中考数学综合训练(三)
人教版中考数学培优练习:第3章 微专题 利用二次函数性质求最值 综合训练
第三章函数微专题利用二次函数性质求最值1.某农场要建一个饲养场(矩形ABCD),饲养场的两面靠墙(墙足够长),另两边用木栏围成,中间也用木栏隔开,分成两个形状相同的场地及一处通道,并在如图所示的三处各留1米宽的门(不用木栏).建成后木栏总长45米.设饲养场(矩形ABCD)的一边(AB)长为x米,饲养场的占地面积为y平方米.(1)求y关于x的函数关系式及自变量x的取值范围;(2)求y的最大值.第1题图2.如图,在△ABC中,∠C=90°,AB=10 cm,BC=8 cm,点P从点A沿AC向点C以1 cm/s的速度运动,同时点Q从点C沿CB向点B以2 cm/s的速度运动(点Q运动到点B停止),在运动过程中,四边形PABQ的面积最小值为多少?第2题图3.某商场以每件30元的价格购进一种商品,试销中发现这种商品每天的销售量m(件)与每件的销售价x(元)满足一次函数关系m=162-3x.(1)请写出商场卖这种商品每天的销售利润y(元)与每件销售价x(元)之间的函数关系式;(2)商场每天销售这种商品的销售利润能否达到500元?如果能,求出此时的销售价格;如果不能,说明理由.4.(2019天水)天水某景区商店销售一种纪念品,这种商品的成本价10元/件,已知销售价不低于成本价,且物价部门规定这种商品的销售价不高于16元/件,市场调查发现,该商品每天的销售量y(件)与销售价x(元/件)之间的函数关系如图所示.(1)求y与x之间的函数关系式,并写出自变量x的取值范围;(2)求每天的销售利润W(元)与销售价x(元/件)之间的函数关系式,并求出每件销售价为多少元时,每天的销售利润最大?最大利润是多少?第4题图5.某市为了增加市民的幸福感,计划在人民公园修建一个圆形喷水池,如图,在水池中心竖直安装一根水管OA,O恰好在水面的中心,OA=3米,在水管的顶端安装一个水龙头,使喷出的抛物线形水柱与水池中心的水平距离为1米时达到最高,高度为4米.(1)求抛物线的解析式;(2)当水池的半径为多少时,才能使喷出的水流不流出池外;(3)若在距离水管OA 2.8米处设立一个警示牌,并使其不碰到水柱,则警示牌的高度应不超过多少米?第5题图参考答案综合训练1.解:(1)由题意知AB=x米,则EH、FG所用围栏长均为(x-1)米,CD=x米,BC=45-(x+x-1+x-1)+1=48-3x(米),∴饲养场的占地面积y=x(48-3x)=-3x2+48x(1<x<473);(2)∵y=-3x2+48x=-3(x-8)2+192,-3<0,∴当x=8时,y取得最大值,最大值为192平方米.2.解:在Rt△ABC中,∠C=90°,AB=10 cm,BC=8 cm, ∴AC=AB2-BC2=6 cm.设运动时间为t(0≤t≤4),则PC=(6-t)cm,CQ=2t cm, ∴S四边形PABQ=S△ABC-S△CPQ=12AC·BC-12PC·CQ=12×6×8-12(6-t)×2t=t2-6t+24=(t-3)2+15,∵1>0,∴当t=3时,四边形PABQ的面积取得最小值,最小值为15 cm2.3.解:(1)由题意得,每件商品的销售利润为(x-30)元,那么m件商品的销售利润为y=m(x-30), 又∵m=162-3x,∴y=(x-30)(162-3x),即y=-3x2+252x-4860,∵x-30≥0,∴x≥30.又∵m≥0,∴162-3x≥0,即x≤54.∴30≤x≤54.∴y与x之间的函数关系式为y=-3x2+252x-4860(30≤x≤54);(2)不能.理由如下:由(1)得y =-3x 2+252x -4860=-3(x -42)2+432,∴销售价格定为42元时获得的利润最大,最大销售利润是432元.∵500>432,∴商场每天销售这种商品的销售利润不能达到500元.4.解:(1)设y 与x 的函数关系式为y =kx +b(k ≠0),代入点(10,30),(16,24),得⎩⎪⎨⎪⎧10k +b =3016k +b =24, 解得⎩⎪⎨⎪⎧k =-1b =40, ∴y 与x 之间的函数关系式为y =-x +40(10≤x ≤16);(2)根据题意得,W =(x -10)(-x +40)=-x 2+50x -400=-(x -25)2+225,∵-1<0,∴当x<25时,W 随x 的增大而增大,∵10≤x ≤16,∴当x =16时,W 取得最大值,最大值是-(16-25)2+225=144元.答:每件销售价为16元时,每天的销售利润最大,最大利润是144元.5.解:(1)由题可知,抛物线的顶点坐标为(1,4),故可设抛物线的解析式为y =a(x -1)2+4, 将点A(0,3)代入解析式得3=a +4,解得a =-1,∴抛物线的解析式为y =-(x -1)2+4=-x 2+2x +3;(2)当y =0时,0=-(x -1)2+4,解得x 1=-1(舍),x 2=3.故水池的半径至少为3米时,才能使喷出的水流不流出池外;(3)当x =2.8时,y =-(2.8-1)2+4=0.76,∴警示牌的高度应不超过0.76米.。
2014年中考数学-二次函数与几何综合性学习训练三
第三讲:二次函数与几何综合性学习训练一、典例解析例题1.如图,抛物线c bx x y ++-=2与x 轴交与A(1,0),B(-3,0)两点,顶点为D 。
交Y 轴于C (1)求该抛物线的解析式与△ABC 的面积。
(2).在抛物线第二象限图象上是否存在一点M ,使△MBC 是以∠BCM 为直角的直角三角形,若存在,求出点P 的坐标。
若没有,请说明理由(3) .若E 为抛物线B 、C 两点间图象上的一个动点(不与B 、C 重合),过E 作EF 与X 轴垂直,交BC 于F ,设E 点横坐标为x. EF 的长度为L ,求L 关于X 的函数关系式?关写出X 的取值范围? 当E 点运动到什么位置时,线段EF 的值最大,并求此时E 点的坐标?(4). 在(3)的情况下直线BC 与抛物线的对称轴交于点H 。
当E 点运动到什么位置时,以点E 、F 、H 、D 为顶点的四边形为平行四边形?(5).在(4)的情况下点E 运动到什么位置时,使三角形BCE 的面积最大?(6).若圆P 过点ABD 。
求圆心P 的坐标?1.如图①,已知抛物线y=ax2+bx+3(a≠0)与x轴交于点A(1,0)和点B(-3,0),与y轴交于点C.(1)求抛物线的解析式;(2)设抛物线的对称轴与x轴交于点M,问在对称轴上是否存在点P,使△CMP为等腰三角形?若存在,请直接写出所有符合条件的点P的坐标;若不存在,请说明理由;(3)如图②,若点E为第二象限抛物线上一动点,连接BE、CE,求四边形BOCE面积的最大值,并求此时E点的坐标.例题2.如图,已知抛物线y=x2+4x+3交x轴于A、B两点,交y轴于点C,•抛物线的对称轴交x轴于点E,点B的坐标为(-1,0).(1)求抛物线的对称轴及点A的坐标;(2)在平面直角坐标系xOy中是否存在点P,与A、B、C三点构成一个平行四边形?若存在,请写出点P的坐标;若不存在,请说明理由;(3)连结CA与抛物线的对称轴交于点D,在抛物线上是否存在点M,使得直线CM把四边形DEOC分成面积相等的两部分?若存在,请求出直线CM的解析式;若不存在,请说明理由.2.在平面直角坐标系中,现将一块等腰直角三角板ABC放在第二象限,斜靠在两坐标轴上,且点A(0,2),点C(-1,0),如图所示;抛物线y=ax2+ax-2经过点B.(1)求点B的坐标;(2)求抛物线的解析式;(3)在抛物线上是否还存在点P(点B除外),使△ACP仍然是以AC为直角边的等腰直角三角形?若存在,求所有点P的坐标;若不存在,请说明理由.例题3.二、课后巩固1.如图,已知抛物线y=ax2+bx+c与x轴交于A、B两点,与y轴交于点C.其中点A在x轴的负半轴上,点C在y轴的负半轴上,线段OA、OC的长(OA<OC)是方程x2-5x+4=0的两个根,且抛物线的对称轴是直线x=1.(1)求A、B、C三点的坐标;(2)求此抛物线的解析式;(3)若点D是线段AB上的一个动点(与点A、B不重合),过点D作DE∥BC交AC于点E,连结CD,设BD的长为m,△CDE的面积为S,求S与m的函数关系式,并写出自变量m的取值范围.S是否存在最大值?若存在,求出最大值并求此时D点坐标;若不存在,请说明理由.2.已知,如图,抛物线y=ax2+3ax+c(a>0)与y轴交于C点,与x轴交于A、B两点,A点在B点左侧,点B的坐标为(1,0),OC=3OB.(1)求抛物线的解析式;(2)若点D是线段AC下方抛物线上的动点,求四边形ABCD面积的最大值;(3)若点E在x轴上,点P在抛物线上,是否存在以A、C、E、P为顶点且以AC为一边的平行四边形?若存在,求点P的坐标;若不存在,请说明理由.。
2021年中考数学 一轮专题训练:菱形性质与判定综合(三)
2021年中考数学一轮专题训练:菱形性质与判定综合(三)1.如图,点O是菱形ABCD对角线的交点,CE∥BD,EB∥AC,连接OE.(1)求证:OE=CB;(2)如果OC:OB=1:2,CD=,求菱形的面积.2.在菱形ABCD中,点O是对角线的交点,E点是边CD的中点,点F在BC延长线上,且CF=BC.(1)求证:四边形OCEF是平行四边形;(2)连接DF,如果DF⊥CF,请你写出图中所有的等边三角形.3.已知四边形ABCD是边长为2的菱形,∠BAD=60°,对角线AC与BD交于点O,过点O的直线EF交AD于点E,交BC于点F.(1)求证:△AOE≌△COF;(2)若∠EOD=30°,求CE的长.4.如图,菱形ABCD的对角线AC、BD相交于点O,过点D作DE∥AC且DE=OC,连接CE、OE,连接AE交OD于点F.(1)求证:OE=CD;(2)若菱形ABCD的边长为4,∠ABC=60°,求AE的长.5.如图,在菱形ABCD中,E,F分别是AB和CD的中点,连接AF,CE.(1)求证:AF=CE;(2)试确定,当菱形ABCD再满足一个什么条件时,四边形AECF为矩形?请说明理由.6.如图所示,在菱形ABCD中,AE⊥BC,E为垂足,且BE=CE,AB=2,求:(1)∠BAD的度数;(2)对角线AC的长及菱形ABCD的周长.7.如图,在菱形ABCD中,G是BD上一点,连接CG并延长交BA的延长线于点F,交AD于点E.(1)求证:△ADG≌△CDG;(2)若=,EG=4,求AG的长.8.已知:如图,在△ABC中,AB=AC,M是BC的中点,MD⊥AB,ME⊥AC,DF⊥AC,EG⊥AB,垂足分别为点D、E、F、G,DF、EG相交于点P.判断四边形MDPE的形状,并说明理由.9.如图,AE∥BF,AC平分∠BAE,且交BF于点C,BD平分∠ABF,且交AE于点D,AC 与BD相交于点O,连接CD.(1)求∠AOD的度数;(2)求证:四边形ABCD是菱形.10.如图,已知BD是△ABC的角平分线,DE∥AB交BC于E,EF∥AC交AB于F.(1)求证:BE=AF;(2)连接DF,试探究当△ABC满足什么条件时,使得四边形BEDF是菱形,并说明理由.参考答案1.(1)证明:∵四边形ABCD是菱形,∴AC⊥BD.∵CE∥BD,EB∥AC,∴四边形OCEB是平行四边形,∴四边形OCEB是矩形,∴OE=CB;(2)∵四边形ABCD是菱形,∴BC=CD=,由(1)知,AC⊥BD,OC:OB=1:2,∴在Rt△BOC中,由勾股定理得BC2=OC2+OB2,∴CO=1,OB=2.∵四边形ABCD是菱形,∴AC=2,BD=4,∴菱形ABCD的面积=BD•AC=4;2.(1)证明:∵四边形ABCD是菱形,∴BO=DO,∵E点是边CD的中点,∴OE是△BDC的中位线,∴OE∥BC且OE=BC,∵CF=BC,∴OE=CF,∵OE∥CF,∴四边形OCFE是平行四边形;(2)解:∵DF⊥CF,E点是边CD的中点,∴EF=,∵CE=,CF==CD,∴△ECF为等边三角形;∵四边形OCFE是平行四边形,∴OC=EF=CE=CF=OE,∴△OCE为等边三角形;∵△ECF为等边三角形,∴∠ECF=60°,∴∠ABC=60°,∵四边形ABCD是菱形,∴△ABC为等边三角形;同理得△ADC为等边三角形;∴图中的等边三角形有:△OCE,△ECF,△ABC,△ADC3.(1)证明:∵四边形ABCD是菱形,∴AO=CO,AD∥BC,∴∠OAE=∠OCF,在△AOE和△COF中,,∴△AOE≌△COF(ASA);(2)解:∵∠BAD=60°,∴∠DAO=∠BAD=×60°=30°,∵∠EOD=30°,∴∠AOE=90°﹣30°=60°,∴∠AEF=180°﹣∠DAO﹣∠AOE=180°﹣30°﹣60°=90°,∵菱形的边长为2,∠DAO=30°,∴OD=AD=×2=1,∴AO===,∴AE=CF=×=,∵菱形的边长为2,∠BAD=60°,∴高EF=2×=,在Rt△CEF中,CE===.4.(1)证明:∵DE=OC,DE∥AC,∴四边形OCED是平行四边形,∵四边形ABCD是菱形,∴AC⊥BD,∴∠COD=90°,∴平行四边形OCED是矩形.∴OE=CD.(2)解:在菱形ABCD中,∠ABC=60°,∴AC=AB=4,∴在矩形OCED中,CE=OD==2,∴在△ACE中,AE==2.5.(1)证明:∵四边形ABCD是菱形,∴AB=CD,AB∥CD.∵E、F分别是AB、CD的中点,∴AE=AB,CF=CD,∴AE=CF.又∵AE∥CF,∴四边形AECF是平行四边形.∴AF=CE;(2)菱形ABCD的内角∠B=60°时,则四边形AECF为矩形,理由如下:连接AC,∵AB=BC,∴△ABC是等边三角形,∵AE=BE,∴CE⊥AB,∴∠AEC=90°,∴四边形AECF为矩形.6.解:(1)∵在菱形ABCD中,AB=BC,∵AE⊥BC,E为垂足,且BE=CE,∴△ABC等腰三角形,∴AB=AC,∴△ABC为等边三角形,∴∠BAD=2∠BAC=120°;(2)∵AB=2,AB=AC∴AC=AB=2,菱形ABCD的周长=4AB=8.7.解:(1)∵四边形ABCD是菱形,∴AB∥CD,AD=CD,∠ADB=∠CDB,∴∠F=∠FCD,在△ADG与△CDG中,,∴△ADG≌△CDG,∴∠EAG=∠DCG,∴AG=CG;(2)∵=,AD∥BC,∴BC=3AE,∴ED:BC=2:3,∴EG:CG=2:3,∵EG=4,∴CG=6,∵△ADG≌△CDG,∴AG=6.8.证明:四边形MDPE为菱形,理由:连接AM.∵ME⊥AC,DF⊥AC,∴ME∥DF,∵MD⊥AB,EG⊥AB,∴MD∥EG,∴四边形MDPE是平行四边形;∵AB=AC,M是BC的中点,∴AM是角平分线,∴MD=ME,∴四边形MDPE为菱形.9.(1)解:∵AC、BD分别是∠BAD、∠ABC的平分线,∴∠DAC=∠BAC,∠ABD=∠DBC,∵AE∥BF,∴∠DAB+∠CBA,=180°,∴∠BAC+∠ABD=(∠DAB+∠ABC)=×180°=90°,∴∠AOD=90°;(2)证明:∵AE∥BF,∴∠ADB=∠DBC,∠DAC=∠BCA,∵AC、BD分别是∠BAD、∠ABC的平分线,∴∠DAC=∠BAC,∠ABD=∠DBC,∴∠BAC=∠ACB,∠ABD=∠ADB,∴AB=BC,AB=AD∴AD=BC,∵AD∥BC,∴四边形ABCD是平行四边形,∵AD=AB,∴四边形ABCD是菱形.10.(1)证明:∵BD是△ABC的角平分线,∴∠ABD=∠DBC,∵DE∥AB,∴∠ABD=∠DBE,∴∠BDE=∠DBE,∴BE=DE,∵EF∥AC,∴四边形ADEF是平行四边形,∴AF=DE,∴AF=BE;(2)解:当AB=BC时,四边形BEDF是菱形,理由如下:∵AB=BC,∴∠A=∠C,∵EF∥AC,∴∠A=∠BFE,∠C=∠BFE,∴∠BFE=∠BFE,∴BF=BE,∵DE=BE,∴BF=DE,∵DE∥AB,∴四边形BEDF是菱形.。
2021中考数学复习圆的综合题专项训练3(填空题 附答案详解)
1.如图,在平面直角坐标系中,等边 的边 在 轴正半轴上,点 , ,点 、 分别从 、 出发以相同的速度向 、 运动,连接 、 交于点 , 是 轴上一点,则 的最小值为______.
2.如图,PT是⊙O的切线,T为切点,PA是割线,交⊙O于A、B两点,与直径CT交于点D.已知CD=2,AD=3,BD=4,那PB=___________.
14.如图,AB是⊙O的一条弦,点C是⊙O上一动点,且∠ACB=30°,点E、F分别是AC、BC的中点,直线EF与⊙O交于G、H两点,若⊙O的半径为7,则GE+FH的最大值为.
15.如图,⊙ 上三点 , , ,半径 , ,⊙ 的切线 交 延长线于点 ,从现图中选取一条以P为端点的线段,此线段的长为_____.(注明选取的线段)
∴点F是经过点A,B,F的圆上的点,记圆心为O’,在圆O’上取一点N,使
点N和点F在弦AB的两侧,连接AN,BN,
∴∠ANB=180°-∠AFB=60°,
连接O’A,O’B,
∴∠AO’B=2∠ANB=120°,
∵O’A=O’B,
∴∠ABO’=∠BAO’,
∴∠ABO’= (180°-∠AO’B)= (180°-120°)=30°,
30.在 中, , , ,圆 在 内自由移动.若 的半径为1,则圆心 在 内所能到达的区域的面积为______.
参考答案
1.
【解析】
【分析】
先证明 ,即可得出∠AFB=120°,即可判断出点F的轨迹是以O’为圆心的圆上的一段弧(劣弧AB),然后确定出圆心O’的位置及其坐标,即可确定点M和点F的位置,使FM的长度最小.
25.如图,⊙P的半径为10,A、B是圆上任意两点,且AB=12,以AB为边作正方形ABCD(点D、P在直线AB两侧),若AB边绕点P旋转一周,则CD边扫过的面积为_____
2013年中考数学三轮复习每天30分综合训练(03)
2013年中考数学三轮复习每天30分综合训练(03)一、填空题(共10小题,每小题3分,满分30分)1.(3分)(钦州)6的相反数是_________.2.(3分)(梧州)比较大小:﹣3_________﹣4(用“>”“=”或“<”表示).3.(3分)(梧州)一组数据为:1,2,3,4,5,6,则这组数据的中位数是_________.4.(3分)因式分解:2y2﹣18=_________.5.(3分)(梧州)如图,△ABC中,∠A=60°,∠C=40°,延长CB到D,则∠ABD=_________度.6.(3分)(梧州)将点A(1,﹣3)向右平移2个单位,再向下平移2个单位后得到点B (a,b),则ab=_________.7.(3分)(梧州)某蔬菜基地的圆弧形蔬菜大棚的剖面如图所示,已知AB=16m,半径OA=10m,则中间柱CD的高度为_________m.8.(3分)(梧州)在△ABC中,∠C=90°,BC=6cm,sinA=,则AB的长是_________cm.9.(3分)(梧州)一个扇形所在圆的半径为3cm,扇形的圆心角为120°,则扇形的面积是_________cm2.(结果保留π)10.(3分)(梧州)如图是用火柴棍摆成的边长分别是1,2,3根火柴棍时的正方形.当边长为n根火柴棍时,设摆出的正方形所用的火柴棍的根数为s,则s=_________.(用n的代数式表示s)二、选择题(共8小题,每小题4分,满分32分)11.(4分)(遵义)函数y=中自变量的取值范围是()A.x≠0B.x≠2C.x≠﹣2 D.x=212.(4分)(梧州)下列运算正确的是()A.a2•a3=a6B.a2+a2=a4C.(﹣a2)3=﹣a6 D.a3÷a=a13.(4分)(梧州)一个布袋中有4个除颜色外其余都相同的小球,其中3个白球,1个红球.从袋中任意摸出1个球是白球的概率是()A.B.C.D.14.(4分)不等式组的解集在数轴上表示为()A.B.C.D.15.(4分)(梧州)下列轴对称图形中,对称轴的条数最少的图形是()A.圆B.正六边形C.正方形D.等边三角形16.(4分)(梧州)在一个仓库里堆放有若干个相同的正方体货箱,仓库管理员将这堆货箱的三视图画出来,如图,则这堆货箱共有()A.6个B.5个C.4个D.3个17.(4分)(梧州)已知点A(x1,y1),B(x2,y2)是反比例函数y=(k>0)图象上的两点,若x1<0<x2,则有()A.y1<0<y2B.y2<0<y1C.y1<y2<0 D.y2<y1<018.(4分)(梧州)如图,正方形ABCD中,E为AB的中点,AF⊥DE于点O,则等于()A.B.C.D.三、解答题(共4小题,满分38分)19.(9分)(梧州)计算:﹣2sin60°.20.(9分)(梧州)解方程:(x﹣3)2+2x(x﹣3)=021.(9分)(梧州)为了解全市太阳能热水器的销售情况,某调查公司对人口为100万人的某县进行调查,对调查所得的数据整理后绘制成如图所示的统计图.请据图解答下列问题:(1)2008年该县销售中档太阳能热水器_________台.(2)若2007年销售太阳能热水器的台数是2005年的1.5倍,请补全图(6)﹣2的条形图.(3)若该县所在市的总人口约为500万人,估计2008年全市销售多少台高档太阳能热水器.22.(11分)(梧州)某工厂要招聘甲、乙两种工种的工人150人,甲、乙两种工种的工人的月工资分别为600元和1000元.(1)设招聘甲种工种工人x人,工厂付给甲、乙两种工种的工人工资共y元,写出y(元)与x(人)的函数关系式;(2)现要求招聘的乙种工种的人数不少于甲种工种人数的2倍,问甲、乙两种工种各招聘多少人时,可使得每月所付的工资最少?。
2023年九年级中考数学专项训练——二次函数与一次函数的综合运用
2023年中考数学专项训练——二次函数与一次函数的综合运用一、综合题1.已知:二次函数y =ax 2+bx+12(a >0,b <0)的图象与x 轴只有一个公共点A . (1)当a =12时,求点A 的坐标; (2)求A 点的坐标(只含b 的代数式来表示);(3)过点A 的直线y =x+k 与二次函数的图象相交于另一点B ,当b≥﹣1时,求点B 的横坐标m 的取值范围.2.已知二次函数图象的顶点在原点 O ,对称轴为 y 轴.直线 1:l y kx b =+ 的图象与二次函数的图象交于点 (3,2)A - 和点 3(,)2B m (点 A 在点 B 的左侧)(1)求 m 的值及直线 1l 解析式;(2)若过点 (0,)P n 的直线 2l 平行于直线 1l 且直线 2l 与二次函数图象只有一个交点 Q ,求交点Q 的坐标.3.如图,已知抛物线 212y x bx =+ 与直线 2y x = 交于点O (0,0),A (a ,12),点B 是抛物线上O 、A 之间的一个动点,过点B 分别作x 轴和y 轴的平行线与直线OA 交于点C 、E ,(1)求抛物线的函数解析式;(2)若点C 为OA 的中点,求BC 的长;(3)以BC 、BE 为边构造矩形BCDE ,设点D 的坐标为(m ,n ),求出m 、n 之间的关系式.4.已知,直线 23y x =-+ 与抛物线 2y ax = 相交于 A 、 B 两点,且 A 的坐标是 (3,)m -(1)求 a , m 的值;(2)抛物线的表达式及其对称轴和顶点坐标.5.已知抛物线的解析式为 ()2221.y x m x m m =--+-(1)求证:此抛物线与x 轴必有两个不同的交点;(2)若此抛物线与直线 34y x m =-+ 的一个交点在y 轴上,求m 的值.6.如图,二次函数的图象与x 轴交于A (-3,0)和B (1,0)两点,交y 轴于点C (0,3),点C 、D 是二次函数图象上的一对对称点,一次函数的图象过点B 、D.(1)求点D 坐标及二次函数的解析式;(2)根据图象直接写出使一次函数值大于二次函数值的x 的取值范围.7.如图,已知抛物线y=ax 2+bx+c (a≠0)经过点A (3,0),B (﹣1,0),C (0,﹣3).(1)求该抛物线的解析式;(2)若以点A 为圆心的圆与直线BC 相切于点M ,求切点M 的坐标;(3)若点Q 在x 轴上,点P 在抛物线上,是否存在以点B ,C ,Q ,P 为顶点的四边形是平行四边形?若存在,求点P 的坐标;若不存在,请说明理由.8.抛物线y=﹣23 x 2+ 73x ﹣1与x 轴交于点A ,B (点A 在点B 的左侧),与y 轴交于点C ,其顶点为D .将抛物线位于直线l :y=t (t < 2524)上方的部分沿直线l向下翻折,抛物线剩余部分与翻折后所得图形组成一个“M”形的新图象.(1)点A ,B ,D 的坐标分别为 , , ; (2)如图①,抛物线翻折后,点D 落在点E 处.当点E 在△ABC 内(含边界)时,求t 的取值范围; (3)如图②,当t=0时,若Q 是“M”形新图象上一动点,是否存在以CQ 为直径的圆与x 轴相切于点P ?若存在,求出点P 的坐标;若不存在,请说明理由.9.如图,已知抛物线与 x 轴交于 (1,0)A - 、 (3,0)B 两点,与 y 轴交于点 (0,3)C .(1)求抛物线的解析式;(2)点 D 是第一象限内抛物线上的一个动点(与点 C 、 B 不重合),过点 D 作 DF x ⊥ 轴于点F ,交直线 BC 于点 E ,连接 BD 、 CD .设点 D 的横坐标为 m , BCD 的面积为 S .求 S关于 m 的函数解析式及自变量 m 的取值范围,并求出 S 的最大值; (3)已知 M 为抛物线对称轴上一动点,若MBC 是以 BC 为直角边的直角三角形,请直接写出点M 的坐标.10.如图,直线 12y kx =+ 与 x 轴交于点 ( 0)A m , ( 4m > ),与 y 轴交于点 B ,抛物线 224y ax ax c =-+ ( 0a < )经过 A , B 两点, P 为线段 AB 上一点,过点 P 作 //PQ y 轴交抛物线于点 Q .(1)当 5m = 时, ①求抛物线的关系式;②设点 P 的横坐标为 x ,用含 x 的代数式表示 PQ 的长,并求当 x 为何值时, 85PQ =? (2)若 PQ 长的最大值为16,试讨论关于 x 的一元二次方程 24ax ax kx h --= 的解的个数与 h 的取值范围的关系.11.如图,抛物线y=ax 2+bx 经过点A(7,0),B(-1,4),经过点B 的直线与抛物线的另一个交点C 在第四象限.已知△ABC 的面积为14.(1)求抛物线的函数关系式; (2)求点C 的坐标#(3)设P 是线段BC 延长线上的点,作直线PD△x 轴,交抛物线于点D 、E(点D 在点E 的左侧).若DE=PE ,求点P 的横坐标.12.如图,若b 是正数,直线l :y=b 与y 轴交于点A ;直线a :y=x ﹣b 与y 轴交于点B ;抛物线L :y=﹣x 2+bx 的顶点为C ,且L 与x 轴右交点为D .(1)若AB=8,求b 的值,并求此时L 的对称轴与a 的交点坐标; (2)当点C 在l 下方时,求点C 与l 距离的最大值;(3)设x 0≠0,点(x 0,y 1),(x 0,y 2),(x 0,y 3)分别在l ,a 和L 上,且y 3是y 1,y 2的平均数,求点(x 0,0)与点D 间的距离;(4)在L 和a 所围成的封闭图形的边界上,把横、纵坐标都是整数的点称为“美点”,分别直接写出b=2019和b=2019.5时“美点”的个数.13.在平面直角坐标系中,正方形ABCD 的四个顶点坐标分别为A(-2,4),B(-2,-2),C(4,-2),D(4,4).(1)填空:正方形的面积为 ;当双曲线 ky x= (k≠0)与正方形ABCD 有四个交点时,k 的取值范围是 .(2)已知抛物线L : 2()y a x m n =-+ (a>0)顶点P 在边BC 上,与边AB ,DC 分别相交于点E ,F ,过点B 的双曲线 ky x=(k≠0)与边DC 交于点N. ①点Q(m ,-m 2-2m+3)是平面内一动点,在抛物线L 的运动过程中,点Q 随m 运动,分别求运动过程中点Q 在最高位置和最低位置时的坐标.②当点F 在点N 下方,AE=NF ,点P 不与B ,C 两点重合时,求 BE CFBP CP- 的值. ③求证:抛物线L 与直线的交点M 始终位于轴下方.14.如图,抛物线2y ax bx c =++与x 轴交于点(10)A -,,点(30)B ,,与y 轴交于点C ,且过点(23)D -,.点P 、Q 是抛物线2y ax bx c =++上的动点.(1)求抛物线的解析式;(2)当点P 在直线OD 下方时,求POD ∆面积的最大值.(3)直线OQ 与线段BC 相交于点E ,当ΔOBE 与ΔABC 相似时,求点Q 的坐标.15.如图,在平面直角坐标系中,抛物线y=-x 2+4x+m(m 为常数)与y 轴的交点为A ,M(4,0)与N(0,-3) 分别是x 轴、y 轴上的点。
