8.2.2_加减消元法解二元一次方程组
人教版七年级下册数学8.2.2加减消元法解二元一次方程组课件
463x+361y=102
2006x-2007y=2008
(3) 3(x-1)=y+5 5(y-1)=3(x+5)
5.已知关于x、y的方程组 2x-3y=3和 3x+2y=11
2ax+3by=3
ax+by=-1
的解相同。
x 2 y 1
2
6.方程
+ =0与二元一次方程组 3ax+by=11
ax-by= 2
(1)某个未知数的系数互为相反数,则可以直接 把这两个方程中的两边分别相加, 消去这个未知数;
(2)如果某个未知数系数相等,则可以直接 把这两个方程中的两边分别相减, 消去这个未知数。
上面这些方程组的特点是什么? 解这类方程组基本思路是什么? 主要步骤有哪些?
特点: 同一个未知数的系数相同或互为相反数
8.2.2 消元
——用加减法解二元一次方程组
1、根据等式性质填空:
<1>若a=b,那么a±c= b±c .(等式性质1)
<2>若a=b,那么ac= bc . (等式性质2)
a
b
若a=b,那么 c = c .(b≠0)
2、解二元一次方程组的基本思路是什么?
二元
消元 转化
一元
3、用代入法解方程的步骤是什么?
1
点悟:
当方程组中任一个未知数的系数绝对值不是1, 且不相等或成倍数关系时,应将两个方程同时变 形, 使两个方程中某一未知数的系数绝对值相等, 利用加减法解方程组, 同时选择系数比较小的未知数消元。
加减法归纳:
用加减法解二元一次方程组时,若同一个未 知数的系数绝对值不相等,且不成整数倍时, 把一个(或两个)方程的两边乘以适当的数, 使两个方程中某一未知数的系数绝对值相等, 从而化为第一类型方程组求解.
8.2.2_消元——二元一次方程组的解法(加减消元)
3.变式训练 3x 2 y 4 (1)选择:二元一次方程组 的解是(
5 x 2 y 6
x 1 x 1 B. 1 y y 1 2
).
A.
x 1 C. 1 y 2
2
x 1 D. 1 y 2
作业:
1、把你今天学到的知识讲给你的朋友或同学。 2、课本 P103 3 (1)、(4) 6、7、8
例:解方程组:
2x 3 y 1 5x 3 y 6 (1) (2)
1 3y x 解法一:由(1)得: (3) 2 1 3y 5 3y 6 把(3)代人(2)得 2
解法二:由(1)得:3 y=1-2x (3) 把(3)代人(2)得5x-(1-2x)=6 解法三:(1)+(2)得 : 7x=7 x=1
(B)、试试你的能力:
1、解方程组 2 x 3 y 6
2 x 3 y 2
(1) (2)
解:(1)+(2)得 4x=4,x=1 4 (1)–(2)得 6y=8,y= 3 ∴ x=1
4 y= 3 2、已知 3a+b=9 ,求16a–2b的值。 5a–2b=3
解:两式相加得8a–b=12 ∴ 16a–2b=2(8a–b)=2×12=24
4 x 2 y 14 (2) 5 x y 7
x 3 y 20 (3) 3x 7 y 100
2 x 3 y 8 (4) 5 y 7 x 5
3、创新思维: (A)写出一个二元一次方程组,且满足下列条 件: (1)含有2个未知数x和y; (2)能用“加法”消去x,求出y。Fra bibliotek思考题
解方程组
8.2.2_加减消元法解二元一次方程组
3x 5 y 3x 4 y = 5 23
3x 5 y 3x 4 y 18 9 y 18 y 2
x5
将y=-2代入①,得 3x 5 2 5
复习引入
新知探究
成果展示
反思小结
3x 5 y 5 ① 例1:解方程组: 3x 4 y 23 ② 解:①-②得:
同减异加!!!
