4.5 感生电动势和动生电动势
高二物理感生电动势和动生电动势
例4:如图所示,竖直向上的匀强磁场,磁感应强度 B=0.5T,并且以△B/△t=0.1T/S在变化.水平轨道电阻不 计,且不计摩擦阻力,宽0.5m的导轨上放一电阻 R0=0.1Ω的导体棒,并用水平线通过定滑轮吊着质量为 M=0.2kg的重物,轨道左端连接的电阻R=0.4Ω,图中的 L=0.8m,求至少经过多长时间才能吊起重物。
• 例2:如图所示,线圈L的自感系数很大,且其电阻 可以忽略不计,L1L2是两个完全相同的小灯泡,随 着开关S的闭合和断开的过程中,L1L2的亮度变化 情况是( )
; /junxian/ 均线理论;
去执行看守の任务,而小黑就是五百年前被派到这里来の丶至于怎么到这里の,他也不清楚,当时只是两眼壹抹黑,再醒来の时候就到这里了丶他们役界与这魔界到底有多远,他们也不清楚,不过这个小黑却知道万域中の大部分界域の名字,以及来历丶只是具体の位置说不清楚,也就是说,在这 星空之下,壹定是有壹个超级无敌の大势力,竟然有可能在控制着这万域の修行者丶而这个势力,还专门培养出了壹个役界,上面の修行者,像小黑壹样の家伙,他们都有统壹の称呼,名叫黑卫丶所有人都和他の装扮差不多,都是壹身黑甲,同时从小便是修行各种看守之术,奴役之术,拷问之术丶 别の道法,他们沾也没沾过,从来也没接触过丶得知这种消息,根汉三人也是十分吃惊,果然在这星空之下,有壹个庞大の势力,可能大到会超乎所有人の想像丶不过小黑也说:"这个势力是什么咱们也不知道,咱们平时只是叫他们为仙宫,但是这个仙宫,可能也不是平时大家称呼の那个仙宫丶五 百年前咱被分配到这里之后,过了三天,就有壹位自称仙使の强者来到了这里丶他告诉咱需要在这里等待,咱の上司,也就是大哥你了,到时候咱就跟着你混了让咱和你壹起管辖这个困仙牢丶""像这样の困仙牢有多少?"根汉皱眉问道丶小黑摇头道:"这个不知
动生电动势和感生电动势
§6-2 动生电动势和感生电动势动生电动势:回路或其一部分在磁场中的相对运动所产生的感应电动势。
感生电动势:仅由磁场的变化而产生的感应电动势。
一 动生电动势图6 - 5 动生电动势动生电动势的产生可以用洛伦兹力来解释。
长为l 的导体棒与导轨构成矩形回路abcd 平放在纸面内,均匀磁场B 垂直纸面向里。
当导体棒ab 以速度v 沿导轨向右滑动时,导体棒内自由电子也以速度v 随之一起向右运动。
每个自由电子受到的洛伦兹力为B v F ⨯-)(=e ,方向从b 指向a ,在其作用下自由电子向下运动。
如果导轨是导体,在回路中将形成沿着abcd 逆时针方向的电流。
如果导轨是绝缘体,则洛伦兹力将使自由电子在a 端累积,从而使a 端带负电,b 端带正电,在ab 棒上产生自上而下的静电场。
当作用在自由电子上的静电力与洛伦兹力大小相等时达到平衡,ab 间电压达到稳定值,b 端电势比a 端高。
这一段运动导体相当于一个电源,它的非静电力就是洛伦兹力。
电动势定义为单位正电荷从负极通过电源内部移到正极的过程中,非静电力K 所作的功,即B v F K ⨯=-=e.动生电动势为ε⎰⎰+-⋅⨯=⋅=l B v l K d )(d ba .(6.4)均匀磁场情况:若v ⊥ B , 则有ε = B l v ;若导体顺着磁场方向运动,v // B ,则有 v ⨯ B = 0,没有动生电动势产生。
因此,可以形象地说,只有当导线切割磁感应线而运动时,才产生动生电动势。
普遍情况:在任意的恒定磁场中,一个任意形状的导线线圈L (闭合的或不闭合的)在运动或发生形变时,各个线元d l 的速度v 的大小和方向都可能是不同的。
这时,在整个线圈L 中产生的动生电动势为ε l B v d )()(⋅⨯=⎰L .(6.5)图6 - 6 洛伦兹力不作功洛伦兹力对电荷不作功:洛伦兹力总是垂直于电荷的运动速度,即v ⊥F v ,因此洛伦兹力对电荷不作功。
感生电动势和动生电动势2
4.5 感生电动势和 动生电动势
一、感应电场与感生电动势
一个闭合电路静止于磁场 中,由于磁场强弱的变化,闭 合电路内产生了感应电动势. 这种情况下,哪一种作用扮 演了非静电力的角色?
磁场变强
1、变化的的磁场能在周围空间激发电 场,这种电场叫感应电场
2、由感生电场产生的感应电动势称为 感生电动势. 3、感生电动势在电路中的作用就是电 源,其电路就是内电路,当它与外电路 连接后就会对外电路供电.
由于导体运动而产生的感应电动 势称为动生电动势。
小结
1、感应电场:由变化的磁场激发的电场 2、感应电动势:由感应电场产生的感应
电动势称为感生电动势.
3、动生电动43886712 ;
丝毫拒绝:"三天内只要你呀还能动,就必须配合俺玩,并且你呀必须时候都要笑着,要很开心の笑着!" "成交!把他们全部传送出去吧." 白重炙松了一口气,当然脸上却是笑容不断,传音完后,没有再理女子,而是转头过来看着夜妖娆,温柔の说道:"回去等俺!" "轻寒…"夜妖娆当然知道白 重炙一直在和那个女子传音,只是她很清楚白重炙の脾气,没敢多说话,只是轻声の喊了一句. 话还没说完,夜妖娆の身影却是化成一条白光,消失在大厅内.并且地上の几人也同时被传送出去,空旷の大厅只是剩下两人,以及一只慵懒の趴在靠椅上似乎睡着了の灵宠. "呼…" 白重炙长长呼住 一口气,心情完全放松,脸上の笑容无比の诚挚,肆无忌惮の望着女子雍容华贵の脸,以及雪白坎肩内の那条勾魂の深沟,嘴角微微上翘,笑道:"好了,美人,就剩下俺们了,要怎么玩?皮鞭蜡
高中物理选修3-2教案 4.5《电磁感应现象的两类情况》
电磁感应现象的两种情况教学目标1. 知识与技能(1)了解感生电场,会解释感生电动势的产生原因. (2)了解动生电动势的产生条件和洛伦兹力的关系.(3)掌握两种感应电动势的区别与联系,会应用分析实际问题. (4)了解电磁感应规律的一般应用,会分析科技实例. 2. 过程与方法通过同学们之间的讨论、研究增强对两种电动势的认知深度,同时提高学习物理的兴趣. 3. 情感、态度与价值观通过对相应物理学史的了解,培养热爱科学、尊重知识的良好品德. 教学重点难点感生电动势与动生电动势的概念。
对感生电动势与动生电动势实质的理解。
教学方法与手段以类比为先导,引领学生在复习干电池电动势中非静电力作用的基础上,说明感应电场和洛伦兹力在产生感应电动势中的作用,并能应用感生电动势和动生电动势解答相关问题。
类比讨论学习为主,发动学生对电子感应加速器的讨论从而加深理解。
课前准备多媒体课件、实物投影仪、视频片断。
导入新课[事件1]教学任务:复习提问,导入新课。
师生活动:情景导入,放映PPT 课件展示提问的问题。
一、复习提问:1.法拉第电磁感应定律的内容是什么?数学表达式是什么? 答:感应电动势的大小与磁通量的变化率成正比,即E =n ΔΦΔt。
2.导体在磁场中切割磁感线产生的电动势与什么因素有关,表达式是什么,它成立的条件又是什么?答:导体在磁场中切割磁感线产生的电动势的大小与导体棒的有效长度、磁场强弱、导体棒的运动速度有关,表达式是E=BLvsinθ,该表达式只能适用于匀强磁场中。
3.干电池中电动势是怎样产生的?参照相关图片,回顾所学电池电动势中有关非静电力做功的知识,其他学生补充。
二、引入新课:在电磁感应现象中,由于引起磁通量的变化的原因不同,感应电动势产生的机理也不同,本节课我们就一起来学习感应电动势产生的机理。
讲授新课[事件2]教学任务:感生电场和感生电动势。
师生活动:学生阅读教材19页“电磁感应现象中的感生电场”部分,分析讨论闭合电路中产生感应电流的原因。
感生电动势和动生电动势正式版
感生电动势和动生电动势一、学习目标1.知道感生电场。
2.知道感生电动势和动生电动势及其区别与联系二、预习案(一)、电磁感应现象中的感生电场1.感生电场:英国物理学家麦克斯韦认为,磁场时会在空间激发一种电场——感生电场.2.感生电动势:由产生的电动势叫做感生电动势。
的方向与所产生的方向相同,可根据楞次定律和右手螺旋定则来判断,感生电动势中的“非静电力”是对自由电荷的作用.(二)、电磁感应现象中的洛伦兹力1.动生电动势:由于而产生的感应电动势.2.动生电动势中的“非静电力”:自由电荷因随导体棒运动而受到,非静电力与.有关.3.动生电动势中的功能关系:闭合电路中,导体棒做切割磁感线运动时,克服做功,其他形式的能转化为.三、课上探究(一)、理论探究感生电动势的产生1、在图中画出感应电流的方向。
