27.2.1 相似三角形的判定课时1教案

合集下载

人教版九年级数学下册27.2.1相似三角形的判定第1课时平行线分线段成比例优秀教学案例

人教版九年级数学下册27.2.1相似三角形的判定第1课时平行线分线段成比例优秀教学案例
人教版九年级数学下册27.2.1相似三角形的判定第1课时平行线分线段成比例优秀教学案例
一、案例背景
本节内容为人教版九年级数学下册第27章第2节第1课时,主要学习相似三角形的判定——平行线分线段成比例定理。该定理是初中学段几何知识的重要组成部分,对于培养学生的逻辑思维能力和空间想象能力具有重要意义。
在课程开始之前,学生已经掌握了相似三角形的概念、性质以及判定方法。在此基础上,通过引入平行线分线段成比例定理,使学生能够更深入地理解相似三角形的本质,提高解题技能。
2.问题提出:在此过程中,我会提出问题:“如果给你一个建筑设计图,你如何判断窗户的布局是否合理?”从而引出本节课的主题——相似三角形的判定。
3.情景创设:利用多媒体手段,展示两个相似的三角形,让学生直观地感受相似三角形的特征,为学习平行线分线段成比例定理做好铺垫。
(二)讲授新知
1.平行线分线段成比例定理:我会用生动的语言和形象的比喻,讲解平行线分线段成比例定理的含义,让学生理解并掌握定理。
本节课的内容与实际生活密切相关,便于学生感知数学与生活的紧密联系。同时,通过探讨平行线分线段成比例定理的证明过程,激发学生的探究欲望,培养其创新精神及合作意识。
在教学过程中,我将以生动形象的语言、贴近实际的生活实例,引导学生掌握平行线分线段成比例定理,并能够运用该定理解决实际问题。从而使学生在轻松愉快的氛围中,提高数学素养,感受数学之美。
2.讨论过程:在讨论过程中,我会引导学生关注相似三角形的性质和判定方法,鼓励学生提出自己的观点,培养其批判性思维。
3.成果分享:每个小组选派一名代表,向全班同学分享讨论成果,让大家在交流中共同进步。
(四)总比例定理在判断相似三角形中的重要性,使学生巩固所学知识。
5.教学策略的运用:运用情景创设、问题导向、小组合作等多种教学策略,使学生在轻松愉快的氛围中学习,提高其数学素养。

27.2.1 相似三角形的判定教案(第1课时)

27.2.1 相似三角形的判定教案(第1课时)

达标测评题一、选择题1.已知,如图,A B∥CD∥EF,则下列结论不正确的是( )(A)错误!未找到引用源。

=错误!未找到引用源。

(B)错误!未找到引用源。

=错误!未找到引用源。

(C)错误!未找到引用源。

=错误!未找到引用源。

(D)错误!未找到引用源。

=错误!未找到引用源。

2.如图,点F是□ABCD的边CD上一点,直线BF交AD的延长线于点E,则下列结论错误的是( )(A)错误!未找到引用源。

=错误!未找到引用源。

(B)错误!未找到引用源。

=错误!未找到引用源。

(C)错误!未找到引用源。

=错误!未找到引用源。

(D)错误!未找到引用源。

=错误!未找到引用源。

3.如图,DE∥BC,EF∥AB,则图中相似三角形有( )(A)1对 (B)2对 (C)3对 (D)4对4.如图所示,在△ABC中,点D,E分别在边AB,AC上,DE∥BC,已知AE=6,错误!未找到引用源。

=错误!未找到引用源。

,则EC的长是( )(A)4.5 (B)8(C)10.5 (D)145.如图,在□ABCD中,EF∥AB,DE∶EA=2∶3,EF=4,则CD的长为( )(A)错误!未找到引用源。

(B)8 (C)10 (D)166.如图所示,已知在△ABC中,点D、E、F分别是边AB、AC、BC上的点,DE∥BC,EF∥AB,且AD∶DB=3∶5,那么CF∶CB等于( )(A)5∶8 (B)3∶8 (C)3∶5 (D)2∶5二、填空题7.如图,已知直线a∥b∥c,直线m、n与a、b、c分别交于点A、C、E、B、D、F,AC=4,CE=6,BD=3,则BF= .8.如图,在△ABC中,DE∥BC,AD=EC,DB=1 cm,AE=4 cm,BC=5 cm,则DE的长为.9.如图,在△ABC中,∠C=90°,AC=3,D为BC边上一点,过点D作DE⊥BC于D,若DE=1,BD=2,则DC= .10.如图所示,在□ABCD中,E在AB上,CE、BD交于F,若AE∶BE=4∶3且BF=2,则DF= .三、解答题11.如图,P是□ABCD的边BC延长线上任意一点,AP分别交BD和CD 于点M和N. 求证:AM2=MN·MP.12.如图所示,AD为△ABC的中线,E为AD的中点,连接BE并延长交AC 于点F,求证:CF=2AF.。

27.2.1相似三角形的判定

27.2.1相似三角形的判定

∵AB=2,BC=2 2,AC=2 5,FE=2,DE= 2,
DF= 10,

DABE=
2= 2
2,BECF=2 2 2=
2,DACF=2
5= 10
2.
∴ DABE=BECF=DACF,∴△ABC∽△DEF.
感悟新知
知识点 5 边角关系判定三角形相似定理
知5-讲
1. 相似三角形的判定定理:两边成比例且夹角相等的两个
感悟新知
知识点 1 相似三角形
知1-讲
1. 定义:如果在两个三角形中,三个角分别相等,三条边 成比例,那么这两个三角形相似.
感悟新知
如图27.2-1,在△ ABC 和△ A′B′C′中,
知1-讲
∠ A= ∠ A′,∠ B= ∠ B′,∠ C= ∠ C′, △ABC
AB BC AC k,
↔ ∽△A′B′C′.
感悟新知
知2-练
3-1. 如图,l1 ∥ l2 ∥ l3,AB=3,AD=2,DE=4,EF=9, 求BC,BF 的长.
感悟新知
解:∵ l1∥l2∥l3, ∴ ABBC=ADDE.

AB=3,AD=2,DE=4,

3 BC
=24,
解得 BC=6.
知2-练
∵ l1∥l2∥l3,

BF EF

AB AC
第27章 相似
27.2 相似三角形
27.2.1 相似三角形的判定
学习目标
1 课时讲解
2 课时流程
逐点 导讲练
相似三角形 平行线分线段成比例 平行线截三角形相似的定理 三边关系判定三角形相似定理 边角关系判定三角形相似定理 角的关系判定三角形相似定理 直角三角形相似的判定

27.2.1相似三角形判定(20141219 SSS、SAS)

27.2.1相似三角形判定(20141219 SSS、SAS)

A’B’=12cm,B’C’=18cm,A’C’=21cm.
AB BC AC = = , 例2.如图已知, AD DE AE
试说明∠BAD=∠CAE. A D B E C
1.图中的两个三角形是否相似?
2如图在正方形网格上有 、如图在正方形网格上有△A C A1 B1C1和A C 1B 1和 2 B21 2, △A 它们相似吗?如果相似 ,求出相似比;如果 2B2C2,它们相似吗?如果相似,求 出相似比;如果不相似,请说明理由。 不相似,请说明理由。
探究3
边S 角A 边S
A
AB AC 已知: A B AC k ,
∠A =∠A′ . 求证:△ABC∽△A′B′ C′. A′
B
C
你能证明吗? C′
B′
AB AC , A A '. 已知:在ABC和A' B' C '中, A' B ' A'C ' 求证: △ ABC ∽△ A ' B ' C '.
1.定义判定法 2.平行判定法 比较复杂,烦琐 只能在特定的图形里面使用
3.边边边判定法(SSS) 4.边角边判定法(SAS)
不经历风雨,怎么见彩虹 没有人能随随便便成功!
证明:在线段A ' B(或它的延长线 ' 上)截取A ' D AB,过点D再作 DE ∥ B' C ' 交A' C ' 交于点E,可得 B A' DE ∽A ' B ' C '.
C D E A
A'
AB AC , A ' D AB. 又 A ' B ' A 'C '

27.2.1相似三角形的判定(第1课时)教学设计

27.2.1相似三角形的判定(第1课时)教学设计

课题:27.2.1相似三角形的判定(第1课时)一、教学目标知识技能1.经历观察、类比、猜想过程,得出相似三角形的三个判定定理,会简单运用这三个定理.2.培养合情推理能力,发展空间观念.过程与方法1.初步学会在具体的情境中从数学的角度发现问题和提出问题,并综合运用数学知识和方法等解决简单的实际问题,增强应用意识,提高实践能力。