中考数学复习专题训练《圆的综合》(3)
中考数学复习专题训练《圆的综合》(3)1.如图,在3×3的正方形网格中,每个小正方形的边长都为1,O、A、B三点都在格点处,线段OA绕点O顺时针旋转至OB.(1)求线段OA的长;(2)画出旋转过程中点A经过的路径,且求出该路径的长.2.如图,网格中每个小正方形的边长为1,△OAB的顶点都在格点上,以O为坐标原点,OA所在直线为x轴建立平面直角坐标系.(1)将△OAB绕点O按逆时针方向旋转,使A点初次落在点A1上,请在图中画出△OAB 旋转后所得的像△OA1B1;(2)将△OA1B1向左平移三个单位得到△O2A2B2,请在图中画出平移后所得的像△O2A2B2;(3)求两次变换后B点所经过的路径总长.3.如图,点O、B的坐标分别为(0,0),(3,0),将△OAB绕点O按逆时针方向旋转90°到△OA′B′.(1)画出△OA′B′;(2)点A′的坐标为;(3)求在旋转过程中,点B所经过的路线的长度.4.如图,在正三角形网格中,每一个小三角形都是边长为1的正三角形,解答下列问题:(1)网格中每个小三角形的面积为;(2)将顶点在格点上的四边形ABOC绕点O顺时针旋转120°两次,画出所得到的两个图形,并写出点A所经过的路线为.(结果保留π).5.如图,边长为a的正方形ABCD沿直线l向右滚动.(1)当正方形滚动一周时,正方形中心O经过的路程为,此时点A经过的路程为;(2)当点A经过的路程为时,中心O与初始位置的距离为;(3)将正方形在滚动中转了180°时点A的位置记为A1,正方形转了360°时点B的位置记为B1,请你猜想∠AA1B1的大小,并请你利用三角函数中正切的两角和公式来验证你的猜想.6.如图,⊙O的半径为10cm.(1)如果∠AOB=100°,求扇形AOB的面积;(2)已知弧BC长为25cm,求∠COB的度数.(结果保留整数)7.如图,点C,D是半圆O上的三等分点,直径AB=8,连接AD,AC,作DE⊥AB,垂足为E,DE交AC于点F.(1)求证:AF=DF.(2)求阴影部分的面积(结果保留π和根号).8.如图,正方形网格中的每个小正方形的边长都是1,每个小正方形的顶点叫做格点.△ABO的三个顶点A,B,O都在格点上.(1)画出△ABO绕点O逆时针旋转90°后得到的三角形;(2)求△ABO在上述旋转过程中所扫过的面积.9.如图,P A、PB是半径为1的⊙O的两条切线,点A、B分别为切点,∠APB=60°,OP 与弦AB交于点C,与⊙O交于点D.(1)在不添加任何辅助线的情况下,写出图中所有的全等三角形;(2)求阴影部分的面积(结果保留π).10.如图,在半径为,圆心角等于45°的扇形AOB内部作一个正方形CDEF,使点C 在OA上,点D、E在OB上,点F在弧AB上.(1)求正方形CDEF的边长;(2)求阴影部分的面积(结果保留π).11.如图,已知△ABC,若将△ABC绕点C按顺时针方向旋转90°后得到△A1B1C1.①请在图中画出△A1B1C1;②写出A点的对应点A1的坐标;③求出线段CB在旋转过程中扫过的面积.12.如图,⊙O交x轴于A,B两点(点A在点B的左侧),交y轴的正半轴于点C,点D 为第一象限内⊙O上的一点,连接AD,OD,CD,已知∠DAB=15°,CD=2.(1)∠OCD=.(2)⊙O的半径为.(3)S扇形COD=.13.如图,⊙O是等边三角形ABC的外接圆,已知△ABC的边长为a,求图中阴影部分的面积.14.如图,点P在圆O外,P A与圆O相切于A点,OP与圆周相交于C点,点B与点A关于直线PO对称,已知OA=4,P A=.求:(1)∠POA的度数;(2)弦AB的长;(3)阴影部分的面积.15.如图,AB是⊙O的切线,切点为B,AO交⊙O于点C,过点C作DC⊥OA,交AB于点D,(1)求证:∠CDO=∠BDO;(2)若∠A=30°,⊙O的半径为4,求阴影部分的面积.(结果保留π)16.如图,在△ABC中,AB=AC,∠B=30°,O是BC上一点,以点O为圆心,OB长为半径作圆,恰好经过点A,并与BC交于点D.(1)判断直线CA与⊙O的位置关系,并说明理由;(2)若AB=2,求图中阴影部分的面积(结果保留π).17.如图,扇形OAB的半径OA=4,圆心角∠AOB=90°,点C是弧AB上异于A、B的一点,过点C作CD⊥OA于点D,作CE⊥OB于点E,连接DE,过点C作弧AB所在圆的切线CG交OA的延长线于点G.(1)求证:∠CGO=∠CDE;(2)若∠CGD=60°,求图中阴影部分的面积.18.如图,已知A为⊙O外一点,连接OA,交⊙O于P,AB是⊙O的切线,B是切点,且PO=2cm,AB=2cm,求阴影部分的面积.19.如图,已知菱形ABCD的边长为1.5cm,B,C两点在扇形AEF的上,求的长度及扇形ABC的面积.20.如图所示,在⊙O中,=,弦AB与弦AC交于点A,弦CD与AB交于点F,连接BC.(1)求证:AC2=AB•AF;(2)若⊙O的半径长为2cm,∠B=60°,求图中阴影部分面积.21.在一空旷场地上设计一落地为矩形ABCD的小屋,AB+BC=10m,拴住小狗的10m长的绳子一端固定在B点处,小狗在不能进入小屋内的条件下活动,其可以活动的区域面积为S(m2).(1)如图1,画出小狗活动的区域,并求出当BC=2m时S的值.(结果保留π)(2)如图2,现考虑在(1)中的矩形ABCD小屋的右侧以CD为边拓展一正△CDE区域,使之变成落地为五边形ABCED的小屋,其他条件不变,设BC=xm,①写出面积S与x的关系式;②在BC的变化过程中,当S取得最小值时,求边BC的长及S的最小值.(结果保留π)22.如图,等腰梯形MNPQ的上底长为2,腰长为3,一个底角为60°.正方形ABCD的边长为1,它的一边AD在MN上,且顶点A与M重合.现将正方形ABCD在梯形的外面沿边MN、NP、PQ进行翻滚,翻滚到有一个顶点与Q重合即停止滚动.(1)请在所给的图中,用尺规画出点A在正方形整个翻滚过程中所经过的路线图;(2)求正方形在整个翻滚过程中点A所经过的路线与梯形MNPQ的三边MN、NP、PQ 所围成图形的面积S.23.如图,在⊙O中,弦BC垂直于半径OA,垂足为E,D是优弧BC上一点,连接BD,AD,OC,∠ADB=30°.(1)求∠AOC的度数;(2)若弦BC=8cm,连结OB,求图中扇形BOC的面积.24.如图,点A是游乐场上方25m处安装的一盏照明灯,灯光以圆锥形式照射地面.若圆锥的母线AB与AC的夹角为60°,求此灯光照射地面的面积.25.如图,在△ABC中,∠BAC=90°,请用尺规作图法作经过A、B、C三点的⊙O.(不写作法,保留作图痕迹)26.如图,点E,C在BF上,BE=FC,∠ABC=∠DEF=45°,∠A=∠D=90°.(1)求证:AB=DE;(2)若AC交DE于M,且AB=,ME=,将线段CE绕点C顺时针旋转,使点E旋转到AB上的G处,求旋转角∠ECG的度数.27.如图,四边形ABCD内接于以BC为直径的圆,圆心为O,且AB=AD,延长CB、DA 交于P,过C点作PD的垂线交PD的延长线于E,且PB=BO,连接OA.(1)求证:OA∥CD;(2)求线段BC:DC的值;(3)若CD=18,求DE的长.28.如图,在四边形ABCD中,∠A=∠D=90°,AD=AB,以BC为直径的半⊙O与边AD相切于点E.(1)求证:∠BCE=∠DCE;(2)若,求DE的长.29.如图,四边形ABCD内接于⊙O,直径AC与弦BD的交点为E,OB∥CD,BH⊥AC,垂足为H,且∠BF A=∠DBC.(1)求证:BF是⊙O的切线;(2)若BH=3,求AD的长度;(3)若sin∠DAC=,求△OBH的面积与四边形OBCD的面积之比.30.如图,AD是△ABC的角平分线,以点C为圆心,CD为半径作圆交BC的延长线于点E,交AD于点F,交AE于点M,且∠B=∠CAE,EF:FD=4:3.(1)求证:点F是AD的中点;(2)求cos∠AED的值;(3)如果BD=10,求半径CD的长.。
苏科版2019-2020九年级数学第一学期期中综合复习基础训练3(附答案)
苏科版2019-2020九年级数学第一学期期中综合复习基础训练3(附答案)1.下列说法:①如果a 2>b 2,那么a>b ;4;③过一点有且只有一条直线与已知直线平行;④关于x 的方程2210mx x ++=没有实数根,那么m 的取值范围是m>1且m≠0;正确的有( )A .0个B .1个C .2个D .3个2.如图,如果从半径为9cm 的圆形纸片剪去圆周的一个扇形,将留下的扇形围成一个圆锥(接缝处不重叠),那么这个圆锥的底面半径为( )A .6cmB .3cmC .5cm D .3cm 3.如图,AB 是O 的直径,120BOD =∠,点C 为BD 的中点,AC 交OD 于点E ,1DE =,则AE 的长为( )A B C .D .4.若关于x 的一元二次方程mx 2﹣2x +1=0有两个实数根,则实数m 的取值范围是( )A .m ≤1B .m ≤﹣1C .m ≤1且m ≠0D .m ≥1且m ≠0 5.下列说法正确的是( )A .一个游戏中奖的概率是1100,则做100次这样的游戏一定会中奖 B .为了了解全国中学生的心理健康状况,应采用普查的方式C .一组数据0,1,2,1,1的众数和中位数都是1D .若甲组数据的方差为2s 甲,乙组数据的方差为2s 乙,则乙组数据比甲组数据稳定6.某型号的手机连续两次降阶,每台手机售价由原来的1185元降到580元,设平均每次降价的百分率为,则列出方程正确的是( )A .580(1+x)2=1185B .1185(1-x)2=580C.580(1-x)2=1185 D.1185(1+x)2=5807.如图,将半径为2的圆形纸片折叠后,圆弧恰好经过圆心O,则折痕AB的长度为()A B.2 C.D.(1+8.一组数据2,3,5,4,5的众数是()A.2 B.3 C.4 D.59.如图,已知⊙O的半径为5,点A到圆心O的距离为3,则过点A的所有弦中,最短弦的长为( )A.4 B.6 C.8 D.1010.通过测试从9位书法兴趣小组的同学中,择优挑选5位去参加中学生书法表演,若测试结果每位同学的成绩各不相同.则被选中同学的成绩,肯定不少于这9位同学测试成绩统计量中的()A.平均数B.众数C.中位数D.方差11.在如图所示的电路图中,在开关全部断开的情况下,闭合其中任意一个开关,灯泡发亮的概率是______.12.如图,AC⊥BC,AC=BC=4,以BC为直径作半圆,圆心为O.以点C为圆心,BC为半径作弧AB,过点O作AC的平行线交两弧于点D、E,则阴影部分的面积是_____.13.一组数据2,4,5,,1的平均数为,那么这组数据的方差是___.14.关于x 的方程x 2+2(m ﹣1)x ﹣4m =0的两个实数根分别是x 1,x 2,且x 1﹣x 2=2,则m 的值是_____.15.已知圆锥的母线长为5cm ,侧面积为15π2cm ,则这个圆锥的底面圆半径为_____cm.16.已知a ,b 是方程x 2+2017x +2=0的两个根,则(2+2019a +a 2)(2+2019b +b 2)的值为______.17.如图,四边形ABCD 为⊙O 的内接四边形,点E 在DA 的延长线上,已知∠BCD=110°,则∠BAE =_______°.18.已知O 的半径为4cm ,点P 在直线l 上,且点P 到圆心O 的距离为4cm ,则直线l 与O ______.19.如图,△ABC 中,AB =8,BC =10,AC =7,∠ABC 和∠ACB 的平分线交于点 I ,IE ⊥BC 于E ,则 BE 的长为________.20.一元二次方程290x x +=的解是______.21.如图,已知Rt △ABC 中,∠ACB=90°,以AC 为直径的圆O 交斜边AB 于D .过D 作DE ⊥AC 于E ,将△ADE 沿直线AB 翻折得到△ADF .(1)求证:DF 是⊙O 的切线;(2)若⊙O 的半径为10,sin ∠FAD=35,延长FD 交BC 于G ,求BG 的长.22.已知:关于x 的方程()222120x m x m -+++=. ()1若方程总有两个实数根,求m 的取值范围;()2在(1)的条件下,若两实数根1x 、2x 满足1212x x x x +=,求m 的值.23.每年夏季全国各地总有未成年人因溺水而丧失生命,令人痛心疾首.今年某校为确保学生安全,开展了“远离溺水·珍爱生命”的防溺水安全知识竞赛.现从该校七、八年级中各随机抽取10名学生的竞赛成绩(百分制)进行整理、描述和分析(成绩得分用x表示,共分成四组:A.80≤x≤85,B.85≤x≤90,C.90≤x≤95,D.95≤x≤100),下面给出了部分信息:七年级10名学生的竞赛成绩是:90,80,90,86,99,96,96,100,89,82八年级10名学生的竞赛成绩在C组中的数据是:94,90,94根据以上信息,解答下列问题:(1)直接写出上述图表中a,b,c的值;(2)根据以上数据,你认为该校七、八年级中哪个年级学生掌握防溺水安全知识较好?请说明理由(一条理由即可);(3)该校七、八年级共730人参加了此次竞赛活动,估计参加此次竞赛活动成绩优秀(x≧90)的学生人数是多少?24.已知ABC,()1用无刻度的直尺和圆规作ABD,使A D B A C B.∠∠=且ABD的面积为ABC 面积的一半,只需要画出一个ABD即可(作图不必写作法,但要保留作图痕迹) ()2在ABC中,若ACB45∠=,AB4=,则ABC面积的最大值是______25.足球训练场上,教练在球门前画了一个圆圈进行无人防守的射门训练.如图,甲、乙两名运动员分别在C,D两处,他们争论不休,都说自己所在的位置对球门AB的张角大,如果你是教练,请评一评他们两个人谁的位置对球门AB的张角大?为什么?26.如图①,四边形ABCD 与四边形CEFG 都是矩形,点E ,G 分别在边CD ,CB 上,点F 在AC 上,AB =3,BC =4(1)求AF BG的值; (2)把矩形CEFG 绕点C 顺时针旋转到图②的位置,P 为AF ,BG 的交点,连接CP (Ⅰ)求AF BG 的值; (Ⅱ)判断CP 与AF 的位置关系,并说明理由.27.解下列方程(1)x 2+12x +27=0(2)3x 2-2=5x28.如图1,四边形ADBC 内接于O ,AB 为O 的直径,对角线AB 、CD 相交于点E .图1 图2图3(1)求证:90BCD ABD ∠+∠=︒;(2)如图2,点G 在AC 的延长线上,连接BG ,交O 于点Q ,CA CB =,ABD ABG ∠=∠,作GH CD ⊥,交DC 的延长线于点H ,求证:GQ = (3)如图3,在(2)的条件下,过点B 作//BF AD ,交CD 于点F ,3GH CH =,若CF =O 的半径.参考答案1.A【解析】【分析】①当a是负数且绝对值大于b(正数)时,不成立;②4,再求其算术平方根即可;③当点在直线上时,没有与已知直线平等的直线;④根据一元二次方程根的判别式进行判断.【详解】①当a=-5时,b=2时,a2>b2,a<b,故①错误;=4,故其算术平方根为2,故②错误;③当点在直线上时,没有与已知直线平行的直线,正确说法是:过直线外一点有且只有一条直线与已知直线平行,故③错误;④关于x的方程mx2+2x+1=0没有实数根,那么m的取值范围是m>1,故此选项错误.所以正确的有0个.故选:A.【点睛】考查了算术平方根的定义、一元二次方程根的判别式等知识,正确把握相关性质是解题关键.2.A【解析】【分析】设圆锥的底面圆半径为r,先利用圆的周长公式计算出剩下的扇形的弧长,然后把它作为圆锥的底面圆的周长进行计算即可.【详解】设圆锥的底面圆半径为r,∵半径为9cm的圆形纸片剪去一个圆周的扇形,∴剩下的扇形的弧长=×2π×9=12π,∴2πr=12π,∴r=6.【点睛】本题考查了圆锥的有关计算:圆锥的侧面展开图为扇形,圆锥的底面圆的周长等于扇形的弧长.也考查了圆的周长公式.3.A【解析】【分析】连接OC ,证明OD ⊥AC 即可解决问题.【详解】解:连接OC ,∵弧CD=弧BC ,∴60DOC BOC ∠=∠=︒,60AOD ∠=︒,∴AOD DOC ∠=∠,∴弧AD=弧CD ,∴OD AC ⊥,90AEO ∠=︒,设AO r =,则1OE r =-,∵·cos60OE AO =︒, ∴112r r -=,2r =,∴AE =故选:A.【点睛】本题考查圆周角定理,垂径定理,解直角三角形等知识,解题的关键是学会添加常用辅助线,灵活运用所学知识解决问题,属于中考常考题型.4.C【解析】利用一元二次方程的定义和判别式的意义得到m≠0且△=(﹣2)2﹣4m≥0,然后求出两不等式的公共部分即可.【详解】根据题意得m≠0且△=(﹣2)2﹣4m≥0,解得m≤1且m≠0.故选:C.【点睛】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的两个实数根;当△<0时,方程无实数根.5.C【解析】【分析】根据调查方式,可判断A,根据概率的意义一,可判断B根据中位数、众数,可判断c,根据方差的性质,可判断D.【详解】A、一个游戏中奖的概率是1100,做100次这样的游戏有可能中奖,而不是一定中奖,故A错误;B、为了了解全国中学生的心理健康状况,应采用抽查方式,故B错误;C、一组数据0,1,2,1,1的众数和中位数都是1,故C正确;D. 若甲组数据的方差为2s甲,乙组数据的方差为2s乙,无法比较甲乙两组的方差,故无法确定那组数据更加稳定,故D错误.故选:C.【点睛】本题考查了概率、抽样调查及普查、中位数及众数、方差等,熟练的掌握各知识点的概念及计算方法是关键.6.B【解析】根据降价后的价格=原价(1-降低的百分率),本题可先用x表示第一次降价后商品的售价,再根据题意表示第二次降价后的售价,即可列出方程.【详解】设平均每次降价的百分率为x,由题意得出方程为:1185(1−x)2=580.故选:B.【点睛】本题考查的是由实际问题列出一元二次方程,正确列出方程是解题的关键.7.C【解析】【分析】过O作OC⊥AB,交圆O于点D,连接OA,由垂径定理得到C为AB的中点,再由折叠得到CD=OC,求出OC的长,在直角三角形AOC中,利用勾股定理求出AC的长,即可确定出AB的长.【详解】过O作OC⊥AB,交圆O于点D,连接OA,由折叠得到CD=OC=12OD=1cm,在Rt△AOC中,根据勾股定理得:AC2+OC2=OA2,即AC2+1=4,解得:,则.故选C.【点睛】此题考查了垂径定理,勾股定理,以及翻折的性质,熟练掌握垂径定理是解本题的关键.8.D【解析】【分析】根据众数的定义:一组数据中出现次数最多的数据即可得出答案.【详解】解:这组数据中出现次数最多的数据为:5.故众数为5,故选:D.【点睛】本题考查了众数的知识,属于基础题,解答本题的关键是熟练掌握一组数据中出现次数最多的数据叫做众数.9.C【解析】【分析】最短弦是过A点垂直于OA的弦.根据垂径定理和勾股定理求解.【详解】由垂径定理得,该弦应该是以OA为中垂线的弦BC.连接OB.已知OB=5,OA=3,由勾股定理得AB=4.所以弦BC=8.故选C.【点睛】此题主要考查了学生对垂径定理及勾股定理的理解运用.10.C【解析】【分析】由于从9个人中挑选5位,则应根据中位数的意义进行解答.【详解】∵从9位书法兴趣小组的同学中,择优挑选5位去参加中学生书法表演,∴则被选中同学的成绩,肯定不少于这9位同学测试成绩统计量中的中位数,故选C .【点睛】本题考查了统计的相关知识,涉及了平均数、中位数、众数、方差等,要结合具体的问题对统计量进行合理的选择和恰当的运用.11.13【解析】【分析】根据概率公式知,共有3个开关,只闭一个开关时,只有闭合S 3时才发光,所以小灯泡发光的概率等于1.3【详解】根据题意,三个开关,只有闭合3S 小灯泡才发光,所以小灯泡发光的概率等于13. 故答案为:13【点睛】考查概率的计算,明确概率的意义是解题的关键,概率等于所求情况数与总情况数的比.12.53π﹣ 【解析】【分析】如图,图中S 阴影=S 扇形BCE ﹣S 扇形BOD ﹣S △OCE .根据已知条件易求得OB =OC =OD =2,BC=CE =4.∠ECB=60°,∠OEC=30°,所以由扇形面积公式、三角形面积公式进行解答即可 【详解】解:如图,连接CE .∵AC ⊥BC ,AC =BC =4,以BC 为直径作半圆,圆心为点O ;以点C 为圆心,BC 为半径作弧AB ,∴∠ACB =90°,OB =OC =OD =2,BC =CE =4.又∵OE ∥AC ,∴∠ACB =∠COE =90°.∴在直角△OEC 中,OC =2,CE =4,∴∠CEO =30°,∠ECB =60°,OE =∴S 阴影=S 扇形BCE ﹣S 扇形BOD ﹣S △OCE =2604360 π ﹣14 π×22﹣12×2×=53π﹣,故答案为:53π﹣【点睛】此题考查扇形面积的计算,掌握运算法则是解题关键13.2【解析】【分析】根据平均数的计算方法求得a 的值,再利用方差公式计算这组数据的方差即可.【详解】∵数据2,4,5,a ,1的平均数为a , ∴(2 +4+5+a+1)=a ,∴a=3,∴s 2=[(2-3)2+(4-3)2+(5-3)2+(3-3)2+(1-3)2]=2.故答案为:2.【点睛】本题考查了平均数及方差的计算公式,熟知平均数及方差的计算公式是解决问题的关键. 14.m =0或m =﹣2.【解析】【分析】由韦达定理得出x 1+x 2=﹣2(m ﹣1),x 1x 2=﹣4m ,结合x 1﹣x 2=2知122x m x m =-+⎧⎨=-⎩,代入x 1x 2=﹣4m 可得关于m 的方程,解之可得答案.【详解】解:∵关于x 的方程x 2+2(m ﹣1)x ﹣4m =0的两个实数根分别是x 1,x 2,∴x 1+x 2=﹣2(m ﹣1),x 1x 2=﹣4m ,又∵x 1﹣x 2=2,∴1212222x x m x x +=-+⎧⎨-=⎩, 解得:122x m x m =-+⎧⎨=-⎩, 代入x 1x 2=﹣4m 得﹣m (﹣m+2)=﹣4m ,解得:m =0或m =﹣2,故答案为:m =0或m =﹣2.【点睛】本题主要考查一元二次方程根与系数的关系,根据韦达定理及x 1﹣x 2=2得出关于m 的方程是解题的关键.15.3【解析】【分析】根据圆锥的侧面积和圆锥的母线长求得圆锥的弧长,利用圆锥的侧面展开扇形的弧长等于圆锥的底面周长求得圆锥的底面半径即可.【详解】∵圆锥的母线长是5cm ,侧面积是15πcm2,∴圆锥的侧面展开扇形的弧长为:215=65ππ⨯, ∵锥的侧面展开扇形的弧长等于圆锥的底面周长,∴r=62ππ=3cm , 故答案为:3.【点睛】本题考查了圆锥的计算,解题的关键是正确地进行圆锥与扇形的转化.16.8.【解析】【分析】根据已知条件得到2+2017a+a2=0,2+2017b+b2=0,ab=2,代入代数式即可得到结论.【详解】∵a,b是方程x2+2017x+2=0的两个根,∴2+2017a+a2=0,2+2017b+b2=0,ab=2,∴(2+2019a+a2)(2+2019b+b2)=(2+2017a+2a+a2)(2+2017b+2b+b2)=4ab=8,故答案为:8.【点睛】本题考查了一元二次方程根与系数的关系,熟练掌握根与系数的关系是解题的关键.17.110【解析】【分析】根据圆内接四边形的任意一个外角等于它的内对角解答.【详解】∵四边形ABCD是⊙O的内接四边形,∴∠BAE=∠BCD=110°,故答案为:110.【点睛】本题考查了圆内接四边形的性质,掌握圆内接四边形的任意一个外角等于它的内对角是解题的关键.18.相交或相切【解析】【分析】根据直线与圆的位置关系即可得出结论.【详解】解:∵点P在直线l上,且点P到圆心O的距离为4cm,等于直径,∴点P在⊙O上∴直线l与⊙O相交或相切故答案为:相交或相切【点睛】本题考查直线与圆的位置关系,解题的关键是熟知直线与圆的三种位置关系.19.【解析】【分析】如图作△ABC 的内切圆,切点分别为 E ,F ,G ,根据切线长定理即可解决问题;【详解】解:如图作△ABC 的内切圆,切点分别为 E ,F ,G ,∵BE =BF ,AF =AG ,CE =CG ,∴BE ==, 故答案为. 【点睛】本题考查角平分线的性质,三角形的内切圆,切线长定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.20.0x =或9x =-【解析】【分析】因式分解法求解可得.【详解】解:()90x x +=,0x ∴=或90x +=,解得:0x =或9x =-,故答案为:0x =或9x =-.【点睛】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.21.(1)见解析(2)15 4【解析】【分析】(1)由△ADE沿直线AB翻折得到△ADF,得到∠DAE=∠DAF,∠AED=∠F=90°,由于OA=OD,于是得到∠DAE=∠ODA,根据平行线的判定定理得到OD∥AF,根据平行线的性质得到OD⊥DF,于是得到结论;(2)连接DC,由于AC是O的直径,即CD⊥AB;又FD与BC均是O的切线且相交于点G由切线长定理可得:GD=GC,于是得到∠GDC=∠GCD,由于GD是Rt△BDC斜边上的中线,即GD=12BC,由于△ADE沿直线AB翻折得到△ADF,得到sin∠DAE=sin∠DAF=35,解直角三角形得到sin∠DAC=DCAC=10DC=35,得DC=6,由勾股定理得AD=8;根据三角形相似即可得到结论.【详解】(1)证明:∵△ADE沿直线AB翻折得到△ADF,∴∠DAE=∠DAF,∠AED=∠F=90°,又∵OA=OD,∴∠DAE=∠ODA,∴∠DAF=∠ODA,∴OD∥AF,∴∠ODF+∠F=180°,∴∠ODF=90°,∴OD⊥DF,∴DF是O的切线;(2)连接DC,∵AC是圆O的直径,∴∠ADC=90°,即CD⊥AB;又∵FD与BC均是圆O的切线且相交于点G,由切线长定理可得:GD=GC,∴∠GDC=∠GCD,又∵Rt△BDC中,∠GCD+∠B=90°,∠GDC+∠GDB=90°,∴∠B=∠GDB,∴GD=GB,∴GD是Rt△BDC斜边上的中线,即GD=12 BC,∵△ADE沿直线AB翻折得到△ADF,∴∠DAE=∠DAF,∴sin∠DAE=sin∠DAF=35,又∵圆O的半径为5,∴AC=10,Rt△DAC中,∠ADC=90°,∴sin∠DAC=DCAC=DC10=35,得DC=6,由勾股定理得AD=8;在Rt △ADC 与Rt △ACB 中,∠ADC=∠ACB=90°,∠DAC=∠BAC ,∴Rt △ADC ∽Rt △ACB , ∴CD AD BC AC =,即6810BC =,解得BC=152; ∴GB=GD=12BC=154. 【点睛】本题考查的知识点是切线的判定, 翻折变换(折叠问题), 相似三角形的判定与性质,解题的关键是熟练的掌握切线的判定, 翻折变换(折叠问题), 相似三角形的判定与性质. 22.(1)12m >;(2)2m =. 【解析】【分析】 ()1由0>得840m ->,解之可得;()2由()1221x x m +=+,2122x x m =+,结合1212x x x x +=得()2212m m +=+,解之可得m 的值,依据()1中的结果取舍即可得.【详解】解:()()()221[21]412m m =-+-⨯⨯+ 2248448m m m =++--840m =->,12m ∴>; ()()12221x x m +=+,2122x x m =+,∴由1212x x x x +=得()2212m m +=+,解得:10m =,22m =, 12m >, 2m ∴=.【点睛】本题主要考查根的判别式、根与系数的关系,关键是掌握1x ,2x 是方程20x px q ++=的两根时,12x x p +=-,12x x q =.23.(1)a=40,b=94,c=99;(2)八年级,见解析;(3)参加此次竞赛活动成绩优秀的人数是468人.