adams简单实例赏析_入门级别、感受adams复习过程

合集下载

adams2020教程与实例

adams2020教程与实例

adams2020教程与实例adams2020是一种多体动力学仿真软件,它广泛应用于机械、航空航天、汽车工程、电子设备等领域的设计和分析过程中。

它能够帮助工程师们通过多体动力学仿真来模拟和分析复杂的物理系统,从而更好地理解系统的行为和性能,并提供改进和优化系统设计的方法。

首先,我们来介绍一下adams2020的基本概念和工作原理。

adams2020是基于多体动力学理论的软件,它将物体抽象为刚体或弹性体,通过应力、力、速度和加速度等物理量来描述物体的运动行为。

在adams2020中,用户可以建立物体的几何模型,并设置物体的质量、惯性矩阵、初速度和初位置等参数。

然后,用户可以在模型中添加各种约束和力的作用,如关节、支撑点和弹簧等,从而模拟出复杂物体之间的相互作用和运动。

adams2020提供了丰富的建模工具和功能模块,使得用户能够方便地构建复杂的物理系统模型。

在adams2020中,用户可以选择不同类型的刚体和连接器来建立模型,也可以添加各种传感器和控制器来监测和控制系统的运动。

此外,adams2020还提供了强大的分析和可视化功能,用户可以通过动画和图表等方式来观察和分析系统的运动行为。

为了更好地使用adams2020进行仿真,我们可以通过一个简单的例子来介绍其基本操作步骤。

假设我们需要模拟一个简单的摆锤系统,其中包含一个固定支撑点和一个可自由运动的摆锤。

首先,我们需要在adams2020中创建一个新的模型,并选择适当的刚体和连接器类型来建立模型。

然后,我们可以设置摆锤的质量、长度和初始位置等参数,并添加适当的约束和力的作用来模拟摆锤的运动。

最后,我们可以通过模拟和分析功能来观察和分析摆锤的运动行为,如角度、速度和加速度等。

除了基本的建模和仿真功能外,adams2020还提供了一些高级功能,如优化和灵敏度分析等。

通过这些功能,用户可以进行系统设计的优化和改进,找到系统的最佳参数和结构,以进一步提高系统的性能。

ADAMS基础培训-实例讲解

ADAMS基础培训-实例讲解

2.3 创建拉压弹簧
➢点击Spring Damper图标 ,在大地与钩子之间建立 弹簧。 ➢ 设置K=800,C=0.5。 ➢点取以下位置放置弹簧: (-12,1,0)(注意要取钩子上的点)和(-23,1,0)。
2.4 创建手柄力
➢点击Applied Force图标 。 ➢按图示进行Force的设置。 ➢依次选取手柄,手柄末端的标志点,位置(-18,14,0)。
一、创建模型
启动ADAMS/view并建立新的数据文件 熟悉界面,设置工作环境 创建设计点(Point) 创建几何模型(曲柄,手柄,连杆,锁钩) 创建约束(铰接)
1.1 建立新模型
启动软件,建立新模型 ,并命名为latch。
重力场设置 单位设置
1.2 工作环境设置
设置栏
单位设置
工作格栅设置
图标设置
1.3 建立参考点
➢点击鼠标右键打开工具包 点击Point图标 ➢ 按照下表所列数据放置设计参考点。使用点的缺省 设置,即Add to Ground和Don’t Attach。 ➢Point tablecreateapply
1.4 创建摇臂
➢点击鼠标右键打开工具包 点击Plate图标 ➢ 用鼠标左键点选Point_1、Point_2和Point_3,点击右 键使曲柄闭合。 ➢右键点击Part,选择 rename对模型进行重 命名,改为Pivot。
1.5 创建手柄
➢点击鼠标右键打开工具包 点击Link图标 ➢ 用鼠标左键点选Point_3、Point_4,创建连杆。 ➢对模型进行重命名,Handle。
1.6 创建锁钩
➢点击鼠标右键打开工具包 点击Extrusion图标 ➢ 选择“New Part”和“位置(有时会自动捕捉周围物体, 按住Ctrl+再点击左键即可),右键完成创建。 ➢对模型进行重命名,Hook。

