2020高考数学刷题首选卷考点测试63二项分布及其应用(理)(含解析).docx
2020年高中数学选修2-3《2.2二项分布及其应用》测试卷及答案解析
2020年高中数学选修2-3《2.2二项分布及其应用》测试卷一.选择题(共6小题)
1.三个元件T1,T2,T3正常工作的概率分别为且是互相独立的,按图种方式接入电路,电路正常工作的概率是()
A .
B .
C .
D .
2.抛掷3枚质地均匀的硬币,A={既有正面向上又有反面向上},B={至多有一个反面向上},则A与B关系是()
A.互斥事件B.对立事件
C.相互独立事件D.不相互独立事件
3.某地区空气质量监测资料表明,一天的空气质量为优良的概率是0.75,连续两天为优良的概率是0.6,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是()
A.0.8B.0.75C.0.6D.0.45
4.投篮测试中,每人投3次,至少投中2次才能通过测试.已知某同学每次投篮投中的概率为0.6,且各次投篮是否投中相互独立,则该同学通过测试的概率为()
A.0.648B.0.432C.0.36D.0.312
5.设某批产品合格率为,不合格率为,现对该产品进行测试,设第ε次首次取到正品,则P(ε=3)等于()
A.C32()2×()B.C32()2×()
C.()2×()D.()2×()
6.已知P(B|A )=,P(A )=,则P(AB)=()
A .
B .
C .
D .
二.填空题(共1小题)
7.为了考察某校各班参加课外小组的人数,从全校随机抽取5个班级,把每个班级参加该
第1 页共16 页。
2020届高考数学大二轮刷题首选卷理数文档:第一部分 考点二十 概率、随机变量及其分布 Word版含解析
考点二十 概率、随机变量及其分布一、选择题1.同时抛掷3枚硬币,那么互为对立事件的是( ) A .“至少有1枚正面”与“最多有1枚正面” B .“最多有1枚正面”与“恰有2枚正面” C .“至多有1枚正面”与“至少有2枚正面” D .“至少有2枚正面”与“恰有1枚正面” 答案 C解析 两个事件是对立事件必须满足两个条件:①不同时发生,②两个事件的概率之和等于1.故选C.2.随机向边长为10π,10π,12π的三角形中投一点M ,则点M 到三个顶点的距离都不小于π的概率是( )A .π95B .1πC .9596D .196答案 C解析 分别以三角形的三个顶点为圆心,π为半径作圆,则在三角形内部,且在三圆外部的区域即为与三角形三个顶点距离不小于π的部分,所以所求概率P =1-12×π×(π)212×12π×8π=9596,故选C.3.(2019·四川成都七中5月模拟)据《孙子算经》中记载,中国古代诸侯的等级从低到高分为:男、子、伯、侯、公,共五级.若给有巨大贡献的2人进行封爵,则两人不被封同一等级的概率为( )A .15B .25C .45D .35 答案 C解析 由题意知,基本事件的总数有5×5=25种情形,两人被封同一等级的方法种数有男、子、伯、侯、公,共5种情形,故所求事件的概率为1-525=2025=45.4. (2019·晋冀鲁豫中原名校第三次联考)1876年4月1日,加菲尔德在《新英格兰教育日志》上发表了勾股定理的一种证明方法,即在如图的直角梯形ABCD 中,利用“两个全等的直角三角形和一个等腰直角三角形的面积之和等于直角梯形面积”,可以简洁明了地推证出勾股定理.1881年加菲尔德就任美国第二十任总统.后来,人们为了纪念他对勾股定理直观、易懂的证明,就把这一证明方法称为“总统证法”.如图,设∠BEC =15°,在梯形ABCD 中随机取一点,则此点取自等腰直角△CDE 中(阴影部分)的概率是()A .32B .34C .23D .22答案 C解析 在直角△BCE 中,a =c cos15°,b =c sin15°,则P =S △CDES 梯形ABCD =12c212(a +b )2=c 2c 2(cos15°+sin15°)2=11+sin30°=23,故选C. 5.古典著作《连山易》中记载了金、木、水、火、土之间相生相克的关系,如图所示,现从五种不同属性的物质中任取两种,则取出的两种物质恰是相克关系的概率为( )A .23B .25 C .12 D .15答案 C解析 依题意,从5种物质中任取2种,共有C 25=10种选法,根据相生相克原理,可知恰有5种选法具有相克关系,故恰是相克关系的概率为P =12,故选C.6.(2019·广东潮州二模)一试验田某种作物一株生长果个数x 服从正态分布N (90,σ2),且P (x <70)=0.2,从试验田中随机抽取10株,果实个数在[90,110]的株数记作随机变量X ,且X 服从二项分布,则X 的方差为( )A .3B .2.1C .0.3D .0.21答案 B解析 ∵x ~N (90,σ2),且P (x <70)=0.2,所以P (x >110)=0.2,∴P (90<x <110)=0.5-0.2=0.3,∴X ~B (10,0.3),则X 的方差为10×0.3×(1-0.3)=2.1,故选B.7.将A ,B ,C ,D 这4名同学从左至右随机地排成一排,则“A 与B 相邻且A 与C 之间恰好有1名同学”的概率是( )A .12B .14C .16D .18答案 B解析 A ,B ,C ,D 4名同学排成一排有A 44=24种排法.当A ,C 之间是B时,有2×2=4种排法,当A ,C 之间是D 时,有2种排法,所以所求概率为4+224=14,故选B.8.(2019·湖北武汉4月调研)为了提升全民身体素质,学校十分重视学生体育锻炼.某校篮球运动员投篮练习,若他第1球投进则后一球投进的概率为34,若他前一球投不进则后一球投进的概率为14.若他第1球投进的概率为34,则他第2球投进的概率为( )A .34B .58C .716D .916答案 B解析 第2球投进的概率为P =34×34+⎝ ⎛⎭⎪⎫1-34×14=58.故选B.二、填空题9.已知某射击运动员每次射击击中目标的概率都为80%.现采用随机模拟的方法估计该运动员4次射击至少3次击中目标的概率:先由计算器产生0到9之间取整数值的随机数,指定0,1表示没有击中目标,2,3,4,5,6,7,8,9表示击中目标;再以每4个随机数为一组,代表4次射击的结果.经随机模拟产生了如下20组随机数:7527 0293 7140 9857 0347 4373 8636 6947 1417 4698 0371 6233 2616 8045 6011 3661 9597 7424 7610 4281据此估计,该射击运动员4次射击至少3次击中目标的概率为________. 答案 0.75解析 4次射击中有1次或2次击中目标的有:0371,6011,7610,1417,7140,∴所求概率P =1-520=1520=0.75.10.在棱长为4的一个正方体内,有一根细线系在上底面的中心处,下方悬挂了一个半径为1的球,且球位于正方体内,已知球面是网状的,小虫可以自由地出入.若一只小虫在某一时刻可以位于正方体内的任意一个位置,则小虫飞入网状球面球体内的概率为________.答案 π48解析 小虫飞入网状球面球体内的概率为43π·1343=π48.11.(2019·辽宁沈阳东北育才学校八模)已知甲、乙、丙三名同学同时独立地解答一道导数试题,每人均有23的概率解答正确,且三个人解答正确与否相互独立,在三人中至少有两人解答正确的条件下,甲解答不正确的概率为________.答案 15解析 记“三人中至少有两人解答正确”为事件A ,“甲解答不正确”为事件B ,则P (A )=C 23⎝ ⎛⎭⎪⎫232⎝ ⎛⎭⎪⎫13+C 33⎝ ⎛⎭⎪⎫233=2027,P (AB )=13×23×23=427, ∴P (B |A )=P (AB )P (A )=15. 12.(2019·山东郓城一中三模)七巧板是一种古老的中国传统智力玩具,是由七块板组成的.而这七块板可拼成许多图形,例如:三角形、不规则多边形、各种人物、动物、建筑物等,清陆以湉《冷庐杂识》写道:近又有七巧图,其式五,其数七,其变化之式多至千余.在18世纪,七巧板流传到了国外,至今英国剑桥大学的图书馆里还珍藏着一部《七巧新谱》.若用七巧板拼成一只雄鸡,在雄鸡平面图形上随机取一点,则恰好取自雄鸡鸡尾(阴影部分)的概率为________.答案 18解析 设包含7块板的正方形边长为4,其面积为4×4=16,则雄鸡的鸡尾面积为标号为6的板块,其面积为S =2×1=2,所以在雄鸡平面图形上随机取一点,则恰好取自雄鸡鸡尾(阴影部分)的概率为P =216=18.三、解答题13.随着网络营销和电子商务的兴起,人们的购物方式更具多样化.某调查机构随机抽取10名购物者进行采访,5名男性购物者中有3名倾向于选择网购,2名倾向于选择实体店,5名女性购物者中有2名倾向于选择网购,3名倾向于选择实体店.(1)若从10名购物者中随机抽取2名,其中男、女各1名,求至少有1名倾向于选择实体店的概率;(2)若从这10名购物者中随机抽取3名,设X 表示抽到倾向于选择网购的男性购物者的人数,求X 的分布列和数学期望.解 (1)设“随机抽取2名,其中男、女各1名,至少有1名倾向于选择实体店”为事件A ,则A 表示事件“随机抽取2名,其中男、女各1名,都倾向于选择网购”,则P (A )=1-P (A )=1-C 13×C 12C 15×C 15=1925.所以至少有1名倾向于选择实体店的概率为1925.(2)X 所有可能的取值为0,1,2,3,且P (X =k )=C k 3C 3-k 7C 310,则P (X =0)=724,P (X =1)=2140,P (X =2)=740,P (X =3)=1120.所以X 的分布列为E (X )=0×724+1×2140+2×740+3×1120=910.14.(2019·江西赣州3月摸底)现有甲、乙、丙三名学生参加某大学的自主招生考试,考试分两轮,第一轮笔试,第二轮面试,只有第一轮笔试通过才有资格进入第二轮面试,面试通过就可以在高考录取中获得该校的优惠加分,两轮考试相互独立.根据以往多次的模拟测试,甲、乙、丙三名学生能通过笔试的概率分别为0.4,0.8,0.5,能通过面试的概率分别为0.8,0.4,0.64.根据这些数据我们可以预测:(1)甲、乙、丙三名学生中至少有两名学生通过第一轮笔试的概率; (2)甲、乙、丙三名学生能获得该校优惠加分的人数X 的数学期望.解 (1)记事件A :甲通过第一轮笔试,事件B :乙通过第一轮笔试,事件C :丙通过第一轮笔试,事件D :至少有两名学生通过第一轮笔试,则P (A )=0.4,P (B )=0.8,P (C )=0.5.P (D )=P (AB C )+P (A B C )+P (A BC )+P (ABC )=P (A )P (B )P (C )+P (A )P (B )P (C )+P (A )P (B )·P (C )+P (A )P (B )P (C )=0.4×0.8×0.5+0.4×0.2×0.5+0.6×0.8×0.5+0.4×0.8×0.5=0.6,所以至少有两名学生通过第一轮笔试的概率为0.6.(2)因为甲、乙、丙三名学生中每个人获得优惠加分的概率均为0.32,所以X ~B (3,0.32),故E (X )=3×0.32=0.96.一、选择题1.已知实数m ∈[0,1],向量a =(2,-2),b =(1,1),则|m a |>|b |的概率是( ) A .14 B .13 C .12 D .23答案 C解析 m a =(2m ,-2m ),若|m a |>|b |,则(2m )2+(-2m )2>12+12,得m <-12(舍去)或m >12.所以|m a |>|b |的概率是P =1-121-0=12.故选C.2.投篮测试中,每人投3次,至少投中2次才能通过测试.已知某同学每次投篮投中的概率为0.6,且各次投篮是否投中相互独立,则该同学通过测试的概率为( )A .0.648B .0.432C .0.36D .0.312答案 A解析 根据独立重复试验公式得,该同学通过测试的概率为C 230.62×0.4+0.63=0.648.故选A.3.(2019·山东临沂二模)某人连续投篮6次,其中4次命中,2次未命中,则他第1次和第5次两次均命中的概率是( )A .12B .25 C .14 D .15答案 B解析 基本事件总数n =C 46C 22=15,他第1次和第5次两次均命中包含的基本事件个数m =C 22C 24C 22=6,则他第1次和第5次两次均命中的概率是P =m n =615=25,故选B.4.某种电路开关闭合后会出现红灯或绿灯闪烁,已知开关第一次闭合后出现红灯的概率为12,两次闭合后都出现红灯的概率为15,则开关在第一次闭合后出现红灯的条件下第二次闭合后出现红灯的概率为( )A .110B .15C .25D .12答案 C解析 设“开关第一次闭合后出现红灯”为事件A ,“开关第二次闭合后出现红灯”为事件B ,则“开关两次闭合后都出现红灯”为事件AB ,“开关在第一次闭合后出现红灯的条件下第二次闭合后出现红灯”为事件B |A ,由题意得P (B |A )=P (AB )P (A )=25,故选C. 5.(2019·河南郑州第三次质检)关于圆周率,数学发展史上出现过很多有创意的求法,如著名的蒲丰试验,受其启发,我们也可以通过设计下面的试验来估计π的值,试验步骤如下:①先请高二年级n 名同学每人在小卡片上随机写下一个实数对(x ,y )(0<x <1,0<y <1);②若卡片上的x ,y 能与1构成锐角三角形,则将此卡片上交;③统计上交的卡片数,记为m ;④根据统计数n ,m 估计π的值.那么可以估计π的值约为( )A .m nB .n -m nC .4(n -m )nD .4m n答案 C解析 由题意,实数对(x ,y )(0<x <1,0<y <1),即面积为1.且卡片上的x ,y 能与1构成锐角三角形,即满足x 2+y 2>1,且⎩⎨⎧0<x <1,0<y <1,所以面积为1-π4,所以x ,y 能与1构成锐角三角形的概率为1-π4,由题,n 张卡片上交m 张,即m n =1-π4⇒π=4(n -m )n ,故选C.6.(2019·湖南师大附中模拟三)若即时起10分钟内,305路公交车和202路公交车由南往北等可能进入二里半公交站,则这两路公交车进站时间的间隔不超过2分钟的概率为( )A .0.18B .0.32C .0.36D .0.64答案 C解析 设305路车和202路车的进站时间分别为x ,y ,设所有基本事件为W :⎩⎨⎧0≤x ≤10,0≤y ≤10,“进站时间的间隔不超过2分钟”为事件A ,则A ={(x ,y )|0≤x ≤10,0≤y ≤10,|x -y |≤2},画出不等式表示的区域如图中阴影区域,则S =10×10-8×8=36,则P (A )=S A S Ω=36100=0.36,故选C.7. (2019·北京师大附中模拟三)剪纸艺术是中国最古老的民间艺术之一,作为一种镂空艺术,它能给人以视觉上的艺术享受.在如图所示的圆形图案中有12个树叶状图形(即图中阴影部分),构成树叶状图形的圆弧均相同.若在圆内随机取一点,则此点取自阴影部分的概率是( )A .2-33π B .4-63π C .33π D .63π答案 B解析 设圆的半径为r ,如图所示,12片树叶是由24个相同的弓形组成,且弓形AmB 的面积为S 弓形=16πr 2-12·r 2·sin π3=16πr 2-34r 2.∴所求的概率为P =24S 弓形S 圆=24⎝ ⎛⎭⎪⎫16πr 2-34r 2πr 2=4-63π,故选B.8.(2019·武汉4月调研)党的十九大报告指出,建设教育强国是中华民族伟大复兴的基础工程,必须把教育事业放在优先位置,深化教育资源的均衡发展,现有4名男生和2名女生主动申请毕业后到两所偏远山区小学任教,将这6名毕业生全部进行安排,每所学校至少安排2名毕业生,则每所学校男女毕业生至少安排1名的概率为( )A .425B .25 C .1425 D .45答案 C解析 由题意,将这6名毕业生全部进行安排,每所学校至少2名毕业生,基本事件的总数为N =⎝ ⎛⎭⎪⎫C 26+C 36C 33A 22×A 22=50种,每所学校男女毕业生至少安排1名共有:一是其中一个学校安排一女一男,另一个学校有一女三男,有C 12C 14A 22=16种;二是其中一个学校安排一女两男,另一个学校有一女两男,有C 12C 24=12种,共有16+12=28种,所以概率为P =2850=1425.二、填空题9.(2019·河北石家庄二中二模)甲、乙两人组队参加猜谜语大赛,比赛共两轮,每轮比赛甲、乙两人各猜一个谜语,已知甲猜对每个谜语的概率为34,乙猜对每个谜语的概率为23,甲、乙在猜谜语这件事上互不影响,则比赛结束时,甲、乙两人合起来共猜对三个谜语的概率为________.答案 512解析 若甲猜对2个,乙猜对1个,则有34×34×C 12×23×13=14,若甲猜对1个,乙猜对2个,则有C 12×34×14×23×23=16,∴比赛结束时,甲、乙两人合起来共猜对三个谜语的概率为14+16=512.10.某人在微信群中发了一个7元“拼手气”红包,被甲、乙、丙三人抢完,若三人均领到整数元,且每人至少领到1元,则甲领取的钱数不少于其他任何人的概率是________.答案 25解析 如下图,利用隔板法.该问题相当于把下面七个圆圈(○○○○○○○)分成三份(每个圆圈代表1元),其中有6个空档,需要插入2个隔板,共有C 26=15种方法.甲领取的钱数不少于其他任何人,则有如下情况:如下图,甲领到5元,有1种, ○○○○○|○|○如下图,甲领到4元,有2种, ○○○○|○|○○ ○○○○|○○|○如下图,甲领到3元,有3种, ○○○|○|○○○○○○|○○○|○ ○○○|○○|○○所以所求概率P =1+2+315=25.11.从区间[-2,2]中随机选取一个实数a ,则函数f (x )=4x -a ·2x +1+1有零点的概率是________.答案 14解析 令t =2x ,函数有零点就等价于方程t 2-2at +1=0有正根,进而可得⎩⎨⎧Δ≥0,t 1+t 2>0,t 1t 2>0⇒a ≥1,又a ∈[-2,2],所以函数有零点的实数a 应满足a ∈[1,2],故P =14.12.某个部件由三个电子元件按如图所示的方式连接而成,元件1或元件2正常工作,且元件3正常工作,则部件正常工作,设三个电子元件的使用寿命(单位:小时)均服从正态分布N (1000,502),且各个元件能否正常工作相互独立,那么该部件的使用寿命超过1000小时的概率为________.答案 38解析 三个电子元件的使用寿命均服从正态分布N (1000,502),所以每个电子元件的使用寿命超过1000 h 的概率均为p =12.因为各个元件能否正常工作相互独立,所以P (该部件的使用寿命超过1000小时)=p ×[1-(1-p )2]=38.三、解答题13.(2019·辽宁沈阳质量监测三)某商场举行优惠促销活动,顾客仅可以从以下两种优惠方案中选择一种,方案一:每满200元减50元;方案二:每满200元可抽奖一次.具体规则是依次从装有3个红球、1个白球的甲箱,装有2个红球、2个白球的乙箱,以及装有1个红球、3个白球的丙箱中各随机摸出1个球,所得结果和享受的优惠如下表:(注:所有小球仅颜色有区别)(1) (2)若某顾客购物金额为320元,用所学概率知识比较哪一种方案更划算? 解 (1)设事件A 为“顾客获得半价”,则P (A )=34×24×14=332, 所以两位顾客至少一人获得半价的概率为 P =1-⎝ ⎛⎭⎪⎫29322=1831024.(2)若选择方案一,则付款金额为320-50=270(元). 若选择方案二,记付款金额为X 元, 则X 可取的值为160,224,256,320. P (X =160)=332,P (X =224)=34×24×34+34×24×14+14×14×24=1332, P (X =256)=34×24×34+14×24×34+14×24×14=1332, P (X =320)=14×24×34=332,∴E (X )=160×332+224×1332+256×1332+320×332=240. 所以方案二更为划算.14.(2019·全国卷Ⅰ)为治疗某种疾病,研制了甲、乙两种新药,希望知道哪种新药更有效,为此进行动物试验.试验方案如下:每一轮选取两只白鼠对药效进行对比试验.对于两只白鼠,随机选一只施以甲药,另一只施以乙药.一轮的治疗结果得出后,再安排下一轮试验.当其中一种药治愈的白鼠比另一种药治愈的白鼠多4只时,就停止试验,并认为治愈只数多的药更有效.为了方便描述问题,约定:对于每轮试验,若施以甲药的白鼠治愈且施以乙药的白鼠未治愈则甲药得1分,乙药得-1分;若施以乙药的白鼠治愈且施以甲药的白鼠未治愈则乙药得1分,甲药得-1分;若都治愈或都未治愈则两种药均得0分.甲、乙两种药的治愈率分别记为α和β,一轮试验中甲药的得分记为X .(1)求X 的分布列;(2)若甲药、乙药在试验开始时都赋予4分,p i (i =0,1,…,8)表示“甲药的累计得分为i 时,最终认为甲药比乙药更有效”的概率,则p 0=0,p 8=1,p i =ap i -1+bp i +cp i +1(i =1,2,…,7),其中a =P (X =-1),b =P (X =0),c =P (X =1).假设α=0.5,β=0.8.①证明:{p i +1-p i }(i =0,1,2,…,7)为等比数列; ②求p 4,并根据p 4的值解释这种试验方案的合理性. 解 (1)X 的所有可能取值为-1,0,1.P (X =-1)=(1-α)β,P (X =0)=αβ+(1-α)(1-β), P (X =1)=α(1-β). 所以X 的分布列为(2)因此p i =0.4p i -1+0.5p i +0.1p i +1, 故0.1(p i +1-p i )=0.4(p i -p i -1), 即p i +1-p i =4(p i -p i -1).又因为p 1-p 0=p 1≠0,所以{p i +1-p i }(i =0,1,2,…,7)是公比为4,首项为p 1的等比数列.②由①可得p 8=p 8-p 7+p 7-p 6+…+p 1-p 0+p 0 =(p 8-p 7)+(p 7-p 6)+…+(p 1-p 0)=48-13p 1. 由于p 8=1,故p 1=348-1,所以p 4=(p 4-p 3)+(p 3-p 2)+(p 2-p 1)+(p 1-p 0)=44-13p 1=1257.p 4表示最终认为甲药更有效的概率.由计算结果可以看出,在甲药治愈率为0.5,乙药治愈率为0.8时,认为甲药更有效的概率为p 4=1257≈0.0039,此时得出错误结论的概率非常小,说明这种试验方案合理.。