理论依据: 等式的性质1
复习引入 新知探究 成果展示 反思小结
练习 用加减法解二元一次方程组. 7x-2y=3
x=-1
y=-5 x=-2 y=-3
成果展示 反思小结
⑴
9x+2y=-19
6x-5y=3
⑵
6x+y=-15
复习引入 新知探究
例3:解方程组
2 x 4 y 3 4x 3 y 1
解:①+②得:
① ②
x 2 3 y 将x=2代入①,得: 7
复习引入 新知探究 成果展示 反思小结
3x 4 x 9 5 7 x 14 x2
3 2 7 y 9 3 y 7
小结:二元一次方程组中 , 当两个方程 中同一个未知数的系数相反或相等时, 把两个方程的左右两边分别相加或相减, 就能消去这个未知数,得到一个一元一 次方程。这种方法叫做加减消元法,简 称加减法.
4x 8 y 6
① ②
解 : ① × 2, 得 : ③
③-②,得:
5y 5 y 1
复习引入 新知探究
1 x 2 1 x 2 y 1
将 y 1 代入①,得:
成果展示
反思小结
例4:解方程组
2x 3 y 4 ① 3x 2 y 7 ②
8.2.2二元一次方程组解法 加减消元法
3x 2y 8 ①
(1)
x2y 4
②
(2)
3x
x
y y
8 4
① ②
解:①-②得
2x=4
x=2 把x=2代入②得
2+2y=4
2y=2
y=1
ห้องสมุดไป่ตู้
x 2
所以这个方程组的解是
y
1
解:①+②得
4x=12
x=3
把x=3代入②得
3+y=4
y=1
x 3
所以这个方程组的解是
法二,+得4a+4b=12 a+b=3
能力拓张
2、已知 5x 3y 23 (x3y7)2 0 ,求 x - y 的值。
解:由题意可得:
5x 3y 23 x 3y 7 0
0
① ②
①-②,得 4x-16=0
解得 x = 4
把x= 4 代入②得 4+3y-7=0
x =-6 解: ①+②,得
8x=16 x =2
填空题:
用加减法解下列方程组
3u 2t 7 (1) 6u 2t 11
解:① + ②,得
① ②
9u=18
解得 u = 2
把u= 2 代入①得 3×2+2t=7
解得 t = 0.5 所以这个方程组的解是
t 0.5 u
计算题 :用加减法解方程组
8.2.2二元一次方程组解法 加减消元法
问题:
小明和小军到学校饭堂吃早餐,小明买了两支水和一 个面包,花了14元;小军买了一支水和一个面包花了 12元,问:一支水和一个面包分别多少元?
8.2.2用加减消元法解二元一次方程组1
①右边
刚才的变形实质上就是用的左边减去的左边,用 的右边减去的右边。根据等式的性质1,我们知 道减完之后,左边=右边,并且消去了У,进而求出χ 的值,从而得到方程组的解。
练习:你能用刚才所讲的知识求出下面这个 二元一次方程组的解吗? x-y=5 x + y =13 思考:两个方程相减可消去χ,如果是消去У, 这两个方程又该进行怎样的处理呢?
Байду номын сангаас
解:①+②,得 8x=16 x=2
思考:
能用加减法解方程组 3x+4y=16, 5x-6y=33.
分析:这两个方程中没有同一个未知数的
系数相反或相同,直接加减这两个方程不能消
元.试一试,能否对方程变形,使得这两个方
程中某个未知数的系数相反或相同.
用加减消元法解二元一次方程组的一般步骤:
①在方程组的两个方程中,如果同一个未知数的系数 既不互为相反数又不相等,那么就在方程的两边乘 以适当的数,使同一个未知数互为相反数或相等。 ②把两个方程的两边分别相加或相减,消去一个未知 数,得到一个一元一次方程; ③解这个一元一次方程,求得一个未知数的值; ④将求得的未知数的值代入原方程组中的任意一个方 程,求出另一个未知数的值,并把求得的两个未知 数的值用“{”联立起来,就是方程组的解
上节课我们是用代入法解下面的二元一次方 程组,是不是还有其他的方法解这个方程组 呢?
x y 22, 2 x y 40.
