______________.答案:1/6 8.设3阶行列式D3的第2列元素分别为1,-2,3,对应的代数余子式分别为-3,2,1,则D3=__________________.答案:-4 9.已知行列式a1?b1a1?b1a2?b2a,则a1b1?______.答案:2 2?b??42a2b2三、计算题111410.求4阶行列式11311211的值. 111100030003解:原式=11310020 1211?1211111111110003?00200020100?? 3010??601111111111?6 120011.计算四阶行列式01200012的值. 2001120200解:原式=012?2120??15 0010121234512.设77733,求AA?3245231?A32?A33,A34?A35.3332246523答案:0,0. 第一章矩阵一、单项选择题

1.设A为三阶矩阵,|A|=a≠0,则其伴随矩阵A*的行列式|A*|= 2 答案:B 2.设A、B为同阶可逆矩阵,则以下结论正确的是A.|AB|=|BA| C.-1=A-1B-1 B.|A+B|=|A|+|B| D.2=A2+2AB+B2 答案:A 3.设A可逆,则下列说法错误的是..A.存在B使AB=E C.A 相似于对角阵答案:C 4.设A为3阶方阵,且|A|=2,则|2A-1|= A.-4 B.-1C.1 答案:D D.4 B.|A|≠0 D.A的n个列向量线性无关?12??123???5.设矩阵A=,B =??,C=??456??,则下列矩阵运算中有意义34????的是A.ACB B.ABC C.BAC D.CBA 答案:B 6.设A为任意n阶矩阵,下列矩阵中为反对称矩阵的是A.A+AT B.A-AT C.AAT D.ATA 答案:B ?ab???7.设2阶矩阵A =?cd?,则A????d?d?b??A.???ca?? B.?b???答案:A *=c???db??C.??c?a?? ?a?????d?c???

D.??b a????33???8.矩阵??10?的逆矩阵是???0?1?0?3???0?1??1?????? C.?1? A.??B.?1333?????3?答案:C 9.设A为n阶方阵,λ为实数,则|λA|= 1??1??3D.???10?? ??3 A.λ|A|B.|λ||A|C.λn|A| D.|λ|n|A| 答案:C 10.设A为n 阶方阵,令方阵B=A+AT,则必有A.BT=B B.B=2A C.BT=-B D.B=0 答案:A 11.设A、B为同阶方阵,下列等式中恒正确的是=B B.?A?B??1?A?1?B?1 C. A?B?A?B D.?A?B?T?AT?BT 答案:D 12.设A为四阶矩阵,且A?2,则A*? 答案:C 13.设A,B为同阶可逆方阵,则下列等式中错误..的是 A.|AB|=|A| |B| B. (AB)-1=B-1A-1 C. (A+B)-1=A-1+B-1 D. (AB)T=BTAT答案:C 14.设A为三阶矩阵,且|A|=2,则|-1|= A.14答案:A 15.设A为3阶方阵,且?113A?3,则|A|?

A.-9B.-3C.-1 D.9 答案:B 16.设A、B为n阶方阵,满足A2=B2,则必有A.A=B B.A= -B C.|A|=|B| D.|A|2=|B|2 答案:D 17.设A为5×4矩阵,若秩=4,则秩为A.2B.3C.4 D.5 答案:C 18.设A,B,C为同阶方阵,下面矩阵的运算中不成立...的是=AT+BT

B.|AB|=|A||B| =BA+CA =BTAT 答案:C

19.若矩阵A可逆,则下列等式成立的是=1AA*?0 C.(A2)?1?(A?1)2 D.(3A)?1?3A?1 答案:C 20.设A为2阶矩阵,若3A=3,则2A? 4 A.14B.1 C.23D.2 答案:C 21.设A 为3阶方阵,B为4阶方阵,且行列式|A|=1,|B|=-2,则行列式||B|A|之值为A.-8 B.-2答案:A 二、填空题22.设A,B均为三阶可逆阵,|A|=2,则|2B-1A2B|=_________.答案:32 ?100???23.设三阶方阵A等价于?010?,??000??则R=_________.

答案:2 ?0?24.设3阶矩阵A=?0?2??0??答案:?01??2?5201203??5?,则-1=_____________. 0??3???1? ?0???100??600?????220? ?,则A*A=_____________.答案:?060? 25.设3阶矩阵A=?333??006??????200?????2-1 01026.设A=??,则A=___________.答案:?0?022??0???101?1???0??0? 1?2???6?120??,则A*=___________答案:?027.设A=?030????0??002???20??20? 03???21?28.设A=,B=??40?,则AB=_________.答案:??35???29.设A为3阶方阵,若|AT|=2,则|-3A|=_________.答案:-54 ?12???30.设A为2阶矩阵,将A的第2列的倍加到第1列得到矩阵B.若B=??,则?34??? 5

A=______________.答案:???52?? ??114?1,则|A-1|=___________________________.答

案:?n 31.设A为n阶可逆矩阵,且|A|=?n32.设A为3阶方阵,且| A |=3,则| 3A-1 |=______________. 三、计算题??100?33.设A=??1?10? ??11?1???求-1 -1 ??300?解:-1=A-2E=??1?30? ??11?3????100?? 1?100?-1???110?????110? ???111?????0?1 1????100???300???3-1???110??1?30????? 0?11????11?3?????4???0?34.设A=?101??210???,求A-1 ??32?5??解??101100??1100??210010????01? 01?2?210?????1?0???32?5001????02?330 1????0?100?62?1????01012?32?? ??0017? 21????62?所以A?1??1??12?32?? ??7?21?? 00??30?4?3? ??0111?2?2017:00?10?? ?21??6 ?101??301???? ?35.已知矩阵A=?1?10?,B=?110?,?012??014?????求A的逆矩阵A-1;解矩阵方程AX=B. 解:

1100?1100??101100??10?10??????1?1001 0?0?1?1?110?0?1?1?110???????012001?? 01?002001?1?111????????1002?1?1??100 2?1?1???????0?10?221???0102?2?1? ?001 ?11?001?111?1??????2?1?1????1所以A??2?2?1? ??111????2?1?1??301??5 ?2?2????????1?3?2?

X?AB??2?2?1??110???4?????113?1????? 014???22??1136.设A=?0?1??00?解?0??12??1,B=?01?,又AX=B,求矩阵X. ?10?1????2?:??11?0?1??00 ?0112?12?01??10???11012?????0?1101?? 00120????11012?????0?10?21??00120??? ?100?13???13???????0102?1?所以X??2?1? ?0012?20?0?????第二章

一、单项选择题1.设α1=[1,2,

1],α2=[0,5,3],α3=[2,4,2],则向量组α1,α2,α秩是A.0B.1 C.2 3的D.3 7 答案:C 2.若向量组α1=,α2=,α3=线性相关,则实数t= A.0

B.1C.2 D.3 答案:B 3.设A是4×5矩阵,秩=3,则A.A中的4阶子式都不为0 B.A中存在不为0的4阶子式C.A中的3阶子式都不为0 D.A 中存在不为0的3阶子式答案:D 4.设向量组α1,α2,…,αs线性相关,则必可推出A.α1,α2,…,αs中至少有一个向量为零向量B.α1,α2,…,αs 中至少有两个向量成比例C.α1,α2,…,αs中至少有一个向量可以表示为其余向量的线性组合D.α1,α2,…,αs中每一个向量都可以表示为其余向量的线性组合答案:C 5.向量组α1 ,α2 ,…,αs 的秩不为s(s?2)的充分必要条件是A. α1 ,α2 ,…,αs 全是非零向量B. α1 ,α2,…,αs 全是零向量C. α1 ,α2,…,αs中至少有一个向量可其它向量线性表出 D. α1 ,α2,…,αs 中至少有一个零向量答案:C 6.向量组α1,α2,…αs,(s>2)线性无关的充分必要条件是A.α1,α2,…,αs 均不为零向量B.α1,α2,…,αs