2.经历从不同角度寻求分析问题和解决问题的方法的过程,体验解决问题方法的多样性,掌握分析问题和解决问题的一些基本方法。

情感态度价值观1.积极参与数学活动,对数学有好奇心和求知欲。

2.感受成功的快乐,体验独自克服困难、解决数学问题的过程,有克服困难的勇气,具备学好数学的信心。

3.在运用数学表述和解决问题的过程中,认识数学具有抽象、严谨和应用广泛的特点,体会数学的价值。

二、教学重点和难点1.重点:相似三角形的三个判定定理.2.难点:得出相似三角形的三个判定定理.三、教学过程(一)基本训练,巩固旧知1.填空:全等三角形的四个判定定理:(1)如果两个三角形三对应相等,那么这两个三角形全等(简写成:边边边或SSS).(2)如果两个三角形两对应相等,并且相应的夹角相等,那么这两个三角形全等(简写成:边角边或).(3)如果两个三角形两对应相等,并且相应的夹边相等,那么这两个三角形全等(简写成:角边角或).(4)如果两个三角形两对应相等,并且其中一个角的对边对应相等,那么这两个三角形全等(简写成:角角边或). (本课时教学时间比较紧张,建议把本题提前留作作业)(二)创设情境,导入新课师:我们知道,形状相同的两个图形叫做相似图形.那么什么叫相似三角形?(稍停)形状相同的两个三角形叫做相似三角形.师:对两个三角形来说,形状相同是什么意思?(稍停)就是对应角相等,对应边的比也相等.所以相似三角形还有一个更明确的定义.对应角相等,对应边的比也相等的两个三角形叫做相似三角形. (师出示下图)师:譬如△ABC和△A ′B ′C ′,如果∠A=∠A ′,∠B=∠B ′,∠C=∠C ′(边讲边板书:如果∠A=∠A ′,∠B=∠B ′,∠C=∠C ′),ABBC CA A B B C C A (边讲边板书:AB BC CA A B B C C A),我们就说△ABC 与△A ′B ′C ′相似(边讲边板书:就说△ABC 与△A ′B ′C ′相似),记作△ABC ∽△A ′B ′C ′(边讲边板书:记作△ABC ∽△A ′B ′C ′). 师:(指准板书)相似三角形的这个定义,可以用来判定两个三角形相似,但利用定义判定,既要证明三组对应角相等,又要证明三组对应边的比相等,所以比较麻烦.怎么解决这个问题呢?(稍停)(三)尝试指导,讲授新课师:学习三角形全等时,我们知道,除了可以利用全等三角形定义来判定两个三角形全等,还有四个简便的判定方法.哪四个简便的判定方法?(稍停)就是SSS 、SAS 、ASA 、AAS.同样,判定两个三角形相似,有没有简便的判定方法?请大家先自己想一想.(生思考,要给学生充足的思考时间)师:好了,下面我们一起来考虑这个问题.师:全等三角形判定定理SSS 是怎么说的?(稍停)如果两个三角形三边对应相等,那么这两个三角形全等.类似的,也有一个相似三角形的判定定理.(师出示下面的板书)如果两个三角形的三组对应边的比相等,那么这两个三角形相似. 师:请大家把这个结论一起来读一遍.(生读)师:(指板书)如果两个三角形的三组对应边的比相等,那么这两个三角形相似.(指图)结合这个图,这个结论的意思是说,如果ABBC CA A BB C C A ,那么△ABC ∽△A ′B ′C ′(边讲边作如下板书). AB BC CA A B B C C A△ABC ∽△A ′B ′C ′师:这是相似三角形的一个判定定理,下面我们来看第二个判定定理. 师:全等三角形判定定理SAS 是怎么说的?(稍停)如果两个三角形A /B /BC A /C两边对应相等,并且相应的夹角相等,那么这两个三角形全等.类似的,也有一个相似三角形的判定定理.(师出示下面的板书)如果两个三角形的两组对应边的比相等,并且相应的夹角相等,那么这两个三角形相似.师:请大家把这个结论一起来读一遍.(生读)师:(指板书)如要两个三角形的两组对应边的比相等,并且相应的夹角相等,那么这两个三角形相似.(指图)结合这个图,这个结,夹角∠A=∠A′,那么△ABC∽△A′论的意思是说,如果AB ACA B A CB′C′(边讲边作如下板书).AB AC,∠A=∠A′A B A C△ABC∽△A′B′C′师:这是相似三角形的又一个判定定理,下面我们来看第三个判定定理.师:全等三角形判定定理ASA、AAS都有两个角对应相等的条件,对相似三角形来说,具备两个角对应相等的条件,有这样一个判定定理.(师出示下面的板书)如果两个三角形的两个角对应相等,那么这两个三角形相似.师:(指板书)如要两个三角形的两个角对应相等,那么这两个三角形相似.(指图)结合这个图,这个结论的意思是说,如果∠A=∠A′,∠B=∠B′,那么△ABC~△A′B′C′(边讲边作如下板书).∠A=∠A′,∠B=∠B′△ABC∽△A′B′C′师:(指板书)这就是相似三角形的三个判定定理,之所以称它们为定理,是因为它们都是可以证明的.证明的过程比较复杂,有兴趣的同学可以看课本,课堂上我们就不证明了,只要求大家能够理解这三个判定定理,并能运用它们.下面我们就来运用判定定理. (师出示例题)例根据下列条件,判断△ABC与△A′B′C′是否相似,并说明理由: (1)∠A=120°,AB=7,AC=14,∠A′=120°,A′B′=3,A′C′=6;(2)AB=4,BC=6,AC=8,A′B′=12,B′C′=18,A′C′=21;(3)∠A=70°,∠B=60°,∠A ′=70°,∠C ′=50°.(先让生尝试,然后师边讲解边板书,(1)(2)题解题过程如课本第44页所示,(3)题解题过程如下)(3)∠C=180°-∠A-∠B=180°-70°-60°=50°.∵∠A=∠A ′=70°,∠C=∠C ′=50°,∴△ABC ∽△A ′B ′C ′.(四)试探练习,回授调节2.根据下列条件,判断△ABC 与△A ′B ′C ′是否相似.(1)∠B=100°,∠C=30°,∠A ′=50°,∠B ′=100°;(2)∠A=40°,AB=8,AC=15,∠A=40°,A ′B ′=16,A ′C ′=20;(3)AB=4,BC=2,CA=3,A ′B ′=6,B ′C ′=3,C ′A ′=4.5.(五)归纳小结,布置作业师:(指板书)本节课我们学习了相似三角形的三个判定定理,希望大家能够理解这三个定理,并记住它们.(作业:P 54习题2) ////BC CA B C C A 就说△ABC 和△A ′B 记作△ABC ∽△A ′B。

相似三角形的判定1

相似三角形的判定1

27.2.1相似三角形的判定一、教材分析:相似三角形的判断是人教版九年级下册数学27.2.1相似三角形第1课时的内容,这是学生在学习相似图形和相似多边形的概念后,开始对相似三角形判断方法展开深入研究。