① ②
① x y 22, ② 2 x y 40. 我们发现:②左边 ①左边 = ②右边 即(2χ+У)-(χ+У)= 40-22 化简,得: χ=18 把χ=18代入中,得:У=4
最新人教版初中数学七年级下册 8.2.2 加减消元法—解二元一次方程组教案
8.2.2 加减消元法简介:本节课的内容是人教版义务教育教科书《数学》七年级(下)§8.2消元---解二元一次方程组,主要内容是掌握用加减法消元解二元一次方程组,进一步了解消元是解二元一次方程组的思想方法.在本节学习之前,学生已经学习了二元一次方程组和代入消元解二元一次方程组的内容,学生已经对二元一次方程组及解二元一次方程组有一定的认识,会用二元一次方程组表示问题中的数量关系。
本节内容是学习解二元一次方程组的重要部分,在教材中占据重要的地位。
教材分析本节课是学习用加减法解二元一次方程组,进一步理解消元,通过实际情境问题引出解二元一次方程组的方法概念,对于方程组中有一个未知数的系数相等或者是互为相反数的方程组学生往往比较容易掌握,但是对于系数既不相等又不是互为相反数的方程组,老师要引导学生转化解决,让学生掌握用加减法解二元一次方程组的一般步骤。
本节课教学重点为:用加减消元法解二元一次方程组。
教学难点:探索如何用加减法将“二元”转化为“一元”的消元过程.教学目标1、知识与技能使学生熟练的掌握用加减消元法解二元一次方程组。
2、过程与方法通过对方程中未知数特点的观察和分析,明确解二元一次方程组的主要思路是“消元”,使学生进一步理解加减消元法所体现的化归思想,培养观察能力。
3、情感态度与价值观进一步体会方程是刻画现实世界的有效数学模型重点难点教学重点:用代入法、加减法解二元一次方程组. 教学难点:会用二元一次方程组解决实际问题教学方法引导发现法、小组合作探究法、练习法。
教学准备教学过程设计程序(要素)时间创设情教师行为期望的学生行为景创设情境引入新课8分钟创设问题情境知识回顾1.根据等式性质填空<1>若a=b,那么a±c= .<2>若a=b,那么ac=2.篮球联赛中,每场比赛都要分出胜负,每队胜一场得2分,负一场得1分。
某队为了争取较好名次,想在全部22场比赛中得到40分,那么这个队胜负场数应分别是多少?列出方程组思考:1、用代入消元法怎么解此方程组?2、观察y的系数,能否找出新的消元方法呢师生共同得出答案引出新知。
8.2.2加减消元法解二元一次方程组(1)吧
解二元一次方程组
制作者:傅相丹
类别:初一数学下册
① 解方程组: 3x 5 y 5 ② 3x 4 y 23 解:由①-②得: (3x 5 y) (3x 4 y) 5 23
3x 5 y 3x 4 y 18 y 2 即
将y=-2代入①,得: 3x 5 2 5
3 x 10 5
即
x5
总结:当二元一次方程组的两个方程中同一个未知数的系数 相等时,把这两个方程的两边分别相减,就能消去这个未知 数,得到一个一元一次方程。从而逐步代入求出方程组的解。
x 5 所以方程组的解是 y 2
解方程组:
解:由①+②得: 3x 7 y 4x 7 y 9 5
3x 5 y 5 (1) 3x 4 y 23
① ②
3x 7 y 9 (2) 4 x 7 y 5
①
②
分析:由①-②消去x 求出y的值 再代入方程求出x的值
由①+②消去y 求出x的值 再代入方程求出y的值
归纳小结:
当两个二元一次方程中同一个未知数的系数相等或相反时 把两个方程的两边分别相减或相加, 就能消去这个未知数,得到一个一元一次方程。 这种方法叫做加减消元法。
3x 7 y 4 x 7 y 9 5 7 x 14 x2
3x 7 y 9 4 x 7 y 5
①
②
将x=2代入①,得: 3 2 7 y 9
7y 3 3 x 2 y 7 所以方程组的解是 3
y 7
总结:当两个二元一次方程组的两个方程中同一个未知数的 系数相反时,把这两个方程的两边分别相加,就能消去这个 未知数,得到一个一元一次方程。从而逐步代入求出方程组
8.2.2 加减消元法