中任意两个向量不成比例C.α1,α2,…,αs中任意s-1个向量线性无关D.α1,α2,…,αs中任意一个向量均不能其余s-1个向量线性表示答案:D 7.已知向量组A:?1,?2,?3,?4中?2,?3,?4线性相关,那么 A. ?1,?2,?3,?4线性无关

C. ?1可?2,?3,?4线性表示答案:B

8.向量组?1,?2,??s的秩为r,且r

B. ?1,?2,??s中任意r个向量线性无关B. ?1,?2,?3,?4线性相关D. ?3,?4线性无关

C. ?1,?2,??s中任意r+1个向量线性相关

D. ?1,?2,??s中任意r-1个向量线性无关答案;C 9.设向量α1?(a1,b1,c1),α2?(a2,b2,c2),β1?(a1,b1,c1, d1),β2?(a2,b2,c2,d2),下列命题中正确的是8 A.若α1,α2线性相关,则必有β1,β2线性相关B.若α1,α2线性无关,则必有β1,β2线性无关C.若β1,β2线性相关,则必有α1,α2线性无关D.若β1,β2线性无关,则必有α1,α2线性相关答案:B 10.设A,B分别为m×n和m×k矩阵,

向量组是A的列向量构成的向量组,向量组是的列向量构成的向量组,则必有A.若线性无关,则线性无关B.若线性无关,则线性相关C.若线性无关,则线性无关D.若线性无关,则线性相关D答案:C 11.向量组?1,?2,?,?s(s?2)的秩不为零的充分必要条件是A.?1,?2,?,?s中没有线性相关的部分组C.?1,?2,?,?s全是非零向量B.?1,?2,?,?s中至少有一个非零向量D.?1,?2,?,?s全是零向量答案:B 12.设有向量组A:?1,?2,?3,?4,其中?1,?2,?3线性无关,则 A.?1,?3线性无关 B.?1,?2,?3,?4线性无关C.?1,?2,?3,?4线性相关D.?2,?3,?4线性相关答案:A 13.设向量组?1,?2,?3,?4线性相关,则向量组中A.必有一个向量可以表为其余向量的线性组合B.必有两个向量可以表为其余向量的线性组合C.必有三个向量可以表为其余向量的线性组合D.每一个向量都可以表为其余向量的线性组合答

案:A 14.设α1,α2,α3,α4 是三维实向量,则 A. α1,α2,α3,α4一定线性无关 B. α1一定可α2,α3,α4线性表出C. α1,α2,α3,α4一定线性相关 D. α1,α2,α3一定线性无关答案:C 15.已知向量组α1,α2,α3线性无关,α1,α2,α3,β线性相关,则 A.α1必能α2,α3,β线性表出C.α3必能α1,α2,β线性表出答案:D 二、填空题 B.α2必能α1,α3,β线性表出 D.β必能α1,α2,α3线性表出16.向量组α1 =(1,0,0) α2 =(1,1,0), α3 =(-5,2,0)的秩是___________.答案:2 17.设α1=[1,2,x],α2=[-2,-4,1]线性相关,则x=_________.答案:? 1 29 18.已知向量α=,β=,如果α+ξ=β,则ξ=_________. 答案:19.已知向量组?1?(1,2,3)T,?2?(2,2,2)T,?3?(3,2,a)T线性相关,则数a?______.答案:1 123?203?a222??102?a??2?23?a?2(1?a)?32 a32a?12?a0,a?1 三、计算题20.设向量组α1=T,α2=T,α3=T,

α4=T. 求向量组的一个极大线性无关组;将其余向量表为该极大线性无关组的线性组合. 解??1230???123?1,?2,?3,?4)?A???1? 203?????003?2460???1?2?1?4???000?0?4 ?4??1230??00?3??0100??1?0100???0011? ???011?? ?0000???0?0000??秩为 3 a1,a2,a3是向量组a1,a2,a3,a4的一个极大线性无关组且a4??3a1?a3. 21.设向量组?1?(1,4,1,0)T,?2?(2,1,?1,?3)T,?3?(1,0,?3 ,?1)T,?4?(0,2,?6,3)T,求该向量组的秩及一个极大无关组,并将其余向量用此极大无关组线性表示.解??1210???1210???4102????0? 7?42??121?1?1?3?6?????0?400?3?4?6??? ???0?3?13????0?3???0?3?4?13????0?3?1 :0?3?0????4??:0?8???6??3???10 (

10?0??12?121?12?????0?2??01?010?2??0

1???00?3?9??00?3?9??00??????0?3?13?? 00?1?3??00??????1??0?0??0?1??10?2?秩为 3 013??000??0010??0?2???13?00???1??0?0 ??0?4??10?2???013?000??01a1,a2,a3是向量组a1,a2,a3,a4的一个极大线性无关组且a4??1?2a2.?3?3 四、证明题22.设向量组α1,α2,α3线性无关,证明α1+α2,α1-α2,α3也无关. 证明:设k1(?1??2)?k2(?1??2)?k3?3?0,即(k1?k2)?1?(k1?k2)?2?k3?3?0,于α1,α2,α3线性无关,故有?k1?k2?0??k1?k2?0解之得,k1?k2?k3?0?k?0?3故α1+α2,α1-α2,α3也线性无关.23.设向量组α1,α2,α3线性无关,β1=α1+α2,β2=α2+α3,β3=α3+α1,证明:向量组β1,β2,β3线性无关. 证明:设k1(?1??2)?k2(?2??3)?k3(?3??1)?0,即(k1?k3)?1?(k1?k2)?2?(k2?k3)?3?0,于α1,α2,α3线性无关,故

有?k1?k3?0??k1?k2?0解之得,k1?k2?k3?0?k?k?03?2故β1,β2,β3也线性无关.24.证明:若向量组?1,?2,??n线性无关,而?1??1??n,?2??1??2,?3??2??3,?, ?n ??n?1+?n,则向量组?1,?2,?,?n线性无关的充要条件是n为奇数。

11 1 证明1101??00 0A???????1???1?000?1n?1n为奇数时,A?0??1,?2,?,?n线性无关即向量组?1,?2,?,?n线性无关的充要条件是n为奇数第三章一、单项选择题1.设α1,α2是非齐次方程组Ax=b的解,β是对应的齐次方程组Ax=0的解,则Ax=b必有一个解是A.α1+α答案:D 2.设3元非齐次线性方程组Ax=b的两个解为α=T,β=T,且系数矩阵A的秩r(A)=2,则对于任意常数k, k1, k2, 方程组的通解可表为A.k1(1,0,2)T+k2(1,-1,3)T B.(1,0,2)T+k (1,-1,3)T C.(1,0,2)T+k (0,1,-1)T D.(1,0,2)T+k