ADAMS教程很详细手把手教你学会

ADAMS教程很详细手把手教你学会

ADAMS教程很详细手把手教你学会
ADAMS是一款领先的多体动力学仿真软件,广泛应用于机械、航空航天、汽车等领域。

它可以帮助工程师进行产品设计、性能分析、优化等工作。

本文将介绍ADAMS的使用方法,通过详细的手把手教程,让你轻松掌握ADAMS的技术。

接下来,我们需要在模型中添加不同的零部件,比如连接件、传动件等。

通过简单的拖拽操作,将零部件拖放到模型中,并连接它们。

通过设定零部件的属性和参数,可以定制不同的模型。

在模型构建完成后,我们可以进行仿真分析。

点击仿真按钮,ADAMS 将自动计算模型的运动学和动力学特性,得到系统的运动轨迹、力学特性等。

通过对仿真结果的分析,我们可以了解系统的行为和性能。

除了基本的模型构建和仿真分析,ADAMS还提供了优化功能。

通过设定不同的优化目标和约束条件,ADAMS可以自动优化系统设计,使其达到最佳性能。

另外,ADAMS还支持多种输出格式,比如图表、动画等。

我们可以将仿真结果输出为图表,方便进行数据分析;也可以生成动画演示,直观显示系统的运动过程。

总的来说,ADAMS是一款功能强大的多体动力学仿真软件,能帮助工程师进行产品设计和性能分析。

通过本文的手把手教程,相信你已经掌握了ADAMS的基本使用方法,希望你能够在工程设计中充分发挥ADAMS的优势。

ADAMS_从入门到精通

ADAMS_从入门到精通

启动时的ADAMS/View主窗口:
窗口名称栏 主工 具箱 菜单栏 快捷工 具栏
欢迎 窗口
工作屏 幕区
视图方向
状态栏
3.4 ADAMS/View程序屏幕
1. 2.
3.
4. 5.
6.
ADAMS/View主窗口部分功能如下: 主工具箱—展示各种常用命令的快捷键; 命令菜单栏—包括了ADAMS/View程序的全部 命令; 快捷工具栏—设置了一些最基本的文件和编辑 命令的快捷按钮; 工作屏幕区—显示样机模型的区域; 工作栅格—在工作区显示栅格的目的是利于建 模; 状态栏—显示操作过程中的各种信息和提示;
ADAMS--虚拟样机从入门到精 通
介绍内容:
1. 2. 3.
4.
5. 6. 7. 8.
软件简介 软件基础知识 ADAMS软件操作初步 虚拟样机几何建模 约束机构 施加载荷 ADAMS/View建模的相关技术 样机仿真分析及调试
9.
10.
11.
仿真结果后处理 参数化建模与设计 样机的参数化分析
第 1章
ADAMS主模块:
ADAMS基本应用程序
ADAMS/View
ADAMS/Solver
ADAMS/PostProcessor
基本环境
求解器
后处理
Mechanism /Pro
/Driver /Hydraulics
/Animation
/Driveline
/Car
ADAMS 附加程序模块
/Control

另一方面,又是虚拟样机分析开发工具, 其开放性的程序结构和多种接口,可以成 为特殊行业用户进行特殊类型虚拟样机分 析的二次开发工具平台。 ADAMS软件由基本模块、扩展模块、接口 模块、专业领域模块及工具箱5类模块组成。 用户不仅可以采用通用模块对一般的机械 系统进行仿真,而且可以采用专用模块针 对特定工业应用领域的问题进行快速有效 的建模与仿真分析。

ADAMS操作与实例解析

ADAMS操作与实例解析

ADAMS操作与实例解析ADAMS(Automatic Dynamic Analysis of Mechanical Systems)是一种常用的机械系统动力学仿真与分析软件,可以用于模拟和优化各种机械系统,包括汽车、飞机、船舶、机械臂等。