8.2.2 加减消元法------二元一次方程组的解法学习目标:1.会用加减消元法解二元一次方程组.2.尝试运用加减消元法解二元一次方程组,并借此体会消元思想.3.理解消元思想、敢于面对数学活动中的困难,积累独立解决问题的经验. 重点:运用加减消元法解二元一次方程组难点:选择适当的方法解二元一次方程组学习过程:一.复习导入用代入法解方程组{ EMBED Equation.DSMT4 |22 240 x yx yì+=ïïíï+=ïî分析:这个方程组的两个方程中,y的系数有什么关系?利用这种关系你能发现新的消元方法吗?这两个方程中未知数y的系数,②①可消去未知数y,得:x=把x=18代入①,得:y=思考:联系上面的解法,想一想怎么解方程组二.解决新知:归纳:两个二元一次方程中同一未知数的系数相反或时,把这两个方程的两边同时相加或,就能消去这个未知数,得到这个一元一次方程.这种方法叫做消元法,简称 .例1用加减法解方程组分析:这两个方程没有同一个未知数的系数相同或相反,直接加减这两个方程不能消元.试一试,能否对方程变形,使得这两个方程中某个未知数的系数相反或相同.解:①×,得:③②×,得:④③④,得:把x= 代入①,得:所以这个方程组的解是思考:本题如果用加减法消去x应如何解决?三.巩固练习:①②③④⑤⑥四.课后作业:1.方程组的解是()A. B. C. D.2.方程组的解是()A. B. C. D.3.已知x、y满足方程组,则x-y的值等于()A.-1B.m-1C.0D.14.若,则x+2y= .5.关于x、y的方程y=kx+b,当时,;当时,,则k= ,b= .6.若,则2x-3y= .7.运用加减法解下列方程组:①②。
人教版七年级数学下册复习说课稿:8.2.2用加减消元法解方程组
在新知讲授阶段,我将逐步呈现知识点,引导学生深入理解:
1.引入加减消元法:首先,通过具体的方程组实例,引导学生观察、思考,发现消元的原理。
2.演示步骤:利用PPT、板书等方式,逐步演示加减消元法的步骤,让学生清晰地了解整个解题过程。
3.解释原理:讲解加减消元法背后的数学原理,使学生知其然也知其所以然。
1.正确判断何时使用加法消元,何时使用减法消元。
2.理解并掌握加减消元法在实际问题中的应用。
3.培养学生总结、归纳解题方法的能力。
二、学情分析导
(一)学生特点
本节课面向的是七年级学生,他们正处于青春期初期,具有好奇、好动、求知欲强的特点。在认知水平上,他们已经具备了一定的逻辑思维能力,但抽象思维能力尚在发展之中。学习兴趣方面,学生对新鲜事物充满好奇,喜欢探索和实践,但对于复杂的数学问题可能会感到畏惧。在学习习惯上,部分学生可能还未养成良好的学习习惯,如课前预习、课后复习等,需要教师进行引导和培养。
4.适时给予学生表扬和鼓励,增强他们的自信心,培养积极向上的学习态度。
5.结合学生的兴趣,开展趣味数学活动,如解方程组竞赛等,提高学生的学习积极性。
三、教学方法与手段
(一)教学策略
在本节课中,我将采用以下教学方法:问题驱动的探究学习、分组合作学习和启发式教学。选择这些方法的理论依据如下:
1.问题驱动的探究学习:该方法能够激发学生的好奇心,引导学生主动探究新知识,培养其独立思考和解决问题的能力。
3.实践活动:布置一道实际生活中的问题,要求学生运用加减消元法求解,让学生在实际操作中感受数学的魅力。
(四)总结反馈
在总结反馈阶段,我将采取以下方式引导学生自我评价并提供有效的反馈和建议:
1.创设情境:以现实生活中的一组实际问题为例,如“小明和小红去超市购物,已知小明比小红多花了10元,两人一共花了150元,求小明和小红各花了多少钱。”让学生感受到数学知识在实际生活中的应用,激发学习兴趣。
8.2.2 二元一次方程组的解法-加减法
解得 【点睛】整体代入法(换元法)是数学中的重要方法之一,这种方法往
往能使运算更简便.
练一练
例6:2辆大卡车和5辆小卡车工作2小时可运送垃圾36吨,3辆大卡车和2辆 小卡车工作5小时可运输垃圾80 吨, 那么1辆大卡车和1辆小卡车每小时各运 多少吨垃圾?