本节内容,先掌握平行线分线段成比例这一基本事实,然后在三角形中的转化运用,用来证明三角形相似。

这一过程中,学生体会数学中的化归思想及数形结合思想,学生可以提高分析问题、解决问题的能力。

同时,平行线判定三角形相似在相似三角形判定方法中起着承上启下的作用,是后面学习相似三角形判定的基石。

二、学情分析:学生刚开始学习相似图形和相似多边形,对相似图形(相似三角形)的判定还处于感性阶段,能用来判定相似的方法只有定义法。

所以每一个知识要点的形成过程,学生必须参与,环环相扣,学生才能了解平行线分线段成比例基本事实,从而来理解平行线判定三角形相似的定理。

三.教学目标(1)知识与能力:1.了解相似三角形的概念,掌握平行线分线段成比例这一基本事实.2.经历利用平行线判定三角形相似的证明过程,掌握利用平行线判定三角形相似的方法.(2)过程与方法:1.通过平行线分线段成比例这一基本事实在三角形中的转化,体会数学中的化归思想及数形结合思想.2.通过平行线判定三角形相似及利用相似三角形的性质解决问题,提高学生分析问题、解决问题的能力.(3)情感态度与价值观:1.通过观察、测量、归纳平行线分线段成比例定理,培养学生动手操作能力及直觉思维.2.探究利用平行线判定三角形相似的证明,培养学生合情分析及严谨推理能力,提高逻辑思维能力.3.在探究活动中通过小组合作交流,培养学生共同探究的合作意识及探索实践的良好习惯.四.教学重难点重点1.掌握平行线分线段成比例基本事实.2.能利用平行线判定三角形相似.难点探索利用平行线判定三角形相似的方法五.教学准备:三角板,多媒体课件.几何画板动画六.教学过程复习提问,导入新课(1)什么是相似多边形?相似多边形有什么性质?【师生活动】学生独立回答,教师点评.通过复习相似多边形的概念及性质,让学生用类比法得到相似三角形的概念及性质,为本节课的学习做好铺垫.一、认识相似三角形思考并回答:(1)类比相似多边形的概念,你能说出相似三角形的概念吗?(2)如果相似比是1,那么这两个三角形是什么关系?(3)△ABC与△A'B'C'的相似比为k,那么△A'B'C'与△ABC的相似比是多少?(4)类比相似多边形的性质,说出相似三角形的性质,并用几何语言表示.【师生活动】学生思考回答,教师对每个问题点评后展示课件,规范数学语言. (课件展示)(1)定义:三个角分别相等,三条边成比例,我们就说这两个三角形相似.对应边的比就叫做两个三角形的相似比.(2)表示:△ABC与△A'B'C'相似记作“△ABC∽△A'B'C'”,读作“△ABC相似于△A'B'C'”.注意:对应顶点写在对应的位置上.(3)相似比为1时,这两个三角形全等,所以全等三角形是相似三角形的特例.(4)△ABC与△A'B'C'的相似比为k,那么△A'B'C'与△ABC的相似比是.(5)性质:相似三角形的对应角相等,对应边成比例.【几何语言】如图所示,△A1B1C1∽△ABC,∴∠A1=∠A,∠B1=∠B,∠C1=∠C;[设计意图]通过复习相似多边形的定义和性质,迁移到相似三角形的定义和性质,让学生体会类比思想在数学中的应用,帮助学生建立新旧知识之间的联系,体会事物之间由一般到特殊,由特殊到一般之间的联系.二、平行线分线段成比例基本事实【动手操作】任意画两条直线l1,l2,再画三条与l1,l2都相交的平行线l3,l4,l5,分别度量l3,l4,l5在l1上截得的线段AB,BC,AC和在l2上截得的线段DE,EF,DF的长度.(1)根据度量的长度,你得到哪些成比例线段?尝试写出来.(2)这些成比例线段在图中的位置有什么关系?(3)对于任意一组平行线,截得的对应线段成比例吗?(4)你能用语言概括你得到的结论吗?【师生活动】学生动手独自测量思考,写出比例式,小组合作交流答案,学生展示后教师点评.【课件展示】两条直线被一组平行线所截,所得的对应线段成比例.[设计意图]通过动手操作,测量或计算得出平行线分线段成比例这一基本事实,体会从特殊到一般的探索过程,激发学生的求知欲,培养学生分析问题的能力.三、平行线分线段成比例转化到三角形中活动1如图所示,l1∥l2∥l3,当两条被截直线的交点在直线l1或l2上时,你能得到哪些比例式?(教师动画演示,将图(1)中的直线平移到图(2)的位置,让学生直观感受平行线分线段成比例基本事实仍然成立)【师生活动】学生观察教师演示动画,小组交流结果,教师点评结论.活动2(1)如图所示,△ABC中,DE∥BC,且DE分别交AB,AC(或AB,AC的反向延长线)于点D,E,那么比例式=成立吗?(2)你能用语言叙述图中的结论吗?(3)用几何语言如何描述这一结论?【师生活动】学生小组合作交流,共同探究结论,教师及时点拨,师生共同归纳结论.【课件展示】平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例.几何语言[设计意图]通过动画演示将平行线分线段成比例基本事实转化到三角形中,学生易直观形象地得出结论,同时通过学生讨论交流,培养学生的合作意识及语言表达能力.四、利用平行线证明三角形相似 问题如图所示,在△ABC 中,DE ∥BC ,且DE 分别交AB ,AC 于点D ,E ,△ADE 与△ABC 相似吗?如何证明?教师引导回答问题:(1)要证明三角形相似,需要哪些条件?(∠A =∠A ,∠ADE =∠B ,∠AED =∠C ,对应边成比例) (2)你能证明这些角对应相等吗? (由两直线平行,同位角相等可得) (3)如何证明AD:AB=AE:AC 吗? (由平行线分线段成比例事实易得)(4)DE 不在BC 边上,用什么方法将DE 转化到BC 边上呢? (过E 作EF ∥AB,交BC 于点F) (5)你能证明DE :BC=AE:AC 吗? (由平行线分线段成比例事实易得)(6)你能写出△ADE ∽△ABC 的证明过程吗?(7)尝试用语言叙述上述结论,并用几何语言表示你的结论.【师生活动】学生在教师问题的引导下,思考后小组交流,小组代表板书过程,教师在巡视过程中帮助有困难的学生,对学生板书点评,规范书写过程. 证明:在△ADE 和△ABC 中,∠A =∠A. ∵DE ∥BC,∴∠ADE=∠B,∠AED=∠C. 过E 作EF ∥AB,交BC 于点F,∵DE ∥BC,EF ∥AB,∴.AC AEABAD =BCBFAC AE =∵四边形DBFE 是平行四边形,∴DE=BF.BC DEAC AE AB AD ==∴∴△ADE ∽△ABC.【课件展示】平行于三角形一边的直线和其他两边相交,所构成的三角形与原三角形相似.【几何语言】如图所示,在△ABC 中,∵DE ∥BC ,∴△ADE ∽△ABC. 【追问】当DE 与BA 和CA 的延长线相交时,上述结论还成立吗?(教师总结归纳利用平行线证明三角形相似的基本图形:“A ”型和“X ”型)[设计意图]通过教师设计的小问题,层层深入,达到分析问题的目的,学生易于理解和掌握,提高学生分析问题的能力,同时培养学生归纳总结的能力,加深对平行线证明三角形相似的判定方法的理解.[知识拓展](1)相似三角形与全等三角形的联系与区别:全等三角形的大小相等,形状相同,而相似三角形的形状相同,大小不一定相等,所以全等三角形是相似三角形的特例,相似比是1∶1的两个相似三角形是全等三角形.(2)相似三角形的传递性:如果△ABC ∽△A'B'C',△A'B'C'∽△A ″B ″C ″,那么△ABC ∽△A ″B ″C ″.(3)在应用平行线分线段成比例这个基本事实时,找准被平行线截得的对应线段,被截线段不一定平行,当“上比下”的值为1时,说明这些平行线间的距离相等. (4)符合平行线证明三角形相似的图形有两个,我们称为“A ”型和“X ”型,如图所示,若DE ∥BC ,则△ADE ∽△ABC.七、课堂检测如图,已知DE ∥ BC,AE=50cm,EC=30cm,BC=70cm, ∠BAC=450,∠ACB=400. (1)求∠AED 和∠ADE 的大小;(2)求DE 的长.八、课堂小结 知识小结1.相似三角形的概念、表示:三个角分别相等,三条边成比例,△ABC ∽△A'B'C'.2.平行线分线段成比例的基本事实:两条直线被一组平行线所截,所得的对应线段成比例.3.平行线分线段成比例在三角形中的应用:平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例.4.平行线证明三角形相似:“A ”型和“X ”型.平行于三角形一边的直线和其他两ADFER边相交,所构成的三角形与原三角形相似.方法小结1.通过平行线分线段成比例这一基本事实在三角形中的转化,体会数学中的化归思想及数形结合思想.2.通过平行线判定三角形相似及利用相似三角形的性质解决问题,提高自己分析问题、解决问题的能力.3.探究利用平行线判定三角形相似的证明,培养自己合情推理及演绎推理能力,提高逻辑思维能力.4.在探究活动中通过小组合作交流,培养自己共同探究的合作意识及探索实践的良好习惯.九、板书设计1.相似三角形的概念、表示2.平行线分线段成比例的基本事实3.平行线证明三角形相似:“A”型和“X”型十、教学反思本节课是三角形的判定的第1课时,通过复习相似多边形的概念,学生用类比法易得到相似三角形的概念及表示方法,降低了学习概念的难度.以动手操作为主探究平行线分线段成比例这一事实,学生经历动手操作、观察、计算、比较、讨论、归纳等教学活动,人人参与课堂,积极展示,学生成为课堂的主人,在积极思维中经历知识的形成过程,然后通过动画展示,学生直观形象地观察到这一基本事实在三角形中的应用,体会数学中的转化思想,为平行线证明相似做好铺垫.最后在教师的引导下完成定理的证明,培养学生逻辑思维能力和严谨的学习精神.本节课在探究平行线分线段成比例基本事实后,将这一基本事实转化到三角形中应用,得到三角形中的两个推论,课容量较大,在前面概念及基本事实的探究活动中耽误时间长,后面的探究活动教师设计的小问题较多,造成完不成课时任务,后面的处理过于仓促,有头重脚轻的感觉,学生对本节课的重点把握不准,在以后的教学中要注重时间的安排,突出课时重点.。