(2,-1,5)T 答案:C 3.已知β1,β2是非齐次线性方程组Ax=b的两个不同的解,α1,α2是其导出组Ax=0的一个基础解系,C1,C2为任意常数,则方程组Ax=b的通解可以表为1A.(β1?β2)?C1α1?C2(α1?α2) 21C.(β1?β2)?C1α1?C2(β1?β2) 21B.(β1?β2)?C1α1?C2(α1?α2) 21D.(β1?β2)?C1α1?C2(β1?β2) 22 B.α1-α2C.β+α1+α 2 11D.β+?1??2 22答案:A 4.设3元线性方程组Ax=b,A的秩为2,?1,?2,?3为方程组的解,?1+?2=T,?1+?3=T,则对任意常数k,方程组Ax=b的通解为A.(1,0,2)T+k(1,-2,1)T C.(2,0,4)T+k(1,-2,1)T 答案:D B.(1,-2,1)T+k(2,0,4)T D.(1,0,2)T+k(1,2,3)T 5.设?1,?2是Ax=b的解,η是对应齐次方程Ax=0的解,则A. η+?1是Ax=0的解 C. ?1+?2是Ax=b的解答案:B 12

B. η+是Ax=0的解D. ?1-?2是Ax=b的解6.设A为5阶方阵,若秩=3,则齐次线性方程组Ax=0的基础解系中包含的解向量的个数是A.2 B.3C.4 D.5 答案:A 7.设m×n矩阵A的秩为n-1,且ξ1,ξ2是齐次线性方程组Ax=0的两个不同的解,则Ax=0的通解为A.kξ1,k∈R B.kξ2,k∈R C.kξ1+ξ2,k∈R D.k(ξ1-ξ2),k∈R 答案:D 8.对非齐次线性方程组Am×nx=b,设秩=r,则A.r=m时,方程组Ax=b有解B.r=n 时,方程组Ax=b有唯一解C.m=n时,方程组Ax=b有唯一解D.r9..设A 是4×6矩阵,r=2,则齐次线性方程组Ax=0的基础解系中所含向量的个数是答案:D 10.若A为6阶方阵,齐次线性方程组Ax=0的基础解系中解向量的个数为2,则r(A)=()二、填空题11.设非齐次线性方程组Ax=b的增广矩阵为?????1???2??1002?1??010?1?2?,

则该方程组的通解为_____.答案:?2??k?1?,k为任意常数. ?????0024?6????3???2??0??1??? ??12.已知某个3元非齐次线性方程组Ax=b的增广矩阵A经初等行变换化为:3?1??1?2??A??02?12?,若方程组无解,则a的取值为____________.答案:0 ?00a(a?1)a?1???13.设A为3?3矩阵,且方程组A x=0的基础解系含有两个解向量,则秩(A)= ____.答案:1 ?122???14.设矩阵A=?2t3?,若齐次线性方程组Ax=0有非零解,则数t=______.答案:2 ?345???15.设α1,α2是非齐次线性方程组Ax=b的解.则A=_________.答案:b 16.设A是m×n实矩阵,若r=5,则r=_________.答案:5 ?a11??x1??1???x???1?有无穷多个解,则a=_________.答案:-2 1a117.设线性方程组????2?????11a????x3?????2??三、计算题13 ?x1?2x3?x4?2?18.设有非齐次线性方程

组?x1?x2?x3?4x4?a ?x?x?3x?2x?12 34?1问a为何值时方程组无解?有无穷解?并在有解时求其通解. 212??10212??10????4a???01?13a?2?? 解:?111??1?13?21????0?11?3?1????102 12??01?13a?2?? ??0000a?3??a?3时无解,a?3时有无穷解,通解为??2???2?????1?????1???1???0??k???3 ?1?1??k2??,k1k2为任意常数. ??0??????0???0????1???x1?2x19.求线性方程组?2?4x3?3?2x?2?2x3?3的通解. ?2x1?2x2?6x3?3?1243??0解:??0223??1020??1023??????0223???? ???2263???2040???011?2??0000? ???0??通解为????3????k??2???1??,k?2为任意常

数. ?0?????1????x1?x2?x3?x4?x5?7 20.求非齐次方程组??3x1?2x2?x3?x4?3x5??2?x2?2x3?2x 的通解. 4?6x5?23??5x1?4x2?3x3?3x4?x5?12??111 117?211?3?2????11111

解:?3??0?1?2?2??0122623??6?01??54?3 3?112?226?????0?1?8?2?6

7??23??23???23???14 ?1??0?0??0?0 ?1?1?5?16??1??122623??0???010000???0 0000???000?1?5?16??102623? ?01000?00 000????16??1??5???????23?2??????6?通解为???0??k1?0??k2?0?,k1k2为任意常数. ?0??1??0?????0???0???1??????? ?x3?1?x1?x2??x2?x3?121.当a, b为何值时,方程组? 有无穷多解?并求出其通解. ?2x?3x?(a?2)x?b?323?111??11?? ?11??

解:?01?23a?2b?3???1??111???01?11??? 01ab?1???11??11???01?11? ?00a?1b???a? ?1且b?0时,方程组有无穷多组解?1111??1020?????(A,b)??01?11?? ?01?11? ?0000??0000???????2??0?? ???通解为??k?1???1?,k为任意常数. ?1??0?????四、证明题22.设?为Ax=0的非零解,?为Ax=b(b?0)的解,证明?与?线性无关. 证明:设存在数k1,k2使得k1??k2??0

线性代数期末考试试卷答案合集

线性代数期末考试试卷 答案合集 文档编制序号:[KKIDT-LLE0828-LLETD298-POI08]

×××大学线性代数期末考试题 一、填空题(将正确答案填在题中横线上。每小题2分,共10分) 1. 若02 2 1 50 1 31 =---x ,则=χ__________。 2.若齐次线性方程组??? ??=++=++=++0 00321 321321x x x x x x x x x λλ只有零解,则λ应满足 。 3.已知矩阵n s ij c C B A ?=)(,,,满足CB AC =,则A 与B 分别是 阶矩阵。 4.矩阵??? ? ? ??=3231 2221 1211 a a a a a a A 的行向量组线性 。 5.n 阶方阵A 满足032=--E A A ,则=-1A 。 二、判断正误(正确的在括号内填“√”,错误的在括号内填“×”。每小题2分,共10分) 1. 若行列式D 中每个元素都大于零,则0?D 。( ) 2. 零向量一定可以表示成任意一组向量的线性组合。( ) 3. 向量组m a a a ,, , 21中,如果1a 与m a 对应的分量成比例,则向量组s a a a ,,, 21线性相关。( ) 4. ? ? ??? ???? ???=010********* 0010 A ,则A A =-1。( ) 5. 若λ为可逆矩阵A 的特征值,则1-A 的特征值为λ。 ( )

三、单项选择题 (每小题仅有一个正确答案,将正确答案题号填入括号内。每小题2 分,共10分) 1. 设A 为n 阶矩阵,且2=A ,则=T A A ( )。 ① n 2 ② 12-n ③ 12+n ④ 4 2. n 维向量组 s ααα,, , 21(3 s n )线性无关的充要条件是( )。 ① s ααα,, , 21中任意两个向量都线性无关 ② s ααα,, , 21中存在一个向量不能用其余向量线性表示 ③ s ααα,, , 21中任一个向量都不能用其余向量线性表示 ④ s ααα,, , 21中不含零向量 3. 下列命题中正确的是( )。 ① 任意n 个1+n 维向量线性相关 ② 任意n 个1+n 维向量线性无关 ③ 任意1+n 个n 维向量线性相关 ④ 任意1+n 个n 维向量线性无关 4. 设A ,B 均为n 阶方阵,下面结论正确的是( )。 ① 若A ,B 均可逆,则B A +可逆 ② 若A ,B 均可逆,则 A B 可逆 ③ 若B A +可逆,则 B A -可逆 ④ 若B A +可逆, 则 A ,B 均可逆 5. 若4321νννν,,,是线性方程组0=X A 的基础解系,则4321νννν+++是0=X A 的( ) ① 解向量 ② 基础解系 ③ 通解 ④ A 的行向量 四、计算题 ( 每小题9分,共63分) 1. 计算行列式 x a b c d a x b c d a b x c d a b c x d ++++。