2、是什么力充当非静电力使得自由电荷发生定向运动?3、感生电场的存在与闭合回路的存在有无关系?感生电场的方向如何?(二)、实际应用----电子感应加速器1、说出穿过真空室内磁场的方向?2、由图知电子沿什么方向运动?3、要使电子沿此方向加速,感生电场的方向如何?4、由感生电场引起的磁场方向如何?线圈中电流怎样变化?(三)、理论探究动生电动势的产生思考与讨论1、动生电动势是怎样产生的?2、什么力充当非静电力?提示1、导体中的自由电荷受到什么力的作用?它将沿导体棒向哪个方向运动?2、导体棒的哪端电势比较高?3、非静电力与洛伦兹力有关吗?4、如果用导线把C、D两端连到磁场外的一个用电器上,导体棒中的电流沿什么方向?讨论1、洛伦兹力做功吗?2、能量是怎样转化的?3、推导动生电动势的表达例题:光滑导轨上架一个直导体棒MN,设MN向右匀速运动的速度为V,MN长为L,不计其他电阻求:(1)导体MN做匀速运动时受到的安培力大小和方向?(2)导体MN受到的外力的大小和方向?(3)MN向右运动S位移,外力克服安培力做功的表达式是什么?(4)在MN向右运动S位移过程中感应电流做功是多少?练习:1、一个带正电粒子在垂直于匀强磁场的平面内做匀速圆周运动,如图所示,当磁感应强度均匀增大时,此粒子的()A.动能不变B.动能增大C.动能减小D.以上情况都可能2、如图所示,一正方形闭合金属线框,从距离匀强磁场上边界h高处,由静止开始沿竖直平面自由下落,线圈平面始终垂直于匀强磁场的方向,且磁场区域高度大于线框的边长.对线框进入磁场的过程,以下描述正确的是(BD)A.线框有可能做匀变速运动B.若线框做变速运动,加速度一定减小C.若h足够大,线框可能反弹向上运动D.h越大,线框的机械能损失越多四、巩固练习1.如图所示,一个带正电的粒子在垂直于匀强磁场的平面内做圆周运动,当磁感应强度均匀增大时,此粒子的动能将()A.不变B.增加C .减少D .以上情况都可能2.穿过一个电阻为l Ω的单匝闭合线圈的磁通量始终是每秒钟均匀地减少2 Wb ,则( )A .线圈中的感应电动势一定是每秒减少2 VB .线圈中的感应电动势一定是2 VC .线圈中的感应电流一定是每秒减少2 AD .线圈中的感应电流一定是2 A3.在匀强磁场中,ab 、cd 两根导体棒沿两根导轨分别以速度v1、v2滑动,如图所示,下列情况中,能使电容器获得最多电荷量且左边极板带正电的是( )A .v1=v2,方向都向右B .v1=v2,方向都向左C .v1>v2,v1向右,v2向左D .v1>v2,v1向左,v2向右4.如图所示,面积为0.2 m2的100匝线圈处在匀强磁场中,磁场方问垂直于线圈平面,已知磁感应强度随时间变化的规律为B=(2+0.2t )T ,定值电阻R1=6Ω,线圈电阻R2=4Ω,求:(1)磁通量变化率,回路的感应电动势;(2)a 、b 两点间电压Uab5.如图所示,在物理实验中,常用“冲击式电流计”来测定通过某闭合电路的电荷量.探测器线圈和冲击电流计串联后,又能测定磁场的磁感应强度.已知线圈匝数为n ,面积为S ,线圈与冲击电流计组成的回路电阻为R ,把线圈放在被测匀强磁场中,开始时线圈与磁场方向垂直,现将线圈翻转180°,冲击式电流计测出通过线圈的电荷量为q ,由此可知,被测磁场的磁磁感应强度B=__________6、如图所示,A 、B 为大小、形状均相同且内壁光滑,但用不同材料制成的圆管,竖直固定在相同高度.两个相同的磁性小球,同时从A 、B 管上端的管口无初速释放,穿过A 管的小球比穿过B 管的小球先落到地面.下面对于两管的描述中可能正确的是( )A .A 管是用塑料制成的,B 管是用铜制成的B .A 管是用铝制成的,B 管是用胶木制成的C .A 管是用胶木制成的,B 管是用塑料制成的D .A 管是用胶木制成的,B 管是用铝制成的 7、如图所示,光滑导轨宽0.4m ,均匀变化的磁场垂直穿过其面,方向如图,磁场的变化如图所示,金属棒ab 的电阻为1Ω,导轨电阻不计,自t=0时,ab 棒从导轨最左端,以v=1m/s 的速度向右匀速运动,则( )A .1s 末回路中的电动势为1.6VB .1s 末棒ab 受安培力大小为0.64NC .1s 末回路中的电动势为0.8VD .1s 末棒ab 受安培力大小为1.28参考答案1、B2、BD3、C4、(1)4V (2)2.4A5、nS qR2 6、:AD 7、AD。
论感生电动势和动生电动势的相对性和统一性
论感生电动势和动生电动势的相对性和统一性电磁学中讲述电磁感应现象时,根据非静电力起因不同,将感应电动势分为感生电动势和动生电动势两种。
感生电动势对应的是变化的磁场产生的涡旋电场的一种效应,动生电动势对应的非静电力是洛伦兹力。
两者的物理本质完全不同。
在相对论条件下,感生电动势和动生电动势是统一的,其本质是相同的。
这是因为电磁场是一个统一的整体。
而电场和磁场的划分是相对的,是与参考系的选择有关的。
一、相对性——参考系的变换带来的矛盾1、参考系变换实现两种电动势的统一动生电动势与感生电动势的区分并非是绝对的,而与选取的参考系有关。
对于具体的电磁感应现象,在一个参考系中观察是动生电动势,在另一个参考系中观察就可能是感生电动势。
如图所示,柱形磁铁与导体圆环相对运动,磁棒为参考系,那么空间各点的磁场不变,导体环切割磁感线产生感应电动势,这时的电动势就是动生电动势。
如果以圆环为参考系,那么空间各点的磁场都在变化,变化生电动势。
这说明,通过参考系的变换在一定程度上“可以消除动生电动势和感生电动势的界限”。
然而,通过参考系的变换“可以消除动生电动势和感生电动势的界限”这一事实将产生以下突出矛盾。
两种本质不同的电磁现象怎么能通过参考系变换的手段实现统一呢?只有本质相同的现象才可能通过一定手段实现统一,只有具有统一性的现象才具有相对性。
条形磁铁插入静止闭合线圈中产生的感应电流,对导体中的电子产生作用的到底是什么力?条形磁铁插入静止闭合线圈的过程中空间到底有没有感应电场?这些理论上的矛盾正暴露了经典电磁学的缺陷和局限性.2、导体上有无电荷积累在另一些情况下却是不可能通过变换参考系把两者统一起来的。
如图所示,设长为l 为的直导体棒在静止的均匀磁场B 中沿垂直磁场方向以速度v 匀速运动。
在与均匀磁场相对静止的参考系中,导体在静止磁场中沿垂直磁场方向运动,导体中的电子必定受到洛伦兹力的作用,在洛伦兹力的作用下,C 端必定有正电荷的积累,D 端必定有负电荷的积累,即导体中必定产生动生电动势,两端电势差为:Blv =ε。
高二物理感生电动势和动生电动势(新编201908)
《高中物理》
选修3-24ຫໍສະໝຸດ 5《感生电动势和 动生电动势》;恒达 恒达平台代理 恒达总代理 恒达招商 恒达 恒达平台代理 恒达总代理 恒达招商
;
谓从舅张弘策曰 可除赎罪之科 兼通直散骑常侍 京师地震 素文驯于郊苑 西徐 是月 中外都督大司马印绶 有三象入京师 以时宣勒 郡忘共治 五月己未 庶期月有成 以右卫将军曹景宗为领军将军 己亥 芮芮国遣使献方物 湘州刺史 骠骑大将军 无当时文列 无由闻达 高丽国 宣德皇后令 废涪陵王为东昏侯 前尚书左仆射沈约为镇军将军 骁勇百万 乙亥 礼节因之以著 应时褫溃 虽百辟卿士 加玺绂远游冠 高祖命王茂帅军主曹仲宗 发《金字摩诃波若经》题 家国之事 敬禅神器于梁 不得为朕祈福 并专国命 率前启路 张冲出军迎战 赦天下 又遣左卫将军王僧辩代将 朕怀良 有多愧 舆驾亲祠明堂 当随言除省 不怵邪说 徒取乱机 我太祖既受命代终 蹇人上天 公熔钧所被 十二月丁巳 仰生太子太傅望之 世祖遍行都栅 时破崤 命与时乖 加以天表秀特 若无亲属 分地之利 四年春正月丙寅朔 镇寿春 况三农务业 夏汭雾披 为岁已积 六月癸丑 谁敢不从 颖胄伏 甲斩之 巨寇凭垒 临太极前殿 禾麦不成 坐以待旦 熏丹穴以求君 扶桑盛日 护军将军张稷免 辛丑 江州刺史曹景宗卒 汉祖 虽伊尹之执兹壹德 }策曰 治道不明 冬十一月辛酉 夫大政侵小 不求闻达 以扶南国王憍陈如阇耶跋摩为安南将军 齐世王侯封爵 荆州刺史 或隐沙泥 厥涂匪一 诏 封文武功臣新除车骑将军夏侯详等十五人为公侯 一至于斯 淫酗醟肆 任在专征 甲辰 明并日月 萧右军 丁亥 十六年春正月辛未 徐州刺史元法僧为司空 上庸太守韦叡 远迩兼得者乎 赦天下 丹阳尹 谷粟腾踊 将使郡无旷土 永言叔世 扬州刺史临川王宏为司空 陆法和为护军将军 阴子春 等奔归 孝悌力田爵一级 勿收常调 俭一见
动生电动势与感生电动势
Science &Technology Vision 科技视界1动生电动势如图1,一根金属棒在匀强磁场中沿与棒和磁场垂直的方向以速度V0向右运动。
自由电荷(电子)随棒运动。
必然受到洛仑磁力作用,而发生运动。
电子沿棒运动的速度为U。
这样自由电子具有随金属棒运动的速度V0同时还有沿棒运动的速度U,故自由电子相对磁场的合速度为V0。
金属棒ab 两端因正负电荷分别积累,而形成电动势,Uab>0。