【解析】【分析】(1)根据中位数和众数的定义即可得到结论;(2)根据八年级的中位数和众数均高于七年级于是得到八年级学生掌握防溺水安全知识较好;(3)利用样本估计总体思想求解可得.【详解】解:(1)3120%10%1004010a ⎛⎫=---⨯= ⎪⎝⎭, ∵八年级10名学生的竟赛成绩的中位数是第5和第6个数据的平方数,∴ 9494942b +== ∵在七年级10名学生的竟赛成绩中99出现的次数最多,∴c=99;(2)八年级学生掌握防溺水安全知识较好,理由:虽然七、八年级的平均分均为92分,但八年级的中位数和众数均高于七年级.(3)参加此次竞赛活动成绩优秀(x≥90)的学生人数=720×1320=468人, 答:参加此次竞赛活动成绩优秀(x≥90)的学生人数是468人.【点睛】本题考查读扇形统计图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问24.(1)详见解析;(2)4+【解析】【分析】(1)先作出ABC 的外接圆,再作AB 边上的高,继而作出此高的中垂线,与外接圆的交点即为所求;(2)作以AB 为弦且AB 所对圆心角为90°的O ,则垂直于弦AB 的直径与优弧的交点即为使三角形面积最大的点C ,根据作图得出AB 边上的高可得答案.【详解】∠即为所求.解:()1如图1所示,ABD()2如图2所示,作以AB为弦,且AB所对圆心角为90的O,C点轨迹为圆上不与AB重合的任一点,∴当C在位置上时,高最长,故面积最大,=,AB4AP BP OP2∴===,则OC OA==∴=+PC2ABC ∴的面积为(11AB PC 42422⋅⋅=⨯⨯+=+故答案为:4+.【点睛】 本题主要考查作图复杂作图,解题的关键判断出点C 是以AB 为弦的圆上、圆的确定及线段的中垂线的尺规作图等知识点.25.一样大,理由见解析.【解析】【分析】根据圆周角定理,即可确定两角的大小.【详解】解:甲、乙两个人所在的位置对球门AB 的张角一样大.根据圆周角定理的推论可得∠ADB=∠ACB.【点睛】本题的解答关键是对圆周角定理的灵活运用.圆周角定理指的是一条弧所对圆周角等于它所对圆心角的一半;即同弦或等弦所对的圆周角相等.26.(1)54AF BG =;(2)(Ⅰ)54AF BG =;(Ⅱ)CP ⊥AF ,理由:见解析. 【解析】【分析】(1)根据矩形的性质得到∠B =90°,根据勾股定理得到AC =5,根据相似三角形的性质即可得到结论;(2)(Ⅰ)连接CF ,根据旋转的性质得到∠BCG =∠ACF ,根据相似三角形的判定和性质定理得到结论;(Ⅱ)根据相似三角形的性质得到∠BGC =∠AFC ,推出点C ,F ,G ,P 四点共圆,根据圆周角定理得到∠CPF =∠CGF =90°,于是得到结论.【详解】(1)∵四边形ABCD 是矩形,∴∠B =90°,∵AB =3,BC =4,∴AC=5,∴54 ACBC=,∵四边形CEFG是矩形,∴∠FGC=90°,∴GF∥AB,∴△CGF∽△CBA,∴54 CF CACG CB==,∵FG∥AB,∴54 AF CFBG CG==;(2)(Ⅰ)连接CF,∵把矩形CEFG绕点C顺时针旋转到图②的位置,∴∠BCG=∠ACF,∵54 AC CFBC CG==,∴△BCG∽△ACF,∴54 AF ACBG BC==;(Ⅱ)CP⊥AF,理由:∵△BCG∽△ACF,∴∠BGC=∠AFC,∴点C,F,G,P四点共圆,∴∠CPF=∠CGF=90°,∴CP⊥AF.【点睛】本题考查了相似三角形的判定和性质,矩形的性质,平行线分线段成比例定理,旋转的性质,熟练掌握相似三角形的判定定理是解题的关键.27.(1)x 1=-3,x 2=-9;(2)x 1=2,x 2=-13. 【解析】【分析】 (1)直接把等号左边进行因式分解,然后可得x+3=0,x+9=0,再解即可;(2)先整理成一般形式,然后用公式法解答即可.【详解】(1)(x+3)(x+9)=0,x+3=0,x+9=0,解得:x 1=-3,x 2=-9;(2) 3x 2-2=5x整理为:3x 2-5x-2=0,这里,a=3,b=-5,c=-2,b 2-4ac=(-5)2-4×3×(-2)=49>0,∴ ∴x 1=2,x 2=13-.【点睛】本题考查了解一元二次方程的应用,解此题的关键是能把一元二次方程转化成一元一次方程.28.(1)证明见解析;(2)证明见解析;(3).【解析】【分析】(1)根据圆周角定理即可证明;(2)作AM AD ⊥交DC 延长线于点M ,连接MG ,AQ ,证明AMG QAG ∆≅∆,得到45GMH AMD ∠=∠=︒,易求得GQ =;(3)延长MG 交DB 于N ,延长BF 交6030m n =⎧⎨=-⎩于W ,则四边形AMND 是正方形,求出13EF ED =,设EF x =,则3ED x =,列式求出EF ,易得AB ,问题得解. 【详解】解:(1)证明:AB Q 是直径90BCD ABD ∴∠+∠=︒BCD DAB ∠=∠90DAB DBA ∴∠+∠=︒(2)证明:作AM AD ⊥交DC 延长线于点M ,连接MG ,AQ,AB Q 是直径,90AQB ∴∠=︒,90ACB ∠=︒ABD ABG ∠=∠AQ AD ∴=CA CB =45CBA CAB ∴∠=∠=︒45ADM ∴∠=︒AM AD ∴=AM AQ ∴=BAD BAQ ∠=∠,45BAQ QAG ∠+∠=︒45BAD GAM ∴∠+∠=︒GAQ GAM ∴∠=∠AMG QAG ∴∆≅∆90AMG ∴∠=︒45GMH AMD ∴∠=∠=︒MG ∴=GQ ∴=(3)延长MG 交DB 于N ,∴四边形AMND 是正方形延长BF 交6030m n =⎧⎨=-⎩于W //BW MN BWG MGA ∴∠=∠BWG BGW ∴∠=∠BG BW ∴=MG BD BW +=WF MG ∴=FC MC ∴=BAD BCD HGC ∠=∠=∠,3HG CH =1tan 3BAD ∴∠=13BD BF AD AD ∴== 13EF ED ∴= 设EF x =,则3ED x =222EC CM DE =+222((3)x x ∴+=+x ∴=DF =4BD =,12AD =AB ∴=r =【点睛】本题是圆和四边形的综合问题,考查了圆周角定理、三角形全等的判定和性质以及三角函数等知识点,涉及知识点较多,图形较为复杂,能够作出辅助线是解题关键.。
2020年九年级数学中考三轮复习:《三角形综合训练》(解析版)
中考三轮复习:《三角形综合训练》1.如图1,在平面直角坐标系中,已知点A(a,0),B(b,0),C(2,7),连接AC,交y轴于D,且a=,()2=5.(1)求点D的坐标.(2)如图2,y轴上是否存在一点P,使得△ACP的面积与△ABC的面积相等?若存在,求点P的坐标,若不存在,说明理由.(3)如图3,若Q(m,n)是x轴上方一点,且△QBC的面积为20,试说明:7m+3n是否为定值,若为定值,请求出其值,若不是,请说明理由.解:(1)∵a=,()2=5,∴a=﹣5,b=5,∵A(a,0),B(b,0),∴A(﹣5,0),B(5,0),∴OA=OB=5.如图1,连接OC,设OD=x,∵C(2,7),∴S△AOC=×5×7=17.5,∵S△AOC =S△AOD+S△COD,∴5x•=17.5,∴x=5,∴点D的坐标为(0,5);(2)如图2,∵A(﹣5,0),B(5,0),C(2,7),∴S△ABC=×(5+5)×7=35,∵点P在y轴上,∴设点P的坐标为(0,y),∵S△ACP =S△ADP+S△CDP,D(0,5),∴5×|5﹣y|×+2×|5﹣y|×=35,解得:y=﹣5或15,∴点P的坐标为(0,﹣5)或(0,15);(3)7m+3n是定值.∵点Q在x轴的上方,∴分两种情况考虑,如图3,当点Q在直线BC的左侧时,过点Q作QH⊥x轴,垂足为H,连接CH,∵S△QBC =S△QHC+S△HBC﹣S△QHB,且S△QBC=20,∴=20,∴7m+3n=﹣5.如图4,当点Q在直线BC的右侧时,过点Q作QH⊥x轴,垂足为H,连接CH,∵S△QBC =S△QHC+S△HBC﹣S△QHB,且S△QBC=20,∴=20,∴7m+3n=75,综上所述,7m+3n的值为﹣5或75.2.平面直角坐标系中,A(a,0),B(0,b),a,b满足(2a+b+5)2+=0,将线段AB平移得到CD,A,B的对应点分别为C,D,其中点C在y轴负半轴上.(1)求A,B两点的坐标;(2)如图1,连AD交BC于点E,若点E在y轴正半轴上,求的值;(3)如图2,点F,G分别在CD,BD的延长线上,连结FG,∠BAC的角平分线与∠DFG 的角平分线交于点H,求∠G与∠H之间的数量关系.解:(1)∵(2a+b+5)2≥0,≥0,且(2a+b+5)2+=0,∴,解得:,∴A(﹣4,0),B(0,3).(2)设C(0,c),E(0,y),∵将线段AB平移得到CD,A(﹣4,0),B(0,3).∴由平移的性质得D(4,3+c),过D作DP⊥x轴于P,∴AO=4=OP,DP=3+c,OE=y,OC=﹣c,∵S△ADP =S△AOE+S梯形OEDP,∴,∴,解得y=.∴BE﹣OE=(BO﹣OE)﹣OE=BO﹣2OE=3﹣2×=﹣c=OC,∴=1.(3)∠G与∠H之间的数量关系为:∠G=2∠H﹣180°.如图,设AH与CD交于点Q,过H,G分别作DF的平行线MN,KJ,∵HD平分∠BAC,HF平分∠DFG,∴设∠BAH=∠CAH=α,∠DFH=∠GFH=β,∵AB平移得到CD,∴AB∥CD,BD∥AC,∴∠BAH=∠AQC=∠FQH=α,∠BAC+∠ACD=180°=∠BDC+∠ACD,∴∠BAC=∠BDC=∠FDG=2α,∵MN∥FQ,∴∠MHQ=∠FQH=α,∠NHF=∠DFH=β,∴∠QHF=180°﹣∠MHQ﹣∠NHF=180°﹣(α+β),∵KJ∥DF,∴∠DGK=∠FDG=2α,∠DFG=∠FGJ=2β,∴∠DGF=180°﹣∠DGK﹣∠FGJ=180°﹣2(α+β),∴∠DGF=2∠QHF﹣180°.3.在平面直角坐标系中,O 为坐标原点,A (m ,n +1),B (m +2,n ).(1)当m =1,n =2时.如图1,连接AB 、AO 、BO .直接写出△ABO 的面积为 .(2)如图2,若点A 在第二象限、点B 在第一象限,连接AB 、AO 、BO ,AB 交y 轴于H ,△ABO 的面积为2.求点H 的坐标.(3)若点A 、B 在第一象限,在y 轴正半轴上存在点C ,使得∠CAB =90°,且CA =AB ,求m 的值,及OC 的长(用含n 的式子表示).解:(1)∵A (1,3),B (3,2),∴S △ABC =3×3﹣×1×3﹣×2×1﹣×2×3=.故答案为.(2)如图2中,∵S △ABO =S △AOH +S △OBH =•OH •(m +2﹣m )=2,∴OH =2(3)如图3中,作AD ⊥y 轴于D ,BE ⊥DA 交D 的延长线于E .∵∠ADC =∠E =∠CAB =90°,∴∠DAC +∠EAB =90°,∠EAB +∠ABE =90°,∴∠DAC =∠ABE ,∵AC =AB ,∴△DAC≌△EBA(AAS),∴AD=BE=m,CD=AE=2,∴OC+CD=n+1,∴OC=n﹣1(n>1),∴OC+CD=n+m=n+1,∴m=1.4.在△ABC中,AB=AC,点D在射线BC上,连接AD.(1)如图1,当点D在线段BC上时,若AB=5,BC=8,CD=2,求△ABD的面积;(2)如图2,当点D在线段BC的延长线上时,过B作BE⊥AC分别交AC于点E,交AD 于点F,截取AC中点G,延长BG到点H,连接AH,使∠AHB=∠ACB﹣∠ABH,若∠ADB=45°,求证:AH=DF.解:(1)如图1中,作AH⊥BC于H.∵AB=AC=5,AH⊥BC,∴BH=CH=BC=4,∴在Rt△ABH中,AH===3,∴S=•BD•AH=×6×3=9.△ABD(2)如图2中,作FM⊥BD于M,作AN⊥BC于N.∵AB=AC,AN⊥BC,∴BN=CN,∠BAN=∠CAN,∠ABC=∠ACB,∵BE⊥AC,∴∠ANC=∠ANB=∠BEC=90°,∴∠CN+∠ACB=90°,∠FBM+∠ACB=90°,∴∠FBM=∠CAN=∠BAN,∵∠H=∠ACB﹣∠ABH,∴∠H=∠ABC﹣∠ABH=∠HBC,∵AG=GC,∠AGH=∠CGB,∴△AGH≌△CGB(AAS),∴AH=BC,∵∠AND=90°,∠D=45°,∴∠NAD=∠D=45°,∵∠BFA=∠D+∠FBD,∠BAF=∠DAN+∠BAN,∴∠BFA=∠BAF,∴BA=BF,∵∠ANB=∠BMF=90°,∴△ANB≌△BMF(AAS),∴BN=FM,∵DF=FM,∴DF =BN , ∴DF =2BN =BAH ,即AH =DF .5.如图,等腰三角形ABC 中,AB =AC =10cm ,BC =12cm ,AD 为底边BC 上的高,动点P 从点D 出发,沿DA 方向匀速运动,速度为1cm /s ,运动到A 点停止,设运动时间为t (s ),连接BP .(0≤t ≤8)(1)求AD 的长;(2)设△APB 的面积为y (cm 2),求y 与t 之间的函数关系式;(3)是否存在某一时刻t ,使得S △APB :S △ABC =1:3,若存在,求出t 的值;若不存在,说明理由.(4)是否存在某一时刻t ,使得点P 在线段AB 的垂直平分线上?若存在,求出t 的值;若不存在,说明理由.解:(1)∵AB =AC ,AD ⊥BC ,∴BC =DC =6cm ,在Rt △ABD 中,∵∠ADB =90°,AB =10cm ,BD =6cm ,∴AD ===8(cm ).(2)y =S △APB =S △ABD ﹣S △PBD =×6×8﹣×6×t =﹣3t +24.∴y =24﹣3t (0≤t ≤8).(3)∵S△APB :S△ABC=1:3,∴(24﹣3t):×12×8=1:3,解得t=.∴满足条件的t的值为.(4)由题意点P在线段AB的垂直平分线上,∴PA=PB,在Rt△PBD中,∵PB2=PD2+BD2,∴t2=(8﹣t)2+62,解得t=.∴满足条件的t的值为.6.如图1,△ABC是边长为8的等边三角形,AD⊥BC下点D,DE⊥AB于点E (1)求证:AE=3EB;(2)若点F是AD的中点,点P是BC边上的动点,连接PE,PF,如图2所示,求PE+PF 的最小值及此时BP的长;(3)在(2)的条件下,连接EF,若AD=,当PE+PF取最小值时,△PEF的面积是2.(1)证明:如图1中,∵△ABC是等边三角形,∴AB=BC=AC=8,∠B=∠BAC=60°∵AD⊥BC,∴BD=DC=4,∵DE⊥AB,∴∠DEB=90°,∠BDE=30°,∴BE=BD=2,∴AE=AB﹣BE=8﹣2=6,∴AE=3BE.(2)解:如图2中,延长DF到H,使得DH=DF,连接EF,连接EH交BC于点P,此时PE+PF的值最小.∵∠AED=90°,AF=FD,∴EF=AF=DF,∵DF=DH,∴DE=DF=DH,∴∠FEH=90°,∵在Rt△ABD中,∠ADB=90°,BD=4,∠B=60°,∴AD=BD•tan60°=4,∵∠BAD=∠BAC=30°,FE=FA,∴∠FEA=∠FAE=30°,∴∠EFH=60°,∠H=30°,∵FH=AD=4,∴EH=FH•cos30°=6,∴PE+PF的最小值=PE+PH=EH=6,∵PD=DH•sin30°=2,∴BP=BD﹣PD=2.(3)解:如图2中,∵BE=BP=2,∠B=60°,∴△BPE是等边三角形,∴PE=2,∵∠PEF=90°,EF=AF=DF=2,∴S=•PE•EF=×2×2=2.△PEF7.在△ABC中,∠ABC=60°(1)AB=AC,PA=5,PB=3①如图1,若点P是△ABC内一点,且PC=4,求∠BPC的度数.②如图2,若点P是△ABC外一点,且∠APB=60°,求PC的长.(2)如图3,AB<AC,点P是△ABC内一点,AB=6,BC=8,则PA+PB+PC的最小值是2.解:(1)在△ABC中,∠ABC=60°,AB=AC,∴△ABC是等边三角形,①如图1,将△ABP绕点B顺时针旋转60°得到△CBP′,连接PP′,∴BP=BP′,∠PBP′=∠ABC=60°,∴△BPP′是等边三角形;∴PP′=PB,∠BPP′=60°,由旋转的性质得,P′C=PA=5,∵PP′2+PC2=32+42=25=P′C2,∴△CPP′是直角三角形,∠CPP′=90°,∴∠BPC=∠BPP′+∠CPP′=60°+90°=150°;②如图2中,以AP为边向上作等边△PAE,作EF⊥BP交BP的延长线于F.∵∠EAP=∠BAC=60°,∴∠EAB=∠PAC,∵AE=AP,AB=AC,∴△EAB≌△PAC(SAS),∴BE=PC,∵∠APE=∠APB=60°,∴∠EPF=180°﹣60°﹣60°=120°,∵PE=PA=5,∴PF=PE•cos60°=,EF=PE•sin60°=,∴BF=BP+PF=3+=,∴BE===7,∴PC=PE=7.(2)如图3中,将△PBF绕点B逆时针旋转60°得到△BFE,作EH⊥CB交CB的延长线于H.∵∠ABC=60°,∠PBF=60°,∵∠ABP=∠EBF,∴∠EBF+∠BC=60°,∴∠EBC=120°,∵PB=BF,∠PBF=60°,∴△PBF是等边三角形,∴PB=PF,∵PA=EF,∴PA+PB+PC=CP+PF+EF,根据两点之间线段最短可知,当E,F,P,C共线时,PA+PB+PC的值最小,最小值=EC 的长,在Rt△EBH中,∵∠EBH=60°,EB=6,∴BH=BE•cos60°=3,EH=EB•sin60°=3,∴CH=BH+CB=3+8=11,∴EC===2.8.全等三角形是研究图形性质的主要工具,以此为基础,我们又探索出一些轴对称图形的性质与判定.通过寻找或构造轴对称图形,能运用其性质及判定为解题服务.(1)如图①,BE⊥AC,CD⊥AB,BD=CE,BE与CD相交于点F.①求证:BE=CD;②连接AF,求证:AF平分∠BAC.(2)如图②,在△ABC中,AB=AC,点D、E分别在AB、AC上,且BD=CE.请你只用无刻度的直尺画出∠BAC的平分线.(不写画法,保留画图痕迹).(3)如图③,在△ABC中,仍然有条件“AB=AC,点D,E分别在AB和AC上”.若∠ADC+∠AEB=180°,则CD与BE是否仍相等?为什么?(1)①证明:∵BE⊥AC,CD⊥AB,∴∠BDF=∠CEF=90°,在△BDF和△CEF中,,∴△BDF≌△CEF(AAS),∴BF=CF,DF=EF,∴BF+EF=CF+DF,即BE=CD;②证明:由①得:DF=EF,∵BE⊥AC,CD⊥AB,∴AF平分∠BAC.(2)解:连接BE、CD交于点O,作射线AO交BC于F,如图②所示:AF即为所求;理由如下:∵AB=AC,∴∠DBC=∠ECB,在△BDC和△CEB中,,∴△BDC≌△CEB(SAS),∴∠BCD=∠CBE,∴∠ABO=∠ACO,OB=OC,同理:△ABO≌△ACO(SAS),∴∠OAB=∠OAC,∴AF是∠BAC的平分线;(3)解:CD=BE,理由如下:分别作CF⊥AB于F,BG⊥AC于G,如图③所示:∴∠CFB=90°,∠BGC=90°,∵AB=AC,∴∠ABC=∠ACB,在△FBC和△GCB中,,∴△FBC≌△GCB(AAS).∴CF=BG,∵∠ADC+∠AEB=180°,又∵∠BEG+∠AEB=180°,∴∠ADC=∠BEG,在△CFD和△BGE中,,∴△CFD≌△BGE(AAS),∴CD=BE.9.如图,△ABC中,∠ACB=90°,AB=10cm,BC=6cm,若点P从点A出发,以每秒lcm 的速度沿折线A﹣C﹣B﹣A运动,设运动时间为t秒(t>0).(1)当点P在AC上,且满足PA=PB时,求出此时t的值;(2)当点P在∠BAC的角平分线上时,求出此时t的值;(3)当P在运动过程中,求出t为何值时,△BCP为等腰三角形.(直接写出结果)(4)若M为AC上一动点,N为AB上一动点,是否存在M、N使得BM+MN的值最小?如果有请求出最小值,如果没有请说明理由.解:(1)∵△ABC中,∠ACB=90°,AB=10,BC=6,∴由勾股定理得AC==8,连接BP,如图所示:当PA=PB时,PA=PB=t,PC=8﹣t,在Rt△PCB中,PC2+CB2=PB2,即(8﹣t)2+62=t2,解得:t=,∴当t=秒时,PA=PB;(2)如图1,过P作PE⊥AB,又∵点P恰好在∠BAC的角平分线上,且∠C=90°,AB=10,BC=6,∴CP=EP,在Rt△ACP和Rt△AEP中,,∴Rt△ACP≌Rt△AEP(HL),∴AC=AE=8,∴BE=2,设CP=EP=x,则BP=6﹣x,在Rt△BEP中,BE2+PE2=BP2,即22+x2=(6﹣x)2,解得x=,∴CP=,∴CA+CP=8+=,∴t=;当点P沿折线A﹣C﹣B﹣A运动到点A时,点P也在∠BAC的角平分线上,此时,t=10+8+6=24;综上,若点P恰好在∠BAC的角平分线上,t的值为秒或24秒;(3)①如图2,点P在CA上,当CP=CB=6时,△BCP为等腰三角形,则t=8﹣6=2;②如图3,当BP=BC=6时,△BCP为等腰三角形,∴AC+CB+BP=8+6+6=20,∴t=20;③如图4,若点P在AB上,当CP=CB=6时,△BCP为等腰三角形;作CD⊥AB于D,则根据面积法求得:CD==4.8,在Rt△BCD中,由勾股定理得,BD==3.6,∴PB=2BD=7.2,∴CA+CB+BP=8+6+7.2=21.2,此时t=21.2;④如图5,当PC=PB时,△BCP为等腰三角形,作PD⊥BC于D,则D为BC的中点,∴PD为△ABC的中位线,∴AP=BP=AB=5,∴AC+CB+BP=8+6+5=19,∴t=19;综上所述,t为2s或20s或21.2s或19s时,△BCP为等腰三角形.(4)存在M、N使得BM+MN的值最小,理由如下:作点B关于AC的对称点B',过B'作AB的垂线交AC于M,交AB于N,连接BM,如图6所示:则B'C=BC=6,B'M=BM,∠B'NB=90°,BM+MN=B'M+MN=B'N,∴BB'=2BC=12,∵∠ACB=∠B'NB=90°,∠B'BN=∠ABC,∴△B'BN∽△ABC,∴===,∴B'N=AC=×8=9.6,综上所述,存在M、N使得BM+MN的值最小,BM+MN的最小值为9.6.10.如图1,在△ABC中,∠ACB=2∠B,∠BAC的平分线AO交BC于点D,点H为AO上一动点,过点H作直线l⊥AO于H,分别交直线AB、AC、BC、于点N、E、M.(1)当直线l经过点C时(如图2),求证:BN=CD;(2)当M是BC中点时,写出CE和CD之间的等量关系,并加以证明;(3)请直接写出BN、CE、CD之间的等量关系.(1)证明:连接ND,如图2所示:∵AO平分∠BAC,∴∠BAD=∠CAD,∵直线l⊥AO于H,∴∠AHN=∠AHE=90°,∴∠ANH=∠AEH,∴AN=AC,∴NH=CH,∴AH是线段NC的中垂线,∴DN=DC,∴∠DNH=∠DCH,∴∠AND=∠ACB,∵∠AND=∠B+∠BDN,∠ACB=2∠B,∴∠B=∠BDN,∴BN=DN,∴BN=DC;(2)解:当M是BC中点时,CE和CD之间的等量关系为CD=2CE,理由如下:过点C作CN'⊥AO交AB于N',过点C作CG∥AB交直线l于点G,如图3所示:由(1)得:BN'=CD,AN'=AC,AN=AE,∴∠ANE=∠AEN,NN'=CE,∴∠ANE=∠CGE,∠B=∠BCG,∴∠CGE=∠AEN,∴CG=CE,∵M是BC中点,∴BM=CM,在△BNM和△CGM中,,∴△BNM≌△CGM(ASA),∴BN=CG,∴BN=CE,∴CD=BN'=NN'+BN=2CE;(3)解:BN、CE、CD之间的等量关系:当点M在线段BC上时,CD=BN+CE;理由如下:过点C作CN'⊥AO交AB于N',如图3所示:由(2)得:NN'=CE,CD=BN'=BN+CE;当点M在BC的延长线上时,CD=BN﹣CE;理由如下:过点C作CN'⊥AO交AB于N',如图4所示:同(2)得:NN'=CE,CD=BN'=BN﹣CE;当点M在CB的延长线上时,CD=CE﹣BN;理由如下:过点C作CN'⊥AO交AB于N',如图5所示:同(2)得:NN'=CE,CD=BN'=CE﹣BN.11.在平面直角坐标系中,直线AB交y轴于A(0,a),交x轴于B(b,0),且a,b满足(a﹣b)2+|3a+5b﹣88|=0.(1)求点A,B的坐标;(2)如图1,已知点D(2,5),求点D关于直线AB对称的点C的坐标.(3)如图2,若P是∠OBA的角平分线上的一点,∠APO=67.5°,求的值.解:(1)由题意得解得∴A(0,11),B(11,0)(2)如图一,延长FD交AB于点E,连结CE因为OB=OA=11所以三角形OAB是等腰直角三角形易得△DEC,△AFE都是等腰直角三角形所以FE=AF=OA﹣OF=11﹣5=6∴CE=DE=EF﹣FD=6﹣2=4所以C的横坐标为6.,纵坐标为5+4=9故C的坐标为(6,9)(3)如上图,作PM垂直AB于点M,作PM垂直OB于点L,在L的左侧取一点N,使得NL=AM ∵PB是∠ABO的平分线所以PM=PL∴△AMP≌△NLP∴∠NLP=∠APM∴∠APN=∠MPL∵∠ABO=45°∴∠MPL=135°∴∠APN=135°又∠APO=67.5°∴∠NPO=∠APO=67.5°∵PN=PA,PO=PO∴△OPN≌OPA∴∠PON=∠POA=45°,NO=AO=11设NL=a,则MA=a,∴BL=BM=a+11∵BL=22﹣a∴22﹣a=a+11∴a=11﹣∴LO=11﹣(11﹣)=∴PO=LO=11所以=312.以△ABC的边AB,AC为直角边向外作等腰直角三角形ABE和等腰直角三角形ACD,AB =AE,AC=AD,∠BAE=∠CAD=90°,M是BC中点,连接AM,DE.(1)如图1,在△ABC中,当∠BAC=90°时,求AM与DE的数量和位置关系.(2)如图2,当△ABC为一般三角形时,(1)中的结论是否依然成立?说明理由.(3)如图3,若以△ABC的边AB,AC为直角边向内作等腰直角三角形ABE和等腰直角三角形ACD,其他条件不变(1)中的结论是否依然成立,并说明理由.解:(1)AM=DE,AM⊥DE,理由如下:延长MA交DE于F,如图1所示:∵∠BAC=90°,M是BC中点,∴AM=BC,∵∠BAE=∠CAD=90°,∠BAC=90°,∴∠EAD=90°,在△ABC和△AED中,,∴△ABC≌△AED(SAS),∴DE=BC,∠ABC=∠AED,∴AM=DE,∵∠BAE=90°,∴∠BAM+∠EAF=90°,∴∠AED+∠EAF=90°,∴∠AFE=90°,∴AM⊥DE;(2)(1)中的结论成立,AM=DE,AM⊥DE,理由如下:延长AM至N,使MN=AM,连接BN、CN,延长MA交DE于F,如图2所示:∵M是BC中点,∴BM=CM,∴四边形ABNC是平行四边形,∴BN=AC=AD,BN∥AC,∴∠NBA+∠BAC=180°,∵∠BAE=∠CAD=90°,∴∠DAE+∠BAC=180°,∴∠NBA=∠DAE,在△ABN和△EAD中,,∴△ABN≌△EAD(SAS),∴AN=DE=2AM,∠BAN=∠AED,∴AM=DE,∵∠BAE=90°,∴∠BAN+∠EAF=90°,∴∠AED+∠EAF=90°,∴∠AFE=90°,∴AM⊥DE;(3)(1)中的结论成立,理由如下:由(1)的结论,当∠BAC=90°,可得AM=DE,AM⊥DE,当∠BAC≠90°时,延长CA到F,使AF=AC,连接BF,延长AM交DE于G,如图3所示:则AF=AX=AD,∵M是BC中点,∴AM是△BCF的中位线,∴AM=BF,AM∥BF,∴∠MAC=∠F,∵∠BAE=∠DAC=90°,∴∠DAF=90°,∴∠BAE=∠DAF,∴∠BAF=∠EAD,在△ABF和△AED中,,∴△ABF≌△AED(SAS),∴BF=DE,∠F=∠ADE,∴AM=DE,∴∠BAC=∠ADE,∵∠MAC+∠DAM=∠DAC=90°,∴∠ADE+∠DAM=90°,∴∠AGD=90°,∴AM⊥DE;综上所述,(1)中的结论成立.13.在平面直角坐标系中,点A的坐标为(0,4)(1)如图1,若点B的坐标为(3,0),△ABC是等腰直角三角形,BA=BC,∠ABC=90°,求C点坐标.