在这篇文章中,将介绍ADAMS的操作流程以及一些实例解析。

1.建模:ADAMS提供了丰富的建模工具,可以通过创建零件模型来构建机械系统的模型。

用户可以直接导入CAD文件或者通过ADAMS的建模工具手动创建零件模型。

在建模过程中,用户需要定义每个零件的几何特征和物理性质。

2.装配:在建模完成后,需要对所有的零件进行装配操作。

用户可以使用简单的拖拽操作将零件放置到正确的位置,并设置它们之间的连接关系。

ADAMS提供了多种连接方式,包括球接头、铰接、滑动接头等。

3.定义运动:一旦完成了装配操作,用户需要为机械系统定义运动。

ADAMS支持多种运动方式,包括平移、旋转、摆动等。

用户可以通过设置零件的运动公式或者直接拖动零件使其运动。

4.分析:定义了机械系统的运动后,可以进行多种分析,如运动模拟、动力学分析、碰撞检测等。

ADAMS提供了丰富的分析工具和图表,可以帮助用户研究机械系统的性能和优化设计。

接下来,将通过两个实例来解析ADAMS的应用。

实例一:汽车悬挂系统分析假设我们要分析一种新型的汽车悬挂系统的性能。

首先,我们需要在ADAMS中建立一个悬挂系统的模型,包括车轮、悬挂臂、弹簧等零件。

然后,通过调整零件的连接关系和运动方式,定义悬挂系统的运动。

接着,我们可以进行动力学分析,如行驶过程中的减震性能测试、路面不平度下的车辆响应等。

通过观察ADAMS提供的图表和动画,我们可以评估悬挂系统的性能,并优化设计。

实例二:机器人臂运动规划假设我们要设计一个机械臂,能够完成复杂的运动任务,如抓取物体、放置物体等。

首先,我们需要建立机械臂的模型,包括关节、链接件等零件,并设置它们之间的运动关系。

ADAMS 2023动力学分析与仿真从入门到精通

ADAMS 2023动力学分析与仿真从入门到精通

ADAMS 2023动力学分析与仿真从入门到精通简介ADAMS(Advanced Dynamic Analysis of Mechanical Systems)是一种用于进行动力学分析和仿真的强大工具。

它可以帮助工程师和设计师在产品开发过程中预测和优化机械系统的性能。

无论是汽车、飞机还是机械设备,ADAMS都可以用来模拟其在不同工况下的动态行为。

本文档将介绍ADAMS 2023的基本概念和操作指南,从入门到精通,帮助读者快速上手并掌握ADAMS的使用方法。

1. ADAMS简介1.1 ADAMS的定义ADAMS是一种基于多体动力学理论的仿真软件,它能够对复杂的机械系统进行动力学分析和仿真,并提供详细的结果和可视化的模拟效果。

它主要用于评估系统的运动性能、力学特性和振动响应,是工程师进行设计优化和故障排查的重要工具。

1.2 ADAMS的应用领域ADAMS广泛应用于汽车、航空航天、机械设备等领域,用于模拟和分析复杂机械系统的动态行为。

例如,汽车制造商可以使用ADAMS来评估车辆的悬挂系统、转向动力学和车身振动特性;航空航天公司可以使用ADAMS来模拟飞机的飞行动力学和振动响应。

2. ADAMS基本概念2.1 多体系统ADAMS将机械系统建模为多个刚体之间的约束系统。

每个刚体包含了几何特征、质量和惯性属性。

通过在刚体之间添加约束和运动条件,可以建立复杂的多体系统模型。

2.2 约束约束用于描述刚体之间的相对运动关系。

ADAMS提供了各种类型的约束,如平面、关节、铰链等。

通过正确定义约束条件,可以模拟系统的运动和力学特性。

2.3 运动条件运动条件用于描述系统的运动。

ADAMS提供了多种运动模式,如位移、速度、加速度和力矩等。

通过在刚体上施加运动条件,可以模拟系统的各种运动情况。

3. ADAMS操作指南3.1 ADAMS界面ADAMS的用户界面由多个工具栏、菜单和窗口组成。

主要包括模型浏览器、属性编辑器、运动学模块、仿真控制和结果查看器等。

adams入门详解与实例

adams入门详解与实例

adams入门详解与实例
ADAMS(自动动力动态分析)是一种模拟技术,用于研究机器运
动和控制程序之间的动态行为。

它可以用于电子、车辆和液压驱动器,以及机器人、电动系统和航空系统等不同类型的机器。

ADAMS可以显示动态输出,并为设计者提供反馈调节以提高系统性能。

ADAMS的主要功能是仿真。

它可以进行广泛的机械和动力仿真,
包括求解机器的动态响应,解决非线性的动力系统问题,研究电气机
械系统的特性,以及研究包括弹性机器和电磁荷载在内的复杂载荷系
统的动态行为。