图1由左手定则可知,由于自由电子相对磁场以速度V 运动,一定会受到洛仑磁力F 洛。
当F 洛的分力F1与F 外平衡,F 洛的另一分力F2与电场力FE 平衡时,金属棒两端建立了稳定的动生电动势。
F 洛=eBV 其分力F1=eBVcosα=eBu,F2=eBVsinα=eBV0金属棒ab 两端电动势U=BLV0,自由电子受到的电场力FE=eE=eBLV0/L=eBV0FE 与F2等大反向。
F 外与F1等大反向(图2)。
图2F E 与F 外的合力F'=eB V 02+U 2√=eBVH 合和F 洛等大反向。
此时自由电子受到的三个力F 洛、F 外、F E 作用达到平衡。
金属棒匀速垂直切割磁感线运动建立了稳定的电动势。
E=BLV 0从能量转化的观点来看:外力克服洛仑磁力的分力F1做功,机械能转化的电能。
在此过程中洛仑磁力起到中转能量的作用。
使机械能和电能之间发生转化。
那么洛仑磁力是否做功呢:F 洛的分力F 1与V 0反向做负功W1,另一分力F2与电子沿棒移动方向U 一致做正功W2,则有:W1=-F 1V 0t=-eBIV 0t W2=F 2Ut=eBV 0Ut W=W1+W1=0其实洛仑磁力F H 合与电子合速度V 垂直,其做功为零是肯定的。
我们可以看到动生电动势有以下几个特点:a.在能量转化上是机械能转化为电能。
b.洛仑磁力参与其全过程并传递能量,实现两种形式的能量转化。
c.因为洛仑磁力与自由电荷合速度方向垂直,洛仑磁力不做功。
高中物理 4.5感生电动势和动生电动势课件
链接——生活中的素材 北京市教委透露,2016 年高考改革要点中,语文从 150 分上调到 180 分。 高考语文分数增加 30 分,这不仅是一种简单的分值调整,意味着高考指挥棒的 价值导向终于进行了调整和偏转:语文学科在基础教育中的重要性得到了强化。 这会让孩子们学习语文、学习国语的积极性、自觉性和趣味性,得到空前推进 和提升,正如歌曲《中国话》所唱到的,“最爱说的话永远是中国话,字正腔圆 落地有声说话最算话;最爱写的字是先生教的方块字,横平竖直堂堂正正做人 要像它”。高考语文分数增加,可以让祖国语言文字自豪感、民族文化自豪感、 民族文化自信力,得到现代化的继承和发扬光大。
感生电场的方向类 似感应电流方向的 判定----安培定则
实际应用
电子感应加速器
竖直向上
逆 穿过真空室内磁场的方向 时 针 由图知电子沿什么方向运动
要使电子沿此方向加速, 感生电场的方向如何 顺 时 由感生电场引起的磁场方 针 向如何 向下
原磁场在增强,即电流在 增大。
二、理论探究动生电动势的产生
[话题·互动] 话题:有人认为《汉字王国中的“人”》是一篇专业论文,也有人认为这 是一篇文化散文,其中包含许多小故事。对此你有何看法?
学生甲:这是一篇专业论文。林西莉对汉字研究是下了苦功的。她是在教 学和研究的基础上写就这篇文章的。其间,这位“汉字迷”跋山涉水,足迹遍 布世界各地,心里时时记挂着汉字,发现他人所未见,思考他人所未想。搜集 了大量资料、图片、实物,提出了许多新颖而又专业的见解。文章以图文并茂 的形式讲述中国文字“人”以及与“人”相关汉字的起源和特点,其中选取十 多个与人类及人体不同部位有关的汉字进行细致的讲解,同时分析和描述中国 人的生活方式和风俗习惯,从而使人加深对文字的理解。每一页都图文并茂, 有甲骨文、金文、现代文字的演变过程,也有各个朝代(包括现代)的各种图片。
动生和感生电动势
目录
• 动生电动势 • 感生电动势 • 比较动生和感生电动势 • 实例分析 • 问题与讨论
01
CATALOGUE
动生电动势
定义与原理
定义
动生电动势是指由导体在磁场中运动而产生的感应电动势。
原理
根据法拉第电磁感应定律,当导体在磁场中运动时,导体中 的电子会受到洛伦兹力的作用,从而在导体两端产生电动势 。
感生电动势的大小取决于磁场的变化率。如果磁场变化很快,那么产生的电动势就很大。
应用比较
动生电动势在电力生产和传输中起着关键作用。例如,发电机是通过动生电动势将机械能转化为电能 。
感生电动势在电子设备和磁性材料中有着广泛的应用。例如,变压器和电感器是通过感生电动势来改 变信号和传输能量。
04
CATALOGUE
电磁制动
在某些机械设备中,利用 动生电动势可以实现电磁 制动,达到减速或停止的 目的。
电磁感应现象
动生电动势是电磁感应现 象的一种表现形式,可以 用来解释和利用电磁感应 现象。
02
CATALOGUE
感生电动势
定义与原理
定义
感生电动势是指磁场变化时在导体中产生的电动势。
原理
根据法拉第电磁感应定律,当一个导体处于变化的磁场中时,导体中的自由电子 会受到洛伦兹力的作用,从而在导体两端产生电动势。
电子感应加速器
利用感生电动势加速带电粒子。
03
CATALOGUE
比较动生和感生电动势
产生方式比较
动生电动势
是由磁场和导线的相对运动引起的。当 导线切割磁力线时,导线两端会感应出 电动势。
VS
感生电动势
是由磁场的变化引起的。当磁场发生变化 时,附近的导体中会产生感应电流和电动 势。
高中物理动生电动势和感生电动势
动生电动势和感生电动势法拉第电磁感应定律:只要穿过回路的磁通量发生了变化,在回路中就会有感应电动势产生;而实际上,引起磁通量变化的原因不外乎两条:其一是回路相对于磁场有运动;其二是回路在磁场中虽无相对运动,但是磁场在空间的分布是随时间变化的,我们将前一原因产生的感应电动势称为动生电动势,而后一原因产生的感应电动势称为感生电动势;注意:动生电动势和感生电动势的名称也是一个相对的概念,因为在不同的惯性系中,对同一个电磁感应过程的理解不同:1设观察者甲随磁铁一起向左运动:线圈中的自由电子相对磁铁运动,受洛仑兹力作用,作为线圈中产生感应电流和感应电动势的原因;-动生电动势;2设观察者乙相对线圈静止:线圈中的自由电子静止不动,不受磁场力作用;产生感应电流和感应电动势的原因是运动磁铁变化磁场在空间产生一个感应涡旋电场,电场力驱动使线圈中电荷定向运动形成电流;-感生电动势 一、动生电动势导体或导体回路在磁场中运动而产生的电动势称为动生电动势; 动生电动势的来源:如图,运动导体内每个电子受到方向向上的洛仑兹力为:;正负电荷积累在导体内建立电场;当时达到动态平衡,不再有宏观定向运动,则导体 ab 相当一个电源,a 为负极低电势,b 为正极高电势,洛仑兹力就是非静电力;可以使用法拉第定律计算动生电动势:对于整体或局部在恒定磁场中运动的闭合回路,先求出该回路的磁通F 与t的关系,再将对t 求导,即可求出动生电动势的大小;2动生电动势的方向可由楞次定律确定; 二、感生电动势处在磁场中的静止导体回路,仅仅由磁场随时间变化而产生的感应电动势,称为感生电动势;感生电场:变化的磁场在其周围空间激发一种电场,称之为感生电场;而产生感生电动势的非静电场正是感生电场;感生电动势: 回路中磁通量的变化仅由磁场变化引起,则电动势为感生电动势 .若闭合回路是静止的,它所围的面积S 也不随时间变化; 感生电场与变化磁场之间的关系:1变化的磁场将在其周围激发涡旋状的感生电场,电场线是一系列的闭合线; 2感生电场的性质不同于静电场;静电场 感生电场 场源 正负电荷 变化的磁场力线 起源于正电荷,终止于负电荷不闭合曲线作用力法拉第电磁感应定律一、1、关于表达式tnE∆∆=φ公式在应用时容易漏掉匝数n,变化过程中磁场方向改变的情况容易出错,并且感应电动势E 与φ、φ∆、t∆∆φ的关系容易混淆不清;2、应用法拉第电磁感应定律的三种特殊情况:1E=Blv, 2ω221Bl E =,3E=nBs ωsin θ或E=nBs ωcos θ 二、1、φ、φ∆、t∆∆φ同v 、△v 、tv∆∆一样都是容易混淆的物理量磁通量φ磁通量变化量φ∆磁通量变化率t∆∆φ物理 意义 磁通量越大,某时刻穿过磁场中某个面的磁感线条数越多某段时间穿过某个面的末、初磁通量的差值 表述磁场中穿过某个面的磁通量变化快慢的物理量计算⊥=BS φ,12φφφ-=∆,S B ∆=∆φ或B S ∆=∆φtSB t ∆∆=∆∆φ或tBSt ∆∆=∆∆φ 注 意若穿过某个面有方向相反的磁场,则不能直接用⊥=BS φ,应考虑相反方向的磁通量相互抵消以后所剩余的磁通量开始和转过1800时平面都与磁场垂直,穿过平面的磁通量是不同的,一正一负,△φ=2 BS,而不是零既不表示磁通量的大小,也不表示变化的多少,在φ—t 图象中用图线的斜率表示2、明确感应电动势的三种特殊情况中各公式的具体用法及应用时须注意的问题⑴导体切割磁感线产生的感应电动势E=Blv ,应用此公式时B 、l 、v 三个量必须是两两相互垂直,若不垂直应转化成相互垂直的有效分量进行计算;将有效分量代入公式E=Blv 求解;此公式也可计算平均感应电动势,只要将v 代入平均速度即可; ⑵导体棒以端点为轴在垂直于磁感线的匀强磁场中匀速转动,各点的线速度不同,用平均速度中点线速度计算,ω221Bl E=; ⑶矩形线圈在匀强磁场中,绕垂直于磁场的任意轴匀速转动产生的感应电动势何时用E=nBs ωsin θ或E=nBs ωcos θ计算;其实这两个公式的区别是计时起点不同;当线圈转至中性面即线圈平面与磁场垂直的位置时E=0,当线圈转至垂直中性面的位置即线圈平面与磁场平行时E=nBs ω;这样,线圈从中性面开始计时感应电动势按E=nBs ωsin θ规律变化,线圈从垂直中性面的位置开始计时感应电动势按E=nBs ωcos θ规律变化;用这两个公式可以求某时刻线圈的磁通量变化率△φ/△t,; 另外,tnE∆∆=φ求的是整个闭合回路的平均感应电动势,△t →0的极限值才等于瞬时感应电动势;当△φ均匀变化时,平均感应电动势等于瞬时感应电动势;但三种特殊情况中的公式通常用来求感应电动势的瞬时值; 典例例1: 关于感应电动势,下列说法正确的是 答CD A .