高中数学二项分布及其应用知识点+练习
二项分布及其应用要求层次重难点条件概率 A 了解条件概率和两个事件相互独立的概念,理解n 次独立重复试验的模型及二项分布,并能解决一些简单的实际问题.事件的独立性A n 次独立重复试验与二项分布B(一) 知识内容条件概率对于任何两个事件A 和B ,在已知事件A 发生的条件下,事件B 发生的概率叫做条件概率,用符号“(|)P B A ”来表示.把由事件A 与B 的交(或积),记做D A B =(或D AB =).(二)典例分析:【例1】 在10个球中有6个红球,4个白球(各不相同),不放回的依次摸出2个球,在第1次摸出红球的条件下,第2次也摸出红球的概率是( )A .35B .23C .59D .13知识框架例题精讲高考要求条件概率事件的独立性独立重复实验二项分布二项分布及其应用板块一:条件概率【例2】某地区气象台统计,该地区下雨的概率是415,刮风的概率是215,既刮风又下雨的概率是110,设A=“刮风”,B=“下雨”,求()()P B A P A B,.【例3】设某种动物活到20岁以上的概率为0.7,活到25岁以上的概率为0.4,求现龄为20岁的这种动物能活到25岁以上的概率.【例4】把一枚硬币抛掷两次,事件A=“第一次出现正面”,事件B=“第二次出现反面”,则()_____P B A=.【例5】抛掷一颗骰子两次,在第一次掷得向上一面点数是偶数的条件下,则第二次掷得向上一面点数也是偶数的概率为.【例6】设某批产品有4%是废品,而合格品中的75%是一等品,任取一件产品是一等品的概率是_____.【例7】掷两枚均匀的骰子,记A=“点数不同”,B=“至少有一个是6点”,求(|)P A B与(|)P B A.【例8】甲、乙两班共有70名同学,其中女同学40名.设甲班有30名同学,而女生15名,问在碰到甲班同学时,正好碰到一名女同学的概率?【例9】从1~100个整数中,任取一数,已知取出的—数是不大于50的数,求它是2或3的倍数的概率.【例10】 袋中装有21n -个白球,2n 个黑球,一次取出n 个球,发现都是同一种颜色的,问这种颜色是黑色的概率是多少?【例11】 一袋中装有10个球,其中3个黑球,7个白球,先后两次从袋中各取一球(不放回)⑴已知第一次取出的是黑球,求第二次取出的仍是黑球的概率; ⑵已知第二次取出的是黑球,求第一次取出的也是黑球的概率; ⑶已知第一次取出的是黑球,求第二次取出的是白球的概率.【例12】 有两箱同类零件,第一箱内装50件,其中10件是一等品;第二箱内装30件,其中18件是一等品.现从两箱中随意挑出一箱,然后从该箱中先后随机取出两个零件(取出的零件均不放回),试求:⑴先取出的零件是一等品的概率;⑵在先取出的零件是一等品的条件下后取出的仍然是一等品的概率.(保留三位有效数字)【例13】 设有来自三个地区的各10名、15名和25名考生的报名表,其中女生的报名表分别为3份、7份和5份.随机地取一个地区的报名表,从中先后抽出两份,⑴求先抽到的一份是女生表的概率p .⑵己知后抽到的一份是男生表,求先抽到的是女生的概率q .(一) 知识内容事件的独立性如果事件A 是否发生对事件B 发生的概率没有影响,即(|)()P B A P B =,这时,我们称两个事件A ,B 相互独立,并把这两个事件叫做相互独立事件.如果事件1A ,2A ,…,n A 相互独立,那么这n 个事件都发生的概率,等于每个事件发生的概率的积,即1212()()()()n n P A A A P A P A P A =⨯⨯⨯,并且上式中任意多个事件i A 换成其对立事件后等式仍成立.(二)典例分析:板块二:事件的独立性cba【例14】 判断下列各对事件是否是相互独立事件⑴容器内盛有5个白乒乓球和3个黄乒乓球,“从8个球中任意取出1个,取出的是白球”与“从剩下的7个球中任意取出1个,取出的还是白球”.⑵一筐内有6个苹果和3个梨,“从中任意取出1个,取出的是苹果”与“把取出的苹果放回筐子,再从筐子中任意取出1个,取出的是梨”.⑶甲组3名男生、2名女生;乙组2名男生、3名女生,今从甲、乙两组中各选1名同学参加演讲比赛,“从甲组中选出1名男生”与“从乙组中选出1名女生”.【例15】 从甲口袋摸出一个红球的概率是13,从乙口袋中摸出一个红球的概率是12,则23是( )A .2个球不都是红球的概率B .2个球都是红球的概率C .至少有一个红球的概率D .2个球中恰好有1个红球的概率【例16】 猎人在距离100m 处射击一只野兔,其命中率为12.如果第一次射击未命中,则猎人进行第二次射击,但距离为150m ;如果第二次又未命中,则猎人进行第三次射击,但在射击瞬间距离野兔为200m .已知猎人命中率与距离的平方成反比,求猎人命中野兔的概率.【例17】 如图,开关电路中,某段时间内,开关a b c 、、开或关的概率均为12,且是相互独立的,求这段时间内灯亮的概率.【例18】 甲、乙、丙三台机床各自独立地加工同一种零件,已知甲机床加工的零件是一等品而乙机床加工的零件不是一等品的概率为14,乙机床加工的零件是一等品而丙机床加工的零件不是一等品的概率为112,甲、丙两台机床加工的零件都是一等品的概率为29.分别求甲、乙、丙三台机床各自加工的零件是一等品的概率.【例19】椐统计,某食品企业一个月内被消费者投诉的次数为012,,的概率分别为0.4,0.5,0.1⑴求该企业在一个月内被消费者投诉不超过1次的概率;⑵假设一月份与二月份被消费者投诉的次数互不影响,求该企业在这两个月内共被消费者投诉2次的概率.【例20】某项选拔共有四轮考核,每轮设有一个问题,能正确回答问题者进入下一轮考核,否则即被淘汰.已知某选手能正确回答第一、二、三、四轮的问题的概率分别为45、35、2 5、15,且各轮问题能否正确回答互不影响.⑴求该选手进入第四轮才被淘汰的概率;⑵求该选手至多进入第三轮考核的概率.【例21】甲、乙二人进行一次围棋比赛,约定先胜3局者获得这次比赛的胜利,比赛结束.假设在一局中,甲获胜的概率为0.6,乙获胜的概率为0.4,各局比赛结果相互独立.已知前2局中,甲、乙各胜1局.⑴求再赛2局结束这次比赛的概率;⑵求甲获得这次比赛胜利的概率.【例22】纺织厂某车间内有三台机器,这三台机器在一天内不需工人维护的概率:第一台为0.9,第二台为0.8,第三台为0.85,问一天内:⑴3台机器都要维护的概率是多少?⑵其中恰有一台要维护的概率是多少?⑶至少一台需要维护的概率是多少?【例23】为拉动经济增长,某市决定新建一批重点工程,分为基础设施工程、民生工程和产业建设工程三类.这三类工程所含项目的个数分别占总数的12,13,16.现有3名工人独立地从中任选一个项目参与建设.求:⑴他们选择的项目所属类别互不相同的概率;⑵至少有1人选择的项目属于民生工程的概率.【例24】甲、乙两个人独立地破译一个密码,他们能译出密码的概率分别为13和14,求:⑴两个人都译出密码的概率;⑵两个人都译不出密码的概率;⑶恰有1个人译出密码的概率;⑷至多1个人译出密码的概率;⑸至少1个人译出密码的概率.【例25】从10位同学(其中6女,4男)中,随机选出3位参加测验,每位女同学能通过测验的概率均为45,每位男同学能通过测验的概率均为35,试求:⑴选出的3位同学中至少有一位男同学的概率;⑵10位同学中的女同学甲和乙及男同学丙同时被抽到,且三人中恰有二人通过测验的概率.【例26】甲、乙两个篮球运动员互不影响地在同一位置投球,命中率分别为12与p,且乙投球2次均未命中的概率为116.⑴求乙投球的命中率p;⑵求甲投球2次,至少命中1次的概率;⑶若甲、乙两人各投球2次,求两人共命中2次的概率.【例27】一汽车沿一街道行驶,需要通过三个设有红绿灯的路口,每个信号灯彼此独立工作,且红绿灯信号显示时间相等.以X表示该汽车首次遇到红灯时已通过的路口个数,求X的分布列以及该汽车首次遇到红灯时至少通过两个路口的概率.【例28】甲、乙二射击运动员分别对一目标射击1次,甲射中的概率为0.8,乙射中的概率为0.9,求:⑴2人都射中的概率?⑵2人中有1人射中的概率?⑶2人至少有1人射中的概率?⑷2人至多有1人射中的概率?【例29】(07福建)甲、乙两名跳高运动员一次试跳2米高度成功的概率分别是0.7,0.6,且每次试跳成功与否相互之间没有影响,求:⑴甲试跳三次,第三次才成功的概率;⑵甲、乙两人在第一次试跳中至少有一人成功的概率;⑶甲、乙各试跳两次,甲比乙的成功次数恰好多一次的概率.【例30】A、B两篮球队进行比赛,规定若一队胜4场则此队获胜且比赛结束(七局四胜制),A、B两队在每场比赛中获胜的概率均为12,X为比赛需要的场数,求X的分布列及比赛至少要进行6场的概率.【例31】已知5只动物中有1只患有某种疾病,需要通过化验血液来确定患病的动物.血液化验结果呈阳性的即为患病动物,呈阴性即没患病.下面是两种化验方法:方案甲:逐个化验,直到能确定患病动物为止.方案乙:先任取3只,将它们的血液混在一起化验.若结果呈阳性则表明患病动物为这3只中的1只,然后再逐个化验,直到能确定患病动物为止;若结果呈阴性则在另外2只中任取1只化验.求依方案甲、乙分别所需化验次数的分布列以及方案甲所需化验次数不少于方案乙所需化验次数的概率.【例32】为防止某突发事件发生,有甲、乙、丙、丁四种相互独立的预防措施可供采用,单独采用甲、乙、丙、丁预防措施后此突发事件不发生的概率(记为P)和所需费用如下表:预防措施甲乙丙丁P 0.90.80.70.6费用(万元)90 60 30 10预防方案可单独采用一种预防措施或联合采用几种预防措施,在总费用不超过120万元的前提下,请确定一个预防方案,使得此突发事件不发生的概率最大.【例33】某公司招聘员工,指定三门考试课程,有两种考试方案.方案一:考试三门课程,至少有两门及格为考试通过;方案二:在三门课程中,随机选取两门,这两门都及格为考试通过.假设某应聘者对三门指定课程考试及格的概率分别是a b c,,,且三门课程考试是否及格相互之间没有影响.⑴分别求该应聘者用方案一和方案二时考试通过的概率;⑵试比较该应聘者在上述两种方案下考试通过的概率的大小.(说明理由)板块三:独立重复试验与二项分布(一)知识内容1.独立重复试验如果每次试验,只考虑有两个可能的结果A 及A ,并且事件A 发生的概率相同.在相同的条件下,重复地做n 次试验,各次试验的结果相互独立,那么一般就称它们为n 次独立重复试验.n 次独立重复试验中,事件A 恰好发生k 次的概率为()C (1)k k n kn n P k p p -=-(0,1,2,,)k n =.2.二项分布若将事件A 发生的次数设为X ,事件A 不发生的概率为1q p =-,那么在n 次独立重复试验中,事件A 恰好发生k 次的概率是()C k k n kn P X k p q -==,其中0,1,2,,k n =.由于表中的第二行恰好是二项展开式0()C C C C n n n n n n q p p q p q p q p q +=++++各对应项的值,所以称这样的离散型随机变量X 服从参数为n ,p 的二项分布,记作~(,)X B n p .(二)典例分析:【例1】 某人参加一次考试,4道题中解对3道则为及格,已知他的解题正确率为0.4,则他能及格的概率为_________(保留到小数点后两位小数)【例2】 某篮球运动员在三分线投球的命中率是12,他投球10次,恰好投进3个球的概率 .(用数值表示)【例3】 接种某疫苗后,出现发热反应的概率为0.80,现有5人接种了该疫苗,至少有3人出现发热反应的概率为 .(精确到0.01)【例4】 甲乙两人进行围棋比赛,比赛采取五局三胜制,无论哪一方先胜三局则比赛结束,假定甲每局比赛获胜的概率均为23,则甲以3∶1的比分获胜的概率为( )A .827B .6481C .49D .89【例5】 一台X 型号的自动机床在一小时内不需要人照看的概为0.8000,有四台这种型号的自动机床各自独立工作,则在一小时内至多有2台机床需要工人照看的概率是( ) A .0.1536 B .0.1808 C .0.5632 D .0.9728【例6】 某商场经销某商品,顾客可采用一次性付款或分期付款购买.根据以往资料统计,顾客采用一次性付款的概率是0.6,经销一件该商品,若顾客采用一次性付款,商场获得利润200元;若顾客采用分期付款,商场获得利润250元. ⑴ 求3位购买该商品的顾客中至少有1位采用一次性付款的概率;⑵ 求3位位顾客每人购买1件该商品,商场获得利润不超过650元的概率.【例7】某万国家具城进行促销活动,促销方案是:顾客每消费1000元,便可获得奖券一张,每张奖券中奖的概率为15,若中奖,则家具城返还顾客现金200元.某顾客消费了3400元,得到3张奖券.⑴求家具城恰好返还该顾客现金200元的概率;⑵求家具城至少返还该顾客现金200元的概率.【例8】某单位为绿化环境,移栽了甲、乙两种大树各2株.设甲、乙两种大树移栽的成活率分别为56和45,且各株大树是否成活互不影响.求移栽的4株大树中:⑴至少有1株成活的概率;⑵两种大树各成活1株的概率.【例9】一个口袋中装有n个红球(5n≥且*n∈N)和5个白球,一次摸奖从中摸两个球,两个球颜色不同则为中奖.⑴试用n表示一次摸奖中奖的概率p;⑵若5n=,求三次摸奖(每次摸奖后放回)恰有一次中奖的概率;⑶记三次摸奖(每次摸奖后放回)恰有一次中奖的概率为P.当n取多少时,P最大?【例10】已知随机变量ξ服从二项分布,1~(4)3Bξ,,则(2)Pξ=等于____【例11】已知随机变量ξ服从二项分布,1~(6)3Bξ,,则(2)Pξ=等于()A.316B.4243C.13243D.80243【例12】从一批由9件正品、3件次品组成的产品中,有放回地抽取5次,每次抽一件,求恰好抽到两次次品的概率(结果保留2位有效数字).【例13】袋子A和B中装有若干个均匀的红球和白球,从A中摸出一个红球的概率是13,从B中摸出一个红球的概率为p.⑴从A中有放回地摸球,每次摸出一个,有3次摸到红球即停止.①求恰好摸5次停止的概率;②记5次之内(含5次)摸到红球的次数为ξ,求随机变量ξ的分布.⑵若A B,两个袋子中的球数之比为1:2,将A B,中的球装在一起后,从中摸出一个红球的概率是25,求p的值.【例14】设在4次独立重复试验中,事件A发生的概率相同,若已知事件A至少发生一次的概率等于6581,求事件A在一次试验中发生的概率.【例15】我舰用鱼雷打击来犯的敌舰,至少有2枚鱼雷击中敌舰时,敌舰才被击沉.如果每枚鱼雷的命中率都是0.6,当我舰上的8个鱼雷发射器同是向敌舰各发射l枚鱼雷后,求敌舰被击沉的概率(结果保留2位有效数字).【例16】某厂生产电子元件,其产品的次品率为5%,现从一批产品中的任意连续取出2件,求次品数ξ的概率分布列及至少有一件次品的概率.【例17】某公司拟资助三位大学生自主创业,现聘请两位专家,独立地对每位大学生的创业方案进行评审.假设评审结果为“支持”或“不支持”的概率都是12.若某人获得两个“支持”,则给予10万元的创业资助;若只获得一个“支持”,则给予5万元的资助;若未获得“支持”,则不予资助.求:⑴该公司的资助总额为零的概率;⑵该公司的资助总额超过15万元的概率.【例18】射击运动员李强射击一次击中目标的概率是0.8,他射击3次,恰好2次击中目标的概率是多少?【例19】设飞机A有两个发动机,飞机B有四个发动机,如有半数或半数以上的发动机没有故障,就能够安全飞行,现设各个发动机发生故障的概率p是t的函数1tp eλ-=-,其中t为发动机启动后所经历的时间,λ为正的常数,试讨论飞机A与飞机B哪一个安全?(这里不考虑其它故障).【例20】假设飞机的每一台发动机在飞行中的故障率都是1P-,且各发动机互不影响.如果至少50%的发动机能正常运行,飞机就可以顺利地飞行.问对于多大的P而言,四发动机飞机比二发动机飞机更安全?【例21】一名学生每天骑车上学,从他家到学校的途中有6个交通岗,假设他在各个交通岗遇到红灯的事件是相互独立的,并且概率都是13.⑴设ξ为这名学生在途中遇到红灯的次数,求ξ的分布列;⑵设η为这名学生在首次停车前经过的路口数,求η的分布列;⑶求这名学生在途中至少遇到一次红灯的概率.【例22】一个质地不均匀的硬币抛掷5次,正面向上恰为1次的可能性不为0,而且与正面向上恰为2次的概率相同.令既约分数ij为硬币在5次抛掷中有3次正面向上的概率,求i j.【例23】某气象站天气预报的准确率为80%,计算(结果保留到小数点后面第2位)⑴5次预报中恰有2次准确的概率;⑵5次预报中至少有2次准确的概率;⑶5次预报中恰有2次准确,且其中第3次预报准确的概率;【例24】某大厦的一部电梯从底层出发后只能在第181920,,层可以停靠.若该电梯在底层载有5位乘客,且每位乘客在这三层的每一层下电梯的概率均为13,求至少有两位乘客在20层下的概率.【例25】10个球中有一个红球,有放回的抽取,每次取一球,求直到第n次才取得()k k n≤次红球的概率.【例26】某车间为保证设备正常工作,要配备适量的维修工.设各台设备发生的故障是相互独立的,且每台设备发生故障的概率都是0.01.试求:⑴若由一个人负责维修20台,求设备发生故障而不能及时维修的概率;⑵若由3个人共同负责维修80台设备,求设备发生故障而不能及时维修的概率,并进行比较说明哪种效率高.【例27】A B,是治疗同一种疾病的两种药,用若干试验组进行对比试验.每个试验组由4只小白鼠组成,其中2只服用A,另2只服用B,然后观察疗效.若在一个试验组中,服用A有效的小白鼠的只数比服用B有效的多,就称该试验组为甲类组.设每只小白鼠服用A有效的概率为23,服用B有效的概率为12.