27.2相似三角形1相似三角形的判定用三边比例关系判定三角形相似(教案)

27.2相似三角形1相似三角形的判定用三边比例关系判定三角形相似(教案)
然而,我也注意到在小组讨论中,有些学生过于依赖同伴,自己思考不足。在今后的教学中,我需要更加关注这部分学生,鼓励他们独立思考,提高问题解决能力。此外,对于教学难点,我可能需要设计更多有针对性的练习和解释,以帮助学生克服困难。
在总结回顾环节,学生们对今天所学的知识有了整体的认识,但仍有个别学生表示对某些部分理解不够透彻。这提醒我,在后续的教学中,要关注学生的个体差异,尽量让每个学生都能跟上教学进度。
3.重点难点解析:在讲授过程中,我会特别强调三边比例关系判定相似的两个重点:三组对应边的比例相等和两组对应边的比例相等且夹角相等。对于难点部分,我会通过具体的图形和例子来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与相似三角形判定相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。这个操作将演示如何通过测量边长和角度来判断两个三角形是否相似。
b.如果两个三角形中有两组对应边的比例相等,并且夹角相等,即a/ b = c/ d,且∠A = ∠C或∠B = ∠D,则这两个三角形相似。
二、核心素养标
本节课的核心素养目标旨在培养学生的以下能力:
1.空间观念:通过探究相似三角形的判定,使学生能够理解和运用空间图形的性质,发展空间想象力和直觉思维能力。
2.抽象概括能力:引导学生从具体实例中抽象出相似三角形的判定方法,提高他们的逻辑推理和概括能力。
3.数据分析观念:培养学生通过观察、分析三角形边长数据,运用三边比例关系解决问题的能力,增强数据分析观念。
4.数学应用意识:将相似三角形的判定应用于解决实际问题,让学生体会数学与现实生活的联系,提高数学应用意识。
-重点知识点举例:
a.如果两个三角形的三组对应边的比例相等,即a/ b = c/ d = e/ f,则这两个三角形相似。

初中人教版数学九年级下册27.2.1核心素养【教学设计】《相似三角形的判定》

初中人教版数学九年级下册27.2.1核心素养【教学设计】《相似三角形的判定》

《27.2.1相似三角形的判定(1)》教学模式介绍:数学的核心素养包括数学抽象、逻辑推理、数学建模、直观想象、数学运算和数据分析。

这些数学学科素养既相对独立,又互相交融,是一个有机的整体。

核心素养下的教学设计是利用设计好的核心问题在课堂中培养学生的数学核心素质,重视学生在学习活动中的主体地位,让学生在积极参与学习活动的过程中得到发展。

教师创设情境设计问题,或通过富有启发性的讲授,或引导学生独立思考、自主探索、合作交流,组织学生操作实验、观察现象、提出猜想、推理论证等,有效地启发学生思考,使学生成为学习的主体,学会学习。

课堂教学中,要注重让学生理解和掌握数学的基础知识和基本技能,让学生感悟数学思想,积累数学活动经验,在学习数学和应用数学的过程中,发展数学抽象、逻辑推理、数学建模、直观想象、数学运算、数据分析等数学学科核心素养,让学生能与他人建立良好关系,有效地管理自己的学习、生活,能够发掘自身潜力,战胜学习数学中的困难,让学生能够适应未来社会、进行终身学习,实现全面发展。

设计思路说明:“相似三角形的判定”是在学习了相似图形之后,有了相似图形、相似多边形的基础,学生不难理解相似三角形的基本性质及相似比的有关规定。

教学中结合相似多边形也不难知道相似三角形的对应角相等,对应边的比例相等。

在用符号“∽”表示两个三角形相似时,应注意把表示对应顶点的字母写在对应位置,以便相对容易找出对应角和对应边。

全等是相似的特殊情形(相似比为1),这一点有必要让学生明白。

判断两个三角形相似的三个定理之间有内在的关联。

于是我们用测量的方法来直接归纳出结论,为了达到比较好的效果,我们设计了几道题目进行巩固。

随后利用平行线分线段成比例定理引出其推论,进而得到三角形相似的预备定理。

我们把重点放在证明预备定理上,因为其方法是非常重要的。

最后,再总结结论,拓展练习,以巩固知识的掌握程度。

教材分析本节课内容属于《全日制义务教育数学课程标准2011版》中的“图形与几何”,相似图形是现实生活中广泛存在的现象,探索并证明相似三角形的判定定理。

27.2.1核心素养【教学设计】《相似三角形的判定》(人教)

27.2.1核心素养【教学设计】《相似三角形的判定》(人教)

《27.2.1相似三角形的判定(1)》中山市沙溪中学梁亮亮教学模式介绍:数学的核心素养包括数学抽象、逻辑推理、数学建模、直观想象、数学运算和数据分析。

这些数学学科素养既相对独立,又互相交融,是一个有机的整体。

核心素养下的教学设计是利用设计好的核心问题在课堂中培养学生的数学核心素质,重视学生在学习活动中的主体地位,让学生在积极参与学习活动的过程中得到发展。

教师创设情境设计问题,或通过富有启发性的讲授,或引导学生独立思考、自主探索、合作交流,组织学生操作实验、观察现象、提出猜想、推理论证等,有效地启发学生思考,使学生成为学习的主体,学会学习。

课堂教学中,要注重让学生理解和掌握数学的基础知识和基本技能,让学生感悟数学思想,积累数学活动经验,在学习数学和应用数学的过程中,发展数学抽象、逻辑推理、数学建模、直观想象、数学运算、数据分析等数学学科核心素养,让学生能与他人建立良好关系,有效地管理自己的学习、生活,能够发掘自身潜力,战胜学习数学中的困难,让学生能够适应未来社会、进行终身学习,实现全面发展。

设计思路说明:“相似三角形的判定”是在学习了相似图形之后,有了相似图形、相似多边形的基础,学生不难理解相似三角形的基本性质及相似比的有关规定。

教学中结合相似多边形也不难知道相似三角形的对应角相等,对应边的比例相等。

在用符号“∽”表示两个三角形相似时,应注意把表示对应顶点的字母写在对应位置,以便相对容易找出对应角和对应边。

全等是相似的特殊情形(相似比为1),这一点有必要让学生明白。

判断两个三角形相似的三个定理之间有内在的关联。

于是我们用测量的方法来直接归纳出结论,为了达到比较好的效果,我们设计了几道题目进行巩固。

随后利用平行线分线段成比例定理引出其推论,进而得到三角形相似的预备定理。

我们把重点放在证明预备定理上,因为其方法是非常重要的。

最后,再总结结论,拓展练习,以巩固知识的掌握程度。

教材分析本节课内容属于《全日制义务教育数学课程标准2011版》中的“图形与几何”,相似图形是现实生活中广泛存在的现象,探索并证明相似三角形的判定定理。

27.2.1 相似三角形的判定(二)教学设计2023—2024学年人教版数学九年级下册

27.2.1 相似三角形的判定(二)教学设计2023—2024学年人教版数学九年级下册
教师总结各组的亮点和不足,并提出进一步的建议和改进方向。
6. 课堂小结(5分钟)
目标: 回顾本节课的主要内容,强调相似三角形的重要性和意义。
过程:
简要回顾本节课的学习内容,包括相似三角形的基本概念、判定方法和案例分析等。
强调相似三角形在现实生活或学习中的价值和作用,鼓励学生进一步探索和应用相似三角形。
(2) 给定一个三角形ABC,已知AB=3,BC=4,求三角形ABC与三角形DEF相似的条件。
4. 实践操作题:
(1) 利用直尺和量角器,画出两个相似三角形,并说明相似三角形的判定方法。
(2) 利用直尺和量角器,画出两个相似三角形,并说明相似三角形的性质。
5. 思考题:
(1) 相似三角形在实际生活中的应用有哪些?
布置课后作业:让学生撰写一篇关于相似三角形的短文或报告,以巩固学习效果。
六、教学资源拓展
1. 拓展资源:
- 数学杂志和期刊:推荐学生阅读一些数学杂志和期刊,如《数学通报》、《数学竞赛》等,这些资源可以提供更多的数学问题和解答,以及相似三角形的应用案例。
- 在线数学论坛和社区:鼓励学生参与在线数学论坛和社区,如“数学吧”等,学生可以在这些平台上与同学和教师交流相似三角形的相关问题,获取更多的学习资源和解题思路。
目标: 让学生了解相似三角形的基本概念、判定方法和性质。
过程:
讲解相似三角形的定义,包括其主要判定方法和性质。
详细介绍相似三角形的判定方法和性质,使用图表或示意图帮助学生理解。
3. 相似三角形案例分析(20分钟)
目标: 通过具体案例,让学生深入了解相似三角形的特性和重要性。
过程:
选择几个典型的相似三角形案例进行分析。
27.2.1 相似三角形的判定(二) 教学设计 2023—2024学年人教版数学九年级下册