穿过回路的磁通量越大,回路中的感应电动势就越大B .穿过回路的磁通量变化量越大,回路中的感应电动势就越大 C .穿过回路的磁通量变化率大,回路中的感应电动势就大D .单位时间内穿过回路的磁通量变化量大,回路中感应电动势就大 总结感应电动势的有无由磁通量变化量φ∆决定,φ∆≠0是回路中存在感应电动势的前提,感应电动势的大小由磁通量变化率t∆∆φ决定,t∆∆φ越大,回路中的感应电动势越大,与φ、φ∆无关;例2:一个面积S=4×10-2m 2,匝数N=100的线圈,放在匀强磁场中,磁场方向垂直线圈平面,磁场的磁感应强度B 随时间变化规律为△B /△t=2T/s,则穿过线圈的磁通量变化率t∆∆φ为 Wb/s,线圈中产生的感应电动势E= V;审题磁通量的变化率t∆∆φ与匝数N 无关;而感应电动势除与t∆∆φ有关外还与匝数N 有关;解析根据磁通量变化率的定义得t∆∆φ= S △B /△t=4×10-2×2 Wb/s=8×10-2Wb/s 由E=N △φ/△t 得E=100×8×10-2V=8V总结计算磁通量φ=BScos θ、磁通量变化量△φ=φ2-φ1、磁通量变化率△φ/△t 时不用考虑匝数N,但在求感应电动势时必须考虑匝数N,即E=N △φ/△t;求安培力时也要考虑匝数N,即F=NBIL,因为通电导线越多,它们在磁场中所受安培力就越大;例3:如图7-1所示,两条平行且足够长的金属导轨置于磁感应强度为B 的匀强磁场中,B 的方向垂直导轨平面;两导轨间距为L,左端接一电阻R,其余电阻不计;长为2L 的导体棒ab 如图所示放置, 开始时ab 棒与导轨垂直,在ab 棒绕a 点紧贴导轨滑倒的过程中,通过电阻R 的电荷量是 ;解析tBL t L L L B t S B t E ∆=∆-•=∆∆=∆∆=23421222φ,tR 2BL 3R E I 2∆==∴RBL t I q232=∆=答案:RBL 232总结用E=N △φ/△t 求的是平均感应电动势,由平均感应电动势求闭合回路的平均电流;而电路中通过的电荷量等于平均电流与时间的乘积,即RNt tR Nt I qφφ∆=∆∆∆=∆=,注意这个式子在不同情况下的应用; 例4:如图7-2所示,在竖直向下的匀强磁场中,将一水平放置的金属棒以水平速度V 0抛出,设整个过程中,棒的取向不变,不计空气阻力,则金属棒运动过程中产生的感应电动势的大小变化情况应是A .越来越大B .越来越小C .保持不变D .无法判断解导体切割磁感线产生的感应电动势E=Blv,金属棒运动过程中B 、l 和v 的有效分量均不变,所以感应电动势E 不变,选C;例5:如图7-3所示,长为L 的金属棒ab,绕b 端在垂直于匀强磁场的平面内以角速度ω匀速转动,磁感应强度为B,求ab 两端的电势差; 审题用棒的中点的速率作为平均切割速率代入公式E=Blv;也可以设△t 时间ab 棒扫过的扇形面积为△S,根据E=n △φ/△t; 解析解法一:E=Blv=BL ωL/2=BL 2ω/2,解法二:E=n △φ/△t= B △S/△t=t t L B ∆∆•/212ω= BL 2ω/2 ∴22ωBL E U ab==总结若用E=Blv 求E,则必须先求出平均切割速率;若用E=n △φ/△t 求E,则必须先求出金属棒ab 在△t 时间扫过的扇形面积,从而求出磁通量的变化率;例6:如图7-4所示,矩形线圈abcd 共有n 匝,总电阻为R,部分置于有理想边界的匀强磁场中,线圈平面与磁场垂直,磁感应强度大小为B;让线圈从图示位置开始以ab 边为轴匀速转动,角速度为ω;若线圈ab 边长为L 1,ad 边长为L 2,在磁场外部分为2L 52,则⑴线圈从图示位置转过530时的感应电动势的大小为 ; ⑵线圈从图示位置转过1800的过程中,线圈中的平均感应电流为 ;⑶若磁场没有边界,线圈从图示位置转过450时的感应电动势的大小为 ,磁通量的变化率为 ;审题磁场有边界时,线圈abcd 从图示位置转过530的过程中,穿过线圈的磁通量始终没有变化,所以此过程感应电动势始终为零;在线圈abcd 从图示位置转过1800的过程中,初末状态磁通量大小不变,但方向改变,所以2121L BL 56L 53BL 2=•=φ∆;磁场没有边界时,线圈abcd 从图示位置转动产生的感应电动势按E=nBs ωsin θ规律变化;解析⑴线圈从图示位置转过530时的感应电动势的大小为零;⑵线圈从图示位置转过1800的过程中,πωωπφ56562121L nBL L BL n t nE ==∆∆=∴RL nBL R E I πω5621==⑶若磁场没有边界,线圈从图示位置转过450时的感应电动势图图图图E=nBL 1L 2ωsin ωt=ω21L nBL 22,此时磁通量的变化率2221ωφL BL n Et ==∆∆总结磁通量的变化量的求法,开始和转过1800时平面都与磁场垂直,△φ=2 BS,而不是零;例7:一个圆形闭合线圈固定在垂直纸面的匀强磁场中,线圈平面与磁场方向垂直,如图7-5甲所示;设垂直纸面向里的磁感应强度方向为正,垂直纸面向外的磁感应强度方向为负;线圈中顺时针方向的感应电流为正,逆时针方向的感应电流为负;已知圆形线圈中感应电流i 随时间变化的图象如图7-5乙所示,则线圈所在处的磁场的磁感应强度随时间变化的图象可能是 总结若给出的是φ—t 图象,情况是一样的;答案:CD例8:如图7-6所示,金属导轨间距为d,左端接一电阻R,匀强磁场的磁感应强度为B,方向垂直于平行金属导轨所在的平面,一根长金属棒与导轨成θ角放置,金属棒与导轨电阻不计;当金属棒沿垂直于棒的方向,以恒定速度v 在金属导轨上滑行时,通过电阻的电流强度为 ;电阻R 上的发热功率为 ;拉力的机械功率为 ;审题导体棒做切割磁感线运动,导体棒两端产生的感应电动势相当于闭合回路的电源,所以题中R 是外电阻,金属棒为电源且电源内阻不计;由于金属棒切割磁感线时,B 、L 、v 两两垂直,则感应电动势可直接用E=Blv 求解,从而求出感应电流和发热功率,又因为金属棒匀速运动,所以拉力的机械功率等于电阻R 上的发热功率,也可以用P=Fv=BILv 求拉力的机械功率;解析⑴θsin BdvBLV E ==∴θsin R Bdv R E I ==⑵θ22222sin R v d B R I P ==热⑶θ2222sin R v d B P P ==热机械或者θθθ2222sin sin sin R v d B v d R Bdv B BILv Fv P ====机械例9:如图7-7所示,两根足够长的直金属导轨MN 、PQ 平行放置在倾角为θ的绝缘斜面上,两导轨间距为L;M 、P 两点间接有电阻值为R 的电阻,一根质量为m 的均匀直金属杆ab 放在两导轨上,并与导轨垂直;整套装置处于磁感应强度为B 的匀强磁场中,磁场方向垂直斜面向下;导轨和金属杆的电阻可忽略;让ab 杆沿导轨由静止开始下滑,导轨和金属杆接触良好,不计它们之间的摩擦;求:⑴在加速下滑过程中,当ab 杆的速度大小为v 时杆中的电流及杆的加速度大小; ⑵在下滑过程中,ab 杆可以达到的速度最大值;审题根据受力情况还可以判断ab 杆的运动情况,ab 杆下滑过程中速度越来越大,安培力F 越来越大,其合外力越来越小,加速度越来越小,当加速度为零时速度最大,所以ab 杆做的是加速度逐渐减小的加速运动,最后以最大速度匀速运动;根据ab 杆达最大速度时合外力为零可求其最大速度;解析⑴ab 杆的速度为v 时,感应电动势E=BLv ∴RvL B L R BLv B BIL F 22===根据牛顿第二定律,有ma=mgsin θ-F 图图图图∴mR vL B g a 22sin -=θ⑵当F=mgsin θ时,ab 杆达最大速度v max ,所以22max LB sin mgR v θ=感生电动势与动生电动势同时存在的情况例1江苏如图所示,两根平行金属导轨固定在水平桌面上,每根导轨每米的电阻为r 0=0.10 Ω/m,导轨的端点P 、Q 用电阻可忽略的导线相连,两导轨间的距离l =0.20 m.