中考数学综合训练试卷(含答案)

合集下载

2021华东师大版初中数学中考复习综合检测试卷(共4套)(含部分答案解析)

2021华东师大版初中数学中考复习综合检测试卷(共4套)(含部分答案解析)

2021华东师大版初中数学中考复习综合检测试卷(一)一、选择题(本题有10小题,每题3分,共30分)1.若a是无理数,则下列各数中,一定是有理数的是()A.﹣a B.a2C.D.a02.如图生活垃圾分类标志中,既是轴对称图形又是中心对称图形的是()A.B.C.D.3.在2,﹣3,4,﹣5这四个数中,所得的积最大的是()A.20B.﹣20C.15D.84.某在线教育集团2﹣6月份在线教育的收入情况如图所示,则这几个月收入的众数是()A.120B.l25C.l30D.l355.如图所示,己知AB∥CD,EF平分∠CEG,则∠GFE的度数为()A.20°B.40°C.50°D.60°6.将一张正方形纸片按如图步骤,通过折叠得到图④,在CA,沿该虚线剪去一个角,剩余部分展开铺平后得到的图形不可能是()A.B.C.D.7.甲在市场上先a元/只价格买了4只鸡,再b元/只买了3只,后来他以,结果发现赚钱了,赚钱的原因是()A.a<b B.a=bC.a>b D.与a,b大小无关8.如图,在点E,F,G,H中(m<O)和y=n(x+2)(n>O)图象的交点不可能是()A.点G B.点H C.点E D.点F9.如图,若△ABC内一点P,满足∠PAB=∠PBC=∠PCA=α,得到如下两个结论:①若∠BAC=90°,则必有∠APC=90°,则必有∠APB=∠BPC.对于这两个结论,下列说法正确的是()A.①对,②错B.①错,②对C.①,②均错D.①,②均对10.若关于x的一元二次方程(x﹣2)(x﹣3)=m有实数根x1,x2,且x1<x2有下列结论:①x1=2,x2=3;②m>﹣;③当m>0时,x1<2<3<x2;④二次函数y=(x﹣x1)(x﹣x2)+m图象与x轴交点的坐标为(2,0)和(3,0).其中一定成立的结论是()A.①③④B.②③④C.②③D.②④二、填空题(本题有6小题,每题4分,共24分)11.因式分解:2x2﹣18=.12.说明命题“若a>b,则a2>b2“是假命题的反例是.13.在平面直角坐标系中,将点A(﹣2,3)向右平移3个单位长度后.14.甲、乙两人玩抽扑克牌游戏,游戏规则是:从牌面数字分别为5、6、7的三张扑克牌中,随机抽取一张,再随机抽取一张.若所抽的两张牌面数字的积为奇数,则甲获胜,则乙获胜.这个游戏.(填“公平“或“不公平“)15.如图1,将一个边长为a的正方形纸片剪去两个小长方形,得到图2(图3),若图3的长方形的周长为3a,则b可表示为(用a的代数式表示)16.如图,在四边形ABCD中,AB=4,AD=DC.(1)若∠DAB=75°,则四边形ABCD的面积是;(2)四边形ABCD对角线BD的最大值是.三、解答题(本题有8小题,共66分)17.计算:(﹣)﹣2﹣(π﹣3.14)0+﹣2sin45°.18.解不等式组:,并将解集表示在数轴上.19.图①、图②反映的是某综合商场今年1﹣5月份的商品销售额统计情况,商场1﹣5月份销售总额一共是370万元.观察图①和图②,解答下面问题:(1)请补全图①.(2)商场服装部5月份的销售额是多少万元?(3)小华观察图②后认为,5月份服装部的销售额比4月份减少了.你同意他的看法吗?为什么?20.如图均是4×4的正方形网格,各小正方形的顶点称为格点,按要求作以格点A为顶点的四边形.21.甲、乙两人早上8:00分别从A.B两地同时出发,沿同一条路线前往图书馆C.乙从B地步行出发,甲骑自行车从A地出发途经B地,维修耽误了1h.结果他俩11:00同时到图书馆C.下图是他们距离A地的路程y(km)关于所用时间刻的的函数图象.请根据图中信息(1)甲开始修车时,两人相距多少?(2)甲修车后追赶,何时与乙的距离是3.5km?22.⊙O是△ABC的外接圆,AB=AC,过点A作AE∥BC,过点C作CH⊥BE于点H,交直线AE于点D.(1)求证:DE是⊙O的切线.(2)己知BC=4,tan∠D=,求DE的长度.23.如图,过反比例函数y=(k>O,x>O)图象上的点P作两坐标轴的垂线,B,与反比例函数y=相交于点E(1)若PE=3AE,求k的值;(2)当k=6时,是否是定值,若是,请说明理由.(3)试用k的代数式表示△PEF面积.24.如图,矩形ABCD中,E是CD的中点,延长AF交射线CB于点G,BC=nCG.(1)当点G在BC上时:①求证:GF=GC.②用含n的代数式表示的值.(2)设射线EF交线段AB于点H,若CD=8,HE=5FH2021华东师大版初中数学中考复习综合检测试卷(二)一、选择题(本大题共有10小题,每小题3分,共30分.在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应的位置上)1.数1,0, ,|﹣2|中最大的是()A.1B.0C. D.|﹣2|2.为稳定就业,省人社厅以“职等你来、就业同行”为行动主题共计举办线上线下招聘会2771场,累计万家用人单位提供就业岗位万个,将数据万用科学记数法表示为()A.B.C.D.3.计算(+)=()A.+B.+C.+D.+4.某班有6个学习小组,每个小组的人数分别为5、6、5、4、7、5,这组数据的中位数是()A.5B.6C.5.5D.4.55.如图是由6个相同的小正方体搭成的几何体,若去掉上层的一个小正方体,则下列说法正确的是()A.主视图一定变化B.左视图一定变化C.俯视图一定变化D.三种视图都不变化6.一副直角三角板如图放置,其中∠F=∠ACB=90°,∠D=45°,∠B=60°,AB∥DC,则∠CAE的度数为()A.25°B.20°C.15°D.10°7.将含有30°角的直角三角板OAB如图放置在平面直角坐标系中,OB在x轴上,若OA=2,将三角板绕原点O顺时针旋转75°,则点A的对应点A′的坐标为()A.(,﹣1)B.(1,﹣)C.(,﹣)D.(﹣,)8.如图,四边形ABCD内接于半径为3的⊙O,CD是直径,若∠ABC=110°,则扇形AOD的面积为()A.πB.πC.πD.2π9.如图,已知△ABC中,AB=AC=2,∠B=30°,P是BC边上一个动点,过点P 作PD⊥BC,交△ABC其他边于点D.若设PB为x,△BPD的面积为y,则y与x之间的函数关系的图象大致是()A.B.C.D.10.如图,中,,,,,为,边上的两个动点,且,为中点,则的最小值为()A.B.C.D.二、填空题(本大题共有8小题,第11-12小题,每小题3分,第13-18小题,每小题4分,共30分.不需写出解答过程,请把答案直接填写在答题卡相应的位置上)11.计算:|3﹣π|+( )﹣1=.12.已知ab=7,a+b=2,则多项式a2b+ab2﹣20的值为.13.我国古代数学名著《九章算术》上有这样一个问题:“今有醇酒一斗,直钱五十;行酒一斗,直钱一十.今将钱三十,得酒二斗.问醇、行酒各得几何?”其大意是:今有醇酒(优质酒)1斗,价值50钱;行酒(劣质酒)1斗,价值10钱.现用30钱,买得2斗酒.问醇酒、行酒各能买得多少?设醇酒为x斗,行酒为y斗,根据题意,可列方程组为.14.关于x的分式方程 腐 方腐 㠱 腐的解为非负数,则a的取值范围是.15.已知α、β是一元二次方程x2+x﹣1=0的两根,则α2+2a+β﹣1=.16.如图,在四边形ABCD中,E、F分别是AB、AD的中点.若EF=2,BC=5,CD=3,则cosC的值为_______.17.在数学实践与综合课上,某兴趣小组同学用航拍无人机对某居民小区的1,2号楼进行测高实践,如图为实践时绘制的截面图.无人机从地面点垂直起飞到达点A处,测得1号楼顶部E的俯角为67°,测得2号楼顶部F的俯角为40°,此时航拍无人机的高度为60米,已知1号楼的高度为20米,且EC和FD分别垂直地面于点C和D,点B为CD 的中点,则2号楼的高度为(结果精确到0.1)(参考数据sin40°≈0.64,cos40°≈0.77,tan40°≈0.84,sin67°≈0.92,cos67°≈0.39tan67°≈2.36)18.如图,点A,B为反比例函数y㠱k x在第一象限上的两点,AC⊥y轴于点C,BD⊥x轴于点D,若B点的横坐标是A点横坐标的一半,且图中阴影部分的面积为k﹣2,则k=.三、解答题(本大题共有8小题,共90分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19.先化简、再求值: 腐 腐 ͸腐 腐 腐 腐 腐,其中x=2.20.一个不透明的口袋中装有2个红球、1个白球、1个黑球,这些球除颜色外都相同,将球摇匀.(1)从口袋中任意摸出1个球,恰好摸到红球的概率是;(2)先从口袋中随机摸出一个球,不放回,再从中口袋中随机摸出一个球.请用列举法(画树状图或列表)求摸出一个红球和一个白球的概率.21.为了解某市市民“绿色出行”方式的情况,某校数学兴趣小组以问卷调查的形式,随机调查了某市部分出行市民的主要出行方式(参与问卷调查的市民都只从五个种类中选择一类),并将调查结果绘制成不完整的统计图.种类A B C D E出行方式共享单车步行公交车的士私家车根据以上信息,回答下列问题:(1)参与本次问卷调查的市民共有人,其中选择B类的人数有人;(2)根据统计图信息,求A类对应扇形圆心角α的度数,补全条形统计图;(3)该市约有10万人出行,若将A,B,C这三类出行方式均视为“绿色出行”方式,请估计该市“绿色出行”方式的人数.22.已知:如图,在△ABC中,∠C=90°.(1)作图题:在AC边上,找一个点D,使点D到AB的距离等于DC,下列选项中,选出作法正确的;①取AC的中点D;②用尺规作角B的平分线,交AC于点D;③用尺规作AB边的中垂线,交AC或其延长线于点D;(2)在(1)的条件下,若AB=5,AC=4,求CD的长.23.如图1,已知直线:分别交,轴于,两点,点在轴负半轴上,且.(1)求直线的解析式;(2)如图2,点是线段上一点,若,求点的坐标.24.已知二次函数y=ax2+bx 的图象与y轴交于点B.(1)若二次函数的图象经过点A(1,1),①二次函数的对称轴为直线x=1,求此二次函数的解析式;②对于任意的正数a,当x>n时,y随x的增大而增大,请求出n的取值范围.(2)若二次函数的图象的对称轴为直线x=﹣1,且直线y=2x﹣2与直线l也关于直线x =﹣1对称,且二次函数的图象在﹣5<x<﹣4这一段位于直线l的上方,在1<x<2这一段位于直线y=2x﹣2的下方,求此二次函数的解析式.25.在边长为5的正方形ABCD中,点E在边CD所在直线上,连接BE,以BE为边,在BE 的下方作正方形BEFG,并连接AG.(1)如图1,当点E与点D重合时,AG=;(2)如图2,当点E在线段CD上时,DE=2,求AG的长;(3)若AG㠱DE的长.26.类比等腰三角形的定义,我们定义:有一组邻边相等的凸四边形叫做“等邻边四边形”.(1)如图1,在四边形ABCD中,添加一个条件使得四边形ABCD是“等邻边四边形”.请写出你添加的一个条件.(2)小红猜想:对角线互相平分的“等邻边四边形”是菱形.她的猜想正确吗?请说明理由.(3)如图2,小红作了一个Rt△ABC,其中∠ABC=90°,AB=2,BC=1,并将Rt△ABC 沿∠ABC的平分线BB′方向平移得到△A′B′C′,连接AA′,BC′.小红要使得平移后的四边形ABC′A′是“等邻边四边形”,应平移多少距离(即线段B′B的长)?2021华东师大版初中数学中考复习综合检测试卷(三)一、选择题(本题共8小题,每小题3分,共24分.每小题给出的4个选项中,有且只有一个答案是正确的)1.﹣4的相反数是()A. B.4C. D.﹣42.我国北斗公司在2020年发布了一款代表国内卫星导航系统最高水平的芯片,该芯片的制造工艺达到了0.000000022米.用科学记数法表示0.000000022为()A.22×10﹣10B.2.2×10﹣10C.2.2×10﹣9D.2.2×10﹣83.下列计算正确的是()A.a3•a4=a12B.(3x)3=9x3C.(b3)2=b5D.a10÷a2=a8 4.下列四个立体图形中,其主视图是轴对称图形但不是中心对称图形的是()A.B.C.D.5.设x1,x2是一元二次方程x2﹣2x﹣3=0的两根,则x1+x2=()A.﹣2B.2C.3D.﹣36.将一把直尺和一块含30°角的三角板ABC按如图所示的位置放置,如果∠CED=46°,那么∠BAF的度数为()A.48°B.16°C.14°D.32°7.如图,将矩形OABC置于平面直角坐标系中,点A的坐标为(8,0),点D在BC上,且CD=2,将矩形OABC沿AD折叠,使点B落在点E处,DE与y轴交于M点,点M 恰好为DE中点,连接OE,则OE的长度()A.2 B.2͸C.2 D.28.甲、乙两人以相同的路线前往距离单位10千米的培训中心参加学习,图中l甲、l乙分别表示甲、乙两人前往目的地所走的路程S(千米)随时间t(分钟)变化的函数图象.以下说法:①乙比甲提前12分钟到达;②甲的平均速度为15千米/小时;③乙走了6千米后遇到甲;④乙出发6分钟后追上甲.其中正确的有()A.4个B.3个C.2个D.1个二、填空题(本题共8小题,每小题3分,共24分)9.函数y㠱 腐 腐的自变量x的取值范围是.10.(π﹣1)0﹣tan60°=.11.若ab=3,a﹣b=5,则2a2b﹣2ab2=.12.一组数据1,1,x,2,4,5的平均数是3,则这组数据的中位数是.13.如图,圆锥底面半径为rcm,母线长为5cm,侧面展开图是圆心角等于216°的扇形,则该圆锥的底面半径r为cm.14.如图,矩形OABC在平面直角坐标系中的位置如图所示,点B(﹣3,5),点D在线段AO上,且AD=2OD,点E在线段AB上,当△CDE的周长最小时,点E的坐标为.15.如图,点C在反比例函数y㠱 腐(x<0)的图象上,过点C的直线与x轴,y轴分别交于点A,B,且AB=BC,△AOB的面积为 ,则k的值为.16.若x=﹣m和x=m﹣4时,多项式ax2+bx+4a+1的值相等,且m≠2.当﹣1<x<2时,存在x的值,使多项式ax2+bx+4a+1的值为3,则a的取值范围是.三.解答题(共9小题,满分72分)17.(6分)解不等式组: 腐 >腐 .18.(6分)先化简,再求值:( 方方 方方 ) 方 ,其中a=2.19.(6分)如图,在菱形ABCD中,对角线AC,BD交于点O,过点A作AE⊥BC于点E,延长BC到点F,使得CF=BE,连接DF,(1)求证:四边形AEFD是矩形;(2)连接OE,若AB=13,OE㠱 ,求AE的长.20.(7分)新华商场销售某种商品,每件进货价为40元,市场调研表明:当销售价为80元时,平均每天能售出20件;在每件盈利不少于25元的前提下,经过一段时间销售,当销售价每降低1元时,平均每天就能多售出2件.(1)若降价2元,则平均每天销售数量为件;(2)当每件商品定价多少元时,该商场平均每天销售某种商品利润达到1200元?21.(8分)某中学1000名学生参加了”环保知识竞赛“,为了了解本次竞赛成绩情况,从中抽取了部分学生的成绩(得分取整数,满分为100分)作为样本进行统计,并制作了如图频数分布表和频数分布直方图(不完整且局部污损,其中“■”表示被污损的数据).请解答下列问题:成绩分组频数频率50≤x<6080.1660≤x<7012a70≤x<80■0.580≤x<9030.0690≤x≤100b c合计■1(1)写出a,b,c的值;(2)请估计这1000名学生中有多少人的竞赛成绩不低于70分;(3)在选取的样本中,从竞赛成绩是80分以上(含80分)的同学中随机抽取两名同学参加环保知识宣传活动,求所抽取的2名同学来自同一组的概率.22.(7分)如图,在一次综合实践活动中,小亮要测量一楼房的高度,先在坡面D处测得楼房顶部A的仰角为30°,沿坡面向下走到坡脚C处,然后在地面上沿CB向楼房方向继续行走10米到达E处,测得楼房顶部A的仰角为60°.已知坡面CD=10米,山坡的坡度i=1: (坡度是指坡面的铅直高度与水平宽度的比).(1)求点D离地面高度(即点D到直线BC的距离);(2)求楼房AB高度.(结果保留根式)23.(8分)如图,AB是⊙O的直径,点C在⊙O上,点E是 的中点,延长AC交BE 的延长线于点D,点F在AB的延长线上,EF⊥AD,垂足为G.(1)求证:GF是⊙O的切线;(2)求证:CE=DE;(3)若BF=1,EF㠱 ,求⊙O的半径.24.(10分)某商店销售一种商品,小明经市场调查发现:该商品的周销售量y(件)是售价x(元/件)的一次函数,其售价、周销售量、周销售利润w(元)的三组对应值如表:售价x(元/件)607080周销售量y(件)1008060周销售利润w(元)200024002400注:周销售利润=周销售量×(售价﹣进价)(1)①求y关于x的函数解析式.(不要求写出自变量的取值范围)②该商品进价是元/件;当售价是元/件时,周销售利润最大,最大利润是元.(2)由于某种原因,该商品进价提高了m元/件(m>0),物价部门规定该商品售价不得超过70元/件,该商店在今后的销售中,周销售量与售价仍然满足(1)中的函数关系.若周销售最大利润是1600元,求m的值.25.(14分)如图,在平面直角坐标系xOy 中,抛物线y =ax 2+bx +c 经过点O ,B (3,﹣3 ),与x 轴相交于点A (4,0).(1)求抛物线的解析式;(2)点N 在抛物线上,抛物线的对称轴上是否存在点M ,使得以O 、B 、M 、N 为顶点的四边形为平行四边形,若存在,请求出点M 的坐标,若不存在,请说明理由;(3)点C 为抛物线上的一个动点且位于直线OB 的下方,过点C 作CD ∥OB 交抛物线于点D ,连接OC 、BC 、BD ,S △BOC =3S △BCD ,点P 是x 轴上一动点,连接PC 、PD ,请求出△PCD 周长的最小值.2021华东师大版初中数学中考复习综合检测试卷(四)附答案一、选择题(每小题3分,共30分)1.抛物线y =2(x -3)2+4的顶点坐标是(A )A .(3,4)B .(-3,4)C .(3,-4)D .(2,4)2.(2018·重庆中考B 卷)下列调查中,最适合采用全面调查(普查)的是(D )A .对我市中学生每周课外阅读时间情况的调查B.对我市市民知晓“礼让行人”交通新规情况的调查C.对我市中学生观看电影《厉害了,我的国》情况的调查D.对我国首艘国产航母002型各零部件质量情况的调查3.(2018·广西南宁中考)将抛物线y=12x2-6x+21向左平移2个单位后,得到新抛物线的表达式为(D)A.y=12(x-8)2+5B.y=12(x-4)2+5C.y=12(x-8)2+3D.y=12(x-4)2+34.若⊙O的半径为5,圆心O的坐标为(3,4),点P的坐标为(6,9),则点P与⊙O的位置关系是(C)A.点P在⊙O内B.点P在⊙O上C.点P在⊙O外D.点P在⊙O上或⊙O外5.(2019·河南郑州模拟)从某公司3000名职工中随机抽取30名职工,每个职工周阅读时间(单位:min)依次为:周阅读时间(单位:min)61~7071~8081~9091~100101~110人数369102则该公司所有职工中,周阅读时间超过一个半小时的职工人数约为(A) A.1200B.1500C.1800D.21006.二次函数y=-x2+bx+c的图象如图所示.若点A(x1,y1),B(x2,y2)在此函数图象上,且x1<x2<1,则y1与y2的大小关系是(B)A.y1≤y2B.y1<y2C.y1≥y2D.y1>y2第6题图第7题图7.如图,四边形ABCD 为⊙O 的内接四边形,延长AB 与DC 相交于点G ,AO ⊥CD ,垂足为点E ,连结BD .若∠GBC =50°,则∠DBC 的度数为(C )A .50°B .60°C .80°D .90°8.(2018·山东青岛中考)已知一次函数y =ba x +c 的图象如图,则二次函数y =ax 2+bx +c 在平面直角坐标系中的图象可能是(A )9.如图,⊙O 的外切正六边形AB CDEF 的边长为2,则图中阴影部分的面积为(A )A.3-π2B.3-2π3C .23-π2D .23-2π3第9题图第10题图10.图2是图1中拱形大桥的示意图,桥拱与桥面的交点为O ,B ,以点O 为原点,水平直线OB 为x 轴,建立平面直角坐标系,桥的拱形可以近似看成抛物线y =-1400(x -80)2+16,桥拱与桥墩AC 的交点C 恰好在水面,有AC ⊥x 轴.若OA =10m ,则桥面离水面的高度AC 为(B )A .16940m B.174m C .16740m D.154m 二、填空题(每小题3分,共15分)11.(2019·河南周口期末)为了解2019届本科生的就业情况,某网站对2019届本科生的签约情况进行了网络调查,至3月底,参与网络调查的12000人中,只有5005人已与用人单位签约.在这个网络调查中,样本容量是__12__000__.12.如图,A ,B ,C ,D 是⊙O 上的四个点,AB ︵=BC ︵.若∠AOB =58°,则∠BDC =__29__度.第12题图13.(2019·山东泰安中考)若二次函数y =x 2+bx -5的对称轴为直线x =2,则关于x 的方程x 2+bx -5=2x -13的解为__x 1=2,x 2=4__.14.(2019·河南南阳三模)如图,在边长为2的正方形ABCD 中,以点D 为圆心、AD 的长为半径画弧,再以BC 为直径画半圆.若阴影部分①的面积为S 1,阴影部分②的面积为S 2,则S 2-S 1的值为__3π2-4__.第14题图第15题图15.函数y =x 2+bx +c 与y =x 的图象如图所示,有以下结论:①b 2-4c >0;②b +c +1=0;③3b +c +6=0;④当1<x <3时,x 2+(b -1)x +c <0.其中正确的有__2__个.三、解答题(共8小题,满分75分)16.(8分)如图,AB 为⊙O 的弦,AB =8,OC ⊥AB 于点D ,交⊙O 于点C ,且CD =1,求⊙O 的半径.解:如图,连结OA .∵OC ⊥AB ,∴AD =DB =12AB =4.设⊙O 的半径为r ,在Rt △OAD 中,OA 2=AD 2+OD 2,∴r 2=(r -1)2+42,整理,得2r =17,∴r =172,∴⊙O 的半径是172.17.(9分)已知抛物线y =-12x 2+bx +c 经过点(1,0)(1)求该抛物线的函数表达式;(2)将抛物线y =-12x 2+bx +c 平移,使其顶点恰好落在原点,请写出一种平移的方法及平移后的函数表达式.解:(1)把点(1,0)y =-12x 2+bx +c ,-12+b +c =0,=32,=-1,=32,∴该抛物线的函数表达式为y =-12x 2-x +32(2)∵y =-12x 2-x +32=-12(x +1)2+2,∴顶点坐标为(-1,2),∴一种平移方法是先向右平移1个单位,再向下平移2个单位得到的函数表达式为y =-12x 2,其顶点恰好落在原点.18.(9分)(2019·山东威海中考)在画二次函数y =ax 2+bx +c (a ≠0)的图象时,甲写错了一次项的系数,列表如下:x …-10123…y 甲…63236…乙写错了常数项,列表如下:x …-10123…y 乙…-2-12714…通过上述信息,解决以下问题:(1)求原二次函数y =ax 2+bx +c (a ≠0)的表达式;(2)对于二次函数y =ax 2+bx +c (a ≠0),当x __≥-1__时,y 的值随x 值的增大而增大;(3)若关于x 的方程ax 2+bx +c =k (a ≠0)有两个不相等的实数根,求k 的取值范围.解:(1)由甲同学的错误可知c =3.由乙同学提供的数据选x =-1,y =-2;x =0,y =-1;x =1,y =2,得-b +c =-2,=-1,+b +c =2,=1,=2,=-1,∴原二次函数为y =x 2+2x +3.(3)方程ax 2+bx +c =k (a ≠0)有两个不相等的实数根,即x 2+2x +3-k =0有两个不相等的实数根,∴Δ=4-4(3-k )>0,∴k >2.19.(9分)(2018·浙江温州中考)如图,D 是△ABC 的BC 边上一点,连结AD ,作△ABD 的外接圆,将△ADC 沿直线AD 折叠,点C 的对应点E 落在圆上(1)求证:AE =AB ;(2)若∠CAB =90°,cos ∠ADB =13,BE =2,求BC 的长.解:(1)证明:由翻折的性质得∠AED =∠ACD ,AE =AC .∵∠ABD =∠AED ,∴∠ABD =∠ACD ,∴AB =AC ,∴AE =AB .(2)如图,过点A 作AH ⊥BE 于点H .∵AB =AE ,BE =2,∴BH =EH =1.∵∠ABE =∠AEB =∠ADB ,cos ∠ADB =13,∴cos ∠ABE =cos ∠ADB =13,∴BH AB =13,∴AC =AB =3.∵∠BAC =90°,AC =AB ,∴BC =3 2.20.(9分)(2019·辽宁锦州中考)为了响应“学习强国,阅读兴辽”的号召,某校鼓励学生利用课余时间广泛阅读,学校打算购进一批图书.为了解学生对图书类别的喜欢情况,校学生会随机抽取部分学生进行问卷调查,规定被调查学生从“文学、历史、科学、生活”中只选择自己最喜欢的一类,根据调查结果绘制了下面不完整的统计图.请根据图表信息,解答下列问题:(1)此次共调查了学生__200__人;(2)请通过计算补全条形统计图;(3)若该校共有学生2200人,请估计这所学校喜欢“科学”类图书的学生人数.解:(1)78÷39%=200(人),故答案为200.(2)历史:200×33%=66(人),科学:200-78-66-24=32(人),补全条形统计图如图所示:(3)2200×32200=352(人).答:该校2200名学生中喜欢“科学”类图书的大约有352人.21.(10分)(2019·山东潍坊中考)扶贫工作小组对果农进行精准扶贫,帮助果农将一种有机生态水果拓宽了市场.与去年相比,今年这种水果的产量增加了1000 kg,每千克的平均批发价比去年降低了1元,批发销售总额比去年增加了20%.(1)已知去年这种水果批发销售总额为10万元,求这种水果今年每千克的平均批发价是多少元;(2)某水果店从果农处直接批发,专营这种水果.调查发现,若每千克的平均销售价为41元,则每天可售出300kg;若每千克的平均销售价每降低3元,每天可多卖出180kg.设水果店一天的利润为w元,当每千克的平均销售价为多少元时,该水果店一天的利润最大,最大利润是多少?(利润计算时,其他费用忽略不计)解:(1)设这种水果今年每千克的平均批发价是x 元,则去年每千克的平均批发价为(x +1)元.由题意得今年的批发销售总额为10×(1+20%)=12(万元),则120000x -100000x +1=1000,整理得x 2-19x -120=0,解得x =24或x =-5(不合题意,舍去).答:这种水果今年每千克的平均批发价是24元.(2)设每千克的平均销售价为m 元.由题意得w =(m -180+-60m 2+4200m -66240=-60(m -35)2+7260.∵a =-60<0,∴抛物线开口向下,∴当m =35时,w 最大=7260.答:当每千克的平均销售价为35元时,该水果店一天的利润最大,最大利润是7260元.22.(10分)(2019·江苏扬州广陵区三模)如图,AB 是⊙O 的切线,切点为B ,AO 与⊙O 交于点C ,点D 在AB 上,DC =DB .(1)求证:CD 是⊙O 的切线;(2)若AD =2BD ,CD =2,求由线段BD ,CD 及BC ︵所围成的阴影部分的面积.解:(1)证明:如图,连结OB ,OD .∵AB 是⊙O 的切线,切点为B ,∴OB ⊥AB .在△OBD 和△OCD =OC ,=OD ,=CD ,∴△OBD ≌△OCD (SSS),∴∠OCD =∠OBD=90°,∴CD 是⊙O 的切线.(2)∵DB =DC ,AD =2BD ,CD =2,∴DB =2,AD =4,AD =2DC ,∴AB =DB +AD =6.∵∠OCD =90°,∴∠ACD =90°,∴sin A =CD AD =12,∴∠A =30°,∴∠AOB =60°,∴tan A =OBAB=33,∴OB =33×6=23,∴S 阴影=2S △BOD -S 扇形OBC =2×12×2×23-60×π×(23)2360=43-2π.23.(11分)如图,抛物线y =x 2+bx +c 与x 轴交于A (-1,0),B (3,0)两点,顶点M 关于x 轴的对称点是M ′.(1)求抛物线的表达式;(2)若直线AM ′与此抛物线的另一个交点为C ,求△CAB 的面积;(3)是否存在过A ,B 两点的抛物线,其顶点P 关于x 轴的对称点为Q ,使得四边形APBQ 为正方形?若存在,求出此抛物线的表达式;若不存在,请说明理由.解:(1)将A ,B 1)2-b +c =0,2+3b +c =0,=-2,=-3,所以抛物线的表达式为y =x 2-2x -3.(2)将抛物线的表达式化为顶点式,得y =(x -1)2-4,所以M 点的坐标为(1,-4),M ′点的坐标为(1,4).设直线AM ′的表达式为y =kx +b ,将A ,M ′点的坐标k +b =0,+b =4,=2,=2,所以直线AM ′的表达式为y =2x +2.联立得=2x +2,=x 2-2x -3,1=-11=0,2=5,2=12,则C 点坐标为(5,12).所以S △CAB =12×[3-(-1)]×12=24.(3)存在.理由如下:由四边形APBQ 是正方形,A (-1,0),B (3,0),得P (1,-2),Q (1,2)或P (1,2),Q (1,-2).①当顶点为P (1,-2)时,设抛物线的表达式为y =a (x -1)2-2,将A 点坐标代入函数表达式,得a(-1-1)2-2=0,解得a=12,所以抛物线的表达式为y=12(x-1)2-2;②当顶点为P(1,2)时,设抛物线的表达式为y=a(x-1)2+2,将A点坐标代入函数表达式,得a(-1-1)2+2=0,解得a=-12,所以抛物线的表达式为y=-12(x-1)2+2.综上所述,所求抛物线的表达式为y=12(x-1)2-2或y=-12(x-1)2+2.。