人教版九年级下册27.2.1相似三角形的判定(一)三边成比例的两个三角形相似课件

人教版九年级下册27.2.1相似三角形的判定(一)三边成比例的两个三角形相似课件

∠BAD=20°,求∠CAE的度数.
AD DE AE
解:∵ AB BC AC ,
AD DE AE
∴△ABC∽△ADE(三边成比例的两个三角形相似).
∴∠BAC=∠DAE.
∴∠BAC - ∠DAC =∠DAE-∠DAC.
即 ∠BAD=∠CAE.
B
∵∠BAD=20°,
∴∠CAE=20°. D
A
C E
相似三角形的判定(一)
三边成比例的两个三角形相似
学习目标
1.复习已经学过的三角形相似的判定定理; 2.掌握利用三边来判定两个三角形相似的方法.(重点、难点)
导入新课
回顾与思考
A
问题 如图,DE∥BC,△ADE∽△ABC?
D
E
B
C
类似于判定三角形全等的SSS方法,我们能不能通过三边
来判定两个三角形相似呢?
讲授新课
三边成比例的两个三角形相似
合作探究 问题:在下面两个三角形中,若 A' B' B' C' A' C' ,
AB BC AC
△ABC∽△A′B′C′?. A
A′
B′
C′
B
C
通过画图不难发现∠A=∠A',∠B=∠B',∠C=∠C'.
所以△ABC∽△A′B′C′.
试利用前面的定理证明该结论.
证明:在△ABC的边AB(或延长线)上截取AD=A′B′,
又∵AD=A′B′,∴AD:AB=A′B′:AB.
∴∠BAC=∠DAE.
(2)AB=4, ∴ △PAC ∽ △PDB
所以△ABC∽△A′B′C′. 证明:设____________= k . DE=20, EF=16, DF=8.

最新人教版九年级数学下册第二十七章27.2.1《相似三角形的判定》说课稿

最新人教版九年级数学下册第二十七章27.2.1《相似三角形的判定》说课稿

《相似三角形的判定》说课稿各位评委老师:大家好!我今天说课的内容是《相似三角形的判定》,下面我将从说教材、说学生、说教学方法、说教学过程、板书设计五个大板块来给大家阐述我的教学思路和教学设计。

一、说教材首先进入我的第一个大板块“说教材”。

我把说教材这个板块分为三个小环节来进行,它们分别是教材分析、教学目标、教学重难点。

1、教材分析本节课《相似三角形的判定》是选自新人教版九年级下册第二十七章第二节第二课时的内容。

是在学习了第一节相似多边形的概念、第一课时平行线分线段成比例的定理及推论后,研究相似三角形的定义以及三角形一边的平行线的判定定理。

本节课是判定三角形相似的起始课,是本章的重点之一。

一方面,该定理是前面知识的延伸和全等三角形性质的拓展;另一方面,不仅可以直接用来证明有关三角形相似的问题,而且还是证明其他三种判定定理的主要根据,所以把它叫做相似三角形判定定理的“预备定理”。

因此,这节课在本章中有着举足轻重的地位。

2、教学目标根据教学大纲的要求和贯彻全面发展的教育方针,我制定了如下的教学目标:(1)知识与技能:理解相似三角形的定义,掌握相似三角形判定定理的“预备定理”。

(2)过程与方法:让学生经历观察---探索----猜想----验证----运用----巩固的过程,渗透类比的思想方法,培养学生探究新知识、提高分析问题和解决问题的能力。

(3)情感态度和价值观:通过实物演示和电化教学手段,把抽象问题直观化,激发学生学习的求知欲,通过主动探究、合作交流,在学习活动中体验获得成功的喜悦。

3、教学重难点为了达到以上的教学目标,我制定了以下的教学重难点:教学重点:相似三角形的定义,判定两个三角形相似的预备定理。

教学难点:探究两个三角形相似的预备定理的过程。

二、说学生说完了教材,我想跟大家分析一下我所授课的学生所具有的特点,也就是学情分析。

老师们,我们都知道九年级的学生接受能力相比七八年级强,想得到老师的鼓励。

相似三角形全章学案

相似三角形全章学案

27.1 图形的相似(第1课时)总 1 课时一、教学目标:通过对事物的图形的观察、思考与分析,认识理解相似的图形。

二、重点难点:认识图形的相似、形成图形相似的概念。

三、学情分析:在现实世界中广泛存在着图形相似的现象,探究相似图形一些重要性质的过程,使学生更好的认识、描述形状相同的物体,体会相似图形在刻画现实世界中重要作用;在解决实际问题中,发展学生数学应用意识和合作交流能力。

四、自主探究问题一:1、相似图形的定义?2、请举例说明我们生活中相似图形的实例。

问题二:1、两个相似图形之间有什么关系?2、思考(1)放大镜下的图形和原来的图形相似吗?(2)人站在平面镜前看到的镜像及哈哈镜里看到的镜像,它们相似吗?为什么?问题三:全等形与相似图形之间有什么关系?五、尝试应用1、下图中的哪组图形是相似图形()2、观察图27-1-6中图形(a)—(g),其中哪些是与图形(1)、(2)、(3)相似的。

1第页第 页2 3、如图,在4×4的正方形网格上,有一△ABC 。

现要求再画一△A’B’C’,使这两个三角形相似(非全等)。

六、补偿提高1、(教材P37练习第2题变式题)观察下列各个图形,找出其中相似的图形。

2、如图所示,左侧上海名牌大众汽车的标志图案,与右侧A 、B 、C 、D 四个图形中相似的是( )3、下列是相似图形的有( ) A. 两个三角形 B. 两个正方形 C. 两个直角三角形 D. 两个矩形4、如图,作出与方格纸中的图形相似的图形,使点A 与A ′对应,且所画的图形是原图形的2倍。

七、小结与作业八、教学后记:九、学生出勤:CBA十、安全提示:27.1 图形的相似(第2课时)总 2 课时一、教学目标:理解并掌握相似多边形的性质以及运用相似多边形的性质解决实际问题。

二、重点:相似多边形的对应边成比例,对应角相等的性质。

难点:应用相似多边形的性质解决实际问题。

三、学情分析:我们已学过相似图形的概念和全等三角形的性质,在此基础上研究相似图形的性质并不是很困难,教学过程中要注意类比全等图形的性质,从特殊到一般,引导学生观察、猜想、归纳、验证推理,从而让学生掌握相似图形的性质。

相似三角形的判定第一课时教案,

相似三角形的判定第一课时教案,
预习作业
1.相似多边形的主要特征是什么?
2.在△ABC与△A′B′C′中,如果∠A=∠A′,∠B=∠B′,∠C=∠C′,且 .我们就说△ABC与△A′B′C′,记作,它们的相似比为,△ 与△ABC的相似比为.
反之如果△ABC∽△A′B′C′,则有,且.
3.如图,(1)在∆ABC中,点D是边AB的中点,DE∥BC,DE交AC于点E,
课题27.2.1相似三角形的判定
(第一课时)
鹤城中学 初三年级组(潘立新)
【教学目标】
1.知识技能:(1)会用符号“∽”表示相似三角形,如△ABC ∽△ ;
(2)知道当△ABC与△ 的相似比为k时,△ 与△ABC的相似比为1/k.
(3)理解掌握平行线分线段成比例定理和三角形相似的预备定理
2.解决问题:运用“三角形相似的预备定理”解决简单的问题.
4.用几何语言描述上述三个定理
〖设计说明〗1.通过预习作业检查和师生共同探讨,培养学生自学能力,以防差生出现
2.使学生加深对平行线分线段成比例定理和三角形相似的预备定理的理解
2、 展示探究
例1如图△ABC∽△DCA,AD∥BC,∠B=∠DCA.
(1)写出对应边的比例式;
(2)写出所有相等的角;
(3)若AB=10,BC=12,CA=6.求AD、DC的长.
〖设计说明〗通过对相似三角形定义的回顾和特殊情况三角形的中位线出发观察讨论两三角形对应线段的比的关系,两三角形形状关系,从而引伸出平行线分线段成比例定理和三角形相似的预备定理
【教学设计】
1.预习交流
1.检查学生的预习作业,师生共同探讨预习作业的第2,3题
2.如图27.2-1),任意画两条直线l1,l2,再画三条与l1,l2相交的平行线l3,l4,l5.