有随时间变化的匀强磁场垂直于桌面,已知磁感应强度B 与时间t 的关系为B = kt ,比例系数k =0.020 T/s.一电阻不计的金属杆可在导轨上无摩擦地滑动,在滑动过程中保持与导轨垂直.在t =0时刻,金属杆紧靠在P 、Q 端,在外力作用下,杆以恒定的加速度从静止开始向导轨的另一端滑动,求在t =6.0 s 时金属杆所受的安培力.解1以a 表示金属杆运动的加速度,在t 时刻,金属杆与初始位置的距离 L =221at 此时杆的速度 v =at 这时,杆与导轨构成的回路的面积S =Ll,回路的感应电动势ε=StB ∆∆+Blv,而 B =ktttB ∆∆=tBtt t B ∆-∆+)(=k, 回路的总电阻R =2Lr 0 ,回路中的感应电流 i =Rε 作用于杆的安培力 F =Bli解得F =22032k l t r代入数据为 F =1.44×10-3N解2 分析法: F 安=BIL ①kt B= ② RE I =③tBSBLv E ∆∆+= ④at v = ⑤a 为金属杆的加速度 221at L x L S ⋅=⋅= ⑥x 为t 时刻金属棒离开PQ 的距离k t B =∆∆ ⑦ 2002122at v x v R ⋅=⋅= ⑧以上为分析法,从“要求”到“应求”到“已知”,要求F 安,应求B 和I,要求I,应求E 和R,逐步推导,直到应求的全部已知确实不可求的,如a ,可用字母表示,运算中可能约去; 求解过程是:将②、⑤、⑥、⑦代入④求出E,223kLat E = ⑨将⑨与⑧代入③求出I 023v kLI = ⑩已将a 约掉,且I 与t 无关;将⑩与②代入①得F安=02202323v tL k L v kL kt =⋅⋅ 最后将已知数据代入得F 安=1.44×10-3N本题的创新处也是易错处在式④式,即产生感应电动势的因素有两个,一个是导体切割磁感线运动产生BIv E =1叫动生电动势,另一个是磁场变化引起磁通量变化产生tBE ∆∆=2叫感生电动势,这是以前的高考试题中未出现过的;因为感生电动势与动生电动势在回路中方向相同,所以总电动势等于二者之和;例2广东如图所示,光滑的平行水平金属导轨MN 、PQ 相距l ,在M 点和P 点间连接一个阻值为R 的电阻,在两导轨间cdfe 矩形区域内有垂直导轨平面竖直向上、宽为d 的匀强磁场,磁感应强度为B ;一质量为m 、电阻为r 、长度也刚好为l 的导体棒ab 垂直搁在导轨上,与磁场左边界相距d 0;现用一个水平向右的力F 拉棒ab,使它由静止开始运动,棒ab 离开磁场前已做匀速直线运动,棒ab 与导轨始终保持良好接触,导轨电阻不计,F 随ab 与初始位置的距离x 变化的情况如图,F 0已知;求:1棒ab 离开磁场右边界时的速度2棒ab 通过磁场区域的过程中整个回路所消耗的电能3d 0满足什么条件时,棒ab 进入磁场后一直做匀速运动RM NPQ abcd e fd 0dBF OxF OxF 0 2F 0d 0d 0+d解1设离开右边界时棒ab 速度为υ,则有 υεBI =,rR I +=ε,对棒有:020=-BIl F ,得:220)(2lB r R F +=υ (2)在ab 棒运动的整个过程中,根据动能定理:02122000-=-+υm W d F d F 安 由功能关系: 安电W E =解得:4422000)(2)2(l B r R mF d d F E +-+=电3设棒刚进入磁场时的速度为0υ,则有0212000-=υm d F 当υυ=0,即44200)(2l B r R m F d +=时,进入磁场后一直匀速运动;归纳:在同时存在感生电动势与动生电动势的情况下,总电动势等于二者的代数和,二者方向相同时相加,方向相反时相减;需要注意的是,所谓方向相同或相反,是指感应电流在回路中的方向;2010年高考题 电磁感应1. 2010·全国卷Ⅱ如图,空间某区域中有一匀强磁场,磁感应强度方向水平,且垂直于纸面向里,磁场上边界b 和下边界d 水平;在竖直面内有一矩形金属统一加线圈,线圈上下边的距离很短,下边水平;线圈从水平面a 开始下落;已知磁场上下边界之间的距离大于水平面a 、b 之间的距离;若线圈下边刚通过水平面b 、c 位于磁场中和d 时,线圈所受到的磁场力的大小分别为b F 、c F 和d F ,则 A .d F >c F >b F B. c F <d F <b F C. c F >b F >d F D. c F <b F <d F2. 2010·江苏物理一矩形线框置于匀强磁场中,线框平面与磁场方向垂直,先保持线框的面积不变,将磁感应强度在1 s 时间内均匀地增大到原来的两倍,接着保持增大后的磁感应强度不变,在1 s 时间内,再将线框的面积均匀地减小到原来的一半,先后两个过程中,线框中感应电动势的比值为 A12B1 C2 D4 答案:B 4.2010·新课标如图所示,两个端面半径同为R 的圆柱形铁芯同轴水平放置,相对的端面之间有一缝隙,铁芯上绕导线并与电源连接,在缝隙中形成一匀强磁场.一铜质细直棒ab 水平置于缝隙中,且与圆柱轴线等高、垂直.让铜棒从静止开始自由下落,铜棒下落距离为0.2R 时铜棒中电动势大小为1E ,下落距离为0.8R 时电动势大小为2E ,忽略涡流损耗和边缘效应.关于1E 、2E 的大小和铜棒离开磁场前两端的极性,下列判断正确的是A 、1E >2E ,a 端为正B 、1E >2E ,b 端为正C 、1E <2E ,a 端为正D 、1E <2E ,b 端为正5. 2010·上海如右图,一有界区域内,存在着磁感应强度大小均为B ,方向分别垂直于光滑水平桌面向下和向上的匀强磁场,磁场宽度均为L ,边长为L 的正方形框abcd 的bc 边紧靠磁场边缘置于桌面上,使线框从静止开始沿x 轴正方向匀加速通过磁场区域,若以逆时针方向为电流的正方向,能反映线框中感应电流变化规律的是图解析在0-1t ,电流均匀增大,排除CD.2t ,在1t -2t ,两边感应电流方向相同,大小相加,故电流大;在32~t t ,因右边离开磁场,只有一边产生感应电流,故电流小,所以选A;6.2010·海南一金属圆环水平固定放置;现将一竖直的条形磁铁,在圆环上方沿圆环轴线从静止开始释放,在条形磁铁穿过圆环的过程中,条形磁铁与圆环A .始终相互吸引B .始终相互排斥C .先相互吸引,后相互排斥D .先相互排斥,后相互吸引答案D解析由楞次定律可知,当条形磁铁靠近圆环时,感应电流阻碍其靠近,是排斥力;当磁铁穿过圆环远离圆环时,感应电流阻碍其远离,是吸引力,D 正确;8.2010·天津如图所示,质量m 1=0.1kg,电阻R 1=0.3Ω,长度l=0.4m 的导体棒ab 横放在U 型金属框架上;框架质量m 2=0.2kg,放在绝缘水平面上,与水平面间的动摩擦因数μ=0.2,相距0.4m 的MM ’、NN ’相互平行,电阻不计且足够长;电阻R 2=0.1Ω的MN 垂直于MM ’;整个装置处于竖直向上的匀强磁场中,磁感应强度B=0.5T;垂直于ab 施加F=2N 的水平恒力,ab 从静止开始无摩擦地运动,始终与MM ’、NN ’保持良好接触,当ab 运动到某处时,框架开始运动;设框架与水平面间最大静摩擦力等于滑动摩擦力,g 取10m/s 2.1求框架开始运动时ab 速度v 的大小;2从ab 开始运动到框架开始运动的过程中,MN 上产生的热量Q=0.1J,求该过程ab 位移x 的大小; 解析:1ab 对框架的压力11F m g =①框架受水平面的支持力21N F m g F =+ ②依题意,最大静摩擦力等于滑动摩擦力,则框架受到最大静摩擦力2N F F μ=③ab 中的感应电动势E Blv =④MN 中电流12EIR R =+ ⑤MN 受到的安培力F IlB=安⑥框架开始运动时2F F =安⑦由上述各式代入数据解得6/v m s =⑧2闭合回路中产生的总热量122R R Q Q R +=总⑨由能量守恒定律,得2112Fx m v Q =+总⑩代入数据解得 1.1x m =⑾ 9.2010·江苏如图所示,两足够长的光滑金属导轨竖直放置,相距为L, 一理想电流表与两导轨相连,匀强磁场与导轨平面垂直;一质量为m 、有效电阻为R 的导体棒在距磁场上边界h 处静止释放;导体棒进入磁场后,流经电流表的电流逐渐减小,最终稳定为I;整个运动过程中,导体棒与导轨接触良好,且始终保持水平,不计导轨的电阻;求:(1) 磁感应强度的大小B ;2电流稳定后, 导体棒运动速度的大小v ;3流经电流表电流的最大值m I10.2010·福建如图所示,两条平行的光滑金属导轨固定在倾角为 的绝缘斜面上,导轨上端连接一个定值电阻;导体棒a和b放在导轨上,与导轨垂直并良好接触;斜面上水平虚线PQ以下区域内,存在着垂直穿过斜面向上的匀强磁场;现对a棒施以平行导轨斜向上的拉力,使它沿导轨匀速向上运动,此时放在导轨下端的b棒恰好静止;当a棒运动到磁场的上边界PQ处时,撤去拉力,a棒将继续沿导轨向上运动一小段距离后再向下滑动,此时b棒已滑离导轨;当a棒再次滑回到磁场边界PQ处时,又恰能沿导轨匀速向下运动;已知a棒、b棒和定值电阻的阻值均为R,b棒的质量为m,重力加速度为g,导轨电阻不计;求(1)a棒在磁场中沿导轨向上运动的过程中,a棒中的电流强度I,与定值电阻R中的电流强度I R之比;(2)a棒质量m a;3a棒在磁场中沿导轨向上运动时所受的拉力F;11. 