ADAMS的精度高,可以轻松地模拟出机器系统的动态行为,并能够根据对真实机器系统的行为分析出有效的解决方案。

ADAMS可以使用多种建模语言,如MBL(DynaMath块模型库)、MIT(机械工程应用技术]=]、FORTRAN等,用于创建完整的动态模型。

ADAMS使用结构化的块,元素和模型的类库,可以轻松地创建模型,简化用户设计过程,而不会失去模型的质量和精度。

ADAMS可以通过配置属性自定义模拟,可以设置步骤、变量可视性、分片装置、动态增益、模型粒度等参数来获取有关过程的动态变
化的更多信息。

它提供了多种模拟类型,可以直接在机器和控制程序
之间进行转换。

ADAMS还支持同步和逐柱分析,可以自动检测和修复部件被夹紧的情况。

ADAMS可以使用MATLAB、MS EXCEL等软件的报告功能,可以很容易地将试验结果和分析结果可视化。

它可以在模拟时生成表格和图形,从而使设计者可以快速确定系统性能的改进方案。

李增刚adams入门详解与实例

李增刚adams入门详解与实例

李增刚Adams(ADAMS)是一种基于有限元分析(FEA)技术的仿真软件,广泛应用于机械、航空航天、汽车等领域。

它能够模拟和分析各种工程问题,帮助工程师们进行产品设计和优化,提高产品的性能和可靠性。

在本文中,我们将深入探讨李增刚Adams的入门知识,并结合实例进行详细解释。

1. 什么是李增刚Adams?李增刚Adams是由美国MSC Software公司开发的一种多体动力学仿真软件。

它基于有限元分析(FEA)技术,能够对复杂的机械系统进行动力学仿真和分析。

Adams可以模拟多体系统的运动行为、受力情况,预测系统的动态特性,并通过优化来改善产品设计。

Adams在工程设计和产品优化领域具有重要的应用意义。

2. 初识Adams界面和基本操作当我们第一次打开Adams软件时,会看到一个复杂而丰富的界面。

界面上有各种工具栏、菜单和面板,初学者可能会感到有些不知所措。

不过,只要通过一些基本操作和功能的了解,就能够逐渐熟悉Adams 的界面和操作方法了。

我们需要了解Adams界面的各个部分,比如模型树、属性管理器、操作工具栏等。

学习如何创建一个简单的多体系统模型,并对其进行基本的运动学仿真。

通过这些基本操作,我们可以逐步掌握Adams的使用方法,并为后续的深入学习打下基础。

3. 多体动力学仿真实例解析为了更好地理解Adams的应用,我们将结合一个实际的多体动力学仿真实例进行解析。

假设我们要对一个汽车悬挂系统进行动力学仿真分析,我们可以首先建立一个简化的汽车悬挂系统模型,包括车身、车轮、减震器等部件。

我们可以对车辆通过不同道路情况下的行驶进行仿真,分析汽车悬挂系统在不同路面条件下的工作状态和受力情况,从而优化悬挂系统的设计。

在这个实例中,我们可以运用Adams的各种功能和工具,比如约束条件的设定、运动学分析、动力学分析等,来模拟汽车悬挂系统的运动行为和受力情况。

通过对仿真结果的分析和优化,我们可以为汽车悬挂系统的设计提供有力的支持和指导。

adams2020教程与实例

adams2020教程与实例

Adams 2020 是一款广泛应用于工程领域的多体动力学仿真软件,它可以用来模拟各种机械系统的运动行为,并进行动力学分析和优化设计。

本教程将带领读者深入了解 Adams 2020 软件的基本操作和应用技巧,并通过实例演示,让读者能够更好地掌握该软件的使用方法。

本教程将分为以下几个部分进行详细介绍:一、 Adams 2020 简介Adams 2020 是由美国Mechanical Dynamics公司开发的一款专业多体动力学仿真软件,目前已经成为全球范围内的工程师和研究人员首选的仿真工具之一。