观察3个试验组,求至少有1个甲类组的概率.(结果保留四位有效数字)【例28】已知甲投篮的命中率是0.9,乙投篮的命中率是0.8,两人每次投篮都不受影响,求投篮3次甲胜乙的概率.(保留两位有效数字)【变式】若甲、乙投篮的命中率都是0.5p=,求投篮n次甲胜乙的概率.(1n n∈N,≥)【例29】省工商局于某年3月份,对全省流通领域的饮料进行了质量监督抽查,结果显示,某种刚进入市场的x饮料的合格率为80%,现有甲,乙,丙3人聚会,选用6瓶x饮料,并限定每人喝2瓶,求:⑴甲喝2瓶合格的x饮料的概率;⑵甲,乙,丙3人中只有1人喝2瓶不合格的x饮料的概率(精确到0.01).【例30】在一次考试中出了六道是非题,正确的记“√”号,不正确的记“×”号.若某考生随手记上六个符号,试求:⑴全部是正确的概率;⑵正确解答不少于4道的概率;⑶至少答对2道题的概率.【例31】某大学的校乒乓球队与数学系乒乓球队举行对抗赛,校队的实力比系队强,当一个校现在校、系双方商量对抗赛的方式,提出了三种方案:⑴双方各出3人;⑵双方各出5人;⑶双方各出7人.三种方案中场次比赛中得胜人数多的一方为胜利. 问:对系队来说,哪一种方案最有利?(一) 知识内容二项分布的均值与方差:若离散型随机变量X 服从参数为n 和p 的二项分布,则()E X np =,()D x npq =(1)q p =-.(二)典例分析:【例32】 一盒子内装有10个乒乓球,其中3个旧的,7个新的,每次取一球,取后放回,取4次,则取到新球的个数的期望值是______.【例33】 同时抛掷4枚均匀硬币80次,设4枚硬币正好出现2枚正面向上,2枚反面向上的次数为ξ,则ξ的数学期望是( )A .20B .25C .30D .40【例34】 已知~()X B n p ,,()8E X =,() 1.6D X =,则n 与p 的值分别为( )A .10和0.8B .20和0.4C .10和0.2D .100和0.8【例35】 某服务部门有n 个服务对象,每个服务对象是否需要服务是独立的,若每个服务对象一天中需要服务的可能性是p ,则该部门一天中平均需要服务的对象个数是( )A .(1)np p -B .npC .nD .(1)p p -【例36】 已知随机变量X 服从参数为60.4,的二项分布,则它的期望()E X =_______,方差()D X =_____.【例37】 已知随机变量X 服从二项分布,且() 2.4E ξ=,() 1.44D ξ=,则二项分布的参数n ,p的值分别为__________、_________.【例38】 一个袋子里装有大小相同的3个红球和2个黄球,从中同时取出2个,则其中含红球个数的数学期望是_________.(用数字作答)板块四:二项分布的期望与方差【例39】已知(100.8)X B,,求()E X与()D X.【例40】同时抛掷4枚均匀硬币80次,设4枚硬币正好出现2枚正面向上,2枚反面向上的次数为ξ,则ξ的数学期望是()A.20B.25C.30D.40【例41】甲、乙、丙3人投篮,投进的概率分别是121 352,,.⑴现3人各投篮1次,求3人都没有投进的概率;⑵用ξ表示乙投篮3次的进球数,求随机变量ξ的概率分布及数学期望.【例42】抛掷两个骰子,当至少有一个2点或3点出现时,就说这次试验成功.⑴求一次试验中成功的概率;⑵求在4次试验中成功次数X的分布列及X的数学期望与方差.【例43】某寻呼台共有客户3000人,若寻呼台准备了100份小礼品,邀请客户在指定时间来领取.假设任一客户去领奖的概率为4%.问:寻呼台能否向每一位顾客都发出奖邀请?若能使每一位领奖人都得到礼品,寻呼台至少应准备多少礼品?【例44】某批数量较大的商品的次品率是5%,从中任意地连续取出10件,X为所含次品的个数,求()E X.【例45】某地区为下岗人员免费提供财会和计算机培训,以提高下岗人员的再就业能力,每名下岗人员可以选择参加一项培训、参加两项培训或不参加培训,已知参加过财会培训的有%60,参加过计算机培训的有75%,假设每个人对培训项目的选择是相互独立的,且各人的选择相互之间没有影响.⑴任选1名下岗人员,求该人参加过培训的概率;⑵任选3名下岗人员,记ξ为3人中参加过培训的人数,求ξ的分布和期望.【例46】设进入某商场的每一位顾客购买甲种商品的概率为0.5,购买乙种商品的概率为0.6,且购买甲种商品与购买乙种商品相互独立,各顾客之间购买商品也是相互独立的.记ξ表示进入商场的3位顾客中至少购买甲、乙两种商品中的一种的人数,求ξ的分布及期望.【例47】某班级有n人,设一年365天中,恰有班上的m(m n≤)个人过生日的天数为X,求X的期望值以及至少有两人过生日的天数的期望值.【例48】购买某种保险,每个投保人每年度向保险公司交纳保费a元,若投保人在购买保险的一年度内出险,则可以获得10000元的赔偿金.假定在一年度内有10000人购买了这种保险,且各投保人是否出险相互独立.已知保险公司在一年度内至少支付赔偿金10000元的概率为410-.10.999⑴求一投保人在一年度内出险的概率p;⑵设保险公司开办该项险种业务除赔偿金外的成本为50000元,为保证盈利的期望不小于0,求每位投保人应交纳的最低保费(单位:元).【例49】某安全生产监督部门对5家小型煤矿进行安全检查(简称安检).若安检不合格,则必须进行整改.若整改后复查仍不合格,则强行关闭.设每家煤矿安检是否合格是相互独立的,且每家煤矿整改前安检合格的概率是0.5,整改后安检合格的概率是0.8,计算(结果精确到0.01).⑴恰好有两家煤矿必须整改的概率;⑵平均有多少家煤矿必须整改;⑶至少关闭一家煤矿的概率.个工作日里均无故障,可获利润10万元;发生一次故障可获利润5万元,只发生两次故障可获利润0万元,发生三次或三次以上故障就要亏损2万元.求一周内期望利润是多少?(精确到0.001)【例51】 在汶川大地震后对唐家山堰塞湖的抢险过程中,武警官兵准备用射击的方法引爆从湖坝上游漂流而下的一个巨大的汽油罐.已知只有5发子弹,第一次命中只能使汽油流出,第二次命中才能引爆.每次射击是相互独立的,且命中的概率都是23.⑴求油罐被引爆的概率;⑵如果引爆或子弹打光则停止射击,设射击次数为ξ,求ξ的分布列及E ξ.【例52】 某商场准备在国庆节期间举行促销活动,根据市场调查,该商场决定从2种服装商品,2种家电商品,3种日用商品中,选出3种商品进行促销活动.⑴试求选出的3种商品中至少有一种是日用商品的概率; ⑵商场对选出的某商品采用的促销方案是有奖销售,即在该商品现价的基础上将价格提高150元,同时,若顾客购买该商品,则允许有3次抽奖的机会,若中奖,则每次中奖都获得数额为m 的奖金.假设顾客每次抽奖时获奖与否的概率都是12,请问:商场应将每次中奖奖金数额m 最高定为多少元,才能使促销方案对商场有利?【例53】 将一个半径适当的小球放入如图所示的容器最上方的入口处,小球将自由下落.小球在下落的过程中,将3次遇到黑色障碍物,最后落入A 袋或B 袋中.已知小球每次遇到黑色障碍物时,向左、右两边下落的概率都是12.⑴ 求小球落入A 袋中的概率()P A ;⑵ 在容器入口处依次放入4个小球,记ξ为落入A 袋中的小球个数,试求3ξ=的概率和ξ的数学期望.。
2024届全国高考(统考版)理科数学复习历年好题专项(二项分布及其应用)练习(附答案)
2024届全国高考(统考版)理科数学复习历年好题专项(二项分布及其应用)练习命题范围:条件概率、事件的相互独立性、独立重复试验与二项分布.[基础强化]一、选择题1.把一枚硬币连续抛两次,记“第一次出现正面”为事件A ,“第二次出现反面”为事件B ,则P (B |A )=( )A .12 B .14 C .16 D .182.从1,2,3,4,5中任取2个不同的数,事件A =“取到的2个数之和为偶数”,事件B =“取到的2个数均为偶数”;则P (B |A )=( )A .18B .14C .25D .123.打靶时甲每打10次,可中靶8次;乙每打10次可中靶7次,若两人同时射击一个目标,则他们都中靶的概率是( )A .35B .34C .1225D .14254.甲、乙两名学生通过某种听力测试的概率分别为12 和13 ,两人同时参加测试,其中有且只有一人能通过的概率是( )A .13B .23C .12 D .15.已知随机变量X 服从二项分布X ~B (4,12 ),则P (X =2)=( ) A .32 B .34 C .38 D .3166.已知某射击运动员,每次击中目标的概率都是0.8,则该射击运动员射击四次至少击中3次的概率为( )A .0.85B .0.819 2C .0.8D .0.757.设X ~B (4,P ),其中0<P <12 ,且P (X =2)=827 ,那么P (X =1)=( ) A .881 B .1681 C .827 D .32818.位于坐标原点的一个质点P 按下述规则移动:质点每次移动一个单位;移动的方向为向上或向右,并且向上、向右移动的概率都是12 .质点P 移动五次后位于点(2,3)的概率是( )A .(12 )5B .C 25 (12 )5C .C 35 (12 )3D .C 25 C 35 (12 )59.设X 为随机变量,X ~B (n ,13 ),若随机变量X 的数学期望E (X )=2.则P (X =2)=( ) A .1316 B .4243 C .13243 D .80243二、填空题10.甲、乙、丙三人到三个景点旅游,每人只去一个景点,设事件A 为“三个人去的景点不同”,B 为“甲独立去一个景点”,则P (A |B )=________.11.已知随机变量X ~B (n ,p ),若E (X )=30,D (X )=20,则p =________.12.[2023ꞏ江西省上饶六校联考]排球比赛的规则是5局3胜制(5局比赛中,优先取得3局胜利的一方,获得最终胜利,无平局),在某次排球比赛中,甲队在每局比赛中获胜的概率都相等,均为13 ,则最后甲队获胜的概率是________.13.设有下面四个命题p 1:若X ~B (3,12 ),则P (X ≥1)=34 ; p 2:若X ~B (3,12 ),则P (X ≥1)=78 ; p 3:若(x 2-1x )6的中间项为-20; p 4:若(x 2-1x )6的中间项为-20x 3. 其中真命题为( ) A .p 1,p 3 B .p 1,p 4 C .p 2,p 3 D .p 2,p 414.[2023ꞏ吉林省长春质检]已知随机变量X ~B (4,13 ),下列表达式正确的是( ) A .P (X =2)=481 B .E (3X +1)=4 C .D (3X +1)=8 D .D (X )=4915.设X 为随机变量,X ~B (n ,13 ),若E (X )=43 ,则P (X =3)=________.16.某个电路开关闭合后会出现红灯或绿灯闪烁,已知开关第一次闭合后出现红灯的概率为12 ,两次闭合后都出现红灯的概率为15 ,则在第一次闭合后出现红灯的条件下第二次闭合后出现红灯的概率为________.1.A P (A )=12 ,P (AB )=14 , ∴P (B |A )=P (AB )P (A )=12 . 2.B P (A )=C 23 +C 22 C 25 =25 ,P (AB )=C 22 C 25 =110 , ∴P (B |A )=P (AB )P (A )=11025=14 .3.D 由题意可知甲中靶的概率P 1=810 =45 , 乙中靶的概率P 2=710 , 又两人中靶相互独立,∴他们都中靶的概率P =P 1P 2=710 ×45 =1425 .4.C 记甲通过某种听力测试记为事件A ,乙通过某种听力测试记为事件B ,则P (A )=12 ,P (B )=13 ,∴他们中有且仅有一人通过的概率P =P (A B )+P (A B )=12 ×(1-13 )+(1-12 )×13 =12 ×23 +12 ×13 =12 .5.C P (X =2)=C 24 (12 )2×(1-12 )4-2=616 =38 .6.B 射击四次至少击中3次的概率P =C 34 ×0.83×(1-0.8)+C 44 ×0.84=0.819 2. 7.D ∵P (X =2)=C 24 P 2(1-P )2=827 , 得P =13 或P =23 ,又0<P <12 , ∴P =13 ,∴P =(X =1)=C 14 P (1-P )3=4×13 ×(23 )3=3281 . 8.B 移动五次后位于点(2,3),所以质点P 必须向上移动三次,向右移动两次. 故其概率为C 35 (12 )3ꞏ(12 )2=C 35 (12 )5=C 25 (12 )5. 9.D ∵X ~B (n ,13 ),E (X )=13 n =2,∴n =6,∴P (X =2)=C 26(13 )2(1-13 )6-2=15×2436 =5×2435 =80243 .10.12答案解析:n (B )=C 13 22=12,n (AB )=A 33 =6, P (A |B )=n (AB )n (B ) =612 =12 . 11.13 答案解析:12.1781答案解析:当经过3局甲队获胜,则概率为13 ×13 ×13 =127 , 当经过4局甲队获胜,则概率为13 ×C 23 ×(13 )2×(1-13 )=227 , 当经过5局甲队获胜,则概率为13 ×C 24 ×(13 )2×(1-13 )2=881 , 所以最后甲队获胜的概率是127 +227 +881 =1781 .13.D 若X ~B (3,12 ),则P (X ≥1)=1-P (X =0)=1-(1-12 )3=78 ,故p 2为真命题; (x 2-1x )6的中间项为C 36 (x 2)3(-1x )3=-20x 3,故p 4为真命题. 故选D.14.C 因为X ~B (4,13 ),所以E (X )=4×13 =43 ,D (X )=4×13 ×⎝⎛⎭⎫1-13 =89 ,因此E (3X +1)=3E (X )+1=3×43 +1=5,D (3X +1)=32ꞏD (X )=9×89 =8,因此选项B 、D 不正确,选项C 正确,又因为P (X =2)=C 24 (13 )2(1-13 )2=827 ,所以选项A 不正确.15.881答案解析:∵X ~B (n ,13 ),∴E (X )=n 3 =43 , ∴n =4,∴P (X =3)=C 34 ×(13 )3×(1-13 )=4×127 ×23 =881 . 16.25答案解析:设“开关第一次闭合后出现红灯”为事件A ,“第二次闭合后出现红灯”为事件B,则由题意可得P(A)=12,P(AB)=15,则“在第一次闭合后出现红灯的条件下第二次闭合出现红灯”的概率是P(B|A)=P(AB)P(A)=1512=25.。
高中数学总复习专题67 二项分布及其应用(解析版)
专题67二项分布及其应用最新考纲1.了解条件概率和两个事件相互独立的概念.2.理解n 次独立重复试验的模型及二项分布.3.能解决一些简单的实际问题.基础知识融会贯通1.条件概率及其性质(1)对于任何两个事件A 和B ,在已知事件A 发生的条件下,事件B 发生的概率叫做条件概率,用符号P (B |A )来表示,其公式为P (B |A )=P ABP A (P (A )>0).在古典概型中,若用n (A )表示事件A 中基本事件的个数,则P (B |A )=n ABn A . (2)条件概率具有的性质 ①0≤P (B |A )≤1;②如果B 和C 是两个互斥事件, 则P (B ∪C |A )=P (B |A )+P (C |A ). 2.相互独立事件(1)对于事件A ,B ,若事件A 的发生与事件B 的发生互不影响,则称事件A ,B 是相互独立事件. (2)若A 与B 相互独立,则P (B |A )=P (B ), P (AB )=P (B |A )P (A )=P (A )P (B ).(3)若A 与B 相互独立,则A 与B ,A 与B ,A 与B 也都相互独立. (4)若P (AB )=P (A )P (B ),则A 与B 相互独立. 3.独立重复试验与二项分布(1)独立重复试验是指在相同条件下可重复进行的,各次之间相互独立的一种试验,在这种试验中每一次试验只有两种结果,即要么发生,要么不发生,且任何一次试验中发生的概率都是一样的.(2)在n 次独立重复试验中,用X 表示事件A 发生的次数,设每次试验中事件A 发生的概率为p ,则P (X =k )=C k n p k (1-p )n -k(k =0,1,2,…,n ),此时称随机变量X 服从二项分布,记为X ~B (n ,p ),并称p 为成功概率.重点难点突破【题型一】条件概率【典型例题】某班组织由甲,乙,丙等5名同学参加的演讲比赛,现采用抽签法决定演讲顺序,在“学生甲不是第一个出场,学生乙不是最后一个出场”的前提下,学生丙第一个出场的概率为()A.B.C.D.【解答】解:设事件A={学生甲不是第一个出场,学生乙不是最后一个出场},事件B={学生丙第一个出场},所以P(AB)P(A),所以P(B|A).故选:A.【再练一题】在由直线x=1,y=x和x轴围成的三角形内任取一点(x,y),记事件A为y>x3,B为y>x2,则P(B|A)=()A.B.C.D.【解答】解:设S(AB)表示A和B同时发生所构成区域的面积,S(A)表示事件A发生构成区域的面积.根据条件概率的概率计算公式P(B|A).故选:D.思维升华 (1)利用定义,分别求P (A )和P (AB ),得P (B |A )=P ABP A ,这是通用的求条件概率的方法. (2)借助古典概型概率公式,先求事件A 包含的基本事件数n (A ),再在事件A 发生的条件下求事件B 包含的基本事件数,即n (AB ),得P (B |A )=n ABn A .【题型二】相互独立事件的概率【典型例题】为了提升全民身体素质,学校十分重视学生体育锻炼.某校篮球运动员进行投篮练习,若他前一球投进则后一球投进的概率为,若他前一球投不进则后一球投进的概率为.若他第1球投进的概率为,则他第2球投进的概率为( ) A .B .C .D .【解答】解:某校篮球运动员进行投篮练习,若他前一球投进则后一球投进的概率为, 若他前一球投不进则后一球投进的概率为.若他第1球投进的概率为, 则他第2球投进的概率为: p.故选:B . 【再练一题】在某段时间内,甲地不下雨的概率为P 1(0<P 1<1),乙地不下雨的概率为P 2(0<P 2<1),若在这段时间内两地下雨相互独立,则这段时间内两地都下雨的概率为( ) A .P 1P 2 B .1﹣P 1P 2C .P 1(1﹣P 2)D .(1﹣P 1)(1﹣P 2)【解答】解:在某段时间内,甲地不下雨的概率为P1(0<P1<1),乙地不下雨的概率为P2(0<P2<1),在这段时间内两地下雨相互独立,则这段时间内两地都下雨的概率为:P=(1﹣P1)(1﹣P2).故选:D.思维升华求相互独立事件同时发生的概率的方法(1)首先判断几个事件的发生是否相互独立.(2)求相互独立事件同时发生的概率的方法①利用相互独立事件的概率乘法公式直接求解;【题型三】独立重复试验与二项分布命题点1根据独立重复试验求概率【典型例题】将一枚质地均匀的硬币抛掷三次,则出现“2次正面朝上,1次反面朝上”的概率为()A.B.C.D.【解答】解:将一枚质地均匀的硬币抛掷三次,则出现“2次正面朝上,1次反面朝上”的概率是P.故选:B.【再练一题】某射手每次射击击中目标的概率是,求这名射手在10次射击中,(1)恰有8次击中目标的概率;(2)至少有8次击中目标的概率.【解答】解:(1)∵某射手每次射击击中目标的概率是,则这名射手在10次射击中恰有8次击中目标的概率为••.(2)至少有8次击中目标的概率为••••.命题点2根据独立重复试验求二项分布【典型例题】设有3个投球手,其中一人命中率为q,剩下的两人水平相当且命中率均为p(p,q∈(0,1)),每位投球手均独立投球一次,记投球命中的总次数为随机变量为ξ.(1)当p=q时,求数学期望E(ξ)及方差V(ξ);(2)当p+q=1时,将ξ的数学期望E(ξ)用p表示.