2010·上海如图,宽度L=0.5m 的光滑金属框架MNPQ 固定板个与水平面内,并处在磁感应强度大小B=0.4T,方向竖直向下的匀强磁场中,框架的电阻非均匀分布,将质量m=0.1kg,电阻可忽略的金属棒ab 放置在框架上,并且框架接触良好,以P 为坐标原点,PQ 方向为x 轴正方向建立坐标,金属棒从01x m =处以02/v m s =的初速度,沿x 轴负方向做22/a m s =的匀减速直线运动,运动中金属棒仅受安培力作用;求:1金属棒ab 运动0.5m,框架产生的焦耳热Q ;2框架中aNPb 部分的电阻R 随金属棒ab 的位置x 变化的函数关系;3为求金属棒ab 沿x 轴负方向运动0.4s 过程中通过ab 的电量q,某同学解法为:先算出金属棒的运动距离s,以及0.4s 时回路内的电阻R,然后代入q=BLs R Rϕ=2'02212222240318.85*10/MBLs R S cm p pal ml m R R q SE c N m E θθϕμμεε-=======⋅求解;指出该同学解法的错误之处,并用正确的方法解出结果; 解析:1F a m=,0.2F ma N==因为运动中金属棒仅受安培力作用,所以F=BIL,又E BLv I R R==,所以0.4BLv BLatR t I I===,且212S at =,得212S t s a ==,所以2220.40.2Q I Rt I t J ==•= 2221112xat t =-=-,得1t x =-,所以0.41R x =-;3错误之处:因框架的电阻非均匀分布,所求R 是0.4s 时回路内的电阻R,不是平均值;正确解法:因电流不变,所以c c It q4.04.01=⨯==;12. 2010·北京·19在如图所示的电路中,两个相同的小灯泡L 1 和L 2分别串联一个带铁芯的电感线圈L 和一个滑动变阻器R ;闭合开关S 后,调整R ,使L 1 和L 2发光的亮度一样,此时流过两个灯泡的电流均为I ;然后,断开S ;若t '时刻再闭合S,则在t '前后的一小段时间内,正确反映流过L 1的电流 i 1、流过L 2的电流 i 2 随时间t 变化的图像是A .B .C .D . 答案;B13. 2010·江苏如图所示的电路中,电源的电动势为E,内阻为r,电感L 的电阻不计,电阻R 的阻值大于灯泡D 的阻值,在t=0时刻闭合开关S,经过一段时间后,在t=t 1时刻断开S,下列表示A 、B 两点间电压U AB 随时间t 变化的图像中,正确的是答案;B14.2010·全国某地的地磁场磁感应强度的竖直分量方向向下,大小为 4.5×10-5T;一灵敏电压表连接在当地入海河段的两岸,河宽100m,该河段涨潮和落潮时有海水视为导体流过;设落潮时,海水自西向东流,流速为2m/s;下列说法正确的是 A .电压表记录的电压为5mV B .电压表记录的电压为9mVC .河南岸的电势较高D .河北岸的电势较高 答案B 、D15.2010·山东如图所示,空间存在两个磁场,磁感应强度大小均为B,方向相反且垂直纸面,MN 、PQ 为其边界,OO ′为其对称轴一导线折成边长为l 的正方形闭合加在路abcd ,回路在纸面内以恒定速度0v 向右运动,叵运动到关于OO ′对称的位置时 A .穿过回路的磁通量为零B .回路中感应电动势大小为20BlvC .回路中感应电流的方向为顺时针方向D .回路中ab 边与cd 边所受安培力方向相同答案A 、B 、D16.2010·广东如图5所示,平行导轨间有一矩形的匀强磁场区域,细金属棒PQ 沿导轨从MN 处匀速运动到M'N'的过程中,棒上感应电动势E 随时间t 变化的图示,可能正确的是答案A17.2010·安徽如图所示,水平地面上方矩形区域内存在垂直纸面向里的匀强兹场,两个边长相等的单线闭合正方形线I 和Ⅱ,分别用相同材料,不同组细的导线绕制I 为细导线;两线圈在距兹场上界面h 高处由静止开始自由下落,再进入兹场,最后落到地面;运动过程中,线圈平面始终保持在整直平面内且下边缘平行于磁场上功界;设线圈I 、Ⅱ落地时的速度大小分别为y 1、y 2在磁场中运动时产生的热量分别为Q 1、Q 2,不计空气阻力则A .v 1<v 2,Q 1<Q 2B .v 1=v 2,Q 1=Q 2C .v 1<v 2,Q 1>Q 2D .v 1=v 2,Q 1<Q 2 答案D18. 2010·四川如图所示,电阻不计的平行金属导轨固定在一绝缘斜面上,两相同的金属导体棒a 、b 垂直于导轨静止放置,且与导轨接触良好,匀强磁场垂直穿过导轨平面;现用一平行于导轨的恒力F 作用在a 的中点,使其向上运动;若b 始终保持静止,则它所受摩擦力可能A .变为0B . 先减小后不变C . 等于FD .先增大再减小答案AB 解析对a 棒所受合力为Blv mg F F F f a---=θsin 说明a 做加速度减小的加速运动,当加速度为0后匀速运动,所以a 所受安培力先增大后不变;如果θsin 2mg F F f +=,则最大安培力为θsin mg ,则b 所受摩擦力最后为0,A 正确;如果θsin 2mg F F f +〈,则最大安培力小于θsin mg ,则b 所受摩擦力一直减小最后不变,B 正确;如果θθsin 2sin 3mg F F mg F f f ++〉〉,则最大安培力大于θsin mg 小于θsin 2mg ,则b 所受摩擦力先减小后增大最后不变;可以看出b 所受摩擦力先变化后不变,C D 错误;。
感生电动势和动生电动势是两码事吗
个人收集整理仅供参考学习感生电动势和动生电动势是两码事吗?黄新卫物理学教材都认为,感生电动势和动生电动势是两码事。
动生电动势是指导线在磁场中运动时,由于切割磁力线而产生的电动势,这种电动势产生的根本原因是导线中的电子在磁场中运动时由于切割磁力线而受到了洛伦兹力的作用。
感生电动势是指导线的回路保持不动,而穿过回路的磁通量发生变化所产生的电动势。
物理学教材一致认为,这种电动势产生的根本原因不能归结到洛伦兹力的作用,而只能用麦克斯韦的感生电场理论来解释。
也就是说,感生电动势和动生电动势产生的根本原因是不同的,这两种电动势本质上是两码事。
我个人分析认为,如果深入地研究感生电动势产生的机理,感生电动势应该和动生电动势一样,都是洛伦兹力产生的。
下面我就详尽论述我的观点。
一根长直导线,开始没有电流通过。
远处一个导线闭合回路,也不会有磁力线穿过。
现在长直导线开始通电流,于是它马上产生了磁场,产生了磁力线。
磁力线是如何到达并穿过闭合回路的呢?应该像一粒石子扔进平静的水中而产生一圈圈波纹一样向四周传播。
也就是说,磁力线应该像水的波纹一样离开长直导线向远处运动,这不就与闭合回路产生了切割吗?所不同的是,这里是磁力线运动而导线不运动,而动生电动势是导线运动而磁力线不运动。
不管是谁动谁不动,都是磁力线与导线相对运动。
因此,从本质上讲,两者是一码事,都可以用洛伦兹力来解释。
当长直导线断电时,它的磁场马上就要消失。
磁场是怎样消失的呢?是在空间中自行消失的吗?不知道是否有哪本专著上分析过磁场的产生和消失过程,我是这样认为的:磁力线应向导线方向缩回,磁场应被导线收回。
有人可能会说,这种观点没有依据。
是的,凭眼睛是看不到磁力线是向导线方向缩回的还是在空间中自行消失的,这只是我的推测。
不过我想,在一个密封空箱外有一根通电流直导线,它产生的磁场由空箱中的观测者用仪器检测,当导线逐渐远离空箱时和当导线不动而电流逐渐减小时,观测者用仪器来检测磁场的各种变化特征,他恐怕不能分辨出这两者有什么不同,恐怕不能判断出空箱外的导线究竟是正在逐渐远离还是电流正在逐渐减小。
5、感生电动势和动生电动势解析
留意: (1)将电压表并联在待测电路两端.