人教版九年级数学(上下全册)综合测试卷(附带参考答案)

人教版九年级数学(上下全册)综合测试卷(附带参考答案)

人教版九年级数学(上下全册)综合测试卷(附带参考答案)(考试时长:100分钟;总分:120分)学校:___________班级:___________姓名:___________考号:___________一、单选题 1.方程2269x x -=的二次项系数、一次项系数、常数项分别为( ) A .6,2,9 B .2,-6,9 C .-2,-6,9 D .2,-6,-92.下列方程中,属于一元二次方程的是( )A .233x x =-;B .5(1)(51)2x x x x +=-+;C .()2333y x -=;D .21210x x -+=.3.一元二次方程2410x x --=的根的情况是( )A .没有实数根B .只有一个实根C .有两个相等的实数D .有两个不相等的实数根4.把二次函数2243y x x =--+用配方法化成()2y a x h k =-+的形式( )A .()2215y x =-++B .()2215y x =--+C .()2215y x =++D .()2215y x =-+5.下图是由几个相同的小正方体搭成的一个几何体,它的主视图是( )A .B .C .D .6.关于x 的一元二次方程x 2+kx ﹣2=0(k 为实数)根的情况是( )A .没有实数根B .有两个相等的实数根C .有两个不相等的实数根D .不能确定7.若a ,b 为一元二次方程2710x x --=的两个实数根,则33842a ab b a ++-值是()A .-52B .-46C .60D .668.如图所示,在坐标系中放置一菱形OABC ,已知60ABC ∠=︒,OA=1,先将菱形OABC 沿x 轴的正方向无滑动翻转,每次翻转60︒,连续翻转2020次,点B 的落点一次为123,,B B B ……则2020B 的坐标为( )A .(1346,3)B .(1346,0)C .(1346,23)D .(1347,3)9.将一副三角板如下图摆放在一起,连结AD ,则∠ADB 的正切值为( )A .31-B .21-C .312+D .312- 10.如图,一名滑雪运动员沿着倾斜角为34°的斜坡,从A 滑行至B ,已知AB=500米,则这名滑雪运动员的高度下降了__米.(sin34°≈0.56,cos34°≈0.83,tan34°≈0.67) ( )A .415B .280C .335D .25011.二次函数y =x 2+4x −5的图象的对称轴为( )A .x =−4B .x =4C .x =−2D .x =212.如图,在平面直角坐标系中,O 为原点35OA OB ==,点C 为平面内一动点32BC =,连接AC ,点M 是线段AC 上的一点,且满足:1:2CM MA =.当线段OM 取最大值时,点M 的坐标是( )A .36,55⎛⎫ ⎪⎝⎭B .365,555⎛⎫ ⎪⎝⎭C .612,55⎛⎫ ⎪⎝⎭D .6125,555⎛⎫ ⎪⎝⎭ 二、填空题 13.芜湖宣州机场(Wuhu Xuanzhou Airport ,IATA :WHA ,ICAO :ZSWA ),简称“芜宣机场”,位于中国安徽省芜湖市湾沚区湾沚镇和宣城市宣州区养贤乡,为4C 级国内支线机场、芜湖市与宣城市共建共用机场,如图是芜宣机场部分出港航班信息表,从表中随机选择一个航班,所选航班飞行时长超过2小时的概率为 .航程 航班号 起飞时间 到达时间 飞行时长芜宣-贵阳 C54501 9:15 11:552h40m 芜宣-南宁 G54701 9:15 11:55 2h40m 芜宣-沈阳 G54517 9:20 11:502h30m 芜宣-济南 JD5339 10:15 11:451h30m 芜宣-重庆 3U8072 12:35 14:552h20m 芜宣-北京 KN5870 14:00 16:152h15m 芜宣-长沙 G52817 14:20 16:001h40 m 芜宣-青岛 DZ6253 16:30 18:201h50m 芜宣-三亚 TD5340 17:5521:10 3h15m 14.抛物线()2318y x =-+的对称轴是: .15.如图,在O 中,AB 切O 于点A ,连接OB 交O 于点C ,点D 在O 上,连接CD 、AD ,若50B ∠=︒,则D ∠为 .16.直角三角形一条直角边和斜边的长分别是一元二次方程的两个实数根,该三角形的面积为 . 17.写出一个开口向下、且经过点(-1,2)的二次函数的表达式 ;18.如图,将ABC 绕点A 顺时针旋转85︒,得到ADE ,若点E 恰好在CB 的延长线上,则BED ∠= .19.甲袋里有红、白两球,乙袋里有红、红、白三球,两袋的球除颜色不同外其他都相同,分别从两袋里任摸一球,同时摸到红球的概率是 .20.如图,点A ,B 的坐标分别为()()4004A B ,,,,C 为坐标平面内一点,2BC =,点M 为线段AC 的中点,连接OM OM ,的最大值为 .21.如图,在Rt△ABC 中,∠ACB =90°,AB =5,BC =3,将△ABC 绕点B 顺时针旋转得到△A′B C′,其中点A ,C 的对应点分别为点,A C ''连接,AA CC '',直线CC '交AA '于点D ,点E 为AC 的中点,连接DE .则DE 的最小值为22.如图,在平面直角坐标系中,ACE ∆是以菱形ABCD 的对角线AC 为边的等边三角形23AC =点C 与点E 关于x 轴对称,则过点C 的反比例函数的表达式是 .23.若粮仓顶部是圆锥形,且这个圆锥的高为2m ,母线长为2.5m ,为防雨需在粮仓顶部铺上油毡,则这块油毡的面积是 m 2.(结果保留π)24.如图,在矩形ABCD 中,4,6,AB BC E ==是AB 的中点,F 是BC 边上一动点,将BEF △沿着EF 翻折,使得点B 落在点B '处,矩形内有一动点,P 连接,,,PB PC PD '则PB PC PD '++的最小值为 .(21题图) (22题图) (24题图)三、解答题25.计算:(﹣2)3+16﹣2sin30°+(2016﹣π)0.26.(1)计算:112cos30|32|()44-︒+---.(2)如图是一个几何体的三视图(单位:cm ).①这个几何体的名称是 ;②根据图上的数据计算这个几何体的表面积是 (结果保留π)27.水务部门为加强防汛工作,决定对马边河上某电站大坝进行加固.原大坝的横断面是梯形ABCD ,如图所示,已知迎水面AB 的长为20米,∠B =60°,背水面DC 的长度为203米,加固后大坝的横断面为梯形ABED.若CE的长为5米.(1)已知需加固的大坝长为100米,求需要填方多少立方米;(2)求新大坝背水面DE的坡度.(计算结果保留根号).28.某校举行了“防溺水”知识竞赛.八年级两个班各选派10名同学参加预赛,依据各参赛选手的成绩(均为整数)绘制了统计表和折线统计图(如图所示).班级八(1)班八(2)班最高分100 99众数a98中位数96 b平均数c94.8(1)统计表中,=a_______,b=_________,c=_______;(2)若从两个班的预赛选手中选四名学生参加决赛,其中两个班的第一名直接进入决赛,另外两个名额在成绩为98分的学生中任选两个,求另外两个决赛名额落在不同班级的概率.29.某口罩生产厂生产的口罩1月份平均日产量为18000个,1月底市场对口罩需求量大增,为满足市场需求,工厂决定从2月份起扩大产量,3月份平均日产量达到21780个.(1)求口罩日产量的月平均增长率;(2)按照这个增长率,预计4月份平均日产量为多少?30.阳阳超市以每件10元的价格购进了一批玩具,定价为20元时,平均每天可售出80个.经调查发现,玩具的单价每降1元,每天可多售出40个;玩具的单价每涨1元,每天要少售出5个.如何定价才能使每天的利润最大?求出此时的最大利润.31.(1)一个矩形的长比宽大2cm,面积是168cm?.求该矩形的长和宽.(2)如图,两个圆都以点O为圆心.求证:AC BD.32.国庆与中秋双节期间,小林一家计划在焦作市内以下知名景区选择一部分去游玩.5A级景区四处:a.云台山景区,b.青天河景区,c.神农山景区;d.峰林峡景区;4A级景区六处:e.影视城景区,f.陈家沟景区,g.嘉应观景区,h.圆融寺景区,i.老家莫沟景区,j.大沙河公园;(1)若小林一家在以上这些景区随机选择一处,则选到5A级景区的概率是.(2)若小林一家选择了“a.云台山景区”,此外,他们决定再从b,c,d,e四处景区中任选两处景区去游玩,用画树状图或列表的方法求恰好选到b,e两处景区的概率.33.综合与探究问题情境:某商店购进一种冬季取暖的“小太阳”取暖器,每台进价为40元,这种取暖器的销售价为每台52元时,每周可售出180台.探究发现:①销售定价每增加1元时,每周的销售量将减少10台;②销售定价每降低1元时,每周的销售量将增多10台.问题解决:若商店准备把这种取暖器销售价定为每台x元,每周销售获利为y元.(1)当54x 时,这周的“小太阳”取暖器的销售量为______台,每周销售获利y为______元.(2)求y与x的函数关系式(不必写出x的取值范围),并求出销售价定为多少时,这周销售“小太阳”取暖器获利最大,最大利润是多少?(3)若该商店在某周销售这种“小太阳”取暖器获利2000元,求x的值.答案:1.D 2.A 3.D 4.A 5.C 6.C 7.C 8.B 9.D 10.B 11.C 12.D 13.2314.直线1x=15.20︒16.24.17.23y x=-+(答案不唯一).18.95︒19.92520.122+/221+21.122.23yx=23.154π.24.423+25.-4.26.(1)4-;(2)①圆锥;②几何体的表面积为220cmπ27.(1)需要填方25003立方米;(2)新大坝背水面DE的坡度为237.28.(1)96;96;94.5;(2)3529.(1)口罩日产量的月平均增长率为10% (2)预计4月份平均日产量为23958个30.当定价为16元时,每天的利润最大,最大利润是1440元31.(1)矩形的长为14cm,宽为12cm32.(1)25(2)1633.(1)160,2240;(2)当销售定价为55元时,利润最大,最大为2250元;(3)当x为60或50时,每周获利可达2000元.。

中考综合模拟考试 数学试卷 附答案解析

中考综合模拟考试 数学试卷 附答案解析
24.一次函数y=﹣2x﹣2分别与x轴、y轴交于点A、B.顶点为(1,4)的抛物线经过点A.
(1)求抛物线的解析式;
(2)点C为第一象限抛物线上一动点.设点C的横坐标为m,△ABC的面积为S.当m为何值时,S的值最大,并求S的最大值;
(3)在(2)的结论下,若点M在y轴上,△ACM为直角三角形,请直接写出点M的坐标.
9.在函数 中,自变量x的取值范围是______.
【答案】x≥4
【解析】
【分析】
根据被开方数为非负数及分母不能为0列不等式组求解可得.
【详解】解:根据题意,知 ,
解得:x≥4,
故答案为x≥4.
【点睛】本题考查函数自变量的取值范围,自变量的取值范围必须使含有自变量的表达式都有意义:①当表达式的分母不含有自变量时,自变量取全体实数.例如y=2x+13中的x.②当表达式的分母中含有自变量时,自变量取值要使分母不为零..③当函数的表达式是偶次根式时,自变量的取值范围必须使被开方数不小于零.④对于实际问题中的函数关系式,自变量的取值除必须使表达式有意义外,还要保证实际问题有意义.
A. B. C. D.
【答案】B
【解析】
【分析】
科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
【详解】47.24亿=4724 000 000=4.724×109.
10.若 ,则 的值是________.
【答案】3
【解析】
【分析】
原式变形后,将m−n的值代入计算即可求出值.
【详解】解:∵ ,

初三数学试卷(含答案)

初三数学试卷(含答案)

初三数学试卷(含答案)一、选择题(每小题3分,共30分)1. 若a²4a+4=0,则a的值为()A. 2B. 2C. 0D. 2或22. 下列各式中,正确的是()A. (a+b)²=a²+b²B. (a+b)³=a³+b³C. (a+b)²=a²+2ab+b²D. (a+b)³=a³+3ab²+b³3. 下列各式中,正确的是()A. (a+b)²=(a+b)(a+b)B. (a+b)³=(a+b)(a+b)(a+b)C.(a+b)⁴=(a+b)(a+b)(a+b)(a+b) D.(a+b)⁵=(a+b)(a+b)(a+b)(a+b)(a+b)4. 若a²4a+4=0,则a的值为()A. 2B. 2C. 0D. 2或25. 下列各式中,正确的是()A. (a+b)²=a²+b²B. (a+b)³=a³+b³C. (a+b)²=a²+2ab+b²D. (a+b)³=a³+3ab²+b³6. 下列各式中,正确的是()A. (a+b)²=(a+b)(a+b)B. (a+b)³=(a+b)(a+b)(a+b)C.(a+b)⁴=(a+b)(a+b)(a+b)(a+b) D.(a+b)⁵=(a+b)(a+b)(a+b)(a+b)(a+b)7. 若a²4a+4=0,则a的值为()A. 2B. 2C. 0D. 2或28. 下列各式中,正确的是()A. (a+b)²=a²+b²B. (a+b)³=a³+b³C. (a+b)²=a²+2ab+b²D. (a+b)³=a³+3ab²+b³9. 下列各式中,正确的是()A. (a+b)²=(a+b)(a+b)B. (a+b)³=(a+b)(a+b)(a+b)C.(a+b)⁴=(a+b)(a+b)(a+b)(a+b) D.(a+b)⁵=(a+b)(a+b)(a+b)(a+b)(a+b)10. 若a²4a+4=0,则a的值为()A. 2B. 2C. 0D. 2或2二、填空题(每小题3分,共30分)11. 若a²4a+4=0,则a的值为______。

初三数学综合测试卷及答案

初三数学综合测试卷及答案

一、选择题(每题3分,共30分)1. 下列各数中,有理数是()A. √16B. √-9C. πD. 0.1010010001……2. 已知等腰三角形底边长为8cm,腰长为10cm,则其面积为()A. 32cm²B. 40cm²C. 48cm²D. 80cm²3. 下列函数中,一次函数是()A. y = 2x² - 3x + 1B. y = √x + 1C. y = 2x + 3D. y = 3/x4. 已知一元二次方程x² - 5x + 6 = 0,则其解为()A. x₁ = 2, x₂ = 3B. x₁ = 3, x₂ = 2C. x₁ = 6, x₂ = 1D. x₁ = 1, x₂ = 65. 在平面直角坐标系中,点A(2,3)关于原点的对称点是()A.(-2,-3)B.(2,-3)C.(-2,3)D.(3,-2)6. 下列各组数中,成等差数列的是()A. 1,4,7,10B. 2,5,8,11C. 3,6,9,12D. 4,7,10,137. 若直角三角形的两条直角边长分别为3cm和4cm,则斜边长为()A. 5cmB. 6cmC. 7cmD. 8cm8. 下列命题中,正确的是()A. 若a > b,则a² > b²B. 若a > b,则ac > bcC. 若a > b,则a² > b²D. 若a > b,则ac > bc9. 已知正方形的边长为a,则其对角线长为()A. aB. √2aC. 2aD. a√210. 在等腰三角形ABC中,若底边BC=8cm,腰AB=AC=10cm,则三角形ABC的周长为()A. 24cmB. 26cmC. 28cmD. 30cm二、填空题(每题4分,共40分)11. 分数 3/4 与 -1/2 的差是 ________。

中考综合模拟检测 数学卷 附答案解析

中考综合模拟检测 数学卷 附答案解析
∴∠CAB=120°,
∵AB和AC与⊙O相切,
∴∠OAB=∠OAC=∠ CAB=60°,
∴∠AOB=30°,
∵AB=3cm,
∴OA=6cm,

所以直径为2OB=6 cm
故答案为:6 .
【点睛】本题考查了切线长定理,勾股定理,解答本题的关键是熟练掌握切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角.
试题分析:要将一个多项式分解因式的一般步骤是首先看各项有没有公因式,若有公因式,则把它提取出来,之后再观察是否是完全平方公式或平方差公式,若是就考虑用公式法继续分解因式.因此,
先提取公因式 后继续应用平方差公式分解即可: .
10.若关于 的方程 有实数根,则 的取值范围是________.
【答案】 .
(3)在(2)的条件下,设AM= x,两块三角形板重叠面积为 ,求 与 的函数关系式.(图2,图3供解题用)
答案与解析
一、选择题(共8个小题,每小题4分,共32分)
1.一个数的倒数是-2,则这个数是()
A.-2B.2C. D.
【答案】C
【解析】
【分析】
根据倒数的定义可知-2和 互为倒数.
【详解】解:一个数的倒数是-2,则这个数是 .
5.如图,在5×5的方格纸中将图①中的图形N平移到如图②所示的位置,那么下列平移正确的是( )
A.先向下移动1格,再向左移动1格B.先向下移动1格,再向左移动2格
C.先向下移动2格,再向左移动1格D.先向下移动2格,再向左移动2格
【答案】C
【解析】
【分析】
根据题意,结合图形,由平移的概念求解.
【详解】由方格可知,在5×5方格纸中将图①中的图形N平移后的位置如图②所示,那么下面平移中正确的是:先向下移动2格,再向左移动1格,故选C.

中考数学综合模拟测试题(word版含答案)

中考数学综合模拟测试题(word版含答案)