线性代数知识点总结

线性代数知识点总结 第一章 行列式 1. n 阶行列式()() 12 1212 11121212221212 1= = -∑ n n n n t p p p n p p np p p p n n nn a a a a a a D a a a a a a 2.特殊行列式 () () 1112 11222211221122010 n t n n nn nn nn a a a a a D a a a a a a a = =-= 1 2 12 n n λλλλλλ=, () ()1 12 2 121n n n n λλλλλλ-=- 3.行列式的性质 定义 记 11121212221 2 n n n n nn a a a a a a D a a a =,11211 1222212n n T n n nn a a a a a a D a a a = ,行列式T D 称为行列式D 的转置行列式。 性质1 行列式与它的转置行列式相等。 性质2 互换行列式的两行() ?i j r r 或列() ?i j c c ,行列式变号。 推论 如果行列式有两行(列)完全相同(成比例),则此行列式为零。 性质3 行列式某一行(列)中所有的元素都乘以同一数()?j k r k ,等于用数k 乘此行列式; 推论1 D 的某一行(列)中所有元素的公因子可以提到D 的外面; 推论2 D 中某一行(列)所有元素为零,则=0D 。 性质4 若行列式的某一列(行)的元素都是两数之和,则 1112111212222212 () ()()i i n i i n n n ni ni nn a a a a a a a a a a D a a a a a '+'+='+11121111121121222221222212 12 i n i n i n i n n n ni nn n n ni nn a a a a a a a a a a a a a a a a a a a a a a a a ''=+ ' 性质6 把行列式的某一列(行)的各元素乘以同一数然后加到另一列(行)对应的元素上去,

线性代数习题集(带答案)

第一部分专项同步练习 第一章行列式 一、单项选择题 1.下列排列是 5 阶偶排列的是( ). (A) 24315 (B) 14325 (C) 41523 (D)24351 2.如果n 阶排列j1 j2 j n 的逆序数是k , 则排列j n j2 j1的逆序数是( ). n! (A) k (B) n k (C) k 2 n(n 1) (D) k 2 3. n 阶行列式的展开式中含a11a12 的项共有( )项. (A) 0 (B) n 2 (C) (n 2)! (D) (n 1)! 0 0 0 1 4. 1 1 ( ). 1 0 0 0 (A) 0 (B) 1 (C) 1 (D) 2 0 0 1 0 5.0 1 1 ( ). 1 0 0 0 (A) 0 (B) 1 (C) 1 (D) 2 2x x 1 1 6.在函数 1 x 1 2 f (x) 中 3 2 x 3 3 x 项的系数是( ). 0 0 0 1 (A) 0 (B) 1 (C) 1 (D) 2 1

7. 若 a a a 11 12 13 1 D a a a ,则 21 22 23 2 a a a 31 32 33 2a a 13 a 33 a 11 a 31 2a 12 2a 32 11 D 2a a a 2a ( ). 1 21 23 21 22 2a 31 (A) 4 (B) 4 (C) 2 (D) 2 a a 11 ,则 12 8.若 a a a 21 22 a 12 a 11 ka 22 ka 21 ( ). 2 (D) k2a (A) ka (B) ka (C) k a 9.已知 4 阶行列式中第 1 行元依次是4, 0, 1, 3, 第 3 行元的余子式依次为2, 5,1, x, 则x ( ). (A) 0 (B) 3 (C) 3 (D) 2 8 7 4 3 10. 若 6 2 3 1 D ,则D 中第一行元的代数余子式的和为( ). 1 1 1 1

线性代数期末考试试卷+答案合集

×××大学线性代数期末考试题 一、填空题(将正确答案填在题中横线上。每小题2分,共10分) 1. 若02 2 1 50 1 31 =---x ,则=χ__________。 2.若齐次线性方程组??? ??=++=++=++0 00321 321321x x x x x x x x x λλ只有零解,则λ应满足 。 3.已知矩阵n s ij c C B A ?=)(,,,满足CB AC =,则A 与B 分别是 阶矩阵。 4.矩阵??? ? ? ??=32312221 1211 a a a a a a A 的行向量组线性 。 5.n 阶方阵A 满足032 =--E A A ,则=-1A 。 二、判断正误(正确的在括号内填“√”,错误的在括号内填“×”。每小题2分,共10分) 1. 若行列式D 中每个元素都大于零,则0?D 。( ) 2. 零向量一定可以表示成任意一组向量的线性组合。( ) 3. 向量组m a a a ,, , 21中,如果1a 与m a 对应的分量成比例,则向量组s a a a ,,, 21线性相关。( ) 4. ? ? ??? ???? ???=010********* 0010 A ,则A A =-1。( ) 5. 若λ为可逆矩阵A 的特征值,则1 -A 的特征值为λ。 ( ) 三、单项选择题 (每小题仅有一个正确答案,将正确答案题号填入括号内。每小题2分,共10分) 1. 设A 为n 阶矩阵,且2=A ,则=T A A ( )。 ① n 2 ② 1 2 -n ③ 1 2 +n ④ 4 2. n 维向量组 s ααα,,, 21(3 ≤ s ≤ n )线性无关的充要条件是( )。 ① s ααα,, , 21中任意两个向量都线性无关 ② s ααα,, , 21中存在一个向量不能用其余向量线性表示 ③ s ααα,, , 21中任一个向量都不能用其余向量线性表示

线性代数试题及答案。。

第一部分选择题(共28分) 一、单项选择题(本大题共14小题,每小题2分,共28分)在每小题列出的四个选项中只有 一个是符合题目要求的,请将其代码填在题后的括号内。错选或未选均无分。 1.设行列式a a a a 1112 2122 =m, a a a a 1311 2321 =n,则行列式 a a a a a a 111213 212223 + + 等于() A. m+n B. -(m+n) C. n-m D. m-n 2.设矩阵A= 100 020 003 ? ? ? ? ? ? ? ,则A-1等于() A. 1 3 00 1 2 001 ? ? ? ? ? ? ? ? ? ? B. 100 1 2 00 1 3 ? ? ? ? ? ? ? ? ? ? C. 1 3 00 010 00 1 2 ? ? ? ? ? ? ? ?? D. 1 2 00 1 3 001 ? ? ? ? ? ? ? ? ? ? 3.设矩阵A= 312 101 214 - - - ? ? ? ? ? ? ? ,A*是A的伴随矩阵,则A *中位于(1,2)的元素是() A. –6 B. 6 C. 2 D. –2 4.设A是方阵,如有矩阵关系式AB=AC,则必有() A. A =0 B. B≠C时A=0 C. A≠0时B=C D. |A|≠0时B=C 5.已知3×4矩阵A的行向量组线性无关,则秩(A T)等于() A. 1 B. 2 C. 3 D. 4 6.设两个向量组α1,α2,…,αs和β1,β2,…,βs均线性相关,则() A.有不全为0的数λ1,λ2,…,λs使λ1α1+λ2α2+…+λsαs=0和λ1β1+λ2β2+…λsβs=0 B.有不全为0的数λ1,λ2,…,λs使λ1(α1+β1)+λ2(α2+β2)+…+λs(αs+βs)=0 C.有不全为0的数λ1,λ2,…,λs使λ1(α1-β1)+λ2(α2-β2)+…+λs(αs-βs)=0 D.有不全为0的数λ1,λ2,…,λs和不全为0的数μ1,μ2,…,μs使λ1α1+λ2α2+…+ λsαs=0和μ1β1+μ2β2+…+μsβs=0 7.设矩阵A的秩为r,则A中() A.所有r-1阶子式都不为0 B.所有r-1阶子式全为0 C.至少有一个r阶子式不等于0 D.所有r阶子式都不为0 8.设Ax=b是一非齐次线性方程组,η1,η2是其任意2个解,则下列结论错误的是() A.η1+η2是Ax=0的一个解 B.1 2η1+1 2 η2是Ax=b的一个解 C.η1-η2是Ax=0的一个解 D.2η1-η2是Ax=b的一个解 9.设n阶方阵A不可逆,则必有()