Adams 2020 软件拥有强大的模型建立和仿真分析功能,可以对机械系统的运动行为进行准确的模拟,并提供丰富的分析结果,为工程设计和优化提供有力的支持。

二、 Adams 2020 的基本操作1. 软件安装和环境配置在开始学习 Adams 2020 软件之前,首先需要进行软件的安装和环境配置。

本教程将详细介绍 Adams 2020 软件的安装步骤和环境配置方法,确保读者能够顺利地运行该软件,并进行后续的操作和学习。

2. 模型建立与约束设置在 Adams 2020 软件中,模型建立和约束设置是仿真分析的基础。

本教程将演示如何在 Adams 2020 中建立机械系统的模型,并设置各种约束条件,包括刚性约束、连接约束等,以确保模型的合理性和准确性。

3. 运动学分析与动力学分析Adams 2020 软件可以进行运动学分析和动力学分析,以研究机械系统的运动特性和受力情况。

本教程将介绍如何在 Adams 2020 中进行运动学分析和动力学分析,并解释分析结果的含义和应用。

三、 Adams 2020 的应用技巧1. 模型优化与性能评估Adams 2020 软件可以用于模型优化和性能评估,以改进机械系统的设计和性能。

本教程将介绍如何利用 Adams 2020 进行模型优化和性能评估,包括参数优化、结构优化等方法。

2. 系统耦合与多体联动仿真在工程实际应用中,往往需要进行系统耦合和多体联动仿真分析。

adams入门详解与实例

adams入门详解与实例

adams入门详解与实例Adams(按动力学分析系统)是一种动力学仿真软件,能帮助建模、分析及验证机械系统。

它可以模拟从最非常简单的自由振动系统到复杂的体系,如机电、流体动力学,有丰富的模型库和应用。

Adams的精准分析和模拟结果有助于减少设计过程中的试错,大大提升设计效率。

Adams有多种实例,其中包括双轮和多轮车辆、风力发电机、汽车转向系统、冲压机械等。

它可以分析这些系统的动力和力学行为,以及系统在外部力作用下的变形特性。

Adams可以对任意模型进行数值仿真,它将复杂的机械系统进行细致的分析,从而精确的预测和验证设计模型的性能和效果。

Adams可以帮助用户快速建模和仿真,它不仅可以检测模型的参数,还可以仿真传动系统和各种动力学模型。

还有一些附加功能,可以帮助用户编辑仿真模型和结果,比如更改几何尺寸、改变运动方程参数等。

Adams可以用来探索系统特性,比如振动、噪声、持续性等,以及信号模型和传感器模型。

Adams还包括三维动画,可以更直观的显示系统动态行为。

Adams模型可以用来做许多应用,如汽车变速器的模拟、车轮振动和扭转模拟、太阳能发电机的优化设计、机械结构的静力学分析、汽车发动机模拟等。

Adams还可以用来模拟移动机械系统的动力学。

Adams是机械设计的有力工具,其精准模拟和可视化分析可以帮助工程师更好的把握系统的表现情况,对机械设计有很大帮助。

Adams使用简单,其系统建模只需要很少的设计步骤,最基础的建模难度可以忽略不计。

只需添加合适的连接器,就可以建立完整的动力学模型。

整个分析过程以图形化仿真的方式呈现,因此可以节省大量的工作时间和成本。

总之,Adams是一款功能强大、易于使用的动力学仿真工具,提供了广泛的应用场景和解决方案,可以有效改进设计和减少试错成本。

Adams把机械系统的模型仿真和可视化展示结合在一起,大大提高了设计效率。

Adams仿真软件正在被众多行业使用,其准确的预测结果和便捷的操作体验为机械行业的发展提供了有力的支持。

ADAMS入门详解与实例-第01章 ADAMS View基础

ADAMS入门详解与实例-第01章 ADAMS View基础

最优方案
优化设计
定制界面:制定菜单和便捷的对话框
定制界面
本章小结
本章对计算机辅助工程(CAE) 概述、ADAMS/View界面、 ADAMS/View常用的窗口进行了介 绍,重点讲解设置工作环境 ,最后 简单介绍了ADAMS的设计流程
本章练习
将课上讲解的操作自己上机练习一次
➢ADAMS有三种坐标系: (1)笛卡尔坐标系(Cartesian) (2)柱坐标系(Cylindrical) (3)球坐标系(Spherical)
➢ADAMS中: (1)绕x轴旋转称为1旋转; (2)绕y轴旋转称为2旋转; (3)绕z轴旋转称为3旋转;
313
二、设置工作格栅
➢工作格栅设置方法: 【Settings】→【Working Grid】