中考仿真模拟测试数学试卷学校________ 班级________ 姓名________ 成绩________满分:120分测试时间:120分钟一.选择题(共10小题,满分40分)1.在实数0,﹣π,,﹣4中,最小的数是()A .0B .﹣πC .D .﹣42.下列运算正确的是()A .A 4•A 2=A 8B .(2A 3)2=2A 6C .(A B )6÷(A B )2=A 4B 4D .(A +B )(A ﹣B )=A 2+B 23.2020年10月22日,南京集成电路大学揭牌,系全国首个”芯片大学”.已知某种芯片的厚度约为0.00012米,其中”0.00012”用科学记数法可表示为()A .12×10﹣4B .1.2×10﹣4C .1.2×10﹣5D .1.2×10﹣34.如图是由一个长方体和一个圆锥组成的几何体,它的左视图是()A .B .C .D .5.下列分解因式正确的一项是()A .9x2﹣1=(3x+1)(3x﹣1)B .4xy+6x=x(4y+6)C .x2﹣2x﹣1=(x﹣1)2D .x2+xy+y2=(x+y)26.每年春秋季节,流感盛行,极具传染性.如果一人得流感,不加干预,经过两轮后共有81人得流感,则每人每轮平均会感染几人?设每人每轮平均感染x人,则下列方程正确的是()A .(x+1)2=81B .1+x+x2=81C .1+x+(x+1)2=81D .1+(x+1)+(1+x)2=817.如图,将等边△A B C 的顶点B 放在一组平行线的直线B 上,边A B ,A C 分别交直线A 于D ,E 两点,若∠1=40°,则∠2的大小为()A .24°B .22°C .20°D .18°8.莱洛三角形,也称作崭洛三角形或圆弧三角形,它的应用广泛,不仅用于建筑、商品的外包装设计,还用在工业方面.莱洛三角形形状的钻头可钻出正万形内孔,发动机的原件上也有莱洛三角形.如图1,分别以等边△A B C 的顶点小A ,B ,C 为圆心,以A B 长为半径画弧,我们把这三条弧组成的封闭图形就叫做莱洛三角形,如图2,若A B =3,则莱洛三角形的面积为()A .π﹣B .π+C .π﹣D .π﹣9.在平面直角坐标系中,点O为坐标原点,点A 、B 、C 的坐标分别为(0,3)、(t,3)、(t,0),点D 是直线y=kx+1与y轴的交点,若点A 关于直线y=kx+1的对称点A ′恰好落在四边形OA B C 内部(不包括正好落在边上),则t的取值范围为()A .﹣2<t<2B .﹣2<t<2C .﹣2<t<﹣2或2<t<2D .以上答案都不对10.如图,在矩形A B C D 中,A D = A B ,∠B A D 的平分线交B C 于点E.D H⊥A E于点H,连接B H并延长交C D 于点F,连接D E交B F于点O,下列结论:①A D =A E;②∠A ED =∠C ED ;③OE=OD ;④B H=HF;⑤B C ﹣C F=2HE,其中正确的有()A .2个B .3个C .4个D .5个二.填空题(共4小题,满分20分,每小题5分)11.如果抛物线y=A x2+B x+C 在对称轴左侧呈上升趋势,那么A 的取值范围是.12.不等式5x+1≥3x﹣5的解集为.13.在平面直角坐标系中,已知抛物线y1=A x2+3A x﹣4A (A 是常数,且A <0),直线A B 过点(0,n)(﹣5<n<5)且垂直于y轴.(1)该抛物线顶点的纵坐标为(用含A 的代数式表示).(2)当A =﹣1时,沿直线A B 将该抛物线在直线上方的部分翻折,其余部分不变,得到新图象G,图象G对应的函数记为y2,且当﹣5≤x≤2时,函数y2的最大值与最小值之差小于7,则n的取值范围为.14.如图,∠A OB =45°,点M,N在边OA 上,OM=x,ON=x+2,点P是边OB 上的点.若使点P,M,N构成等腰三角形的点P恰好有两个,则x的取值范围是.三.解答题(共9小题,满分90分)15.计算:(π﹣2021)0+2﹣3﹣+2C os45°.16.我国古代问题:以绳测井,若将绳三折测之,绳多四尺,若将绳四折测之,绳多一尺,绳长、井深各几何?这段话的意思是:用绳子量井深,把绳三折来量,井外余绳四尺,把绳四折来量,井外余绳一尺,绳长、井深各几尺?17.如图,在边长为1的小正方形组成的10×10网格中,给出了格点△A B C (格点为网格线的交点).(1)画出△A B C 关于直线l对称的△A 'B 'C ';(2)画出将△A 'B 'C ′绕B '点逆时针旋转一定的角度得到的△A ″B 'C ″,且点A ″和点C ″均为格点.18.观察下列等式:①=2+,②=3+,③=4+,④=5+,…(1)请按以上规律写出第⑥个等式:;(2)猜想并写出第n个等式:;并证明猜想的正确性.(3)利用上述规律,直接写出下列算式的结果:+++…+=.19.关于x的一元二次方程x2﹣(2m+1)x+m=0.(1)求证:方程总有两个不相等的实数根;(2)若x1,x2是该方程的两根,且满足两根的平方和等于3,求m的值.20.如图,已知在平面直角坐标系xOy中,一次函数y=kx+B (k≠0)的图象与反比例函数y=(m≠0)的图象相交于A 、B 两点,且点B 的纵坐标为﹣6,过点A 作A E⊥x轴于点E,tA n∠A OE=,A E=2.求:(1)求反比例函数与一次函数的解析式;(2)求△A OB 的面积.(3)根据图象写出一次函数的值大于反比例函数的值的x的取值范围.21.如图,已知△A B C ,以A B 为直径的⊙O分别交A C ,B C 于点D ,E.连接OE,OD ,D E,且ED =EC .(1)求证:点E为B C 的中点.(2)填空:①若A B =6,B C =4,则C D =;②当∠A =°时,四边形OD C E是菱形.22.某校为了解本校学生对自己视力保护的重视程度,随机在校内调查了部分学生,调直结果分为”非常重视”“重视”“比较重视”“不重视”四类,并将结果绘制成如图所示的两幅不完整的统计图:根据图中信息,解答下列问题:(1)在扇形统计图中,”非常重视”所占的圆心角的度数为,并补全条形统计图;(2)该校共有学生4000人,请你估计该校对视力保护”比较重视”的学生人数;(3)对视力”非常重视”的4人有A 1,A 2两名男生,其中A 1是七年级学生,A 2是八年级学生;B 1,B 2两名女生,其中B 1是八年级,B 2是九年级.若从中随机抽取两人向全校作视力保护经验交流,请求出恰好抽到不同年级、不同性别的学生的概率.23.已知,如图1,Rt△A B C 中,A B =A C ,∠B A C =90°,D 为△A B C 外一点,且∠A D C =90°,E为B C 中点,A F∥B C ,连接EF交A D 于点G,且EF⊥ED 交A C 于点H,A F=1.(1)若=,求EF的长;(2)在(1)的条件下,求C D 的值;(3)如图2,连接B D ,B G,若B D =A C ,求证:B G⊥A D .参考答案一.选择题(共10小题,满分40分)1.在实数0,﹣π,,﹣4中,最小的数是()A .0B .﹣πC .D .﹣4【分析】首先根据负数小于0,0小于正数,然后判断﹣π和﹣4的大小即可得到结果.【解答】解:由于负数小于0,0小于正数,又∵π<4,∴﹣π>﹣4,故选:D .【点评】本题考查实数大小的比较,利用不等式的性质比较实数的大小是解本题的关键.2.下列运算正确的是()A .A 4•A 2=A 8B .(2A 3)2=2A 6C .(A B )6÷(A B )2=A 4B 4D .(A +B )(A ﹣B )=A 2+B 2【分析】分别根据同底数幂的乘法法则,积的乘方运算法则,同底数幂的除法法则以及平方差公式逐一判断即可.【解答】解:A 、A 4•A 2=A 6,故本选项不合题意;B 、(2A 3)2=4A 6,故本选项不合题意;C 、(A B )6÷(A B )2=(A B )2=A 4B 4,故本选项符合题意;D 、(A +B )(A ﹣B )=A 2﹣B 2,故本选项不合题意;故选:C .【点评】本题主要考查了同底数幂的乘除法,积的乘方以及完全平方公式,熟记相关公式与运算法则是解答本题的关键.3.2020年10月22日,南京集成电路大学揭牌,系全国首个”芯片大学”.已知某种芯片的厚度约为0.00012米,其中”0.00012”用科学记数法可表示为()A .12×10﹣4B .1.2×10﹣4C .1.2×10﹣5D .1.2×10﹣3【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为A ×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.00012=1.2×10﹣4.故选:B .【点评】本题考查用科学记数法表示较小的数,一般形式为A ×10﹣n,其中1≤|A |<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.4.如图是由一个长方体和一个圆锥组成的几何体,它的左视图是()A .B .C .D .【分析】根据从左边看得到的图形是左视图,可得答案.【解答】解:从左边看,底层是一个矩形,上层是一个等腰梯形,故选:C .【点评】本题考查了简单组合体的三视图,从左边看得到的图形是左视图.5.下列分解因式正确的一项是()A .9x2﹣1=(3x+1)(3x﹣1)B .4xy+6x=x(4y+6)C .x2﹣2x﹣1=(x﹣1)2D .x2+xy+y2=(x+y)2【分析】利用公式法以及提取公因式法分解因式分别分析得出答案.【解答】解:选项A :运用平方差公式得9x2﹣1=(3x+1)(3x﹣1),符合题意;选项B :运用提取公因式法得4xy+6x=2x(2y+3),不符合题意;选项C :x2﹣2x﹣1不能进行因式分解,不符合题意;选项D :x2+xy+y2不能进行因式分解,不符合题意.故选:A .【点评】本题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.6.每年春秋季节,流感盛行,极具传染性.如果一人得流感,不加干预,经过两轮后共有81人得流感,则每人每轮平均会感染几人?设每人每轮平均感染x人,则下列方程正确的是()A .(x+1)2=81B .1+x+x2=81C .1+x+(x+1)2=81D .1+(x+1)+(1+x)2=81【分析】设每人每轮平均感染x人,根据经过两轮后共有81人得流感,即可得出关于x的一元二次方程,此题得解.【解答】解:设每人每轮平均感染x人,∵1人患流感,一个人传染x人,∴第一轮传染x人,此时患病总人数为1+x;∴第二轮传染的人数为(1+x)x,此时患病总人数为1+x+(1+x)x=(1+x)2,∵经过两轮后共有81人得流感,∴可列方程为:(1+x)2=81.故选:A .【点评】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.7.如图,将等边△A B C 的顶点B 放在一组平行线的直线B 上,边A B ,A C 分别交直线A 于D ,E 两点,若∠1=40°,则∠2的大小为()A .24°B .22°C .20°D .18°【分析】过点C 作C F∥A ,则C F∥A ∥B ,再利用平行线的性质和等边三角形的内角是60°可得∠2的度数.【解答】解:过点C 作C F∥A ,则C F∥A ∥B ,∴∠1=∠A C F=40°,∠2=∠B C F.∵等边三角形A B C 中,∠A C B =60°,∴∠B C F=60°﹣40°=20°,∴∠2=∠B C F=20°.故选:C .【点评】本题考查平行线的性质和等边三角形的性质,正确作出辅助线是解题关键.8.莱洛三角形,也称作崭洛三角形或圆弧三角形,它的应用广泛,不仅用于建筑、商品的外包装设计,还用在工业方面.莱洛三角形形状的钻头可钻出正万形内孔,发动机的原件上也有莱洛三角形.如图1,分别以等边△A B C 的顶点小A ,B ,C 为圆心,以A B 长为半径画弧,我们把这三条弧组成的封闭图形就叫做莱洛三角形,如图2,若A B =3,则莱洛三角形的面积为()A .π﹣B .π+C .π﹣D .π﹣【分析】图中三角形的面积是由三块相同的扇形叠加而成,其面积=三块扇形的面积相加,再减去两个等边三角形的面积,分别求出即可.【解答】解:过A 作A D ⊥B C 于D ,∵A B =A C =B C =3,∠B A C =∠A B C =∠A C B =60°,∵A D ⊥B C ,∴B D =C D =,A D = B D =,∴△A B C 的面积为•B C •A D =,S扇形B A C ==π,∴莱洛三角形的面积S=3×π﹣2×=π﹣,故选:D .【点评】本题考查了等边三角形的性质和扇形的面积计算,能根据图形得出莱洛三角形的面积=三块扇形的面积相加、再减去两个等边三角形的面积是解此题的关键.9.在平面直角坐标系中,点O为坐标原点,点A 、B 、C 的坐标分别为(0,3)、(t,3)、(t,0),点D 是直线y=kx+1与y轴的交点,若点A 关于直线y=kx+1的对称点A ′恰好落在四边形OA B C 内部(不包括正好落在边上),则t的取值范围为()A .﹣2<t<2B .﹣2<t<2C .﹣2<t<﹣2或2<t<2D .以上答案都不对【分析】根据条件,可以求得点A 关于直线B D 的对称点E的坐标,再根据E在图形中的位置,得到关于t的方程组【解答】解:∵点B (t,3)在直线y=kx+1上,∴3=kt+1,得到,于是直线B D 的表达式是.于是过点A (0,3)与直线B D 垂直的直线解析式为.联立方程组,解得,则交点M.根据中点坐标公式可以得到点E,∵点E在长方形A B C O的内部∴,解得或者.本题答案:或者.故选:C .【点评】该题涉及直线垂直时”k”之间的关系;直线的交点坐标与对应方程组的解之间的关系;中点坐标公式需要熟悉.计算量较大.10.如图,在矩形A B C D 中,A D = A B ,∠B A D 的平分线交B C 于点E.D H⊥A E于点H,连接B H并延长交C D 于点F,连接D E交B F于点O,下列结论:①A D =A E;②∠A ED =∠C ED ;③OE=OD ;④B H=HF;⑤B C ﹣C F=2HE,其中正确的有()A .2个B .3个C .4个D .5个【分析】①由角平分线的性质和平行线的性质可证A B =B E,由勾股定理可得A D =A E= A B ,从而判断出①正确;②由”A A S”可证△A B E和△A HD 全等,则有B E=D H,再根据等腰三角形两底角相等求出∠A D E =∠A ED =67.5°,求出∠C ED =67.5°,从而判断出②正确;③求出∠A HB =67.5°,∠D HO=∠OD H=22.5°,然后根据等角对等边可得OE=OD =OH,判断出③正确;④求出∠EB H=∠OHD =22.5°,∠A EB =∠HD F=45°,然后利用”角边角”证明△B EH和△HD F 全等,根据全等三角形对应边相等可得B H=HF,判断出④正确;⑤根据全等三角形对应边相等可得D F=HE,然后根据HE=A E﹣A H=B C ﹣C D ,B C ﹣C F=B C ﹣(C D ﹣D F)=2HE,判断出⑤正确.【解答】解:①∵A E平分∠B A D ,∴∠B A E=∠D A E=∠B A D =45°,∵A D ∥B C ,∴∠D A E=∠A EB =45°,∴∠A EB =∠B A E=45°,∴A B =B E,∴A E= A B ,∵A D = A B ,∴A D =A E,故①正确;②在△A B E和△A HD 中,,∴△A B E≌△A HD (A A S),∴B E=D H,∴A B =B E=A H=HD ,∴∠A D E=∠A ED =(180°﹣45°)=67.5°,∴∠C ED =180°﹣45°﹣67.5°=67.5°,∴∠A ED =∠C ED ,故②正确;∵A B =A H,∵∠A HB =(180°﹣45°)=67.5°,∠OHE=∠A HB (对顶角相等),∴∠OHE=67.5°=∠A ED ,∴OE=OH,∵∠D HO=90°﹣67.5°=22.5°,∠OD H=67.5°﹣45°=22.5°,∴∠D HO=∠OD H,∴OH=OD ,∴OE=OD =OH,故③正确;∵∠EB H=90°﹣67.5°=22.5°,∴∠EB H=∠OHD ,在△B EH和△HD F中,,∴△B EH≌△HD F(A SA ),∴B H=HF,HE=D F,故④正确;∵HE=A E﹣A H=B C ﹣C D ,∴B C ﹣C F=B C ﹣(C D ﹣D F)=B C ﹣(C D ﹣HE)=(B C ﹣C D )+HE=HE+HE=2HE.故⑤正确;故选:D .【点评】本题为四边形的综合应用,涉及矩形的性质、全等三角形的判定与性质、角平分线的定义、等腰三角形的判定与性质等知识.熟记各性质并仔细分析题目条件,根据相等的度数求出相等的角,从而得到三角形全等的条件或判断出等腰三角形是解题的关键,也是本题的难点.二.填空题(共4小题)11.如果抛物线y=A x2+B x+C 在对称轴左侧呈上升趋势,那么A 的取值范围是 A <0.【分析】利用二次函数的性质得到抛物线开口向下,即可求解.【解答】解:∵抛物线y=A x2+B x+C 在对称轴左侧呈上升趋势,∴抛物线开口向下,∴A <0,故答案为A <0.【点评】本题考查了二次函数图象与系数的关系:二次项系数A 决定抛物线的开口方向和大小.当A >0时,抛物线向上开口;当A <0时,抛物线向下开口;一次项系数B 和二次项系数A 共同决定对称轴的位置:当A 与B 同号时,对称轴在y轴左;当A 与B 异号时,对称轴在y轴右.12.不等式5x+1≥3x﹣5的解集为x≥﹣3.【分析】不等式移项,合并,把x系数化为1,即可求出解集.【解答】解:不等式移项得:5x﹣3x≥﹣5﹣1,合并得:2x≥﹣6,解得:x≥﹣3.故答案为:x≥﹣3.【点评】此题考查了解一元一次不等式,熟练掌握不等式的解法是解本题的关键.13.在平面直角坐标系中,已知抛物线y1=A x2+3A x﹣4A (A 是常数,且A <0),直线A B 过点(0,n)(﹣5<n<5)且垂直于y轴.(1)该抛物线顶点的纵坐标为﹣ A (用含A 的代数式表示).(2)当A =﹣1时,沿直线A B 将该抛物线在直线上方的部分翻折,其余部分不变,得到新图象G,图象G对应的函数记为y2,且当﹣5≤x≤2时,函数y2的最大值与最小值之差小于7,则n的取值范围为﹣<n<1.【分析】(1)把抛物线y1=A x2+3A x﹣4A 化成顶点式即可求得;(2)先求得顶点M的坐标,然后根据轴对称的性质求得对称点M′的坐标,由题意可知当x=﹣5时y1的值与当x=2时y1的值相等,为y1=﹣6,易得函数y2的最大值为n,若2n﹣≥﹣6,即n≥时,y2的最小值为﹣6,即可得出n﹣(﹣6)<7,即n<1,得到≤n<1;若2n﹣<﹣6,即n<时,y2的最小值为2n﹣,即可得出n﹣(2n﹣)<7,即n>﹣,得到﹣<n<,进而即可得到﹣<n<1.【解答】解:(1)y1=A x2+3A x﹣4A =A (x+3)2﹣ A ,∴该抛物线顶点的纵坐标为﹣ A ,故答案为﹣ A ;(2)当A =﹣1时,y=﹣x2﹣3x+4=﹣(x+)2+,抛物线的顶点M(﹣,),∵直线A B ⊥y轴且过点(0,n)(﹣5<n<5),∴点M关于直线A B 的对称点M′(﹣,2n﹣),∵抛物线y1的对称轴为直线x=﹣,且自变量x的取值范围为﹣5≤x≤2,∴当x=﹣5时y1的值与当x=2时y1的值相等,为y1=﹣22﹣3×2+4=﹣6,由题意易得函数y2的最大值为n,若2n﹣≥﹣6,即n≥时,y2的最小值为﹣6,∵函数y2的最大值与最小值之差小于7,∴n﹣(﹣6)<7,即n<1,∴≤n<1,若2n﹣<﹣6,即n<时,y2的最小值为2n﹣,∵函数y2的最大值与最小值之差小于7,∴n﹣(2n﹣)<7,即n>﹣,∴﹣<n<,综上,﹣<n<1,故答案为﹣<n<1.【点评】本题考查了二次函数图象与几何变换,二次函数的性质,二次函数图象上点的坐标特征,二次函数的最值,分类讨论是解题的关键.14.如图,∠A OB =45°,点M,N在边OA 上,OM=x,ON=x+2,点P是边OB 上的点.若使点P,M,N构成等腰三角形的点P恰好有两个,则x的取值范围是2﹣2≤x≤2或x=2或x=﹣1.【分析】考虑四种特殊位置,求出x的值即可解决问题;【解答】解:如图1中,当△P2MN是等边三角形时满足条件,作P2H⊥OA 于H.在Rt△P2HN中,P2H=NH=,∵∠O=∠HP2O=45°,∴OH=HP2=,∴x=OM=OH﹣MH=﹣1.如图2中,当⊙M与OB 相切于P1,MP1=MN=2时,x=OM=2,此时满足条件;如图3中,如图当⊙M经过点O时,x=OM=2,此时满足条件的点P有2个.如图4中,当⊙N与OB 相切于P1时,x=OM=2﹣2,观察图3和图4可知:当2﹣2<x≤2时,满足条件,综上所述,满足条件的x的值为:2﹣2<x≤2或x=2或x=﹣1,故答案为2﹣2<x≤2或x=2或x=﹣1.【点评】本题考查等腰三角形的判定、直线与圆的位置关系等知识,解题的关键是学会寻找特殊位置解决问题,属于中考填空题中的压轴题.三.解答题(共9小题)15.计算:(π﹣2021)0+2﹣3﹣+2C os45°.【分析】直接利用零指数幂的性质和特殊角的三角函数值、负整数指数幂的性质分别化简得出答案.【解答】解:原式=1+﹣2+2×=1+﹣2+=1﹣.【点评】此题主要考查了实数运算,正确化简各数是解题关键.16.我国古代问题:以绳测井,若将绳三折测之,绳多四尺,若将绳四折测之,绳多一尺,绳长、井深各几何?这段话的意思是:用绳子量井深,把绳三折来量,井外余绳四尺,把绳四折来量,井外余绳一尺,绳长、井深各几尺?【分析】设绳长是x尺,井深是y尺,根据把绳三折来量,井外余绳四尺,把绳四折来量,井外余绳一尺列方程组即可.【解答】解:设绳长是x尺,井深是y尺,依题意有:,解得:,答:绳长是36尺,井深是8尺.【点评】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.17.如图,在边长为1的小正方形组成的10×10网格中,给出了格点△A B C (格点为网格线的交点).(1)画出△A B C 关于直线l对称的△A 'B 'C ';(2)画出将△A 'B 'C ′绕B '点逆时针旋转一定的角度得到的△A ″B 'C ″,且点A ″和点C ″均为格点.【分析】(1)分别作出A ,B ,C 的对应点A ′,B ′,C ′即可.(2)将△A ′B ′C ′绕点B ′逆时针旋转90°即可.【解答】解:(1)如图,△A 'B 'C '即为所求作.(2)如图,△A ″B 'C ″即为所求作.【点评】本题考查作图﹣旋转变换,轴对称变换等知识,解题的关键是理解题意,灵活运用所学知识解决问题.18.观察下列等式:①=2+,②=3+,③=4+,④=5+,…(1)请按以上规律写出第⑥个等式:=7+;(2)猜想并写出第n个等式:=(n+1)+;并证明猜想的正确性.(3)利用上述规律,直接写出下列算式的结果:+++…+=4753.【分析】(1)根据分母不变,分子是两个数的平方差可得答案;(2)根据发现的规律写出第n个等式并计算可进行验证;(3)根据=1,=2,=3…可得原式=1+2+3……+97,进而可得答案.【解答】解:(1)第⑥个式子为:=7+;故答案为:=7+;(2)猜想第n个等式为:=(n+1)+,证明:∵左边===(n+1)+=右边,故答案为:=(n+1)+;(3)原式=1+2+3+…+97==4753.故答案为:4753.【点评】本题考查对规律型问题的理解和有理数的运算能力,找到规律是解题关键.19.关于x的一元二次方程x2﹣(2m+1)x+m=0.(1)求证:方程总有两个不相等的实数根;(2)若x1,x2是该方程的两根,且满足两根的平方和等于3,求m的值.【分析】(1)计算判别式的值得到△=4m2+1,利用非负数的性质得△>0,然后根据判别式的意义可判断方程总有两个不相等的实数根;(2)根据根与系数的关系得x1+x2=2m+1,x1x2=m,利用x12+x22=3得到(2m+1)2﹣2×m=3,然后解方程即可.【解答】(1)证明:△=(2m+1)2﹣4m=4m2+1,∵4m2≥0,∴△>0,∴方程总有两个不相等的实数根;(2)解:∵x1,x2是该方程的两根,则x1+x2=2m+1,x1x2=m,∵x12+x22=3,∴(x1+x2)2﹣2x1x2=3,∴(2m+1)2﹣2×m=3,解得m=或﹣1.【点评】本题考查了一元二次方程A x2+B x+C =0(A ≠0)的根的判别式△=B 2﹣4A C :当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.也考查了一元二次方程的解和根与系数的关系.20.如图,已知在平面直角坐标系xOy中,一次函数y=kx+B (k≠0)的图象与反比例函数y=(m≠0)的图象相交于A 、B 两点,且点B 的纵坐标为﹣6,过点A 作A E⊥x轴于点E,tA n∠A OE=,A E=2.求:(1)求反比例函数与一次函数的解析式;(2)求△A OB 的面积.(3)根据图象写出一次函数的值大于反比例函数的值的x的取值范围.【分析】(1)首先根据A E⊥x轴于点E,tA n∠A OE=,A E=2等条件求出A 点的坐标,然后把A 点坐标代入反比例函数的解析式中,求出m的值,再根据B 点在反比例函数的图象上,进而求出k,根据两点式即可求出一次函数的解析式,(2)首先求出一次函数与y轴的交点坐标,然后再根据S△A OB =S△OB D +S△A OD 求面积;(3)根据图象即可求得.【解答】解:(1)在Rt△OEA 中:∵tA n∠A OE==,∵A E=2,∴OE=6,∴点A 的坐标为(6,2),∵A 在反比例函数y=(m≠0)的图象上,∴m=6×2=12,∴反比例函数的解析式为y=,设B 点坐标为(A ,﹣6),把(A ,﹣6)代入y=,解得A =﹣2,把A (6,2)和B (﹣2,﹣6)代入y=kx+B 中,∴,解得,∴一次函数的解析式为y=x﹣4;(2)直线y=x﹣4与y的交点为D ,故D 点坐标为(0,﹣4),∴S△A OB =S△OB D +S△A OD =×4×6+×4×2=12+4=16;(3)观察图象,一次函数的值大于反比例函数的值的x的取值范围是﹣2<x<0或x>6.【点评】本题主要考查反比例函数和一次函数交点问题的知识点,解答本题的关键是根据题干条件求出A 点的坐标,进而求出反比例函数和一次函数的解析式,本题难度一般,是一道很不错的试题.21.如图,已知△ABC ,以A B 为直径的⊙O分别交A C ,B C 于点D ,E.连接OE,OD ,D E,且ED =EC .(1)求证:点E为B C 的中点.(2)填空:①若A B =6,B C =4,则C D =;②当∠A =60°时,四边形OD C E是菱形.【分析】(1)连接A E,如图,先证明∠B =∠C 得到△A B C 为等腰三角形,再根据圆周角定理得到∠A EB =90°,即A E⊥B E,然后根据等腰三角形的性质得到结论;(2)①证明△C D E∽△C B A ,利用相似比可求出C D 的长;①当∠A =60°,证明△A OD 和△A B C 、△C D E、△OB D 都为等边三角形,则OD =D C =C E =OE,然后判定四边形OD C E是菱形.【解答】(1)证明:连接A E,如图,∵ED =EC ,∴∠C =∠ED C ,∵∠ED C =∠B ,∴∠B =∠C ,∴△A B C 为等腰三角形,∵A B 为直径,∴∠A EB =90°,即A E⊥B E,∴B E=C E,即点E为B C 的中点;(2)①∵∠D C E=∠B C A ,∠ED C =∠B ,∴△C D E∽△C B A ,∴C D :B C =D E:A B ,即C D :4=2:6,∴C D =;①当∠A =60°,∵OA =OD ,A B =A C ,∴△A OD 和△A B C 都为等边三角形,∴OD =OA ,同理可得△C D E、△OB D 都为等边三角形,∴C D =C E=D E=B E=OB ,∴OD =D C =C E=OE,∴四边形OD C E是菱形.故答案为;60.【点评】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.也考查了等腰三角形的性质和菱形的判定.22.某校为了解本校学生对自己视力保护的重视程度,随机在校内调查了部分学生,调直结果分为”非常重视”“重视”“比较重视”“不重视”四类,并将结果绘制成如图所示的两幅不完整的统计图:根据图中信息,解答下列问题:(1)在扇形统计图中,”非常重视”所占的圆心角的度数为18°,并补全条形统计图;(2)该校共有学生4000人,请你估计该校对视力保护”比较重视”的学生人数;(3)对视力”非常重视”的4人有A 1,A 2两名男生,其中A 1是七年级学生,A 2是八年级学生;B 1,B 2两名女生,其中B 1是八年级,B 2是九年级.若从中随机抽取两人向全校作视力保护经验交流,请求出恰好抽到不同年级、不同性别的学生的概率.【分析】(1)先由”不重视”的学生人数和所占百分比求出调查总人数,再由360°乘以”非常重视”的学生所占比例得所占的圆心角的度数;求出”重视”的人数,补全条形统计图即可;(2)由该校共有学生人数乘以”比较重视”的学生所占比例即可;(3)画树状图,共有12个等可能的结果,恰好抽到不同年级、不同性别的学生的结果有6个,再由概率公式求解即可.【解答】解:(1)调查的学生人数为16÷20%=80(人),∴”非常重视”所占的圆心角的度数为360°×=18°,故答案为:18°,“重视”的人数为80﹣4﹣36﹣16=24(人),补全条形统计图如图:(2)由题意得:4000×=1800(人),即估计该校对视力保护”比较重视”的学生人数为1800人;(3)画树状图如图:共有12个等可能的结果,恰好抽到不同年级、不同性别的学生的结果有6个,∴恰好抽到同性别学生的概率为=.【点评】此题考查的是用列表法或树状图法求概率.注意树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比.也考查了扇形统计图和条形统计图以及样本估计总体.23.已知,如图1,Rt△A B C 中,A B =A C ,∠B A C =90°,D 为△A B C 外一点,且∠A D C =90°,E为B C 中点,A F∥B C ,连接EF交A D 于点G,且EF⊥ED 交A C 于点H,A F=1.(1)若=,求EF的长;(2)在(1)的条件下,求C D 的值;(3)如图2,连接B D ,B G,若B D =A C ,求证:B G⊥A D .【分析】(1)判断出△A HF∽△C HE,得出比例式,求出C E,最后用勾股定理,即可得出结论;(2)先求出A C =3,再判断出△A EG≌△C ED (A SA ),得出EG=ED ,再判断出△A EF∽△D A C ,得出比例式,即可得出结论;(3)先判断出△B ED ∽△B D C ,得出,进而判断出A G=GD ,即可得出结论.【解答】解:(1)如图1,连接A E,∵A F∥B C ,∴△A HF∽△C HE,∴,∴A F=1,,∴,∴C E=3,在Rt△A B C 中,A B =A C ,点E是B C 的中点,∴A E= B C =C E,A E⊥B C ,∴C E=3,∵A F∥B C ,∴A E⊥A F,∴∠EA F=90°,根据勾股定理得,EF==;(2)由(1)知,EF=,C E=3,∴B C =2C E=6,∴A C =3,∵∠A EP=∠C D P,∠A PE=∠C PD ,∴∠EA G=∠PC D ,∵∠A EG=∠C ED ,A E=C E,∴△A EG≌△C ED (A SA ),∴EG=ED ,∴∠ED G=45°=∠A C E,∵∠A PC =∠EPD ,∴∠PED =∠C A P,∴∠FEA =∠C A D ,∴△A EF∽△D A C ,∴,∴,∴C D =.(3)如图2,在Rt△A B C 中,A B =A C ,∴,,连接A E,∵,,∴,∵∠EB D =∠D B C ,∴△B ED ∽△B D C ,∴,∴C D = D E=GD ,∵C D =A G,∴A G=GD ,∵B D =A B ,∴B G⊥A D .【点评】此题是三角形综合题,主要考查了等腰直角三角形的性质,全等三角形的判定和性质,相似三角形判定和性质,勾股定理,构造出相似三角形是解本题的关键.。

中考综合模拟测试 数学试卷 附答案解析

中考综合模拟测试 数学试卷 附答案解析
A.5B. C.7D.
【答案】D
【解析】
【分析】
利用旋转的性质得出四边形AECF的面积等于正方形ABCD的面积,进而可求出
正方形 边长,再利用勾股定理得出答案.
【详解】∵把△ADE顺时针旋转△ABF的位置,
∴四边形AECF 面积等于正方形ABCD的面积等于25,
∴AD=DC=5,
∵DE=2,
∴Rt△ADE中,
这次统计共抽查了______名学生;在扇形统计图中,表示”QQ”的扇形圆心角的度数为______;
将条形统计图补充完整;
该校共有1500名学生,请估计该校最喜欢用”微信”进行沟通的学生有多少名.
25.如图,直线OA与反比例函数 ( )的图像交于点A(3,3),将直线OA沿y轴向下平移,与反比例函数 ( )的图像交于点B(6,m),与y轴交于点C.
8.如图,点E是正方形ABCD的边DC上一点,把△ADE绕点A顺时针旋转90°到△ABF的位置,若四边形AECF的面积为25,DE=2,则AE的长为()
A. 5B. C. 7D.
9.如图,点 , , ,在 上, 是 的一条弦,则 ().
A. B. C. D.
10.已知抛物线 中, , ,抛物线与 轴有两个不同的交点,且这两个交点之间的距离小于2,则下列判断错误的是().
【详解】∵ ,
∴ , , ,
三式相加得: ,
∴ ,
∴ 或 ,
当 时, ,
当 时,
则 ,
∴ ,
故选:D.
【点睛】本题考查了比例的性质,熟练掌握比例的性质是解题的关键.注意不要忘记 这个解.
5.要使分式 的值为0,你认为x可取得数是
A 9B. ±3C. ﹣3D. 3
【答案】D