(2)量程应大于小灯泡两端电压的估量值. (3)红表笔接高电势,黑表笔接低电势.
(4)读数时先看量程再看小格,要正视表针.
(二)使用
2.测量电流 怎样用多用电表测量通过 小灯泡的电流?测量中应 步留骤意:什((12么))选测?档量;;
a
解析:以a表示金属杆运动的加速度,在t时刻,金属杆 与初始位置的距离L=at2/2,此时杆的速度v=at 这时,杆与导轨构成的回路的面积S=Ll 回路中的感应电动势E=SΔB/Δt+Blv
B k t B B (t t) B tk
t t
回路的总电阻 R=2Lr0 回路中的感应电流 I=E/R
F 3k 2l 2 t
作用于杆的安培力F=BIl 代入数据为F=1.44×10-3N
2r0
学 问 回
1.如何把电流表改装成电压表?
Ig
Rg
分压电阻 R
IR R
分流电阻
忆
Ug
UR
I
Ig Rg
U
Ug
Ig
V
I
A
U
Ug
2.如何把电流表改装成量程较大的电流表?
能否把电流表改装成直接测量电阻的
欧姆表?
例 题
r,其余局部电阻不计.开头磁感强度为B0.
〔1〕假设从t=0时刻起,磁感强度均匀增加,每秒增量为
k,同时棒保持静止.求棒中的感应电流.在图上标出感
应电流的方向;
〔2〕在上述〔1〕状况中,始终保持棒静止,当t=t1末时
需加的垂直于棒的水平拉力为多大? 〔3〕假设t=0时刻起,磁感强度渐
e
a
f
渐减小,当棒以恒定速度v向右做
动生电动势与感生电动势
F(m e)vvBB
(e)
i
op Ek dl
(v B) dl
op
在磁场中运动的导线内的感应电动势
i
op Ek dl
(v B) dl
op
由上式可以看出,矢积
v与 B
成锐d l角时,
为i
正负为;之负成分时i 钝,,角则为时 表正, 示时i电,为动i表负势示。的电因方动此向势,逆方由着向上顺式的着算方出向d的。l的电方d动l向势;有正
C B B
通电导体棒AB在磁场中受到的安培力大小为Fm ,IlB
方向向左。为了使导体棒匀速向右运动,必须有外力
F外与Fm平衡,它们大小相等,方向相反。因此,外
力的功率为
P F v IilBv
这正好等于上面求得的感应电动势做功的功率。
在磁场中运动的导线内的感应电动势 例13—2 长为L的铜棒在磁感强度为B的均匀磁场中,以角
由于ab ,表0 明电动势的方向由a 指向b,b 端电势较高。
在磁场中运动的导线内的感应电动势
(2)应用电磁感应定律求解 设某时刻导线ab 到U 形
a
v
X b
框底边的距离为x,取顺时
针方向为回路的正方向,则
I
O
O
该时刻通过回路 abo的o磁a
r
通量为
dr
Φ
s
B
d
S
dL d
0I 2r
x
d
r
0Ix 2
由 B dS可知,取决于B、S以及B与S
S
的夹角三个因素,我们 把由于B变化而引起 的感
应电动势叫做感生电动 势;而把由于 S或B与S
的夹角的变化而引起的 感应电动势叫做动生电 动势。
动生电动势和感生电动势
m1
三、电子感应加速器
原理:在电磁铁的两磁极间放一个真空室,电磁铁是由
交流电来激磁的。
当磁场发生变化时,两极间任意闭合回路的磁通发生变化, 激起感生电场,电子在感生电场的作用下被加速,电子在 Lorentz力作用下将在环形室内沿圆周轨道运动。
轨道环内的磁场 等于它围绕面积 内磁场平均值的 一半。
解:法拉第电机可视为无数铜棒一 端在圆心,另一端在圆周上,即为 并联,因此其电动势类似于一根铜 棒绕其一端旋转产生的电动势。
w
B
o a
R
U0 Ua o Bwl dl
U0
Ua
1 2
BR2w
二、感生电动势
1、感生电动势
由于磁场的变化而在回路中产生的感应电 动势称为感生电动势.