快捷键
Ctrl+N Ctrl+O Ctrl+S
功能
新建数据库 打开数据库 保存数据库
Ctrl+shift+ Z
Ctrl+E Ctrl+C Ctrl+X
恢复上一步的 撤销操作
编辑一个元素 复制一个元素 删除一个元素
快捷键
Ctrl+Q Ctrl+Z
F1
F2
F3 F4 F8
功能
退出ADAMS/View 取消上一步的操作 根据当前的状态,打开
七、设置图形区的背景色
➢图标设置方法:【Settings】 →【View Background Color】
八、设置名称
➢模型的元素可以用名称 或编号(ID)表示
➢建立模型时,系统会给 模型元素自动赋予一个名 称和一个编号
➢模型的元素可以是长格 式或短格式

ADAMS的基础操作和心得

ADAMS的基础操作和心得

hiADAMS/View和ADAMS/Car的基础操作和心得1、如何永久改变ADAMS的启动路径在ADAMS启动后每次更改路径很费时我们习惯将自己的文件存在某一文件夹下事实上在Adams的快捷方式上右击鼠标选属性再在起始位置上输入你想要得路径就可以了。

2、如何将回放过程保存为AVI格式的电影文件以便在其他场合使用点击plotting或F8进入postprocessor 右键--load ANIMATION点击play开始仿真点击record开始录制动画。

3、a/car Template Builder.为什么我看不见这个菜单选项答需要改一下的在你的系统盘下去面。

例如我的C:Documents and Settingsrickytangrickytang为我的用户名下面有一个.acar文件用记事本打开然后将Desired user mode standard/expert ENVIRONMENTMDI_ACAR_USERMODEstandard 改为Desired user mode standard/expert ENVIRONMENT MDI_ACAR_USERMODEexpert 再启动car就可以看见选项了进入car后按F9或者在tools下面选第一项就可以在模板与标准界面之间切换4、关于communicator communicator的出现是由于car是分块建模子系统为基础而communicator告诉ADAMS软件子系统之间如何连接所以communicator的名字要完全一样才行而且对于某一特定的子系统而言有多少与外部系统、testrig的连接就需要有多少个communicator。

suspension parameter代表悬架特性反映可参考公用模板中_trailing_arm.tpl和_multi_link.tpl。

communicator表示数据传递的。

纵臂、螺旋弹簧、减震器有一端是外部连接需要建立mount然后会自动产生输入communicator. 输出communicator一般有以下8个它主要是把数据传递给轮胎的colr_camber_anglecolr_suspension_mount colr_suspension_upright colr_toe_anglecolr_tripot_to_differential colr_wheel_center cos_driveline_activecos_suspension_parameters_ARRAY 可参考公用模板中的悬架模型来建立。

adams2012简单实例赏析_入门级别、感受adams

adams2012简单实例赏析_入门级别、感受adams

测量一重为1kg的石块下落的位移、速度、加速度曲线,时间为1s
点击new model,出现下面的对话框。

当然,你可以自己修改name为stone。

选择units(单位),此时为默认。

出现主界面。

好有这步。


选择球,半径为50mm
圆心为坐标原点。

接下来
质量为1kg,只有这一个参数。

下面是建立测量。

测量位移如下图:y轴的
此时点击apply。

出现下面的曲线框,由于还没有仿真,故没有曲线,下同
速度曲线,当然还是y轴的
仍然点击apply
加速度曲线,如下
总的曲线如下图:
点击simulation,出现下面的框,设定时间为1s,按顺序依次点击:
此时就可以看到曲线在动态变化
任选一个曲线框,右击,进入full plot
注意上面一定要点选surf,才能出现所想要的曲线
通过上述仿真,可以看出位移为-4903.3mm,速度为-9806.6mm/s,加速度为-9806.6mm/s2。