【解答】解:(1)∵每位投球手均独立投球一次,当p=q时,每次试验事件发生的概率相等,∴ξ~B(3,),由二项分布的期望和方差公式得到结果∴Eξ=np=3,Dξ=np(1﹣p)=3(2)ξ的可取值为0,1,2,3.P(ξ=0)=(1﹣q)(1﹣p)2=pq2;P(ξ=1)=q(1﹣p)2+(1﹣q)C21p(1﹣p)=q3+2p2q;P(ξ=2)=qC21p(1﹣p)+(1﹣q)p2=2pq2+p3;P(ξ=3)=qp2.ξ的分布列为E【再练一题】一个盒子里有2个黑球和m个白球(m≥2,且m∈N*).现举行摸奖活动:从盒中取球,每次取2个,记录颜色后放回.若取出2球的颜色相同则为中奖,否则不中.(Ⅰ)求每次中奖的概率p(用m表示);(Ⅱ)若m=3,求三次摸奖恰有一次中奖的概率;(Ⅲ)记三次摸奖恰有一次中奖的概率为f(p),当m为何值时,f(p)取得最大值?【解答】解:(Ⅰ)∵取出2球的颜色相同则为中奖,∴每次中奖的概率p;(Ⅱ)若m=3,每次中奖的概率p,∴三次摸奖恰有一次中奖的概率为;(Ⅲ)三次摸奖恰有一次中奖的概率为f (p )3p 3﹣6p 2+3p (0<p <1),∴f ′(p )=3(p ﹣1)(3p ﹣1),∴f (p )在(0,)上单调递增,在(,1)上单调递减, ∴p时,f (p )取得最大值,即p∴m =2,即m =2时,f (p )取得最大值.思维升华 独立重复试验与二项分布问题的常见类型及解题策略(1)在求n 次独立重复试验中事件恰好发生k 次的概率时,首先要确定好n 和k 的值,再准确利用公式求概率.(2)在根据独立重复试验求二项分布的有关问题时,关键是理清事件与事件之间的关系,确定二项分布的试验次数n 和变量的概率,求得概率.基础知识训练1.已知袋子内有7个球,其中4个红球,3个白球,从中不放回地依次抽取2个球,那么在已知第一次抽到红球的条件下,第二次也抽到红球的概率是( ) A .13B .37C .16D .12【答案】D 【解析】记“第一次抽到红球”为事件A ;记“第二次抽到红球”为事件B()141747C P A C ∴==,()1143117627C C P AB C C == ()()()217427P AB P B A P A ∴===本题正确选项:D2.科目二,又称小路考,是机动车驾驶证考核的一部分,是场地驾驶技能考试科目的简称.假设甲每次通过科目二的概率均为34,且每次考试相互独立,则甲第3次考试才通过科目二的概率为( )A.164B.12131344C⎛⎫⎛⎫⨯⎪ ⎪⎝⎭⎝⎭C.21231344C⎛⎫⎛⎫⨯⎪ ⎪⎝⎭⎝⎭D.364【答案】D 【解析】甲每次通过科目二的概率均为34,且每次考试相互独立,则甲第3次考试才通过科目二的概率为:3333 1144464 P⎛⎫⎛⎫=−⨯−⨯=⎪ ⎪⎝⎭⎝⎭.故选:D.3.甲骑自行车从A地到B地,途中要经过4个十字路口,已知甲在每个十字路口遇到红灯的概率都是13,且在每个路口是否遇到红灯相互独立,那么甲在前两个十字路口都没有遇到红灯,直到第三个路口才首次遇到红灯的概率是()A.13B.427C.49D.127【答案】B 【解析】由题可知甲在每个十字路口遇到红灯的概率都是13,在每个十字路口没有遇到红灯的概率都是12133−=,所以甲在前两个十字路口都没有遇到红灯,直到第三个路口才首次遇到红灯的概率是2214 33327⨯⨯=故选B.4.甲、乙同时参加某次法语考试,甲、乙考试达到优秀的概率分别为0.6,0.7,两人考试相互独立,则甲、乙两人都未达到优秀的概率为()A.0.42B.0.28C.0.18D.0.12【答案】D【解析】由于甲、乙考试达到优秀的概率分别为0.6,0.7,则甲、乙考试未达到优秀的概率分别为0.4,0.3,由于两人考试相互独立,所以甲、乙两人都未达到优秀的概率为:0.40.30.12⨯=故答案选D5.设随机变量X服从二项分布,则函数存在零点的概率是() A.B.C.D.【答案】C 【解析】 ∵函数存存在零点,∵随机变量服从二项分布 .故选:C .6.设随机变量ξ~B(2,p),η~B(4,p),若P(ξ≥1)=,则D(η)= ( ) A . B . C . D . 【答案】C 【解析】由随机变量ξ~B (2,p ),且P (ξ≥1)=, 得P (ξ≥1)=1-P (ξ=0)=,解得.则,随机变量η的方差.本题选择C 选项.7.某次考试共有12个选择题,每个选择题的分值为5分,每个选择题四个选项且只有一个选项是正确的,A 学生对12个选择题中每个题的四个选择项都没有把握,最后选择题的得分为X 分,B 学生对12个选择题中每个题的四个选项都能判断其中有一个选项是错误的,对其它三个选项都没有把握,选择题的得分为Y 分,则()()D Y D X −的值为( ) A .12512B .3512C .274D .234【答案】A 【解析】设A 学生答对题的个数为m ,则得分5x m =(分),112,4m B ⎛⎫~ ⎪⎝⎭,()13912444D m =⨯⨯=,所以()92252544D X =⨯=,同理设B 学生答对题的个数为n ,可知112,3n B ⎛⎫~ ⎪⎝⎭,()12812333D n =⨯⨯=,所以()82002533D Y =⨯=,所以()()2002251253412D Y D X −=−=.故选A. 8.若10件产品中包含8件一等品,在其中任取2件,则在已知取出的2件中有1件不是一等品的条件下,另1件是一等品的概率为()A.1213B.1415C.1617D.1819【答案】C【解析】由题意,记事件A为“取出的2件产品中存在1件不是一等品”,事件B为“取出的2件中,1件是一等品,1件不是一等品”,则11211282282210101716 (),()4545C C C C CP A P ABC C+====,所以()16(|)()17P ABP B AP A==,故选C.9.甲、乙、丙、丁4个人进行网球比赛,首先甲、乙一组,丙、丁一组进行比赛,两组的胜者进入决赛,决赛的胜者为冠军、败者为亚军.4个人相互比赛的胜率如右表所示,表中的数字表示所在行选手击败其所在列选手的概率.那么甲得冠军且丙得亚军的概率是( )A.0.15B.0.105C.0.045D.0.21【答案】C【解析】甲、乙比赛甲获胜的概率是0.3,丙、丁比赛丙获胜的概率是0.5, 甲、丙决赛甲获胜的概率是0.3,根据独立事件的概率等于概率之积,所以, 甲得冠军且丙得亚军的概率:0.30.50.30.045⨯⨯=. 故选C.10.在体育选修课排球模块基本功(发球)测试中,计分规则如下(满分为10分):①每人可发球7次,每成功一次记1分;②若连续两次发球成功加0.5分,连续三次发球成功加1分,连续四次发球成功加1.5分,以此类推,⋯,连续七次发球成功加3分.假设某同学每次发球成功的概率为23,且各次发球之间相互独立,则该同学在测试中恰好得5分的概率是( )A .6523B .5523C .6623D .5623【答案】B 【解析】该同学在测试中恰好得5分有两种情况:四次发球成功,有两个连续得分,此时概率5243146212()()333P C ==;四次发球成功,有三个连续得分,分为连续得分在首尾和不在首尾两类,此时概率6111143223326212()()()333P C C C C =+=,所求概率56512665222333P P P =+=+=;故选B. 11.假定某人在规定区域投篮命中的概率为,现他在某个投篮游戏中,共投篮3次. (1)求连续命中2次的概率;(2)设命中的次数为X ,求X 的分布列和数学期望.【答案】(1);(2)见解析. 【解析】 (1)设表示第次投篮命中,表示第次投篮不中;设投篮连续命中2次为事件,则.(2)命中的次数可取0,1,2,3;,,,所以答:的数学期望为2.12.为了调查高中生的数学成绩与学生自主学习时间之间的相关关系,新苗中学数学教师对新入学的45名学生进行了跟踪调查,其中每周自主做数学题的时间不少于15小时的有19人,余下的人中,在高三模拟考试中数学成绩不足120分的占8,统计成绩后,得到如下的22⨯列联表:(1)请完成上面的22⨯列联表,并判断能否在犯错误的概率不超过0.01的前提下认为“高中生的数学成绩与学生自主学习时间有关”.(2)(i)按照分层抽样的方法,在上述样本中,从分数大于等于120分和分数不足120分的两组学生中抽取9名学生,设抽到的不足120分且周做题时间不足15小时的人数为X,求X的分布列(概率用组合数算式表示).(ii)若将频率视为概率,从全校大于等于120分的学生中随机抽取20人,求这些人中周做题时间不少于15小时的人数的期望和方差.附:()()()()()22n ad bc K a b c d a c b d −=++++【答案】(1)见解析;(2) (i )见解析 (ii )见解析 【解析】 (1)∵()224515161047.287 6.63525201926K ⨯−⨯=≈>⨯⨯⨯.∴能在犯错误的概率不超过0.01的前提下认为“高中生的数学成绩与学生自主学习时间有关”.(2)(i )由分层抽样知大于等于120分的有5人,不足120分的有4人,X 的可能取值为0,1,2,3,4.()416420C 0C P X ==, ()33416420C C 1C P X ⋅==, ()22416420C C 2C P X ⋅==, ()31416420C C 3C P X ⋅==, ()44420C 4C P X ==.则分布列为(ii )设从全校大于等于120分的学生中随机抽取20人,这些人中,周做题时间不少于15小时的人数为随机变量Y ,由题意可知()20,0.6Y B ~, 故()12E Y =,() 4.8D Y =.13.生蚝即牡蛎(oyster),是所有食物中含锌最丰富的,在亚热带、热带沿海都适宜蚝的养殖,我国分布很广,北起鸭绿江,南至海南岛,沿海皆可产蚝.蚝乃软体有壳,依附寄生的动物,咸淡水交界所产尤为肥美,因此生蚝成为了一年四季不可或缺的一类美食.某饭店从某水产养殖厂购进一批生蚝,并随机抽取了40只统计质量,得到的结果如下表所示.(1)若购进这批生蚝500kg ,且同一组数据用该组区间的中点值代表,试估计这批生蚝的数量(所得结果保留整数);(2)以频率估计概率,若在本次购买的生蚝中随机挑选4个,记质量在[)5,25间的生蚝的个数为X ,求X 的分布列及数学期望.【答案】(I )17544(只);(II )85. 【解析】(Ⅰ)由表中的数据可以估算妹纸生蚝的质量为()16101020123084045028.540g ⨯+⨯+⨯+⨯+⨯=, 所以购进500kg ,生蚝的数列均为50000028.517554÷≈(只); (II)由表中数据知,任意挑选一只,质量在[)5,25间的概率为25P =, X 的可能取值为0,1,2,3,4,则()()41314381232160,1562555625P X P X C ⎛⎫⎛⎫⎛⎫====== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,()()()2231423442321623962162,3,455625556255625P X C P X C P X ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫========= ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭, 所以X 的分布列为所以()216961683346256256255E X =⨯+⨯+⨯= 14.某工厂的检验员为了检测生产线上生产零件的情况,从产品中随机抽取了个进行测量,根据所测量的数据画出频率分布直方图如下:注:尺寸数据在内的零件为合格品,频率作为概率. (Ⅰ) 从产品中随机抽取件,合格品的个数为,求的分布列与期望;(Ⅱ) 从产品中随机抽取件,全是合格品的概率不小于,求的最大值;(Ⅲ) 为了提高产品合格率,现提出两种不同的改进方案进行试验.若按方案进行试验后,随机抽取件产品,不合格个数的期望是;若按方案试验后,抽取件产品,不合格个数的期望是,你会选择哪个改进方案?【答案】(Ⅰ)分布列见解析,; (Ⅱ); (Ⅲ)选择方案.【解析】(Ⅰ)由直方图可知,抽出产品为合格品的频率为,即抽出产品为合格品的概率为, 从产品中随机抽取件,合格品的个数的所有可能取值为且,, 所以的分布列为故数学期望(Ⅱ) 随机抽取件,全是合格品的概率为,依题意,故的最大值为.(Ⅲ) 按方案随机抽取产品不合格的概率是,随机抽取件产品,不合格个数;按方案随机抽取产品不合格的概率是,随机抽取件产品,不合格个数,依题意,解得,因为,所以应选择方案.15.为了引导居民合理用水,某市决定全面实施阶梯水价.阶梯水价原则上以住宅(一套住宅为一户)的月用水量为基准定价,具体划分标准如表:从本市随机抽取了10户家庭,统计了同一月份的月用水量,得到如图茎叶图:(Ⅰ)现要在这10户家庭中任意选取3户,求取到第二阶梯水量的户数X的分布列与数学期望;(Ⅱ)用抽到的10户家庭作为样本估计全市的居民用水情况,从全市依次随机抽取10户,若抽到户月用水量为一阶的可能性最大,求的值.【答案】(1)见解析(2)【解析】(Ⅰ)由茎叶图可知抽取的10户中用水量为一阶的有3户,二阶的有5户,三阶的有2户.第二阶段水量的户数的可能取值为0,1,2,3,,,所以的分布列为的数学期望.(Ⅱ)设为从全市抽取的10户中用水量为一阶的家庭户数,依题意得,,由,解得,又,所以当时概率最大.即从全市依次随机抽取10户,抽到3户月用水量为一阶的可能性最大.能力提升训练1.若已知随机变量,则____.【答案】 【解析】 随机变量,则. 故答案为:.2.某工厂生产电子元件,其产品的次品率为5%,现从一批产品中任意地连续取出2件,写出其中次品ξ的概率分布.【答案】0.9025 0.095 0.0025 【解析】 因()2,0.05B ξ,所以()02200.950.9025P C ξ===,()1210.950.050.095P C ξ==⨯=,()22220.050.0025P C ξ===,故分别填:0.9025,0.095,0.0025. 3.设随机变量1~,4X B n ⎛⎫ ⎪⎝⎭,且()34D X =,则事件“2X =”的概率为_____(用数字作答) 【答案】27128【解析】由1~,4X B n ⎛⎫⎪⎝⎭可知:()1133144164n D x n ⎛⎫=⨯⨯−== ⎪⎝⎭ 4n ∴=()222411272144128P X C ⎛⎫⎛⎫∴==⋅⋅−=⎪⎪⎝⎭⎝⎭ 本题正确结果:271284.如图,在小地图中,一机器人从点()0,0A 出发,每秒向上或向右移动1格到达相应点,已知每次向上移动1格的概率是23,向右移动1格的概率是13,则该机器人6秒后到达点()4,2B 的概率为__________.【答案】20243【解析】由题意,可得6秒内向右移动4次,向上移动2次则所求概率为:4246122033243C ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭本题正确结果:202435.一批产品的二等品率为0.02,从这批产品中每次随机取一件,有放回地抽取100次,若X 表示抽到的二等品件数,则()V X =_________. 【答案】1.96 【解析】由题意可知,该事件满足独立重复试验,是一个二项分布模型,其中,0.02p =,100n =,则()()1V x np p =−1000.020.98=⨯⨯ 1.96=,故答案为1.966.设随机变量(2,)B p ξ,(4,)B p η,若2()3E ξ=,则(3)P η≥=______.【答案】19【解析】()223E p ξ==13p ∴= 14,3B η⎛⎫∴ ⎪⎝⎭()()()34344412113343339P P P C C ηηη⎛⎫⎛⎫⎛⎫∴≥==+==⨯+= ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭ 本题正确结果:197.为响应绿色出行,某市在推出“共享单车”后,又推出“新能源分时租赁汽车”.其中一款新能源分时租赁汽车,每次租车收费的标准由两部分组成:①根据行驶里程数按1元/公里计费;②行驶时间不超过分时,按元/分计费;超过分时,超出部分按元/分计费.已知王先生家离上班地点15公里,每天租用该款汽车上、下班各一次.由于堵车、红绿灯等因素,每次路上开车花费的时间(分)是一个随机变量.现统计了50次路上开车花费时间,在各时间段内的频数分布情况如下表所示: (分)将各时间段发生的频率视为概率,每次路上开车花费的时间视为用车时间,范围为分.(1)写出王先生一次租车费用(元)与用车时间(分)的函数关系式;(2)若王先生一次开车时间不超过40分为“路段畅通”,设表示3次租用新能源分时租赁汽车中“路段畅通”的次数,求的分布列和期望;(3)若公司每月给1000元的车补,请估计王先生每月(按22天计算)的车补是否足够上、下班租用新能源分时租赁汽车?并说明理由.(同一时段,用该区间的中点值作代表)【答案】(1) (2)见解析(3) 估计王先生每月的车补够上下班租用新能源分时租赁汽车用 【解析】(1)当时,当时,.得:(2)王先生租用一次新能源分时租赁汽车,为“路段畅通”的概率可取.的分布列为或依题意(3)王先生租用一次新能源分时租赁汽车上下班,平均用车时间(分钟),每次上下班租车的费用约为(元)一个月上下班租车费用约为,估计王先生每月的车补够上下班租用新能源分时租赁汽车用.8.甲、乙两支球队进行总决赛,比赛采用五场三胜制,即若有一队先胜三场,则此队为总冠军,比赛就此结束.因两队实力相当,每场比赛两队获胜的可能性均为二分之一.据以往资料统计,第一场比赛可获得门票收入40万元,以后每场比赛门票收入比上一场增加10万元.(1)求总决赛中获得门票总收入恰好为150万元且甲获得总冠军的概率;(2)设总决赛中获得的门票总收入为,求的分布列和数学期望.【答案】(1)(2)见解析【解析】(1)已知总决赛中获得门票总收入恰好为150万元且甲获得总冠军即甲连胜3场,则其概率为;(2)随机变量X可取的值为150,220,300.又P(X=150)=2×=,P(X=220)=C××=,P(X=300)=C××=.分布列如下:所以X的数学期望为E(X)=150×+220×+300×=232.5(万元).9.在某项娱乐活动的海选过程中评分人员需对同批次的选手进行考核并评分,并将其得分作为该选手的成绩,成绩大于等于60分的选手定为合格选手,直接参加第二轮比赛,不超过40分的选手将直接被淘汰,成绩在内的选手可以参加复活赛,如果通过,也可以参加第二轮比赛.(1)已知成绩合格的200名参赛选手成绩的频率分布直方图如图,求a的值及估计这200名参赛选手的成绩平均数;(2)根据已有的经验,参加复活赛的选手能够进入第二轮比赛的概率为,假设每名选手能否通过复活赛相互独立,现有3名选手进入复活赛,记这3名选手在复活赛中通过的人数为随机变量X,求X的分布列和数学期望.【答案】(1),82;(2)见解析【解析】由题意:,估计这200名选手的成绩平均数为.由题意知, X B (3,1/3),X可能取值为0,1,2,3,,所以X的分布列为:X的数学期望为.10.为了解市民对某项政策的态度,随机抽取了男性市民25人,女性市民75人进行调查,得到以下的列联表:(1)根据以上数据,能否有97.5%的把握认为市民“支持政策”与“性别”有关?(2)将上述调查所得的频率视为概率,现在从所有市民中,采用随机抽样的方法抽取4位市民进行长期跟踪调查,记被抽取的4位市民中持“支持”态度的人数为,求的分布列及数学期望。
第12章第4讲 二项分布及其应用、正态分布(2020高考帮·数理)
对应考法 考法3 考法1
考法2
考法4
聚焦核心素养
1.命题分析预测 本讲是高考的热点,主要命题点有:(1)相互独立事件的概率, 条件概率,常以选择题、填空题的形式出现;(2)二项分布的概念、特征和相 关计算,常以解答题的形式出现;(3)正态分布的应用,如随机变量在某一区间 取值的概率,一般以解答题的形式出现.解题时注意对相关概念的理解和相 关公式的应用. 2.学科核心素养 本讲通过实际问题中二项分布、正态分布的应用考查考 生的数据分析、数学运算、数学建模素养.