山东中考一模检测《数学试卷》含答案解析

山东中考一模检测《数学试卷》含答案解析

山东数学中考综合模拟检测试题学校________ 班级________ 姓名________ 成绩________一.选择题1.5的相反数是( ) A. 15 B. 15- C. D.2.如图所示的几何体的主视图是( )A. B. C. D.3.2020庚子鼠年,新型冠状病毒席卷全国,据统计,截止到3月8号,全国已有346支医疗队、42600余名医护人员抵达湖北救援,数字42600用科学记数法表示为( )A. 0.426×105B. 4.26×104C. 4.26×105D. 42.6×103 4.下列智能手机的功能图标中,既是轴对称图形又是中心对称图形的是( )A. B.C. D.5.将等腰直角三角形纸片和矩形纸片按如图方式折叠放在一起,若130∠=︒,则2∠的度数为( )A. 10︒B. 15︒C. 20︒D. 306.下列运算正确的是( )A. a 3•a 2=a 6B. a 7÷a 4=a 3C. (﹣3a )2=﹣6a 2D. (a ﹣1)2=a 2﹣17.某射击运动员在训练中射击了10次,成绩如图所示,下列结论不正确的是( )A. 众数是8B. 中位数是8C. 平均数是8D. 极差是48.实数a、b、c满足a>b且ac<bc,它们在数轴上的对应点的位置可以是( )A. B. C. D.9.甲、乙二人做某种机械零件,已知每小时甲比乙少做8个,甲做120个所用的时间与乙做150个所用的时间相等,设甲每小时做x个零件,下列方程正确的是()A. 1201508x x=-B.1201508x x=+C.1201508x x=-D.1201508x x=+10.如图,在Rt△ABC中,∠ABC=90°,AB=23,BC=2,以AB中点为圆心,OA的长为半径作半圆交AC于点D,则图中阴影部分的面积为( )A. 5342π- B.5342π+ C. 23π- D. 432π-11.如图,一艘船由港沿北偏东65°方向航行302km至港,然后再沿北偏西40°方向航行至港,港在港北偏东20°方向,则,两港之间的距离为()km.A. 30303+ B. 303+ C. 10303+ D. 312.在平面直角坐标系内,已知点A (﹣1,0),点B (1,1)都在直线1122y x =+上,若抛物线y =ax 2﹣x +1(a ≠0)与线段AB 有两个不同的交点,则a 的取值范围是( )A. a ≤﹣2B. a <98C. 1≤a <98或a ≤﹣2D. ﹣2≤a <98二.填空题13.分解因式:x 2+4x +4=_____.14.计算24142x x +-+的结果是_____. 15.在一个不透明的口袋中,装有一些除颜色外完全相同的红、白、黑三种颜色的小球.己知袋中有红球5个,白球23个,且从袋中随机摸出一个红球的概率是110,则袋中黑球的个数为__________. 16.一个正多边形的中心角等于45,它的边数是________.17.小王骑车从甲地到乙地,小李骑车从乙地到甲地,小王的速度小于小李的速度,两人同时出发,沿同一条公路匀速前进.图中的折线表示两人之间的距离y (km )与小王的行驶时间x (h )之间的函数关系.则根据图象求小李的速度是_____km /h .18.如图,在矩形ABCD 中,AD 2.将矩形ABCD 对折,得到折痕MN ;沿着CM 折叠,点D 的对应点为E ,ME 与BC 的交点为F ;再沿着MP 折叠,使得AM 与EM 重合,折痕为MP ,此时点B 的对应点为G .下列结论:①△CMP 直角三角形;②点C 、E 、G 不在同一条直线上;③PC =62MP ; ④BP =22AB ; ⑤PG =2EF .其中一定成立是_____(把所有正确结论的序号填在横线上).三.解答题19.计算:()101 3.142sin 30252π-⎛⎫+--︒+ ⎪⎝⎭. 20.解不等式组()352222x x x x ⎧-≥-⎪⎨>-⎪⎩,并写出它的所有整数解. 21.如图,在 ABCD 中,E 、F 为对角线BD 上的两点, 且∠BAE =∠DCF .求证:BF =DE .22.某商场用14500元购进甲、乙两种矿泉水共500箱,矿泉水的成本价与销售价如表(二)所示: 类别成本价(元/箱) 销售价(元/箱) 甲25 35 乙35 48求:(1)购进甲、乙两种矿泉水各多少箱?(2)该商场售完这500箱矿泉水,可获利多少元?23.如图AB 是⊙O 的直径,PA 与⊙O 相切于点A ,BP 与⊙O 相交于点D ,C 为⊙O 上的一点,分别连接CB 、CD,∠BCD=60°.(1)求∠ABD的度数;(2)若AB=6,求PD的长度.24.央视”经典咏流传”开播以来受到社会广泛关注,我市某校就”中华文化我传承﹣地方戏曲进校园”的喜爱情况进行了随机调查,对收集的信息进行统计,绘制了下面两副尚不完整的统计图,请你根据统计图所提供的信息解答下列问题:图中A表示”很喜欢”,B表示”喜欢”,C表示”一般”,D表示”不喜欢”.(1)被调查的总人数是人,扇形统计图中C部分所对应的扇形圆心角的度数为;(2)补全条形统计图;(3)若该校共有学生1800人,请根据上述调查结果,估计该校学生中D类有人;(4)在抽取的A类5人中,刚好有3个女生2个男生,从中随机抽取两个同学担任两角色,用树形图或列表法求出被抽到的两个学生性别相同的概率.25.如图,一次函数y=﹣x+3的图象与反比例函数y=kx(k≠0)在第一象限的图象交于A(1,a)和B两点,与x轴交于点C.(1)求反比例函数的解析式;(2)若点P在x轴上,且△APC的面积为5,求点P的坐标;(3)若点P在y轴上,是否存在点P,使△ABP是以AB为一直角边直角三角形?若存在,求出所有符合条件的P点坐标;若不存在,请说明理由.26.如图1,在Rt △ABC 中,∠B =90°,AB =4,BC =2,点D 、E 分别是边BC 、AC 的中点,连接DE .将△CDE 绕点C 逆时针方向旋转,记旋转角为α.(1)问题发现①当α=0°时,AE BD =_______; ②当α=180°时,AE BD =______. (2)拓展探究试判断:当0°≤α<360°时,AE BD的大小有无变化?请仅就图2的情形给出证明. (3)问题解决△CDE 绕点C 逆时针旋转至A 、B 、E 三点在同一条直线上时,求线段BD 的长.27.如图,已知抛物线25y ax bx =++经过(5,0)A -,(4,3)B --两点,与x 轴的另一个交点为C ,顶点为D ,连结CD .(1)求该抛物线表达式;(2)点P 为该抛物线上一动点(与点B 、C 不重合),设点P 的横坐标为t .①当点P 在直线BC 的下方运动时,求PBC ∆的面积的最大值;②该抛物线上是否存在点P ,使得PBC BCD ∠=∠若存在,求出所有点P 的坐标;若不存在,请说明理由.答案与解析一.选择题1.5的相反数是( )A. 15B.15C. D.【答案】D【解析】【分析】根据相反数的定义解答.【详解】解:只有符号不同的两个数称为互为相反数,则5的相反数为-5,故选D.【点睛】本题主要考查了相反数的性质,只有符号不同的两个数互为相反数,0的相反数是0.2.如图所示的几何体的主视图是( )A. B. C. D.【答案】A【解析】【分析】根据主视图的定义判断几何体的主视图.【详解】解:根据主视图的定义,几何体的主视图为.故答案选A.【点睛】本题考查了三视图,解题的关键是熟练的掌握主视图的定义.3.2020庚子鼠年,新型冠状病毒席卷全国,据统计,截止到3月8号,全国已有346支医疗队、42600余名医护人员抵达湖北救援,数字42600用科学记数法表示为( )A. 0.426×105B. 4.26×104C. 4.26×105D. 42.6×103【答案】B科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.【详解】解:42600=4.26×104, 故选:B .【点睛】此题考查科学记数法的表示方法,表示时关键要正确确定a 的值以及n 的值.4.下列智能手机的功能图标中,既是轴对称图形又是中心对称图形的是( ) A. B. C. D.【答案】C【解析】【分析】根据轴对称图形与中心对称图形的概念求解.【详解】A 、图形既不是轴对称图形是中心对称图形,B 、图形是轴对称图形,C 、图形是轴对称图形,也是中心对称轴图形,D 、图形是轴对称图形.故选C .【点睛】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.5.将等腰直角三角形纸片和矩形纸片按如图方式折叠放在一起,若130∠=︒,则2∠的度数为( )A. 10︒B. 15︒C. 20︒D. 30【分析】根据平行的性质即可求解.【详解】根据平行线的性质得到∠3=∠1=30°,∴∠2=45°-∠3=15°.以及等腰直角三角形的性质,故选B【点睛】此题主要考查平行线的性质,解题的关键是熟知两直线平行,内错角相等.6.下列运算正确的是( )A. a3•a2=a6B. a7÷a4=a3C. (﹣3a)2=﹣6a2D. (a﹣1)2=a2﹣1【答案】B【解析】【分析】分别根据同底数幂的乘法法则,同底数幂的除法法则,积的乘方运算法则以及完全平方公式逐一判断即可.【详解】解:A.a3•a2=a5,故本选项不合题意;B.a7÷a4=a3,正确;C.(﹣3a)2=9a2,故本选项不合题意;D.(a﹣1)2=a2﹣2a+1,故本选项不合题意.故选:B.【点睛】本题考查同底数幂的乘除法,完全平方公式以及积的乘方,熟记相关运算法则是解答本题的关键.7.某射击运动员在训练中射击了10次,成绩如图所示,下列结论不正确的是( )A. 众数是8B. 中位数是8C. 平均数是8D. 极差是4【答案】C【解析】【分析】根据众数、中位数、平均数以及极差的算法进行计算,即可得到不正确的选项.【详解】解:由图可得,数据8出现3次,次数最多,所以众数为8,故A选项正确,不合题意;10次成绩排序后为:6,7,7,8,8,8,9,9,10,10,所以中位数是:12(8+8)=8,故B选项正确,不合题意;平均数为110(6+7×2+8×3+9×2+10×2)=2,故C选项错误,符合题意;极差为10﹣6=4,故D选项正确,不合题意;故选:C.【点睛】本题主要考查了众数、中位数、平均数以及极差,正确把握相关定义是解题关键.8.实数a、b、c满足a>b且ac<bc,它们在数轴上的对应点的位置可以是( )A. B. C. D.【答案】A【解析】【分析】根据不等式的性质,先判断c的正负.再确定符合条件的对应点的大致位置.【详解】解:因为a>b且ac<bc,所以c<0.选项A符合a>b,c<0条件,故满足条件的对应点位置可以是A.选项B不满足a>b,选项C、D不满足c<0,故满足条件的对应点位置不可以是B、C、D.故选A.【点睛】本题考查了数轴上点位置和不等式的性质.解决本题的关键是根据不等式的性质判断c的正负.9.甲、乙二人做某种机械零件,已知每小时甲比乙少做8个,甲做120个所用的时间与乙做150个所用的时间相等,设甲每小时做x个零件,下列方程正确的是()A. 1201508x x=-B.1201508x x=+C.1201508x x=-D.1201508x x=+【答案】D【解析】【分析】首先用x表示甲和乙每小时做的零件个数,再根据甲做120个所用的时间与乙做150个所用的时间相等即可列出一元一次方程.【详解】解:∵甲每小时做x个零件,∴乙每小时做(x+8)个零件,∵甲做120个所用的时间与乙做150个所用的时间相等,∴1201508x x=+,故选D.【点睛】本题考查了分式方程的实际应用,熟练掌握是解题的关键.10.如图,在Rt△ABC中,∠ABC=90°,AB=23,BC=2,以AB的中点为圆心,OA的长为半径作半圆交AC于点D,则图中阴影部分的面积为( )A 532π- B.532πC. 23πD. 432π【答案】A【解析】【分析】连接OD,过点O作OH⊥AC,垂足为H,则有AD=2AH,∠AHO=90°,在Rt△ABC中,利用∠A的正切值求出∠A=30°,继而可求得OH、AH长,根据圆周角定理可求得∠BOC =60°,然后根据S阴影=S△ABC-S△AOD-S 扇形BOD进行计算即可.【详解】连接OD,过点O作OH⊥AC,垂足为H,则有AD=2AH,∠AHO=90°,在Rt△ABC中,∠ABC=90°,AB=3BC=2,tan∠A=3323BCAB==,∴∠A=30°,∴OH=12OA=32,AH=AO •cos ∠A=33322⨯=,∠BOC=2∠A=60°, ∴AD=2AH=,∴S 阴影=S △ABC -S △AOD -S 扇形BOD =()26031132323222360π⨯⨯⨯-⨯⨯-=5342π-, 故选A.【点睛】本题考查了垂径定理,圆周角定理,扇形面积,解直角三角形等知识,正确添加辅助线,熟练掌握和灵活运用相关知识是解题的关键.11.如图,一艘船由港沿北偏东65°方向航行302km 至港,然后再沿北偏西40°方向航行至港,港在港北偏东20°方向,则,两港之间的距离为( )km .A. 303+B. 303+C. 103+D. 303【答案】B【解析】【分析】 根据题意作BD 垂直于AC 于点D ,根据计算可得45DAB ︒∠=,60BCD ︒∠=;根据直角三角形的性质求解即可.【详解】解:根据题意作BD 垂直于AC 于点D.可得AB=302,652045DAB ︒︒︒∠=-=204060DCB ︒︒︒∠=+= 所以可得2cos 45302302AD AB ︒==⨯= 2sin 45302302BD AB ︒==⨯= 30103tan 603BD CD ︒=== 因此可得30103AC AD CD =+=+故选B.【点睛】本题主要考查解直角三角形的应用,根据特殊角的三角函数值计算即可.12.在平面直角坐标系内,已知点A (﹣1,0),点B (1,1)都在直线1122y x =+上,若抛物线y =ax 2﹣x +1(a ≠0)与线段AB 有两个不同的交点,则a 的取值范围是( )A. a ≤﹣2B. a <98C. 1≤a <98或a ≤﹣2D. ﹣2≤a <98【答案】C【解析】【分析】 分a >0,a <0两种情况讨论,根据题意列出不等式组,可求a 的取值范围.【详解】∵抛物线y=ax2﹣x+1(a≠0)与线段AB有两个不同的交点,∴令1122x+=ax2﹣x+1,则2ax2﹣3x+1=0∴△=9﹣8a>0∴a<9 8①当a<0时,110111 aa++≤⎧⎨-+≤⎩解得:a≤﹣2 ∴a≤﹣2②当a>0时,110111 aa++≥⎧⎨-+≥⎩解得:a≥1∴1≤a<9 8综上所述:1≤a<98或a≤﹣2故选C.【点睛】本题考查二次函数图象与系数的关系,一次函数图象上点的坐标特征,二次函数图象点的坐标特征,利用分类讨论思想解决问题是本题的关键.二.填空题13.分解因式:x2+4x+4=_____.【答案】(x+2)2【解析】【分析】本题中没有公因式,总共三项,其中有两项能化为两个数的平方和,第三项正好为这两个数的积的2倍,直接运用完全平方公式进行因式分解.【详解】x2+4x+4=(x+2)2.故答案为:(x+2)2.【点睛】本题考查了利用完全平方公式分解因式,熟练运用完全平方公式是解决问题的关键.14.计算24142x x +-+的结果是_____. 【答案】12x - 【解析】【分析】首先通分,然后根据异分母的分式相加的法则计算即可. 【详解】解:24142x x +-+ =224442x x x -+-- =224+-x x =12x -. 故答案为:12x -. 【点睛】此题考查异分母分式的加法,正确掌握异分母分式的加法法则、多项式的因式分解是解此题的关键.15.在一个不透明的口袋中,装有一些除颜色外完全相同的红、白、黑三种颜色的小球.己知袋中有红球5个,白球23个,且从袋中随机摸出一个红球的概率是110,则袋中黑球的个数为__________. 【答案】22【解析】【分析】 袋中黑球的个数为,利用概率公式得到5152310x =++,然后利用比例性质求出即可. 【详解】解:设袋中黑球的个数为, 根据题意得5152310x =++,解得22x =, 即袋中黑球的个数为22个.故答案为:22.【点睛】本题主要考查概率的计算问题,关键在于根据题意对概率公式的应用.16.一个正多边形的中心角等于45,它的边数是________.【答案】【解析】【分析】根据正n边形的中心角是°360n即可求解.【详解】∵正多边形的中心角等于45,∴正多边形的边数是:°°36045=8,故答案为8【点睛】本题主要考查了正多边形中心角的计算方法,熟练掌握正多边形中心角公式是解题关键.17.小王骑车从甲地到乙地,小李骑车从乙地到甲地,小王的速度小于小李的速度,两人同时出发,沿同一条公路匀速前进.图中的折线表示两人之间的距离y(km)与小王的行驶时间x(h)之间的函数关系.则根据图象求小李的速度是_____km/h.【答案】20【解析】【分析】根据题意,可知甲乙两地的距离是30km,小王从甲地到乙地用的时间为3h,从而可以求得小王的速度,然后根据图象可知,两人1h时相遇,从而可以求得小李的速度,本题得以解决.【详解】由图象可得,小王的速度为30÷3=10(km/h),则小李的速度为:30÷1﹣10=30﹣10=20(km/h),故答案为:20.【点睛】此题考查一次函数的应用,解题的关键是明确题意,利用一次函数的性质解答.18.如图,在矩形ABCD中,AD2.将矩形ABCD对折,得到折痕MN;沿着CM折叠,点D的对应点为E,ME与BC的交点为F;再沿着MP折叠,使得AM与EM重合,折痕为MP,此时点B的对应点为G.下列结论:①△CMP是直角三角形;②点C、E、G不在同一条直线上;③PC=62MP;④BP=22AB;⑤PG=2EF.其中一定成立的是_____(把所有正确结论的序号填在横线上).【答案】①④⑤【解析】【分析】由折叠的性质,可得∠DMC=∠EMC,CD=CE,∠AMP=∠EMP,AB=GE,由平角的定义可求∠PME+∠CME=12×180°=90°,可判断①正确;由折叠的性质可得∠GEC=180°,可判断②正确;设AB=x,则AD2x,由勾股定理可求MP和PC的长,即可判断③错误,先求出PB 2x,即可判断④正确,由平行线分线段成比例可求PG=2EF,可判断⑤正确,即可求解.【详解】∵沿着CM折叠,点D的对应点为E,∴∠DMC=∠EMC,CD=CE,∵再沿着MP折叠,使得AM与EM重合,折痕为MP,∴∠AMP=∠EMP,AB=GE,∵∠AMD=180°,∴∠PME+∠CME=12×180°=90°,∴△CMP是直角三角形;故①正确;∵沿着CM折叠,点D的对应点为E,∴∠D=∠MEC=90°,∵再沿着MP折叠,使得AM与EM重合,折痕为MP,∴∠MEG =∠A =90°,∴∠GEC =180°,∴点C 、E 、G 在同一条直线上,故②错误;∵AD AB ,∴设AB =x ,则AD x ,∵将矩形ABCD 对折,得到折痕MN ;∴DM =12AD x ,∴=x ,∵∠PMC=90°,MN ⊥PC ,∴CM 2=CN•CP ,∴22= x ,∴PN=CP-CN=2x ,∴x ,∴PC PM == ,∴,故③错误,∵PC=2x ,∴x-2x=2x ,∴2BP AB x== ,∴AB ,故④正确, ∵∠MEC=∠G=90°,∴PG ∥ME , ∴CE EF CG PG= , ∵AB=GE=CD=CE ,∴CG=2CE ,∴PG=2EF ,故⑤正确,故答案为:①④⑤.【点睛】本题考查了翻折变换,平行线分线段成比例,直角三角形的性质,矩形的性质,正确的识别图形是解题的关键.三.解答题19.计算:()101 3.142sin 302π-⎛⎫+--︒+ ⎪⎝⎭ 【答案】7【解析】【分析】直接利用特殊角的三角函数值以及零指数幂的性质、二次根式的性质、负整数指数幂的性质分别化简得出答案.【详解】原式=12+1-2+52⨯=2+1﹣1+5=7.【点睛】此题考查特殊角的三角函数值以及零指数幂的性质、二次根式的性质、负整数指数幂的性质,解题关键在于掌握运算法则. 20.解不等式组()352222x x x x ⎧-≥-⎪⎨>-⎪⎩,并写出它的所有整数解. 【答案】1≤x <4,x =1;x =2;x =3【解析】【分析】分别求出不等式组中两不等式的解集,找出两解集的方法部分确定出不等式组的解集,进而求出整数解即可.【详解】()352222x x x x ⎧-≥-⎪⎨>-⎪⎩①② 解不等式①得:x ≥1,解不等式②得:x <4,所以,原不等式组的解集是1≤x <4,它的所有整数解有:x =1;x =2;x =3.【点睛】此题考查一元一次不等式组的整数解,解题关键在于掌握运算法则.21.如图,在 ABCD 中,E 、F 为对角线BD 上的两点, 且∠BAE =∠DCF .求证:BF =DE .【答案】见解析【解析】【分析】欲证明BF=DE ,只要证明△ABE ≌△CDF 即可.【详解】∵四边形ABCD 是平行四边形,∴AB ∥CD ,AB=CD ,∴∠ABE=∠CDF ,在△ABE 和△DCF 中,,BAE DCF AB CDABE CDF ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ABE ≌△CDF (ASA ),∴BE=DF ,∴BE+EF=DF+EF ,即BF=DE .【点睛】考查全等三角形的判定与性质,平行四边形的性质,掌握平行四边形的性质是解题的关键. 22.某商场用14500元购进甲、乙两种矿泉水共500箱,矿泉水的成本价与销售价如表(二)所示: 类别成本价(元/箱) 销售价(元/箱) 甲25 35 乙35 48求:(1)购进甲、乙两种矿泉水各多少箱?(2)该商场售完这500箱矿泉水,可获利多少元?【答案】(1)购进甲矿泉水300箱,购进乙矿泉水200箱;(2)该商场售完这500箱矿泉水,可获利5600元.【解析】【分析】(1)设购进甲矿泉水x箱,购进乙矿泉水y箱,根据该商场用14500元购进甲、乙两种矿泉水共500箱,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)根据总利润=单箱利润×销售数量,即可求出结论.【详解】解:(1)设购进甲矿泉水x箱,购进乙矿泉水y箱,依题意,得:500 253514500 x yx y+=⎧⎨+=⎩,解得:300200 xy=⎧⎨=⎩.答:购进甲矿泉水300箱,购进乙矿泉水200箱.(2)(3525)300(4835)2005600-⨯+-⨯=(元).答:该商场售完这500箱矿泉水,可获利5600元.【点睛】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.23.如图AB是⊙O的直径,PA与⊙O相切于点A,BP与⊙O相交于点D,C为⊙O上的一点,分别连接CB、CD,∠BCD=60°.(1)求∠ABD的度数;(2)若AB=6,求PD的长度.【答案】(1)∠ABD=30°3【解析】【分析】(1)根据圆周角定理得:∠ADB=90°,由同弧所对的圆周角相等和直角三角形的性质可得结论;(2)如图1,根据切线的性质可得∠BAP=90°,根据直角三角形30°角的性质可计算AD的长,由勾股定理计算DB的长,由三角函数可得PB的长,从而得PD的长.【详解】(1)如图,连接AD.∵BA是⊙O直径,∴∠BDA=90°.∵BD BD=,∴∠BAD=∠C=60°.∴∠ABD=90°-∠BAD=90°-60°=30°.(2)如图,∵AP是⊙O的切线,∴∠BAP=90°.在Rt△BAD中,∵∠ABD=30°,∴DA=12BA=12×6=3.∴33.在Rt△BAP中,∵cos∠ABD=AB PB,∴cos30°=63 PB=∴3∴3-333.【点睛】本题考查切线的性质、等腰三角形的性质、圆周角定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.24.央视”经典咏流传”开播以来受到社会广泛关注,我市某校就”中华文化我传承﹣地方戏曲进校园”的喜爱情况进行了随机调查,对收集的信息进行统计,绘制了下面两副尚不完整的统计图,请你根据统计图所提供的信息解答下列问题:图中A表示”很喜欢”,B表示”喜欢”,C表示”一般”,D表示”不喜欢”.(1)被调查的总人数是 人,扇形统计图中C 部分所对应的扇形圆心角的度数为 ;(2)补全条形统计图;(3)若该校共有学生1800人,请根据上述调查结果,估计该校学生中D 类有 人;(4)在抽取的A 类5人中,刚好有3个女生2个男生,从中随机抽取两个同学担任两角色,用树形图或列表法求出被抽到的两个学生性别相同的概率.【答案】(1)50; 216°;(2)画图见解析;(3)180;(4)25【解析】【分析】(1)由A 的人数除以所占百分比得出调查的总人数;由360°乘以C 部分所占的比例即可得出C 部分所对应的扇形圆心角的度数;(2)求出B 部分的人数,补全条形统计图即可;(3)由该校总人数乘以D 类所占的比例即可得出答案;(4)由列表法和概率公式即可得出答案.【详解】解:(1)5÷10%=50(人),扇形统计图中C 部分所对应的扇形圆心角的度数为360°×3050 =216°; 故答案为:50; 216°;(2)如图所示,总人数为50人,则B 的人数=50﹣5﹣30﹣5=10(人);补全条形统计图如图:(3)1800×550=180(人);故答案为:180;(4)设3个女生分别为女1,女2,女3,2个男生分别为男1,男2,所有可能出现的结果如下表:女1女2女3男1男2女1(女1,女2) (女1,女3) (女1,男1) (女1,男2)女2(女2,女1) (女2,女3) (女2,男1) (女2,男2)女3(女3,女1) (女3,女2) (女3,男1) (女3,男2)男1(男1,女1) (男1,女2) (男1,女3) (男1,男2)男2(男2,女1) (男2,女2) (男2,女3) (男2,男1)从中随机抽取两个同学担任两角色,所有可能的结果有20种,每种结果的可能性都相同,其中,抽到性别相同的结果有8种,所以P(被抽到的两个学生性别相同)=82 205.【点睛】此题考查数据相关知识,包含条形统计图的画法,概率的计算,属于中考常考题型.25.如图,一次函数y=﹣x+3的图象与反比例函数y=kx(k≠0)在第一象限的图象交于A(1,a)和B两点,与x轴交于点C.(1)求反比例函数的解析式;(2)若点P在x轴上,且△APC的面积为5,求点P的坐标;(3)若点P在y轴上,是否存在点P,使△ABP是以AB为一直角边的直角三角形?若存在,求出所有符合条件的P点坐标;若不存在,请说明理由.【答案】(1)2yx=;(2)(﹣2,0)或(8,0);(3)存在,P(0,1)或P(0,﹣1)【解析】分析】(1)将点A坐标代入两个解析式可求a的值,k的值,即可求解;(2)设P(x,0),由三角形的面积公式可求解;(3)分两种情况讨论,由两点距离公式分别求出AP,AB,BP的长,由勾股定理可求解. 【详解】(1)把点A(1,a)代入y=﹣x+3,得a=2,∴A(1,2),把A(1,2)代入反比例函数y=kx,∴k=1×2=2;∴反比例函数的表达式为2yx =;(2)∵一次函数y=﹣x+3的图象与x轴交于点C,∴C(3,0),设P(x,0),∴PC=|3﹣x|,∴S△APC=12|3﹣x|×2=5,∴x=﹣2或x=8,∴P的坐标为(﹣2,0)或(8,0);理由如下:联立32y x y x =-+⎧⎪⎨=⎪⎩, 解得:12x y =⎧⎨=⎩或21x y =⎧⎨=⎩, ∴B 点坐标为(2,1),∵点P 在y 轴上,∴设P (0,m ),∴AB 22(12)(21)2-+-=AP 22(10)(2)m -+-,PB 22(20)(1)m -+-,若BP 为斜边,∴BP 2=AB 2+AP 2 ,即 222(20)(1)m -+-=2+222(10)(2)m -+-, 解得:m =1,∴P (0,1);若AP 为斜边,∴AP 2=PB 2+AB 2 ,即 222(10)(2)m -+-=(222(20)(1)m -+-+2, 解得:m =﹣1,∴P (0,﹣1);综上所述:P (0,1)或 P (0,﹣1).【点睛】此题考查一次函数的解析式,待定系数法求反比例函数的解析式,函数与动点构成的三角形面积问题,勾股定理,直角三角形的性质.26.如图1,在Rt △ABC 中,∠B =90°,AB =4,BC =2,点D 、E 分别是边BC 、AC 的中点,连接DE .将△CDE 绕点C 逆时针方向旋转,记旋转角为α.①当α=0°时,AEBD=_______;②当α=180°时,AEBD=______.(2)拓展探究试判断:当0°≤α<360°时,AEBD的大小有无变化?请仅就图2的情形给出证明.(3)问题解决△CDE绕点C逆时针旋转至A、B、E三点在同一条直线上时,求线段BD的长.【答案】(1)552)AEBD的大小没有变化,证明见解析;(3)BD的长为3555【解析】【分析】(1)①当α=0°时,在Rt△ABC中,由勾股定理,求出AC的值是多少;然后根据点D、E分别是边BC、AC的中点,分别求出AE、BD的大小,即可求出的AEBD值是多少.②α=180°时,可得AB∥DE,然后根据ACAE=BCDB,求出AEBD的值是多少即可.(2)首先判断出∠ECA=∠DCB,再根据ECDC=ACBC5判断出△ECA∽△DCB,然后由相似三角形的对应边成比例,求得答案.(3)分两种情形:①如图3﹣1中,当点E在AB的延长线上时,②如图3﹣2中,当点E在线段AB上时,分别求解即可.【详解】解:(1)①当α=0°时,∵Rt△ABC中,∠B=90°,∴AC22AB BC+2224+5∵点D、E分别是边BC、AC的中点,∴AE=12AC5BD=12BC=1,∴AEBD=5.②如图1中,当α=180°时,可得AB∥DE,∵ACAE=BCBD,∴AEBD=ACBC=5.故答案为:①5,②5.(2)如图2,当0°≤α<360°时,AEBD的大小没有变化,∵∠ECD=∠ACB,∴∠ECA=∠DCB,又∵ECDC=ACBC=5,∴△ECA∽△DCB,∴AEBD=ECDC=5..(3)①如图3﹣1中,当点E在AB的延长线上时,在Rt △BCE 中,CE =5,BC =2,∴BE =22EC BC -=54-=1,∴AE =AB+BE =5, ∵AE BD =5, ∴BD =55=5. ②如图3﹣2中,当点E 在线段AB 上时,BE 22EC BC -54-=1,AE =AB-BE =4﹣1=3,∵AE BD5 ∴BD =355, 综上所述,满足条件的BD 355 【点睛】本题属于几何变换综合题,考查了旋转变换,相似三角形的判定和性质,平行线的性质,解直角三角形等知识,解题的关键是正确寻找相似三角形解决问题,学会用分类讨论的思想思考问题,属于中考压轴题.27.如图,已知抛物线25y ax bx =++经过(5,0)A -,(4,3)B --两点,与x 轴的另一个交点为C ,顶点为D ,连结CD .(1)求该抛物线的表达式;(2)点P 为该抛物线上一动点(与点B 、C 不重合),设点P 的横坐标为t .①当点P 在直线BC 的下方运动时,求PBC ∆的面积的最大值;②该抛物线上是否存在点P ,使得PBC BCD ∠=∠若存在,求出所有点P 的坐标;若不存在,请说明理由.【答案】(1)265y x x =++;(2)①278;②存在,37,24P ⎛⎫-- ⎪⎝⎭或(0,5). 【解析】【分析】 (1)将点A 、B 坐标代入二次函数表达式,即可求解;(2)①()12PBC C B S PG x x ∆=-,即可求解; ②分点P 在直线BC 下方,则H 点在BC 的垂直平分线上,求出其垂直平分线及CD 的直线方程求出交点H,从而求出BP 的方程,并与二次函数联立即可求解.点P 在直线BC 上方时,BP 与CD 平行求出BP 的方程,并与二次函数联立即可求解.【详解】解:(1)将点A 、B 坐标代入二次函数表达式得:2555016453a b a b -+=⎧⎨-+=-⎩,解得:16a b =⎧⎨=⎩, 故抛物线的表达式为:265y x x =++…①,令=0y ,则=1x -或5-,即点(1,0)C -;(2)①如图1,过点P 作y 轴的平行线交BC 于点G ,将点B 、C 的坐标代入一次函数表达式并解得:直线BC 的表达式为:=+1y x …②,设点(,+1)G t t ,则点()2,65P t t t ++, ()()221331516562222PBC C B S PG x x t t t t t =-=+---=---, 302<,PBC S ∴有最大值,当52t =-时,其最大值为278; ②设直线BP 与CD 交于点H ,当点P 直线BC 下方时,PBC BCD ∠=∠,点H 在BC 的中垂线上,线段BC 的中点坐标为53,22⎛⎫-- ⎪⎝⎭, 过该点与BC 垂直的直线的k 值为﹣1,设BC 中垂线的表达式为:=+y x m -,将点53,22⎛⎫-- ⎪⎝⎭代入上式并解得: 直线BC 中垂线的表达式为:=4y x --…③,同理直线CD 表达式为:=2+2y x …④,联立③④并解得:=2x -,即点(2,2)H --,同理可得直线BH 的表达式为:112y x =-…⑤, 联立①⑤并解得:32x =-或4-(舍去4-),故点37,24P ⎛⎫-- ⎪⎝⎭; 当点()P P '在直线BC 上方时,PBC BCD ∠=∠,BP CD ∴',则直线BP ′的表达式为:=2+y x s ,将点B 坐标代入上式并解得:=5s , 即直线BP ′的表达式为:=2+5y x …⑥,联立①⑥并解得:=0x 或4-(舍去4-),故点(0,5)P ;故点P 的坐标为37,24P ⎛⎫-- ⎪⎝⎭或(0,5). 【点睛】本题考查的是二次函数综合运用,熟练掌握计算法则是解题关键.。