大一线性代数期末考试试卷

线性代数期末考试题 一、填空题(将正确答案填在题中横线上。每小题2分,共10分) 1. 若02 2 1 50 1 31 =---x ,则=χ__________。 2.若齐次线性方程组??? ??=++=++=++0 00321 321321x x x x x x x x x λλ只有零解,则λ应满足 。 3.已知矩阵n s ij c C B A ?=)(,,,满足CB AC =,则A 与B 分别是 阶矩阵。 4.矩阵??? ? ? ??=32312221 1211 a a a a a a A 的行向量组线性 。 5.n 阶方阵A 满足032 =--E A A ,则=-1 A 。 二、判断正误(正确的在括号内填“√”,错误的在括号内填“×”。每小题2分,共10分) 1. 若行列式D 中每个元素都大于零,则0?D 。( ) 2. 零向量一定可以表示成任意一组向量的线性组合。( ) 3. 向量组m a a a ,,, 21中,如果1a 与m a 对应的分量成比例,则向量组s a a a ,,, 21线性相关。( ) 4. ? ? ??? ???? ???=010********* 0010 A ,则A A =-1。( ) 5. 若λ为可逆矩阵A 的特征值,则1 -A 的特征值为λ。 ( ) 三、单项选择题 (每小题仅有一个正确答案,将正确答案题号填入括号内。每小题2分,共10分) 1. 设A 为n 阶矩阵,且2=A ,则=T A A ( )。 ① n 2 ② 1 2 -n ③ 1 2 +n ④ 4 2. n 维向量组 s ααα,,, 21(3 ≤ s ≤ n )线性无关的充要条件是( ) 。 ① s ααα,,, 21中任意两个向量都线性无关 ② s ααα,,, 21中存在一个向量不能用其余向量线性表示 ③ s ααα,,, 21中任一个向量都不能用其余向量线性表示

线性代数知识点总结汇总

线性代数知识点总结 1 行列式 (一)行列式概念和性质 1、逆序数:所有的逆序的总数 2、行列式定义:不同行不同列元素乘积代数和 3、行列式性质:(用于化简行列式) (1)行列互换(转置),行列式的值不变 (2)两行(列)互换,行列式变号 (3)提公因式:行列式的某一行(列)的所有元素都乘以同一数k,等于用数k 乘此行列式 (4)拆列分配:行列式中如果某一行(列)的元素都是两组数之和,那么这个行列式就等于两个行列式之和。 (5)一行(列)乘k加到另一行(列),行列式的值不变。 (6)两行成比例,行列式的值为0。 (二)重要行列式 4、上(下)三角(主对角线)行列式的值等于主对角线元素的乘积 5、副对角线行列式的值等于副对角线元素的乘积乘 6、Laplace展开式:(A是m阶矩阵,B是n阶矩阵),则 7、n阶(n≥2)范德蒙德行列式

数学归纳法证明 ★8、对角线的元素为a,其余元素为b的行列式的值: (三)按行(列)展开 9、按行展开定理: (1)任一行(列)的各元素与其对应的代数余子式乘积之和等于行列式的值(2)行列式中某一行(列)各个元素与另一行(列)对应元素的代数余子式乘积之和等于0 (四)行列式公式 10、行列式七大公式: (1)|kA|=k n|A| (2)|AB|=|A|·|B| (3)|A T|=|A| (4)|A-1|=|A|-1 (5)|A*|=|A|n-1 (6)若A的特征值λ1、λ2、……λn,则 (7)若A与B相似,则|A|=|B| (五)克莱姆法则 11、克莱姆法则: (1)非齐次线性方程组的系数行列式不为0,那么方程为唯一解

(2)如果非齐次线性方程组无解或有两个不同解,则它的系数行列式必为0 (3)若齐次线性方程组的系数行列式不为0,则齐次线性方程组只有0解;如果方程组有非零解,那么必有D=0。 2 矩阵 (一)矩阵的运算 1、矩阵乘法注意事项: (1)矩阵乘法要求前列后行一致; (2)矩阵乘法不满足交换律;(因式分解的公式对矩阵不适用,但若B=E,O,A-1,A*,f(A)时,可以用交换律) (3)AB=O不能推出A=O或B=O。 2、转置的性质(5条) (1)(A+B)T=A T+B T (2)(kA)T=kA T (3)(AB)T=B T A T (4)|A|T=|A| (5)(A T)T=A (二)矩阵的逆 3、逆的定义: AB=E或BA=E成立,称A可逆,B是A的逆矩阵,记为B=A-1 注:A可逆的充要条件是|A|≠0 4、逆的性质:(5条) (1)(kA)-1=1/k·A-1 (k≠0) (2)(AB)-1=B-1·A-1 (3)|A-1|=|A|-1 (4)(A T)-1=(A-1)T (5)(A-1)-1=A

线性代数期末复习题

线性代数 一. 单项选择题 1。设A 、B 均为n 阶方阵,则下列结论正确的是 . (a)若A 和B 都是对称矩阵,则AB 也是对称矩阵 (b )若A ≠0且B ≠0,则AB ≠0 (c)若AB 是奇异矩阵,则A 和B 都是奇异矩阵 (d )若AB 是可逆矩阵,则A 和B 都是可逆矩阵 2. 设A 、B 是两个n 阶可逆方阵,则()1-?? ????'AB 等于( ) (a )()1-'A ()1-'B (b ) ()1-'B ()1-'A (c )() '-1B )(1'-A (d )() ' -1B ()1-'A 3.n m ?型线性方程组AX=b,当r(A )=m 时,则方程组 。 (a ) 可能无解 (b)有唯一解 (c)有无穷多解 (d )有解 4.矩阵A 与对角阵相似的充要条件是 。 (a )A 可逆 (b)A 有n 个特征值 (c) A 的特征多项式无重根 (d) A 有n 个线性无关特征向量 5。A 为n 阶方阵,若02 =A ,则以下说法正确的是 。 (a ) A 可逆 (b ) A 合同于单位矩阵 (c ) A =0 (d ) 0=AX 有无穷多解 6.设A ,B ,C 都是n 阶矩阵,且满足关系式ABC E =,其中E 是n 阶单位矩阵, 则必有( ) (A )ACB E = (B)CBA E = (C )BAC E = (D ) BCA E = 7.若233 32 31 232221 131211 ==a a a a a a a a a D ,则=------=33 32 3131 2322 212113 1211111434343a a a a a a a a a a a a D ( ) (A )6- (B )6 (C )24 (D )24- 二、填空题 1.A 为n 阶矩阵,|A |=3,则|AA '|= ,| 1 2A A -* -|= . 2.设???? ??????=300120211A ,则A 的伴随矩阵=*A ; 3.设A =? ? ?? ??--1112,则1 -A = 。