3.二项分布的期望与方差:若随机变量X服从二项分布,即X~B(n,p),则
E(X)=np,D(X)=np(1-p).
考点2 正态分布(重点)
理科数学 第十二章:概率
(4)曲线与x轴之间的面积为1; (5)当σ一定时,曲线的位置由μ确定,曲线随着μ的变化而沿x轴平移,如图12-44(1)所示; (6)当μ一定时,曲线的形状由σ确定,σ越小,曲线越“瘦高”,表示总体的分布越 集中;σ越大,曲线越“矮胖”,表示总体的分布越分散,如图12-4-4(2)所示.
(2)二项分布:一般地,在n次独立重复试验中,设事件A发生的次数为X,在每
次试验中事件A发生的概率为p,则事件A恰好发生k次的概率为P(X=k)=
C
k n
pk(1-p)n-k,k=0,1,2,…,n,此时称随机变量X服从二项分布,记作X~B(n,p),并称
p为成功的概率.
理科数学 第十二章:概率
思维拓展
C.方法帮∙素养大提升 易错 混淆独立事件、互斥事件、n次独立重复试验致误
考情精解读
命题规律 聚焦核心素养
理科数学 第十二章:概率
命题规律
核心考点
1.二项分布 及其应用
2020高考数学三轮冲刺 专题 二项分布及其应用练习(含解析)
二项分布及其应用一、选择题(本大题共12小题,共60分)1. 甲乙二人争夺一场围棋比赛的冠军,若比赛为“三局两胜”制,甲在每局比赛中获胜的概率均为,且各局比赛结果相互独立,则在甲获得冠军的情况下,比赛进行了三局的概率为A. B. C. D.(正确答案)B【分析】本题考查条件概率,考查相互独立事件概率公式,属于中档题.求出甲获得冠军的概率、比赛进行了3局的概率,即可得出结论.【解答】解:由题意,甲获得冠军的概率为,其中比赛进行了3局的概率为,所求概率为,故选B.2. 小赵、小钱、小孙、小李到 4 个景点旅游,每人只去一个景点,设事件“4 个人去的景点不相同”,事件“小赵独自去一个景点”,则A. B. C. D.(正确答案)A【分析】本题考查条件概率,考查学生的计算能力,确定基本事件的个数是关键这是求小赵独自去一个景点的前提下,4 个人去的景点不相同的概率,求出相应基本事件的个数,即可得出结论,属于中档题.【解答】解:小赵独自去一个景点,有4个景点可选,则其余3人只能在小赵剩下的3个景点中选择,可能性为种所以小赵独自去一个景点的可能性为种因为4 个人去的景点不相同的可能性为种,所以.故选A.3. 2016年鞍山地区空气质量的记录表明,一天的空气质量为优良的概率为,连续两天为优良的概率为,若今天的空气质量为优良,则明天空气质量为优良的概率是A. B. C. D.(正确答案)C解:一天的空气质量为优良的概率为,连续两天为优良的概率为,设随后一天空气质量为优良的概率为p,若今天的空气质量为优良,则明天空气质量为优良,则有,,故选:C.设随后一天的空气质量为优良的概率是p,利用相互独立事件概率乘法公式能求出结果.本题考查概率的求法,是基础题,解题时要认真审题,注意相互独立事件概率乘法公式的合理运用.4. 投篮测试中,每人投3次,至少投中2次才能通过测试已知某同学每次投篮投中的概率为,且各次投篮是否投中相互独立,则该同学通过测试的概率为A. B. C. D.(正确答案)A解:由题意可知:同学3次测试满足X∽,该同学通过测试的概率为.故选:A.判断该同学投篮投中是独立重复试验,然后求解概率即可.本题考查独立重复试验概率的求法,基本知识的考查.5. 设某种动物由出生算起活到10岁的概率为,活到15岁的概率为现有一个10岁的这种动物,它能活到15岁的概率是A. B. C. D.(正确答案)C解:记该动物从出生起活到10岁为事件A,从出生起活到15岁的为事件AB,而所求的事件为,由题意可得,,由条件概率公式可得,故选C.活到15岁的概率是在活到10岁的概率的情况下发生的,故可用条件概率来求解这个题.本题考点是条件概率,理清楚事件之间的关系是解决问题的关键,属中档题.6. 在10个球中有6个红球和4个白球各不相同,不放回地依次摸出2个球,在第一次摸出红球的条件下,第2次也摸到红球的概率为A. B. C. D.(正确答案)D解:先求出“第一次摸到红球”的概率为:,设“在第一次摸出红球的条件下,第二次也摸到红球”的概率是再求“第一次摸到红球且第二次也摸到红球”的概率为,根据条件概率公式,得:,故选:D.事件“第一次摸到红球且第二次也摸到红球”的概率等于事件“第一次摸到红球”的概率乘以事件“在第一次摸出红球的条件下,第二次也摸到红球”的概率根据这个原理,可以分别求出“第一次摸到红球”的概率和“第一次摸到红球且第二次也摸到红球”的概率,再用公式可以求出要求的概率.本题考查了概率的计算方法,主要是考查了条件概率与独立事件的理解,属于中档题看准确事件之间的联系,正确运用公式,是解决本题的关键.7. 将4个不同的小球装入4个不同的盒子,则在至少一个盒子为空的条件下,恰好有两个盒子为空的概率是A. B. C. D.(正确答案)A解:根据题意,将4个不同的小球装入4个不同的盒子,有种不同的放法,若没有空盒,有种放法,有1个空盒的放法有种,有3个空盒的放法有种,则至少一个盒子为空的放法有种,故“至少一个盒子为空”的概率,恰好有两个盒子为空的放法有种,故“恰好有两个盒子为空”的概率,则则在至少一个盒子为空的条件下,恰好有两个盒子为空的概率;故选:A.根据题意,由分步计数原理计算可得“将4个不同的小球装入4个不同的盒子”的放法数目,进而由排列、组合数公式计算“没有空盒”、“有1个空盒的放法”、“有3个空盒”的放法数目,由古典概型公式计算可得“至少一个盒子为空”以及“恰好有两个盒子为空”的概率,最后由条件概率的计算公式计算可得答案.本题考查条件概率的计算,涉及排列、组合的应用,关键是求出“至少一个盒子为空”以及“恰好有两个盒子为空”的概率.8. 在区间内随机投掷一个点其坐标为,若,则A. B. C. D.(正确答案)A解:根据题意,得,因此,事件AB对应的区间长度为,结合总的区间长度为1,可得又,同理可得因此,故选:A由题意,算出且,结合条件概率计算公式即可得到的值.本题给出投点问题,求事件A的条件下B发生的概率,着重考查了条件概率及其应用的知识,属于基础题.9. 九江气象台统计,5月1日浔阳区下雨的概率为,刮风的概率为,既刮风又下雨的概率为,设A为下雨,B为刮风,那么A. B. C. D.(正确答案)B解:由题意,,,,故选B.确定,,,再利用条件概率公式,即可求得结论.本题考查概率的计算,考查条件概率,考查学生的计算能力,属于基础题.10. 从混有5张假钞的20张一百元纸币中任意抽取2张,将其中一张在验钞机上检验发现是假币,则这两张都是假币的概率为A. B. C. D.(正确答案)D解:解:设事件A表示“抽到的两张都是假钞”,事件B表示“抽到的两张至少有一张假钞”,则所求的概率即.又,,由公式.故选:D.设事件A表示“抽到的两张都是假钞”,事件B表示“抽到的两张至少有一张假钞”,所求的概率即先求出和的值,再根据,运算求得结果.本题考查概率的求法,是中档题,解题时要认真审题,注意条件概率的合理运用.11. 如图,和都是圆内接正三角形,且,将一颗豆子随机地扔到该圆内,用A表示事件“豆子落在内”,B表示事件“豆子落在内”,则A.B.C.D.(正确答案)D解:如图所示,作三条辅助线,根据已知条件这些小三角形全等,所以,故选:D.作三条辅助线,根据已知条件这些小三角形全等,即可求出.本题考查概率的计算,考查学生的计算能力,正确作出图形是关键.12. 下列说法中正确的是设随机变量X服从二项分布,则已知随机变量X服从正态分布且,则;.A. B. C. D.(正确答案)A解:设随机变量X服从二项分布,则,正确;随机变量服从正态分布,正态曲线的对称轴是.,,,正确;利用积分的几何意义,可知,正确;故不正确.故选:A.分别对4个选项,分别求解,即可得出结论.考查二项分布、正态分布以及定积分的几何意义,考查学生的计算能力,知识综合性强.二、填空题(本大题共4小题,共20分)13. 如果,当取得最大值时, ______ .(正确答案)50解:,当,由组合数知,当时取到最大值.故答案为:50.根据变量符合二项分布,写出试验发生k次的概率的表示式,在表示式中,只有是一个变量,根据组合数的性质,当时,概率取到最大值.本题考查二项分布与n次独立重复试验的模型,考查概率的最值,考查组合数的性质,是一个比较简单的综合题目.14. 抛掷红、蓝两颗骰子,设事件A为“蓝色骰子的点数为3或6”,事件B为“两颗骰子的点数之和大于8”则当已知蓝色骰子点数为3或6时,问两颗骰子的点数之和大于8的概率为______ .(正确答案)解:设x为掷红骰子得的点数,y为掷蓝骰子得的点数,则所有可能的事件与建立对应,显然:,,..故答案为:由题意知这是一个条件概率,做这种问题时,要从这样两步入手,一是做出蓝色骰子的点数为3或6的概率,二是两颗骰子的点数之和大于8的概率,再做出两颗骰子的点数之和大于8且蓝色骰子的点数为3或6的概率,根据条件概率的公式得到结果.本题考查条件概率,条件概率有两种做法,本题采用概率来解,还有一种做法是用事件发生所包含的事件数之比来解出结果,本题出现的不多,以这个题目为例,同学们要认真分析.15. 从标有1,2,3,4,5的五张卡片中,依次抽出2张,则在第一次抽到偶数的条件下,第二次抽到奇数的概率为______.(正确答案)解:在第一次抽到偶数时,还剩下1个偶数,3个奇数,在第一次抽到偶数的条件下,第二次抽到奇数的概率为.故答案为:.根据剩下4个数的奇偶性得出结论.本题考查了条件概率的计算,属于基础题.16. 若随机变量,且,则 ______ .(正确答案)解:随机变量,且,可得,正态分布曲线的图象关于直线对称.,,故答案为:.由条件求得,可得正态分布曲线的图象关于直线对称求得的值,再根据,求得的值.本题主要考查正态分布的性质,正态曲线的对称性,属于基础题.三、解答题(本大题共3小题,共40分)17. 甲、乙两人各进行3次射击,甲每次击中目标的概率为,乙每次击中目标的概率,假设两人射击是否击中目标,相互之间没有影响;每次射击是否击中目标,相互之间没有影响.Ⅰ求甲至少有1次未击中目标的概率;Ⅱ记甲击中目标的次数为,求的概率分布及数学期望;Ⅲ求甲恰好比乙多击中目标2次的概率.(正确答案)解:记“甲连续射击3次,至少1次未击中目标”为事件,由题意知两人射击是否击中目标,相互之间没有影响,射击3次,相当于3次独立重复试验,故.故甲至少有1次未击中目标的概率为;由题意知X的可能取值是0,1,2,3,,,,X的概率分布如下表:X 0 1 2 3P设甲恰比乙多击中目标2次为事件A,甲恰击中目标2次且乙恰击中目标0次为事件,甲恰击中目标 3次且乙恰击中目标 1次为事件,则,,为互斥事件甲恰好比乙多击中目标2次的概率为由题意知,两人射击是否击中目标,相互之间没有影响;甲每次击中目标的概率为,射击3次,相当于3次独立重复试验,根据独立重复试验概率公式得到结果.根据题意看出变量的可能取值,根据变量对应的事件和独立重复试验的概率公式,写出变量对应的概率,写出分布列,做出期望值.甲恰比乙多击中目标2次,包括甲恰击中目标2次且乙恰击中目标0次,甲恰击中目标3次且乙恰击中目标1次,这两种情况是互斥的,根据公式公式得到结果.本题考查离散型随机变量的分布列和期望,考查互斥事件的概率,是一个基础题,这种题目解题的关键是看清题目事件的特点,找出解题的规律,遇到类似的题目要求能做.18. 袋子A和B中装有若干个均匀的红球和白球,从A中摸出一个红球的概率是,从B中摸出一个红球的概率是现从两个袋子中有放回的摸球从A中摸球,每次摸出一个,共摸5次求:恰好有3次摸到红球的概率;设摸得红球的次数为随机变量X,求X的期望;Ⅱ从A中摸出一个球,若是白球则继续在袋子A中摸球,若是红球则在袋子B中摸球,若从袋子B中摸出的是白球则继续在袋子B中摸球,若是红球则在袋子A中摸球,如此反复摸球3次,计摸出的红球的次数为Y,求Y的分布列以及随机变量Y的期望.(正确答案)解:Ⅰ由题意知本题是在相同的条件下进行的试验,且事件发生的概率相同,可以看作独立重复试验,根据独立重复试验公式得到,恰好有3次摸到红球的概率:.由题意知从A中有放回地摸球,每次摸出一个,是独立重复试验,根据独立重复试验公式得到:,.随机变量Y的取值为0,1,2,3;且:;;;;随机变量Y的分布列是:的数学期望是.由题意知本题是在相同的条件下进行的试验,且事件发生的概率相同,可以看作独立重复试验,根据独立重复试验公式得到结果.由题意知从A中有放回地摸球,每次摸出一个,是独立重复试验,根据独立重复试验公式得到答案.由题意知计摸出的红球的次数为Y,随机变量Y的取值为0,1,2,3;由独立试验概率公式得到概率,写出分布列和期望.解决离散型随机变量分布列问题时,主要依据概率的有关概念和运算,同时还要注意题目中离散型随机变量服从什么分布,若服从特殊的分布则运算要简单的多.19. 某射击小组有甲、乙两名射手,甲的命中率为,乙的命中率为,在射击比武活动中每人射击发两发子弹则完成一次检测,在一次检测中,若两人命中次数相等且都不少于一发,则称该射击小组为“先进和谐组”;若,求该小组在一次检测中荣获“先进和谐组”的概率;计划在2011年每月进行1次检测,设这12次检测中该小组获得“先进和谐组”的次数,如果,求的取值范围.(正确答案)解:,,根据“先进和谐组”的定义可得该小组在一次检测中荣获“先进和谐组”的包括两人两次都射中,两人恰好各射中一次,该小组在一次检测中荣获“先进和谐组”的概率该小组在一次检测中荣获先进和谐组”的概率而,所以由知,解得:根据甲的命中率为,乙的命中率为,两人命中次数相等且都不少于一发,则称该射击小组为“先进和谐组”;我们可以求出该小组在一次检测中荣获“先进和谐组”的概率;由已知结合的结论,我们可以求出该小组在一次检测中荣获“先进和谐组”的概率含参数,由,可以构造一个关于的不等式,解不等式结合概率的含义即可得到的取值范围.本题考查的知识点是相互独立事件的概率乘法公式,二项分布与n次独立重复试验的模型,中关键是要列举出该小组在一次检测中荣获“先进和谐组”的所有可能性,的关键是要根据,可以构造一个关于的不等式.。
二项分布及其应用(答案)
二项分布及其应用【知识要点】一、条件概率及其性质1、条件概率一般地,设A ,B 为两个事件,且0)(>A P ,称)()()(A P AB P A B P =为在事件A 发生的条件下,事件B 发生的条件概率。
2、性质(1)任何事件的条件概率都在0和1之间,即1)(0≤≤A B P .(2)如果B 和C 是两个互斥事件,则)()()(A C P A B P A C B P ==Y 。
【例题1—1】从1,2,3,4,5中任取2个不同的数,事件A 为“取到的2个数之和为偶数”,事件B 为“取到的2个数均为偶数”,则=)(A B P ( B ) A 、81 B 、41 C 、52 D 、21 【例题1—2】在一次考试的5道题中,有3道理科题和2道文科题,如果不放回地依次抽取2道题,则在第一次抽到理科题的条件下,第二次抽到理科题的概率为 21 。
【例题1—3】某地区空气质量监测表明,一天的空气质量为优良的概率是0.75,连续两天为优良的概率是0.6,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是( A )A 、0.8B 、0.75C 、0.6D 、0.45【例题1—4】从混有5张假钞的20张一百元钞票中任意抽取2张,将其中一张在验钞机上检验发现是假钞,则这两张都是假钞的概率为( A )A 、172B 、152C 、51D 、103 【例题1—5】把一枚硬币连续抛掷两次,事件A=“第一次出现正面”,事件B=“第二次出现正面”,则=)(A B P ( A )A 、21B 、41 C 、61 D 、81 【例题1—6】1号箱中有2个白球和4个红球,2号箱中有5个白球和3个红球,现随机地从1号箱中取出一球放入2号箱,然后从2号箱随机取出一球,则在从1号箱中取出的是红球的条件下,从2号箱取出红球的概率是94 。
二、相互独立事件及n 次独立重复事件1、相互独立事件同时发生的概率(1)相互独立事件的定义:如果事件A (或B )是否发生对事件B (A )发生的概率没有影响,这样的两个事件叫做相互独立事件。
高考数学提分秘籍 必练篇 二项分布及其应用