初三数学中考试题及答案

初三数学中考试题及答案

初三数学中考试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项是无理数?A. 0.33333...(循环)B. √4C. πD. √9答案:C2. 以下哪个方程是一元二次方程?A. x + 2 = 0B. x² + 2x + 1 = 0C. 2x - 3y = 0D. x³ - 2x² + 3 = 0答案:B3. 若一个角的补角是120°,则该角的度数为:A. 60°B. 30°C. 150°D. 90°答案:A4. 以下哪个函数是一次函数?A. y = 2x + 3B. y = x² + 1C. y = √xD. y = 1/x答案:A5. 在一个直角三角形中,若一个锐角为30°,则另一个锐角的度数为:A. 30°B. 45°C. 60°D. 90°答案:C6. 以下哪个图形是轴对称图形?A. 任意三角形B. 任意四边形C. 等腰梯形D. 任意五边形答案:C7. 已知一个等腰三角形的两边长分别为5和8,那么它的周长可能是:A. 18B. 21C. 26D. 30答案:C8. 以下哪个选项是反比例函数?A. y = 2/xB. y = x + 3C. y = x²D. y = √x答案:A9. 一个数的相反数是-3,那么这个数是:A. 3B. -3C. 0D. 6答案:A10. 一个数的绝对值是5,那么这个数可能是:A. 5B. -5C. 3D. 以上都是答案:D二、填空题(每题3分,共15分)11. 一个数的平方是16,这个数是______。

答案:±412. 一个圆的半径是3cm,那么它的直径是______。

答案:6cm13. 一个等腰三角形的底边长为6cm,腰长为5cm,那么它的周长是______。

答案:16cm14. 一个角的余角是40°,那么这个角的度数是______。

2022年中考综合模拟考试《数学试卷》含答案解析

2022年中考综合模拟考试《数学试卷》含答案解析

数学中考综合模拟检测试题学校________ 班级________ 姓名________ 成绩________一、选择题(本题有10小题,每小题4分,共40分.每小题只有一个选项是正确的,不选、多选、错选,均不给分)1.给出四个实数﹣2,0,0.5,2,其中无理数是( )A. ﹣2B. 0C. 0.5D. 22. 如图,桌面上有一个一次性纸杯,它的正视图应是( )A. B. C. D.3.我国倡导的”一带一路”建设将促进我国与世界一些国家的互利合作,根据规划”一带一路”地区覆盖总人口为4400000000人,这个数用科学记数法表示为()A. 4.4×108B. 4.40×108C. 4.4×109D. 4.4×10104.一名射击爱好者7次射击的中靶环数如下(单位:环):7,10,9,8,7,9,9,这7个数据的中位数是( )A. 7环B. 8环C. 9环D. 10环5.在一个不透明的袋子中装有4个红球和3个黑球,它们除颜色外其他均相同,从中任意摸出一个球,则摸出黑球的概率是( )A. 17B.37C.47D.576.要使分式21xx+-有意义,则x的取值应满足( )A. x≠﹣2B. x≠1C. x=﹣2D. x=17.在平面直角坐标系中,线段A′B′是由线段AB经过平移得到的,已知点A(﹣2,1)的对应点为A′(3,﹣1),点B的对应点为B′(4,0),则点B的坐标为()A. (9,﹣1)B. (﹣1,0)C. (3,﹣1)D. (﹣1,2)8.《九章算术》是中国传统数学的重要著作,方程术是它的最高成就.其中记载:今有共买物,人出八盈三;人出七,不足四.问人数、物价各几何?译文:今有人合伙购物,每人出8钱,会多3钱;每人出7钱,又会差4钱.问人数、物价各是多少?设合伙人数为人,物价为钱,则下列方程组正确的是()A.8374x yy x-=⎧⎨-=⎩B.8374y xy x-=⎧⎨-=⎩C.8374y xx y-=⎧⎨-=⎩D.8374x yx y-=⎧⎨-=⎩9.如图,AB⊥x轴,B为垂足,双曲线kyx=(x>0)与△AOB两条边OA,AB分别相交于C,D两点,OC=CA,△ACD的面积为3,则k等于( )A. 2B. 3C. 4D. 610.如图,C是以AB为直径的半圆O上一点,连结AC,BC,分别以AC、BC为直径作半圆,其中M,N 分别是AC、BC为直径作半圆弧的中点,AC,BC的中点分别是P,Q.若MP+NQ=7,AC+BC=26,则AB的长是( )A. 17B. 18C. 19D. 20二、填空题(本题有6小题,每小题5分,共30分)11.分解因式:m2-6m+9= .12. 已知扇形的弧长为8π,圆心角为60°,则它的半径为______.13.一组数据1,3,2,7,x,2,3的平均数是3,则该组数据的众数为________.14.不等式组13242xx+>⎧⎨-≤⎩的解集为_____.15.如图,直线y=﹣33x+6与x轴、y轴分别交于A,B两点,C是OB中点,D是AB上一点,四边形OEDC是菱形,则△OAE的面积为_____.16.小林家的洗手台面上有一瓶洗手液(如图1),当手按住顶部A下压时(如图2),洗手液瞬间从喷口B流出,已知瓶子上部分的CE和FD的圆心分别为D,C,下部分的视图是矩形CGHD,GH=10cm,GC=8cm,点E到台面GH的距离为14cm,点B距台面GH的距离为16cm,且B,D,H三点共线.如果从喷口B流出的洗手液路线呈抛物线形,且该路线所在的抛物线经过C.E两点,接洗手液时,当手心O距DH的水平距离为2cm时,手心O距水平台面GH的高度为_____cm.三、解答题(本题有8小题,共80分,解答需写出必要的文字说明、演算步骤或证明过程)17.(1)计算:16+(π﹣3)0﹣|﹣3|;(2)化简:(x+2)2﹣x(x﹣3).18.如图,在△ABC中,AD是BC边上中线,E是AB边上一点,过点C作CF∥AB交ED的延长线于点F.(1)求证:△BDE≌△CDF.(2)当AD⊥BC,AE=2,CF=4时,求AC的长.19.某校组织七年级学生参加冬令营活动,本次冬令营活动分为甲、乙、丙三组进行.如图,条形统计图和扇形统计图反映了学生参加冬令营活动的报名情况,请你根据图中的信息回答下列问题:(1)七年级报名参加本次活动的总人数为 ,扇形统计图中,表示甲组部分的扇形的圆心角是 度;(2)补全条形统计图;(3)根据实际需要,将从甲组抽调部分学生到丙组,使丙组人数是甲组人数的3倍,则应从甲组抽调多少名学生到丙组?20.如图,A ,B ,C 是方格纸中的格点,请按要求作图.(1)在图1中画出一个以A ,B ,C ,D 为顶点的格点平行四边形.(2)在图2中画出一个格点P ,使得∠BPC =12∠BAC .21.如图,在平面直角坐标系中,二次函数()230y axbx a =++≠的图像经过点()1,0A -,点()3,0B ,与轴交于点,(1)求、的值:(2)若点为直线BC上一点,点到直线、两点的距离相等,将该抛物线向左(或向右)平移,得到一条新抛物线,并且新抛物线经过点,求新抛物线的顶点坐标.22.如图,四边形ABCD内接于⊙O,AB是直径,C为BD的中点,延长AD,BC交于P,连结AC.(1)求证:AB=AP;(2)当AB=10,DP=2时,求线段CP的长.23.九二班计划购买A、B两种相册共42册作为毕业礼品,已知A种相册的单价比B种的多10元,买4册A 种相册与买5册B种相册的费用相同.(1)求A、B两种相册的单价分别是多少元?(2)由于学生对两类相册喜好不同,经调查得知:购买的A种相册的数量要少于B种相册数量的34,但又不少于B种相册数量的25,如果设买A种相册x册.①有多少种不同购买方案?②商店为了促销,决定对A 种相册每册让利a 元销售(12≤a ≤18),B 种相册每册让利b 元销售,最后班委会同学在付款时发现:购买所需的总费用与购买的方案无关,当总费用最少时,求此时a 的值. 24.如图Rt ABC △中,ABC 90︒∠=,P 是斜边AC 上一个动点,以即为直径作O 交BC 于点D ,与AC 的另一个交点E ,连接DE .(1)当DP EP =时,①若130BD ︒=,求C ∠的度数;②求证AB AP =;(2)当15AB =,20BC =时,①是含存在点P ,使得BDE 是等腰三角形,若存在求出所有符合条件的CP 的长;②以D 为端点过P 作射线DH ,作点O 关于DE 的对称点Q 恰好落在CPH ∠内,则CP 的取值范围为________.(直接写出结果)答案与解析一、选择题(本题有10小题,每小题4分,共40分.每小题只有一个选项是正确的,不选、多选、错选,均不给分)1.给出四个实数﹣2,0,0.5,2,其中无理数是( )A. ﹣2B. 0C. 0.5D. 2【答案】D【解析】【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此解答即可.【详解】解:﹣2,0是整数,属于有理数;0.5是有限小数,属于有理数;2是无理数.故选:D.【点睛】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.2. 如图,桌面上有一个一次性纸杯,它的正视图应是( )A. B. C. D.【答案】D【解析】【分析】根据主视图是从正面看到的图形,可得答案.【详解】从正面看是一个上底在下的梯形.故选D.考点:简单几何体的三视图.3.我国倡导的”一带一路”建设将促进我国与世界一些国家的互利合作,根据规划”一带一路”地区覆盖总人口为4400000000人,这个数用科学记数法表示为()A. 4.4×108B. 4.40×108C. 4.4×109D. 4.4×1010【答案】C【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a 时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】解:4 400 000 000=4.4×109,故选C.4.一名射击爱好者7次射击的中靶环数如下(单位:环):7,10,9,8,7,9,9,这7个数据的中位数是( )A. 7环B. 8环C. 9环D. 10环【答案】C【解析】【分析】根据中位数的定义,将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.【详解】这组数据按照从小到大的顺序排列为:7,7,8,9,9,9,10,一共7个数,则中位数为9.故选:C.【点评】本题考查了中位数的知识,熟练掌握个数为奇数和偶数时中位数的求法是解题关键.5.在一个不透明的袋子中装有4个红球和3个黑球,它们除颜色外其他均相同,从中任意摸出一个球,则摸出黑球的概率是( )A. 17B.37C.47D.57【答案】B【解析】分析:先求出球的所有个数,再根据概率公式解答即可.详解:∵袋子中装有4个红球和3个黑球,∴共有7个球,其中4个红球,∴从口袋中任意摸出一个球,摸到黑球的概率是3 7 .故选B.点睛:根据随机事件概率大小的求法,找准两点:①符合条件的情况数目;②全部情况的总数.二者的比值就是其发生的概率的大小.6.要使分式21xx+-有意义,则x的取值应满足( )A. x≠﹣2B. x≠1C. x=﹣2D. x=1【答案】B【解析】分析】根据分式有意义,分母不为0列出不等式,解不等式即可.【详解】解:由题意得,x﹣1≠0,解得,x≠1,故选:B.【点睛】本题主要考查的是分式有意义的条件,掌握分式有意义,分母不为0是解题的关键.7.在平面直角坐标系中,线段A′B′是由线段AB经过平移得到的,已知点A(﹣2,1)的对应点为A′(3,﹣1),点B的对应点为B′(4,0),则点B的坐标为()A. (9,﹣1)B. (﹣1,0)C. (3,﹣1)D. (﹣1,2)【答案】D【解析】解:横坐标从-2到3,说明是向右移动了3-(-2)=5,纵坐标从1到-1,说明是向下移动了1-(-1)=2,求原来点的坐标,则为让新坐标的横坐标都减5,纵坐标都加2.则点B的坐标为(-1,2).故选D.8.《九章算术》是中国传统数学的重要著作,方程术是它的最高成就.其中记载:今有共买物,人出八盈三;人出七,不足四.问人数、物价各几何?译文:今有人合伙购物,每人出8钱,会多3钱;每人出7钱,又会差4钱.问人数、物价各是多少?设合伙人数为人,物价为钱,则下列方程组正确的是()A.8374x yy x-=⎧⎨-=⎩B.8374y xy x-=⎧⎨-=⎩C.8374y xx y-=⎧⎨-=⎩D.8374x yx y-=⎧⎨-=⎩【答案】A 【解析】【分析】设合伙人数为人,物价为钱,根据该物品价格不变,即可得出关于x 、y 的二元一次方程组,进而得到答案.【详解】解:设合伙人数为人,物价为钱,根据该物品价格不变,即可得出关于x 、y 的二元一次方程组为:8374x y y x -=⎧⎨-=⎩, 故选:A ;【点睛】本题考查了二元一次方程组的应用,解答本题的关键是读懂题意,找出合适的等量关系,列方程求解.9.如图,AB ⊥x 轴,B 为垂足,双曲线k y x=(x >0)与△AOB 的两条边OA ,AB 分别相交于C ,D 两点,OC =CA ,△ACD 的面积为3,则k 等于( )A. 2B. 3C. 4D. 6【答案】C【解析】 连接OD ,过点C 作CE ⊥x 轴,∵OC=CA ,∴OE:OB=1:2;设△OBD 面积为x ,根据反比例函数k 的意义得到三角形OCE 面积为x ,∵△COE ∽△AOB ,∴三角形COE 与三角形BOA 面积之比为1:4,∵△ACD 的面积为3,∴△OCD 的面积为3,∴三角形BOA面积为6+x,即三角形BOA的面积为6+x=4x,解得x=2,∴12|k|=2,∵k>0,∴k=4,故选:C.10.如图,C是以AB为直径的半圆O上一点,连结AC,BC,分别以AC、BC为直径作半圆,其中M,N 分别是AC、BC为直径作半圆弧的中点,AC,BC的中点分别是P,Q.若MP+NQ=7,AC+BC=26,则AB的长是( )A. 17B. 18C. 19D. 20【答案】C【解析】【分析】连接OP,OQ,根据M,N分别是AC、BC为直径作半圆弧的中点,AC,BC的中点分别是P,Q.得到OP⊥AC,OQ⊥BC,从而得到H、I是AC、BC的中点,利用中位线定理得到OH+OI=12(AC+BC)=13和PH+QI=6,从而利用AB=OP+OQ=OH+OI+PH+QI求解.【详解】连接OP,OQ,分别交AC,BC于H,I,∵M,N分别是AC、BC为直径作半圆弧的中点,AC,BC的中点分别是P,Q,∴OP⊥AC,OQ⊥BC,由对称性可知:H,P,M三点共线,I,Q,N三点共线,∴H、I是AC、BC的中点,∴OH +OI =12(AC +BC )=13, ∵MH +NI =12AC +12BC =13,MP +NQ =7, ∴PH +QI =13﹣7=6,∴AB =OP +OQ =OH +OI +PH +QI =13+6=19,故选C .【点睛】本题考查了中位线定理的应用,解题的关键是正确作出辅助线,题目中还考查了垂径定理和轴对称的知识,有难度.二、填空题(本题有6小题,每小题5分,共30分)11.分解因式:m 2-6m+9= .【答案】()2m 3-【解析】直接应用完全平方公式即可:()22m 6m 9m 3-+=-.12. 已知扇形的弧长为8π,圆心角为60°,则它的半径为______.【答案】24【解析】【分析】 根据弧长公式:180n r l π=直接解答即可. 【详解】解:设半径为r , 8π=60180r π, 解得:r=24,故答案为:24.【点睛】此题考查根据弧长和圆心角求扇形的半径,掌握弧长公式是解决此题的关键.13.一组数据1,3,2,7,x ,2,3的平均数是3,则该组数据的众数为________.【答案】3【解析】【分析】首先根据这组数据的总和等于各个数据之和,或等于这组数据的平均数乘以这组数据的个数,列出方程,得出x 的值,再根据众数的概念,这组数据中出现次数最多的是3,从而得出答案.【详解】解: 1+3+2+7+x+2+3=3×7解得:x=3,这组数据中出现次数最多的是3,故该组数据的众数为3.故答案为3.点睛: 本题考查的是平均数和众数的概念.注意一组数据的众数可能不只一个.14.不等式组13242xx+>⎧⎨-≤⎩的解集为_____.【答案】2<x≤3.【解析】【分析】分别求出不等式组中两不等式的解集,找出两解集的公共部分即可.【详解】解:13242xx+>⎧⎨-≤⎩①②,由①得:x>2,由②得:x≤3,则不等式组的解集为2<x≤3.故答案为:2<x≤3.【点睛】此题考查了解一元一次不等式组,熟练掌握不等式组的解法是解本题的关键.15.如图,直线y =﹣33x+6与x轴、y轴分别交于A,B两点,C是OB的中点,D是AB上一点,四边形OEDC是菱形,则△OAE的面积为_____.932【解析】【分析】通过求出点A、B、C的坐标,得到菱形的边长为3,则DE=3=DC,利用CD2=m2+(﹣3m+6﹣3)2=9,解得:m=2,即可求解.【详解】∵y=+6,∴当x=0,y=6,当y=0,则x=故点A、B的坐标分别为:(0)、(0,6),则点C(0,3),故菱形的边长为3,则DE=3=DC,设点D(m,+6),则点E(m,x+6﹣3),则CD2=m2++6﹣3)2=9,解得:m故点E,32 ),S△OAE=12×OA×y E=12×32,故答案为:2.【点睛】本题考查的是一次函数图象上点的特征,涉及到菱形的性质、三角形面积的计算、勾股定理的运用,综合强较强,难度适宜.16.小林家的洗手台面上有一瓶洗手液(如图1),当手按住顶部A下压时(如图2),洗手液瞬间从喷口B流出,已知瓶子上部分的CE和FD的圆心分别为D,C,下部分的视图是矩形CGHD,GH=10cm,GC=8cm,点E到台面GH的距离为14cm,点B距台面GH的距离为16cm,且B,D,H三点共线.如果从喷口B流出的洗手液路线呈抛物线形,且该路线所在的抛物线经过C.E两点,接洗手液时,当手心O距DH的水平距离为2cm时,手心O距水平台面GH的高度为_____cm.【答案】11.【解析】分析】根据题意得出各点坐标,利用待定系数法求抛物线解析式进而求解.【详解】如图:由题意可知:CD=DE=10cm,根据题意,得C(﹣5,8),E(﹣3,14),B(5,16).设抛物线解析式为y=ax2+bx+c,因为抛物线经过C、E、B三点,∴9314 2558 25516a b ca b ca b c-+=⎧⎪-+=⎨⎪++=⎩,解得11a40451518bc⎧=-⎪⎪⎪=⎨⎪⎪=⎪⎩,所以抛物线解析式为y=-1140x2+45x+1518.当x=7时,y=11,∴Q(7,11),所以手心O距水平台面GH的高度为11cm.故答案为11.【点睛】本题考查了二次函数的应用,解决本题的关键是明确待定系数法求二次函数的解析式及准确进行计算.三、解答题(本题有8小题,共80分,解答需写出必要的文字说明、演算步骤或证明过程)17.(1)计算:16+(π﹣3)0﹣|﹣3|;(2)化简:(x+2)2﹣x(x﹣3).【答案】(1)2;(2)7x+4.【解析】【分析】(1)原式利用算术平方根定义,零指数幂法则,以及绝对值的代数意义计算即可求出值;(2)原式利用完全平方公式及单项式乘多项式法则计算,去括号合并即可得到结果.【详解】(1)原式=4+1-3=2;(2)原式=x2+4x+4-x2+3x=7x+4.【点睛】此题考查了完全平方公式,熟练掌握完全平方公式是解本题的关键.18.如图,在△ABC中,AD是BC边上的中线,E是AB边上一点,过点C作CF∥AB交ED的延长线于点F.(1)求证:△BDE≌△CDF.(2)当AD⊥BC,AE=2,CF=4时,求AC的长.【答案】(1)证明见解析;(2)6.【解析】【分析】(1)根据平行线的性质得到∠B=∠FCD,∠BED=∠F,由AD是BC边上的中线,得到BD=CD,于是得到结论;(2)根据全等三角形的性质得到BE=CF=4,求得AB=AE+BE=6,于是得到结论.【详解】(1)证明:∵CF∥AB,∴∠B=∠FCD,∠BED=∠F,∵AD是BC边上的中线,∴BD=CD,在△BDE和△CDF中,B FCDBED F BD CD∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△BDE≌△CDF(AAS);(2)解:∵△BDE≌△CDF,∴BE=CF=4,∴AB=AE+BE=2+4=6,∵AD⊥BC,BD=CD,∴AC=AB=6.【点睛】此题主要考查全等三角形的判定与性质,解题的关键是熟知平行线的性质及全等三角形的判定定理.19.某校组织七年级学生参加冬令营活动,本次冬令营活动分为甲、乙、丙三组进行.如图,条形统计图和扇形统计图反映了学生参加冬令营活动的报名情况,请你根据图中的信息回答下列问题:(1)七年级报名参加本次活动的总人数为,扇形统计图中,表示甲组部分的扇形的圆心角是度;(2)补全条形统计图;(3)根据实际需要,将从甲组抽调部分学生到丙组,使丙组人数是甲组人数的3倍,则应从甲组抽调多少名学生到丙组?【答案】(1)60,108;(2)见解析;(3)6名【解析】【分析】(1)用丙的人数除以丙的百分比即可得出总人数,先求出甲的百分比,用甲的百分比乘以360°即可得出甲组部分的扇形的圆心角的度数;(2)用总人数减去甲组和丙组的人数求出乙组的人数,再补全条形图,即可得出答案;(3)设甲组抽调x名学生到丙组,再根据”抽调后丙组人数是甲组人数的3倍”列出方程,解方程即可得出答案.【详解】解:(1)七年级报名参加本次活动的总人数为:30÷50%=60, 甲组部分的扇形的圆心角是:(1-50%-20%)×360°=108°;(2)乙组的人数60-30-18=12(3)设应从甲组调x 名学生到丙组可得方程:3(18)30x x -=+解得6x =答:应从甲组调6名学生到丙组.【点睛】本题考查的是统计图和一元一次方程,解题关键是理清条形图和扇形图之间的关系.20.如图,A ,B ,C 是方格纸中格点,请按要求作图.(1)在图1中画出一个以A ,B ,C ,D 为顶点的格点平行四边形.(2)在图2中画出一个格点P ,使得∠BPC =12∠BAC .【答案】(1)详见解析;(2)详见解析.【解析】【分析】(1)根据平行四边形的定义,画出图形即可(答案不唯一).(2)利用辅助圆结合圆周角定理画出图形即可(答案不唯一).【详解】(1)如图1中,平行四边形ABCD ,平行四边形ADBC 即为所求.(2)如图2中,点P 即为所求.【点睛】本题考查作图﹣应用与设计,平行四边形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.21.如图,在平面直角坐标系中,二次函数()230y axbx a =++≠图像经过点()1,0A -,点()3,0B ,与轴交于点,(1)求、的值:(2)若点为直线BC 上一点,点到直线、两点的距离相等,将该抛物线向左(或向右)平移,得到一条新抛物线,并且新抛物线经过点,求新抛物线的顶点坐标.【答案】(1)1a =-,2b =;(2)平移后函数的顶点为()14或()14+【解析】【分析】(1)将点A(-1,0)和点B(3,0)代入得到a ,b 的方程组,求出方程组的解得到a ,b 的值;(2)先求出P 点的坐标,令2y =得11x =21x =-个单位,即可求得新抛物线的顶点坐标.【详解】(1)∵抛物线()230y ax bx a =++≠的图像经过点()1,0A -,点()3,0B ,∴030933a b a b =-+⎧⎨=++⎩, 解这个方程组得:12a b =-⎧⎨=⎩, ∴1a =-,2b =(2)∵点到直线、两点的距离相等,∴点P 在抛物线的对称轴上,设直线BC 的解析式为y=kx+b ,经过()3,0B ,C(0,3),∴y=-x+3,又∵点为直线BC 上一点,()1,2P令2y =得11x =+21x =个单位原函数顶点为()1,4∴平移后函数的顶点为()14-或()14+【点睛】此题考查了待定系数法求二次函数解析式,以及二次函数的性质,熟练掌握待定系数法是解本题的关键.22.如图,四边形ABCD内接于⊙O,AB是直径,C为BD的中点,延长AD,BC交于P,连结AC.(1)求证:AB=AP;(2)当AB=10,DP=2时,求线段CP的长.【答案】(1)详见解析;(2)PC10【解析】【分析】(1)利用等角对等边证明即可.(2)利用勾股定理分别求出BD,PB,再利用等腰三角形的性质即可解决问题.【详解】解:(1)证明:∵C为BD的中点,∴∠BAC=∠CAP,∵AB是直径,∴∠ACB=∠ACP=90°,∵∠ABC+∠BAC=90°,∠P+∠CAP=90°,∴∠ABC=∠P,∴AB=AP.(2)解:如图,连接BD.∵AB是直径,∴∠ADB=∠BDP=90°,∵AB=AP=10,DP=2,∴AD=10﹣2=8,∴BD2222--=,1086AB AD∴PB2222+=+=,62210BD PD∵AB=AP,AC⊥BP,∴BC=PC=12PB=10,∴PC=10.【点睛】主要考查了圆周角定理,垂径定理,圆内接四边形的性质等知识点,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.23.九二班计划购买A、B两种相册共42册作为毕业礼品,已知A种相册的单价比B种的多10元,买4册A 种相册与买5册B种相册的费用相同.(1)求A、B两种相册的单价分别是多少元?(2)由于学生对两类相册喜好不同,经调查得知:购买的A种相册的数量要少于B种相册数量的34,但又不少于B种相册数量的25,如果设买A种相册x册.①有多少种不同的购买方案?②商店为了促销,决定对A种相册每册让利a元销售(12≤a≤18),B种相册每册让利b元销售,最后班委会同学在付款时发现:购买所需的总费用与购买的方案无关,当总费用最少时,求此时a的值.【答案】(1)A种相册的单价为50元,B种相册的单价为40元;(2)①x可取12、13、14、15、16、17,共6种不同的购买方案;②18.【解析】【分析】(1)设A种相册的单价为m元,B种相册的单价为n元,根据”A种相册的单价比B种的多10元,买4册A 种相册与买5册B种相册的费用相同”,即可得出关于m,n的二元一次方程组,解之即可得出结论;(2)①根据”购买的A种相册的数量要少于B种相册数量的34,但又不少于B种相册数量的25“,即可得出关于x的一元一次不等式组,解之即可得出x的取值范围,再结合x为正整数即可得出x的可能值,进而可得出购买方案的种数;②设购买总费用为w元,根据总价=单价×数量,即可得出w关于x的函数关系式,由购买所需的总费用与购买的方案无关可得出b =a ﹣10,进而可得出w 关于a 的函数关系式,再利用一次函数的性质,即可解决最值问题.【详解】解:(1)设A 种相册的单价为m 元,B 种相册的单价为n 元,依题意,得:1045m n m n -=⎧⎨=⎩, 解得:5040m n =⎧⎨=⎩. 答:A 种相册的单价为50元,B 种相册的单价为40元.(2)①根据购买的A 种相册的数量要少于B 种相册数量的34,但又不少于B 种相册数量的25得: 3(42)42(42)5x x x x ⎧<-⎪⎪⎨⎪≥-⎪⎩ , 解得:12≤x <18.又∵x 为正整数,∴x 可取12、13、14、15、16、17,共6种不同的购买方案.②设购买总费用为w 元,依题意得:w =(50﹣a )x +(40﹣b )(42﹣x )=(10﹣a +b )x +42(40﹣b ).∵购买所需的总费用与购买的方案无关,则w 的值与x 无关,∴10﹣a +b =0,∴b =a ﹣10,∴w =42(40-b)=42[40-(a-10)]=﹣42a +2100.∵﹣42<0,∴w 随a 的增大而减小.又∵12≤a ≤18,∴当a =18时,w 取得最小值.答:当总费用最少时,a 的值为18.【点睛】本题考查了二元一次方程组的应用、一元一次不等式组的应用以及一次函数的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)①根据各数量之间的关系,正确列出一元一次不等式组;②根据各数量之间的关系,找出w 关于x 的函数关系式.24.如图Rt ABC △中,ABC 90︒∠=,P 是斜边AC 上一个动点,以即为直径作O 交BC 于点D ,与AC 另一个交点E ,连接DE .(1)当DP EP =时,①若130BD ︒=,求C ∠的度数;②求证AB AP =;(2)当15AB =,20BC =时,①是含存在点P ,使得BDE 是等腰三角形,若存在求出所有符合条件的CP 的长;②以D 为端点过P 作射线DH ,作点O 关于DE 的对称点Q 恰好落在CPH ∠内,则CP 的取值范围为________.(直接写出结果)【答案】(1)①40°;②详见解析;(2)①7,10,12.5;②712.5CP <<【解析】【分析】(1)①由BP 是直径可得90BEC ︒∠=,根据130BD ︒=得 50DP ︒=并可得DP EP =, 100DE ︒=,50CBE ︒∠=,根据三角形的内角和定理得40C ︒∠=;②由DP EP =,得到12∠=∠,根据1APB C ∠=∠+∠,2ABP ABE ∠=∠+∠,C ABE ∠=∠,得到,APB ABP ∠=∠由等角对等边得AP AB =;(2)①分三种情况:(一)当BD BE =时,(二)当BD ED =时,(三)当DE BE =时,分别进行讨论求解即可;②分三种情况讨论:(一)当Q 点在P 点上时;(二)当Q 点在PC 上时(三)当Q 点在PH 上时,分别讨论,求出CP 的值即可.【详解】24.解(1)①连结BE ,∵BP 是直径∴90BEC ︒∠=∵130BD ︒=,∴50DP ︒=∵DP EP =,∴100DE ︒=∴50CBE ︒∠=∴40C ︒∠=②∵DP EP =,∴12∠=∠1APB C ∠=∠+∠,2ABP ABE ∠=∠+∠又∵C ABE ∠=∠∴APB ABP ∠=∠∴AP AB =(2)①由15AB =,20BC =,可以求得25AC =,12BE =,∴8CD =,16CE =,∵CBP CED ∠=∠,C C ∠=∠∴CBP CED当BDE 是等腰三角形时,有三种情况:(一)BD BE =,(二)BD ED =,(三)DE BE =(一)当BD BE =时,12BD BE ==∴8CD =, ∴CP CB CD CE = ∴58104CB CD C C P E ==⨯=⨯ (二)当BD ED =时,可知点D 是Rt CBE 斜边的中线,∴10CD =,∴CP CB CD CE= ∴5251012.542CB CD CE CP ==⨯=⨯= (三)当DE BE =时,作EH BC ⊥,则H 是BD 中点, 可以求得33655BH BE =⨯=,∴725BD = ∴285CD =,∴574CP CD =⨯= ②(一)当O 点的对称点Q 在P 点上时,B ,O ,Q 三点共线,如图示∴BP DE ⊥,且BP 平分DE ,由等腰三角形的性质可知∴BD BE =由(1)可知CP=7;(二)当O 点的对称点Q 不在P 点上,而在PC 上时,此情况Q 点并不在CPH ∠上(三)当O 点的对称点Q 不在P 点上,而在PH 上时,B ,O ,Q 三点不共线,如图示∵OK KQ =,KQ DE ⊥,且OD OE =∴四边形DOEQ 是菱形,∴DEP DEO ∠=∠∵DEP DBO ∠=∠∴DEO DBO ∠=∠又∵OE ,OD ,OB 均为外接圆的半径,∴DBO BDO ∠=∠,DEO ODE ∠=∠∴BDO ODE ∠=∠∴BDO EDO ∠≅∠∴BD ED =∴由(1)可知,12.5CP =∴712.5CP <<【点睛】此题是圆的综合题,主要考查了等腰三角形的性质,相似三角形的判定和性质,能分情况讨论各种情况,是解本题的关键.。