解:设1辆大卡车和1辆小卡车每小时各运x吨和y吨垃圾.
讲解新知
怎样解下面的二元一次方程组呢? 3 x + 5 y = 21 ①
2 x – 5 y = -11 ②
5y和-5y互为相反数……
分析: ①+② (3x+5y)+ (2x-5y) = 21 + (-11)
①左边 + ② 左边 = ① 右边 + ②右边 3x+5y +2x - 5y=10 5x=10 x=2
3
将③代入②得 5 23 2 y 2 y 33
3
解得:y=4
把y=4代人③ ,得x=5 x=5
所以原方程组的解为: y=4
除代入消元, 还有其他方法吗?
讲解新知
3x+2y=23 ① 5x+2y=33 ②
y的系数相等
分析: ①-② (3x+2y) - (5x+2y) = 23 - 33 ①左边 - ② 左边 = ① 右边 - ②右边 3x+2y -5x - 2y=-10 -2x=-10 x=5
① ②
解: ②×4得: 4x-4y=16③
①+③得:7x = 35,
解得:x = 5.
把x = 5代入②得,y = 1.
所以原方程组的解为
知识小结
同一未知数的系数 不相等也不互为相反数 时,利用等式的性质,使得
《8.2.2加减消元法——解二元一次方程组》课堂实录课件
x
y
3 2
用加减法先 消去未知数y 该如何解? 解得的结果 与左面的解 相同吗?
巩 固 知 识 , 拓 展 提 高
1、已知方程组
4x y 3, 3x 2 y 2,
则
x y _____
2、已知 5x 4y 9 且 3x 8y 11
则2x 3y _____
总结: 系数 决定加减。
加减消元法:当二元一次方程组中同一未知数 的系数相反或相等时,把这两个方程的两边分 别 相加 或 相减 ,就能消去这个未知数,得到一
个一元一次方程。这种方法叫做加减消元法, 简称加减法。
知识应用,拓展升华
二:用加减法解二元一次方程组。
1
7x 9x
2y 2y
3 19
x=-1 y=-5
2
6x 6x
y 15 5y 3
x=-2 y=-3
练
三、指出下列方程组求解过程中 有错误步骤,并给予订正:
一 7x-4y=4 ①
3x-4y=14 ①
练(1) 5x-4y=-4
特点: 同一个未知数的系数相同或互为相反数
基本思路: 加减消元: 二元 一元
加减消元法的概念
当二元一次方程组的两个方程中同一个未知数的系数相反或相等 时,把这两个方程的两边分别相加或相减,就能消去这个未知数, 得到一个一元一次方程。这种方法叫做加减消元法,简称加减法。
解方程组
2x-5y=7 ①
分析:
②(2) 5x+4y=2
②
解:①-②,得
解 ①-②,得
2x=4-4,
-2x=12
x=0
x =-6
订正: 解: ①-②,得
第八章二元一次方程组课件8.2.2加减消元法解二元一次方程组
① ②
5x=10
x=2
把x=2代入①得: 3×2+5y=21
x 2 ∴原方程组的解是 y 3
y=3
练习:用加减消元法解方程组 ① 2 s 5 t 13 ② 3 s 5 t 7
用加减消元法解方程组
3x 2 y 0 4 x 2 y 2
解:由题意得:
∵
2x y 7 3x y 8 x3 y 1
∴
ax y b x by a ab 3 x3 ∴把 方程组得: y 1 3a b 1 a 1 解这个方程组得: b2
∵
例2. 用加减法解方程组:
分析:解方程组的方法就是消元,
加减消元法的前提条件是同一个 但是当同一个未知数的系数既不相
同也不互为相反数,怎么解呢?