高考数学提分秘籍 必练篇 二项分布及其应用1.已知盒中装有3只螺口与7只卡口灯泡,这些灯泡的外形与功率都相同且灯口向下放着,现需要一只卡口灯泡,电工师傅每次从中任取一只并不放回,则在他第1次抽到的是螺口灯泡的条件下,第2次抽到的是卡口灯泡的概率为( ) A.310 B.29C.78D.79解析:设事件A 为“第1次抽到是螺口灯泡”,事件B 为“第2次抽到是卡口灯泡”,则P (A )=310,P (AB )=310×79=2190=730.在已知第1次抽到螺口灯泡的条件下,第2次抽到卡口灯泡的概率为P (B |A )=P (AB )P (A )=730310=79.答案:D2.设A 、B 为两个事件,若事件A 和B 同时发生的概率为310,在事件A 发生的条件下,事件B 发生的概率为12,则事件A 发生的概率为________________.解析:由题意知,P (AB )=310,P (B |A )=12,∴P (A )=P (AB )P (B |A )=31012=35.答案:353.有一批种子的发芽率为0.9,出芽后的幼苗成活率为0.8,在这批种子中,随机抽取一粒,则这粒种子能成长为幼苗的概率为________.解析:设种子发芽为事件A ,种子成长为幼苗为事件AB (发芽,又成活为幼苗),出芽后的幼苗成活率为:P (B |A )=0.8,P (A )=0.9.根据条件概率公式P (AB )=P (B |A )·P (A )=0.9×0.8=0.72,即这粒种子能成长为幼苗的概率为0.72. 答案:0.724.国庆节放假,甲去北京旅游的概率为13,乙、丙去北京旅游的概率分别为14,15.假定三人的行动相互之间没有影响,那么这段时间内至少有1人去北京旅游的概率为( ) A.5960 B.35C.12 D.160解析:因甲、乙、丙去北京旅游的概率分别为13,14,15.因此,他们不去北京旅游的概率分别为23,34,45,所以,至少有1人去北京旅游的概率为P =1-23×34×45=35.答案:B5.如图所示的电路,有a ,b ,c 三个开关,每个开关开或关的概率 都是12,且是相互独立的,则灯泡甲亮的概率为( )A.18B.14C.12D.116解析:理解事件之间的关系,设“a 闭合”为事件A ,“b 闭合”为事件B ,“c 闭合”为事件C ,则灯亮应为事件ACB -,且A ,C ,B 之间彼此独立,且P (A )=P (B )=P (C )=12,所以P (AB -C )=P (A )·P (B )·P (C )=18. 答案:A6.甲、乙两人参加一次英语口语考试,已知在备选的10道试题中,甲能答对其中的6题,乙能答对其中的8题,规定每次考试都从备选题中随机抽出3题进行测试,至少答对2题才算合格.(1)分别求甲、乙两人考试合格的概率; (2)求甲、乙两人至少有一人考试合格的概率. 解:(1)设甲、乙两人考试合格的事件分别为A 、B ,则P (A )=413428310C C C C +213646310C C C C +=23. P (B )=213828310C C C C +=1415. (2)因为事件A 、B 相互独立,所以甲、乙两人考试均不合格的概率为P (A -B -)=P (A -)P (B -)=(1-23)(1-1415)=145,所以甲、乙两人至少有一人考试合格的概率为P =1-P (A -·B -)=1-145=4445.7.向上或向右,并且向上、向右移动的概率都是12,质点P 移动五次后位于点(2,3)的概率是( )A .(12)3B .25C (12)5C .35C (12)3D .25C 35C (12)5解析:质点由原点移动到(2,3),需要移动5次,且必须有2次向右,3次向上,所以质点的移动方法有25C 种,而每一次移动的概率都是12,所以所求的概率等于25C (12)5.答案:B8.2009年12月底,一考生参加某大学的自主招生考试,需进行书面测试,测试题中有4道题,每一道题能否正确做出是相互独立的,并且每一道题被该考生正确做出的概率都是34.(1)求该考生首次做错一道题时,已正确做出了两道题的概率;(2)若该考生至少正确作出3道题,才能通过书面测试这一关,求这名考生通过书面测试的概率.解:(1)记“该考生正确做出第i 道题”为事件A i (i =1,2,3,4),则P (A i )=34,由于每一道题能否被正确做出是相互独立的,所以这名考生首次做错一道题时,已正确做出了两道题的概率为P (A 1A 2A 3)=P (A 1)·P (A 2)·P (A 3)=34×34×14=964. (2)记“这名考生通过书面测试”为事件B ,则这名考生至少正确做出3道题,即正确做出3道题或4道题,故P (B )=34C ×(34)3×14+44C ×(34)4=189256.9.在4次独立重复试验中事件A 出现的概率相同,若事件A 至少发生一次的概率为6581,则事件A 在1次试验中出现的概率为________.解析:A 至少发生一次的概率为6581,则A 的对立事件A :事件A 都不发生的概率为1-6581=1681=(23)4,所以,A 在一次试验中出现的概率为1-23=13. 答案:1310.甲、乙两人各射击一次,击中目标的概率分别是23和34.假设两人射击是否击中目标相互之间没有影响;每人各次射击是否击中目标,相互之间也没有影响. (1)求甲射击4次,至少有1次未击中目标的概率;(2)求两人各射击4次,甲恰好击中目标2次且乙恰好击中目标3次的概率; (3)假设某人连续2次未击中目标,则中止其射击.问:乙恰好射击5次后,被中止射击的概率是多少?解:(1)记“甲连续射击4次至少有1次未击中目标”为事件A 1.由题意,射击4次,相当于作4次独立重复试验.故P (A 1)=1-P (A 1)=1-(23)4=6581,所以甲连续射击4次至少有一次未击中目标的概率为6581.(2)记“甲射击4次,恰有2次击中目标”为事件A 2,“乙射击4次,恰有3次击中目标”为事件B 2,则P (A 2)=24C ×(23)2×(1-23)42-=827,P (B 2)=34C ×(34)3×(1-34)43-=2764.由于甲、乙射击相互独立,故P (A 2B 2)=P (A 2)·P (B 2)=827×2764=18.所以两人各射击4次,甲恰有2次击中目标且乙恰有3次击中目标的概率为18.(3)记“乙恰好射击5次后被中止射击”为事件A 3,“乙第i 次射击未击中”为事件D i (i =1,2,3,4,5),则A 3=D 5D 4·D 3·(D 2D 1),且P (D i )=14.由于各事件相互独立,故P(A3)=P(D5)·P(D4)·P(D3)·P(D2D1)=14×14×34×(1-14×14)=451 024.所以乙恰好射击5次后被中止射击的概率为451 024.。
2020高考数学刷题首选卷考点测试63二项分布及其应用(理)(含解析)
考点测试63 二项分布及其应用高考概览高考在本考点的常考题型为选择题、填空题、解答题,分值为5分、12分,中等难度考纲研读1.了解条件概率和两个事件相互独立的概念 2.理解n 次独立重复试验的模型及二项分布 3.能解决一些简单的实际问题一、基础小题1.把一枚硬币连续抛两次,记“第一次出现正面”为事件A ,“第二次出现正面”为事件B ,则P (B |A )等于( )A .12B .14C .16D .18 答案 A解析 P (B |A )=P (AB )P (A )=1412=12.故选A .2.某一批花生种子,如果每1粒发芽的概率为45,那么播下3粒种子恰有2粒发芽的概率是( )A .12125B .16125C .48125D .96125 答案 C解析 P =C 23⎝ ⎛⎭⎪⎫452⎝ ⎛⎭⎪⎫151=48125.故选C .3.甲、乙两人同时报考某一所大学,甲被录取的概率为0.6,乙被录取的概率为0.7,两人是否被录取互不影响,则其中至少有一人被录取的概率为( )A .0.12B .0.42C .0.46D .0.88 答案 D解析 因为甲、乙两人是否被录取相互独立,又因为所求事件的对立事件为“两人均未被录取”,由对立事件和相互独立事件概率公式,知所求概率P =1-(1-0.6)·(1-0.7)=1-0.12=0.88.故选D .4.抛掷一枚质地均匀的骰子2次,在下列事件中,与事件“第一次得到6点”不相互独立的是( )A .第二次得到6点B .第二次的点数不超过3C .第二次的点数是奇数D .两次得到的点数和是12 答案 D解析 事件“第二次得到6点”,“第二次的点数不超过3”,“第二次的点数是奇数”与事件“第一次得到6点”均相互独立,而对于事件“两次得到的点数和是12”,由于第一次得到6点,所以第二次也是6点,故不相互独立.故选D .5.设随机变量X ~B 6,12,则P (X =3)=( )A .516B .316C .58D .38 答案 A解析 X ~B 6,12,由二项分布可得,P (X =3)=C 36123·1-123=516. 6.一位国王的铸币大臣在每箱100枚的硬币中各掺入了一枚劣币,国王怀疑大臣作弊,他用两种方法来检测.方法一:在10箱中各任意抽查一枚;方法二:在5箱中各任意抽查两枚.国王用方法一、二能发现至少一枚劣币的概率分别记为p 1和p 2,则( )A .p 1=p 2B .p 1<p 2C .p 1>p 2D .以上三种情况都有可能 答案 B解析 由已知条件可得p 1=1-9910010=1-9801100005,p 2=1-C 299C 21005=1-981005=1-9800100005,∴p 1<p 2,故选B .7.甲射击命中目标的概率是12,乙射击命中目标的概率是13,丙射击命中目标的概率是14.现在三人同时射击目标,则目标被击中的概率为( ) A .34 B .23 C .45 D .710 答案 A解析 设甲射击命中目标为事件A ,乙射击命中目标为事件B ,丙射击命中目标为事件C ,则击中目标表示事件A ,B ,C 中至少有一个发生.又P (A B C )=P (A )P (B )·P (C )=[1-P (A )][1-P (B )][1-P (C )]=1-12×1-13×1-14=14.∴三人同时射击目标,击中目标的概率P =1-P (A B C )=34.8.在4次独立重复试验中,随机事件A 恰好发生1次的概率不大于其恰好发生两次的概率,则事件A 在一次试验中发生的概率p 的取值范围是( )A .[0.4,1]B .(0,0.4]C .(0,0.6]D .[0.6,1] 答案 A解析 设事件A 在一次试验中发生的概率为p ,则 C 14p (1-p )3≤C 24p 2(1-p )2,解得p ≥0.4.故选A .9.某次知识竞赛规则如下:在主办方预设的5个问题中,选手若能连续正确回答出两个问题,即停止答题,晋级下一轮.假设某选手正确回答每个问题的概率都是0.8,且每个问题的回答结果相互独立,则该选手恰好回答了4个问题就晋级下一轮的概率等于________.答案 0.128解析 此选手恰好回答了4个问题就晋级下一轮,说明此选手第2个问题回答错误,第3、第4个问题均回答正确,第1个问题答对答错都可以.因为每个问题的回答结果相互独立,故所求的概率为1×0.2×0.82=0.128.二、高考小题10.(2015·全国卷Ⅰ)投篮测试中,每人投3次,至少投中2次才能通过测试.已知某同学每次投篮投中的概率为0.6,且各次投篮是否投中相互独立,则该同学通过测试的概率为( )A .0.648B .0.432C .0.36D .0.312 答案 A解析 由条件知该同学通过测试,即3次投篮投中2次或投中3次.故所求概率P =C 230.62(1-0.6)+C 330.63=0.648.故选A .11.(2018·全国卷Ⅲ)某群体中的每位成员使用移动支付的概率都为p ,各成员的支付方式相互独立,设X 为该群体的10位成员中使用移动支付的人数,D (X )=2.4,P (X =4)<P (X =6),则p =( )A .0.7B .0.6C .0.4D .0.3 答案 B解析 ∵D (X )=np (1-p ),∴p =0.4或p =0.6.∵P (X =4)=C 410p 4(1-p )6<P (X =6)=C 610p 6(1-p )4,∴(1-p )2<p 2,可知p >0.5.故选B . 三、模拟小题12.(2018·广西柳州调研)把一枚硬币任意抛掷三次,事件A =“至少有一次出现反面”,事件B =“恰有一次出现正面”,则P (B |A )=( )A .37B .38C .78D .18 答案 A解析 依题意得P (A )=1-123=78,P (AB )=323=38,因此P (B |A )=P (AB )P (A )=37.故选A .13.(2018·广东汕头模拟)甲、乙两人参加“社会主义价值观”知识竞赛,甲、乙两人能荣获一等奖的概率分别为23和34,甲、乙两人是否获得一等奖相互独立,则这两个人中恰有一人获得一等奖的概率为( )A .34B .23C .57D .512 答案 D解析 根据题意,恰有一人获得一等奖就是甲获得乙没有获得或甲没有获得乙获得,则所求概率是23×1-34+34×1-23=512.故选D .14.(2018·福建厦门二模)袋中装有2个红球,3个黄球,有放回地抽取3次,每次抽取1球,则3次中恰有2次抽到黄球的概率是( )A .25B .35C .18125D .54125 答案 D解析 袋中装有2个红球,3个黄球,有放回地抽取3次,每次抽取1球,每次抽到黄球的概率P 1=35,∴3次中恰有2次抽到黄球的概率是P =C 233521-35=54125.15.(2018·河北唐山二模)甲、乙等4人参加4×100米接力赛,在甲不跑第一棒的条件下,乙不跑第二棒的概率是( )A .29B .49C .23D .79 答案 D解析 甲不跑第一棒共有A 13·A 33=18种情况,甲不跑第一棒且乙不跑第二棒共有两类:(1)乙跑第一棒,共有A 33=6种情况;(2)乙不跑第一棒,共有A 12·A 12·A 22=8种情况.∴甲不跑第一棒的条件下,乙不跑第二棒的概率为6+818=79.故选D .16.(2018·江西南昌模拟)口袋中装有大小形状相同的红球2个,白球3个,黄球1个,甲从中不放回地逐一取球,已知第一次取得红球,则第二次取得白球的概率为________.答案 35解析 口袋中装有大小形状相同的红球2个,白球3个,黄球1个,甲从中不放回地逐一取球,设事件A 表示“第一次取得红球”,事件B 表示“第二次取得白球”,则P (A )=26=13,P (AB )=26×35=15,∴第一次取得红球后,第二次取得白球的概率为P (B |A )=P (AB )P (A )=1513=35.一、高考大题1.(2018·全国卷Ⅰ)某工厂的某种产品成箱包装,每箱200件,每一箱产品在交付用户之前要对产品作检验,如检验出不合格品,则更换为合格品.检验时,先从这箱产品中任取20件作检验,再根据检验结果决定是否对余下的所有产品作检验,设每件产品为不合格品的概率都为p(0<p<1),且各件产品是否为不合格品相互独立.(1)记20件产品中恰有2件不合格品的概率为f(p),求f(p)的最大值点p0;(2)现对一箱产品检验了20件,结果恰有2件不合格品,以(1)中确定的p0作为p的值.已知每件产品的检验费用为2元,若有不合格品进入用户手中,则工厂要对每件不合格品支付25元的赔偿费用.①若不对该箱余下的产品作检验,这一箱产品的检验费用与赔偿费用的和记为X,求E(X);②以检验费用与赔偿费用和的期望值为决策依据,是否该对这箱余下的所有产品作检验?解(1)20件产品中恰有2件不合格品的概率为f(p)=C220p2(1-p)18.因此f′(p)=C220[2p(1-p)18-18p2(1-p)17]=2C220p(1-p)17(1-10p).令f′(p)=0,得p=0.1.当p∈(0,0.1)时,f′(p)>0;当p∈(0.1,1)时,f′(p)<0.所以f(p)的最大值点为p0=0.1.(2)由(1)知,p=0.1.①令Y 表示余下的180件产品中的不合格品件数,依题意知Y ~B (180,0.1),X =20×2+25Y ,即X =40+25Y .所以E (X )=E (40+25Y )=40+25E (Y )=490.②如果对余下的产品作检验,则这一箱产品所需要的检验费为400元. 由于E (X )>400,故应该对余下的产品作检验.2.(2016·山东高考)甲、乙两人组成“星队”参加猜成语活动,每轮活动由甲、乙各猜一个成语.在一轮活动中,如果两人都猜对,则“星队”得3分;如果只有一人猜对,则“星队”得1分;如果两人都没猜对,则“星队”得0分.已知甲每轮猜对的概率是34,乙每轮猜对的概率是23;每轮活动中甲、乙猜对与否互不影响,各轮结果亦互不影响.假设“星队”参加两轮活动,求:(1)“星队”至少猜对3个成语的概率;(2)“星队”两轮得分之和X 的分布列和数学期望E (X ).解 (1)记事件A :“甲第一轮猜对”,记事件B :“乙第一轮猜对”,记事件C :“甲第二轮猜对”,记事件D :“乙第二轮猜对”,记事件E :“‘星队’至少猜对3个成语”.由题意,E =ABCD +A BCD +A B CD +AB C D +ABC D , 由事件的独立性与互斥性,得P (E )=P (ABCD )+P (A BCD )+P (A B CD )+ P (AB C D )+P (ABC D )=P (A )P (B )P (C )P (D )+ P (A )P (B )P (C )P (D )+P (A )P (B )P (C )P (D )+ P (A )P (B )P (C )P (D )+P (A )P (B )P (C )P (D )=34×23×34×23+2×⎝ ⎛14×23×34×23+34×13×⎭⎪⎫34×23=23. 所以“星队”至少猜对3个成语的概率为23.(2)由题意,随机变量X 可能的取值为0,1,2,3,4,6. 由事件的独立性与互斥性,得P (X =0)=14×13×14×13=1144,P (X =1)=2×34×13×14×13+14×23×14×13=10144=572,P (X =2)=34×13×34×13+34×13×14×23+14×23×34×13+14×23×14×23=25144,P (X =3)=34×23×14×13+14×13×34×23=12144=112,P (X =4)=2×34×23×34×13+34×23×14×23=60144=512,P (X =6)=34×23×34×23=36144=14.可得随机变量X 的分布列为所以数学期望E (X )=0×1144+1×572+2×25144+3×112+4×512+6×14=236. 二、模拟大题3.(2018·山西太原二模)某商场举行有奖促销活动,顾客购买一定金额的商品后即可抽奖.抽奖规则如下:Ⅰ.抽奖方案有以下两种:方案a :从装有2个红球、3个白球(仅颜色不同)的甲袋中随机摸出2个球,若都是红球,则获得奖金30元;否则,没有奖金,兑奖后将摸出的球放回甲袋中;方案b :从装有3个红球、2个白球(仅颜色不同)的乙袋中随机摸出2个球,若都是红球,则获得奖金15元;否则,没有奖金,兑奖后将摸出的球放回乙袋中.Ⅱ.抽奖条件:顾客购买商品的金额满100元,可根据方案a 抽奖一次;满150元,可根据方案b 抽奖一次(例如某顾客购买商品的金额为260元,则该顾客可以根据方案a 抽奖两次或方案b 抽奖一次或方案a ,b 各抽奖一次).已知顾客A 在该商场购买商品的金额为350元.(1)若顾客A 只选择方案a 进行抽奖,求其所获奖金的期望; (2)要使所获奖金的期望值最大,顾客A 应如何抽奖? 解 (1)按方案a 抽奖一次,获得奖金概率P =C 22C 25=110.顾客A 只选择方案a 进行抽奖,则其可以按方案a 抽奖三次.此时中奖次数服从二项分布B 3,110.设所得奖金为w 1元,则所获奖金的期望Ew 1=3×110×30=9.即顾客A 所获奖金的期望为9元.(2)按方案b 抽奖一次,获得奖金的概率P 1=C 23C 25=310.若顾客A 按方案a 抽奖两次,按方案b 抽奖一次,则由方案a 中奖的次数服从二项分布B 12,110,由方案b 中奖的次数服从二项分布B 21,310.设所得奖金为w 2元,则所获奖金的期望Ew 2=2×110×30+1×310×15=10.5.若顾客A 按方案b 抽奖两次,则中奖的次数服从二项分布B 32,310.设所得奖金为w 3元,则所获奖金的期望Ew 3=2×310×15=9.结合(1)可知,Ew 1=Ew 3<Ew 2.所以顾客A 应该按方案a 抽奖两次,按方案b 抽奖一次.4.(2018·东北三省四市一模)近两年双11网购受到广大市民的热捧.某网站为了答谢老顾客,在双11当天零点整,每个金冠买家都可以免费抽取200元或者500元代金券一张,中奖率分别是23和13.每人限抽一次,100%中奖.小张、小王、小李、小赵4个金冠买家约定零点整抽奖.(1)试求这4人中恰有1人抽到500元代金券的概率;(2)这4人中抽到200元、500元代金券的人数分别用X ,Y 表示,记ξ=XY ,求随机变量ξ的分布列与数学期望.解 (1)设“这4人中恰有i 人抽到500元代金券”为事件A i ,其中i =0,1,2,3,4, 则P (A 1)=C 14131233=3281.(2)易知ξ可取0,3,4,P (ξ=0)=P (A 0)+P (A 4)=C 04130234+C 44134230=1681+181=1781, P (ξ=3)=P (A 1)+P (A 3)=C 14131233+C 34133231=3281+881=4081. P (ξ=4)=P (A 2)=C 24132232=2481. ξ的分布列为E (ξ)=0×1781+3×4081+4×2481=83.5.(2018·广东肇庆二模)某工厂对A ,B 两种型号的产品进行质量检测,从检测的数据中随机抽取6次,记录数据如下:A :8.3,8.4,8.4,8.5,8.5,8.9;B :7.5,8.2,8.5,8.5,8.8,9.5.(注:数值越大表示产品质量越好)(1)若要从A ,B 中选一种型号产品投入生产,从统计学角度考虑,你认为生产哪种型号产品合适?简单说明理由;(2)若将频率视为概率,对产品A 今后的4次检测数据进行预测,记这4次数据中不低于8.5分的次数为ξ,求ξ的分布列及期望E (ξ).解 (1)A 产品的平均数:x A =8.3+8.4+8.4+8.5+8.5+8.96=8.5.B 产品的平均数: x B =7.5+8.2+8.5+8.5+8.8+9.56=8.5.A 产品的方差:s 2A =(8.3-8.5)2+(8.4-8.5)2+(8.4-8.5)2+(8.5-8.5)2+(8.5-8.5)2+(8.9-8.5)26≈0.037.B 产品的方差:s 2B =(7.5-8.5)2+(8.2-8.5)2+(8.5-8.5)2+(8.5-8.5)2+(8.8-8.5)2+(9.5-8.5)26≈0.363.因为x A =x B ,s 2A <s 2B ,所以两种产品的质量平均水平一样,A 产品的质量更稳定,选择A 产品合适.(2)ξ的所有可能取值为0,1,2,3,4, 数据不低于8.5的频率为36=12,将频率视为概率,则ξ~B 4,12,P (ξ=k )=C k412k 1-124-k =C k 4124(k =0,1,2,3,4). ∴ξ的分布列如下:E (ξ)=0×116+1×14+2×38+3×14+4×116=2或者E (ξ)=4×12=2.。