线性代数知识点总结

线性代数知识点总结 第一章行列式 (一)要点 1、 二阶、三阶行列式 2、 全排列和逆序数,奇偶排列(可以不介绍对换及有关定理) ,n 阶行列式的定义 3、 行列式的性质 4、 n 阶行列式 ^a i j ,元素a j 的余子式和代数余子式,行列式按行(列)展开定理 5、 克莱姆法则 (二)基本要求 1 、理解n 阶行列式的定义 2、掌握n 阶行列式的性质 3 、会用定义判定行列式中项的符号 4、理解和掌握行列式按行(列)展开的计算方法,即 a 1i A Ij ' a 2i A 2 j ' a ni A nj ^ 5、会用行列式的性质简化行列式的计算,并掌握几个基本方法: 归化为上三角或下三角行列式, 各行(列)元素之和等于同一个常数的行列式, 利用展开式计算 6、 掌握应用克莱姆法则的条件及结论 会用克莱姆法则解低阶的线性方程组 7、 了解n 个方程n 个未知量的齐次线性方程组有非零解的充要条件 第二章矩阵 (一)要点 1、 矩阵的概念 m n 矩阵A =(a j )mn 是一个矩阵表。当 m =n 时,称A 为n 阶矩阵,此时由 A 的 元素按原来排列的形式构成的 n 阶行列式,称为矩阵 A 的行列式,记为 A . 注:矩阵和行列式是两个完全不同的两个概念。 2、 几种特殊的矩阵:对角阵;数量阵;单位阵;三角形矩阵;对称矩阵 a i 1A j 1 ■ a i2A j 2 ? a in A jn = 〔 D '

3、矩阵的运算;矩阵的加减法;数与矩阵的乘法;矩阵的转置;矩阵的乘法 (1矩阵的乘法不满足交换律和消去律,两个非零矩阵相乘可能是零矩阵。如果两矩阵A与B相乘,有AB = BA ,则称矩阵A与B可换。注:矩阵乘积不一定符合交换 (2)方阵的幕:对于n阶矩阵A及自然数k, A k=A A A , 1 k个 规定A° = I ,其中I为单位阵. (3) 设多项式函数(J^a^ k?a1?k^l Z-心律??a k,A为方阵,矩阵A的 多项式(A) = a0A k?a1A k' …-?-a k jA ■ a k I ,其中I 为单位阵。 (4)n阶矩阵A和B ,贝U AB=IAB . (5)n 阶矩阵A ,则∣∕Λ =λn A 4、分块矩阵及其运算 5、逆矩阵:可逆矩阵(若矩阵A可逆,则其逆矩阵是唯一的);矩阵A的伴随矩阵记 * 为A , AA* = A*A = AE 矩阵可逆的充要条件;逆矩阵的性质。 6、矩阵的初等变换:初等变换与初等矩阵;初等变换和初等矩阵的关系;矩阵在等价 意义下的标准形;矩阵A可逆的又一充分必要条件:A可以表示成一些初等矩阵的乘积; 用初等变换求逆矩阵。 7、矩阵的秩:矩阵的k阶子式;矩阵秩的概念;用初等变换求矩阵的秩 8、矩阵的等价 (二)要求 1、理解矩阵的概念;矩阵的元素;矩阵的相等;矩阵的记号等 2、了解几种特殊的矩阵及其性质 3、掌握矩阵的乘法;数与矩阵的乘法;矩阵的加减法;矩阵的转置等运算及性质 4、理解和掌握逆矩阵的概念;矩阵可逆的充分条件;伴随矩阵和逆矩阵的关系;当A 可逆时,会用伴随矩阵求逆矩阵 5、了解分块矩阵及其运算的方法 (1)在对矩阵的分法符合分块矩阵运算规则的条件下,其分块矩阵的运算在形式上与不分块矩阵的运算是一致的。 (2)特殊分法的分块矩阵的乘法,例如A m n, B nl,将矩

线性代数期末总复习

线性代数期末总复习 第一章 P3:定义1.3 在一个排列中,如果一对数的前后位置与大小次序相反,即前面的数大于后面的数,则称这对数为一个逆序;一个排列中逆序的总数称为这个排列的逆序数.排列 12n j j j 的逆序数记为12()n j j j τ. 例1 排列 31542 的逆序数. 解 3排在首位,逆序数为0; 1的前面比1大的数有一个数3,故逆序数为1; 5是最大数,逆序数为0; 2的前面比2大的数有三个数3,5,4,故逆序数为3; 4的前面比4大的数有一个数5,故逆序数为1,故这个排列的逆序数(31542)τ=0+1+0+3+1=5. P11:定义1.7 在n 级行列式det()ij a 中将元素ij a 所在的第 i 行与第 j 列划去,剩下2(1)n -个元素按原位置次序构成一个1n -级的行列式, 111,1 1,1 1 1,1 1,11,11,1,11, 11, 1 1, 1 ,1, 1 j j n i i j i j i n ij i i j i j i n n n j n j nn a a a a a a a a M a a a a a a a a -+----+ - ++ -+++- += 称之为元素ij a 的余子式.令(1)i j ij ij A M +=-, 称ij A 为元素ij a 的代数余子式. P15:例1.11 计算行列式 .n a b b b b a b b d b b a b b b b b a = 解 把n d 第二列加到第一列,行列式不变,再把第三列加到第一列,行列式也不变 ……直到第n 列也加到第一列, 即得 12(1)(1)(1)n n a n b b b a n b a b d c c c a n b b a +-+-++ ++-

线性代数期末考试试题(含答案)

江西理工大学《线性代数》考题 一、 填空题(每空3分,共15分) 1. 设矩阵??????????=333222 111 c b a c b a c b a A ,??????????=333 222111d b a d b a d b a B 且4=A ,1=B 则=+B A ______ 2. 二次型233222213214),,(x x tx x x x x x f +-+=是正定的,则t 的取值范围__________ 3. A 为3阶方阵,且2 1=A ,则=--*12)3(A A ___________ 4. 设n 阶矩阵A 的元素全为1,则A 的n 个特征值是___________ 5. 设A 为n 阶方阵,n βββ ,,21为A 的n 个列向量,若方程组0=AX 只有零解,则向量组(n βββ ,,21)的秩为 _____ 二、选择题(每题3分,共15分) 6. 设线性方程组?????=+=+--=-032231 3221ax cx bc bx cx ab ax bx ,则下列结论正确的是( ) (A)当c b a ,,取任意实数时,方程组均有解 (B)当a =0时,方程组无解 (C) 当b =0时,方程组无解 (D)当c =0时,方程组无解 7. A.B 同为n 阶方阵,则( )成立 (A) B A B A +=+ (B) BA AB = (C) BA AB = (D) 111)(---+=+B A B A 8. 设??????????=333231232221 131211 a a a a a a a a a A ,??????????+++=331332123111131211232221a a a a a a a a a a a a B ,??????????=1000010101P , ???? ??????=1010100012P 则( )成立 (A)21P AP (B) 12P AP (C) A P P 21 (D) A P P 12 9. A ,B 均为n 阶可逆方阵,则AB 的伴随矩阵=*)(AB ( ) (A) **B A (B) 11--B A AB (C) 11--A B (D)**A B 10. 设A 为n n ?矩阵,r A r =)(<n ,那么A 的n 个列向量中( ) (A )任意r 个列向量线性无关

线性代数期末考试试题含答案

线性代数期末考试试题含 答案 The final edition was revised on December 14th, 2020.