未知数的系数必须相同或者互为相反数。
用短除法求两个数的最小公倍数。
我们把几个数公有的倍数叫做这几 个数的公倍数,其中最小的一个数叫
做这几个数的最小公倍数。
利用短除法,求下面各组数的最小公倍数。
12和18
3 12 18 2 2
分析:把含小数系数的二元一
次方程组化为整数系数方程组, 可以简化运算。
原方程组可化为
3 x 10 y 10 ① 2 x 5 y 190 ②
悟空顺风探妖踪,
千里只行四分钟。
归时四分行六百,
风速多少才称雄。
解:设悟空在静风中行走的速度为 x 里/分,风速为 y 里/分。
由题意得:
2 mn 3m 2 n 2n 5
解 : 根据同类项的定义, 有
台大收割机和2台小收割机工作5
小时收割小麦8公倾。 问:1台大收割机和1台小收割 机1小时分别收割小麦多少公倾? 分析:两种情况下的工作量
8.2.2 消元-解二元一次方程组(加减消元法)
B.6x=18 C.6x=5
D.x=18
三、用加减法解下列方程组 用加减法解下列方程组
3x + 2 y = 8 (1) 3x − 4 y = 2 ② x + 2 y = 9 ( 2) 3x − 2 y = −1 ②
例3:解方程组
当两个方程 中的同一未 阅读课本思考: 知数的系数 知数的系数 1、①×3的具体步骤是什么? 不相同且不 3(3x+ 4y) = 3× 16 ( ) × 互为相反数 则应将 时,则应将 9x+ 12y = 48 ③ 两个方程变 2、②×2的具体步骤是什么? 形,将某个 2(5x - 6y) = 2× 33 ( ) × 未知数的系 数变为相同 数变为相同 10x - 12y = 66 ④ 或互为相反 3、以上两个步骤的目的是什么? 数再进行加 使两方程未知项y 的系数互为相反数, 减消元。 使两方程未知项 的系数互为相反数, 减消元。 从而使用③ ④消去y. 从而使用③+④消去
次方程,这种方法叫做加减消元法 加减消元法,简称加减法 加减法。 加减消元法 加减法
方法解读: 方法解读:
利用加减消元法解方程组时,在方程组的两 利用加减消元法解方程组时 在方程组的两 加减消元法解方程组时 个方程中: 个方程中 (1)某个未知数的系数互为相反数,则可以直接 某个未知数的系数互为相反数 某个未知数的系数互为相反数, 把这两个方程中的两边分别相加, 把这两个方程中的两边分别相加, 消去这个未知数; 消去这个未知数 (2)如果某个未知数系数相等,则可以直接 如果某个未知数系数相等 如果某个未知数系数相等, 把这两个方程中的两边分别相减, 把这两个方程中的两边分别相减, 消去这个未知数。 消去这个未知数
《恒谦教育教学资源库》 恒谦教育教学资源库》
《8.2.2加减消元法——解二元一次方程组》说课稿
《8.2.2加减消元法---解二元一次方程组》说课稿尊敬的各位领导,各位老师:大家好!我今天说课的题目是《加减消元法---解二元一次方程组》,下面我将从以下五个板块展开说课,分别是说教材分析、说教法学法、说教学过程、说板书设计等五个板块进行说课。
一、说教材分析1、教材的地位和作用本课选自人民教育出版社中学数学七年级下册第八章第二节第二课时,本课是初中数学的重点内容之一,是一元一次方程知识的延续和提高,又是学习其他数学知识的基础。
本节课是在学生学习了代入法解二元一次方程组的基础上,继续学习另一种消元的方法---加减消元,它是学生系统学习二元一次方程组知识的前提和基础。
通过加减来达到消元的目的,让学生从中充分体会化未知为已知的转化过程,理解并掌握解二元一次方程组的最常用的基本方法,为以后函数等知识的学习打下基础。
2、教学目标通过对新课程标准的研究与学习,结合我校学生的实际情况,我把本节课的三维教学目标确定如下:(一)知识与技能目标:会用加减消元法解简单的二元一次方程组。
理解加减消元法的基本思想,体会化未知为已知的化归思想方法。
(二)过程与方法目标:通过经历加减消元法解方程组,让学生体会消元思想的应用,经过引导、讨论和交流让学生理解根据加减消元法解二元一次方程组的一般步骤。
(三)情感态度及价值观:通过交流、合作、讨论获取成功体验,感受加减消元法的应用价值,激发学生的学习兴趣,培养学生养成认真倾听他人发言的习惯和勇于克服困难的意志。
3、教学重点、难点:由于七年级的学生年龄较小,在学习解二元一次方程组的过程中容易进行简单的模仿,往往不注意方程组解法的形成过程更无法真正理解消元的思想方法。