2020高考数学(理)必刷试题(解析版)
2020高考模拟考试数学(理)试题、单选题1,设集合A x 1 x 2 , B 1,0,1,2,3,则AI B ()A. {-1,0,1,2} B, 0,1,2C. 0,1D. x 1 x 2,或x 3【答案】B【解析】直接根据交集的概念进行运算即可.【详解】因为A x 1 x 2 , B 1,0,1,2,3 ,所以AI B {0,1,2}.故选:B【点睛】本题考查了交集的运算,属于基础题.2.若向量a 4,2 , b 6,k ,则a//b的充要条件是()A. k 12B. k 12C. k 3D. k 3【答案】D【解析】直接根据向量共线的坐标表示即可得到.【详解】因为向量a 4,2 , b 6,k ,所以a//b 4k 2 6 0 k 3.故选:D,【点睛】本题考查了向量共线的坐标表示,充要条件,属于基础题.向量共线的坐标表示应该熟练掌握.3.在30名运动员和6名教练员中用分层抽样的方法共抽取n人参加新闻发布会,若抽取的n人中教练员只有1人,则n ()A. 5B. 6C. 7D. 8【答案】B【解析】先求得抽样比,再用总体中教练员人数乘以抽样比得样本中教练员人数列方程可解得.【详解】依题意可得抽样比为-------- --- ,30 6 36所以有6 — 1,解得n 6.36故选:B【点睛】本题考查了分层抽样,利用抽样比解决是解题关键,属于基础题.4.己知直线a , b , l ,平面,,下列结论中正确的是()A.若a,b ,l a,l b,则lB.若a ,b//a,则b//C.若,a ,则aD.若// ,l ,则l【答案】D【解析】根据直线与平面垂直,直线与平面平行,平面与平面平行和垂直的的判定,性质逐个分析可得答案.【详解】对于A,根据直线与平面垂直的判定定理,还差直线a与直线b相交这个条件,故A不正确;对于B,直线b也有可能在平面内,故B不正确;对于C ,直线a可能在平面内,可能与平面平行,可能与平面相交但不垂直;故C不正确;对于D在平面内取两条相交直线m,n ,则l m,l n ,过m, n分别作平面与平面相交于m',n',则m'//m,n'//n,且m',n'必相交,所以l m',l n',所以l ,故D正确.故选:D【点睛】本题考查了直线与平面平行,垂直,平面与平面平行,垂直的判定,性质,熟练掌握线面,面面平行与垂直的判定与性质是解题关键,属于基础题.5.若a 0.30.2, b log 0.1 2 , c 0.3 0.1,则a , b, c的大小关系为()A. cabB. bacC. acbD. bca【答案】A【解析】根据对数的性质可得b 0,根据指数函数y 0.3x的单调性可得c a 0,由此可得答案.【详解】因为0 0.1 1,2>1,所以b log o.i2 0 ,因为0 0.3 1,所以指数函数y 0.3x为递减函数又-0.1<0.2,所以0.3 0.10.30.20,即c a 0,综上所述,c a b.故选:A【点睛】本题考查了利用对数的性质指数函数的单调性比较大小属于基础题61 ... ......... .6.二项式x 1的展开式中,常数项是( )xA. 20B. 120C. 15D. 30【答案】A【解析】写出二项展开式的通项公式后,令x=0,解得r 3,再根据通项公式可求得常数项. 【详解】6因为二项式X - 的展开式的通项公式为T r1 C6x6 r (1)r C6x6 2r x x(r 0,123,4,5,6)令6 2r 0,解得r 3,1 6......... o 6 5 4所以二项式x - 的展开式中的常数项为C;-------------------- 20.x 3 2 1故选:A【点睛】本题考查了利用二项展开式的通项公式求指定项,利用通项公式是解题关键,属于基础题.7 .已知直线y x 3与圆x2y22x 2y 0相交于A, B两点,则AB ()A . B. 33 C. 6B D . 2【答案】C【解析】由圆的方程可得圆心坐标和半径,根据点到直线的距离求得圆心到直线的距离根据勾股定理可求得答案.【详解】由x 2 y 2 2x 2y 0得(x 1)2 (y 1)2 2 ,所以圆心为(1,1),半径为J2, 由 y x3 得 x y 3 0,由圆心到直线的距离公式得|11 3|二.1 12 '由勾股定理可得 §(2)2(22)2 /,所以| AB | 6 .故选:C. 【点睛】本题考查了根据圆的方程求圆心坐标和半径 ,点到直线的距离公式,圆中的勾股定理 利用圆中的勾股定理是解题关键.8 .斗拱是中国古典建筑最富装饰性的构件之一,并为中国所特有,图一图二是斗拱实 物图,图三是斗拱构件之一的 斗”的几何体,本图中的斗是由棱台与长方体形凹槽(长方体去掉一个小长方体) 组成.若棱台两底面面积分别是 400cm2, 900cm 2,高为9cm, 长方体形凹槽的体积为 4300cm 3,斗的密度是0.70g/cm 3 .那么这个斗的质量是 () 注:台体体积公式是 V 1 S SS S h .3S-图二图三A. 3990gB. 3010gC. 7000gD. 6300g【答案】C【解析】根据台体的体积公式求得台体体积,再加上长方体形凹槽的体积得这个斗的体积,然后乘以这个斗的密度可得这个斗的质量 【详解】1C-(400400 900 900) 9 5700 cm 33所以这个斗的质量为 5700 4300 10000 cm 3, 所以这个斗的质量为10000 0.70 7000 g . 故选:C.本题考查了棱台的体积公式,属于基础题x 0,9,若实数x, y 满足y 1, ,则2x y 的最大值为()x 5y 1 0.【解析】作出可行域,根据斜率关系找到最优解,代入最优解的坐标可得答案 【详解】所以 M(4, 1),故选:D根据棱台的体积公式可得棱台的体积为A . 2B. 0C. 7D. 9将目标函数化为斜截式为y 2x z ,由图可知最优解为M ,联立 x 5y 1 y 1,得 x 4, y 1 ,将 x 4, y1代入z 2x y ,得4所2 4 ( 1) 9.作出可行域如图所示1 210 .已知函数f x —ax 2ax In x 在区间0,上为增函数,则实数 a 的取值2范围是( )A. 0,1B.0,C.1,D. 1,1【答案】B1【解析】将问题转化为f'(x ) 0,即a ----------- ------ 在区间(0,)上恒成立,再根据x 2 2x二 ---- 0可得答案.x 2 2x【详解】1 2 _ 因为 f x ax 2ax In x , 2“一 1 所以 f '(x) ax 2a —, x1 2因为函数f x -ax 2ax In x 在区间 0, 上为增函数 2所以a 0. 故选:B. 【点睛】本题考查了利用导数研究函数的单调性 ,考查了不等式恒成立问题,考查了转化划归思想属于中档题211 .已知A 是双曲线D : x 2— 1右支上一点,B 、C 分别是双曲线 D 的左、右焦 35 ...... 一 一 sin 2B点。
2020届高考数学(理)大一轮复习增分练:二项分布及其应用 含解析
2020届高考数学(理)大一轮复习增分练:二项分布及其应用1.小明同学喜欢打篮球,假设他每一次投篮投中的概率为23,则小明投篮四次,恰好两次投中的概率是( )A.481B.881C.427D.827解析:选 D.假设小明每一次投篮投中的概率为23,满足X ~B ⎝ ⎛⎭⎪⎫4,23,投篮四次,恰好两次投中的概率P =C 24⎝ ⎛⎭⎪⎫232⎝ ⎛⎭⎪⎫132=827.故选D.2.(2019·石家庄摸底考试)某种电路开关闭合后会出现红灯或绿灯闪烁,已知开关第一次闭合后出现红灯的概率为12,两次闭合后都出现红灯的概率为15,则开关在第一次闭合后出现红灯的条件下第二次闭合后出现红灯的概率为( )A.110B.15C.25D.12解析:选 C.设“开关第一次闭合后出现红灯”为事件A ,“开关第二次闭合后出现红灯”为事件B ,则“开关两次闭合后都出现红灯”为事件AB ,“开关在第一次闭合后出现红灯的条件下第二次闭合后出现红灯”为事件B |A ,由题意得P (B |A )=P (AB )P (A )=25,故选C.3.在一个质地均匀的小正方体的六个面中,三个面标0,两个面标1,一个面标2,将这个小正方体连续掷两次,若向上的数字的乘积为偶数,则该乘积为非零偶数的概率为( )A.14B.89C.116D.532解析:选D.两次数字乘积为偶数,可先考虑其反面——只需两次均出现1向上,故两次数字乘积为偶数的概率为1-⎝ ⎛⎭⎪⎫262=89;若乘积非零且为偶数,需连续两次抛掷小正方体的情况为(1,2)或(2,1)或(2,2),概率为13×16×2+16×16=536.故所求条件概率为53689=532. 4.(2019·广西三市第一次联考)某机械研究所对新研发的某批次机械元件进行寿命追踪调查,随机抽查的200个机械元件情况如下:使用寿命在30天以上的概率为( )A.1316B.2764C.2532D.2732解析:选D.由表可知元件使用寿命在30天以上的概率为150200=34,则所求概率为C 23⎝ ⎛⎭⎪⎫342×14+⎝ ⎛⎭⎪⎫343=2732.5.(2018·高考全国卷Ⅲ)某群体中的每位成员使用移动支付的概率都为p, 各成员的支付方式相互独立.设X 为该群体的10位成员中使用移动支付的人数,DX =2.4,P (X =4)<P (X =6),则p =( )A .0.7B .0.6C .0.4D .0.3解析:选B.由题意知,该群体的10位成员使用移动支付的概率分布符合二项。
高考数学复习题库 二项分布及其应用
高考数学复习题库二项分布及其应用一.选择题1.甲.乙两地都位于长江下游,根据天气预报的纪录知,一年中下雨天甲市占20%,乙市占18%,两市同时下雨占12%.则甲市为雨天,乙市也为雨天的概率为( )A.0.6B.0.7C.0.8D.0.66 解析甲市为雨天记为事件A,乙市为雨天记为事件B,则P(A)=0.2,P(B)=0.18, P(AB)=0.12,∴P(B|A)===0.6. 答案 A2. 投掷一枚均匀硬币和一枚均匀骰子各一次,记“硬币正面向上”为事件A,“骰子向上的点数是3”为事件B,则事件A,B 中至少有一件发生的概率是( )A. B. C. D. 解析本题涉及古典概型概率的计算.本知识点在考纲中为B级要求.由题意得P(A)=,P(B)=,则事件A,B至少有一件发生的概率是1-P()·P()=1-×=. 答案 C3.在4次独立重复试验中,随机事件A恰好发生1次的概率不大于其恰好发生两次的概率,则事件A在一次试验中发生的概率p的取值范围是( ). A.[0.4,1] B.(0,0.4] C.(0,0.6]D.[0.6,1] 解析设事件A发生的概率为p,则Cp(1-p)3≤Cp2(1-p)2,解得p≥0.4,故选A. 答案 A4.一位国王的铸币大臣在每箱100枚的硬币中各掺入了一枚劣币,国王怀疑大臣作弊,他用两种方法来检测.方法一:在10箱中各任意抽查一枚;方法二:在5箱中各任意抽查两枚.国王用方法一.二能发现至少一枚劣币的概率分别记为p1和p2.则( ). A.p1=p2 B.p1p2 D.以上三种情况都有可能解析p1=1-10=1-10 =1-5, p2=1-5=1-5 则p1300 级别Ⅰ Ⅱ Ⅲ1 Ⅲ2 Ⅳ1 Ⅳ2 Ⅴ 状况优良轻微污染轻度污染中度污染中度重污染重度污染对某城市一年(365天)的空气质量进行监测,获得的API数据按照区间[0,50],(50,100],(100,150],(150,200],(200,250],(250,300]进行分组,得到频率分布直方图如下图.(1)求直方图中x的值;(2)计算一年中空气质量为良或轻微污染的天数;(3)求该城市某一周至少有2天的空气质量为良或轻微污染的概率. (结果用分数表示.已知57=78125,27=128,++++=,365=73×5)解析(1)x=-=.(2)×50×365=219.(3)每天空气质量为良或轻微污染的概率为P,则P==,设X 是一周内空气质量为良或轻微污染的天数则X~B, P(X=0)=C7, P(X=1)=C6, P=1-7-==.16.学校游园活动有这样一个游戏项目:甲箱子里装有3个白球.2个黑球,乙箱子里装有1个白球.2个黑球,这些球除颜色外完全相同.每次游戏从这两个箱子里各随机摸出2个球,若摸出的白球不少于2个,则获奖.(每次游戏结束后将球放回原箱)(1)求在1次游戏中,(ⅰ)摸出3个白球的概率;(ⅱ)获奖的概率;(2)求在2次游戏中获奖次数X的分布列及数学期望E(X). 解析(1)(ⅰ)设“在1次游戏中摸出i个白球”为事件Ai(i=0,1,2,3),则P(A3)=·=. (ⅱ)设“在1次游戏中获奖”为事件B,则B=A2∪A3. 又P(A2)=·+·=,且A2,A3互斥,所以P(B)=P(A2)+P(A3)=+=.(2)由题意可知X的所有可能取值为0,1,2. 由于X服从二项分布,即X~B. ∴P(X=0)=2=, P(X=1)=C×=, P(X=2)=2=. 所以X的分布列是 X 012 P X的数学期望E(X)=0×+1×+2×=.。
2020年高考数学(理)必刷试卷2(解析版)
2020年高考必刷卷(新课标卷)02数学(理)(本试卷满分150分,考试用时120分钟)注意事项:1.答卷前,考生务必将自己的姓名、考生号、考场号和座位号填写在答题卡上。
用2B 铅笔将试卷类型(B )填涂在答题卡的相应位置上。
2.作答选择题时,选出每小题答案后,用2B 铅笔在答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其它答案。
答案不能答在试卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。
不按以上要求作答无效。
4.考生必须保证答题卡的整洁。
考试结束后,将试卷和答题卡一并交回。