27.2.1相似三角形的判定(教案)

27.2.1相似三角形的判定(教案)
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解相似三角形的基本概念。相似三角形是指两个三角形的对应角相等,对应边成比例。它在几何学中有着重要的地位,可以帮助我们解决实际问题。
2.案例分析:接下来,我们来看一个具体的案例。这个案例展示了相似三角形在实际中的应用,以及它如何帮助我们解决问题。
实践活动和小组讨论的环节,学生们表现得非常活跃。他们通过分组讨论和实验操作,不仅加深了对相似三角形判定方法的理解,还提高了合作解决问题的能力。我观察到,在小组讨论中,学生们能够相互启发,共同克服难题,这让我感到很欣慰。
不过,我也发现了一些需要改进的地方。在小组讨论中,有些学生显得不够主动,可能是因为他们对主题还不够自信。为了鼓励这些学生更多地参与进来,我可以在下一次课中采取一些策略,比如提供更多的引导问题,或者给予他们更多的时间来准备分享。
3.重点难点解析:在讲授过程中,我会特别强调AA、SSS、SAS这三个判定方法。对于难点部分,我会通过举例和比较来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与相似三角形判定相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。这个操作将演示相似三角形的基本原理。
-难点二:在实际问题中运用相似三角形的判定方法。
-学生可能难以从复杂的实际问题中抽象出相似三角形的模型,需要通过案例分析和反复练习,提高学生的几何建模能力。
-举例:在解决实际问题中,指导学生如何从给定的信息中识别出相似三角形的特征,例如在测量物体高度时,如何利用相似三角形的性质来计算。
-难点三:理解相似三角形的判定方法之间的内在联系。
2.教学难点
-难点一:理解“对应角”和“对应边”的概念,以及它们在相似三角形中的应用。

人教版数学九年级下册27.2.1《相似三角形的判定》教案

人教版数学九年级下册27.2.1《相似三角形的判定》教案
-举例:通过具体图形,让学生学会测量并计算两三角形对应边的比例,判断是否成比例。
c.三角形两边对应成比例且夹角相等的情况,要求学生掌握这一判定方法的运用。
-举例:给出具体三角形,指导学生如何通过已知条件,运用两边对应成比例且夹角相等的方法判断三角形相似。
2.教学难点
本节课的难点内容主要包括以下方面,教师应采取有效的教学方法帮助学生突破难点:
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“相似三角形在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解相似三角形的判定基本概念。相似三角形是指具有相同形状但大小不同的三角形。判定相似三角形的方法有对应角相等、对应边成比例等,它们在几何学中具有重要地位,并在实际应用中广泛使用。
2.案例分析:接下来,我们来看一个具体的案例。通过案例分析,展示相似三角形的判定在实际中的应用,以及如何帮助我们解决问题。
-难点突破:通过分析复杂图形中的三角形,引导学生发现并应用两边对应成比例且夹角相等的方法,培养学生逻辑推理和数学抽象能力。
d.解决实际问题时的数学建模和数据分析。
-难点突破:设计实际应用题,让学生学会将相似三角形的判定方法应用于解决实际问题,提高数学建模和数据分析能力。
四、教学流程
(一)导入新课(用时5分钟)
三、教学难点与重点
1.教学重点
本节课的核心内容是相似三角形的判定方法,教师应针对性地进行讲解和强调以下方面:

相似三角形的判定数学教学教案5篇

相似三角形的判定数学教学教案5篇

相似三角形的判定数学教学教案5篇相似三角形的判定数学教学教案1教学目标(一)教学知识点1.掌握相似三角形的定义、表示法,并能根据定义判断两个三角形是否相似.2.能根据相似比进行计算.(二)能力训练要求1.能根据定义判断两个三角形是否相似,训练学生的判断能力.2.能根据相似比求长度和角度,培养学生的运用能力.(三)情感与价值观要求通过与相似多边形有关概念的类比,渗透类比的教学思想,并领会特殊与一般的关系.教学重点相似三角形的定义及运用.教学难点根据定义求线段长或角的度数.教学方法类比讨论法教具准备投影片三张第一张(记作§4.5 A)第二张(记作§4.5 B)第三张(记作§4.5 C)教学过程Ⅰ.创设问题情境,引入新课[师]上节课我们学习了相似多边形的定义及记法.现在请大家回忆一下.[生]对应角相等,对应边成比例的两个多边形叫做相似多边形.相似多边形对应边的比叫做相似比.[师]很好.请问相似多边形指的是哪些多边形呢?[生]只要边数相同,满足对应角相等、对应边成比例的多边形都包括.比如相似三角形,相似五边形等.[师]由此看来,相似三角形是相似多边形的一种.今天,我们就来研究相似三角形.相似三角形的判定数学教学教案2一、教学目标1.使学生了解判定定理1及直角三角形相似定理的证明方法并会应用,掌握例2的结论.2.继续渗透和培养学生对类比数学思想的认识和理解.3.通过了解定理的证明方法,培养和提高学生利用已学知识证明新命题的能力.4.通过学习,了解由特殊到一般的唯物辩证法的观点.二、教学设计类比学习,探讨发现三、重点及难点1.教学重点:是判定定理l及直角三角形相似定理的应用,以及例2的结论.2.教学难点:是了解判定定理1的证题方法与思路.四、课时安排1课时五、教具学具准备多媒体、常用画图工具、六、教学步骤[复习提问]1.什么叫相似三角形?什么叫相似比?2.叙述预备定理.由预备定理的题所构成的三角形是哪两种情况.[讲解新课]我们知道,用相似三角形的定义可以判定两个三角形相似,但涉及的条件较多,需要有三对对应角相等,三条对应边的比也都相等,显然用起来很不方便.那么从本节课开始我们来研究能不能用较少的几个条件就能判定三角形相似呢?上节课讲的预备定理实际上就是一个判定三角形相似的方法,现在再来学习几种三角形相似的判定方法.我们已经知道,全等三角形是相似三角形当相似比为1时的特殊情况,判定两个三角形全等的三个公理和判定两个三角形相似的三个定理之间有内在的联系,不同处仅在于前者是后者相似比等于1的情况,教学时可先指出全等三角形与相似三角形之间的关系,然后引导学生自己用类比的方法找出新的命题,如:问:判定两个三角形全等的方法有哪几种?答:SAS、ASA(AAS)、SSS、HL.问:全等三角形判定中的“对应角相等”及“对应边相等”的语句,用到三角形相似的判定中应如何说?答:“对应角相等”不变,“对应边相等”说成“对应边成比例”.问:我们知道,一条边是写不出比的,那么你能否由“ASA”或“AAS”,采用类比的方法,引出一个关于三角形相似判定的新的命题呢?答:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似.强调:(1)学生在回答中,如出现问题,教师要予以启发、引导、纠正.(2)用类比方法找出的新命题一定要加以证明.如图5-53,在△ABC和△中,, .问:△ABC和△是否相似?分析:可采用问答式以启发学生了解证明方法.问:我们现在已经学习了哪几个判定三角形相似的方法?答:①三角形的定义,②上一节学习的预备定理.问:根据本命题条件,探讨时应采用哪种方法?为什么?答:预备定理,因为用定义条件明显不够.问:采用预备定理,必须构造出怎样的图形?答:或 .问:应如何添加辅助线,才能构造出上一问的图形?此问学生回答如有困难,教师可领学生共同探讨,注意告诉学生作辅助线一定要合理.(1)在△ABC边AB(或延长线)上,截取,过D作DE∥BC交AC于E.“作相似.证全等”.(2)在△ABC边AB(或延长线上)上,截取,在边AC(或延长线上)截取AE= ,连结DE,“作全等,证相似”.(教师向学生解释清楚“或延长线”的情况)虽然定理的证明不作要求,但通过刚才的分析让学生了解定理的证明思路与方法,这样有利于培养和提高学生利用已学知识证明新命题的能力.判定定理1:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似.简单说成:两角对应相等,两三角形相似.,,∽ .例1 已知和中,,, .求证:∽ .此例题是判定定理的直拉应用,应使学生熟练掌握.例2 直角三角形被斜边上的高分成的两个直角三角形和原三角形相似.已知:如图5-54,在中,CD是斜边上的高.求证:∽∽ .该例题很重要,它一方面可以起到巩固、掌握判定定理1的作用;另一方面它的应用很广泛,并且可以直接用它判定直角三角形相似,教材上排了黑体字,所以可以当作定理直接使用.即∽△∽△.[小结]1判定定理1的引出及证明思路与方法的分析,要求学生掌握两种辅助线作法的思路.2.判定定理1的应用以及记住例2的结论并会应用.七、布置作业教材P238中A组3、4.相似三角形的判定数学教学教案31、教学引入照顾到了到多数的同学,培养了学生的动手测量和计算能力。