江西理工大学《线性代数》考题 一、 填空题(每空3分,共15分) 1. 设矩阵??????????=333222 111 c b a c b a c b a A ,??????????=333 222111d b a d b a d b a B 且4=A ,1=B 则=+B A ______ 2. 二次型233222213214),,(x x tx x x x x x f +-+=是正定的,则t 的取值范围__________ 3. A 为3阶方阵,且2 1=A ,则=--*12)3(A A ___________ 4. 设n 阶矩阵A 的元素全为1,则A 的n 个特征值是___________ 5. 设A 为n 阶方阵,n βββ ,,21为A 的n 个列向量,若方程组0=AX 只有零解,则向量组(n βββ ,,21)的秩为 _____ 二、选择题(每题3分,共15分) 6. 设线性方程组?????=+=+--=-032231 3221ax cx bc bx cx ab ax bx ,则下列结论正确的是( ) (A)当c b a ,,取任意实数时,方程组均有解 (B)当a =0时,方程组无解 (C) 当b =0时,方程组无解 (D)当c =0时,方程组无解 7. 同为n 阶方阵,则( )成立 (A) B A B A +=+ (B) BA AB = (C) BA AB = (D) 111)(---+=+B A B A 8. 设??????????=333231232221 131211 a a a a a a a a a A ,??????????+++=331332123111131211232221a a a a a a a a a a a a B ,??????????=1000010101P , ???? ??????=1010100012P 则( )成立 (A)21P AP (B) 12P AP (C) A P P 21 (D) A P P 12 9. A ,B 均为n 阶可逆方阵,则AB 的伴随矩阵=*)(AB ( ) (A) **B A (B) 11--B A AB (C) 11--A B (D)**A B 10. 设A 为n n ?矩阵,r A r =)(<n ,那么A 的n 个列向量中( )

大学线性代数期末考试试题

大学线性代数期末考试试 题 The Standardization Office was revised on the afternoon of December 13, 2020

a 0 0 一、选择题 线性代数测试 a 1 b 1 c 1 c 1 b 1 + 2c 1 a 1 + 2b 1 + 3c 1 1. 设行列式 D = a 2 b 2 c 2 ,则 D 1 = c 2 b 2 + 2c 2 a 2 + 2b 2 + 3c 2 = ( ) A. - D a 3 b 3 c 3 B. D c 3 C. 2D b 3 + 2c 3 a 3 + 2b 3 + 3c 3 D. - 2D 2. 下列排列是偶排列的是 . (A )13524876; (B )51324867; (C )38124657; (D )76154283. 3. 设 A m ?s , B t ?n , C s ?t ,则下列矩阵运算有意义的是( ) A. ACB ; B. ABC ; C. BAC ; D. CBA . 4. 设 A 是n 阶方阵, A 经过有限次矩阵的初等变换后得到矩阵 B ,则有() A. A = B ; B. A ≠ B ; C. R ( A ) = R (B ) ; D. R ( A ) ≠ R (B ) . 5. 设 A 是 4×5 矩阵, A 的秩等于 3,则齐次线性方程组 Ax = 0 的基础解系中所含解向量的个数为( ) A. 4 B.5 C.2 D.3 6. 向量组a 1 , a 2 , , a m ( m ≥ 2 )线性相关,则( ). A. a 1 , a 2 , , a m 中每一个向量均可由其余向量线性表示; B. a 1 , a 2 , , a m 中每一个向量均不可由其余向量线性表示; C. a 1 , a 2 , , a m 中至少有一个向量可由其余向量线性表示; D. a 1 , a 2 , , a m 中仅有一个向量可由其余向量线性表示. ? a b + 3 0 ? ? 7. 矩阵 A = a - 1 a 0 ? 为正定矩阵,则 a 满足 . ? ? ? 1 1 (1) a > 2 ; (B ) a > ; (C ) 2 a < ; (D )与b 有关不能确定. 2 8. 设 A , B 均为 n 阶方阵,并且 A 与 B 相似,下述说法正确的是 . (A ) A T 与 B T 相似; (B ) A 与 B 有相同的特征值和相同的特征向量; (C ) A -1 = B -1 ; (D )存在对角矩阵 D ,使 A 、 B 都与 D 相似. 二、判断题 1、如果n (n > 1) 阶行列式的值等于零,则行列式中必有两行元素对应成比例。 2、设向量组的秩为 r ,则向量组中任意 r 个线性无关的向量都是其极大无关组。 3、对 A 作一次初等行变换相当于在 A 的右边乘以相应的初等矩阵。 4、两个向量α1 ,α2 线性无关的充要条件是α1 ,α2 对应成比例. 5、若 A 是实对称矩阵,则 A 一定可以相似对角化. 三、填空题

线性代数必考知识点

2008年线性代数必考的知识点 1、行列式 1. n 行列式共有2n 个元素,展开后有!n 项; 2. 代数余子式的性质: ①、ij A 和ij a 的大小无关; ②、某行(列)的元素乘以其它行(列)元素的代数余子式为0; ③、某行(列)的元素乘以该行(列)元素的代数余子式为A ; 3. 代数余子式和余子式的关系:(1)(1)i j i j ij ij ij ij M A A M ++=-=- 4. 行列式的重要公式: ①、主对角行列式:主对角元素的乘积; ②、副对角行列式:副对角元素的乘积(1)2 (1) n n -? -; ③、上、下三角行列式( = ◥◣):主对角元素的乘积; ④、 ◤和 ◢:副对角元素的乘积(1)2 (1)n n -? -; ⑤、拉普拉斯展开式: A O A C A B C B O B ==、 (1)m n C A O A A B B O B C ==- ⑥、范德蒙行列式:大指标减小指标的连乘积; ⑦、特征值; 5. 证明0A =的方法: ①、A A =-; ②、反证法; ③、构造齐次方程组0Ax =,证明其有非零解; ④、利用秩,证明()r A n <; ⑤、证明0是其特征值; 2、矩阵 1. A 是n 阶可逆矩阵: ?0A ≠(是非奇异矩阵); ?()r A n =(是满秩矩阵) ?A 的行(列)向量组线性无关; ?齐次方程组0Ax =有非零解; ?n b R ?∈,Ax b =总有唯一解; ?A 与E 等价; ?A 可表示成若干个初等矩阵的乘积; ?A 的特征值全不为0; ?T A A 是正定矩阵; ?A 的行(列)向量组是n R 的一组基; ?A 是n R 中某两组基的过渡矩阵; 2. 对于n 阶矩阵A :**AA A A A E == 无条件恒成立; 3. 1**111**()()()()()()T T T T A A A A A A ----=== *** 111()()()T T T AB B A AB B A AB B A ---=== 4. 矩阵是表格,推导符号为波浪号或箭头;行列式是数值,可求代数和; 5. 关于分块矩阵的重要结论,其中均A 、B 可逆:

(完整版)线性代数试卷及答案详解

《线性代数A 》试题(A 卷) 试卷类别:闭卷考试时间:120分钟考试科目:线性代数考试时间:学号:姓名:

《线性代数A》参考答案(A卷)一、单项选择题(每小题3分,共30分) 二、填空题(每小题3分,共18分)

