2012年全国大学生数学建模一等奖B题太阳能小屋的设计

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

承诺书

我们仔细阅读了中国大学生数学建模竞赛的竞赛规则.

我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。

我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。

我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。如有违反竞赛规则的行为,我们将受到严肃处理。

我们授权全国大学生数学建模竞赛组委会,可将我们的论文以任何形式进行公开展示(包括进行网上公示,在书籍、期刊和其他媒体进行正式或非正式发表等)。

我们参赛选择的题号是(从A/B/C/D中选择一项填写): B

我们的参赛报名号为(如果赛区设置报名号的话):

所属学校(请填写完整的全名):

参赛队员(打印并签名) :1.

2.

3.

指导教师或指导教师组负责人(打印并签名):

日期: 2012 年 9 月日赛区评阅编号(由赛区组委会评阅前进行编号):

编号专用页

赛区评阅编号(由赛区组委会评阅前进行编号):

全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):

太阳能小屋的设计

摘要

本文通过分析题中数据及相关条件,建立数学模型解决了太阳能小屋的各种设计问题。

针对问题一,首先利用excel表格,将题中所给山西气候及辐射强度进行排序,再建立非线性规划模型,利用visual C++编程计算可得在每个面上使用某种型号光伏电池时的获益最大,然后再建立太阳能光伏阵列数学模型,根据伏安曲线得出房屋各面的光伏阵列,再结合太阳辐射强度、光线入射角、环境、建筑物所处的地理纬度、地区的气候与气象条件等相关数据建立非线性方程模型,得到对各面的影响强度,最后给出了小屋光伏电池的铺设方案以及得到了小屋35年的发电总量为1999760kwh,经济效益为273.83%,投资的回收年限为12年零10个月。

针对问题二,首先利用太阳对地面的连续性、均匀性、极大性等相关性能,建立在独立光伏系统下的最佳倾角模型,得到屋顶光伏电池与水平面的最佳倾角是o1.

35,再结合问题一的结果,得到小屋光伏电池的铺设方案及小屋35年的发电总量为:2225216 kwh,经济效益为304.70%,投资的回收年限为11年零6个月。

针对问题三,本文首先分析题中相关要求,建立非线性规划模型,由visual C++编程得到小屋设计的长、宽、高等相关数据。再结合问题一中的相关模型,得到小屋的光伏阵列结构。最后利用问题二中光照强度等相关条件可计算出小屋35年的发电总量为1374539kwh,经济效益为343.14%,投资的回收年限为10年零3个月。

关键词:非线性规划模型光伏阵列模型最佳倾角模型

一、问题重述

在设计太阳能小屋时,需在建筑物外表面(屋顶及外墙)铺设光伏电池,光伏电池组件所产生的直流电需要经过逆变器转换成220V交流电才能供家庭使用,并将剩余电量输入电网。不同种类的光伏电池每峰瓦的价格差别很大,且每峰瓦的实际发电效率或发电量还受诸多因素的影响,如太阳辐射强度、光线入射角、环境、建筑物所处的地理纬度、地区的气候与气象条件、安装部位及方式(贴附或架空)等。因此,在太阳能小屋的设计中,研究光伏电池在小屋外表面的优化铺设是很重要的问题。

附件1-7提供了相关信息。请参考附件提供的数据,对下列三个问题,分别给出小屋外表面光伏电池的铺设方案,使小屋的全年太阳能光伏发电总量尽可能大,而单位发电量的费用尽可能小,并计算出小屋光伏电池35年寿命期内的发电总量、经济效益(当前民用电价按0.5元/kWh计算)及投资的回收年限。

在求解每个问题时,都要求配有图示,给出小屋各外表面电池组件铺设分组阵列图形及组件连接方式(串、并联)示意图,也要给出电池组件分组阵列容量及选配逆变器规格列表。

在同一表面采用两种或两种以上类型的光伏电池组件时,同一型号的电池板可串联,而不同型号的电池板不可串联。在不同表面上,即使是相同型号的电池也不能进行串、并联连接。应注意分组连接方式及逆变器的选配。