《相似三角形的判定》第1课时 教学设计

《相似三角形的判定》第1课时  教学设计

第二十七章 相似27. 2 相似三角形 教学设计第 1 课时《相似三角形的判定》是相似三角形的主要内容之一.相似三角形是全等三角形的拓广和发展,在这之前,学生已经学习了全等三角形的相关知识,这为学生继续研究相似三角形奠定了基础.相似三角形的判定是进一步对相似三角形的本质和定义的全面研究,也是以后研究圆中比例线段和三角函数的重要工具.本节教材介绍了五种判定方法,这些方法都是先通过学生探究,再进行证明得到,这四种方法的地位作用以及证明方法也有区别和联系.对于第一个判定方法,也就是“平行于三角形一边的直线和其他两边相交,所构成的三角形与原三角形相似”,根据学生的知识水平,教材先在探究的基础上介绍了平行线分线段成比例的基本事实,然后将这个基本事实应用到三角形上得到了一个推论,最后利用这个推论并通过三角形中平移线段证明了两个三角形相似.接下来的“三边”、“两边及其夹角”、“两角”三种判定方法都是利用第一种判定方法证明的.最后,介绍了利用勾股定理证明两个直角三角形相似的方法.1. 了解相似三角形的概念;掌握基本事实:两条直线被一组平行线所截,所得的对应线段成比例;探索并掌握相似三角形的判定方法,并能利用判定方法解决问题.2. 经历两个三角形相似的探索过程,体验用类比、实验操作、分析归纳得出数学结论的过程.3. 通过画图、度量等操作,培养学生获得数学猜想的经验,激发学生探索知识的兴趣,体验数学活动的探索性和创造性.【教学重点】相似三角形的概念及相似三角形的判定定理.【教学难点】相似三角形的判定的应用.多媒体课件、教具等.一、提出问题,思考引入问题1 ⑴相似多边形的主要特征是什么?⑵相似三角形有什么性质?⑶两个三角形全等有哪些判定方法?问题2 我们知道,两个边数相同的多边形,如果它们的角分别相等,边成比例,则称这两个多边形叫做相似多边形.根据这个定义,你能说出什么样的三角形叫做相似三角形吗?三个角分别相等,三条边成比例的两个三角形叫做相似三角形.如图,△ABC和△A′B′C′,如果∠A=∠A′,∠B=∠B′,∠C=∠C′,CAACCBBCBAAB''=''='',我们就说△ABC与△A′B′C′相似,记作△ABC∽△A′B′C′.二、合作交流,探究新知问题3 如图,任意画两条直线l1、l2,再画三条与l1、l2相交的平行线l3、l4、l5.分别度量l3、l4、l5在l1上截得的两条线段AB、BC和在l2上截得的两条线段DE、EF的长度,BCAB与EFDE相等吗?任意平移l4,再度量AB、BC、DE、EF的长度,BCAB与EFDE还相等吗?你还能发现哪些成比例线段?学生动手画图,并进行测量三条平行线在两条直线上所截得的对应线段的长度,然后计算它们的比值.在学生动手实践的基础上,教师利用媒体技术,通过任意拖动直线进行演示.◆课前准备◆◆教学过程事实上可以得到如下一些结论:EF DE BC AB =,DE EF AB BC =,DF DE AC AB =,DE DF AB AC =,DFEF AC BC =,EFDF BC AC =等. 一般地,我们有平行线分线段成比例的基本事实:两条直线被一组平行线所截,所得的对应线段成比例.问题4 如果将这个基本事实应用到三角形中,会出现下面两种情况:把直线l 2向左平移,两直线相交时有两种特殊的交点,图(1)是把l 4看成平行于△ABC 的边BC 的直线.图(2)是把l 3 看成平行于△ABC 的边BC 的直线,那我们能得出什么样的结论呢?归纳:平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例.问题5 如图,在△ABC 中,DE ∥BC ,DE 分别交AB ,AC 于点D ,E ,△ADE 与△ABC 有什么关系?追问1:△ADE 与△ABC 满足“对应角相等”吗?为什么?追问2:△ADE 与△ABC 满足对应边成比例吗?由“DE ∥BC ”的条件可得到哪些线段的比相等?追问3:根据以前学习的知识如何把DE 移到BC 上去?(作辅助线EF ∥AB )归纳:三角形相似的预备定理 平行于三角形一边的直线和其它两边相交,所构成的三角形与原三角形相似.问题6 类比三角形全等的“SSS ”判定方法,思考如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么能否判定这两个三角形相似呢?追问1:任意画一个三角形,再画一个三角形,使它的各边长都是原来三角形各边长的k 倍.度量这两个三角形的角,它们分别相等吗?这两个三角形相似吗?与同学交流一下,看看是否有同样的结论.追问2:你能利用上面的定理证明你发现的结论吗?如图,在△ABC 和△A 'B 'C '中,已知C A AC C B BC B A AB ''=''=''.求证△ABC ∽△A 'B 'C '.证明:在线段(或它的延长线)上截取,过点D 作DE 平行于B C '',交A C ''于点E .根据“平行于三角形一边的直线和其它两边相交,所构成的三角形与原三角形相似”可得△A 'DE ∽△A 'B 'C '.∴C A E A C B DE B A D A '''=''='''.又∵C A AC C B BC B A AB ''=''='',AB D A =',∴BC DE =,AC E A ='.∴ABC DE A ∆≅'∆.∴△ABC ∽△A 'B 'C '.三角形相似的判定定理1 三边成比例的两个三角形相似.追问3:由三角形全等的“SAS ”判定方法,试想如果一个三角形的两条边与另一个三角形的两条边对应成比例且夹角相等,那么能否判定这两个三角形相似呢?证明思路与证明前面的定理思路类似.先用同样的方法作一个与△A 'B 'C '相似的三角形,再用相似三角形对应边成比例和已知条件证明所作三角形与△ABC 全等.归纳:三角形相似的判定定理2 两边成比例且夹角相等的两个三角形相似.思考:对于△ABC 与△A 'B 'C ',如果CA ACB A AB ''='',∠B =∠B ',这两个三角形相似吗?试着画画看.问题7 如图,观察两副三角尺,其中同样角度(︒30与︒60,或︒45与︒45)的两个三角尺大小可能不同,但它们看起来是相似的.如果两个三角形有两组角对应相等,它们一定相似吗?追问1:作△ABC 与△A 'B 'C ',使得A A '∠=∠,B B '∠=∠,这时它们的第三角满足C C '∠=∠吗?分别度量这两个三角形的边长,计算B A AB ''﹑C B BC ''﹑C A AC '',你有什么发现?结论:学生通过度量,不难发现C C '∠=∠,CA AC CB BC B A AB ''=''=''. 追问2:分别改变这两个三角形边的大小,而不改变它们的角的大小,再试一试,是否有同样的结论?应用“几何画板”等计算机软件作动态探究进行演示验证,引导学生观察在动态变化中存在的不变因素.归纳:两角分别相等的两个三角形相似.符号语言:若A A '∠=∠,B B '∠=∠,则△ABC ∽△A 'B 'C '.问题8 我们知道,两个直角三角形全等可用“HL ”来判定,那么,满足斜边和一条直角边成比例的两个直角三角形相似吗?你能否证明,请结合教材完成证明.如图所示,在Rt △ABC 和Rt △A 'B 'C '中,∠C =90°,∠C '=90°,C A AC B A AB ''=''.求证Rt △ABC ∽Rt △A 'B 'C '.分析:由于三边成比例的两个三角形相似,而已知条件中有两边对应成比例,所以只需证明另一对直角边也成比例即可. 证明:设k C A AC B A AB =''='',则AB =kA 'B ',AC =kA 'C '. 由勾股定理,得22BC AB AC =-,22B C A B A C ''''''=-.∴2222222222BC AB AC k A B k A C k B C A B A C A B A C ''''-⋅-⋅===''''''''''--. ∴C A AC C B BC B A AB ''=''=''.∴Rt △ABC ∽Rt △A 'B 'C . 三、运用新知 例1:如图,直线l 1∥l 2,AF ∶FB =2∶3,BC ∶CD =2∶1,求AE ∶EC 的值.解:∵l 1∥l 2,∴△AGF ∽△BDF ,△AGE ∽△CDE .∴AG BD =AF FB =23,∴AG =23BD . 又∵BC CD =21,BC +CD =BD ,∴CD =13BD .∴AE EC =AG CD=2.即AE ∶EC =2. 例2:根据下列条件,判断△ABC 与△A 'B 'C '是否相似,并说明理由:(1)AB =4cm ,BC =6cm ,AC =8cm ,A 'B '=12cm ,B 'C '=18cm ,A 'C '=24cm ;(2)∠A =120°,AB =7cm ,AC =14cm ,∠A '=120°,A 'B '=3cm ,A 'C '=6cm .解:(1)∵31124==''B A AB ,61183BC B C =='',31248==''C A AC , ∴C A AC C B BC B A AB ''=''=''.∴△ABC ∽△A 'B 'C '. (2)∵37=''B A AB ,37614==''C A AC ,∴C A AC B A AB ''=''.又∠A =∠A ',∴△ABC ∽△A 'B 'C '. 例3:如图所示,在Rt △ABC 中,∠C =90°,AB =10,AC =8.E 是AC 上一点,AE =5,ED ⊥AB ,垂足为D .求AD 的长.解:∵ED ⊥AB ,∴∠EDA =90°. 又∠C =90°,∠A =∠A ,∴△AED ∽△ABC ,∴AB AE AC AD =.∴41058=⨯=⋅=AB AE AC AD . 四、巩固新知练习1 如图所示,∠ADE =∠ACD =∠ABC ,图中相似三角形共有( )A .1对B .2对C .3对D .4对解析:∵∠ADE =∠ACD =∠ABC ,∴DE ∥BC ,∴△ADE ∽△ABC .∵DE ∥BC ,∴∠EDC =∠DCB .∵∠ACD =∠ABC ,∴△EDC ∽△DCB .同理∠ACD =∠ABC ,∠A =∠A ,∴△ABC ∽△ACD .∵△ADE ∽△ABC ,△ABC ∽△ACD ,∴△ADE ∽△ACD .∴共有4对.故选D .练习2 如图,在△ABC 中,DE ∥BC ,AD =EC ,DB =1cm ,AE =4cm ,BC =5cm ,求DE 的长.解析:由DE ∥BC ,可得△ADE ∽△ABC ,再由相似三角形的性质,有AC AE AB AD =,又由AD =EC 可求出AD 的长,再根据ABAD BC DE =求出DE 的长. 练习3 如图所示,在Rt △ABC 中,∠ACB =90°,CD ⊥AB 于D ,图中共有哪几对相似三角形?并选择其中一对进行证明.解析:由CD ⊥AB ,得∠ADC =∠CDB =90°,所以图中共有三个直角三角形,根据直角三角形的两锐角互余,可得∠A +∠B =90°,∠A +∠ACD =90°,∠B +∠BCD =90°,由同角的余角相等,得∠B =∠ACD ,∠A =∠BCD ,根据两角分别相等的两个三角形相似易得△ACD ∽△ABC ,△CDB ∽△ACB ,△ACD ∽△CBD .五、归纳小结说说你在本节课的收获:1.相似三角形的定义:对应角相等,对应边成比例的两个三角形叫相似三角形.相似三角形的对应边的比叫做相似比.2.相似三角形的判定方法:(1)平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似;(2)两边对应成比例且夹角相等的两个三角形相似;(3)有两个角对应相等的两个三角形相似;(4)三条边对应成比例的两个三角形相似;(5)一条直角边和斜边对应成比例的两个直角三角形相似.略.。