(2)如图2,若点E是AB的中点,求证:AB=2OE;(3)如图3,△ABC是等腰直角三角形,BA=BC,∠ABC=90°,△ACD是等边三角形,连接OD,若∠AOD=30°,求B点坐标.(1)解:过点C作CD⊥x轴于D,如图1所示:∵∠ABC=90°,∴∠ABO+∠CBD=90°,∵∠AOB=90°,∴∠ABO+∠BAO=90°,∴∠CBD=∠BAO,∵CD⊥x轴,∴∠BDC=90°=∠AOB,在△BDC和△AOB中,,∴△AOB≌△BDC(AAS),∴OA=DB,OB=DC,∵点A(0,4),点B(3,0),∴DB=4,DC=3,∴OD=4+3=7,∴C点坐标为(7,3);(2)证明:延长OE至F点,使得EO=EF,连接FB,如图2所示:∵点E为AB的中点,∴EA=EB,在△AOE和△BFE中,,∴△AOE≌△BFE(SAS),∴OA=FB,∠AOE=∠F,∴OA∥BF,∴∠AOB+∠FBO=180°,∵∠AOB=90°,∴∠FBO=90°,∴∠AOB=∠FBO,在△AOB和△FBO中,,∴△AOB≌△FBO(SAS),∴AB=OF,∵EA=EB,EO=EF,∴OE=AE=EB,∴AB=2OE;(3)解:过点D作DM⊥y轴于M,CN⊥OD于N,CH⊥y轴于H,CG⊥x轴于G,如图3所示:则四边形OHCG是矩形,∴OH=CG,∵∠AOD=30°,∴∠ODM=90°﹣30°=60°,OD=2DM,∵△ADC为等边三角形,∴AD=CD=AC,∠ADC=60°,∵∠ADM+∠ADO=60°,∠CDN+∠ADO=60°,∴∠ADM=∠CDN,在△DMA和△DNC中,,∴△DMA≌△DNC(AAS),∴DM=DN,∴OD=2MD=2DN,∴DN=ON,∴CD=CO=AC,∴HA=HO=CG=2,由(1)得CG=OB∴OB=2,∴B点坐标为(2,0).14.已知,△ABC,AD⊥BD于点D,AE⊥CE于点E,连接DE.(1)如图1,若BD,CE分别为△ABC的外角平分线,求证:DE=(AB+BC+AC);(2)如图2,若BD,CE分别为△ABC的内角平分线,(1)中的结论成立吗?若成立请说明理由;若不成立,请猜想出新的结论并证明;(3)如图3,若BD,CE分别为△ABC的一个内角和一个外角的平分线,AB=8,BC=10,AC=7,请直接写出DE的长为 4.5 .(1)证明:如图1,分别延长AE、AD交BC于H、K,在△BAD和△BKD中,∵,∴△BAD≌△BKD(ASA),∴AD=KD,AB=KB,同理可证,AE=HE,AC=HC,∴DE=HK,又∵HK=BK+BC+CH=AB+BC+AC,∴DE=(AB+AC+BC);(2)解:结论不成立.DE=(AB+AC﹣BC).理由:如图2,分别延长AE、AD交BC于H、K,在△BAD和△BKD中,∵,∴△BAD≌△BKD(ASA),∴AD=KD,AB=KB,同理可证,AE=HE,AC=HC,∴DE=HK,又∵HK=BK﹣BH=AB+AC﹣BC,∴DE=(AB+AC﹣BC);(3)解:分别延长AE、AD交BC或延长线于H、K,在△BAD和△BKD中,∵,∴△BAD≌△BKD(ASA),∴AD=KD,AB=KB同理可证,AE=HE,AC=HC,∴DE=KH又∵KH=BC﹣BK+HC=BC+AC﹣AB.∴DE=(BC+AC﹣AB),∵AB=8,BC=10,AC=7,∴DE=(10+7﹣8)=4.5,故答案为4.5.15.在平面直角坐标系中,点A(a,0)、C(b,0)、B(0,),a、b满足:a2+2ab+2b2﹣4b+4=0,且AB=AC.(1)判断△ABC的形状并证明;(2)如图1,点D为BA延长线上一点,AD=AB,E为x轴负半轴上一点,F为DE上一点,连接CF交AD于点G,∠EFC=120°,求的值;(3)如图2,R(3a,0)点P为线段BR上一动点,以AP为边作等腰△APQ,PA=PQ,且∠APQ=∠RAB,连接AQ.当点P运动时,△ABQ的面积是否变化?若不变,求其值;若变化,求其变化范围.解:(1)结论:△ABC是等边三角形.理由:∵a2+2ab+2b2﹣4b+4=0,∴(a+b)2+(b﹣2)2=0,∵(a+b)2≥0,(b﹣2)2≥0,∴a=﹣2,b=2,∴A(﹣2,0),C(2,0),∴OA=OC,∵BO⊥AC,∴BA=BC,∵AB=AC,∴AB=AC=BC,∴△ABC是等边三角形.(2)如图1中,作BH∥DE交x轴于H.∵∠DEA=∠BHA,∠DAE=∠BAH,AD=AB,∴△DAE≌△BAH(AAS),∴AE=AH,∵∠D+∠DGF=∠EFH=120°,∠D+∠DEA=∠DAC=120°,∴∠DEA=∠DGF=∠AGH,∴∠AGH=∠BHC,∵∠GAH=∠BCH=120°,AH=BC,∴△AHG≌△CBH(AAS),∴AG=CH,∴===2.=4.(3)结论:△ABQ的面积不变,S△ABQ理由:如图2中,在x轴的正半轴上取一点M,使得PR=PM,连接PM,QR.由题意R(﹣6,0),A(﹣2,0),B(0,﹣2),∴OR=6,OB=2,∴tan∠PQM=,tan∠OAB=∴∠PRM=∠PMR=30°,∠OAB=60°,∴∠RPM=120°,∵∠RPM=∠APQ=120°,∴∠APM=∠RPQ,∵PR=PM,PQ=PQ,∴△PRQ≌△PMA(SAS),∴∠PRQ=∠AMP=30°,∴∠ARQ=60°=∠OAB,∴AB∥QR,∴S△ABQ =S△ABR=×4×2=4.16.在平面直角坐标系中,点A(0,m)和点B(n,0)分别在y轴和x轴的正半轴上,满足(m﹣n)2+|m+n﹣8|=0,连接线段AB,点C为AB上一动点.(1)填空:m= 4 ,n= 4 ;(2)如图,连接OC并延长至点D,使得DC=OC,连接AD.若△AOC的面积为2,求点D 的坐标;(3)如图,BC=OB,∠ABO的平分线交线段AO于点E,交线段OC于点F,连接EC.求证:①△ACE为等腰直角三角形;②BF﹣EF=OC.解:(1)∵(m﹣n)2+|m+n﹣8|=0,∴m=n=4,故答案为:4,4;(2)如图1,过点C作CH⊥OA,CG⊥OB,∵点A(0,4)和点B(4,0),∴OA=OB=4,=×4×4=8,∴S△ABO∵△AOC的面积为2,∴AO×CH=×4×CH=2,S=6=×OB×CG=×4×CG,△BOC∴CH=1,CG=3,∴点C(1,3),∵DC=OC,∴点D(2,6)(3)①∵OA=OB=4,∠AOB=90°,∴∠OAB=∠OBA=45°,∵BE平分∠ABO,∴∠EBO=∠EBC,且BE=BE,OB=OC,∴△OBE≌△CBE(SAS)∴∠EOB=∠ECB=90°,∴∠ACE=90°,且∠OAB=45°,∴∠CAE=∠AEC=45°,∴AC=CE,且∠ACE=90°,∴△ACE是等腰直角三角形;②如图2,作OM平分∠AOB,交BE于点M,∵OM平分∠AOB,∴∠AOM=∠BOM=45°,∴∠AOM=∠BOM=∠OAB=∠OBA,∵OB=OC,BE平分∠ABO,∠ABO=45°,∴∠OBE=22.5°,BE⊥OC,∠COB=∠OCB=67.5°,∴∠AOC=22.5°=∠COM,∴∠AOC=∠BOM,且OB=OA,∠OAB=∠OBM,∴△ACO≌△OMB(ASA)∴BM=OC,∵∠EFO=∠MFO=90°,OF=OF,∠AOC=∠COM,∴△EFO≌△MFO(ASA)∴EF=FM,∴BF﹣EF=BF﹣FM=BM=OC.17.【问题发现】(1)如图①,数学课外资料《全品》P4页有一道题条件为:“D是等边三角形ABC的边BC上的一动点,以AD为边在AB上方作等边△ADE,若AB=10,AD=8……”,小明认为AD有最小值,条件AD=8是错误的,他的想法得到了王老师的肯定,那么AD的最小值是5.王老师又让小明研究了以下两个问题:【问题探究】(2)如图②,在等腰直角△ABC中,∠ACB=90°,AC=BC=2,点D在AB上,且AD =1,以CD为直角边向右作等腰直角△DCE,连接BE,求△BDE的周长;【问题解决】(3)如图③,△ABC中,∠A=45°,∠ABC=60°,AB=3+,点D是边AB上任意一点,以CD为边在AD的右侧作等边△DCE,连接BE,试求△BDE面积的最大值.【问题发现】解:(1)当AD⊥BC时,AD的值最小,∵△ABC是等边三角形,AD⊥BC,∴BC=AB=10,BD=BC=5,∴AD===5,故答案为:5;【问题探究】解:(2)作CM⊥AB于M,如图②所示:∵∠ACB=90°,AC=BC=2,∴∠A=∠ABC=45°,AB=AC=4,CM=AB=AM=BM=2,∴DM=AM﹣AD=1,∴BD=BM+DM=3,CD===,∵△DCE是等腰直角三角形,∴CD=CE,∠DCE=90°=∠ACB,DE=CD=,∴∠ACD=∠BCE,在△ACD和△BCE中,,∴△ACD≌△BCE(SAS),∴AD=BE=1,∴△BDE的周长=BD+BE+DE=3+1+=4+;【问题解决】解:(3)作CM⊥AB于M,作EN⊥AB于N,如图③所示:∵∠A=45°,∠ABC=60°,∴△ACM是等腰直角三角形,∠BCM=30°,∴AM=CM,CM=BM,设BM=x,则AM=CM=x,∴AB=x+x=3+,解得:x=,∴BM=,CM=AM=3,设AD=y,则DM=3﹣y,BD=3+﹣y,∵△CDE是等边三角形,∴∠DCE=60°CD=CE,∴∠DCM+∠BCE=30°=∠BCM,在MB上截取MH=MD=3﹣y,连接CH,则CD=CH=CE,∵CM⊥DH,∴∠DCM=∠HCM,∴∠BCH=∠BCE,在△BCH和△BCE中,,∴△BCH≌△BCE(SAS),∴∠CBH=∠CBE=60°,BH=BE=3+﹣y﹣2(3﹣y)=y+﹣3,∴∠EBN=60°,∵EN⊥AB,∴∠BEN=30°,∴BN=BE,EN=BN=BE=(y+﹣3),∵△BDE的面积=BD×EN=×(3+﹣y)×(y+﹣3)=(﹣y2+6y﹣6)=﹣(y﹣3)2+,∴当y=3,即AD=3时,△BDE面积的最大值为.18.等腰Rt△ABC中,∠ABC=90°,AB=BC,F为AB上的一点,连接CF,过点B作BH⊥CF交CF于G,交AC于H.(1)如图1,延长BH到点E,连接AE,当∠EAB=90°,AE=3,求BF的长;(2)如图2,若F为AB的中点,连接FH,求证:BH+FH=CF;(3)如图3,在AB上取点K,使AK=BF,连接HK并延长与CF的延长线交于点P,若G 为CP的中点,PG=2.求AH+BH的值(直接写出答案)解:(1)∵BH⊥CF,∠ABC=90°,∴∠ABE+∠CFB=∠CFB+∠BCF=90°,∴∠ABE=∠BCF,在△ABE与△BCF中,,∴△ABE≌△BCF(ASA),∴BF=AE=3.(2)证明:如图2中,过点A作AD⊥AB交BH的延长线于点D.∴∠BAD=∠CBF=90°,∴∠D+∠ABD=∠CFB+∠ABD=90°,∴∠ABD=∠BCF,在△ABD与△BCF中,,∴Rt△BAD≌Rt△CBF(AAS),∴AD=BF,BD=CF.∵F为AB的中点,∴AF=BF,∴AD=AF,在△ADH与△AFH中,,∴△AHD≌△AHF(SAS),∴DH=FH.∵BD=BH+DH=BH+FH,∴BH+FH=CF;(3)如图3中,过A作AM⊥AB,交BH延长线于M,由(2)证得△MAB≌△FBC,∴AM=BF=AK,∠AMB=∠CFB,∵△ABC是等腰直角三角形,∴∠CAB=45°,∵∠MAB=90°,∴∠MAH=45°,∴∠MAH=∠CAB,在△MAH与△KAH中,,∴△MAH≌△KAH(SAS),∴∠AMB=∠AKH,∴∠AKH=∠CFB,∵∠AKH=∠PKF,∠CFB=∠PFK,∴∠PKF=∠PFK,∵FC⊥BH,G是PC中点,∴CH=PH,∴∠AHK=2∠P,在△PFK中,∠PKF==90°﹣∠P,则90°﹣∠P+45°+2∠P=180°,解得∠P=30°,在CH上取一点R,使RH=BH,连接BR,∴∠RHB==60°,∴△RHB是等边三角形,∴BH=BR=RH,∵∠CAB=∠ACB=45°,∠AHB=180°﹣60°=120°,∠BRC=180°﹣60°=120°,∴∠ABH=∠RBC,在△ABH与△CBR中,,∴△ABH≌△CBR(ASA),∴AH=CR,∵cos30°=,∴CH==CG=PG,∴RH+RC=BH+AH=PG=,∴BH+AH=.19.如图(1),AB=8cm,AC⊥AB,BD⊥AB,AC=BD=6cm.点P在线段AB上以2m/s的速度由点A向点B运动,同时,点Q在线段BD上由点B向点D运动.它们运动的时间为t (s)(1)若点Q的运动速度与点P的运动速度相等,当t=1时,判断线段PC与PQ满足的关系,并说明理由.(2)如图(2),将图(1)中的AC⊥AB,BD⊥AB为改“∠CAB=∠DBA=a°”,其它条件不变.设点Q的运动速度为xcm/s,是否存在实数x,使得△ACP与△BPQ全等?若存在,求出相应的x、t的值;若不存在,请说明理由.解:(1)△ACP≌△BPQ,∵AC⊥AB,BD⊥AB∴∠A=∠B=90°∵AP=BQ=2∴BP=6∴BP=AC,在△ACP和△BPQ中,,∴△ACP≌△BPQ,∴∠C=∠QPB,∵∠APC+∠C=90°,∴∠APC+∠QPB=90°,∴PC⊥PQ;(2)存在x的值,使得△ACP与△BPQ全等,①若△ACP≌△BPQ,则AC=BP,AP=BQ,可得:6=8﹣2t,2t=xt解得:x=2,t=1;②若△ACP≌△BQP,则AC=BQ,AP=BP,可得:6=xt,2t=8﹣2t解得:x=3,t=2.20.已知△ABC是等边三角形.(1)如图1,点D是BC边的中点,点P在直线AC上,若△PAD是轴对称图形,则∠APD 的度数为120°或75°或30°或15°.(2)如图2,点D在BC边上,∠ADG=60°,DG与∠ACB的外角平分线交于G,GH⊥AC 于H,当点D在BC边上移动时,请判断线段AH,AC,CD之间的数量关系,并说明理由.(3)如图3,点D在BC延长线上,连接AD,E为AD上一点,AE=AC,连接BE交AC于F,若AF=2ED=3,则线段CF的长为.解:(1)如图1中,当△PAD是等腰三角形时,是轴对称图形.当AP=AD时,可得∠AP1D=15°,∠AP3D=75°.当PA=PD时,可得∠AP2D=120°.当DA=DP时,可得∠AP4D=30°,综上所述,满足条件的∠APD的值为120°或75°或30°或15°.故答案为120°或75°或30°或15°.(2)结论:AC+CD=2AH.理由:如图2中,连接AG,作GN⊥CM于N,在BA上截取BQ,使得BQ=BD,∵△ABC是等边三角形,∴AB=BC=AC,∠B=∠BAC=∠ACB=60°,∵BQ=BD,∴△BDQ是等边三角形,AQ=DC,∴∠BQD=60°,∴∠AQD=120°,∵CG是∠ACB的外角平分线,∴∠ACG=60°,∠DCG=120°,∵∠ADG=60°,∴∠ADB+∠GDC=120°,∵∠QAD+∠ADB=120°,∴∠QAD=∠CDG,∴△AQD≌△DCG(ASA),∴AD=DG,∵∠ADG=60°,∴△ADG是等边三角形,∴AG=DG,∵GH⊥C,GN⊥CM,CG平分∠ACM,∴GH=GN,∠GHC=∠GNC=90°,∵CG=CG,∴Rt△CGH≌Rt△CGN(HL),Rt△AGH≌Rt△DGN,∴CH=CN,AH=DN,∴AC+CD=AH+CH+DN﹣CN=2AH.(3)如图3中,在BC上截取BG=CF,则CG=AF=3,过点D作QH∥AB,分别交AC,BE 的延长线于Q,H.∵AB=AE,∴∠ABE=∠AEB,∵QH∥AB,∴∠ABE=∠H,∵∠AEB=∠DEH,∴∠H=∠DEH,∴DE=DH=1.5,设AB=BC=AC=m,∵△ABG≌△BCF(SAS),∴∠BAG=∠CBF,设∠BAG=∠CBF=x,∵AB=AE,∴∠ABE=∠AEB=60°﹣x,∴∠BAE=180°﹣2(60°﹣x)=60°+2x,∴∠DAG=∠DGA=60°+x,∴DA=DG=m+1.5,∴CD=m﹣1.5=CQ=DQ,∴QH=QD+DH=m,∴QH=AB,∵∠AFB=∠QFH,∠BAF=∠Q,∴△ABF≌△QHF(AAS),∴AF=FQ,∴3=m﹣2+m﹣1,5,∴m=,∴CF=.故答案为.。
2009年中考数学综合训练试题(三)及答案
2009年中考复习数学综合训练试题(三)(考试时间120分钟,满分:150分)姓名:班级:学号.一、选择题:(本大题共10个小题,每小题4分,共40分)每小题只有一个答案是正确的,请将正确答案的代号填入题后的括号内.1.有理数-2的绝对值是()A.2−B.2C.12−D.122.下列运算正确的是()A.532a a a =⋅B.22()ab ab =C.329()a a =D.632a a a ÷=3.2008北京奥运会主会场“鸟巢”的座席数是91000个,这个数用科学记数法表示为()A.50.9110×B.49.110×C.39110×D.39.110×4.某篮球队队员共16人,每人投篮6次,下表为其投进球数的次数统计表.若此队投进球数的中位数是2.5,则众数()投进球数0123456次数(人)22ab 321A.2B.3C.4D.65.如图,如果AB 是⊙O 的直径,BC 为弦,∠ABC=30°过圆心O 作OD⊥BC 交弧BC 于点D,连接DC,那么∠DCB=()A.90°B.60°C.45°D.30°6.如图所示,圆柱的左视图是()C7.化简(-3)2的结果是()A.3B.-3C.±3D.98.下列各组图形不一定相似的是()A.两个等边三角形B.各有一个角是100°的两个等腰三角形C.两个正方形D.各有一个角是45°的两个等腰三角形9.在盒子里放有三张分别写有整式1a +、2a +、2的卡片,从中随机抽取两张卡片,把两OBD CAABCD读书体育科技艺术ABCDOA B CDE 张卡片上的整式分别作为分子和分母,则能组成分式的概率是()A.13B.23C.16D.3410.如图,已知正三角形ABC 的边长为1,E、F、G 分别是AB、BC、CA 上的点,且AE=BF=CG,设△EFG 的面积为y,AE 的长为x,则y 关于x 的函数的图象大致是()二、填空题:(本大题10个小题,每小题3分,共30分)请将答案直接填写在题后的横线上.11.方程3x-9=0的解是.12.分解因式:92−x =.13.不等式组2494x xx x−<⎧⎨+>⎩的解集是.14.已知:PA 为⊙O 的切线,,P 为圆外一点,A 为切点,PO 交⊙O 于点B ,4PA =cm,3OA =cm,那么OP =cm.15.如图,AB∥CD,∠C=65°,CE⊥BE,垂足为E,则∠B 的度数为.图1图2图316.如图,在矩形ABCD 中,对角线AC,BD 交于点O,如果0120AOD ∠=,AB=3cm,那么对角线AC 的长为.17.分式方程xx 332=−的解为.18.九年级3班共有学生54人,学习委员调查了班级学生参加课外活动情况(每人只参加一项活动),其中:参加读书活动的18人,参加科技活动的占全班总人数的16,参加艺术活动的比参加科技活动的多3人,其他同学参加体育活动.则在扇形图中表示参加体育活动人数的扇形的圆心角是度.FA GEBC19.将一个正三角形纸片剪成四个全等的小正三角形,再将其中的一个按同样的方法剪成四个更小的正三角形,……如此继续下去,结果如下表:所剪次数1234…n 正三角形个数471013…an则a n =(用含n 的代数式表示).20.如图,正比例函数和反比例函数的图象相交于A、B 两点,分别以A、B 两点为圆心,画与y 轴相切的两个圆.若点A 的坐标为(1,2),则图中两个阴影面积的和是___________.三、解答题:(本大题6个小题,每小题10分,共60分)解答下列各题时必须给出必要的演算过程或推理步骤.21.(每小题5分,共10分)⑴计算:1)12009(80−+−−⑵解方程:x(x-1)=x22.(10分)如图是某设计师在方格纸中设计图案的一部分,请你帮他完成余下的工作:(1)作出关于直线AB 的轴对称图形;(2)将你画出的部分连同原图形绕点O 逆时针旋转90°;(3)发挥你的想象,给得到的图案适当涂上阴影,让它变得更加美丽.AOB第2023.(10分)先化简,再求值:22212221x x xx x x −−+−−+÷x ,其中x =2.24.(10分)已知,在同一直角坐标系中,双曲线5y x=与抛物线c x x y ++−=22交于点(1)A m −,.(1)求m 和c 的值;(2)求抛物线的对称轴和顶点坐标.25.(10分)在一个不透明的盒子里装有只有颜色不同的黑、白两种球共40个,小颖做摸球实验,她将盒子里面的球搅匀后从中随机摸出一个球记下颜色,再把它放回盒子中,不断重复上述过程,下表是实验中的一组统计数据:摸球的次数n10020030050080010003000摸到白球的次数m651241783024815991803摸到白球的频率m n0.650.620.5930.6040.6010.5990.601(1)请估计:当n 很大时,摸到白球的频率将会接近.(精确到0.1)(2)假如你摸一次,你摸到白球的概率()P =白球.(3)试估算盒子里黑、白两种颜色的球各有多少只?26.(10分)如图,四边形ABCD 的对角线AC 与BD 相交于O 点,12∠=∠,34∠=∠.求证:(1)ABC ADC △≌△;(2)BO DO =.DCBAO 1234四、解答题:(本大题2个小题,每小题10分,共20分)解答下列各题时必须给出必要的演算过程或推理步骤.27.(10分)某商场欲购进A、B两种品牌的饮料500箱,此两种饮料每箱的进价和售价如下表所示。
中考数学复习基本过关训练综合训练3。整式方程与不等式
卷3:整式方程和不等式(二)班级: 姓名: 分数:一、选择题:(8×3分=24)1.下列方程的解是2的方程是------------------------------------------------------( ) (A)024=-x (B)042=-x (C)024=+x (D)042=+x 2.下列方程中,二元一次方程是( ) A .1=xy B .13-=x y C .21=+yx D .032==-+x x 3.一元二次方程02=++q px x 至少有一个根为零的条件是-------------( ) A .042=-q p B .0=q C .0=p D .0=-q p4.已知0≠a ,则关于x 的方程042=-+abx ax 的根的情况是----------( ) A .有两个负实数根 B .无实数根 C .只有一个正实数根和一个负实数根 D .只有两个正实数根 5.若不等式组⎩⎨⎧>>ax x ,3的解集是a x >,则a 的范围为------------------------( )A .3<aB .3=aC .3>aD .3≥a6.若关于x 的一元二次方程0132=--x k x 有实数根,则k 的取值范围为( ) A .0≥k B .0>k C .94->k D .94-≥k 7.方程组⎩⎨⎧=-=+5522y x y x 的解有------------------------------------------------------( ) A .1组 B .2组 C .3组 D .4组8.若方程0262=+-x mx 有两个不相等的实数根,则m 的取值范围是( ) A .92m <B .92m >C .m ≤92D .92m <且m ≠0二、填空题:(16×4分=64分)9.方程253=-y x 的解的个数有 个.10.当=k 时,代数式863+k 的值等于2311.若231-=x y ,422+=x y ,当=x 时,21y y = 12.已知方程427=+y x ,用x 的代数式表示y 的形式为 13.如果x=3,y=-1是方程33=-ay x 的一个解,那么=a 14.若1)()(2--=x k k x f ,且0)1(=f ,则=k15.若a <b ,则a 21-b 21-(填“>”,“<”,“=”) 16.当x 时,代数式63+x 的值不大于零17.若关于x 的方程0132=++mx x 的两根是11-=x 、212=x ,则二次三项式231x mx ++分解因式的结果是18.当方程496=-y x 时,若y 是x 的31,则=x 19.若一元二次方程0732=++m x x 的两个实数根互为倒数,则=m 20.在方程+22x ( )02=+x 括号内填上一个数,使这个方程的两个实数根之积为121.若一元二次方程的二次项系数为1,它的两个根为1,-2,则这个方程是22.已知不等式4)32(>+x m 的解是324+<m x ,则m 的取值范围是23.如果代数式47-x 的值是非负数,那么x 的取值范围是24.关于x 的方程0422=+-m x x 有两个正根,则m 的取值范围 三、简答题:(4×8分+3×10分=62分) 25.解不等式346x -≤213x -,并把它的解集在数轴上表示出来26.解方程组:⎩⎨⎧=+=--52023222y x y xy x 27.解方程:2532=-x x28.已知方程0132=+-x mx 有一个根是2,求另一个根及m 的值29.已知一个三角形的一边长为2x -4,这条边上的高为6,它的面积不大于24,求x 的取值范围30.从一块长80厘米、宽60厘米的铁片中间截去一个小长方形,使剩下的长方框四周的宽度一样,并且小长方形的面积是原来铁片面积的一半,求这个剩下的长方框的宽度31.已知关于x 的一元二次方程02)1(2=++--m x m x (1)若方程有两个相等的实数根,求m 的值(2)若方程的两实根之积等于292m m -+卷3答案:一、选择题1、B2、B3、B4、C5、D6、A7、A8、D 二、填空题9、无数个 10、2 11、6 12、y =247+-x 13、-6 14、251± 15、> 16、x ≤-2 17、)21)(1(3-+x x 18、3419、3 20、答案不唯一,只需满足大于等于4或小于等于-4即可21、022=-+x x 22、23-<m 23、x ≥4724、20≤<m 三、简答题25、x ≥-2(图略) 26、⎩⎨⎧==1,2y x27、31,221-==x x 28、另一根45,52=m 29、2<x ≤6 30、10厘米 31、(1)1m =7,2m =-1(2)m =104。
2021年中考数学《二次函数综合压轴题》模拟训练题集(三)