问题1:请根据山西省大同市的气象数据,仅考虑贴附安装方式,选定光伏电池组件,对小屋(见附件2)的部分外表面进行铺设,并根据电池组件分组数量和容量,选配相应的逆变器的容量和数量。

问题2:电池板的朝向与倾角均会影响到光伏电池的工作效率,请选择架空方式安装光伏电池,重新考虑问题1。

问题3:根据附件7给出的小屋建筑要求,请为大同市重新设计一个小屋,要求画出小屋的外形图,并对所设计小屋的外表面优化铺设光伏电池,给出铺设及分组连接方式,选配逆变器,计算相应结果。

二、模型假设

1.假设每种相同型号的光伏电板完全一样

2.假设所选用的逆变器均在适宜温度下工作

3.假设房屋内部具有某个区域专门存放光伏发电系统相关组件

4.假设光强不能启动逆变器时,系统所用蓄能电池组发电量也记入光伏阵列的产电量

5.光伏电池组件启动发电时其表面所应接受到的最低辐射量限值,单晶硅和多晶硅电池启动发电的表面总辐射量≥80W/m2、薄膜电池表面总辐射量≥30W/m2

6.假设35年间每年的太阳辐射强度大致相同

7.假设同一逆变器不能连接于不同表面

8.假设35年内太阳能光伏阵列不会出现重大问题

9.假设未来35年太阳能光伏阵列的成本仅有最初的安装费,没有维修费。

三、符号说明

R表示小屋35年总利润

Q表示35年总发电量

y表示kwh

1的电费

M 表示小屋建造太阳能光伏阵列的总花费

S表示电池面积

G表示辐射强度

η表示组件的转换率

z

η表示逆变器的转换率

n

M表示逆变器的费用

n

M表示组件的费用

z

φ表示当地的纬度

β表示太阳电池的倾角

δ表示太阳的赤纬角

ω表示水平面上日落时角

s

ω表示倾斜面上日落时角

st

H表示水平面上直接辐射量

b

H表示水平面上散射辐射量

d

R表示倾斜面与水平面上直接辐射量之比

b

H表示大气层外水平面上太阳辐射量

四、模型建立与求解

4.1问题一

4.1.1问题分析

从整体上看,本问题要求使用规定的光伏电池及规定的逆变器进行组合,使得小屋的全年太阳能光伏发电总量尽可能大,而单位发电量的费用尽可能小的最优结果。对于这里的最优结果,可以分为两个目标来实现,第一个目标得到在每个面上使用某种光伏电池时获益最大,第二个目标得到各面的光伏阵列。最后在考虑发电量的各种影响因素,结合计算法则可得到小屋光伏电池的铺设方案以及35年的发电总量,经济效益,投资的回收年限。

从具体上分析,为得到每面的最佳光伏电池,首先可以将题中所给山西气候及辐射强度进行排序,将1—24号光伏电池,分别与1—18号逆变器1-1搭配,建立利润率最大的非线性规划模型,再利用visualC++编程即可得各面最好的光伏电池。在得到每面最好的光伏电池后,为得到每面的光伏阵列,首先分别在每一面利用面积使用最大化可得到每面最多可以安装最佳光伏电池数,再建立太阳能光伏阵列数学模型,利用matlab 做出图像,找出电压U,电流I的乘积最大的点(即拐点),然后由拐点电压确定光伏电池的串联数目,由拐点电流确定光伏电池的并联数目,再确定选用的逆变器,组成光伏阵列。最后再结合太阳辐射强度、光线入射角、环境、建筑物所处的地理纬度、地区的气候与气象条件等相关数据建立非线性规划模型,得到各因素的影响强度大小,这样即可计算出小屋光伏电池的铺设方案及小屋35年的发电总量,经济效益,投资回收年限。具体解答流程图示如下:

相关文档
最新文档