中考数学复习《综合实践题》经典题型及测试题(含答案)

中考数学复习《综合实践题》经典题型及测试题(含答案)

中考数学复习《综合实践题》经典题型及测试题(含答案)题型解读此类题考查形式多样,但都与实际问题结合,且解决实际问题时一般会用到前面的结论,解题时要多结合前面的问题,大胆猜想.综合性较强,入手简单,但要得满分较难,此类题型是今后中考命题的方向,应引起重视.1.如图①,△ABC 和△DEF 中,AB =AC ,DE =DF ,∠A =∠D. (1)求证:BC AB =EFDE;(2)由(1)中的结论可知,等腰三角形ABC 中,当顶角∠A 的大小确定时,它的对边(即底边BC)与邻边(即腰AB 或AC)的比值也就确定,我们把这个比值记作T(A),即T(A)=∠A的对边(底边)∠A的邻边(腰)=BCAB .如T(60°)=1.①理解巩固:T(90°)=________,T (120°)=________,若α是等腰三角形的顶角,则T(α)的取值范围是________;②学以致用:如图②,圆锥的母线长为9,底面直径PQ =8,一只蚂蚁从点P 沿着圆锥的侧面爬行到点Q ,求蚂蚁爬行的最短路径长(精确到0.1).(参考数据:T(160°)≈1.97,T (80°)≈1.29,T (40°)≈0.68)2. (1)如图①,已知△ABC,以AB、AC为边分别向△ABC外作等边△ABD和等边△ACE,连接BE、CD,请你完成图形(尺规作图,不写作法,保留作图痕迹),并证明:BE=CD;(2)如图②,已知△ABC,以AB、AC为边分别向外作正方形ABFD和正方形ACGE,连接BE、CD,猜想BE与CD有什么数量关系?并说明理由;(3)运用(1),(2)解答中所积累的经验和知识,完成下题:如图③,要测量池塘两岸相对的两点B、E的距离,已经测得∠ABC=45°,∠CAE=90°,AB=BC=100米,AC=AE,求BE的长(结果保留根号).3.问题:如图①,点E、F分别在正方形ABCD的边BC、CD上,∠EAF=45°,试判断BE、EF、FD之间的数量关系.【发现证明】小聪把△ABE绕点A逆时针旋转90°至△ADG,从而发现EF=BE+FD,请你利用图①证明上述结论.【类比引申】如图②,四边形ABCD中,∠BAD≠90°,AB=AD,∠B+∠D=180°,点E、F分别在边BC、CD上,则当∠EAF与∠BAD满足__________关系时,仍有EF=BE+FD.【探究应用】如图③,在某公园的同一水平面上,四条道路围成四边形ABCD.已知AB=AD=80米,∠B=60°,∠ADC =120°,∠BAD=150°,道路BC、CD上分别有景点E、F,且A E⊥AD,DF=40(3-1)米,现要在E、F 之间修一条笔直的道路,求这条道路EF的长.(结果取整数,参考数据:2≈1.41,3≈1.73)4.理解:数学兴趣小组在探究如何求tan 15°的值,经过思考、讨论、交流,得到以下思路: 思路一 如图①,在Rt △ABC 中,∠C =90°,∠ABC =30°,延长CB 至点D ,使BD =BA ,连接AD.图① 设AC =1,则BD =BA =2,BC = 3.tan D =tan 15°=12+3=2-3(2+3)(2-3)=2- 3. 思路二 利用科普书上的和.(.差.).角正切公式.....:tan (α±β)=tan α±tan β1∓tan αtan β. 假设α=60°,β=45°代入差角正切公式:tan 15°=tan (60°-45°)=tan 60°-tan 45°1+tan 60°tan 45°=3-11+3=2- 3.思路三 在顶角为30°的等腰三角形中,作腰上的高也可以… 思路四 …请解决下列问题(上述思路仅供参考). (1)类比:求出tan 75°的值;(2)应用:如图②,某电视塔建在一座小山上,山高BC 为30米,在地平面上有一点A ,则得A 、C 两点间距离为60米,从A 测得电视塔的视角(∠CAD)为45°,求这座电视塔CD 的高度;(3)拓展:如图③,直线y =12x -1与双曲线y =4x 交于A 、B 两点,与y 轴交于点C ,将直线AB 绕点C 旋转45°后,是否仍与双曲线相交?若能,求出交点P 的坐标;若不能,请说明理由.图②图③备用图5.【操作发现】在计算器上输入一个正数,不断地按“ ”键求算术平方根,运算结果越来越接近1或都等于1.【提出问题】输入一个实数,不断地进行“乘以常数k ,再加上常数b”的运算,有什么规律? 【分析问题】我们可用框图表示这种运算过程:也可用图象描述:如图①,在x 轴上表示出x 1,先在直线y =kx +b 上确定点(x 1,y 1),再在直线y =x 上确定纵坐标为y 1的点(x 2,y 1),然后在x 轴上确定对应的数x 2,…,依次类推. 【解决问题】研究输入实数x 1时,随着运算次数n 的不断增加,运算结果x n 怎样变化. (1)若k =2,b =-4,得到什么结论?可以输入特殊的数如3,4,5进行观察研究; (2)若k>1,又得到什么结论?请说明理由;(3)①若k =-23,b =2,已在x 轴上表示出x 1(如图②所示),请在x 轴上表示x 2,x 3,x 4,并写出研究结论;②若输入实数x 1时,运算结果x n 互不相等,且越来越接近常数m ,直接写出k 的取值范围及m 的值(用含k ,b 的代数式表示).6.问题提出(1)如图①,已知△ABC.请画出△ABC关于直线AC对称的三角形.问题探究(2)如图②,在矩形ABCD中,AB=4,AD=6,AE=4,AF=2.是否在边BC、CD上分别存在点G、H,使得四边形EFGH的周长最小?若存在,求出它周长的最小值;若不存在,请说明理由.问题解决(3)如图③,有一矩形板材ABCD,AB=3米,AD=6米.现想从此板材中裁出一个面积尽可能大的四边形EFGH部件,使∠EFG=90°,EF=FG=5米,∠EHG=45°.经研究,只有当点E、F、G分别在边AD、AB、BC上,且AF<BF,并满足点H在矩形ABCD内部或边上时,才有可能裁出符合要求的部件.试问能否裁得符合要求的面积尽可能大的四边形EFGH部件?若能,求出裁得的四边形EFGH部件的面积;若不能,请说明理由.1. (1)证明:∵AB=AC,DE=DF,∴ABDE=ACDF,又∵∠A =∠D ,∴△ABC ∽△DEF ,∴BC EF =ABDE ,∴BC AB =EF DE. (2)解:①2,3,0<T (α)<2.【解法提示】①如解图①,在Rt △ABC 中,∠A =90°,∠B =∠C =45°, ∴设AB =AC =x ,由勾股定理得BC =2x , ∴T(90°)=BC AB =2x x=2;第1题解图①第1题解图②如解图②,在△ABC 中,∠A =120°,AB =AC , 过点A 作AD ⊥BC , ∴∠BAD =60°,BD =12BC ,设AD =y ,在Rt △ABD 中,∠BAD =60°, ∴BD =AD·tan 60°=3y ,AB =2AD =2y , ∴BC =2BD =23y , ∴T(120°)=23y2y=3; ∵∠A<180°,当∠A =180°时,此时AB =AC =12BC 即T(A)=BC AB =BC 12BC =2,∵要构成三角形,∴T(A)<2, ∵T(A)>0,∴0<T (α)<2.第1题解图②如解图,设圆锥的底面半径为r ,母线长为l ,∵圆锥的底面圆周长=圆锥展开图扇形的弧长,即2πr =n πl180,∴rl=n360,∵r=4,l=9,∴n=160.∵T(80°)≈1.29,∴蚂蚁爬行的最短距离=T(80°)×l≈1.29×9≈11.6.2. 解:(1)作图如解图①,第2题解图①证明:∵△ABD和△ACE为等边三角形,则AB=AD,AE=AC,∠DAB=∠EAC=60°,又∵∠DAC=∠DAB+∠BAC=∠EAC+∠BAC=∠BAE,∴△DAC≌△BAE(SAS),∴BE=CD.(2)BE=CD.理由如下:∵四边形ABFD和四边形ACGE为正方形,∴AB=AD,AC=AE,∠DAB=∠EAC=90°,又∵∠DAC=∠DAB+∠BAC=∠EAC+∠BAC=∠BAE,∴△DAC≌△BAE(SAS),∴BE=CD.(3)如解图②,以AB为边,作等腰直角三角形ABD,∠BAD=90°,第2题解图②则AD=AB=100米,∠ABD=45°,∴BD=100 2 米,连接CD,则由(2)可得,BE=CD,∵∠ABC=45°,∴∠DBC=90°,在Rt△DBC中,BC=100米,BD=100 2 米,由勾股定理得CD=1002+(1002)2=100 3 米,则BE=CD=100 3 米.3. 【发现证明】证明:如解图①,将△ABE绕点A逆时针旋转90°到△ADG,则AB与AD重合,第3题解图①∴∠BAE =∠DAG ,∠B =∠ADG ,BE =GD , AE =AG ,∴∠GAF =∠DAF +∠GAD =∠BAE +∠DAF =45°, 在正方形ABCD 中,∠B =∠ADC =90°, ∴∠ADG +∠ADF =180°,即G 、D 、F 在一条直线上, ∵∠EAF =45°,在△EAF 和△GAF 中,AE =AG ,∠EAF =∠GAF =45°,AF =AF , ∴△EAF ≌△GAF(SAS ), ∴EF =GF ,∴EF =FG =FD +DG =FD +BE. 【类比引申】∠EAF =12∠BAD.【解法提示】如解图②,延长CB 至M ,使BM =DF ,连接AM , ∵∠ABC +∠D =180°,∠ABC +∠ABM =180°, ∴∠D =∠ABM , 在△ABM 和△ADF 中, ⎩⎪⎨⎪⎧AB =AD ∠ABM =∠D BM =DF,第3题解图②∴△ABM ≌△ADF(SAS ),∴AF =AM ,∠DAF =∠BAM , ∵∠BAD =2∠EAF , ∴∠DAF +∠BAE =∠EAF =12∠BAD , ∴∠EAB +∠BAM =∠EAM =∠EAF , 在△FAE 和△MAE 中,⎩⎪⎨⎪⎧AE =AE ∠FAE =∠MAE AF =AM, ∴△FAE ≌△MAE(SAS ), ∴EF =EM ,又∵EM =BE +BM =BE +DF , ∴EF =BE +DF.【探究应用】解:如解图③,连接AF ,延长BA 、CD 交于点O , ∵∠BAD =150°,∠ADC =120°, ∴∠OAD =30°,∠ODA =60°, ∴△OAD 是直角三角形. ∵AD =80,∴AO =403,OD =40,∵OF =OD +DF =40+40(3-1)=403, ∴AO =OF ,第3题解图③∴∠OAF =45°, ∵∠OAD =30°, ∴∠DAF =15°, ∵∠EAD =90°,∴∠EAF =∠EAD -∠DAF =75°=12∠BAD ,又∠B +∠ADC =180°,由(2)知EF =BE +DF.∠BAE =∠BAD -∠EAD =150°-90°=60°=∠B , ∴△ABE 为等边三角形, ∴BE =AB =80,∴EF =BE +DF =80+40(3-1)≈109(米). 4. 解:(1)如解图①,在Rt △ABC 中,∠C =90°,∠ABC =30°,延长CB 至点D ,使BD =BA ,连接AD.第4题解图①设AC =1,则BD =BA =2,BC =3,tan ∠DAC =tan 75°=DC AC =BD +BC AC =2+31=2+ 3.【一题多解】tan 75°=tan (45°+30°)=tan 45°+tan 30°1-tan 45°·tan 30°=1+331-33=3+33-3=2+ 3.第4题解图②(2)如解图②,在Rt △ABC 中,AB =AC 2-BC 2=602-302=303, sin ∠BAC =BC AC =3060=12,即∠BAC =30°,∵∠DAC =45°,∴∠DAB =45°+30°=75°.在Rt △ABD 中,tan ∠DAB =DBAB =2+3,∴DB =AB·tan ∠DAB =303·(2+3)=603+90, ∴DC =DB -BC =603+90-30= 603+60.(米)答:这座电视塔CD 的高度为(603+60)米.第4题解图③(3)直线AB 能与双曲线相交, 点P 的坐标为(-1,-4)或(43,3),理由如下:若直线AB 绕点C 逆时针旋转45°后,与双曲线相交于点P 1、P 2,如解图③,过点C 作CD ∥x 轴,过点P 1作P 1E ⊥CD 于点E ,过点A 作AF ⊥CD 于点F.解方程组⎩⎨⎧y =12x -1y =4x,得⎩⎪⎨⎪⎧x =4y =1,或⎩⎪⎨⎪⎧x =-2y =-2, ∴点A(4,1),点B(-2,-2).对于y =12x -1,当x =0时,y =-1,则C(0,-1),OC =1,∴CF =4,AF =1-(-1)=2, ∴tan ∠ACF =AF CF =24=12, ∴tan ∠P 1CE =tan (∠ACP 1+∠ACF)=tan (45°+∠ACF)=tan 45°+tan ∠ACF 1-tan 45°·tan ∠ACF=1+121-12=3,即P 1ECE =3.设点P 的坐标为(a ,b), 则有⎩⎪⎨⎪⎧ab =4b +1a =3,解得⎩⎪⎨⎪⎧a =-1b =-4,或⎩⎪⎨⎪⎧a =43b =3, ∴点P 的坐标为(-1,-4)或(43,3);(ii )若直线AB 绕点C 顺时针旋转45°后,与x 轴相交于点G ,如解图④. 由(i )可知∠ACP =45°,P(43,3),则CP ⊥CG .过点P 作PH ⊥y 轴于H , 则∠GOC =∠CHP =90°,∠GCO =90°-∠HCP =∠CPH ,第4题解图④∴△GOC ∽△CHP , ∴GO CH =OCHP. ∵CH =3-(-1)=4,PH =43,OC =1,∴GO 4=143=34, ∴GO =3,G(-3,0).设直线CG 的解析式为y =kx +b ,则有⎩⎪⎨⎪⎧-3k +b =0b =-1,解得⎩⎪⎨⎪⎧k =-13b =-1,∴直线CG 的解析式为y =-13x -1.联立⎩⎨⎧y =-13x -1y =4x,消去y ,得4x =-13x -1,整理得x 2+3x +12=0,∵b 2-4ac =32-4×1×12=-39<0, ∴方程没有实数根,∴直线绕点C 顺时针旋转45°,与双曲线无交点.(综上所述,直线AB 绕点C 逆时针旋转45°后,能与双曲线相交,交点P 的坐标为(-1,-4)或(43,3).5. 解:(1)若k =2, b =-4,①x 1=3时,x 2=2×3-4=2,x 3=2×2-4=0,x 4=2×0-4=-4,x 5=2×(-4)-4=-12; ②x 1=4时,x 2=2×4-4=4,x 3=2×4-4=4,x 4=2×4-4=4,x 5=2×4-4=4; ③x 1=5时,x 2=2×5-4=6,x 3=2×6-4=8,x 4=2×8-4=12,x 5=2×12-4=20, 由上面的特殊值可得,y =2x -4与y =x 交点的横坐标为4, 所以当输入的值x>4时,x n 的值会随着运算次数的增大而增大; 当输入的值x =4时,x n 的值不变;当输入的值x<4时,x n 的值会随着运算次数的增大而减小.(2)当k>1时,y =kx +b 与y =x 的交点坐标横坐标为x =-bk -1,所以当输入的值x>-bk -1时,x n 的值会随着运算次数的增大而增大;当输入的值x =-bk -1时,x n 的值不变;当输入的值x<-bk -1时,x n 的值会随着运算次数的增大而减小.理由如下:直线y =kx +b 与直线y =x 的交点坐标为(b 1-k ,b 1-k ),当x >b 1-k时,对于同一个x 的值,kx +b >x ,∴y 1>x 1,∵y 1=x 2,∴x 1<x 2,同理x 2<x 3<…<x n ,∴当x 1>b1-k 时,随着运算次数n的增加,x n 越来越大,同理,当x 1<b 1-k 时,随着运算次数n 的增加,x n 越来越小,当x =b1-k 时,随着运算次数n 的增加,x n 保持不变.(3)①画如解图,第5题解图结论:通过画图可得,x n 的值越来越靠近两个函数图象交点的横坐标即65;②|k|<1且k ≠0时,m =-bk -1.即-1<k <1且k ≠0, 【解法提示】两个函数图象的交点的横坐标满足kx +b =x ,解得x =-bk -1,且k ≠0,由(1)得|k|<1.6. (1)【思路分析】要作对称图形,先要考虑对称的性质,即对应点关于对称轴对称,只需作出点B 关于直线AC 的对称点D ,连接AD ,CD 即可.第6题解图①解:如解图①,△ADC 即为所求作三角形.【作法提示】(1)过点B 作直线AC 的垂线,垂足为点O ;(2)在垂线上截取OD =OB ,连接AD ,CD ,则△ADC 即为所要求作的三角形.(2)【思路分析】四边形EFGH 的周长=EF +FG +GH +HE ,由题意可知AF 和AE 的长均为定值,利用勾股定理可求得EF 的长为定值,所以要求四边形周长的最小值,只需令FG +GH +HE 最小即可,利用作对称线段将所求线段和转化到三角形中进行求解,进而利用直角三角形三边关系求出线段和最小值.第6题解图②解:存在.理由如下:如解图②,作点E 关于CD 的对称点E′,作点F 关于BC 的对称点F′,连接E′F′,交BC 于点G ,交CD 于点H ,连接FG 、EH ,则F ′G =FG ,E ′H =EH ,所以此时四边形EFGH 的周长最小.这是因为:在BC 上任取一点G′,在CD 上任取一点H′,则FG′+G′H′+H′E =F′G′+G′H′+H ′E ′≥E ′F ′.由题意得:BF′=BF =AF =2,DE ′=DE =2,∠A =90°, ∴AF ′=6,AE ′=8.∴E ′F ′=10,EF =2 5.∴四边形EFGH 周长的最小值为EF +FG +GH +HE =EF +E ′F ′=25+10.∴在BC、CD上分别存在满足条件的点G、H,使四边形EFGH的周长最小,最小值是25+10.(3)【思路分析】要使四边形EFGH面积最大,因为E、F、G的位置确定,即△EFG的面积是固定的,只要求以EG为底边的△EGH最大面积即可,且∠EHG为45°,作△EFG关于EG的对称图形,以点F 的对称点O为圆心,作以EG为弦的圆,根据圆的基本性质,即EG的中垂线与圆的交点即为所求的点H′,然后再由对称的性质和勾股定理求解即可.解:能裁得.∵∠EFG=∠A=90°,∴∠2+∠AFE=∠1+∠AFE=90°,∴∠1=∠2,∵EF=FG=5,∴△AEF≌△BFG(AAS),∴AF=BG,AE=BF.设AF=x,则AE=BF=3-x,∴x2+(3-x)2=(5)2解得x1=1或x2=2,∵AF<BF,∴x2=2舍去,∴AF=BG=1,AE=BF=2,∴DE=4,CG=5.如解图③,连接EG,作△EFG关于EG的对称图形△EOG,则四边形EFGO为正方形,∠EOG=90°.以点O为圆心,OE长为半径作⊙O,则∠EHG=45°的点H在⊙O上.连接FO,并延长交⊙O于点H,则点H在EG中垂线上.第6题解图③连接EH、GH,则∠EHG=45°.此时,四边形EFGH就是想要裁得的四边形EFGH中面积最大的.连接CE,则CE=CG=DE2+CD2=5.∴点C在线段EG的中垂线上,连接HC,∴点F、O、H、C在一条直线上,又∵EG=EF2+FG2=10,∴FO=EG=10.又∵CF=BF2+BC2=210,∴OC=10.又∵OH=OE=FG=5,∴OH<OC,∴点H 在矩形ABCD 的内部,∴可以在矩形板材ABCD 中,裁得符合条件的面积最大的四边形EFGH 部件,这个部件的面积即S 四边形EFGH=12EG·FH =12×10×(10+5)=(5+522)m 2. ∴所裁得的四边形部件EFGH 是符合条件的面积最大的部件,这个部件的面积为(5+522) m 2.难点突破本题的难点在于第(3)问点H 位置的确定,题中已知点E 、F 、G 的位置,即解决本题的实质是求以EG 为底边的△EGH 的面积最大时点H 的位置,由于∠EHG =45°,想到作直角△EFG 关于EG 的对称图形,则以点F 的对称点为圆心、EG 为弦的圆在矩形ABCD 内的点H 满足题意,根据圆的基本性质,则点H 为EG 的中垂线与所作圆的交点.。