2021年中考数学《二次函数综合压轴题》模拟训练题集(三)1.如图,在平面直角坐标系中,抛物线y=﹣x2+x+4与x轴交于A,C两点(点A在点C左侧),与y轴交于点B,P是抛物线上一动点,设点P的横坐标为m,连结PO,PB,PC.(1)当m=2时,求证:△OPB≌△OPC.(2)直线BC交直线OP于点Q,当P为OQ中点时,求点Q坐标.(3)当S△OPB=S△OPC,求所有满足条件的点P坐标.2.如图,抛物线过A(1,0)、B(﹣3,0),C(0,﹣3)三点,直线AD交抛物线于点D,点D的横坐标为﹣2,点P(m,n)是线段AD上的动点,过点P的直线垂直于x轴,交抛物线于点Q.(1)求直线AD及抛物线的解析式;(2)求线段PQ的长度l与m的关系式,m为何值时,PQ最长?(3)在平面内是否存在整点(横、纵坐标都为整数)R,使得P、Q、D、R为顶点的四边形是平行四边形?若存在,求出点R的坐标;若不存在,说明理由.3.如图,平面直角坐标系中,O为坐标原点,抛物线y=ax2﹣2ax+c与x轴交于B、C两点,与y轴交于点A,直线AB的解析式为:y=x+4;(1)求抛物线的解析式;(2)点P为第一象限抛物线上一点,过P作PD∥y轴交直线AB于D,若点P的横坐标为t,PD的长度为d,求d与t的函数关系式(直接写出自变量t的取值范围);(3)在(2)的条件下,延长DP交x轴于E,点F在BE上,EF=PD,连接PF,过F作FQ⊥PF交AB于Q,直线PQ交x轴于点M,求t为何值时PM=2PQ.4.如图所示,抛物线y=x2+bx+c经过点A(2,﹣3)与C(0,﹣3),与x轴负半轴的交点为B.(1)求抛物线的解析式与点B坐标;(2)若点D在x轴上,使△ABD是等腰三角形,求所有满足条件的点D的坐标;(3)点M在抛物线上,点N在抛物线的对称轴上,若以A、B、M、N为顶点的四边形是平行四边形,其中AB ∥MN,请直接写出所有满足条件的点M的坐标.5.如图,已知抛物线y=ax2+bx﹣3与x轴交于A、B两点,A(﹣1,0)与y轴交于点C,点E(1,﹣4)为抛物线的顶点,且OD=OA.(1)求抛物线的解析式;(2)设∠DBC=α,∠CBE=β,求sin(α﹣β)的值;(3)探究坐标轴上是否存在点P,使得以P、A、C三点为顶点的三角形与△BCE相似,若存在,请指出点P 的位置,并直接写出点P的坐标,若不存在,请说明理由.6.如图,在平面直角坐标系中,抛物线y=ax2+bx+c与两坐标轴分别交于点A、B、C,直线y=﹣x+4经过点B,与y轴交点为D,M(3,﹣4)是抛物线的顶点.(1)求抛物线的解析式.(2)已知点N在对称轴上,且AN+DN的值最小.求点N的坐标.(3)在(2)的条件下,若点E与点C关于对称轴对称,请你画出△EMN并求它的面积.(4)在(2)的条件下,在坐标平面内是否存在点P,使以A、B、N、P为顶点的四边形是平行四边形?若存在,请直接写出点P的坐标;若不存在,请说明理由.7.如图,抛物线y=a(x+2)(x﹣4)与x轴交于A,B两点,与y轴交于点C,且∠ACO=∠CBO.(1)求线段OC的长度;(2)若点D在第四象限的抛物线上,连接BD、CD,求△BCD的面积的最大值;(3)若点P在平面内,当以点A、C、B、P为顶点的四边形是平行四边形时,直接写出点P的坐标.8.如图,抛物线y=﹣x2+bx+c与x轴交于点A(﹣1,0),与y轴交于点B(0,2),直线y=x﹣1与y轴交于点C,与x轴交于点D,点P是线段CD上方的抛物线上一动点,过点P作PF垂直x轴于点F,交直线CD于点E,(1)求抛物线的解析式;(2)设点P的横坐标为m,当线段PE的长取最大值时,解答以下问题.①求此时m的值.②设Q是平面直角坐标系内一点,是否存在以P、Q、C、D为顶点的平行四边形?若存在,直接写出点Q的坐标;若不存在,请说明理由.9.如图,已知抛物线经过两点A(﹣3,0),B(0,3),且其对称轴为直线x=﹣1.(1)求此抛物线的解析式;(2)直线x=m(在A、B之间)交抛物线于M点,交直线AB于N,用m表示线段MN的长.(3)若点P是抛物线上点A与点B之间的动点(不包括点A,点B),求△P AB的面积的最大值,并求出此时点P的坐标.10.如图,在平面直角坐标系中,二次函数y=ax2+bx﹣4(a≠0)的图象与x轴交于点A(﹣2,0)与点C(8,0)两点,与y轴交于点B,其对称轴与x轴交于点D.(1)直接写出B点的坐标;(2)求该二次函数的解析式;(3)若点P(m,n)是该二次函数图象上的一个动点(其中m>0,n<0),连结PB,PD,BD,AB.请问是否存在点P,使得△BDP的面积恰好等于△ADB的面积?若存在请求出此时点P的坐标,若不存在说明理由.11.如图,抛物线y=ax2+bx(a≠0)与x轴交于原点及点A,且经过点B(4,8),对称轴为直线x=﹣2,顶点为D.(1)填空:抛物线的解析式为,顶点D的坐标为,直线AB的解析式为;(2)在直线AB左侧抛物线上存在点E,使得∠EBA=∠ABD,求E的坐标;(3)连接OB,点P为x轴下方抛物线上一动点,过点P作OB的平行线交直线AB于点Q,当S△POQ:S△BOQ =1:2时,求出点P的坐标.12.如图,在平面直角坐标系中,点O为坐标原点,抛物线y=x2+bx+c与x轴交于A、B两点且点B(3,0),与y 轴的负半轴交于点C,OB=OC.(1)求此抛物线的解析式;(2)在(1)的条件下,连接AC,点P为直线BC下方的抛物线上的一点,过点P作PQ∥AC交AB于点Q,交直线BC于点D,若PD=DQ,求点P的坐标.(3)在(1)的条件下,点D为该抛物线的顶点,过点C作x轴的平行线交抛物线与另一点R,过点R作RH⊥AB于点H,该抛物线对称轴右侧的抛物线上有一点M,连接DM交RH于点Q,当MQ=2RQ时,求∠MQH的度数.13.如图,在平面直角坐标系中,抛物线y=﹣x2+4x+5与y轴交于点A,与x轴的正半轴交于点C.(1)求直线AC解析式;(2)过点A作AD平行于x轴,交抛物线于点D,点F为抛物线上的一点(点F在AD上方),作EF平行于y 轴交AC于点E,当四边形AFDE的面积最大时?求点F的坐标,并求出最大面积;(3)若动点P先从(2)中的点F出发沿适当的路径运动到抛物线对称轴上点M处,再沿垂直于y轴的方向运动到y轴上的点N处,然后沿适当的路径运动到点C停止,当动点P的运动路径最短时,求点N的坐标,并求最短路径长.14.如图1,抛物线y=﹣x2+2x+3的图象与x轴交于点A、B,与y轴交于点C,连接BC.(1)求直线BC的解析式;(2)如图2,点P是抛物线在第一象限内的一点,作PQ∥y轴交BC于Q,当线段PQ的长度最大时,在x轴上找一点M,使PM+CM的值最小,求PM+CM的最小值;(3)抛物线的顶点为点E,连接AE,在抛物线上是否存在一点N,使得直线AN与直线AE的夹角为45度,若存在请直接写出满足条件的点N的坐标,若不存在,请说明理由.15.如图,抛物线y=ax2+bx+c与x轴交于点A(﹣1,0),B两点,与y轴交于点C(0,3),抛物线的顶点在直线x=1上.(1)求抛物线的解析式;(2)点P为第一象限内抛物线上的一个动点,过点P做PQ∥y轴交BC与点Q,当点P在何位置时,线段PQ 的长度有最大值?(3)点M在x轴上,点N在抛物线对称轴上,是否存在点M,点N,使以点M,N,C,B为顶点的四边形是平行四边形?若存在,请求出点M的坐标;若不存在,请说明理由.16.如图,二次函数y=﹣+bx+c的图象经过A(﹣2,0),B(0,4)两点.(1)求这个二次函数的解析式,并直接写出顶点D的坐标;(2)若该抛物线与x轴的另一个交点为C,点P为第一象限内抛物线上一点,求P点坐标为多少时,△BCP的面积最大,并求出这个最大面积.(3)在直线CD上有点E,作EF⊥x轴于点F,当以O、B、E、F为顶点的四边形是矩形时,直接写出E点坐标.17.如图,在平面直角坐标系中,抛物线y=ax2+bx+c与x轴交于A(﹣2,0),B(8,0)两点,与y轴交于点C,且OC=2OA,抛物线的对称轴x轴交于点D.(1)求抛物线的解析式;(2)点P是第一象限内抛物线上位于对称轴右侧的一个动点,设点P点的横坐标为m,且S△CDP=S△ABC,求m的值;(3)K是抛物线上一个动点,在平面直角坐标系中是否存在点H,使B、C、K、H为顶点的四边形成为矩形?若存在,直接写出点H的坐标;若不存在,说明理由.18.如图,直线y=﹣x+2与x轴交于点A,与y轴交于点B,抛物线y=﹣+bx+c经过A,B两点.(1)求抛物线的解析式;(2)点P在抛物线上,点Q在直线AB上,当P,Q关于原点O成中心对称时,求点Q的坐标;(3)点M为直线AB上的动点,点N为抛物线上的动点,当以点O、B、M、N为顶点的四边形是平行四边形时,请直接写出点M的坐标.19.如图,已知抛物线y=x2+bx+c与x轴相交于A(﹣1,0),B(m,0)两点,与y轴相交于点C(0,﹣3),抛物线的顶点为D.(1)求B、D两点的坐标;(2)若P是直线BC下方抛物线上任意一点,过点P作PH⊥x轴于点H,与BC交于点M,设F为y轴一动点,当线段PM长度最大时,求PH+HF+CF的最小值;(3)在第(2)问中,当PH+HF+CF取得最小值时,将△OHF绕点O顺时针旋转60°后得到△OH′F′,过点F′作OF′的垂线与x轴交于点Q,点R为抛物线对称轴上的一点,在平面直角坐标系中是否存在点S,使得点D、Q、R、S为顶点的四边形为菱形,若存在,请直接写出点S的坐标,若不存在,请说明理由.20.如图,已知直线y=﹣x+2与两坐标轴分别交于A、B两点,抛物线y=﹣x2+bx+c经过点A、B,点P为直线AB上的一个动点,过P作y轴的平行线与抛物线交于C点,抛物线与x轴另一个交点为D.(1)求图中抛物线的解析式;(2)当点P在线段AB上运动时,求线段PC的长度的最大值;(3)在直线AB上是否存在点P,使得以O、A、P、C为顶点的四边形是平行四边形?若存在,请求出此时点P 的坐标,若不存在,请说明理由.21.如图,直线y=x+2与抛物线y=ax2+bx+6相交于A(,)和B(4,m),直线AB交x轴于点E,点P是线段AB上异于A、B的动点,过点P作PC⊥x轴于点D,交抛物线于点C.(1)求抛物线的解析式;(2)连结AC、BC,是否存在一点P,使△ABC的面积等于14?若存在,请求出此时点P的坐标;若不存在,请说明理由.(3)若△P AC与△PDE相似,求点P的坐标.22.如图1,抛物线的顶点A的坐标为(1,4),抛物线与x轴相交于B,C两点,与y轴交于点D(0,3).(1)求抛物线的表达式以及点B的坐标;(2)在抛物线的对称轴上是否存在一点P,使得DP+CP最小,如果存在,求出点P的坐标;如果不存在,请说明理由.(3)点Q是线段BD上方抛物线上的一个动点.过点Q作x轴的垂线,交线段BD于点E,再过点Q作QF∥x 轴交抛物线于点F,连结EF,请问是否存在点Q使△QEF为等腰直角三角形?若存在,求出点Q的坐标;若不存在,说明理由.23.如图,抛物线y=(x+2)2+m与x轴交于A,B两点,与y轴交于点C.点D在抛物线上,且与点C关于抛物线的对称轴对称,抛物线的顶点为M,点B的坐标为(﹣1,0).(1)求抛物线的解析式及A,C,D的坐标;(2)判断△ABM的形状,并证明你的结论;(3)若点P是直线BD上一个动点,是否存在以P,C,D为顶点的三角形与△ABD相似?若存在,请直接写出点P的坐标;若不存在,请说明理由24.已知抛物线y=x2+bx+c与x轴交于A(4,0)、B(﹣2,0),与y轴交于点C.(1)求抛物线的解析式;(2)点D为第四象限抛物线上一点,设点D的横坐标为m,四边形ABCD的面积为S,求S与m的函数关系式,并求S的最值;(3)点P在抛物线的对称轴上,且∠BPC=45°,请直接写出点P的坐标.25.如图,在平面直角坐标系中抛物线y=ax2+bx+c交x轴于点A(﹣2,0)、B(4,0),交y轴于点C(0,﹣3).(1)求抛物线的解析式;(2)动点D在第四象限且在抛物线上,当△BCD面积最大时,求点D坐标,并求△BCD面积的最大值;(3)抛物线的对称轴上是否存在一点Q,使得∠QBC=45°,如果存在,直接写出点Q坐标,不存在,请说明理由.26.已知:如图,抛物线y=x2﹣2x﹣c与x轴交于A、B两点,与y轴交于点C(0,﹣3),该抛物线的顶点为M.(1)求点A、B的坐标以及c的值.(2)求直线BM的函数解析式.(3)试说明:点C在以BM为直径的圆上.(4)在抛物线上是否存在点P,使直线CP把△BCM分成面积相等的两部分?若存在,请求出点P的坐标;若不存在,请说明理由.27.如图,直线l:y=﹣3x+8与x轴、y轴分别相交于A、B两点,抛物线y=ax2﹣2ax+a+9(a<0)经过点B.(1)求a的值,并写出抛物线的表达式;(2)已知点M是抛物线上的一个动点,并且点M在第一象限内,连接AM、BM,①当点M(2,n)时,求n,并求△ABM的面积.②当点M的横坐标为m,△ABM的面积为S,求S与m的函数表达式,并求出S的最大值和此时点M的坐标.28.如图1,已知抛物线y=﹣x2+2x+c与x轴交于A、B两点,其中点A(﹣1,0),抛物线与y轴交于点C,顶点为D.(1)如图2,直线l是抛物线的对称轴,点P是直线l上一动点,是否存在点P,使△PBC是直角三角形?若存在,求点P的坐标;若不存在,说明理由.(2)如图3,连接BC,点M是直线BC上方的抛物线上的一个动点,当△MBC的面积最大时,求△MBC的面积的最大值;点N是线段BC上的一点,求MN+BN的最小值.29.如图,已知抛物线y=ax2+bx+c经过A(﹣3,0)、B(8,0)、C(0,4)三点,点D是抛物线上的动点,连结AD与y轴相交于点E,连结AC,CD.(1)求抛物线所对应的函数表达式;(2)当AD平分∠CAB时,①求直线AD所对应的函数表达式;②设P是x轴上的一个动点,若△P AD与△CAD相似,求点P的坐标.30.如图,抛物线y=ax2+bx过A(4,0),B(1,3)两点.(1)求该抛物线的解析式;(2)点P是抛物线上一点,且位于第一象限,当△ABP的面积为3时,求出点P的坐标;(3)过B作BC⊥OA于C,连接OB,点G是抛物线上一点,当∠BAG+∠OBC=∠BAO时,请直接写出此时点G的坐标.31.如图,已知抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=﹣1,且抛物线经过A(1,0),C(0,3)两点,与x轴交于点B.(1)若直线y=mx+n经过B、C两点,求直线BC和抛物线的解析式;(2)在抛物线的对称轴x=﹣1上找一点M,使点M到点A的距离与到点C的距离之和最小,求出点M的坐标:(3)在抛物线上存在点P,使得△APB的面积与△ACB的面积相等,求点P的坐标.32.如图1,已知抛物线;C1:y=﹣(x+2)(x﹣m)(m>0)与x轴交于点B、C(点B在点C的左侧),与y 轴交于点E.(1)求点B、点C的坐标;(2)当△BCE的面积为6时,若点G的坐标为(0,b),在抛物线C1的对称轴上是否存在点H,使得△BGH 的周长最小,若存在,则求点H的坐标(用含b的式子表示);若不存在,则请说明理由;(3)在第四象限内,抛物线C1上是否存在点F,使得以点B、C、F为顶点的三角形与△BCE相似?若存在,求m的值;若不存在,请说明理由.33.如图,抛物线y=﹣x2+bx+c交x轴于A,B两点,交y轴于点C直线y=﹣x+2经过点B,C.(1)求抛物线的解析式;(2)点P是直线BC上方抛物线上一动点,设点P的横坐标为m.①求△PBC面积最大值和此时m的值;②Q是直线BC上一动点,是否存在点P,使以A、B、P、Q为顶点的四边形是平行四边形,若存在,直接写出点P的坐标.34.如图,平面直角坐标系中,抛物线y=ax2+bx+4与x轴交于A、B两点,A左B右(AO<BO),交y轴于C,AB=10,∠ACB=90°.(1)求抛物线解析式;(2)点P在第一象限中的抛物线上,PQ⊥AB于Q,交CB于T,设P点横坐标为t,PT的长为d,求出d与t 的函数解析式;(3)在(2)条件下,过C作x轴的平行线交抛物线于D,交PQ于F,连DQ,延长CP、QD交于R点,若CR=QR,求R点坐标.35.如图,抛物线C1的图象与x轴交A(﹣3,0),B(1,0)两点,与y轴交于点C(0,3)点D为抛物线的顶点.(1)求抛物线C1的解析式;(2)将抛物线C1关于直线x=1对称后的抛物线记为C2,将抛物线C1关于点B对称后的抛物线记为C3,点E 为抛物线C3的顶点,在抛物线C2的对称轴上是否存在点F,使得△BEF为等腰三角形?若存在请求出点F的坐标,若不存在请说明理由.36.如图,对称轴x=﹣1的抛物线y=ax2+bx+c与x轴交于A(2,0),B两点,与y轴交于点C(0,﹣2),(1)求抛物线的函数表达式;(2)若点P是直线BC下方的抛物线上的动点,求△BPC的面积的最大值;(3)若点P在抛物线对称轴的左侧运动,过点P作PD⊥x轴于点D,交直线BC于点E,且PE=OD,求点P的坐标;(4)在对称轴上是否存在一点M,使△AMC的周长最小.若存在,请求出M点的坐标和△AMC周长的最小值;若不存在,请说明理由.37.如图,二次函数y=ax2+bx+c(a≠0)的图象交x轴于A,B两点,交y轴于点D,点B的坐标为(3,0),顶点C的坐标为(1,4).(1)求二次函数的解析式和直线BD的解析式;(2)点P是直线BD上的一个动点,过点P作x轴的垂线,交抛物线于点M,当点P在第一象限时,求线段PM长度的最大值;(3)在抛物线上是否存在点Q,且点Q在第一象限,使△BDQ中BD边上的高为?若存在,求出点Q的坐标;若不存在,请说明理由.38.已知抛物线y=ax2+bx+c(a≠0)与x轴交于A,B两点,与y轴交于点C,点B和点C的坐标分别为(3,0)、(0,﹣3),抛物线的对称轴为x=1,D为抛物线的顶点.(1)求抛物线的解析式.(2)点E为线段BC上一动点,过点E作x轴的垂线,与抛物线交于点F,求四边形ACFB面积的最大值,以及此时点E的坐标.(3)抛物线的对称轴上是否存在一点P,使△PCD为等腰三角形?若存在,写出点P点的坐标;若不存在,说明理由.39.已知抛物线C1:y=ax2﹣2ax﹣3a﹣2(a>0),直线l:y=﹣x+b.(1)如图1,若抛物线C1的顶点为D(1,﹣6),直线l与C1交于两点H、Q,∠HDQ=45°.①求抛物线C1的解析式;②求b的值;(2)如图2,将抛物线C1向上平移2个单位得抛物线C2,直线l与C2交于两点M、N(M在N左侧),E为MN中点,点P为y轴左侧抛物线上一动点,过E点作x轴的垂线分别交直线MP、NP、抛物线C2于G、F、H,求线段FH与GH的数量关系.40.如图,抛物线的顶点P(m,1)(m>0),与y轴的交点C(0,m2+1).(1)求抛物线的解析式(用含m的式子表示)(2)点N(x,y)在该抛物线上,NH⊥直线y=于点H,点M(m,)且∠NMH=60°.①求证:△MNH是等边三角形;②当点O、P、N在同一直线上时,求m的值.41.如图,已知直线y=x+4交x轴于点A,交y轴于点B,抛物线y=﹣x2+bx+c经过点A、B.(1)求抛物线解析式;(2)点C(m,0)是x轴上异于A、O点的一点,过点C作x轴的垂线交AB于点D,交抛物线于点E.①当点E在直线AB上方的抛物线上时,连接AE、BE,求S△ABE的最大值;②当DE=AD时,求m的值.42.如图,已知在平面直角坐标系xOy中,直线y=x+与x轴交于点A,与y轴交于点B,点F是点B关于x轴的对称点,抛物线y=x2+bx+c经过点A和点F,与直线AB交于点C.(1)求b和c的值;(2)点P是直线AC下方的抛物线上的一动点,连结P A,PB.求△P AB的最大面积及点P到直线AC的最大距离;(3)点Q是抛物线上一点,点D在坐标轴上,在(2)的条件下,是否存在以A,P,D,Q为顶点且AP为边的平行四边形,若存在,直接写出点Q的坐标;若不存在,说明理由.43.如图,抛物线y=ax2+bx+c与x轴交于点A(﹣1,0),B两点,与y轴交于点C(0,3),抛物线的顶点在直线x=1上.(1)求抛物线的解析式;(2)点P为第一象限内抛物线上的一个动点,过点P做PQ∥y轴交BC于点Q,求线段PQ长度的最大值,及此时点P的坐标;(3)点M在x轴上,点N在抛物线的对称轴上,若以点M,N,C,B为顶点的四边形是平行四边形,请直接写出点M的坐标.44.如图,二次函数y=﹣x2+2x+3的图象与x轴交于点A、B,与y轴交于点C,顶点为D.(1)写出A、B、D三点的坐标;(2)若P(0,t)(t<﹣1)是y轴上一点,Q(﹣5,0),将点Q绕着点P顺时针方向旋转90°得到点E.当点E恰好在该二次函数的图象上时,求t的值;(3)在(2)的条件下,连接AD、AE.若M是该二次函数图象上一点,且∠DAE=∠MCB,求点M的坐标.45.如图,在平面直角坐标系xOy中,O为坐标原点,抛物线y=a(x+3)(x﹣1)(a>0)与x轴交于A,B两点(点A在点B的左侧).(1)求点A与点B的坐标;(2)若a=,点M是抛物线上一动点,若满足∠MAO不大于45°,求点M的横坐标m的取值范围.(3)经过点B的直线l:y=kx+b与y轴正半轴交于点C.与抛物线的另一个交点为点D,且CD=4BC.若点P 在抛物线对称轴上,点Q在抛物线上,以点B,D,P,Q为顶点的四边形能否成为矩形?若能,求出点P的坐标;若不能,请说明理由.46.如图,已知抛物线y=﹣+bx+c的图象经过点A(﹣1,0)和点C(0,2),点D与点C关于x轴对称,点P是x轴上的一个动点,设点P的坐标为(m,0),过点P作x轴的垂线l交抛物线于点Q,交直线BD于点M.(1)求该抛物线所表示的二次函数的表达式;(2)已知点F(0,),当点P在x轴正半轴上运动时,试求m为何值时,四边形DMQF是平行四边形?(3)点P在线段AB运动过程中,是否存在点Q,使得以点B、Q、M为顶点的三角形与△BOD相似?若存在,求出点Q的坐标;若不存在,请说明理由.47.如图,直线y=x﹣2与x轴交于点B,与y轴交于点A,抛物线y=ax2﹣x+c经过A,B两点,与x轴的另一交点为C.(1)求抛物线的解析式;(2)M为抛物线上一点,直线AM与x轴交于点N,当=时,求点M的坐标;(3)P为抛物线上的动点,连接AP,当∠P AB与△AOB的一个内角相等时,直接写出点P的坐标.48.如图,抛物线y=﹣+bx+c交x轴于点A、B(A在B左侧),交y轴于点C,直线y=﹣x+6经过点B、C.(1)求抛物线解析式;(2)点P为第一象限抛物线上一点,连接P A交BC于点D,设点P的横坐标为t,的值为d,求d与t的函数关系式(不要求写出自变量t的取值范围);(3)在(2)的条件下,点E为线段OB上一点,连接CE,过点O作CE的垂线交BC于点G,连接PG并延长交OB于点F,若∠OGC=∠BGF,F为BE中点,求t的值.49.如图,已知直线y=x+3与x轴交于点A,与y轴交于点B,抛物线y=﹣x2+bx+c经过A、B两点,与x轴交于另一个点C,对称轴与直线AB交于点E,抛物线顶点为D.(1)点A的坐标为,点B的坐标为.(2)①求抛物线的解析式;②直线AB与抛物线的对称轴交于点E,在x轴上是否存在点M,使得ME+MB最小,求出点M的坐标.(3)点P从点D出发,沿对称轴向下以每秒1个单位长度的速度匀速运动,设运动的时间为t秒,当t为何值时,以P、B、C为顶点的三角形是等腰三角形?直接写出所有符合条件的t值.50.定义:在平面直角坐标系中,如果点M(m,n)和N(n,m)都在某函数的图象l上,则称点M、N是图象l 的一对“相关点”.例如,点M(1,2)和点N(2,1)是直线y=﹣x+3的一对相关点.(1)请写出反比例函数y=的图象上的一对相关点的坐标;(2)如图,抛物线y=x2+bx+c的对称轴为直线x=1,与y轴交于点C(0,﹣1).①求抛物线的解析式;②若点M、N是抛物线y=x2+bx+c上的一对相关点,直线MN与x轴交于点A(1,0),点P为抛物线上M、N 之间的一点,求△PMN面积的最大值.。
人教版数学中考复习训练专题三 函数图象与性质综合题 附答案
专题三 函数图象与性质综合题类型一 交点问题典例精析例 在平面直角坐标系xOy 中,已知点A (-1,2),点B (3,2),点C (-2,-3)是平面内3个点.(1)连接AB ,若直线y =34x +b 与线段AB 有交点,求b 的取值范围;(2)连接BC ,若直线y =34x +b 与线段BC 在第三象限内有交点,求b 的取值范围;(3)若直线y =kx +3与直线BC 无交点,求k 的值;(4)若直线AB 、直线y =kx +3与直线BC 能够围成三角形,求k 的取值范围;(5)若双曲线y =k x 过点A 且与直线y =34x +b 在(-5≤x ≤-1)有交点,求b 的取值范围;(6)连接AB ,若抛物线y =x 2+c 与线段AB 有公共点,求c 的取值范围;(7)若抛物线y =x 2+c (-2≤x ≤2)与直线BC 有一个交点,求c 的取值范围;(8)连接AB ,若抛物线y =(x -k )2与线段AB 有公共点,求k 的取值范围;(9)若双曲线y =k x过点B 且与抛物线y =x 2 +c 在2≤x ≤6有交点,求c 的取值范围.1. (2020河北24题10分)表格中的两组对应值满足一次函数y =kx +b ,现画出了它的图象为直线l ,如图.而某同学为观察k ,b 对图象的影响,将上面函数中的k 与b 交换位置后得另一个一次函数,设其图象为直线l ′.(1)求直线l 的解析式;(2)请在图上画出..直线l ′(不要求列表计算),并求直线l ′被直线l 和y 轴所截线段的长; (3)设直线y =a 与直线l ,l ′及y 轴有三个不同的交点,且其中两点关于第三点对称,直接..写出a 的值.第1题图2. (2016河北26题12分)如图,抛物线L :y =-12(x -t )(x -t +4)(常数t >0)与x 轴从左到右的交点为B ,A ,过线段OA 的中点M 作MP ⊥x 轴,交双曲线y =k x(k >0,x >0)于点P ,且OA ·MP =12. (1)求k 值;(2)当t =1时,求AB 长,并求直线MP 与L 对称轴之间的距离;(3)把L 在直线MP 左侧部分的图象(含与直线MP 的交点)记为G ,用t 表示图象G 最高点的坐标;(4)设L 与双曲线有个交点的横坐标为x 0,且满足4≤x 0≤6,通过L 位置随t 变化的过程,直接..写出t的取值范围.第2题图针对演练3. (2020承德二模)如图,在平面直角坐标系中,点A,B,C三点的坐标分别为(2,0),(1,2),(4,3),直线l的解析式为y=kx+4-3k(k≠0).(1)当k=1时,直线l与x轴交于点D,则点D的坐标为________,S△ABD=________;(2)小明认为点C也在直线l上,他的判断是否正确,请说明理由;(3)若线段AB与直线l有交点,求k的取值范围.第3题图4. 如图,在平面直角坐标系中,边长为2的正方形ABCD 位于第二象限,且AB ∥x 轴,点B 在点C的正下方,双曲线y =1-2m x(x <0)经过点C. (1)求m 的取值范围;(2)若点B (-1,1),判断双曲线是否经过点A ;(3)设点B (a ,2a +1).①若双曲线经过点A ,求a 的值;②若直线y =2x +2交AB 于点E ,双曲线与线段AE 有交点,求a 的取值范围.第4题图5.(2020石家庄模拟)如图,已知点A(0,2),B(2,2),C(-1,-2),抛物线F:y=x2-2mx+m2-2与直线x=-2交于点P.(1)当抛物线F经过点C时,求它的表达式;(2)设点P的纵坐标为y p,求y p的最小值,此时抛物线F上有两点(x1,y1),(x2,y2),且x1<x2≤-2,比较y1与y2的大小;(3)当抛物线F与线段AB有公共点时,直接写出m的取值范围.第5题图6. 如图,已知抛物线y =ax 2-2x +3a (a >0)与x 轴相交于不同的两点A (x 1,0),B (x 2,0),且x 1<x 2.点P 为双曲线y =k x(1≤x ≤4)上的任意一点,过点P 作x 轴的垂线,交x 轴于点C ,交抛物线y =ax 2-2x +3a (a >0)于点Q .(1)若△POC 的面积为6,求k 值;(2)若k =3.①当a =12时,求点A 、B 的坐标,并求当点P 到抛物线对称轴的距离最大时,PQ 的值; ②若抛物线与双曲线有一个交点,直接写出a 的取值范围.第6题图7. (2020唐山开平区一模)已知,如图,二次函数L ∶y =mx 2+2mx +k (其中m ,k 是常数,k 为正整数),(1)若L 经过点(1,k +6),求m 的值;(2)当m =2,若L 与x 轴有公共点时且公共点的横坐标为非零的整数,确定k 的值;(3)在(2)的条件下,将L ∶y =mx 2+2mx +k 的图象向下平移8个单位,得到函数图象M ,求M 的解析式;(4)在(3)的条件下,将M 的图象在x 轴下方的部分沿x 轴翻折,图象的其余部分保持不变,得到一个新的图象N ,请结合新的图象解答问题,若直线y =12x +b 与N 有两个公共点时,请直接写出b 的取值范围.第7题图8.如图①,二次函数y=ax2-3ax+c的图象与x轴交于点A、B,与y轴交于点C,直线y=-x+4经过点B、C.(1)求抛物线的表达式;(2)过点A的直线y=kx+k交抛物线于点M,交直线BC于点N,连接AC,当直线y=kx+k平分△ABC 的面积时,求点M的坐标;(3)如图②,把抛物线位于x轴上方的图象沿x轴翻折,当直线y=kx+k与翻折后的整个图象只有三个交点时,求k的取值范围.第8题图类型二整点问题例我们把横,纵坐标都是整数的点叫作整点.在平面直角坐标系中,点A(5,0),B(0,5),C(-1,0).