而大家都知道,数学的思想与方法才是数学的精髓,是联系各类数学知识的纽带,所以我将本节课的重点和难点确定如下:重点:用加减法解二元一次方程组。
难点:灵活运用加减消元法的技巧,把“二元”转化为“一元”二、说教法结合七年级学生的年龄特征和认知特点,这一阶段的学生有极强的求知欲,在教学中我主要评价激励法,对学三、说学法本节课的教学我始终把学生作为学习的主人,不断激发他们的学习兴趣,引导学生在自主探究、合作交流、小组竞赛相结合的学习方式下获得成功的体验,并相应的进行小组加分和个人加分,以增加学生的学习兴趣。
8.2.2 解二元一次方程组 加减消元法
6x+y=-15 ②
解: ①+ ② 得 16x= -16 x= -1
把x= -1代入①中得 , 7×(-1)-2y =3 y= -5
∴ x = -1
解: ② - ① 得 6y= -18
y= -3 把y= -3代入①得, 6x -5×(-3)=3
x= -2 ∴ x = -2
y = -5
y = -3
当x与y 的系数的绝对值不相等时 该怎么 用加减法解方程组
解:根据题意:得
3x=8-y
转化为
3x+y=8
2x-y=7
2x-y=7
x=3 ∴
y=-1
即xy=-3
(3)已知(3m+2n-16)2 与 |3m-n-1| 互为相反数 求:m+n 的值 解:根据题意:得 3m+2n-16=0
3m – n - 1=0 m=2
解得: n=5
即:m+n =7
例4的教学
0.8x 0.( 6 1.5 2x)1.3 x 1
x 1,
y
3.5
是原方程组的解.
灵活运用
x 2y 3, ① 3x 2y 5.②
解:选择加减法, ①+②得
4x 8 x2
代入①,得
y1 2
xy
2, 1 2
是原方程组的解.
a+2b=8
3、已知a、b满足方程组
则a+b= 5
2a+b=7
知识拓展:
1、 3x2a+b+2 +5y3a-b+1=8
是关于x、y的二元一次方程 求a、b
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
④
4s+3t=5 (1)
s=-1
2s-t=-5
t=3
5x-6y=9 (2) 7x-4y=-5
x=-3
y=-4
x+y=8m 1、若方程组 的解满足 x-y=2m 2x-5y=-1,则m 为多少?
X=5m,Y=3m,10m-15m=-1,m=1/5
2
2、若(3x+2y-5) +|5x+3y-8|=0
9x+2y=-19 6x-5y=3
y=-5
x=-2 y=-3
⑵
6x+y=-15
例3:
3 x 4 y 16 5 x 6 y 33
x 6 y 1 / 2
问题1.这两个方程直接相加减能 消去未知数吗?为什么?
问题2.那么怎样使方程组中某一 未知数系数的绝对值相等呢?
将y=-2代入①,得: 3x 5 2 5
3x 5 y 3x 4 y 18 9 y 18 y 2 即
3x 10 5 3x 5 10 3x 15
即
x 5 所以方程组的解是 y 2
x5
3 x 7 y 9 例2:解方程组: 4 x 7 y 5
①左边
②左边
= ①右边 ②右边
左边与左边相减所得到的代数式和右边与右边 相减所得到的代数式有什么关系?
解方程组: 3 x 5 y 5
3 x 4 y 23
① ②
分析:
①左边
②左边 = ①右边 ②右边
3x 5 y 3x 4 y = 5 23
解:由①+②得: 3x 7 y 4 x 7 y 9 5
7 x 14 x2
将x=2代入①,得: 3 2 7 y 9
6 7y 9 7y 9 6 7y 3 3 y 7
x 2 3 y 7
所以方程组的解是
1:总结:当两个二元一次方程中 同一个未知数的系数相反或相等 时,把两个方程的两边分别相加 或相减,就能消去这个未知数, 得到一个一元一次方程。这种方 法叫做加减消元法,简称加减法。
mx + n = 5 的解是 x = 1 1、已知方程组 y = 2 my - n = 1
A组
,则
2 m=____________,n=________________ 3
2、已知X,Y满足方程组 -2x + 5y = 9
是( C ) A、11:9
-2x + 7y = 17
1、解二元一次方程组的基本思路是什么? 消元: 二元 一元 2、用代入法解方程的步骤是什么?