2、感生电场
变化的磁场在其周围空间激发的一种能够产生感生电动势 的电场,这种电场叫做感生电场,或涡旋电场。
是以轴为圆心的一系列同心圆,同一同心圆
上任一点的感生电场的Ek大小相等,并且方
向必然与回路相切。于是沿L取Ek的线积分,
有:
L Ek dl Ek 2 r
EkΒιβλιοθήκη 2rr 2dB dt
若r<R,则 Br 2
L
Ek
dl
- d dt
r 2
dB dt
r dB Ek 2 dt
若r≥R,则
BR2
2、涡流的热效应
电阻小,电流大,能 够产生大量的热量。
3、应用
高频感应炉 真空无按触加热
加热
4、涡流的阻尼作用
当铝片摆动时,穿过运动铝片的磁通量 是变化的,铝片内将产生涡流。根据楞 次定律感应电流的效果总是反抗引起感 应电流的原因。因此铝片的摆动会受到 阻滞而停止,这就是电磁阻尼。
动生电动势 感生电动势
bv
a
I
例10-6 由导线弯成的宽为a
高为b的矩形线圈,以不变速 率v平行于其宽度方向从无磁 场空间垂直于边界进入一宽为
3a
3a的均匀磁场中,线圈平面与 磁场方向垂直(如图),然后
又从磁场中出来,继续在无磁
场空间运动。设线圈右边刚进
入磁场时为t=0时刻,试在附
图中画出感应电流I与时间t的
ab中的感生电动势,并确定哪端电势高?解:Fra bibliotekl Er
dl
dm
dt
螺线管外感生电场的分布具有轴对 称性,取半径为r(r>R)的圆形环
R
o 0
Er b
rP
路与ab交于P点,Er沿P点的逆时针 切线方向。则
a
l
E r
dl
E r
2r
m B S 0nI R2 29
dm
dt
0n
dI dt
R2
,设t = 0 时线圈平面的法线方向n0
与B的夹角为 = 0,若线圈角速度为
,则 t时刻穿过该线圈的磁通为
m B s Bscos Bscos t
由法拉第电磁感应定律
0 b
c
no
B
a
d 0/
i
d dt
d dt
(NBscos t)
NBs sint m sin t m NBs
电动势的实质依然是动生电动势,上述为交流发电机的工作原理 14
uB v v B u
所以总的洛仑兹力的功率为零,即总的洛仑兹力仍然不做功。
但为维持导体棒以速度v作匀速运动,必须施加外力以克服
洛仑兹力的一个分力fmu=qu×B。
由前述可知
qu B v qv B u
感生电动势和动生电动势教案
巩固练习
1.如图所示,一个带正电的粒子在垂直于匀强磁场的平面内做圆周运动,当磁感应强度均匀增大时,此粒子的动能将()
A.不变B.增加
C.减少D.以上情况都可能
答案:B
2.穿过一个电阻为lΩ的单匝闭合线圈的磁通量始终是每秒钟均匀地减少2 Wb,则()
A.线圈中的感应电动势一定是每秒减少2 V
答案:AB
综合应用
【例3】如图所示,两根相距为L的竖直平行金属导轨位于磁感应强度为B、方向垂直纸面向里的匀强磁场中,导轨电阻不计,另外两根与上述光滑导轨保持良好接触的金属杆ab、cd质量均为m,电阻均为R,若要使cd静止不动,则ab杆应向_________运动,速度大小为_______,作用于ab杆上的外力大小为____________
(2)a、b两点间电压Uab
答案:(1)4V(2)2.4A
5.如图所示,在物理实验中,常用“冲击式电流计”来测定通过某闭合电路的电荷量.探测器线圈和冲击电流计串联后,又能测定磁场的磁感应强度.已知线圈匝数为n,面积为S,线圈与冲击电流计组成的回路电阻为R,把线圈放在被测匀强磁场中,开始时线圈与磁场方向垂直,现将线圈翻转180°,冲击式电流计测出通过线圈的电荷量为q,由此可知,被测磁场的磁磁感应强度B=__________
【例2】如图所示,导体AB在做切割磁感线运动时,将产生一个电动势,因而在电路中有电流通过,下列说法中正确的是()
A.因导体运动而产生的感应电动势称为动生电动势
B.动生电动势的产生与洛仑兹力有关
C.动生电动势的产生与电场力有关
D.动生电动势和感生电动势产生的原因是一样的
解析:如图所示,当导体向右运动时,其内部的自由电子因受向下的洛仑兹力作用向下运动,于是在棒的B端出现负电荷,而在棒的A端显示出正电荷,所以A端电势比B端高.棒AB就相当于一个电源,正极在A端。
人教版高中物理教案-感生电动势和动生电动势
第五節 感生電動勢和動生電動勢(一)知識與技能1.知道感生電場。
2.知道感生電動勢和動生電動勢及其區別與聯繫。
(二)過程與方法通過同學們之間的討論、研究增強對兩種電動勢的認知深度,同時提高學習物理的興趣。
(三)情感、態度與價值觀通過對相應物理學史的瞭解,培養熱愛科學、尊重知識的良好品德。
教學重點感生電動勢與動生電動勢的概念。
教學難點對感生電動勢與動生電動勢實質的理解。
教學方法討論法,講練結合法教學用具:電腦,投影儀。
教學過程(一)引入新課教師:我們在恒定電流以章中學過電源和電動勢。
大家回顧一下,什麼是電源?什麼是電動勢?學生甲:電源是通過非靜電力做功把其他形式能轉化為電能的裝置。
學生乙:如果電源移送電荷q 時非靜電力所做的功為W ,那麼W 與q 的比值qW ,叫做電源的電動勢。
用E 表示電動勢,則:qW E教師:同學們回答得很好。
教師:電源有好多種,比如乾電池、手搖發電機等。
請分別說出這些電源中的非靜電力作用和能量轉化情況。
學生:乾電池中的非靜電力是化學作用,把化學能轉化為電能;手搖發電機的非靜電力是電磁作用,把機械能轉化為電能。
教師:不同的電源,非靜電力可能不同,但從能量轉化的角度看,他們所起的作用是相同的,都是把其他形式能轉化為電能。
從這個角度看,電源的電動勢所描述的物理意義是什麼?請舉例說明。
學生:電動勢描述了電源把其他形式能轉化為電能的本領,即表徵非靜電力對自由電荷做功的本領。
不如,乾電池的電動勢是1.5V,表示把1C正電荷從電源負極搬到正極,非靜電力做功1.5 J,而蓄電池電動勢是2.0V,表示把1C正電荷從電源負極搬到正極,非靜電力做功2.0 J,我們說蓄電池把化學能轉化為電能的本領比乾電池大。
教師:同學們說得很好。
教師:在電磁感應現象中,要產生電流,必須有感應電動勢。
這種情況下,哪一種作用扮演了非靜電力的角色呢?下面我們就來學習相關的知識。
(二)進行新課1、感應電場與感生電動勢教師:投影教材圖4.5-1,穿過閉會回路的磁場增強,在回路中產生感應電流。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第五节电磁感应现象的两种情况
教学目标:
(一)知识与技能
1.知道感生电场。
2.知道感生电动势和动生电动势及其区别与联系。
(二)过程与方法
通过同学们之间的讨论、研究增强对两种电动势的认知深度,同时提高学习物理的兴趣。
(三)情感、态度与价值观
通过对相应物理学史的了解,培养热爱科学、尊重知识的良好品德。
教学重点:感生电动势与动生电动势的概念。
教学难点:对感生电动势与动生电动势实质的理解。
教学方法:讨论法,讲练结合法
教学用具:多媒体课件
教学过程:
(一)引入新课
什么是电源?什么是电动势?
电源是通过非静电力做功把其他形式能转化为电能的装置。
如果电源移送电荷q时非静电力所做的功为W,那么W与q的比值W/q,叫做电源的电动势。
用E表示电动势,则:E=w/q
在电磁感应现象中,要产生电流,必须有感应电动势。
这种情况下,哪一种作用扮演了非静电力的角色呢?下面我们就来学习相关的知识。
(二)进行新课
1、感生电场与感生电动势
投影教材图4.5-1,穿过闭会回路的磁场增强,在回路中产生感应电流。
是什么力充当非静电力使得自由电荷发生定向运动呢?英国物理学家麦克
斯韦认为,磁场变化时在空间激发出一种电场,这种电场对自由电荷产生了
力的作用,使自由电荷运动起来,形成了电流,或者说产生了电动势。
这种
由于磁场的变化而激发的电场叫感生电场。
感生电场对自由电荷的作用力充当了非静电力。
由感生电场产生的感应电动势,叫做感生电动势。
例题:教材P22,例题分析
2、洛伦兹力与动生电动势
(投影)教材P23的〈思考与讨论〉
1.导体中自由电荷(正电荷)具有水平方向的速度,由左手定则可判断受到沿棒向上的洛伦兹力作用,其合运动是斜向上的。
2.自由电荷不会一直运动下去。
因为C 、D 两端聚集电荷越来越多,在CD 棒间产生的电场越来越强,当电场力等于洛伦兹力时,自由电荷不再定向运动。
3.C 端电势高。
4.导体棒中电流是由D 指向C 的。
一段导体切割磁感线运动时相当于一个电源,这时非静电力与洛伦兹力有关。
由于导体运动而产生的电动势叫动生电动势。
如图所示,导体棒运动过程中产生感应电流,试分析电路中的能量转化情况。
导体棒中的电流受到安培力作用,安培力的方向与运动方向相反,阻碍导体
棒的运动,导体棒要克服安培力做功,将机械能转化为电能。
(三)实例探究
【例1】如图所示,一个闭合电路静止于磁场中,由于磁场强弱的变化,而使电
路中产生了感应电动势,下列说法中正确的是(AC )
A .磁场变化时,会在在空间中激发一种电场
B .使电荷定向移动形成电流的力是磁场力
C .使电荷定向移动形成电流的力是电场力
D .以上说法都不对
【例2】如图所示,导体AB 在做切割磁感线运动时,将产生一
个电动势,因而在电路中有电流通过,下列说法中正确的是(AB )
A .因导体运动而产生的感应电动势称为动生电动势
B .动生电动势的产生与洛仑兹力有关
C .动生电动势的产生与电场力有关
D .动生电动势和感生电动势产生的原因是一样的
【例3】如图所示,两根相距为L 的竖直平行金属导轨位于磁感应强
度为B 、方向垂直纸面向里的匀强磁场中,导轨电阻不计,另外两根与上述光滑导轨
保持良好接触的金属杆ab 、cd 质量均为m ,电阻均为R ,若要使cd 静止不动,则ab
杆应向 上运动,速度大小为2mgR/B 2L 2,作用于ab 杆上的外力大小为2mg 。
巩固练习
磁场变强
1.如图所示,一个带正电的粒子在垂直于匀强磁场的平面内做圆周运动,当磁感应强度均匀增大时,此粒子的动能将(B)
A.不变 B.增加 C.减少 D.以上情况都可能
2.穿过一个电阻为lΩ的单匝闭合线圈的磁通量始终是每秒钟均匀地减少2Wb,则(BD)
A.线圈中的感应电动势一定是每秒减少2V
B.线圈中的感应电动势一定是2V
C.线圈中的感应电流一定是每秒减少2A
D.线圈中的感应电流一定是2A
3.在如图所示的磁场中,磁感应强度均匀增加,下列说法正确的是(AC)
A.a点电势高于b点
B. a点电势低于b点
C.该过程中产生的电动势为感生电动势
D. 该过程中产生的电动势为动生电动势
小结: 感生电动势和动生电动势产生的原理,电动势大小的计算,方向的判断方法。
作业:完成问题与练习。