(1)若直线l过点A,B,求直线l与坐标轴围成的区域W1内(含边界)整点的个数;(2)连接AB,BC,AC,求△ABC所围成的区域W2内(不含边界)整点的个数;(3)若直线y=a、线段AB与y轴所围成的三角形区域W3内(含边界)恰有6个整点,求a的取值范围;(4)若直线y=x+b与直线AB及y轴所围成的三角形区域W4内(不含边界)恰有4个整点,求b的取值范围;(5)若直线y=kx+2与直线BC及x轴所围成的区域W5内(不含边界)恰有4个整点,求k的取值范围;(6)若双曲线y =4x (x >0)与线段AB 交于D ,E 两点(点D 在点E 的上方),求曲线DE 与线段DE 所围成的区域W 6内(含边界)整点的个数;(7)在(6)的条件下,若直线y =x +b 与双曲线y =4x 交于点F ,与y 轴交于点G ,连接DG ,若线段DG ,FG ,曲线DF 所围成的区域W 7内(含边界)恰有5个整点,求b 的取值范围;(8)若抛物线y =x 2-2x +m -2与过点B 的直线y =5所围成的区域W 8内(不含边界)有4个整点,求m 的取值范围;(9)若抛物线y =x 2-2x +m -2与直线y =-x +2交于M ,N 两点(点M 在点N 的左侧),将曲线MN 与线段MN 所围成的区域记为W 9,若W 9内(不含边界)恰好有4个整点,求m 的取值范围.1.(2019河北26题12分)如图,若b是正数..,直线l:y=b与y轴交于点A;直线a:y=x-b与y轴交于点B;抛物线L:y=-x2+bx的顶点为C,且L与x轴正半轴的交点为D.(1)若AB=8,求b的值,并求此时L的对称轴与a的交点坐标;(2)当点C在l下方时,求点C与l距离的最大值;(3)设x0≠0,点(x0,y1),(x0,y2),(x0,y3)分别在l,a和L上,且y3是y1,y2的平均数,求点(x0,0)与点D间的距离;(4)在L和a所围成的封闭图形的边界上..写出b...,把横、纵坐标都是整数的点称为“美点”,分别直接=2019和b=2019.5时“美点”的个数.第1题图针对演练2.在平面直角坐标系xOy中,直线x=5与直线y=3,x轴分别交于点A,B,直线y=kx+b(k≠0)经过点A且与x轴交于点C(9,0).(1)求直线y=kx+b的表达式;(2)横、纵坐标都是整数的点叫做整点.记线段AB,BC,CA围成的区域(不含边界)为W.①结合函数图象,直接写出区域W内的整点个数;②将直线y=kx+b向下平移n个单位,当平移后的直线与区域W没有公共点时,请结合图象直接写出n的取值范围.第2题图3. 已知点A (4,1),若直线y 1=14x +b 与双曲线y 2=4x(x >0)交于点B ,与y 轴交于点C.探究:由双曲线y 2=4x (x >0)与线段OA ,OC ,BC 围成的区域M 内(不含边界)整点的个数(点的横、纵坐标都是整数的点称为整点).(1)当b =-1时,如图,求区域M 内的整点的个数;(2)当b <0时,若区域M 内恰好有4个整点,求b 的取值范围.第3题图4. 如图,函数y 1=-x 2+12x +c (-2020≤x ≤1)的图象记为L 1,最大值为M 1;函数y 2=-x 2+2cx +1(1≤x≤2020) 的图象记为L 2,最大值为M 2.L 1的右端点为A ,L 2的左端点为B ,L 1,L 2合起来的图形记为L .(1)当c =1时,求M 1,M 2的值;(2)若把横、纵坐标都是整数的点称为“美点”,当点A ,B 重合时,求L 上“美点”的个数; (3)若M 1,M 2的差为4716,直接写出c 的值.第4题图5. 如图,在平面直角坐标系中,设抛物线y =-x 2+bx +b -1为L 1,A (-5,-2),B (5,-2). (1)若L 1经过原点,求抛物线L 1的解析式,并求出此时抛物线的顶点坐标;(2)无论b 取何值,L 1总经过一个定点M ,随着b 的变化,抛物线L 1的顶点总在另一条抛物线上运动,且这条抛物线的顶点为M ,若设另一条抛物线为L 2.①求点M 的坐标; ②求出抛物线L 2的解析式;(3)若把抛物线L 1:y =-x 2+bx +b -1经过线段AB 端点时与线段AB 所围成的封闭图形称为C ,图形C 边界上横、纵坐标都是整数的点为“理想点”,求图形C 上“理想点”的个数.第5题图专题三 函数图象与性质综合题类型一 交点问题例 解:(1)∵直线y =34x +b 与线段AB 有交点,即直线y =34x +b 与线段AB 两端点交点为临界点,如解图①②,将A (-1,2)代入y =34x +b ,得b =114,将B (3,2)代入y =34x +b ,得b =-14,∴b 的取值范围为-14≤b ≤114;例题解图①例题解图②(2)设线段BC 的解析式为y =kx +m (k ≠0),将B (3,2),C (-2,-3)代入,得⎩⎪⎨⎪⎧3k +m =2-2k +m =-3,解得⎩⎪⎨⎪⎧k =1m =-1,∴线段BC 的解析式为y =x -1(-2≤x ≤3), ∴线段BC 与y 轴的交点为(0,-1). 当y =34x +b 过点(0,-1),如解图③,∴即b =-1,当y =34x +b 过点C (-2,-3),如解图④,∴-3=-32+b ,∴b =-32,∴当直线y =34x +b 与线段BC 在第三象限内有交点,b 的取值范围为-32≤b <-1;例题解图③例题解图④(3)由(2)知,直线BC 的解析式为y =x -1, 若y =kx +3与直线BC 无交点,∴直线y =kx +3与直线BC 平行,如解图⑤, ∴当k =1时,直线y =kx +3与直线BC 无交点;例题解图⑤(4)由(2)知直线BC 的解析式为y =x -1, 由题可知直线AB 的解析式为y =2,若直线AB ,直线y =kx +3与直线BC 能够围成三角形, 即直线y =kx +3与直线AB 、直线BC 都有交点, ∴k ≠1,k ≠0.∵直线AB 与直线BC 交于点B ,∴当直线y =kx +3过点B (3,2)时,直线AB 、直线y =kx +3与直线BC 交于一点,不能围成三角形.∴将B (3,2)代入y =kx +3,得3k +3=2,∴k =-13.综上所述,k ≠-13,0,1;(5)∵双曲线y =kx 过点A (-1,2),∴k =-2,∴双曲线的解析式为y =-2x .∵-5≤x ≤-1. ∴令x =-5,则y =25.当直线y =34x +b 与双曲线y =-2x 相切时,如解图⑥,∴34x +b =-2x ,整理得34x 2+bx +2=0, ∴b 2-6=0,∴b =6或b =-6(舍去).当直线y =34x +b 过点(-5,25),如解图⑦,∴25=-5×34+b , ∵b =8320.由解图可知,b 的取值范围为6≤b ≤8320;例题解图⑥例题解图⑦(6)由题可知A (-1,2),B (3,2), 抛物线y =x 2+c 的对称轴为直线x =0,∴当抛物线顶点在线段AB 上时,如解图⑧, ∴c =2.当抛物线过点B 时,如解图⑨, ∴2=9+c ,∴c =-7, ∴c 的取值范围为-7≤c ≤2;例题解图⑧例题解图⑨(7)联立⎩⎪⎨⎪⎧y =x -1y =x 2+c ,整理得x 2-x +c +1=0,如解图○10, ∴(-1)2-4(c +1)=0, ∴c =-34.例题解图○10对于抛物线y=x2+c,当x=2时,y=4+c,当点(2,4+c)在直线BC上时,如解图⑪,此时抛物线与直线BC有两个交点,将(2,4+c)代入直线BC解析式y=x-1,得2-1=4+c,解得c=-3;例题解图⑪当x=-2时,y=4+c,当点(-2,4+c)在直线BC上时,如解图⑫,此时抛物线与直线BC有一个交点,将(-2,4+c)代入直线BC解析式y=x-1,得-2-1=4+c,解得c=-7;例题解图⑫综上所述,抛物线y=x2+c(-2≤x≤2)与直线BC有一个交点,c的取值范围为-7≤c<-3,或c=-34;(8)∵A(-1,2),B(3,2),抛物线y=(x-k)2与线段AB有公共点,则当y=(x-k)2过点A(-1,2),如解图⑬,∴2=(-1-k)2,∴k=-1-2或k=-1+2(舍).当y=(x-k)2过点B(3,2),如解图⑭,∴2=(3-k)2,∴k=3+2或k=3-2(舍).∴k 的取值范围为-1-2≤k ≤3+2;例题解图⑬ 例题解图⑭(9)∵双曲线y =kx 过点B (3,2),∴2=k 3,∴k =6,∴双曲线的解析式为y =6x .∵2≤x ≤6, ∴当x =2时,y =3, 当x =6时,y =1,当抛物线过点(2,3)时,如解图⑮,将(2,3)代入y =x 2+c , 即3=4+c , ∴c =-1,同理当抛物线过点(6,1)时,将(6,1)代入y =x 2+c , 即1=36+c ,∴c =-35, ∴c 的取值范围为-35≤c ≤-1.例题解图⑮1. 解:(1)∵(-1,-2),(0,1)在函数y =kx +b 的图象上,∴⎩⎪⎨⎪⎧-2=-k +b 1=b ,解得⎩⎪⎨⎪⎧k =3b =1.∴直线l 的解析式为y =3x +1;(3分) (2)依题意,直线l ′的解析式为y =x +3, ∴直线l ′的图象如解图,第1题解图联立方程组⎩⎪⎨⎪⎧y =3x +1,y =x +3,解得⎩⎪⎨⎪⎧x =1,y =4,(5分)∴直线l 与直线l ′的交点坐标为(1,4). 又∵直线l ′与y 轴的交点坐标为(0,3),∴直线l ′被直线l 和y 轴所截得的线段长为(1-0)2+(4-3)2=2;(7分) (3)a 的值为52或175或7.(10分)2. 解:(1)设点P (x ,y ),则MP =y ,由OA 的中点为M ,知OA =2x ,代入OA ·MP =12,得2x ·y =12,即xy =6, ∵点P 在双曲线y =kx (k >0,x >0)上,∴k =xy =6;(3分)(2)当t =1时,令y =0,则0=-12(x -1)(x +3),解得x 1=1,x 2=-3,∵点B 在点A 左边, ∴B (-3,0),A (1,0), ∴AB =4.(5分)∴L 的对称轴为直线x =-1,∵点M 的坐标为(12,0),∴MP 与L 对称轴的距离为32;(6分)(3)∵A (t ,0),B (t -4,0), ∴L 的对称轴为直线x =t -2.(7分) 又∵点M 的横坐标为t2,∴当t -2≤t2,即t ≤4时,顶点(t -2,2)就是G 的最高点;当t -2>t 2,即t >4时,L 与MP 的交点(t 2,-18t 2+t )就是G 的最高点;(10分)(4)5≤t ≤8-2或7≤t ≤8+ 2.(12分)第2题解图3. 解:(1)(-1,0),3;4. 解:(1)∵双曲线y =1-2mx (x <0)位于第二象限,∴1-2m <0, ∴m >12;(2)∵点B (-1,1), ∴A (-3,1),C (-1,3), ∵双曲线y =1-2mx (x <0)经过点C ,∴双曲线的解析式为y =-3x ,∵-3×1=-3, ∴双曲线经过点A ; (3)①∵点B (a ,2a +1),∴A (a -2,2a +1),C (a ,2a +3).∵双曲线y =1-2mx (x <0)经过点A 、C ,∴(a -2)(2a +1)=a (2a +3), 解得a =-13;②∵点E 在AB 上, ∴点E 的纵坐标为2a +1, 代入y =2x +2得,x =a -12,∴E (a -12,2a +1),∵C (a ,2a +3),双曲线y =1-2mx(x <0)经过点C , ∴双曲线为y =a (2a +3)x,把E (a -12,2a +1)代入得,2a +1=a (2a +3)a -12,解得a =-16,由①知,双曲线过点A 时,a =-13.∴双曲线与线段AE 有交点,a 的取值范围是-13≤a ≤-16.5. 解:(1)∵抛物线F 经过点C (-1,-2), ∴-2=1+2m +m 2-2. ∴m =-1.∴抛物线F 的表达式是y =x 2+2x -1;(2)当x =-2时,y P =4+4m +m 2-2=(m +2)2-2. ∴当m =-2时,y P 的最小值为-2. 此时抛物线F 的表达式是y =(x +2)2-2. ∴当x ≤-2时,y 随x 的增大而减小. ∵x 1<x 2≤-2, ∴y 1>y 2;(3)-2≤m ≤0或2≤m ≤4. 6. 解:(1)∵△POC 的面积为6,∴12x P ·y P =6. ∴x P ·y P =12. ∴k =12; (2)①∵a =12,∴抛物线的解析式为y =12x 2-2x +32.当y =0时,12x 2-2x +32=0,解得x 1=1,x 2=3.∵x 1<x 2,∴A (1,0),B (3,0).∵抛物线的解析式为y =12x 2-2x +32,∴抛物线的对称轴为直线x =2, ∵k =3,∴y =3x(1≤x ≤4).当点P 位于(4,34)时,点P 到x =2的距离最大,当x =4时,y =12×42-2×4+32=32,∴PQ =32-34=34;②3576≤a ≤54. 7. 解:(1)将点(1,k +6)代入y =mx 2+2mx +k 中,得m =2; (2)y =mx 2+2mx +k =2x 2+4x +k ,由题意得:b 2-4ac =16-8k ≥0,解得k ≤2, ∵k 为正整数, ∴k =1或2.当k =1时,方程2x 2+4x +0没有整数解,故舍去, 则k =2;(3)由(2)得m =2,k =2,∴y =2x 2+4x +2,向下平移8个单位,平移后的表达式为y =2x 2+4x +2-8=2x 2+4x -6;(4)-12<b <32或b >27332.第7题解图8. 解:(1)由直线y =-x +4知,点B 、C 的坐标分别为(4,0)、(0,4), 把点B 、C 的坐标分别为(4,0)、(0,4), 代入y =ax 2-3ax +c 中,得⎩⎪⎨⎪⎧c =416a -12a +c =0, 解得⎩⎪⎨⎪⎧a =-1c =4,∴抛物线的表达式为y =-x 2+3x +4; (2)由y =-x 2+3x +4,得A (-1,0). 如解图,过点N 作NG ⊥AB 于点G ,第8题解图∵直线y =kx +k 平分△ABC 的面积, ∴NG =12OC =2,∴当y =2时,2=-x +4,∴x =2, ∴N (2,2).把N (2,2)代入y =kx +k ,得k =23,∴直线AM 的解析式为k =23x +23,联立⎩⎪⎨⎪⎧y =23x +23y =-x 2+3x +4,解得⎩⎨⎧x 1=103y 1=269,⎩⎪⎨⎪⎧x 2=-1y 2=0.∴M (103,269);(3)翻折后的整个图象包括两部分:分别是抛物线y =x 2-3x -4(-1≤x ≤4)与y =-x 2+3x +4(x >4或x <-1).①当直线y =kx +k 与抛物线y =x 2-3x -4=(x -32)2-254(-1≤x ≤4)相交时,由⎩⎪⎨⎪⎧y =kx +ky =x 2-3x -4,得x 2-3x -4=kx +k , 整理,得x 2-(k +3)x -(k +4)=0, 解得x 1=-1,x 2=k +4. ∴y 1=0,y 2=k 2+5k . ∴两个函数图象有两个交点,其中一个交点为A (-1,0),另一个交点坐标为(k +4,k 2+5k ).观察图象可知:另一个交点在x 轴下方,横坐标在-1与4之间,纵坐标在-254与0之间.∴-1<k +4<4,解得-5<k <0. -254<k 2+5k <0,整理,得 4k 2+20k +25>0且k 2+5k <0, 解得,(2k +5)2>0且-5<k <0. k 为任意实数,(2k +5)2>0恒成立, ∴-5<k <0;②当直线y =kx +k 与图象y =-x 2+3x +4(x >4或x <-1)相交时, -x 2+3x +4=kx +k , 整理得x 2+(k -3)x +(k -4)=0 解得x 1=-1,x 2=4-k ,∴y 1=0,y 2=5k -k 2. ∴两个函数图象有两交点,其中一个是点A (-1,0),另一个交点坐标为(4-k ,5k -k 2). 观察图象可知:另一个交点的横坐标大于4,纵坐标小于0, 即4-k >4,解得k <0. 5k -k 2<0,∴k (5-k )<0, ∵k <0,∴5-k >0,∴k <5. ∴k <0.∴综上所述,当直线y =kx +k 与翻折后的整个图象只有三个交点时,k 的取值范围是-5<k <0.类型二 整点问题例 解:(1)如解图①,设直线l 的解析式为y =px +q , 将A (5,0),B (0,5)代入得,⎩⎪⎨⎪⎧5p +q =0,q =5,解得⎩⎪⎨⎪⎧p =-1,q =5. ∴直线l 的解析式为y =-x +5.结合图象可知,线段OA 上共有6个整点,线段OB (不含原点)上共有5个整点,线段AB 上(不含端点)共有4个整点,△AOB 内部共有6个整点,∴直线l 与坐标轴围成的区域W 1内(含边界)整点的个数为6+5+4+6=21个;例题解图①(2)如解图②,设直线BC 的解析式为y =p 1x +q 1, 将B (0,5),C (-1,0)代入得,⎩⎪⎨⎪⎧q 1=5,-p 1+q 1=0,解得⎩⎪⎨⎪⎧p 1=5,q 1=5, ∴直线BC 的解析式为y =5x +5,结合图象,△BOC(不含边界)所围成的区域内无整点,由(1)知,△AOB(不含边界)所围成的区域内有6个整点,∴△ABC所围成的区域W2内(不含边界)整点的个数等于线段OB(不含端点)上的整点个数加上△AOB 内部的整点个数为4+6=10个;例题解图②(3)如解图③,当a=3时,直线y=3,线段AB与y轴所围成的三角形区域W3内(含边界)恰好有6个整点,∴结合图象可知,当2<a≤3时,直线y=a,线段AB与y轴所围成的三角形区域W3内(含边界)恰好有6个整点;例题解图③(4)如解图④,当b=0时,y=x,此时y=x与直线AB及y轴所围成的三角形区域W4内(不含边界)有2个整点,当b=-1时,y=x-1,此时y=x-1与直线AB及y轴所围成的三角形区域W4内(不含边界)有4个整点,结合图象可知,-1≤b<0;例题解图④(5)如解图⑤,x <时当直线y =kx +2过(-5,1)时,直线y =kx +2与直线BC 及x 轴所围成的三角形区域W 5内(不含边界)有4个整点,将(-5,1)代入y =kx +2得k =15,当直线y =kx +2过(-4,1)时,直线y =kx +2与直线BC 及x 轴所围成的三角形区域W 5内(不含边界)有3个整点,将(-4,1)代入y =kx +2得k =14,结合图象可知,15≤k <14;同理,x >0时,当直线y =kx +2过(3,1)时,直线y =kx +2与直线BC 及x 轴所围成的三角形区域W 5内(不含边界)有3个整点,将(3,1)代入y =kx +2得k =-13,当直线y =kx +2过(4,1)时,直线y =kx +2与直线BC 及x 轴所围成的三角形区域W 5内(不含边界)有4个整点,将(4,1)代入y =kx +2得k =-14,∴-13≤k <-14,综上可得,15≤k <14或-13≤k <-14;例题解图⑤(6)如解图⑥,由图象可知曲线DE 上有(1,4)(2,2),(4,1)共3个整点,线段DE (不含端点)上有(2,3),(3,2)共2个整点,曲线DE 与线段DE 围成的区域内部无整点,∴曲线DE 与线段DE 所围成的区域W 6内(含边界)有5个整点;例题解图⑥(7)如解图⑦,当G 点与原点重合时,此时线段DG ,FG 与曲线DF 所围成的区域W 7内(含边界)有6个整点,此时b=0,如解图⑧,当点G的纵坐标在0与-1之间时,此时线段DG,FG与曲线DF所围成的区域W7内(含边界)有5个整点,如解图⑨,当G点与过(0,-1)时,此时线段DG,FG与曲线DF所围成的区域W7内(含边界)有8个整点,此时b=-1,∴-1<b<0;例题解图⑦例题解图⑧例题解图⑨(8)由抛物线y=x2-2x+m-2可得,抛物线的对称轴为直线x=1,且抛物线恒过点(0,m-2),如解图○10,当抛物线的顶点为(1,2)时,此时抛物线与直线y=5所围成的区域W8内(不含边界)有4个整点,分别为(1,3),(0,4),(1,4),(2,4),将(1,2)代入抛物线解析式得,1-2+m-2=2,解得m=5,当抛物线的顶点为(1,3)时,此时抛物线与直线y=5所围成的区域W8内(不含边界)有1个整点(1,4),将(1,3)代入抛物线解析式得,1-2+m-2=3,解得m=6,结合图象可知,5≤m<6.例题解图○10(9)由抛物线y=x2-2x+m-2可得,抛物线的对称轴为直线x=1,且抛物线恒过点(0,m-2),如解图⑪,当抛物线的顶点为(1,-2)时,此时抛物线与直线y=-x+2所围成的区域W9内(不含边界)有4个整点,分别为(0,0),(0,1),(1,0),(1,-1),将(1,-2)代入抛物线解析式得,1-2+m-2=-2,解得m=1,当抛物线的顶点为(1,-1)时,此时抛物线与直线y=-x+2所围成的区域W9内(不含边界)有2个整点,分别为(0,1),(1,0),将(1,-1)代入抛物线解析式得,1-2+m-2=-1,解得m=2,∴综上所述,1≤m<2.例题解图⑪1.解:(1)当x=0时,y=x-b=-b,∴B(0,-b),∵AB=8,A(0,b),∴b-(-b)=8.∴b=4;(2分)∴L 的解析式为y =-x 2+4x , ∴L 的对称轴为直线x =2,将x =2代入直线a 的解析式中得y =2-4=-2, ∴L 的对称轴与a 的交点坐标为(2,-2);(4分) (2)∵y =-x 2+bx =-(x -b 2)2+b 24, ∴L 的顶点C 的坐标为(b 2,b 24).∵点C 在l 下方,∴点C 与l 的距离为b -b 24=-14(b -2)2+1≤1,∴点C 与l 距离的最大值为1;(7分)(3)由题意可得,y 1=b ,y 2=x 0-b ,y 3=-x 20+bx 0, ∵y 3是y 1,y 2的平均数, ∴y 3=y 1+y 22,即-x 20+bx 0=x 02, 化简得x 0(2x 0-2b +1)=0, 解得x 0=0或x 0=b -12,∵x 0≠0, ∴x 0=b -12,对于L ,当y =0时,0=-x 2+bx ,即0=-x (x -b ).解得x 1=0,x 2=b , ∵b >0,∴D 点坐标为(b ,0),∴点(x 0,0)与点D 间的距离为b -(b -12)=12;(10分)(4)当b =2019时,“美点”的个数为4040;(11分) 当b =2019.5时,“美点”的个数为1010.(12分) 2. 解:(1)如解图,则点A 的坐标为(5,3), ∵直线y =kx +b 过点A (5,3),点C (9,0),∴⎩⎪⎨⎪⎧5k +b =39k +b =0,解得⎩⎨⎧k =-34b =274, 即直线y =kx +b 的表达式是y =-34x +274;(2)①3个;第2题解图3. 解:(1)∵A (4,1), ∴直线OA 的解析式为y =14x .∵直线y 1=14x +b ,∴直线y 1与OA 平行,当b =-1时,直线解析式为y 1=14x -1,解方程4x =14x -1得x 1=2-25(舍去),x 2=2+25,则B (2+25,5-12),∵C (0,-1),∴区域M 内的整点为(1,0),(2,0),(3,0),共3个;(2)当直线y 1在OA 的下方时,当直线y 1=14x +b 过点(1,-1)时,b =-54,则直线y 1=14x +b 经过(5,0),∴区域M 内恰有4个整点,则b 的取值范围是-54≤b <-1.当直线l 在OA 的上方时,∵点(2,2)在函数y 2=4x(x >0)的图象上,当直线y 1=14x +b 过(1,2)时,b =74,此时区域M 内有3个整点.当直线y 1=14x +b 过(1,3)时,b =114,∴区域M 内恰有4个整点时,b 的取值范围是74<b ≤114.综上所述,区域M 内恰有4个整点时,b 的取值范围是-54≤b <-1或74<b ≤114.4. 解:(1)当c =1时,y 1=-x 2+ 12x +c =-x 2+ 12x +1=-(x -14)2+1716 .又∵-2020≤x ≤1,∴M 1=1716. y 2=-x 2+2cx +1=-x 2+2x +1=-(x -1)2+2. 又∵1≤x ≤2020, ∴M 2=2;(2)当x =1时,y 1=-x 2+12x +c =c -12;y 2=-x 2+2cx +1=2c .若点A ,B 重合,则c -12=2c ,解得c =-12.∴L 1∶y 1=-x 2+12 x -12(-2020≤x ≤1);L 2∶y 2=-x 2-x +1(1≤x ≤2020).在L 1上,x 为奇数的点是“美点”,则L 1上有1011个“美点”, 在L 2上,x 为整数的点是“美点”,则L 2上有2020个“美点”. 又∵点A ,B 重合,则L 上“美点”的个数是1011+2020-1=3030; (3)c =-238或2.5. 解:(1)∵L 1:y =-x 2+bx +b -1经过原点, ∴将(0,0)代入得b =1,∴抛物线L 1的解析式为y =-x 2+x , 将y =-x 2+x 配方得y =-(x -12)2+14,∴顶点坐标为(12,14);(2)①对于抛物线L 1:y =-x 2+bx +b -1=(x +1)b -x 2-1,当x =-1时,y =-2,故抛物线y =-x 2+bx +b -1总经过一个定点M (-1,-2);②∵抛物线L 2的顶点为M , ∴设它的解析式为y =a (x +1)2-2, 又∵抛物线L 1的顶点总在抛物线L 2上, ∴将点(12,14)代入解得a =1,∴抛物线L 2的解析式为y =(x +1)2-2,即y =x 2+2x -1;(3)当抛物线L 1经过点B 时,将B (5,-2)代入抛物线L 1解析式y =-x 2+bx +b -1得b =4, ∴抛物线L 1的解析式为y =-x 2+4x +3,令y =-2,得-2=-x 2+4x +3,解得x 1=-1,x 2=5,∴抛物线L 1与线段AB 交于(-1,-2),(5,-2)两点,由解析式可以得出,只要x 取整数,则抛物线L 1上点的纵坐标也一定是整数.∴抛物线L 1经过端点B 时形成的封闭图形C 上的“理想点”个数为12个;当抛物线L 1经过点A 时,将A (-5,-2)代入抛物线L 1解析式y =-x 2+bx +b -1得b =-6, ∴抛物线L 1的解析式为y =-x 2-6x -7,从解析式可以得出,只要x 取整数,则抛物线L 1上点的纵坐标也一定是整数,令y =-2,得-2=-x 2-6x -7,解得x 1=-5,x 2=-1, ∴抛物线L 1与线段AB 交于(-5,-2),(-1,-2)两点,故当抛物线L 1经过端点A 时形成的封闭图形C 上的“理想点”的个数为8个; 综上所述,封闭图形C 上的“理想点”的个数为8个或12个.。
中考命题研究(怀化)2022中考数学 综合专题闯关训练三 规律探索与猜想