ADAMS实例仿真解析

ADAMS实例仿真解析
作为一名当Байду номын сангаас大学生,我们不仅要学好专业知识,还要全面提高自身科学素质,培养创新理念,能够运用所学知识进行创新设计和分析,在这些过程中,虚拟仿真技术扮演着重要角色。
参考文献
【1】《虚拟样机技术与ADAMS应用实例教程》-----北京航空航天大学出版社。
【2】《MD ADAMS虚拟样机从入门到精通》---------机械工业出版社。
模型建立··························································3
约束添加··························································9
运动添加··························································11
模型仿真··························································14
小结······························································17
参考文献··························································17
小 结
通过利用ADAMS对旋转机的虚拟建模以及仿真分析,我们可以对选钻机的工作情况有一个较为真实的了解,对我们以后设计选钻机有很大的帮助,可以大幅度上减少我们的作业时间,极大地提高了我们的工作效率,而且很大程度上减少了设计错误。
ADAMS是一款虚拟仿真软件,一直受到各行各业的广泛青睐,对设计及分析有很大帮助,是工程上不可缺少的一款软件,而且在市场上,一直备受欢迎。ADAMS本身也在随着社会科技的发展不断更新,不断地为社会服务。

adams入门实例讲解上

adams入门实例讲解上

v
ADAMS/View 使用入门练习
的影响。
目录
═════════════════════════════════════════════════════
vi
ADAMS/View 使用入门练习
目录
第二章 建 模
总论
在本章,你将建立和连接挂锁的各个部件,并同时验证各个部件的建立和连接是否正确。有了正确的 模型,你就可以在第三章中在仿真环境下对其进行测试。
目录
启动 ADAMS/View 并建立一个新的数据文件
在本部分,你需要启动 ADAMS/View 并建立一个模型数据文件,其中包含一个名为 Latch 的模型。模 型数据文件记录了你在 ADAMS/View 当前时段所做的所有工作,包括你建立的所有模型、模型的属性、仿 真的结果和图表、定制菜单和对话框,以及你所做的所有参考标识。
═════════════════════════════════════════════════════
vii
ADAMS/View 使用入门练习
3、设置工作环境 4、创建设计点 5、建造曲柄(pivot) 6、重新命名曲柄(pivot) 7、建造手柄(handle) 8、用转动副连接各个部件 9、模拟模型的运动 10、观察参数化的效果
点用于空间定位和参数化其它目标。对于几何体的参数化,点是最简单的方法,因为它一次就可以确 定重要位置的坐标,然后以此建立模型物体。以后当你优化挂锁模型时,其参数化作用就可以体现出来了。
操作步骤:
1、点击 Dynamic Pick 图标 用光标框出你想观察的区域。
并将你的工作栅格进行放大。
2、敲击鼠标右键打开工具包
就可以打开挂锁。
根据对挂锁操作过程的描述可知,POINT_1 与 POINT_6 的相对位置对于保证挂锁满足设计要求是非

ADAMS作业剖析

ADAMS作业剖析

用adams仿真制动翻斗车工作过程陈岳军,201204020402一、实验目的仿真输出液压缸的驱动力与时间和车斗角度的变换关系;二、仿真过程1、实验样机模型建立1)、ADAMS/View启动①桌面上左键双击ADAMS/View图标或开始—程序—MSC.Software—MSC.ADAMS2005—AView—ADAMS--View、显示ADAMS/View启动主窗口;②在welcome对话框中,选择create a new model,创建新模型;③在gravity 或units中采用默认或根据需要分别选择重力加速度和单位;选择ok进入ADAMS/View界面。

2)栅格设置选择settings—working grid打开栅格设置对话框,依次选择show working grid 、rectangular、size:X(5000mm)Y(5000mm);spacing:X(50mm) Y(50mm);其它默认。

或主工具箱快捷键图标打开或关闭栅格。

3)修改背景颜色选择下拉菜单setting——view background color打开背景颜色设置对话框,选择灰色;或在主工具箱中,右键点击图标,打开背景选择快捷键,选择白色。

4)建模(1). 查看左下角的坐标系为XY平面(2). 选择setting——icons下的new size图标单位为100(3). 在工具图标中,选择实体建模按钮中的box按钮. 设置参数New part 、Length :5、Height:3、Depth:0.5然后鼠标点击屏幕上中心坐标处,完成绘制翻斗部分(4)右键选择实体建模工具按钮,再下一级按钮中选择Hollow按钮,在打开的参数设置对话框中设置参数Thickness为0.25m,选择铲斗为挖空对象,铲斗上平面为工作平面,完毕点击右键挖空铲斗。