相似三角形的判定1

相似三角形的判定1

说课题目:三角形相似的判定1一、教材分析:1、教材地位和作用:“相似三角形的判定”是人教版九年级下册27.2.1节的内容。

对于相似三角形的研究,实际上是对平面几何中两个封闭图形关系研究的进一步,是在原来研究三角形全等基础上的深入。

它也是初中阶段遇到的比例式的主要途径,既是全等三角形研究的继续,也为后面测量和研究三角函数做了铺垫。

因此必须熟练掌握三角形相似的判定,学会灵活运用相似三角形的判定。

它在平面几何的学习中起着承上启下的作用。

“本节课是三角形相似的判定”第一课时,学习三角形相似的判定定理1及它的应用,为学生学习其它判定定理打下基础。

2、教学目标:(1)知识目标:经历三角形相似的判定定理1的探索及证明过程;能用定理1判定两个三角形相似,解决相关问题。

(2)能力目标:让学生经历观察、实验、猜想、证明的过程,培养学生提出问题、分析问题的能力、解决问题的能力;正确应用三角形相似判定定理1,培养学生思维能力;渗透类比、化归的数学思想和应用数学的意识。

(3)情感目标:通过学生积极参与,激发学生学习数学的兴趣,体验数学的探索与创造的快乐3、教学重点与难点:根据定理1的重要地位及证明的复杂性,确定重难点为:重点:三角形相似的判定定理1及应用。

难点:三角形相似的判定定理1的证明。

充分运用多媒体教学手段,设置问题、探究讨论、例题讲解、巩固练习、课堂小结直至布置作业,突出直线,层层深入,逐一突破重难点。

二、教法学法1 、学情分析:学生通过前面的学习已了解了三角形相似的概念,掌握了相似三角形判定的预备定理,这为探究三角形相似的条件做好了知识上的准备。

另外,学生也具备了识别三角形全等的知识,通过类比和创设问题情境,能使学生能主动参与本节课的操作、探究。

经过一年多的几何学习,学生对几何图形的观察、分析能力已初步形成。

部分学生解题思维能力比较高,能够正确归纳所学知识,通过小组讨论交流,能够形成解决问题的思路。

2、教法分析:针对初三学生的年龄特点和心理特征以及他们的知识水平,根据教学目标,本节课我采用探究发现式教学和参与式教学为主,利用多媒体引导学生始终参与到学习活动的全过程,使学生处于主动学习的状态。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

27.2 相似三角形
27.2.1 相似三角形的判定
第1课时平行线分线段成比例
1.理解相似三角形的概念.
2.掌握平行线分线段成比例的基本事实及推论.
3.掌握判定三角形相似的预备定理.
阅读教材P29-31,自学“探究”与“思考”,弄懂相似三角形的概念,掌握平行线分线段成比例定理,理解相似三角形判定的预备定理.
自学反馈学生独立完成后集体订正
①如果△ABC∽△A1B1C1的相似比为k,则△A1B1C1∽△ABC的相似比为.
②如图,l1、l2分别被l3,l4,l5所截,且l3∥l4∥l5,则AB与对应,BC与对应,DF与对应;AB BC
=
() (),
()
AB
=
( )
DF

AB
DE
=
()
()
=
()
()
.
③如图所示,已知AB∥CD∥EF,那么下列结论正确的是( )
A.AD
DF
=
BC
CE
B.
BC
CE
=
DF
AD
C.CD
EF
=
BC
BE
D.
CD
EF
=
AD
AF
④平行于三角形一边的直线与其他两边(或延长线)相交所构成的三角形与原三角形.
找准对应线段是关键.
活动1 小组讨论
例1如图,直线l1∥l2,AF∶FB=2∶3,BC∶CD=2∶1,则试求AE∶EC的值.
解:∵l1∥l2,
∴△AGF∽△BDF,△AGE∽△CDE.
∴AG
BD
=
AF
FB
=
2
3

∴AG=2
3 BD.
又∵BC
CD
=
2
1
,BC+CD=BD,
∴CD=1
3 BD.
∴AE
EC
=
AG
CD
=2.即AE∶EC=2.
可从AE∶EC出发,只需要证得他们所在的两个三角形相似及他们的相似比即可,
而AF与FB所在的两个三角形相似,两个相似关系可以得到线段AG、CD与线段BD的数量关系,从而就可以得出AG与CD的比,即△AGE与△CDE的相似比.
活动2 跟踪训练(独立完成后展示学习成果)
1.如图,ED∥BC,EC、BD相交于点A,过A的直线交ED、BC分别于点M、N,则图中有相似三角形( )
A.1对
B.2对
C.3对
D.4对
2.如图,DE∥BC,则下面比例式不成立的是( )
A.AD
AB
=
AE
AC
B.
DE
BC
=
EC
AC
C.
AD
DB
=
AE
EC
D.BC
DE
=
AC
AE
3.如图,在 ABCD中,E是AD上一点,连接CE并延长交BA的延长线于点F,则下列结论中错误的是( )
A.∠AEF=∠DEC
B.FA∶CD=AE∶BC
C.FA∶AB=FE∶EC
D.AB=DC
本题除运用相似三角形对应边的比相等外,还应根据图形对比例式进行适当的变
形.
活动3 课堂小结
学生试述:这节课你学到了些什么?。

相关文档
最新文档