1、 256; 2、 132465798?? ? --- ? ???; 3、112 2 112 21122 000?? ?- ? ?-?? ; 4、 ; 5、 4; 6、 2 。 三. 解:因为矩阵A 的行列式不为零,则A 可逆,因此1X A B -=.为了求1A B -,可利用下列初等行变换的方法: 2312112 01012 010******* 12101 141103311033102321102721 002781 002780 11410 101440 10144001103001103001103---?????? ? ? ? -??→-??→-- ? ? ? ? ? ?--? ?? ?? ?-?????? ? ? ? ??→--??→-??→-- ? ? ? ? ? ??????? ―――――(6分) 所以1 278144103X A B -?? ?==-- ? ??? .―――――(8分) 四.解:对向量组12345,,,,ααααα作如下的初等行变换可得: 12345111 4 3111431132102262(,,,,)21355011313156702262ααααα--???? ? ? ----- ? ? = → ? ? --- ? ? ? ?---???? 11 1 431 2 12011310 1131000000 0000000000 0000--???? ? ? ---- ? ? →→ ? ? ? ? ? ?? ???――――(5分) 从而12345,,,,ααααα的一个极大线性无关组为12,αα,故秩 12345{,,,,}ααααα=2(8分)

线性代数知识点归纳

线性代数复习要点 第一部分 行列式 1. 排列的逆序数 2. 行列式按行(列)展开法则 3. 行列式的性质及行列式的计算 行列式的定义 1. 行列式的计算: ① (定义法)1212121112121222() 1212()n n n n n j j j n j j nj j j j n n nn a a a a a a D a a a a a a τ= = -∑ L L L L L M M M L 1 ②(降阶法)行列式按行(列)展开定理: 行列式等于它的任一行(列)的各元素与其对应的代数余子式的乘积之和. 推论:行列式某一行(列)的元素与另一行(列)的对应元素的代数余子式乘积之和等于零. 1122,, 0,.i j i j in jn A i j a A a A a A i j ?=?++=?≠?? L

③ (化为三角型行列式)上三角、下三角、主对角行列式等于主对角线上元素的乘积. 11221122***0**0*00 nn nn b b A b b b b = =L M O L ④ 若A B 与都是方阵(不必同阶),则 ==()mn A O A A O A B O B O B B O A A A B B O B O *= =* *=-1 ⑤ 关于副对角线: (1)2 1121 21 1211 1 () n n n n n n n n n n n a O a a a a a a a O a O ---* ==-K N N 1 ⑥ 范德蒙德行列式:()1 22 22 12111112 n i j n j i n n n n n x x x x x x x x x x x ≤<≤---=-∏L L L M M M L 111 ⑦ a b -型公式:1 [(1)]()n a b b b b a b b a n b a b b b a b b b b a -=+--L L L M M M O M L ⑧ (升阶法)在原行列式中增加一行一列,保持原行列式不变的方法. ⑨ (递推公式法) 对n 阶行列式n D 找出n D 与1n D -或1n D -,2n D -之间的一种关系——称为递推公式,其中 n D ,1n D -,2n D -等结构相同,再由递推公式求出n D 的方法称为递推公式法. (拆分法) 把某一行(或列)的元素写成两数和的形式,再利用行列式的性质将原行列式写成两行列式之和, 使问题简化以例计算. ⑩ (数学归纳法) 2. 对于n 阶行列式A ,恒有:1(1)n n k n k k k E A S λλλ-=-=+-∑,其中k S 为k 阶主子式; 3. 证明0A =的方法:

线性代数知识点归纳

线性代数复习要点 第一部分 行列式 1. 排列的逆序数 2. 行列式按行(列)展开法则 3. 行列式的性质及行列式的计算 1.行列式的计算: ① (定义法)1212121112121222() 1212()n n n n n j j j n j j nj j j j n n nn a a a a a a D a a a a a a τ= = -∑ L L L L L M M M L 1 ②(降阶法)行列式按行(列)展开定理: 行列式等于它的任一行(列)的各元素与其对应的代数余子式的乘积之和. 推论:行列式某一行(列)的元素与另一行(列)的对应元素的代数余子式乘积之和等于零. ③ (化为三角型行列式)上三角、下三角、主对角行列式等于主对角线上元素的乘积. ④ 若A B 与都是方阵(不必同阶),则 ==()mn A O A A O A B O B O B B O A A A B B O B O *==* *=-1 ⑤ 关于副对角线: (1)2 1121 21 1211 1 () n n n n n n n n n n n a O a a a a a a a O a O ---* ==-K N N 1 ⑥ 范德蒙德行列式:()1 22 22 12111112 n i j n j i n n n n n x x x x x x x x x x x ≤<≤---=-∏L L L M M M L 111

⑦ a b -型公式:1 [(1)]()n a b b b b a b b a n b a b b b a b b b b a -=+--L L L M M M O M L ⑧ (升阶法)在原行列式中增加一行一列,保持原行列式不变的方法. ⑨ (递推公式法) 对n 阶行列式n D 找出n D 与1n D -或1n D -,2n D -之间的一种关系——称为递推公式,其中 n D ,1n D -,2n D -等结构相同,再由递推公式求出n D 的方法称为递推公式法. (拆分法) 把某一行(或列)的元素写成两数和的形式,再利用行列式的性质将原行列式写成两行列式之和, 使问题简化以例计算. ⑩ (数学归纳法) 2. 对于n 阶行列式A ,恒有:1 (1)n n k n k k k E A S λλ λ-=-=+-∑,其中k S 为k 阶主子式; 3. 证明 0A =的方法: ①、A A =-; ②、反证法; ③、构造齐次方程组0Ax =,证明其有非零解; ④、利用秩,证明()r A n <; ⑤、证明0是其特征值. 4. 代数余子式和余子式的关系:(1)(1)i j i j ij ij ij ij M A A M ++=-=- 第二部分 矩阵 1.矩阵的运算性质 2.矩阵求逆 3.矩阵的秩的性质 4.矩阵方程的求解 1. 矩阵的定义 由m n ?个数排成的m 行n 列的表1112121 22212n n m m mn a a a a a a A a a a ?? ? ? = ? ??? L L M M M L 称为m n ?矩阵.

=线性代数期末复习总结.docx

第一章行列式 一、行列式的性质 性质1行列式与它的转置行列式相等,即|A | = |A T |.(行列互换,行列式不变) 性质2互换行列式的两行(列),行列式变号. 推论1如果行列式有两行(列)完全相同,则此行列式为零. 性质3行列式的某一行(列)中所有的元素都乘以同一个倍数k,等于用数k 乘以此行列式. a u a i2 a i3 a n a i2 ^13 ka n a i2 a i3 a 2X a 22 a 23 — ka 2x ka’2 転23 = ka 2} a 22 a 23 角1 a 32 ?33 a 3i 角2 。33 脳31 ?33 若行列式中有一行(列)为0,则行列式为0. 行列式中如果有两行(列)元素成比例,则此行列式为零. 坷 1 坷]a n 纠3 41 a n 坷 3 a 21+b l a 22+b 2 如+4 — a 21 a 22 "23 + b l b 2 S 。31 “32 。33 。31 “32 “33 。31 “32 “33 性质6把行列式的某一列(行)的各元素乘以同一个倍数然后加到另一列 (行) 对应的元素上去,行列式不变. a \\ a i2 a i3 a u a n + ka !3 a i3 a CL CL a CL + ka a W 21 u 22 w 23 ^21 "22 ' e"23 "23 “31 °32 "33 °31 “32 + 氐 °33 。33 性质7 (Laplace 定理)行列式等于它的任一行(列)的各元素与其对应的代数余 子式乘积之和,BP : | A| = a ix A i} + a i2A i2 + ? ? ? + a in A in (1 = 1,2,? ? ?, n ) 推论2 性质4 。21 ^22 a 31 “32 ka [{ ka {2 。 13 。 23 a 33 。 21 °3a n "12 "13 a 22 ^23 a 32 = 40 = 0 性质5 行列式中如果有两行(列)元素成比例,则此行列式为零.

相关文档
最新文档