(5). 继续box建立车架底座部件,设置参数:New part、Length :5、Height:3、Depth: 0.5,在翻斗左下角车架底座部件(6).绘制液压缸①在主工具箱中,点击绘圆柱图工具,依次选择:new part、length (1200mm)、radius(50mm);②鼠标放在绘图窗口内,点击左键,绘制一圆柱;找到(200,-50,0)点击左键,然后点击点(2500,0,0)生成液压缸底座③绘制活塞在主工具箱中,再次点击绘圆柱图工具,依次选择: length (2000mm)、radius(40mm);在(2500,0,0)点击左键,然后点击(200,-50,0)点生成液压缸活塞(7).绘制车头鼠标左键单击样条线图标,主工具箱下方打开参数设置对话框,依次选择new part、closed,绘制封闭多义线,选择,角度改为180,画圆弧;单击麻花型线相加工具图标;将直线和圆弧线合为封闭一体,在集合建模工具集中,单击拉伸工具图标;在主工具箱下部的特征参数设置部分依次选择:new part;curve; forward; 3000mm;在绘图窗口中选择多义线,点击右键完成车头拉伸(8)删除辅助建模拉伸的多义线和圆轮廓线(9)在车底座合适位置拉伸一个圆柱,然后点击图标;依次选择平板、圆柱体,点击右键,完成挖空操作;在集合建模工具集中,单击,分别在前后车轮处生成一侧的前轮和后轮(10)移动栅格位置选择setting——working grid,在打开的参数设置中,选择pick,选择翻斗前侧一点作为栅格中心,完成栅格移动。

adams实例分析

adams实例分析

ADAMS仿真
1.题目(题号:34)
2. 步骤
2.1建模
选择笛卡尔坐标系建模,并确定模型A点为坐标系中心位置,然后建立杆1,其与竖直平面的角度成60度夹角,在杆1上确定B点并建立杆竖直杆3,杆3与点3间的距离为h=400mm,最后在B点处画上滑块,完成建模。

2.2施加约束
建模完成后对模型添加约束,在摇杆1和大地之间在A点处添加转动副,在摇杆1和滑块2间添加移动副,在滑块2和竖直杆3间添加转动副,在竖直杆3和大地之间添加移动副.
2.3施加运动
在摇杆1上添加一个ω=6rad/s的角速度,逆时针方向。

2.4仿真设定
End time设置为20秒,steps设置为1000.再按播放按钮,即可看到其仿真运动。

3.仿真结果分析
1.竖直杆3的速度和加速度分析图。

2. 原动件杆1角度变化和竖直杆3的速度、加速度仿真关系图。

4.分析
由分析结果可以得出,当摇杆以ω=6rad/s的角速度,绕逆时针方向转动
时,开始时竖直杆3的速度不断增大,而此时其加速度是一个较稳定的值,之后竖直杆3的加速度不断减小,降至负值,此时其速度也一直在降低,并且也降至负值。

最后,竖直杆3的加速度不断增加,直至在一个正值处稳定下来,此时其速度不断增加,直至达到顶峰。

在图示位置处,摇杆1与竖直方向的夹角为60度,根据仿真可知,此时竖直杆3的速度为635.8mm/s,加速度为751.2mm/s2。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

a d a m s2012简单实例赏析_入门级别、感受
a d a m s
测量一重为1kg的石块下落的位移、速度、加速度曲线,时间为1s
点击new model,出现下面的对话框。

当然,你可以自己修改name为stone。

选择units(单位),此时为默认。

出现主界面。

点击键盘的F4就会出现坐标捕捉口,方便坐标捕捉。

(其实这步可有可无,一般情况下,最好有这步。


选择球,半径为50mm
圆心为坐标原点。

接下来
质量为1kg,只有这一个参数。

下面是建立测量。

测量位移如下图:y轴的
此时点击apply。

出现下面的曲线框,由于还没有仿真,故没有曲线,下同
速度曲线,当然还是y轴的
仍然点击apply
加速度曲线,如下
总的曲线如下图:
点击simulation,出现下面的框,设定时间为1s,按顺序依次点击:
此时就可以看到曲线在动态变化
任选一个曲线框,右击,进入full plot
注意上面一定要点选surf,才能出现所想要的曲线
通过上述仿真,可以看出位移为-4903.3mm,速度为-9806.6mm/s,加速度为-9806.6mm/s2。

相关文档
最新文档