专题三规律探索与猜想专题命题规律纵观怀化7年中考,规律探索与猜想题型共考查了5次,以选择、填空形式出现,3分或4分,难度中等,考查类型有:1.数字规律;2.图形规律,常以图形变换中的规律探索为主.善于发现图形变换的过程中的特点,抓住其周期性是解决此类问题的关键.2022预测预计2022年怀化中考还会以类似方式和方法、难度来考查,故在学习中应突出训练、总结规律.,中考重难点突破)数字规律【经典导例】【例1】(2022中考预测)正整数按如图所示的规律排列,请写出第20行第21列的数字.【解析】首先应发现第1列中的数与所在行数的关系,再关注第n行的第1个数与第(n+1)列的第1个数的关系,那么第n行第n+1列这个数应该不难确定.【学生解答】【方法指导】1.对于数阵类的规律问题,题目中的数据与有序数对是对应的,设问方式有求有序数对数值和表示某个数值的有序数对.解题步骤为:(1)分析数阵中的数字排列方式,从以下方面寻找规律:①每行的个数,②每列的个数,③相邻数据的变化特点,并且观察是否某一行或者某一列的数具有某些特别的性质(如完全平方数、正整数)等;(2)找出该行或列上的数字与其所在的行数和列数的关系;(3)使用(1)中找出的具有特殊性质的数字根据(2)中的性质定位,求得答案.2.对于数字不循环变换类规律题,需要掌握如下方法:(1)当所给的一组数是整数时,先观察这组数字是自然数列、正整数数列、奇数列、偶数列还是正整数数列经过平方、平方加1或减1等运算后的数列,然后再看这组数字的符号,判断数字符号的正负是交替出现还是只出现一个符号,如果是交替出现的用(-1)n表示数字的符号,最后把数字规律和符号规律结合起来从而得到结果;(2)当数字规律题的数字是分数和整数结合的时候,把这组数据的所有整数写成分数,然后分别推断出分子和分母的数字规律[其他方法同(1)],从而得出分子和分母的规律,最后得到该组第n 项的规律.3.对于数字循环变换类规律题,求经过N 次变换后对应的数字的解题步骤为:(1)通过观察这组数字,得到该组数字经过一个循环变换需要的次数,记为n ;(2)用N 除以n ,当商b 余m(0≤m<n)时,第N 次变换后对应的数字就是一个循环变换中第m 次变换后对应的数字;(3)根据题意,找出第m 次变换后对应的数字,推断出第N 次变换后对应的数字.4.对于数式的规律探究题,求第n 个等式(式子的结果)的解题步骤为:(1)先观察给出的等式式子(计算出给出式子的计算结果);(2)分析对比所得的结果,从结果与序数或结果与所给数式中数字的构成个数两方面进行对比,寻找不变的量和变化的量之间的变化关系,从而得到结果与各自等式或式子之间满足的关系式,求第n 个数式直接套用关系式即可.1.(2022安徽中考)按一定规律排列的一列数:21,22,23,25,28,213,…,若x 、y 、z 表示这列数中的连续三个数,猜测x 、y 、z 满足的关系式是________.2.(2022怀化二模)计算下列各式的值:92+19;992+199;9992+1999;99992+19999.观察所得结果,总结存在的规律,应用得到的规律可得99…922022个9+199…92,2022个9) )=________. 3.(2022东营中考)将自然数按以下规律排列:第一列 第二列 第三列 第四列 第五列第一行 1 4 5 16 17 …第二行 2 3 6 15 …第三行 9 8 7 14 …第四行 10 11 12 13 …第五行 ……表中数2在第二行,第一列,与有序数对(2,1)对应;数5与(1,3)对应;数14与(3,4)对应;根据这一规律,数2022对应的有序数对为________.4.(2022常德中考)已知:2-122-12=13;4-3+2-142-32+22-12=15;计算:6-5+4-3+2-162-52+42-32+22-12=________;猜想:[(2n +2)-(2n +1)]+…+(6-5)+(4-3)+(2-1)[(2n +2)2-(2n +1)2]+…+(62-52)+(42-32)+(22-12)=________. 5.(2022广东中考)观察下列一组数:13,25,37,49,511,…,根据该组数的排列规律,可推出第10个数是________. 6.(2022乌鲁木齐中考)如图所示的数码叫“莱布尼茨调和三角形”,它们是由整数的倒数组成的,第n 行有n 个数,且两端的数均为1n,每个数是它下一行左右相邻两数的和,则第8行第3个数(从左往右数)为( ) 1112 121 316131 411211214A.160B.1168C.1252D.12807.(2022武威中考)古希腊数学家把数1,3,6,10,15,21,…叫做三角形数,其中1是第一个三角形数,3是第2个三角形数,6是第3个三角形数,…依此类推,那么第9个三角形数是________,2022是第________个三角形数.8.(2022临沂中考)观察下列关于x的单项式,探究其规律:x,3x2,5x3,7x4,9x5,11x6,….按照上述规律,第2022个单项式是( )A.2022x2022B.4029x2022C.4029x2022D.4031x2022图形规律【经典导例】【例2】(2022娄底中考)如图是一组有规律的图案,第1个图案由4个▲组成,第2个图案由7个▲组成,第3个图案由10个▲组成,第4个图案由13个▲组成,…,则第n(n为正整数)个图案由________个▲组成.【解析】观察发现:第1个图案有3×2-3+1=4个三角形;第2个图案有3×3-3+1=7个三角形;第3个图案有3×4-3+1=10个三角形;…第n个图案有3(n+1)-3+1=(3n+1)个三角形.【学生解答】【方法指导】图形规律探索有以下几种类型:1.求个数,方法为:(1)标序数:按图号标序;(2)找关系:找后一个图与前一个图中所求量之间的关系(一般是通过作差或作商的形式观察是否含有定量)或找出图中的所求量与序数之间的关系;(3)算结果:计算每个给出图中所求量的个数;(4)找规律:对求出的结果进行一定的变形,使其呈现一定的规律;(5)归纳:归纳结果与序数之间的关系,即可得到第n个图中所求量的个数;(6)验证:代入序号验证所归纳的式子是否正确.2.求面积,方法为:(1)根据题意可得出第一次变换前图形的面积为S;(2)通过计算得到第一次变换后图形的面积,第二次变换后图形的面积,第三次变换后图形的面积,第四次变换后图形的面积,……,归纳出后一个图形的面积与前一个图形的面积之间存在的倍数关系n;(3)第M次变换后,求得图形的面积为n M S.1.(2022山西中考)如图是一组有规律的图案,它们是由边长相同的正方形和正三角形镶嵌而成,第(1)个图案有4个三角形,第(2)个图案有7个三角形,第(3)个图案有10个三角形,……依此规律,第n 个图案有________个三角形(用含n 的代数式表示).2.(2022武汉中考)观察下列一组图形中点的个数,其中第1个图中共有4个点,第2个图中共有10个点,第3个图中共有19个点,……,按此规律第5个图中共有点的个数是( )A .31B .46C .51D .663.(2022沧州模拟)如图,在第1个△A 1BC 中,∠B =30°,A 1B =CB ;在边A 1B 上任取一点D ,延长CA 1到A 2,使A 1A 2=A 1D ,得到第2个△A 1A 2D ;在边A 2D 上任取一点E ,延长A 1A 2到A 3,使A 2A 3=A 2E ,得到第3个△A 2A 3E ,…按此做法继续下去,则第n 个三角形中以A n 为顶点的内角度数是( )A .(12)n ·75°B .(12)n -1·65°C .(12)n -1·75°D .(12)n ·85°4.(2022内江中考)如图,将若干个正三角形、正方形和圆按一定规律从左向右排列,那么第2022个图形是________.5.(2022衡阳中考)如图,△A 1B 1A 2,△A 2B 2A 3,△A 3B 3A 4,…,△A n B n A n +1都是等腰直角三角形,其中点A 1,A 2,…,A n 在x 轴上,点B 1,B 2,…,B n 在直线y =x 上,已知OA 1=1,则OA 2022的长为________. (第5题图)(第7题图)6.(2022深圳中考)如图,下列图形是将正三角形按一定规律排列,则第5个图形中所有正三角形的个数有________.7.(2022珠海中考)如图,在等腰Rt △OAA 1中,∠OAA 1=90°,OA =1,以OA 1为直角边作等腰Rt △OA 1A 2,以OA 2为直角边作等腰Rt △OA 2A 3,…,则OA 6的长度为________.点的坐标规律【经典导例】【例3】(2022威海中考)如图,在平面直角坐标系xOy 中,Rt △OA 1C 1,Rt △OA 2C 2,Rt △OA 3C 3,Rt △OA 4C 4…的斜边都在坐标轴上,∠A 1OC 1=∠A 2OC 2=∠A 3OC 3=∠A 4OC 4=…30°,若点A 1的坐标为(3,0),OA 1=OC 2,OA 2=OC 3,OA 3=OC 4…,则依此规律,点A 2022的横坐标为( )A .0B .-3×(233)2022C .(23)2022D .3×(233)2022 【解析】∵∠A 2OC 2=30°,OA 1=OC 2=3,∴OA 2=23OC 2=3×233;∵OA 2=OC 3=3×233,∴OA 3=23OC 3=3×(233)2;∵OA 3=OC 4=3×(233)2,∴OA 4=23OC 4=3×(233)3,∴OA 2022=3×(233)2022,而2022=4×503+3.∴点A 2022在x 轴的负半轴上,∴点A 2022的横坐标为-3×(233)2022. 【学生解答】【方法指导】求点坐标,根据图形点坐标的变换特点可知这类题有两种考查形式:一类是点坐标变换是在同一象限递推变化;另一类是点坐标变换在坐标轴上或象限内循环递推变化;解决这类题的方法如下:(1)若第一个点的坐标未给出,可先由所给信息求出坐标(a ,b);(2)根据题目中给出的线段的数量关系及角度,通过勾股定理或直角三角形的边角关系得到第二个,第三个,第四个…的坐标,观察它们之间存在的比例关系,比值记为n ;(3)当点坐标在同一象限变换时,通过第M 次变换后,图形的点坐标为(n M a ,n M b);(4)当点坐标在整个平面直角坐标系里变换,先观察点的变换规律为顺时针循环还是逆时针循环,通过第M 次变换后,用M÷4=w +q(0≤q<4),当q =0时,点坐标所在象限与起点相同,依此类推,当确定出点坐标落在x 轴正半轴时,点坐标为(n M c ,0),点坐标落在y 轴正半轴时,点坐标为(0,n M c),点坐标落在x 轴负半轴时,点坐标为(-n M c ,0),点坐标落在y 轴负半轴时,点坐标为(0,-n M c).1.(2022靖州模拟)如图,以O(0,0)、A(2,0)为顶点作正△OAP1,以点P1和线段P1A的中点B为顶点作正△P1BP2,再以点P2和线段P2B的中点C为顶点作正△P2CP3,…,如此继续下去.则第六个正三角形中,不在第五个正三角形边上的顶点P6的坐标是________.2.(2022聊城中考)如图,在平面直角坐标系中,一动点从原点O出发,按向上、向右、向下、向右的方向依次不断地移动,每次移动一个单位,得到点A1(0,1),A2(1,1),A3(1,0),A4(2,0),…,那么点A4n+1(n是自然数)的坐标为________.3.(2022齐齐哈尔中考)如图,在平面直角坐标系xOy中,有一个等腰直角三角形AOB,∠OAB=90°,直角边AO在x 轴上,且AO=1.将Rt△AOB绕原点O顺时针旋转90°得到等腰直角三角形A1OB1,且A1O=2AO,再将Rt△A1OB1绕原点O顺时针旋转90°得到等腰直角三角形A2OB2,且A2O=2A1O,…依此规律,得到等腰直角三角形△A2022OB2022,则点A2022的坐标为________.4.(2022河北中考)如图,∠BOC=9°,点A在OB上,且OA=1,按下列要求画图:以A为圆心,1为半径向右画弧交OC于点A1,得第1条线段AA1;再以A1为圆心,1为半径向右画弧交OB于点A,得第2条线段A1A2;再以A2为圆心,1为半径向右画弧交OC于点A3,得第3条线段A2A3;……这样画下去,直到得第n条线段,之后就不能再画出符合要求的线段了,则n=________.。
2024中考备考重难点重难点相似三角形模型及其综合题综合训练(11大题型+满分技巧+限时分层检测)
重难点02 相似三角形模型及其综合题综合训练中考数学中《相似三角形模型及其综合题综合训练》部分主要考向分为五类:一、K型相似二、8字图相似三、A字图相似四、母子型相似五、手拉手相似相似三角形的综合题中各种相似模型的掌握是解决对应压轴题的便捷方法,所以本专题是专门针对相似三角形模型压轴题的,对提高类型的学生可以自主训练。
考向一:K型相似1.(2023•锡山区校级四模)如图,矩形ABCD中,AB=10,BC=8.点P在AD上运动(点P不与点A、D重合)将△ABP沿直线翻折,使得点A落在矩形内的点M处(包括矩形边界),则AP的取值范围是,连接DM并延长交矩形ABCD的AB边于点G,当∠ABM=2∠ADG时,AP的长是.2.(2023•福田区模拟)综合与探究在矩形ABCD的CD边上取一点E,将△BCE沿BE翻折,使点C恰好落在AD边上的点F处.(1)如图①,若BC=2BA,求∠CBE的度数;(2)如图②,当AB=5,且AF•FD=10时,求EF的长;(3)如图③,延长EF,与∠ABF的角平分线交于点M,BM交AD于点N,当NF=AN+FD时,请直接写出的值.3.(2023•桐柏县一模)【初步探究】(1)把矩形纸片ABCD如图①折叠,当点B的对应点B'在MN的中点时,填空:△EB'M△B'AN (“≌”或“∽”).【类比探究】(2)如图②,当点B的对应点B'为MN上的任意一点时,请判断(1)中结论是否成立?如果成立,请写出证明过程;如果不成立,请说明理由.【问题解决】(3)在矩形ABCD中,AB=4,BC=6,点E为BC中点,点P为线段AB上一个动点,连接EP,将△BPE沿PE折叠得到△B'PE,连接DE,DB',当△EB'D为直角三角形时,BP的长为.考向二:8字图相似1.(2023•海州区校级二模)“关联”是解决数学问题的重要思维方式.角平分线的有关联想就有很多……【问题提出】(1)如图①,PC是△P AB的角平分线,求证:.小明思路:关联“平行线、等腰三角形”,过点B作BD∥P A,交PC的延长线于点D,利用“三角形相似”.小红思路:关联“角平分线上的点到角的两边的距离相等”,过点C分别作CD⊥P A交P A于点D,作CE⊥PB交PB于点E,利用“等面积法”.请根据小明或小红的思路,选择一种并完成证明.【理解应用】(2)如图②,在Rt△ABC中,∠BAC=90°,D是边BC上一点.连接AD,将△ACD沿AD所在直线折叠,使点C恰好落在边AB上的E点处,落AC=1,AB=2,则DE的长为.【深度思考】(3)如图③,△ABC中,AB=6,AC=4,AD为∠BAC的角平分线.AD的垂直平分线EF交BC延长线于点F,连接AF,当BD=3时,AF的长为.【拓展升华】(4)如图④,PC是△P AB的角平分线,若AC=3,BC=1,则△P AB的面积最大值是.2.(2023•衢州二模)如图1,在正方形ABCD中,点E在线段BC上,连接AE,将△ABE沿着AE折叠得到△AFE,延长EF交CD于点G.(1)求证:DG=FG;(2)如图2,当点E是BC中点时,求tan∠CGE的值;(3)如图3,当时,连接CF并延长交AB于点H,求的值.考向三:A字图相似1.(2023•宿城区一模)如图,在矩形ABCD中,AB=5,AD=3,先将△ABC沿AC翻折到△AB′C处,再将△AB'C沿翻折到△AB'C'处,延长CD交AC′于点M,则DM的长为.2.(2023•沙坪坝区校级模拟)如图,△ABC中,D在AB上,E在BC上,∠AED=∠ABC,F在AE上,EF=DE.(1)如图1,若CE=BD,求证:BE=CF;(2)如图2,若CE=AD,G在DE上,∠EFG=∠EFC,求证:CF=2GF;(3)如图3,若CE=AD,EF=2,∠ABC=30°,当△CEF周长最小时,请直接写出△BCF的面积.3.(2023•中山区模拟)如图,在平面直角坐标系中,直线y=﹣x+4与x轴,y轴分别交于点A、B,点P为射线AO上的一个动点,过点P作PQ⊥AB于点Q,将沿PQ翻折得到R.设△PQR与△AOB重合部分的面积为S,点P的坐标为(m,0).(1)求AR的长.(用含m的代数式表示)(2)求S关于m的函数解析式,并直接写出自变量m的取值范围.考向四:母子型相似1.(2023•樊城区模拟)【基础巩固】(1)如图1,在△ABC中,D为AB上一点,∠ACD=∠B.求证:AC2=AD•AB.【尝试应用】(2)如图2,在▱ABCD中,E为BC上一点,F为CD延长线上一点,∠BFE=∠A.若BF =6,AD=9,求CE的长.【拓展提高】(3)如图3,在菱形ABCD中,E是AB上一点,F是△ABC内一点,EF∥AC,AC=2EF,连接DE、DF分别交AC于M,N,∠EDF=∠BAD,DF=AE,若MN=18,求EF的值.2.(2023•润州区二模)如图1,在△ABC中,点D在边AB上,点P在边AC上,若满足∠BPD=∠BAC,则称点P是点D的“和谐点”.(1)如图2,∠BDP+∠BPC=180°.①求证:点P是点D的“和谐点”;②在边AC上还存在某一点Q(不与点P重合),使得点Q也是点D的“和谐点”,请在图2中仅用圆规作图,找出点Q的位置,并写出证明过程.(保留作图痕迹)(2)如图3,以点A为原点,AB为x轴正方向建立平面直角坐标系,已知点B(6,0),C(2,4),点P在线段AC上,且点P是点D的“和谐点”.①若AD=1,求出点P的坐标;②若满足条件的点P恰有2个,直接写出AD长的取值范围是.考向五:手拉手相似1.(2023•宝安区校级三模)【问题背景】已知D、E分别是△ABC的AB边和AC边上的点,且DE∥BC,则△ABC∽△ADE,把△ADE绕着A逆时针方向旋转,连接BD和CE.①如图2,找出图中的另外一组相似三角形;②若AB=4,AC=3,BD=2,则CE=;【迁移应用】在Rt△ACB中,∠BAC=90°,∠C=60°,D、E,M分别是AB、AC、BC中点,连接DE和CM.①如图3,写出CE和BD的数量关系;②如图4,把Rt△ADE绕着点A逆时针方向旋转,当D落在AM上时,连接CD和CE,取CD中点N,连接MN,若,求MN的长.【创新应用】如图5:,BC=4,△ADE是直角三角形,∠DAE=90°,tan∠ADE=2,将△ADE绕着点A旋转,连接BE,F是BE上一点,,连接CF,请直接写出CF的取值范围.2.(2023•东港市二模)(1)问题发现:如图1,已知正方形ABCD,点E为对角线AC上一动点,将BE绕点B顺时针旋转90°到BF处,得到△BEF,连接CF.填空:①=;②∠ACF的度数为;(2)类比探究:如图2,在矩形ABCD和Rt△BEF中,∠EBF=90°,∠ACB=∠EFB=60°,连接CF,请分别求出的值及∠ACF的度数;(3)拓展延伸:如图3,在(2)的条件下,将点E改为直线AC上一动点,其余条件不变,取线段EF 的中点M,连接BM,CM,若,则当△CBM是直角三角形时,请直接写出线段CF的长.3.(2023•晋中模拟)综合与实践问题情境:(1)如图1,在△ABC和△ADE中,AB=AC,AD=AE.如图2,将△ABC绕顶点A按逆时针方向旋转15°得到△AB'C',连接B′D,C′E,求证:B′D=C′E.深入研究:(2)①如图3,在正方形ABCD和正方形CEFG中,已知点B,C,E在同一直线上,连接DE,AF,交于点P,求AF:DE的值;②如图4,若将正方形CEFG绕点C按顺时针方向旋转一定角度,AF:DE的值变化吗?请说明理由.拓展应用:(3)如图5,若把正方形ABCD和正方形CEFG分别换成矩形ABCD和矩形CEFG,且AD:AB=CG:CE=k,请直接写出此时AF:DE的值.(建议用时:150分钟)1.(2023•菏泽)(1)如图1,在矩形ABCD中,点E,F分别在边DC,BC上,AE⊥DF,垂足为点G.求证:△ADE∽△DCF.【问题解决】(2)如图2,在正方形ABCD中,点E,F分别在边DC,BC上,AE=DF,延长BC到点H,使CH=DE,连接DH.求证:∠ADF=∠H.【类比迁移】(3)如图3,在菱形ABCD中,点E,F分别在边DC,BC上,AE=DF=11,DE=8,∠AED=60°,求CF的长.2.(2023•济南)在矩形ABCD中,AB=2,AD=2,点E在边BC上,将射线AE绕点A逆时针旋转90°,交CD延长线于点G,以线段AE,AG为邻边作矩形AEFG.(1)如图1,连接BD,求∠BDC的度数和的值;(2)如图2,当点F在射线BD上时,求线段BE的长;(3)如图3,当EA=EC时,在平面内有一动点P,满足PE=EF,连接P A,PC,求P A+PC的最小值.3.(2023•武汉)问题提出如图(1),E是菱形ABCD边BC上一点,△AEF是等腰三角形,AE=EF,∠AEF=∠ABC=α(α≥90°),AF交CD于点G,探究∠GCF与α的数量关系.问题探究(1)先将问题特殊化,如图(2),当α=90°时,直接写出∠GCF的大小;(2)再探究一般情形,如图(1),求∠GCF与α的数量关系.问题拓展将图(1)特殊化,如图(3),当α=120°时,若,求的值.4.(2023•内蒙古)已知正方形ABCD,E是对角线AC上一点.(1)如图1,连接BE,DE.求证:△ABE≌△ADE;(2)如图2,F是DE延长线上一点,DF交AB于点G,BF⊥BE.判断△FBG的形状并说明理由;(3)在第(2)题的条件下,BE=BF=2.求的值.5.(2023•湖州)【特例感知】(1)如图1,在正方形ABCD中,点P在边AB的延长线上,连结PD,过点D作DM⊥PD,交BC的延长线于点M.求证:△DAP≌△DCM.【变式求异】(2)如图2,在Rt△ABC中,∠ABC=90°,点D在边AB上,过点D作DQ⊥AB,交AC于点Q,点P在边AB的延长线上,连结PQ,过点Q作QM⊥PQ,交射线BC于点M.已知BC=8,AC=10,AD =2DB,求的值.【拓展应用】(3)如图3,在Rt△ABC中,∠BAC=90°,点P在边AB的延长线上,点Q在边AC上(不与点A,C重合),连结PQ,以Q为顶点作∠PQM=∠PBC,∠PQM的边QM交射线BC于点M.若AC=mAB,CQ=nAC(m,n是常数),求的值(用含m,n的代数式表示).6.(2023•鞍山)如图,在△ABC中,AB=AC,∠BAC=α,点D是射线BC上的动点(不与点B,C重合),连接AD,过点D在AD左侧作DE⊥AD,使AD=kDE,连接AE,点F,G分别是AE,BD的中点,连接DF,FG,BE.(1)如图1,点D在线段BC上,且点D不是BC的中点,当α=90°,k=1时,AB与BE的位置关系是,=.(2)如图2,点D在线段BC上,当α=60°,k=时,求证:BC+CD=2FG.(3)当α=60°,k=时,直线CE与直线AB交于点N,若BC=6,CD=5,请直接写出线段CN的长.7.(2023•益阳)如图,在Rt△ABC中,∠ACB=90°,AC>BC,点D在边AC上,将线段DA绕点D按顺时针方向旋转90°得到DA′,线段DA′交AB于点E,作A′F⊥AB于点F,与线段AC交于点G,连接FC,GB.(1)求证:△ADE≌△A′DG;(2)求证:AF•GB=AG•FC;(3)若AC=8,tan A=,当A′G平分四边形DCBE的面积时,求AD的长.8.(2023•福建)如图1,在△ABC中,∠BAC=90°,AB=AC,D是AB边上不与A,B重合的一个定点.AO ⊥BC于点O,交CD于点E.DF是由线段DC绕点D顺时针旋转90°得到的,FD,CA的延长线相交于点M.(1)求证:△ADE∽△FMC;(2)求∠ABF的度数;(3)若N是AF的中点,如图2,求证:ND=NO.9.(2022•湖北)问题背景:一次数学综合实践活动课上,小慧发现并证明了关于三角形角平分线的一个结论.如图1,已知AD是△ABC的角平分线,可证=.小慧的证明思路是:如图2,过点C作CE∥AB,交AD的延长线于点E,构造相似三角形来证明=.尝试证明:(1)请参照小慧提供的思路,利用图2证明:=;应用拓展:(2)如图3,在Rt△ABC中,∠BAC=90°,D是边BC上一点.连接AD,将△ACD沿AD所在直线折叠,点C恰好落在边AB上的E点处.①若AC=1,AB=2,求DE的长;②若BC=m,∠AED=α,求DE的长(用含m,α的式子表示).10.(2022•宁波)【基础巩固】(1)如图1,在△ABC中,D,E,F分别为AB,AC,BC上的点,DE∥BC,BF=CF,AF交DE于点G,求证:DG=EG.【尝试应用】(2)如图2,在(1)的条件下,连结CD,CG.若CG⊥DE,CD=6,AE=3,求的值.【拓展提高】(3)如图3,在▱ABCD中,∠ADC=45°,AC与BD交于点O,E为AO上一点,EG∥BD交AD于点G,EF⊥EG交BC于点F.若∠EGF=40°,FG平分∠EFC,FG=10,求BF的长.11.(2023•广州)如图,AC是菱形ABCD的对角线.(1)尺规作图:将△ABC绕点A逆时针旋转得到△ADE,点B旋转后的对应点为D(保留作图痕迹,不写作法);(2)在(1)所作的图中,连接BD,CE.①求证:△ABD~△ACE;②若tan∠BAC=,求cos∠DCE的值.。
2021中考数学复习冲刺:方程与不等式综合应用压轴训练(三)
2021中考数学复习冲刺:方程与不等式综合应用压轴训练(三)车型A地(元/辆)B地(元/辆)大货车900 1000 小货车500 700 现安排上述装好物资的20辆货车中的10辆前往A地,其余前往B地,设前往A地的大货车有x辆,这20辆货车的总运费为y元.(1)这20辆货车中,大货车、小货车各有多少辆?(2)求y与x的函数解析式,并直接写出x的取值范围;(3)若运往A地的物资不少于130吨,求总运费y的最小值. 2. 某校校运会需购买A,B两种奖品.若购买A种奖品3件和B种奖品2件共需要60元;购买A种奖品5件和B种奖品3件共需要95元. (1)求两种奖品单价各是多少元?(2)若需购买A和B两种奖品共100件,且购买A 种奖品的数量不超过B种奖品的3倍,则A种奖品最多可购买多少件?(3)在(2)的条件下,此次购买奖品的费用最少为多少元? 3. “郑济”高铁的建设是我市一项重大民生工程.参与建设任务的某工程队有载重量为8吨、10吨的卡车共12辆,全部车辆运输一次能运输110吨土石方.(1)求该车队载重量为8吨、10吨的卡车各有多少辆?(2)随着工程的进展,该工程队需要一次运输土石方165吨以上,为了完成任务,准备新增购这两种卡车共6辆,车队有多少种购买方案,请你一一写出. 4. 现有A,B两种商品,买2件A商品和1件B商品用了90元,买3件A商品和买2件B商品用了160元.(1)求A,B两种商品每一件各需要多少元?(2)如果小张准备购买A,B两种商品共10件,总费用不超过350元,但不低于300元,问有几种购买方案,哪一种方案费用最低?5. 数学课上,老师给同学们设计了一道猜数字游戏:任意实数与有理数a的积都是该实数的相反数. (1)求a的值;(2)计算a2022-1的结果;(3)嘉琪说:我给一个有理数b,使得a除以2的商与b的和为1.你能求出b的值吗?请你帮助该同学解决问题. 6. 某商场新购进了一批最新款的智能手环进行销售,为了推出新品,该商场设计了两种优惠方案(设购买智能手环的个数为x,费用为y元)方案一:花费1000元办理会员后,每个智能手环的售价为160元;方案二:每个智能手环的售价按图中的折线OAB所表示的函数关系确定.某单位为奖励员工,决定购买一些智能手环.(1)当购买20个智能手环时,按方案一和方案二分别应花费多少钱?(2)求方案二中y关于x的函数关系式; (3)请帮该单位选择哪种方案购买更划算?7. 某个体经营户销售同一型号的A、B两种品牌的服装,平均每月共销售60件,已知两种品牌的成本和利润如表所示,设平均每月的利润为y元,每月销售A品牌x件. A B 成本(元/件)120 85 利润(元/件)60 30 (1)写出y关于x的函数关系式.(2)如果每月投入的成本不超过6500元,所获利润不少于2920元,不考虑其他因素,那么销售方案有哪几种?要使平均每月利润率最大,并求出最大利润是多少元?8. 为低碳出行,小王上班的交通方式由驾车改为骑共享单车,小王家距单位的路程是15千米,在相同的路线上,小王驾车的速度是骑共享单车速度的4倍,小王每天骑共享单车上班比驾车上班要早出发45分钟,才能按原时间到达单位,求小王骑共享单车的速度.9. 茶为国饮,茶文化是中国传统文化的重要组成部分,这也带动了茶艺、茶具、茶服等相关文化的延伸及产业的发展,在“春季茶叶节”期间,某茶具店老板购进了A,B两种不同的茶具.1套A种茶具和2套B种茶具共需250元;3套A种茶具和4套B种茶具共需600元.(1)A,B两种茶具每套的进价分别是多少元?(2)由于茶具畅销,老板决定再次购进A,B两种茶具共80套,但这次进货时,茶具工厂对两种类型的茶具进行了价格调整:A种茶具的进价比第一次购进时提高了8%,B种茶具的进价是第一次购进时进价的八折.如果茶具店老板此次用于购进A,B两种茶具的总费用不超过6240元,则最多可购进A种茶具多少套?10. 某街道某学校饭堂为改善学生的就餐环境,拟购进甲、乙两种规格的餐台,已知每张甲种餐台的进价比每张乙种餐台的进价高20%,用5400元购进的甲种餐台的数量比用6300元购进乙种餐台的数量少6张. (1)求甲、乙两种餐台每张的进价各是多少元?(2)若该校计划购进这两种规格的餐台共60张,其中乙种餐台的数量不大于甲种餐台数量的2倍.该校应如何进货使得购进两种餐台所需总费用最少?11. 