2022年中考综合模拟检测《数学试卷》含答案解析

2022年中考综合模拟检测《数学试卷》含答案解析

数学中考综合模拟检测试题学校________ 班级________ 姓名________ 成绩________一、填空题1. 2020的相反数是__________.2. 因式分解:24x-=.3. 如图,三角板直角顶点落在长方形纸片的一边上,∠1=35°,则∠2=_____°.4. 函数12yx=-中,自变量的取值范围是.5. 如图,P是反比例函数y=kx的图象第二象限上的一点,且矩形PEOF的面积为8,则k=_____.6. 如图,直线l为y=3x,过点A1(1,0)作A1B1⊥x轴,与直线l交于点B1,以原点O为圆心,OB1长为半径画圆弧交x轴于点A2;再作A2B2⊥x轴,交直线l于点B2,以原点O为圆心,OB2长为半径画圆弧交x 轴于点A3;……,按此作法进行下去,则点A n的坐标为( ).二、选择题7. 下列几何体是由4个相同的小正方体搭成的,其中左视图与俯视图相同的是( )A. B. C. D.8. 贯彻落实党和政府扶贫开发方针、政策,负责组织实施和监督扶贫开发项目建设,开远市扶贫办2018年财政拨款收支总预算21800900元.将21800900用科学记数法表示为()A. 2.18009×108B. 0.218009×108C. 2.18009×107D. 21.8009×1069. 下列各式运算正确的是( )A a2+a3=a5 B. a2•a3=a5 C. (ab2)3=ab6 D. a10÷a2=a510. 已知一个多边形的内角和为1080°,则这个多边形是( )A 九边形 B. 八边形 C. 七边形 D. 六边形11. 关于x的一元二次方程x2+4x+k=0有两个实数根,则k的取值范围是( )A k≤﹣4 B. k<﹣4 C. k≤4 D. k<412. 如图,在半径为13cm的圆形铁片上切下一块高为8cm的弓形铁片,则弓形弦AB的长为( )A. 10cmB. 16 cmC. 24 cmD. 26cm13. 某企业车间有50名工人,某一天他们生产的机器零件个数统计如表:零件个数(个) 6 7 8人数(人) 15 22 10表中表示零件个数的数据中,众数、中位数分别是( )A. 7个、7个B. 6个、7个C. 5个、6个D. 8个、6个14. 如图,正方形ABCD中,AB=6,点E在边CD上,且CD=3DE,将△ADE沿AE对折至△AFE,延长EF交边BC于点G,连接AG、CF,则下列结论:①△ABG≌△AFG;②BG=CG;③AG∥CF;④S△EGC=S△AFE;⑤∠AGB+∠AED=145°.其中正确的个数是()A. 2B. 3C. 4D. 5三、解答题15. 计算:(﹣1)2﹣|﹣7|+4×(2013﹣π)016. 点C是AE的中点,∠A=∠ECD,AB=CD,求证:△ABC≌△CDE.17. 某商场正在热销2008年北京奥运会吉祥物”福娃”玩具和徽章两种奥运商品,5个福娃2枚徽章145元,10个福娃3枚徽章280元(5个福娃1套),则:(1)一套”福娃”玩具和一枚徽章的价格各是多少元?(2)买5套”福娃”玩具和10枚徽章共需要多少元?18. 九年级某班同学在庆祝2015年元旦晚会上进行抽奖活动.在一个不透明的口袋中有三个完全相同的小球,把它们分别标号1、2、3.随机摸出一个小球记下标号后放回摇匀,再从中随机摸出一个小球记下标号.(1)请用列表或画树形图的方法(只选其中一种),表示两次摸出小球上的标号的所有结果;(2)规定当两次摸出的小球标号相同时中奖,求中奖的概率.19. 如图,在平行四边形ABCD中,E、F为对角线AC上两点,且AE=CF,请你从图中找出一对全等三角形,并给予证明.20. 某校组织了一次七年级科技小制作比赛,有A、B、C、D四个班共提供了100件参赛作品,C班提供的参赛作品的获奖率为50%,其他几个班的参赛作品情况及获奖情况绘制在下列图①和图②两幅尚不完整的统计图中.(1)B班参赛作品有多少件?(2)请你将图②的统计图补充完整;(3)通过计算说明,哪个班的获奖率高?21. 某水果批发商经销一种高档水果,如果每千克盈利10元,每天可售出500千克,经市场调查发现,在进货价不变的情况下,若每千克涨价1元,日销售量将减少20千克.(1)现该商场要保证每天盈利6080元,同时又要顾客得到实惠,那么每千克应涨价多少元?(2)若该商场单纯从经济角度看,每千克这种水果涨价多少元,能使商场获利最多?22. 如图,Rt△ABC中,∠ABC=90°,以AB为直径的⊙O交AC于点D,E是BC的中点,连接DE、OE.(1)判断DE与⊙O位置关系并说明理由;(2)求证:22=⋅BC CD OE(3)若tanC=5,DE=2,求AD的长.223. 如图,抛物线y=﹣x2+2mx+m+2的图象与x轴交于A(﹣1,0),B两点,在x轴上方且平行于x轴的直线EF与抛物线交于E,F两点,E在F的左侧,过E,F分别作x轴的垂线,垂足是M,N.(1)求m的值及抛物线的顶点坐标;(2)设BN=t,矩形EMNF的周长为C,求C与t的函数表达式;(3)当矩形EMNF的周长为10时,将△ENM沿EN翻折,点M落在坐标平面内的点记为M',试判断点M'是否在抛物线上?并说明理由.答案与解析一、填空题1. 2020的相反数是__________.【答案】-2020【解析】【分析】根据相反数的代数意义:只有符号不同的两个数互为相反数,即可解答.【详解】解:2020相反数是-2020故答案为:-2020.【点睛】此题考查的是求一个数的相反数,掌握相反数的代数意义是解决此题的关键. 2. 因式分解:24x -= .【答案】(x+2)(x-2)【解析】【详解】解:24x -=222x -=(2)(2)x x +-;故答案(2)(2)x x +-3. 如图,三角板直角顶点落在长方形纸片的一边上,∠1=35°,则∠2=_____°.【答案】55.【解析】【分析】由平角的定义求出∠3=55°,再根据平行线的性质即可解决问题.【详解】解:∵∠1+∠3=90°,∠1=35°,∴∠3=55°,∵AB//CD∴∠2=∠3=55°,故答案是:55.【点睛】此题考查了平行线的性质.两直线平行,同位角相等的应用是解此题的关键.4. 函数12yx=-中,自变量的取值范围是.【答案】x>2【解析】【分析】根据分式有意义和二次根式有意义的条件求解.【详解】解:根据题意得,x﹣2>0,解得x>2.故答案为x>2.【点睛】本题考查了函数自变量的取值范围,函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.5. 如图,P是反比例函数y=kx的图象第二象限上的一点,且矩形PEOF的面积为8,则k=_____.【答案】﹣8【解析】【分析】利用反比例函数的比例系数k的几何意义得到|k|=8,然后根据反比例函数的性质确定k的值.【详解】根据题意得|k|=8,而反比例函数图象分布在第二、四象限,所以k<0,所以k=﹣8.故答案为﹣8.【点睛】本题考查了反比例函数系数k的几何意义:在反比例函数y=kx图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.6. 如图,直线l为y=3x,过点A1(1,0)作A1B1⊥x轴,与直线l交于点B1,以原点O为圆心,OB1长为半径画圆弧交x轴于点A2;再作A2B2⊥x轴,交直线l于点B2,以原点O为圆心,OB2长为半径画圆弧交x 轴于点A3;……,按此作法进行下去,则点A n的坐标为( ).【答案】2n﹣1,0【解析】【分析】依据直线l为3,点A1(1,0),A1B1⊥x轴,可得A2(2,0),同理可得,A3(4,0),A4(8,0),…,依据规律可得点A n的坐标为(2n﹣1,0).【详解】∵直线l为3,点A1(1,0),A1B1⊥x轴,∴当x=1时,3即B1(13,∴tan∠A1OB13∴∠A1OB1=60°,∠A1B1O=30°,∴OB1=2OA1=2,∵以原点O为圆心,OB1长为半径画圆弧交x轴于点A2,∴A2(2,0),同理可得,A3(4,0),A4(8,0),…,∴点A n的坐标为(2n﹣1,0),故答案为2n﹣1,0.【点睛】本题考查了规律题——点的坐标,一次函数图象上点的坐标特征等,先根据所给一次函数判断出一次函数与x轴夹角是解决本题的突破点;根据含30°的直角三角形的特点依次得到A1、A2、A3…的点的坐标是解决本题的关键.二、选择题7. 下列几何体是由4个相同的小正方体搭成的,其中左视图与俯视图相同的是( )A. B. C. D.【答案】C【解析】试题分析:从物体的前面向后面投射所得的视图称主视图(正视图)——能反映物体的前面形状;从物体的上面向下面投射所得的视图称俯视图——能反映物体的上面形状;从物体的左面向右面投射所得的视图称左视图——能反映物体的左面形状.选项C左视图与俯视图都是,故选C.8. 贯彻落实党和政府扶贫开发方针、政策,负责组织实施和监督扶贫开发项目建设,开远市扶贫办2018年财政拨款收支总预算21800900元.将21800900用科学记数法表示为()A. 2.18009×108B. 0.218009×108C. 2.18009×107D. 21.8009×106【答案】C【解析】分析:科学计数法是指a×10n,且1≤a<10,n为原数的整数位数减一.详解:21800900= 2.18009×107,故选C.点睛:本题主要考查的是用科学计数法表示较大的数,属于基础题型.明确科学计数法的方法是解题的关键.9. 下列各式运算正确的是( )A. a2+a3=a5B. a2•a3=a5C. (ab2)3=ab6D. a10÷a2=a5【答案】B【解析】【分析】根据同底数幂的乘除法则及幂的乘方与积的乘方法则进行各选项的判断即可.【详解】A、a2与a3不是同类项,不能直接合并,故本选项错误;B、a2•a3=a5,计算正确,故本选项正确;C、(ab2)3=a3b6,原式计算错误,故本选项错误;D、a10÷a2=a8,原式计算错误,故本选项错误;故选B.【点睛】本题考查了同底数幂的除法及幂的乘方与积的乘方运算,掌握同底数幂的乘除法则是解题关键.10. 已知一个多边形的内角和为1080°,则这个多边形是( )A. 九边形B. 八边形C. 七边形D. 六边形【答案】B【解析】【分析】n边形的内角和是(n﹣2)•180°,如果已知多边形的边数,就可以得到一个关于边数的方程,解方程就可以求出多边形的边数.【详解】根据n边形的内角和公式,得(n﹣2)•180=1080,解得n=8,∴这个多边形的边数是8,故选B.【点睛】本题考查了多边形的内角与外角,熟记内角和公式和外角和定理并列出方程是解题的关键.根据多边形的内角和定理,求边数的问题就可以转化为解方程的问题来解决.11. 关于x的一元二次方程x2+4x+k=0有两个实数根,则k的取值范围是( )A. k≤﹣4B. k<﹣4C. k≤4D. k<4【答案】C【解析】【分析】根据判别式的意义得△=42﹣4k≥0,然后解不等式即可.【详解】根据题意得△=42﹣4k≥0,解得k≤4.故选C.【点睛】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.12. 如图,在半径为13cm的圆形铁片上切下一块高为8cm的弓形铁片,则弓形弦AB的长为( )A. 10cmB. 16 cmC. 24 cmD. 26cm【答案】C【解析】试题分析:过O作OD⊥AB于C,交⊙O于D,先利用勾股定理求出BC的长,进而根据垂径定理得出A B. 解:过O作OD⊥AB于C,交⊙O于D,∴CD=8,OD=13,∴OC=OD-CD=5,又∵OB=13,∴Rt△BCO中,BC=22OB OC=12,∴AB=2BC=24.故选C.13. 某企业车间有50名工人,某一天他们生产的机器零件个数统计如表:零件个数(个) 6 7 8人数(人) 15 22 10表中表示零件个数的数据中,众数、中位数分别是( )A. 7个、7个B. 6个、7个C. 5个、6个D. 8个、6个【答案】A【解析】【分析】根据中位数和众数的定义求众数是一组数据中出现次数最多的数据,注意众数可以不止一个;找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数.【详解】由表可知7个出现次数最多,所以众数为7个,因为共有15+22+10=47个数据,所以中位数为第24个数据,即中位数为7个,故选:A.【点睛】本题考查了确定一组数据的中位数和众数的能力.一些学生往往对这个概念掌握不清楚,计算方法不明确而误选其它选项,注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.14. 如图,正方形ABCD中,AB=6,点E在边CD上,且CD=3DE,将△ADE沿AE对折至△AFE,延长EF交边BC于点G,连接AG、CF,则下列结论:①△ABG≌△AFG;②BG=CG;③AG∥CF;④S△EGC=S△AFE;⑤∠AGB+∠AED=145°.其中正确的个数是()A. 2B. 3C. 4D. 5【答案】C【解析】【详解】解:①正确.理由:∵AB=AD=AF,AG=AG,∠B=∠AFG=90°,∴Rt△ABG≌Rt△AFG(HL);②正确.理由:EF=DE=13CD=2,设BG=FG=x,则CG=6﹣x.在直角△ECG中,根据勾股定理,得(6﹣x)2+42=(x+2)2,解得x=3.∴BG=3=6﹣3=GC;③正确.理由:∵CG=BG,BG=GF,∴CG=GF,∴△FGC是等腰三角形,∠GFC=∠GCF.又∵Rt△ABG≌Rt△AFG;∴∠AGB=∠AGF,∠AGB+∠AGF=2∠AGB=180°﹣∠FGC=∠GFC+∠GCF=2∠GFC=2∠GCF,∴∠AGB=∠AGF=∠GFC=∠GCF,∴AG∥CF;④正确.理由:∵S△GCE=12GC•CE=12×3×4=6,∵S△AFE=12AF•EF=12×6×2=6,∴S△EGC=S△AFE;⑤错误.∵∠BAG=∠FAG,∠DAE=∠FAE,又∵∠BAD=90°,∴∠GAF=45°,∴∠AGB+∠AED=180°﹣∠GAF=135°.故选C.【点睛】本题考查翻折变换(折叠问题);全等三角形的判定与性质;正方形的性质;勾股定理.三、解答题15. 计算:(﹣1)2﹣|﹣7|+4×(2013﹣π)0【答案】﹣4.【解析】【分析】直接利用绝对值性质以及零指数幂的性质分别化简得出答案.【详解】(﹣1)2﹣|﹣4×(2013﹣π)0=1﹣7+2×1=1﹣7+2=﹣4.【点睛】此题主要考查了实数运算,正确化简各数是解题关键.16. 点C是AE的中点,∠A=∠ECD,AB=CD,求证:△ABC≌△CDE.【答案】详见解析【解析】【分析】根据中点的定义和全等三角形的判定解答即可.【详解】证明:∵点C 是AE 的中点,∴AC =CE ,在△ACB 与△CED 中AC CE A ECD AB CD =⎧⎪∠=∠⎨⎪=⎩,∴△ABC ≌△CDE (SAS ).【点睛】此题考查全等三角形的判定,关键是根据全等三角形的判定方法解答.17. 某商场正在热销2008年北京奥运会吉祥物”福娃”玩具和徽章两种奥运商品,5个福娃2枚徽章145元,10个福娃3枚徽章280元(5个福娃为1套),则:(1)一套”福娃”玩具和一枚徽章的价格各是多少元?(2)买5套”福娃”玩具和10枚徽章共需要多少元?【答案】(1)一套”福娃”玩具的价格为125元,一枚徽章的价格为10元;(2)买5套”福娃”玩具和10枚徽章共需要725元.【解析】【分析】(1)设一套”福娃”玩具的价格为x 元,一枚徽章的价格为y 元,根据”5个福娃2个徽章145元,10个福娃3个徽章280元(5个福娃为1套)”,即可得出关于x ,y 的二元一次方程组,解之即可得出结论;(2)根据总价=单价×数量,即可求出结论.【详解】(1)设一套”福娃”玩具的价格为x 元,一枚徽章的价格为y 元,依题意,得:214523280x y x y +=⎧⎨+=⎩,解得:12510xy=⎧⎨=⎩.答:一套”福娃”玩具的价格为125元,一枚徽章的价格为10元.(2)125×5+10×10=725(元).答:买5套”福娃”玩具和10枚徽章共需要725元.【点睛】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.18. 九年级某班同学在庆祝2015年元旦晚会上进行抽奖活动.在一个不透明的口袋中有三个完全相同的小球,把它们分别标号1、2、3.随机摸出一个小球记下标号后放回摇匀,再从中随机摸出一个小球记下标号.(1)请用列表或画树形图的方法(只选其中一种),表示两次摸出小球上的标号的所有结果;(2)规定当两次摸出的小球标号相同时中奖,求中奖的概率.【答案】(1)详见解析;(2)1 3【解析】【分析】(1)根据题意列出表格即可;(2)根据概率的计算方法进行求解【详解】(1)列表得:1 2 31 (1,1) (2,1) (3,1)2 (1,2) (2,2) (3,2)3 (1,3) (2,3) (3,3)(2)∵取出的两个小球上标号相同有:(1,1),(2,2),(3,3)∴P(中奖的概率为)=31 93 =19. 如图,在平行四边形ABCD中,E、F为对角线AC上两点,且AE=CF,请你从图中找出一对全等三角形,并给予证明.【答案】△AED≌△CFB,详见解析【分析】根据平行四边形的性质可得DA=BC,DA∥BC,根据平行线的性质可得∠DAC=∠BCA,进而可判定△AED≌△CFB.然后可得DE=BF,再证明△DEC≌△BFA,再利用SSS证明△ADC≌△CBA即可.【详解】△AED≌△CFB;∵四边形ABCD是平行四边形,∴DA=BC,DA∥BC,CD=AB,∴∠DAC=∠BCA,在△AED和△CFB中DA BCDAE BCF AE CF=⎧⎪∠=∠⎨⎪=⎩,∴△AED≌△CFB(SAS).∴DE=BF,∵AE=CF,∴AE+EF=CF+EF,∴AF=CE,在△DEC和△BF A中DE BF AF CE AB CD=⎧⎪=⎨⎪=⎩,∴△DEC≌△BF A(SSS),在△ADC和△CBA中AD BC AC AC CD AB=⎧⎪=⎨⎪=⎩,∴△ADC≌△CBA(SSS).【点睛】此题主要考查了平行四边形的性质,以及全等三角形的判定,关键是掌握平行四边形的对边相等且平行.20. 某校组织了一次七年级科技小制作比赛,有A、B、C、D四个班共提供了100件参赛作品,C班提供的参赛作品的获奖率为50%,其他几个班的参赛作品情况及获奖情况绘制在下列图①和图②两幅尚不完整的(1)B 班参赛作品有多少件?(2)请你将图②的统计图补充完整;(3)通过计算说明,哪个班的获奖率高?【答案】(1)B 班参赛作品有25件;(2)补图见解析;(3)C 班的获奖率高.【解析】【分析】(1)直接利用扇形统计图中百分数,求出B 班所占的百分比,进而求出B 班参赛作品数;(2)利用C 班提供的参赛作品的获奖率为50%,结合C 班参赛数量得出获奖数量,从而补全统计图;(3)分别求出各班的获奖率,进行比较从而得出答案.【详解】解:(1)B 班参赛作品有()()100135%20%20%25⨯---=件;(2)C 班参赛作品获奖数量为()10020%50%)10⨯⨯=件,补图如下: ;(3)A 班的获奖率为14100%40%10035%⨯=⨯ , B 班的获奖率为11100%44%25⨯=, C 班的获奖率为50%,D 班的获奖率为8100%40%10020%⨯=⨯, 故C 班的获奖率高.21. 某水果批发商经销一种高档水果,如果每千克盈利10元,每天可售出500千克,经市场调查发现,在进货价不变的情况下,若每千克涨价1元,日销售量将减少20千克.(1)现该商场要保证每天盈利6080元,同时又要顾客得到实惠,那么每千克应涨价多少元?(2)若该商场单纯从经济角度看,每千克这种水果涨价多少元,能使商场获利最多?【答案】(1)应该上涨6元;(2)每千克这种水果涨价7.5元,能使商场获利最多.【解析】【分析】(1)设每千克水果涨了x元,那么就少卖了20x千克,根据市场每天销售这种水果盈利了6 080元,同时顾客又得到了实惠,可列方程求解;(2)利用总利润y=销量×每千克利润,进而求出最值即可.【详解】(1)设每千克水果涨了x元,(10+x)(500﹣20x)=6080,解得:x1=6,x2=9.因为要顾客得到实惠,所以应该上涨6元.(2)设总利润为y,则:y=(10+x)(500﹣20x)=﹣20x2+300x+5000=﹣20(x﹣152)2+6125,即每千克这种水果涨价7.5元,能使商场获利最多.【点睛】此题主要考查了二次函数的应用以及一元二次方程的解法,正确得出y与x的函数关系式是解题关键.22. 如图,Rt△ABC中,∠ABC=90°,以AB为直径的⊙O交AC于点D,E是BC的中点,连接DE、OE.(1)判断DE与⊙O的位置关系并说明理由;(2)求证:22BC CD OE=⋅(3)若tanC5,DE=2,求AD的长.【答案】(1)DE与⊙O相切,理由见解析;(2)证明见解析;(3)10 3【解析】【详解】解:(1) DE 与⊙O 相切理由如下:连接OD ,BD ,∵AB 是直径,∴∠ADB =∠BDC =90°∵E 是BC 的中点,∴DE =BE =CE ,∴∠EDB =∠EBD ,∵OD =OB ,∴∠OBD =∠ODB .∴∠EDO =∠EBO =90°∴DE 与⊙O 相切(2)证明:由题意得OE 是的△ABC 的中位线,∴AC=2OE∵∠ABC=∠BDC=900,∠C=∠C ,∴△ABC ∽△BDC ∴BC AC CD BC =,∴BC 2=CD·AC ,∴BC 2=2CD·OE (3) ∵DE =2 BC =4 AB =4. tanC 25=tanA =12tan 5C =, 设BD =AD 2tan 5A AD =, 222205AD AD ⎛⎫+= ⎪⎝⎭103AD = 【点睛】本题考查直线与圆相切,相似三角形,三角函数,要求学生掌握直线与圆相切,会证明直线与圆相切,熟悉相似三角形的判定方法,会证明两个三角形相似23. 如图,抛物线y =﹣x 2+2mx +m +2图象与x 轴交于A (﹣1,0),B 两点,在x 轴上方且平行于x 轴的直线EF 与抛物线交于E ,F 两点,E 在F 的左侧,过E ,F 分别作x 轴的垂线,垂足是M ,N .(1)求m 的值及抛物线的顶点坐标;(2)设BN=t,矩形EMNF的周长为C,求C与t的函数表达式;(3)当矩形EMNF的周长为10时,将△ENM沿EN翻折,点M落在坐标平面内的点记为M',试判断点M'是否在抛物线上?并说明理由.【答案】(1)y=﹣(x﹣1)2+4,顶点坐标为(1,4);(2)C=﹣2t2+4t+8;(3)点M'不在抛物线上.【解析】【分析】(1)因为抛物线上的点的坐标符合解析式,将A的坐标代入解析式即可求得m的值,进而求出解析式,即可求得顶点坐标;(2)求出A、B两点坐标,可表示出MN的长,求出F点纵坐标,可知NF的长,利用矩形面积公式即可求出C与t的函数表达式;(3)根据翻折变换的性质(翻折前后图形全等),结合勾股定理,求出M’点坐标,代入二次函数解析式验证.【详解】(1)由于抛物线过点A(﹣1,0),于是将A代入y=﹣x2+2mx+m+2得﹣1﹣2m+m+2=0,解得m=1,函数解析式为y=﹣x2+2x+3,解析式可化为y=﹣(x﹣1)2+4,顶点坐标为(1,4).(2)因为函数解析式为y=﹣x2+2x+3,所以当y=0时可得﹣x2+2x+3=0,解得x1=﹣1,x2=3,则AB=3﹣(﹣1)=4.又因为BN=t,M、N关于对称轴对称,所以AM=t.于是MN=4﹣2t,N点横坐标为3﹣t,代入抛物线得:y F=﹣t2+4t.于C=2(4﹣2t)﹣2(t﹣2)2+8,整理得C=﹣2t2+4t+8;(3)当﹣2t2+4t+8=10时,解得t=1,MN=4﹣2t=4﹣2=2;FN=﹣12+4=3,因为t=1,所以M与O点重合,连接MM'、EN,且MM'和EN相交于K,根据翻折变换的性质,MK=M'K.根据同一个三角形面积相等,2×3MK于是MK =61313,MM '=121313作M 'H ⊥MN 的延长线于H .设NH =a ,HM ′=b ,于是在Rt △NHM '和RT △MHM '中,2222241213(2)13a b a b ⎧+=⎪⎪⎛⎫⎨++= ⎪⎪ ⎪⎪⎝⎭⎩, 解得a =1013,b =2413. 于是MH =2+1013=3613. M '点坐标为(3613,2413), 代入函数解析式y =﹣x 2+2x +3,y =﹣x 2+2x +3=﹣(3613)2+2×3613+3=147169≠2413, ∴点M '不在抛物线上. 【点睛】此题考查了利用代入法求函数解析式、根据矩形的性质列函数表达式以及结合翻变换折判断点是否在函数图象上,有一定的难度.。