基本思路:
主要步骤: 用含有一个未知数的代数式 表示另一个未知数,写成 1、变形
y=ax+b或x=ay+b
2、代入 3、求解 4、写解
把变形后的方程代入到另一个方程中, 消去一个元 分别求出两个未知数的值 写出方程组的解
本例题可以用加减消元法来做吗?
例4:
2x 4 y 2 3 x 5 y 1
上述哪种解法更好呢?
x 7 y 4
通过对比,总结出应选择方程组 中同一未知数系数绝对值的最小 公倍数较小的未知数消元.
加减法归纳:
用加减法解同一个未知数的系数绝 对值不相等,且不成整数倍的二元一 次方程组时,把一个(或两个)方程 的两边乘以适当的数,使两个方程中 某一未知数的系数绝对值相等,从而 化为第一类型方程组求解.
3x 5 y 3x 4 y 18 9 y 18 y 2
将y=-2代入①,得 3x 5 ቤተ መጻሕፍቲ ባይዱ 2 5
x5
解方程组: 3 x 5 y 5
3 x 4 y 23
① ②
解:由①-②得: (3x 5 y) (3x 4 y) 5 23
同减异加
一.填空题:
x+3y=17 1.已知方程组 2x-3y=6 两个方程
练 习
分别相加 就可以消去未知数 y 只要两边 25x-7y=16 两个方程 2.已知方程组 25x+6y=10 只要两边 分别相减 就可以消去未知数 x
做一做
二:用加减法解二元一次方程组。 7x-2y=3 ⑴ x=-1
8.2.2解二元一次方程组—加减法
花园镇中数学组
1、根据等式性质填空: <1>若a=b,那么a±c= b±c . (等式性质1) 思考:若a=b,c=d,那么a+c=b+d吗? <2>若a=b,那么ac= bc .(等式性质2) 2、用代入法解方程的关键是什么? 消元 二元 一元 转化 3、解二元一次方程组的基本思路是什么? 消元: 二元 一元
求x +y-1的值。
3x+2y-5=0,5x+3y-8=0得x=1,y=1所以x2+y-1=1
2
你能把我们今天内容小结一下吗? 1、 本节课我们知道了用加减消元法解 二元一次方程组的基本思路仍是“消 元”。主要步骤是:通过两式相加(减) 消去其中一个未知数。
2、 把求出的解代入原方程组,可以检 验解题过程是否正确。
C、11:8
,则x:y的值
B、12:7
D、-11:8
B组
3(x + 2) + (y - 1) = 4 • 解方程组 3(x + 2) + (1 - y) = 2
{
2u/3+3v/4=1/2 4u/5+5v/6=7/15
1、下列方程组求解过程对吗?若 有错误,请给予改正:
7x 4 y 4 (1) 5 x 4 y 4
用什么方法可以消去一 个未知数?先消去哪一个 比较方便?
分析:可以发现7y与-7y互为 相反数,若把两个方程的左 边与左边相加,右边与右边相 加,就可以消去未知数y
解方程组:
3 x 7 y 9 4 x 7 y 5
3x 7 y 4 x 7 y 9 5
① ②
① ②
解:①一②,得:2x=4-4 x=0
(2)
3 x 4 y 14 5x 4 y 2
①
②
解:①一②,得:-2x=12 x=-6
(3)
3 x 4 y 16 5 x 6 y 33
③
解:①×3,得:9x+12y=16
②×2,得:5x-12y=66
③十④,得:14x= 82, x=41/7
例1:解方程组
3 x 5 y 5 3 x 4 y 23
还有其他的方法吗?
解方程组: 3 x 5 y 5
3 x 4 y 23
① ②
如果把这两个方程的左边与左边相减,右边与右边相减, 能得到什么结果?
分析:
3x 5 y 3x 4 y = 5 23