某火车站有甲、乙两个检票口,芃芃和可可相约一起去检票,由于看到两个检票口排队的人一样多(设为m人),所以芃芃和可可就分别排在甲口和乙口队伍后面,过了3分钟,可可发现甲口每分钟通过5人,乙口每分钟通过8人,而且乙口队伍后面每分钟增加4人.(1)如果芃芃和可可继续在各自的检票口排队,可可比芃芃提前3分钟到达检票口,求m的值;(2)在(1)的条件下,此时,可可果断地招呼芃芃到乙口队伍后面排队,以便能让芃芃更快地到达检票口,可可的判断是否正确?说明理由. 12. 某商店销售A,B两种型号的打印机,销售5台A型和10台B型打印机的利润和为2000元,销售10台A型和5台B型打印机的利润和为1600元.(1)求每台A型和B型打印机的销售利润;(2)商店计划购进A、B两种型号的打印机共100台,其中A型打印机数量不少于B型打印机数量的一半.设购进A型打印机a台,这100台打印机的销售总利润为w元,求该商店购进A、B两种型号的打印机各多少台,才能使销售总利润最大?(3)在(2)的条件下,厂家为了给商家优惠让利,将A型打印机的出厂价下调m元0m100,但限定商店最多购进A型打印机50台,且A、B两种型号的打印机的销售价均不变,请直接写出商店销售这100台打印机总利润最大的进货方案.13. 某快餐店老板推出A、B两种套餐.已知售出A套餐5套和B套餐6套,共收入700元;售出A套餐3套和B套餐2套,共收入300元.(1)求A、B两种套餐的售价.(2)若销售1套A套餐可获毛利润24元,销售1套B套餐可获毛利润30元,因制作人员数量和条件限制,该快餐店每日最多可以制作两种套餐共120套.如果当天制作的两种套餐全部售出,且每日获毛利润不小于3200元,问每日制作的A套餐数量最多是多少套?参考答案1. 解:(1)设大货车有m辆,小货车有n辆. 则m+n=20,15m+10n=270, 解得:m=14,n=6. 答:大货车有14辆,小货车有6辆. (2)设到A地的大货车有x辆,则到A地的小货车有10-x辆,到B地的大货车有14-x辆,到B地的小货车有x-4辆. ∴y=900x+1000(14-x)+500(10-x)+700(x-4) =100x+*****,∴ y与x 的函数解析式为y=100x+*****(4≤x≤10且x为整数). (3)15x+10(10-x)≥130,解得:x≥6,∴ 6≤x≤10. 由(2)可知:1000,∴ y随x 的增大而增大,∴ 当x=6时,y有最小值,最小值为100×6+*****=*****. 答:总运费的最小值为*****元. 2. 解:(1)设A种奖品的单价是x元,B种奖品的单价是y元. 根据题意,得:3x+2y=60,5x+3y=95,解得:x=10,y=15. 答:A种奖品的单价是10元,B种奖品的单价是15元. (2)设购买A种奖品m件,则购买B种奖品100-m件. 根据题意,得:m≤3100-m. 解得:m≤75. 答:A种奖品最多可购买75件. (3)设购买总费用为w元. 根据题意,得:w=10m+*****-m=-5m+1500,∵ -50,∴ w随m的增大而减少. ∴ 由(2)得:当m=75时,w取得最小值,此时w=-5×75+1500=1125. 答:当购买A种奖品75件、B种奖品25件时,费用最少,最少费用为1125元.3. 解:(1)设该车队载重量为8吨、10吨的卡车分别有x辆、y辆,根据题意得:x+y=12,8x+10y=110,解得:x=5,y=7. 答:该车队载重量为8吨的卡车有5辆,10吨的卡车有7辆;(2)设载重量为8吨的卡车增加了z辆,10吨的卡车增加了(z-6)辆,依题意得:8(5+z)+10(7+6-z)165,解得:z52,∵ z≥0且为整数,∴ z=0,1,2;∴ 6-z=6,5,4.∴ 车队共有3种购车方案:①载重量为8吨的卡车购买1辆,10吨的卡车购买5辆;②载重量为8吨的卡车购买2辆,10吨的卡车购买4辆;③载重量为8吨的卡车不购买,10吨的卡车购买6辆.4. 解:(1)设A商品每件x元,B商品每件y元,依题意,得2x+y=90,3x+2y=160,解得x=20,y=50. 答:A商品每件20元,B商品每件50元.(2)设小张准备购买A商品a件,则购买B商品(10-a)件,20a+50(10-a)≥300,20a+50(10-a)≤350,解得5≤a≤623. 根据题意,a的值应为整数,所以a=5或a=6.方案一:当a=5时,购买费用为20×5+50×(10-5)=350元;方案二:当a=6时,购买费用为20×6+50×(10-6)=320元;∵ *****,∴ 购买A商品6件,B商品4件的费用最低.答:有两种购买方案,方案一:购买A商品5件,B商品5件;方案二:购买A商品6件,B商品4件,其中方案二费用最低.5. 解:(1)∵ 任意实数与有理数a的积都是该实数的相反数,∴ a=-1.(2)a2022-1=-*****-1=1-1=0. (3)由题意可得a2+b=1,将a=-1代入,得-12+b=1,解得b=32. 6. 解:(1)按方案一应花费1000+160×20=4200(元),由题图,可知按方案二应花费4000元.(2)设直线OA的函数关系式为y=ax0≤x≤20,将点(20,4000)代入y=ax 中,得4000=20a,解得a=200,∴直线OA的函数关系式为y=200x0≤x≤20,设直线AB的函数关系式为y=kx+b,将点(20,4000),(40,7600)代入y=kx+b中,得20k+b=4000,40k+b=7600,解得k=180,b=400,∴ 直线AB的函数关系式为y=180x+400,综上所述,方案二中y关于x的函数关系式为y=200x0≤x≤20.180x+400x20.(3)由题意,易得方案一中y关于x的函数关系式为y=1000+160x, 当0≤x≤20时,1000+160x200x,∴ 选择方案二购买更划算,当x20时,令1000+160x180x+400,解得x30,令1000+160x=180x+400,解得x=30,令1000+160x180x+400,解得x30. 综上所述,当购买智能手环的个数小于30时,选择方案二购买更划算;当购买智能手环的个数为30时,选择两种方案购买一样划算;当购买智能手环的个数大于30时,选择方案一购买更划算.7.解:(1)依题意,y=60x+3060-x=30x+1800. (2)依题意,得120x+8560-x≤6500,30x+1800≥2920,解得1123≤x≤40,∴ x=38 ,49,40,共有三种方案:①A:38,B:22,②A:39B:21,③A:40,B:20,y=30x+1800,k=300,∴ y随x的增大而增大, ∴ 当x=40时,60-x=20,∴ 把x=40代入y=30x+1800,y=40×30+1800=3000,y 有最大值为3000,此时利润率最大. 8. 解:设骑共享单车的速度为x千米/时,则驾车的速度为4x千米/时, 根据题意,得15x-154x=4560, 解得x=15, 经检验,x=15是原方程的解,且符合题意.答:小王骑共享单车的速度为15千米/时. 9. 解:(1)设A种茶具每套进价为x 元,B种茶具每套进价为y元,由题意,得{x+2y=250,3x+4y=600,解得{x=100,y=75. 答:A种茶具每套进价为100元,B种茶具每套进价为75元. (2)设购进A种茶具a套,则购进B种茶具80-a套,由题意,得100×1+8%a+75×80%×80-a≤6240,解得a≤30,答:最多可购进A种茶具30套. 10. 解:(1)设乙种餐台每张的进价为x 元/台,则甲种餐台每张的进价为1+20%x元/台. 由题意得*****.2x=6300x-6,解得x=300,经检验x=300是方程的解,1.2×300=360,答:乙种餐台每张的进价为300元/台,甲种餐台每张的进价为360元/台. (2)设甲种餐台进货a台,乙种餐台进货(60-a)台,费用为W元. W=360a+*****-a =60a+*****. ∵ 60-a≤2a,∴ a≥20,∴ 当a=20时,W最小=1200+*****=*****元. 答:甲种餐台进货20台,乙种餐台进货40台时,所需总费用最少. 11. 解:(1)m-5×35-m-8×38=3,m=40. (2)正确.理由:芃芃继续在甲口排队到达检票口的时间40-5×35=5分钟,芃芃到乙口队伍后面排队到达检票口的时间40-8×3+4×38=3.5分钟,∵ 3.55,∴ 可可的判断是正确的 . 12. 解:(1)设每台A型和B型打印机的销售利润分别为x,y元.则5x+10y=2000,10x+5y=1600,解得x=80,y=160,答:每台A型打印机的销售利润为80元,每台上型打印机的销售利润为160元.(2)w=80a+160(100-a)=-80a+*****,∵ -800,∴ w随a 得增大而减小,当a取最小值时,w有最大值,∵ a≥*****-a,∴a≥1003,且a为整数,∴ a最小=34,此时w有最大值.∴ 当A 型打印机34台,B型打印机66台时,才能使销售总利润w最大.(3)①当0≤m≤80时,商店购进34台A型电脑和66台B型电脑才能获得最大利润;②当m=80时,商店则进A型电脑数量满足3313≤a≤30范围内的整数时,均获得最大利润;③当80m100时,商店购进50台A型电脑和50台B型电脑获得最大利润.13. 解:(1)设A套餐的售价为x元,B套餐的售价为y元.由题意,得5x+6y=700,3x+2y=300, 解行x=50,y=75, 答:A,B两种套餐的售价分别为50元和75元.(2)设A套餐制作m套,则B套餐制作(120-m)套 . 根据题意,得24m+*****-m≥3200,解得m≤6623,∴ m的最大整数解为66. 答:每日制作的A套餐数量最多是66套.。
中考数学复习基本过关训练 24.综合练习三
C卷24 综合训练(三)班级: 姓名: 分数:一、单项选择:(8×3′=24′)1.无理数46的值在( ) A 、8与9之间; B 、9与10之间; C 、10与11之间; D 、11与12之间.2.二次函数y=-3(x+2)2-5的图象的顶点坐标是( ) A 、(2,-5); B 、(-2,-5); C 、(2,5); D 、(-2,5).3.下列命题正确的是( )A 、对角线互相平分的四边形是菱形;B 、对角线互相平分且相等的四边形是菱形;C 、对角线互相垂直的四边形是菱形;D 、对角线互相垂直平分的四边形是菱形.4.在比例尺1:40000的工程示意图上,于2005年9月1号正式通车的南京地铁一号线的长度约为54.3cm ,它的实际长度约为( ) A 、0.2172千米; B 、2.172千米; C 、21.72千米; D 、217.2千米.5.小林同学用10元钱购买两种不同的贺卡共8张,单价为分别为1元与2元,设1元贺卡为x 张,2元的贺卡为y 张,那么x ,y 所适合的一个方程组是( ) A 、 x+102=yB 、8102=+y x C 、 x+y=10 D 、 x+y=8x+y=8 x+2y=10 x+2y=8x+2y=106.下列说法正确的是( )A 、与圆相交的直线上的点到圆心的距离小于半径;B 、与圆相切的直线上的点到圆心的距离等于半径;C 、与圆相离的直线上的点到圆心的距离大于半径;D 、与圆有公共点的直线上的点到圆心的距离小于或等于半径.7.如果一个斜坡的长度为a 米,坡角为α,那么斜坡的高度是……………( )A 、αsin ⋅a ; B 、αcos ⋅a ; C 、αtg ⋅a ; D 、αctg ⋅a8.如图,已知D 是△ABC 中的边BC 上的一点,∠BAD =∠C ,那么下列结论中正确的是………………………………………………………………………………( ).A 、CB CD AC ⋅=2; B 、BC BD AB ⋅=2; C 、CD BD AD ⋅=2; D 、CD AD BD ⋅=2.二、填充(16×4′=64′)9.计算:4-2=___________.10.计算:aa 13-=___________. 11.不等式2x ﹥-6的解是___________.12.分解因式x 2-16=___________.P 13.函数y=121-x 的定义域为___________. 14.一组数据8,9,7,3,1的中位是___________.15.两相似三角形面积之比为4:9,则它们的相似比为___________.16.方程x 2-5x-4=0的两个根x 1,x 2,则x 1+x 2=___________. 17.一件衣服标价150元,若以8折出售,仍可获利20%,则这件衣服的进价为____元.18.方程1-x =1的解是___________ 19.反比例函数y=kx 22-k 的图象在第二、四象限,则反比例函数的解析式为___________.20.用换元法解方程121222-+-x x x x =2时,如果设y=212xx -,那么原方程化为整式方程为___ ____.21.已知⊙O 的半径为8,圆心O 到直线l 的距离也是8,则直线与⊙O 的位置关系为___________.22.要使一个平行四边形变为菱形,应添加的条件是___________(添加一个条件即可).23.已知⊙O 的半径为3,点P 到圆心O 距离为5,过P 点引圆O 的切线,则切线长为___________.24.把一个正多边形绕它的中心旋转45°后能与它本身重合,那么这个多边形的边数为___________.三、解答题(4×8′+3×10′=62′)25.先化简,再求值26.解方程xx x --=--31132 1211112--++-x x x ,其中x=2-127.已知直线y=21x+2与x 轴,y 轴交于A 、C 两点,P 是该直线上在第一象限内的一点,PB ⊥x 轴,B 为垂足,S △ABP =9. ①求P ②求过P 点的反比例函数解析式.28.为了解某中学生的身高情况,对某中学同年龄的若干各同学进行测量,将所得0.017,0.050,0.100,0.133,0.300,第三小组的频数为6. ①参加这次测试的学生有__________人 ②身高在__________范围的学生人数最多, 这一范围内的人数为__________人③如果本次测试身高在154cm 以上的为良好, 试估计该校学生身高的良好率为_________.29.如图,AB//DC ,∠B=90°,E 为BC 1:2,求AB 的长30.如图所示,Rt △ABC ,∠ACB=90°,⊥AC ,DE=2,DB=9,求DC 的长31.如图所示,AB为⊙O的直径,BC为⊙O的切线,B为切点,弦AD//OC①求证:CD为⊙O的切线②若将AD的延长线交BC的延长线于E,猜测△CDE是怎样的三角形?并把你的猜测加以证明(图形自己画)③将AD//OC改为点C为BE的中点,猜测CD与⊙O卷24参考答案: 一、1、B 2、B 3、D 4、C 5、D 6、C 7、A 8、B二、9、161 10、a2 11、x ﹥-3 12、(x+4)(x-4) 13、x ≠2114、7 15、2:316、5 17、100 18、x=2 19、1y x=- 20、y 2-2y+1=0 21、相切22、一组邻边相等(答案不唯一) 23、4 24、8三、25、12)1)(1()1(2)1)(1(2111211112+=-+-=-+--++=--++-x x x x x x x x x x x ……5’ 当x=2-1时,原式=2221122==+-………………………………8’26、解去分母(2-x)=x-3+1……………………5’整理得2x=4x=2……………………………7’经检验x=2是原方程的根………………8’ ∴原方程的根为x=2……………………9’ 27、①设P (x ,21x+2) ∵y=21x+2与x 轴交于A 、C 两点 ∴A (-4,0) B (0,2)……………………………………2’ ∴AB=4+x ,PB=21x+2 ∵S △ABP =9 ∴9)221)(4(21=++x x ……………………………………3’ ∴整理得x 2+8x-20=0,解得x 1=2,x 2=-10(不合题,舍去)…………4’ ∴y=21×2+2=3 即点P 的坐标为(2,3)………………………5’②设过P 点的反比例函数解析式为y=xk(k ≠0) 由题得3=2kk=6……………………………………8’∴反比例函数的解析式为y=x6……………………………………9’ 28、①60……3’ ②157—160 18……4’ ③83.33%……3’ 29、解:∵AB//DC ∴∠B=∠C=90°………………1’ ∵AE ⊥DE ∴∠1+∠2=90°………………1’ 又∵∠1+∠A=90°………………………………1’ ∴∠2=∠A ………………………………………1’ ∴△ABE ∽△ECD …………………………………5’ ∴CDBEEC AB =……………………………………6’ ∵BE :EC=1:2 BC=12 ∴BE=4,EC=8………………7’ ∴784=AB∴AB=732………………………………10’ 30、∵DE ⊥AE ∴∠AED=90° Rt △ADE 中,SinA=ADDE∵SinA=32,DE=2 ∴AD=3……………………………………2’ 又∵DB=9∴AB=12………………………………………………3’又Rt △ABC 中SinA=ABBC∴1232BC=∴BC=8………………………………………………6’∴利用勾股定理求出AC=45………………………………………7’ ∵∠ACB=90° ∴DE//BC ∴ACAEAB AD =求出AE=5 ∴CE=AC-AE=35……………………………………………………8’ Rt △DCE 中 DC=45422+=+ECDE =7 ∴DC=7………10’31、①连OD则OA=OB=OD ∠A=∠ODA ……………………1’∵AD//OC ∴∠A=∠BOC ∠ODA=∠DOC ∴∠BOC=∠DOC ……2’ 又∵OC=OC ∴△OBC ≌△ODC ∴∠B=∠ODC ………………………3’∵BC 为⊙O 的切线 ∴∠B=90° ∴∠ODC=90° 即CD 为⊙O 的切线……4’猜测△CDE 为等腰三角形…………………………………………5’由D 证得CD 为⊙O 的切线,又BC 为⊙O 的切线 ∴CD=CB ………………6’ ∵AD//OC ∴CEBCOA BO∵BO=OA ∴BC=CE ……………………7’ ∴DC=EC …………8’ 即△CDE 为等腰三角形③猜测:CD 为⊙O 的切线 ……………………………………10’。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、填空题:(每题 3 分,共 36 分)1.-2的倒数是_________。
2.据统计,2008“我最喜爱的暑期影片”短信投票的总票数约126 000 000张,将这个数写成科学记数法是_________。
3.不等式组的解集为_________。
4.若反比例函数 y =-的图象经过点A (2,m),则m 的值是_________。
5.一个袋中装有 1 个红球,2 个白球,3 个黄球,它们除颜色外完全相同。
小明从袋中任意摸出 1 个球,摸出的是白球的概率是_________。
6.已知α为等边三角形的一个内角,则cos α等于_________。
7.下列美丽的图案,既是轴对称图形又是中心对称图形的个数是____个。
8.要使( 2x -y )( )能利用平方差公式计算,则括号里的多项式应是_____________________。
9.已知圆锥的轴截面是面积为 的正三角形,则它的表面积是______。
10.方程 x ( x + 1) =0 的根是__________________。
11.把 4x 2 + 1 加上一个单项式,使其成为一个完全平方式,请你写出所有的符合条件的单项式_____________________。
12.在直线 l 上依次摆放着七个正方形 ( 如图2所示),已知斜放置的三个正方形的面积分别是1、2、3,正放置的四个正方形的面积依次是 S 1,S 2,S 3,S 4,则 S 1 + S 2 + S 3 + S 4=_____________。
二、选择题:(每小题 4 分,共 20 分)13.下列式子中正确的是( )A .a 2²a 3=a 6B .(x 3)3=x 6C .33=9D .3b ²3c =9bc14.如图3组成这个几何体的小正方体的个数是( )A .4个B .5个2x -4>03-x >01x 34图 1图 2l主视图 左视图俯视图15判断方程ax2 + bx+ c=0 (a≠0,a,b,c为常数)一个解x的范围是()A.3<x<3.23 B.3.23<x<3.24C.3.24<x<3.25 D.3.25<x<3.2616.如图3 所示,把一个正方形三次对折后沿虚线剪下,则所得的图形是()上折右折右下方折A B C D 图417.观察图中三角形个数的变化规律,当图中横线增加到一定数量时,可能有( )个三角形。
A.2010 B.2009 C.2008 D.2007 图5三、解答题:(共8 小题,计94 分)18.(10分) 计算:-sin60°+ (-2)0-19.(10分) 解方程:-8x2 + 12=020.(10分) 已知:如图6 CD⊥AB于点D,BE⊥AC于点E,BE、CD交于点O,且AO平分∠BAC。
求证:BD=CE。
21.(12分) 如图7,在人民公园人工湖两侧的A、B两点欲建一座观赏桥,由于受条件限制,无法直接度量A、B间的距离,请你用学过的知识,在图7 中设计二种测量方案。
要求:(1) 画出你设计的测量平面草图;(2) 在图形中标出测量的数据(长度用a,b,c,…,角度用α,β,Υ…表示),并写出测量的依据及AB的表达式。
A23-1512C图7B22.(12分) 图 8 是连续十周测试甲、乙两名运动员体能训练情况的折线统计图。
教练组规定:体能测试8 中所提供的信息填写下表: 请从下面两个不同的角度对运动员体能测试结果进行判断:依据平均数与成绩合格的次数比较甲和乙,__________ ② 依据平均数与中位数比较甲和乙,___________的体能测试成绩较好。
23.(13分) 某公司经销一种水仙茶,每千克成本为 50 元,市场调查发现,在一段时间内,销售量W(千克)随销售单位 x (元/千克)的变化而变化,具体关系式为 W =-2x + 240,设这种水仙茶在这段时间内的销售利润为 y (元)。
解答下列问题:(1) 求 y 与x 的函数关系式;(2)当x 取何时, y 的值最大;(3)如果物价部分规定各种水仙茶的销售单价不得高于 90元/千克,公司想要在这段时间内获得 2250 元的销售利润,销售单价应定为多少元?平均数中位数体能测试成绩合格次数65 60 ²² ²²² ² ² ² ² ² ² ² ² 一 二 三 四 五 六 七 八 九 十 时间/周 824.(13分) 如图 9 ,Rt △PMN 中,∠P =90°,PM =PN ,MN =8cm ,矩形ABCD 的长和宽分别为 8 cm和 2 cm ,C 点和M 点重合,BC 和MN 在一条直线上。
令Rt △PMN 不动,矩形 ABCD 沿MN 所在直线向右以每秒 1 cm 的速度移动 ( 如图 10 ) ,直到C 点与N 点重合为止。
设移动 x 秒后,矩形 ABCD 与△PMN 重叠部分的面积为 y cm 2,求 y 与 x 之间的函数关系式。
25.(14分) 如图11,在平面直角坐标系中,四边形OABC 为矩形,点A ,B 的坐标分别为 (4,0),(4,3),动点M 、N每秒 1 个单位的速度运动。
其中,点M 沿OA BC 向终点C 运动,过点M 作MP ⊥OA ,交AC 点运动了 x 秒。
(1) P 点的坐标为 ( _________,_________ ) ( 用含 (2) 试求 △NPC 的面积 S 值。
(3) 当 x 为何值时,△NPC中考数学综合训练(三) 参考答案及评分标准一、填空题:(每题 3 分,共 36 分)1、-2、1.26³1083、2<x <34、-5、6、 7、3 8、2x + y 9、 10、x 1=0,x 2=-1 11、-1,4x ,-4x ,-4x 2,4x 412、4二、选择题:(每小题 4 分,共 20 分)13-17:DBCCA三、解答题:(共 8 小题,计 94 分)18、(10分) 解:原式= - + 1- …………6分=2…………10分19、(10分) 解:设 2x 2-3=y ,则原方程变形为 -4y =0B 图 10 B N 图 9 图 1112121213π232322(3+1)3-11y图1解得:y 1= ,y 2=- …………5分当 y = 时,x =± …………7分 当 y =- 时,x =± …………9分经检验x =± ,x =± 均是原方程的根…………10分20、证明:在△AOD 和△AOE 中,∵CD ⊥AB BE ⊥AC ∴∠ADO =∠AEO =90° 又∵AO 平分∠BAC ∴∠DAO =∠EAO又∵AO 是公共边∴△AOD ≌△AOE ∴OD =OE …………5分 在 Rt △BOD 和Rt △COE 中, OD =OE ∠BOD =∠COE ∴△BOD ≌△COE ∴BD =CE …………10分21、方案一:方案二:∵tan α=∵△ABC ≌△CDE∴AB =atan α…………6分∴AB =DE =b …………12分22、(1)甲平均数 60,合格次数为 2,乙中位数 57.5,合格次数为4…8分(2)乙……10分 甲……12分23、解:(1)依题意:y =(x -50)(-2x + 240)=-2x 2 + 340x -12000…………4分(2)∵y =-2x 2 + 340x -12000=-2(x -85)2 + 2450∴当x =85时 y 最大=2450…………8分 (3)依题意:2250=-2x 2 + 340x -12000 解得:x 1=75,x 2=95(舍去)…………12分1212127252125272ABCα aAB CD Eb aaAB a当销售单位定为 75 元时,公司获得 2250 元的销售利润……13分24、解:在Rt △PMN 中,∵PM =PN ,∠P =90°,∴∠PMN =∠PNM =45°。
延长AD 分别交PM ,PN 于点G ,H ,过点G 作GF ⊥MN 于F ,过点H 作HT ⊥MN 于T 。
∵DC =2cm ,∴MF =GF =2cm ,TN =HT =2cm 。
∵MN =8cm ,∴MT =6cm.…………2分因此,矩形ABCD 以每秒 1cm 的速度由开始向右移动到停止,和Rt △PMN 重叠部分的形状可分为下列三种情况:(1)当C 点由M 点运动到F 点的过程中(0≤x ≤2),如图1①所示,设CD 与PM 交于点E ,则重叠部分图形是Rt △MCE ,且MC =EC =x 。
∴y = x 2(0≤x ≤2);…………5分(2)当C 点由F 点运动到T 点的过程中(2<x ≤6),如果图1②所示,重叠部分是直角梯形MCDG 。
∵MC =x ,MF =2。
∴FC =DG =x -2,且DC =2,∴ y = (MC + GD )²DC =2x -2(2<x ≤6);…………9分(3)当C 点由T 点运动到N 点的过程中(6<x ≤8),如图1③所示,设CD 与PN 交于点Q ,则重叠部分是五边形MCQHG ,∵MC =x ,∴CN =CQ =8-x ,且DC =2,∴ y =- (x -8)2 + 12(6<x ≤8)。
…………13分25、(1)x ,3- x ;…………4分(2)NC =4-x ,NC 边上的高为 x ,0≤x ≤4∴S = (4-x )³ x ,当x =2时,S 最大= 。
…………8分(3)延长MP 交CB 于Q① 若NP =CP NQ =CQ =x∴ =x ,x = …………10分② 若CP =CN 则CN =4-x ,PQ = x ,CP = x ∴4-x = x ,x = …………12分③ CN =NP 则CN =4-x ,PQ = x ,NQ =4-2x∴(4-x )2=(4-2x )2 + ( x )2 x = ………14分12121234341232344-x 243345454169341285734。