第Ⅰ卷(选择题)一、单选题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设i 是虚数单位,如果复数的实部与虚部互为相反数,那么实数a 的值为( )A .B .-C .3D .-3 【答案】C 【解析】 因为,由实部与虚部是互为相反数得,解得,故选C.考点:复数的概念与运算.2.已知集合2{|20},{|lg(1)}A x x x x y x =-<==-,则A B =U A .(0,)+∞ B .(1,2)C .(2,)+∞D .(,0)-∞【答案】A 【解析】{02}A x x =<<,{1}B x x =>,{0}A B x x ⋃=>,选A.3.已知0.3log 6a =,2log 6b =,则() A .22b a ab b a ->>+ B .22b a b a ab ->+> C .22b a b a ab +>-> D .22ab b a b a >->+【答案】B 【解析】 【分析】首先得到0a <,0b >即0ab <,根据对数的运算法则可得121a b +<,即21b a ab+<,进而可得2b a ab +>,通过作差比较可得22b a b a ->+,综合可得结果.【详解】因为0.3log 60a =<,2log 60b =>,所以0ab <, 因为66612log 0.32log 2log 1.2a b +=+⨯=6log 61<=,即21b aab+<, 又0ab <,所以2b a ab +>,又(2)(2)40b a b a a --+=->, 所以22b a b a ->+,所以22b a b a ab ->+>,故选B . 【点睛】本题主要考查了利用不等式的性质比较大小,判断出ab 的符号以及根据对数的运算的性质得到21b aab+<是解题的关键,属于中档题. 4.下列四个命题中错误的是( ) A .回归直线过样本点的中心(),x yB .两个随机变量的线性相关性越强,则相关系数的绝对值就越接近于1C .在回归直线方程ˆ0.20.8yx =+k ,当解释变量x 每增加1个单位时,预报变量ˆy 平均增加0.2个单位D .若()()122,0,2,0F F -,124PF PF a a+=+,(常数0a >),则点P 的轨迹是椭圆 【答案】D 【解析】A. 回归直线过样本点的中心(),x y ,正确;B. 两个随机变量的线性相关性越强,则相关系数的绝对值就越接近于1,正确;C. 在回归直线方程ˆ0.20.8y x =+中,当解释变量x 每增加1个单位时,预报变量ˆy平均增加0.2个单位,正确;D. 若12124(2,0),(2,0),(0)F F PF PF a a a-+=+>,则点P 的轨迹是椭圆,因为当2a =时,12PF PF +=4,P 的轨迹是线段12F F ,故错误,所以选D.5.函数()()21()1x x e f x x e -=+的部分图象大致为( )A .B .C .D .【答案】B 【解析】 【分析】根据函数()f x 的奇偶性和在0x >时函数值的特点,对选项进行排除,由此得出正确选项. 【详解】 因为()()21()1x x e f x x e -=+是偶函数,所以排除A ,C ,当0x >时,()0f x >恒成立,所以排除D.故选:B. 【点睛】本题考查函数的图像与性质,考查数形结合的数学思想以及推理论证能力.6.若mn 、表示空间中两条不重合的直线,αβ、表示空间中两个不重合的平面,则下列命题中正确的是( )A .若//,m n n α⊂,则//m αB .若,,//m n αβαβ⊂⊂,则//m nC .若,,m n m n αβ⊥⊥⊥,则αβ⊥D .若,,m n αβαβ⊥⊂⊂,则m n ⊥【解析】 【分析】利用空间位置关系的判断及性质定理进行判断或举反例判断. 【详解】对于A ,若n ⊂平面α,显然结论错误,故A 错误;对于B ,若m ⊂α,n ⊂β,α∥β,则m ∥n 或m ,n 异面,故B 错误;对于C ,若m ⊥n ,m ⊥α,n ⊥β,则α⊥β,根据面面垂直的判定定理进行判定,故C 正确; 对于D ,若α⊥β,m ⊂α,n ⊂β,则m ,n 位置关系不能确定,故D 错误. 故选:C . 【点睛】本题考查了空间线面位置关系的性质与判断,属于中档题.7.《莱茵德纸草书》是世界上最古老的数学著作之一,书中有一道这样的题目:把120个面包分给5个人,使每人所得成等差数列,且使较多的三份之和的13是较少的两份之和,则最少的一份面包个数为( ) A .46 B .12C .11D .2【答案】B 【解析】 【分析】将问题转化为等差数列的问题,通过()3451213a a a a a ++=+和5120S =,求解出1a 即可. 【详解】设每个人所得面包数,自少而多分别为:12345,,,,a a a a a 且成等差数列 由题意可知:()3451213a a a a a ++=+,5120S = 设公差为d ,可知:()111139235451202a d a d a d ⎧+=+⎪⎪⎨⨯⎪+=⎪⎩1126a d =⎧⇒⎨=⎩ 所以最少的一份面包数为12 本题正确选项:B本题考查利用等差数列求解基本项的问题,关键在于将文字描述的内容转化为等差数列中的关系式,利用通项公式和求和公式求解出基本项. 8.已知函数()sin()(0,)2f x x πωϕωϕ=+><的最小正周期为4π,且()13f π=,则()f x 的一个对称中心坐标是 A .2(,0)3π- B .(,0)3π-C .2(,0)3π D .5(,0)3π 【答案】A 【解析】 试题分析:由的最小正周期为,得.因为()13f π=,所以12()232k k Z ππϕπ⨯+=+∈,由,得,故.令1()23x k k Z ππ+=∈,得22()3x k k Z ππ=-∈,故()f x 的对称中心为,当时,()f x 的对称中心为,故选A .考点:三角函数的图像与性质.9.在ABC ∆中,D 为BC 中点,O 为AD 中点,过O 作一直线分别交AB 、AC 于M 、N 两点,若,AM x AB AN y AC ==u u u u r u u u r u u u r u u u r (0xy ≠),则11x y+=( ) A .3 B .2C .4D .14【答案】C 【解析】 【分析】根据向量的线性运算,得1111(),()4444MO x AB AC ON AB y AC =-+==-+-u u u u r u u u r u u u r u u u r u u u r u u ur ,利用共线向量的条件得出111()()04416x y --+=,化简即可得到11x y +的值,即可求解.在ABC ∆中,D 为BC 的中点,O 为AD 的中点,若,AM x AB AN y AC ==u u u u r u u u r u u u r u u u r ,所以11()44MO AO AM x AB AC =-=-+u u u u r u u u r u u u u r u u u r u u u r ,11()()44ON AN AO y AB AC AB y AC =-=+=-+-u u u r u u u r u u u r u u u r u u u r u u u r u u u r ,因为//MO ON u u u u r u u u r ,所以111()()04416x y --+=, 即1()04x y xy +-=,整理得114x y +=,故选C.【点睛】本题主要考查了向量的线性运算性质,以及向量的共线定理和三角形的重心的性质的应用,其中解答中熟记向量的线性运算,以及向量的共线定理的应用是解答的关键,着重考查了推理与运算能力,属于基础题.10.ABC ∆的三个内角A ,B ,C 的对边分别为a ,b ,c ,若ABC V 的面积为S ,且222S (a b)c =+-,a =,则tanC 等于( ) A .34B .43C .34-D .43-【答案】D 【解析】()22222222cos 2S b c a b c a bc bc A bc =+-=+-+=+ ,而1sin 2S bc A =,所以sin 2cos 2A A =+ ,又根据22sin cos 1A A +=,即()2222cos 2cos 15cos 8cos 30A A A A ++=⇒++= ,解得cos 1A =- (舍)或3cos 5A =- ,4sin 5A = ,解得4tan 3A =- ,故选D.11.在《九章算术》中,将底面为矩形且有一条侧棱与底面垂直的四棱锥称之为阳马.如图,若四棱锥P ﹣ABCD 为阳马,侧棱PA ⊥底面ABCD ,PA =AB =AD ,E 为棱PA 的中点,则异面直线AB 与CE 所成角的正弦值为( )A .2B C D .2【答案】B 【解析】 【分析】由异面直线所成角的定义及求法,得到ECD ∠为所求,连接ED ,由CDE ∆为直角三角形,即可求解. 【详解】在四棱锥P ABCD -中,//AB CD ,可得ECD ∠即为异面直线AB 与CE 所成角, 连接ED ,则CDE ∆为直角三角形,不妨设2AB a =,则,3DE EC a ==,所以sin DE ECD EC ∠==, 故选:B .【点睛】本题主要考查了异面直线所成角的作法及求法,其中把异面直线所成的角转化为相交直线所成的角是解答的关键,着重考查了推理与运算能力,属于基础题.12.设奇函数()f x 的定义域为,22ππ⎛⎫- ⎪⎝⎭,且()f x 的图像是连续不间断,,02x π⎛⎫∀∈- ⎪⎝⎭,有()()cos sin 0f x x f x x '+<,若()2cos 3f m f m π⎛⎫< ⎪⎝⎭,则m 的取值范围是( )A .,23ππ⎛⎫- ⎪⎝⎭B .0,3π⎛⎫ ⎪⎝⎭C .,23ππ⎛⎫-- ⎪⎝⎭D .,32ππ⎛⎫ ⎪⎝⎭【答案】D 【解析】【分析】 设g (x )()f x cosx=,通过研究导函数及函数()f x 的奇偶性,可判断g (x )在x ∈,22ππ⎛⎫- ⎪⎝⎭上为奇函数且单调递减,利用性质解得不等式即可. 【详解】 令()()cos f x g x x=,则()()()2cos sin cos f x x f x xg x x+''=.因为,02x π⎛⎫∀∈- ⎪⎝⎭,有()()cos sin 0f x x f x x '+<,∴当,02x π⎛⎫∈- ⎪⎝⎭时,()0g x '<,则()()cos f x g x x =在,02π⎛⎫- ⎪⎝⎭上单调递减.又()f x 是定义域在,22ππ⎛⎫- ⎪⎝⎭上的奇函数,∴()()()()()cos cos f x f x g x g x x x--==-=--, 则()()cosxf xg x =也是,22ππ⎛⎫- ⎪⎝⎭上的奇函数并且单调递减.又()2cos 3f m f m π⎛⎫< ⎪⎝⎭等价于()3cos cos 3f f m m ππ⎛⎫⎪⎝⎭<,即()3g m g π⎛⎫< ⎪⎝⎭,∴3m π>,又22m ππ-<<,∴32m ππ<<.故选:D 【点睛】本题考查了运用导数判断函数的单调性及应用,考查了函数奇偶性的应用,考查了构造法的技巧,属于中档题.第Ⅱ卷(非选择题)二、填空题:本大题共4小题,每小题5分,共20分。
高考数学(理)一轮规范练【62】二项分布及其应用(含答案)
课时规范练62 二项分布及其应用课时规范练第95页一、选择题1.某道路的A,B,C三处设有交通灯,这三盏灯在一分钟内开放绿灯的时间分别为25秒、35秒、45秒.某辆车在这条路上行驶时,三处都不停车的概率是( )A. B. C. D.答案:A解析:三处都不停车的概率是P(ABC)=.2.如图,用K,A1,A2三类不同的元件连接成一个系统.当K正常工作且A1,A2至少有一个正常工作时,系统正常工作.已知K,A1,A2正常工作的概率依次为0.9,0.8,0.8,则系统正常工作的概率为( )A.0.960B.0.864C.0.720D.0.576答案:B3.两个实习生每人加工一个零件,加工为一等品的概率分别为,两个零件是否加工为一等品相互独立,则这两个零件中恰有一个一等品的概率为( )A. B. C. D.答案:B解析:记两个零件中恰有一个一等品的事件为A,则P(A)=.4.一位国王的铸币大臣在每箱100枚的硬币中各掺入一枚劣币,国王怀疑大臣作弊,他用两种方法来检测,方法一:在10箱中各任意抽查一枚;方法二:在5箱中各任意抽查两枚,国王用方法一、二能发现至少一枚劣币的概率分别记为p1和p2,则( )A.p1=p2B.p1<p2C.p1>p2D.以上三种情况都有可能答案:B解析:p1=1-0.9910=1-0.98015,[:p2=1-=1-0.985,∴p1<p2.5.电灯泡使用时数在1000小时以上的概率为0.2,则3只灯泡在使用1000小时后最多有1只坏了的概率是( )[:A.0.401B.0.410C.0.014D.0.104答案:D解析:3只灯泡在1000小时后最多有1只坏了这个事件,也就是3只灯泡中至少有2只灯泡的使用时数在1000小时以上,相当于3次独立重复试验有2次或3次发生的概率,故P=×0.22×(1-0.2)+×0.23=0.104.6.某人忘记了一个电话号码的最后一个数字,只好任意去试拨,他第一次失败,第二次成功的概率是( )A. B. C. D.答案:A解析:设A为“第一次失败”,B为“第二次成功”,[:则P(A)=,P(B|A)=,[:∴P(AB)=P(A)P(B|A)=.二、填空题7.箱中装有标号为1,2,3,4,5,6且大小相同的6个球.从箱中一次摸出两个球,记下号码并放回,如果两球号码之积是4的倍数,则获奖.现有4人参与摸奖,恰好有3人获奖的概率是.答案:解析:据题意取出两球号码之积是4的倍数的情况为(1,4),(2,4),(3,4),(2,6),(4,6),(4,5)共6种情况,故中奖的概率为,故4人中有3人中奖的概率为.8.某篮球队员在比赛中每次罚球的命中率均相同,且在两次罚球中至多命中一次的概率为,则该队员每次罚球的命中率为.答案:解析:设该队员每次罚球的命中率为p,则1-p2=,解得p=.9.甲罐中有5个红球,2个白球和3个黑球,乙罐中有4个红球,3个白球和3个黑球.先从甲罐中随机取出一球放入乙罐,分别以事件A1,A2和A3表示由甲罐取出的球是红球,白球和黑球;再从乙罐中随机取出一球,以事件B 表示由乙罐取出的球是红球,则下列结论中正确的是(写出所有正确结论的编号).①P(B)=;②P(B|A1)=;③事件B与事件A1相互独立;④A1,A2,A3是两两互斥的事件;⑤P(B)的值不能确定,因为它与A1,A2,A3中究竟哪一个发生有关.答案:②④解析:P(B)=P(BA1)+P(BA2)+P(BA3)=,故①⑤错误;②P(B|A1)=,正确;③事件B与A1的发生有关系,故错误;④A1,A2,A3不可能同时发生,是互斥事件,正确.三、解答题10.设甲、乙两人每次射击命中目标的概率为,且各次射击相互独立.按甲、乙、甲……的次序轮流射击,直到有一人击中目标就停止射击,求停止射击时甲射击了两次的概率.解:停止射击时甲射击了两次,分两种情况:①甲未中、乙未中、甲命中的概率是;②甲未中、乙未中、甲未中、乙命中的概率是.停止射击时甲射击了两次的概率是.11.“石头、剪刀、布”是一种广泛流传于我国民间的古老游戏,其规则是用三种不同的手势分别表示石头、剪刀、布;两个玩家同时出示各自手势1次记为1次游戏,“石头”胜“剪刀”,“剪刀”胜“布”,“布”胜“石头”;双方出示的手势相同时,不分胜负.现假设玩家甲、乙双方在游戏时出示三种手势是等可能的.(1)求出在1次游戏中玩家甲胜玩家乙的概率;(2)若玩家甲、乙双方共进行了3次游戏,其中玩家甲胜玩家乙的次数记作随机变量X,求X的分布列.解:(1)玩家甲、乙双方在1次游戏中出示手势的所有可能结果是(石头,石头),(石头,剪刀),(石头,布),(剪刀,石头),(剪刀,剪刀),(剪刀,布),(布,石头),(布,剪刀),(布,布),共有9个基本事件.玩家甲胜玩家乙的基本事件分别是(石头,剪刀),(剪刀,布),(布,石头),共有3个.所以,在1次游戏中玩家甲胜玩家乙的概率P=.(2)X的可能取值分别为0,1,2,3.P(X=0)=·,P(X=1)=··,P(X=2)=··,P(X=3)=·.X的分布列如下:X 0 1 2 3P12.某公司是否对某一项目投资,由甲、乙、丙三位决策人投票决定,他们三人都有“同意”“中立”“反对”三类票各一张,投票时,每人必须且只能投一张票,每人投三类票中的任何一类票的概率都为,他们的投票相互没有影响,规定:若投票结果中至少有两张“同意”票,则决定对该项目投资;否则,放弃对该项目的投资.(1)求该公司决定对该项目投资的概率;(2)求该公司放弃对该项目投资且投票结果中最多有一张“中立”票的概率.解:(1)该公司决定对该项目投资的概率为P=.(2)该公司放弃对该项目投资且投票结果中最多有一张“中立”票,有以下四种情形:[: “同意”票张数“中立”票张数“反对”票张数事件A0 0 3 事件B1 02 事件C1 1 1 事件D0 1 2P(A)=,P(B)=,P(C)=,P(D)=.∵A,B,C,D互斥,∴P(A+B+C+D)=P(A)+P(B)+P(C)+P(D)=.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
考点测试63 二项分布及其应用
高考概览
高考在本考点的常考题型为选择题、填空题、解答题,分值为5分、12分,中等难度
考纲研读
1.了解条件概率和两个事件相互独立的概念
2.理解n 次独立重复试验的模型及二项分布
3.能解决一些简单的实际问题
一、基础小题
1.把一枚硬币连续抛两次,记“第一次出现正面”为事件A ,“第二次出现正面”为事件B ,则P (B |A )等于( )
A .12
B .14
C .16
D .18
答案 A
解析 P (B |A )=P (AB )P (A )=1412
=12
.故选A . 2.某一批花生种子,如果每1粒发芽的概率为45
,那么播下3粒种子恰有2粒发芽的概率是( )
A .12125
B .16125
C .48125
D .96125
答案 C
解析 P =C 23⎝ ⎛⎭⎪⎫452⎝ ⎛⎭⎪⎫151=48125
.故选C . 3.甲、乙两人同时报考某一所大学,甲被录取的概率为0.6,乙被录取的概率为0.7,两人是否被录取互不影响,则其中至少有一人被录取的概率为( )
A .0.12
B .0.42
C .0.46
D .0.88
答案 D
解析 因为甲、乙两人是否被录取相互独立,又因为所求事件的对立事件为“两人均未
被录取”,由对立事件和相互独立事件概率公式,知所求概率P =1-(1-0.6)·(1-0.7)=1-0.12=0.88.故选D .
4.抛掷一枚质地均匀的骰子2次,在下列事件中,与事件“第一次得到6点”不相互独立的是( )
A .第二次得到6点
B .第二次的点数不超过3
C .第二次的点数是奇数
D .两次得到的点数和是12
答案 D
解析 事件“第二次得到6点”,“第二次的点数不超过3”,“第二次的点数是奇数”与事件“第一次得到6点”均相互独立,而对于事件“两次得到的点数和是12”,由于第一次得到6点,所以第二次也是6点,故不相互独立.故选D .
5.设随机变量X ~B 6,12
,则P (X =3)=( ) A .516 B .316 C .58 D .38
答案 A
解析 X ~B 6,12
,由二项分布可得,P (X =3)= C 36123·1-123=516
. 6.一位国王的铸币大臣在每箱100枚的硬币中各掺入了一枚劣币,国王怀疑大臣作弊,他用两种方法来检测.方法一:在10箱中各任意抽查一枚;方法二:在5箱中各任意抽查两枚.国王用方法一、二能发现至少一枚劣币的概率分别记为p 1和p 2,则( )
A .p 1=p 2
B .p 1<p 2
C .p 1>p 2
D .以上三种情况都有可能
答案 B
解析 由已知条件可得p 1=1-9910010=1-9801100005,p 2=1-C 299C 21005=1-981005=1-980010000
5,∴p 1<p 2,故选B .
7.甲射击命中目标的概率是12,乙射击命中目标的概率是13
,丙射击命中目标的概率是14
.现在三人同时射击目标,则目标被击中的概率为( ) A .34 B .23 C .45 D .710
答案 A
解析 设甲射击命中目标为事件A ,乙射击命中目标为事件B ,丙射击命中目标为事件。