数学中考二模试卷(含答案解析)

数学中考二模试卷(含答案解析)

数学中考综合模拟检测试题学校________ 班级________ 姓名________ 成绩________(满分120分,考试用时120分钟)一、选择题:本题共12小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.2021的相反数是()A.2021 B.﹣2021 C.12021D.−120212.如图所示的几何体,从上面看得到的图形是()A.B.C.D.3.我国倡导的“一带一路”建设将促进我国与世界一些国家的互利合作,根据规划“一带一路”地区覆盖总人口为4 400 000 000人,这个数用科学记数法表示为()A.44×108 B.4.4×109 C.0.44×1010 D.4.4×1084.下列甲骨文中,不是轴对称图形的是()A.B.C.D.5.将一把直尺和一块含30°角的三角板ABC按如图所示的位置放置,如果∠CED=46°,那么∠BAF的度数为()A.48°B.16°C.14°D.32°6.下列运算正确的是()A.x2+x=2x3 B.(﹣2x3)2=4x6C.x2•x3=x6 D.(x+1)2=x2 +17.计算x2x−1−1x−1的结果是()A.x2﹣1 B.x﹣1 C.x+1 D.18.如图是成都市某周内日最高气温的折线统计图,关于这7天的日最高气温的说法正确的是()A.极差是8℃B.众数是28℃C.中位数是24℃D.平均数是26℃9.在同一平面直角坐标系中,函数y=x﹣k与y=kx(k为常数,且k≠0)的图象大致是()A.B.C.D.10.某长江大桥采用低塔斜拉桥桥型(如甲图),图乙是从图甲引申出的平面图,假设你站在桥上测得拉索AB与水平桥面的夹角是30°,拉索BD与水平桥面的夹角是60°,两拉索底端距离AD=20米,则立柱BC的高为()A .20√3米B .10米C .10√3米D .20米11.如图,从一块直径为2m 的圆形铁皮⊙O 上剪出一个圆心角为90°的扇形ABC ,且点A 、B 、C 都在⊙O 上,则此扇形的面积是( )A .π2m 2B .√32πm 2C .πm 2D .2πm 212.已知抛物线y =ax 2+(2﹣a )x ﹣2(a >0)的图象与x 轴交于A 、B 两点(点A 在点B 的右侧),与y 轴交于点C .给出下列结论:①在a >0的条件下,无论a 取何值,点A 是一个定点;②在a >0的条件下,无论a 取何值,抛物线的对称轴一定位于y 轴的左侧;③y 的最小值不大于﹣2;④若AB =AC ,则a =1+√52. 其中正确的结论有( )个.A .1个B .2个C .3个D .4个二、填空题:本题共6小题,每小题4分,共24分.13.分解因式:m 2﹣3m = .14.小伟掷一枚质地均匀的骰子,骰子的六个面上分别刻有1到6的点数.掷一次骰子,在骰子向上的一面上,出现的点数是偶数的概率是 .15.若一个多边形的内角和等于其外角和的2倍,则它是 边形.16.方程6x 1+2x =11−2x +3的解是 .17.小宁和弟弟小强分别从家和图书馆出发,沿同一条笔直的马路相向而行,小宁先出发5分钟后,小强骑自行车匀速回家,小宁开始跑步中途改为步行,且步行的速度为跑步速度的一半,到达图书馆恰好用了35分钟,两人之间的距离y (m )与小宁离开出发地的时间x (min )之间的函数图象如图所示,则当弟弟到家时,小宁离图书馆的距离为米.18.如图,正方形ABCD的边长为2,对角线AC、BD相交于点O,将△ABD绕着点B顺时针旋转45°得到△BEF,EF交CD于点G,连接BG交AC于点H,连接EH.则下列结论:①△BGE≌△BGC;②四边形EHCG是菱形;③△BDG的面积是8﹣4√2;④OH=2−√2.其中正确结论的序号是.三、解答题(本大题共9个小题,共78分.解答应写出文字说明,证明过程或演算步骤.)19.(6分)计算:(13)−1−(√5−2)0+√12−tan60°.20.(6分)解不等式组:{2(x−1)+1<x+2x−12>−1把解集在数轴上表示出来,并写出所有整数解.21.(6分)如图,在菱形ABCD中,E、F分别是AD和AB的中点,连接BE、DF.求证:BE=DF.22.(8分)奥体中心为满足暑期学生对运动的需求,欲开设球类课程,该中心随机抽取部分学生进行问卷调查,被调查学生须从“羽毛球”、“篮球”、“足球”、“排球”、“乒乓球”中选择自己最喜欢的一项.根据调查结果绘制了不完整的条形统计图和扇形统计图,请根据图中信息,解答下列问题:(1)此次共调查了多少名学生?(2)将条形统计图补充完整;(3)我们把“羽毛球”“篮球”,“足球”、“排球”、“乒乓球”分别用A,B,C,D,E表示.小明和小亮分别从这些项目中任选一项进行训练,利用树状图或表格求出他俩选择不同项目的概率.23.(8分)如图,平行四边形ABCD的边AD与经过A,B,C三点的⊙O相切(1)求证:点A平分BĈ;(2)延长DC交⊙O于点E,连接BE,若BE=4√13,⊙O半径为13,求BC的长.24.(10分)某商店欲购进A、B两种商品,已知购进A种商品5件和B种商品4件共需300元;若购进A种商品6件和B种商品8件共需440元;(1)求A、B两种商品每件的进价分别为多少元?(2)若该商店,A种商品每件的售价为48元,B种商品每件的售价为31元,且商店将购进A、B共50件的商品全部售出后,要获得的利润超过348元,求A种商品至少购进多少件?25.(10分)如图,一次函数y1=kx+b的图象与反比例函数y2=6x的图象交于A(2,m),B(n,1)两点,连接OA,OB.(1)求这个一次函数的表达式;(2)求△OAB的面积;(3)问:在直角坐标系中,是否存在一点P,使以O,A,B,P为顶点的四边形是平行四边形?若存在,直接写出点P的坐标;若不存在,请说明理由.26.(12分)在正方形ABCD中,E为AD上一点,连接BE.(1)如图1,连接BD,延长BE至点F,使BF=BD,且AF∥BD,①若AB=√2,求AF的长度;②如图2,过点D作BF的垂线DG,垂足为点G,交AF于点H,分别延长BA,DH交于点P,连接PE,过点F作FQ⊥BD于Q.求证:BE=DG+√3FG;(2)如图3,延长DC至点R,使CR=AE,在四边形BCDE内有点M,∠BME=135°,点N为平面上一点,连接ND,MN,若AB=5,AE=1,请直接写出MN+ND+√2NR的最小值.27.(12分)如图1,抛物线y=x2﹣(a+1)x+a与x轴交于A,B两点(点A位于点B的左侧),与y轴负半轴交于点C,若AB=4.(1)求抛物线的解析式;(2)如图2,E是第三象限内抛物线上的动点,过点E作EF∥AC交抛物线于点F,过E作EG⊥x轴交AC于点M,过F作FH⊥x轴交AC于点N,当四边形EMNF的周长最大值时,求点E的横坐标;(3)在x轴下方的抛物线上是否存在一点Q,使得以Q、C、B、O为顶点的四边形被对角线分成面积相等的两部分?如果存在,求点Q的坐标;如果不存在,请说明理由.参考答案一、选择题:本题共12小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.2021的相反数是()A.2021 B.﹣2021 C.12021D.−12021【分析】利用相反数的定义分析得出答案,只有符号不同的两个数叫做互为相反数.【解析】2021的相反数是:﹣2021.故选:B.2.如图所示的几何体,从上面看得到的图形是()A.B.C.D.【分析】根据从上边看得到的图形是俯视图,可得答案.【解析】从上边看是一个六边形,中间为圆.故选:D.3.我国倡导的“一带一路”建设将促进我国与世界一些国家的互利合作,根据规划“一带一路”地区覆盖总人口为4 400 000 000人,这个数用科学记数法表示为()A.44×108 B.4.4×109 C.0.44×1010 D.4.4×108【分析】科学记数法的表示较大的数形式为a×10n的形式,其中1≤|a|<10,n为整数.其中a是整数数位只有一位的数,10的指数n比原来的整数位数少1.【解析】4 400 000 000=4.4×109,故选:B.4.下列甲骨文中,不是轴对称图形的是()A.B.C.D.【分析】如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,据此可得结论.【解析】A.是轴对称图形,故本选项不合题意;B.不是轴对称图形,故本选项符合题意;C.是轴对称图形,故本选项不合题意;D.是轴对称图形,故本选项不合题意;故选:B.5.将一把直尺和一块含30°角的三角板ABC按如图所示的位置放置,如果∠CED=46°,那么∠BAF的度数为()A.48°B.16°C.14°D.32°【分析】根据平行线的性质和三角板的角度解答即可.【解析】∵DE∥AF,∴∠CED=∠EAF=46°,∵∠BAC=90°﹣30°=60°,∴∠BAF=∠BAC﹣∠EAF=60°﹣46°=14°,故选:C.6.下列运算正确的是()A.x2+x=2x3 B.(﹣2x3)2=4x6C.x2•x3=x6 D.(x+1)2=x2 +1【分析】利用合并同类项法则、积的乘方法则、同底数幂的乘法法则、完全平方公式逐个计算得结论.【解析】∵x2与x不是同类项,不能合并,故选项A错误;(﹣2x3)2=4x6,故选项B正确;x2•x3=x5≠x6,故选项C错误;(x+1)2=x2+2x+1≠x2+1,故选项D错误.故选:B.7.计算x2x−1−1x−1的结果是()A.x2﹣1 B.x﹣1 C.x+1 D.1【分析】原式利用同分母分式的减法法则计算,约分即可得到结果.【解析】原式=(x+1)(x−1)x−1=x +1. 故选:C .8.如图是成都市某周内日最高气温的折线统计图,关于这7天的日最高气温的说法正确的是( )A .极差是8℃B .众数是28℃C .中位数是24℃D .平均数是26℃ 【分析】根据折线统计图中的数据可以判断各个选项中的数据是否正确,从而可以解答本题.【解析】由图可得,极差是:30﹣20=10℃,故选项A 错误,众数是28℃,故选项B 正确,这组数按照从小到大排列是:20、22、24、26、28、28、30,故中位数是26℃,故选项C 错误, 平均数是:20+22+24+26+28+28+307=2537℃,故选项D 错误, 故选:B .9.在同一平面直角坐标系中,函数y =x ﹣k 与y =k x (k 为常数,且k ≠0)的图象大致是( ) A . B .C.D.【分析】根据题目中的函数解析式,利用分类讨论的方法可以判断哪个选项中图象是正确的,本题得以解决.【解析】∵函数y=x﹣k与y=kx(k为常数,且k≠0)∴当k>0时,y=x﹣k经过第一、三、四象限,y=kx经过第一、三象限,故选项A符合题意,选项B不符合题意,当k<0时,y=x﹣k经过第一、二、三象限,y=kx经过第二、四象限,故选项C、D不符合题意,故选:A.10.某长江大桥采用低塔斜拉桥桥型(如甲图),图乙是从图甲引申出的平面图,假设你站在桥上测得拉索AB与水平桥面的夹角是30°,拉索BD与水平桥面的夹角是60°,两拉索底端距离AD=20米,则立柱BC的高为()A.20√3米B.10米C.10√3米D.20米【分析】首先证明BD=AD=20米,解直角三角形求出BC即可.【解析】∵∠BDC=∠A+∠ABD,∠A=30°,∠BDC=60°,∴∠ABD=60°﹣30°=30°,∴∠A=∠ABD,∴BD=AD=20米,∴BC=BD•sin60°=10√3(米),故选:C.11.如图,从一块直径为2m的圆形铁皮⊙O上剪出一个圆心角为90°的扇形ABC,且点A、B、C都在⊙O上,则此扇形的面积是( )A .π2m 2B .√32πm 2C .πm 2D .2πm 2【分析】根据题意,可以求得AB 和BC 的长,从而可以得到此扇形的面积.【解析】连接AC ,∵AB =CB ,∠ABC =90°,AC =2,∴AB =BC =√2,∴此扇形的面积是:90π×(√2)2360=π2m 2, 故选:A .12.已知抛物线y =ax 2+(2﹣a )x ﹣2(a >0)的图象与x 轴交于A 、B 两点(点A 在点B 的右侧),与y 轴交于点C .给出下列结论:①在a >0的条件下,无论a 取何值,点A 是一个定点;②在a >0的条件下,无论a 取何值,抛物线的对称轴一定位于y 轴的左侧;③y 的最小值不大于﹣2;④若AB =AC ,则a =1+√52. 其中正确的结论有( )个.A .1个B .2个C .3个D .4个【分析】①利用抛物线两点式方程进行判断;②根据根的判别式来确定a 的取值范围,然后根据对称轴方程进行计算;③利用顶点坐标公式进行解答;④利用两点间的距离公式进行解答.【解析】①y =ax 2+(2﹣a )x ﹣2=(x ﹣1)(ax +2).则该抛物线恒过点A (1,0).故①正确; ②∵y =ax 2+(2﹣a )x ﹣2(a >0)的图象与x 轴有2个交点,∴△=(2﹣a )2+8a =(a +2)2>0,∴a ≠﹣2.∴该抛物线的对称轴为:x =a−22a =12−1a .无法判定的正负.故②不一定正确;③根据抛物线与y 轴交于(0,﹣2)可知,y 的最小值不大于﹣2,故③正确;④∵A (1,0),B (−2a ,0),C (0,﹣2),∴当AB =AC 时,√(1+2a )2=√12+(−2)2,解得 a =1+√52.故④正确. 综上所述,正确的结论有3个.故选:C .二、填空题:本题共6小题,每小题4分,共24分.13.分解因式:m 2﹣3m = m (m ﹣3) .【分析】首先确定公因式m ,直接提取公因式m 分解因式.【解析】m 2﹣3m =m (m ﹣3).故答案为:m (m ﹣3).14.小伟掷一枚质地均匀的骰子,骰子的六个面上分别刻有1到6的点数.掷一次骰子,在骰子向上的一面上,出现的点数是偶数的概率是 12 .【分析】骰子共有六个面,每个面朝上的机会是相等的,而偶数有2,4,6,根据概率公式即可计算.【解析】∵骰子六个面中偶数为2,4,6,∴P (向上一面为偶数)=36=12;故答案为:12. 15.若一个多边形的内角和等于其外角和的2倍,则它是 六 边形.【分析】根据多边形的内角和公式与外角和定理列出方程,然后解方程即可.【解析】设这个多边形是n 边形,根据题意得,(n ﹣2)•180°=2×360°,解得n =6.故答案为:六.16.方程6x1+2x =11−2x+3的解是x=1.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解析】去分母得:6x(1﹣2x)=1+2x+3(1+2x)(1﹣2x),整理得:6x﹣12x2=1+2x+3﹣12x2,解得:x=1,经检验x=1是分式方程的解.故答案为:x=1.17.小宁和弟弟小强分别从家和图书馆出发,沿同一条笔直的马路相向而行,小宁先出发5分钟后,小强骑自行车匀速回家,小宁开始跑步中途改为步行,且步行的速度为跑步速度的一半,到达图书馆恰好用了35分钟,两人之间的距离y(m)与小宁离开出发地的时间x(min)之间的函数图象如图所示,则当弟弟到家时,小宁离图书馆的距离为1500米.【分析】根据题意和函数图象可以求得小宁的跑步速度和步行速度,从而可以求得小宁由跑步变为步行的时刻,进而求得小强骑车速度,再根据题意即可得到则当弟弟到家时,小宁离图书馆的距离.【解析】由图可得,小宁跑步的速度为:(4500﹣3500)÷5=200m/min,则步行速度为:200×12=100m/min,设小宁由跑步变为步行的时刻为a分钟,200a+(35﹣a)×100=4500,解得,a=10,设小强骑车速度为xm/min,200(10﹣5)+(10﹣5)x=3500﹣1000,解得,x=300,即小强骑车速度为300m/min,小强到家用的时间为:4500÷300=15min,则当弟弟小强到家时,小宁离图书馆的距离为:4500﹣10×200﹣(5+15﹣10)×100=1500m,故答案为:1500.18.如图,正方形ABCD的边长为2,对角线AC、BD相交于点O,将△ABD绕着点B顺时针旋转45°得到△BEF,EF交CD于点G,连接BG交AC于点H,连接EH.则下列结论:①△BGE≌△BGC;②四边形EHCG是菱形;③△BDG的面积是8﹣4√2;④OH=2−√2.其中正确结论的序号是①②④.【分析】由正方形的性质可得AB=BC=AD=2,AC=BD=2√2,AO=BO=CO=DO=√2,AC⊥BD,由旋转的性质可得AB=BE=2,AD=EF=2,∠BEF=∠BAD=90°,由“HL”可证Rt△BEG≌Rt△BCG,可得∠EBG=∠CBG=22.5°,由“SAS”可证△BEH≌△BCH,可得CH=EH=EG=CG,∠BCH=∠BEH =45°,可求OH=2−√2,由等腰三角形的性质可求EH=√2OH=2√2−2,可求△BDG的面积.即可求解.【解析】∵四边形ABCD是正方形,∴AB=BC=AD=2,AC=BD=2√2,AO=BO=CO=DO=√2,AC⊥BD,∵将△ABD绕着点B顺时针旋转45°得到△BEF,∴AB=BE=2,AD=EF=2,∠BEF=∠BAD=90°,∴BE=BC=2,在Rt△BEG和Rt△BCG中,{BE=BCBG=BG,∴Rt△BEG≌Rt△BCG(HL),故①正确;∴∠EBG=∠CBG=22.5°,∴∠BGC=67.5°,∠GHC=∠GBC+∠ACB=67.5°,∴∠BGC=∠GHC,∴CH=CG,在△BEH和△BCH中,{BE =BC ∠EBH =∠CBH BH =BH,∴△BEH ≌△BCH (SAS ),∴EH =CH ,∠BCH =∠BEH =45°,∴CH =EH =EG =CG ,∴四边形EHCG 是菱形,故②正确,∵∠BEH =45°,∠EOH =90°,∴∠OEH =∠OHE =45°,∴OH =OE =BE ﹣OB =2−√2,故④正确;∴EH =√2OH =2√2−2,∴CG =EH =2√2−2,∴DG =CD ﹣CG =4﹣2√2,∴△BDG 的面积=12×DG ×BC =12×(4﹣2√2)×2=4﹣2√2,故③错误, 故答案为:①②④.三、解答题(本大题共9个小题,共78分.解答应写出文字说明,证明过程或演算步骤.)19.(6分)计算:(13)−1−(√5−2)0+√12−tan60°.【分析】直接利用负指数幂的性质以及零指数幂的性质、特殊角的三角函数值分别化简得出答案.【解析】原式=3−1+2√3−√3=2+√3.20.(6分)解不等式组:{2(x −1)+1<x +2x−12>−1把解集在数轴上表示出来,并写出所有整数解. 【分析】分别计算出两个不等式的解集,再根据大小小大中间找确定不等式组的解集即可.【解析】{2(x −1)+1<x +2①x−12>−1②, 解不等式①得x <3,解不等式②得x >﹣1,∴不等式组的解集为﹣1<x <3,数轴表示为:整数解为:0,1,2.21.(6分)如图,在菱形ABCD中,E、F分别是AD和AB的中点,连接BE、DF.求证:BE=DF.【分析】证明△AFD≌△AEB(SAS),即可得出BE=DF.【解析】证明:∵四边形ABCD是菱形,∴AB=AD,∵E、F分别是AD和AB的中点,∴AF=12AB,AE=12AD,∴AF=AE,又∵∠F AD=∠EAB,∴△AFD≌△AEB(SAS),∴BE=DF.22.(8分)奥体中心为满足暑期学生对运动的需求,欲开设球类课程,该中心随机抽取部分学生进行问卷调查,被调查学生须从“羽毛球”、“篮球”、“足球”、“排球”、“乒乓球”中选择自己最喜欢的一项.根据调查结果绘制了不完整的条形统计图和扇形统计图,请根据图中信息,解答下列问题:(1)此次共调查了多少名学生?(2)将条形统计图补充完整;(3)我们把“羽毛球”“篮球”,“足球”、“排球”、“乒乓球”分别用A,B,C,D,E表示.小明和小亮分别从这些项目中任选一项进行训练,利用树状图或表格求出他俩选择不同项目的概率.【分析】(1)用羽毛球的人数除以所占的百分比即可得出答案;(2)用总人数减去其他项目的人数求出足球的人数,从而补全统计图;(3)根据题意画出树状图得出所有等可能的情况数和他俩选择不同项目的情况数,然后根据概率公式即可得出答案.【解析】(1)此次共调查的学生有:40÷72°360°=200(名); (2)足球的人数有:200﹣40﹣60﹣20﹣30=50(人),补全统计图如下:(3)根据题意画树状图如下:共有25种等可能的情况数,其中他俩选择不同项目的有20种,则他俩选择不同项目的概率是2025=45.23.(8分)如图,平行四边形ABCD的边AD与经过A,B,C三点的⊙O相切̂;(1)求证:点A平分BC(2)延长DC交⊙O于点E,连接BE,若BE=4√13,⊙O半径为13,求BC的长.【分析】(1)连接OA交BC于F.只要证明OF⊥BC即可解决问题.(2)连接OB.连接OA交BC于F.首先证明BE=AB,设OF=x,则AF=13﹣x,可得132﹣x2=(4√13)2−(13−x)2,解方程可求出OF,则BF可求出,由垂径定理可得结果.【解析】(1)证明:如图1,连接OA交BC于F.∵四边形ABCD是平行四边形,∴AD∥BC,∴∠DAF=∠CFO,∵AD是⊙O的切线,∴∠OAD=90°,∴∠OFC=90°,∴OF⊥BC,̂,∴OA平分BĈ=AĈ.即AB(2)如图2,连接OB.∵AB ∥DE ,∴∠BCE =∠ABC ,∴BÊ=AC ̂=AB ̂, ∴BE =AB =4√13,∵OA ⊥BC ,∴AB 2﹣AF 2=BF 2,OB 2﹣OF 2=BF 2,设OF =x ,则AF =13﹣x ,∴132﹣x 2=(4√13)2−(13−x)2,解得:x =5,∴BF =2−OF 2=√132−52=12,∴BC =2BF =24.24.(10分)某商店欲购进A 、B 两种商品,已知购进A 种商品5件和B 种商品4件共需300元;若购进A 种商品6件和B 种商品8件共需440元;(1)求A 、B 两种商品每件的进价分别为多少元?(2)若该商店,A 种商品每件的售价为48元,B 种商品每件的售价为31元,且商店将购进A 、B 共50件的商品全部售出后,要获得的利润超过348元,求A 种商品至少购进多少件?【分析】(1)设A 种进价为x 元,B 种进价为y 元.由购进A 种商品5件和B 种商品4件需300元和购进A 种商品6件和B 种商品8件需440元建立两个方程,构成方程组求出其解就可以;(2)设购进A 种商品a 件,则购进B 种商品(50﹣a )件.根据获得的利润超过348元,建立不等式求出其解即可.【解析】(1)设A 种进价为x 元,B 种进价为y 元.由题意,得{5x +4y =3006x +8y =440, 解得:{x =40y =25, 答:A 种进价为40元,B 种进价为25元.(2)设购进A 种商品a 件,则购进B 种商品(50﹣a )件.由题意,得8a +6(50﹣a )>348,解得:a >24,答:至少购进A 种商品24件.25.(10分)如图,一次函数y 1=kx +b 的图象与反比例函数y 2=6x的图象交于A (2,m ),B (n ,1)两点,连接OA ,OB .(1)求这个一次函数的表达式;(2)求△OAB 的面积;(3)问:在直角坐标系中,是否存在一点P ,使以O ,A ,B ,P 为顶点的四边形是平行四边形?若存在,直接写出点P 的坐标;若不存在,请说明理由.【分析】(1)由点A ,B 在反比例函数图象上,求出m ,n ,进而求出A ,B 坐标,再代入一次函数解析式中,即可得出结论;(2)利用三角形的面积的差即可得出结论;(3)分三种情况:利用平移的特点,即可得出结论.【解析】(1)∵点A (2,m ),B (n ,1)在反比例函数y 2=6x 上,∴2m =6,n =6,∴m =3,∴A (2,3),B (6,1),∵点A (2,3),B (6,1)在一次函数y 1=kx +b 上,∴{2k +b =36k +b =1, ∴{k =−12b =4, ∴一次函数的表达式为y 1=−12x +4;(2)如图1,记一次函数y 1=−12x +4的图象与x ,y 轴的交点为点D ,C ,针对于y1=−12x+4,令x=0,则y1=4,∴C(0,4),∴OC=6,令y1=0,则−12x+4=0,∴x=8,∴D(8,0),∴OD=8,过点A作AE⊥y轴于E,过点B作BF⊥x轴于F,∵A(2,3),B(6,1),∴AE=2,BF=1,∴S△AOB=S△COD﹣S△AOC﹣S△BOD=12OC•OD−12OC•AE−12OD•BF=12×4×8−12×4×2−12×8×1=8;(3)存在,如图2,当AB和OB为邻边时,点B(6,1)先向左平移6个单位再向下平移1个单位到点O(0,0),则点A 也先向左平移6个单位再向下平移1个单位到点P(2﹣6,3﹣1),即P(﹣4,2);当OA和OB为邻边时,点O(0,0)先向右平移2个单位再向上平移3个单位到点A(2,3),则点B也先向右平移2个单位再向上平移3个单位到点P'(6+2,1+3),即P'(8,4);当AB和OA为邻边时,点A(2,3)先向右平移4个单位再向下平移2个单位到点B(6,1),则点O也先向右平移4个单位再向下平移2个单位到点P''(0+4,0﹣2),即P'(4,﹣2);点P的坐标为(﹣4,2)或(4,﹣2)或(8,4).26.(12分)在正方形ABCD中,E为AD上一点,连接BE.(1)如图1,连接BD,延长BE至点F,使BF=BD,且AF∥BD,①若AB=√2,求AF的长度;②如图2,过点D作BF的垂线DG,垂足为点G,交AF于点H,分别延长BA,DH交于点P,连接PE,过点F作FQ⊥BD于Q.求证:BE=DG+√3FG;(2)如图3,延长DC至点R,使CR=AE,在四边形BCDE内有点M,∠BME=135°,点N为平面上一点,连接ND,MN,若AB=5,AE=1,请直接写出MN+ND+√2NR的最小值.【分析】(1)①过点F作FG⊥AB,与BA的延长线交于点G,由勾股定理求得BD,根据正方形的性质和平行线的性质求得△AGF为等腰直角三角形,在Rt△BGF中根据勾股定理列出x的方程便可得出结果;②证明△ABE≌△ADP,得BE=DP,AE=AP,再由平行线得△BFQ的面积与△ABC的面积相等,从而得FQ与FB的比值,得∠DBF=30°,连接PF,证明△APF≌△AEF,得∠EFP=60°,根据三角函数关系得出PG=√3FG,便可得结论;(2)将△DNR绕点R顺时针旋转90°得△RPQ,作△BME的外接圆⊙O,连接OM、NP、PQ,连接OQ 与⊙O交于M',连接QR,延长AB与QR的延长线交于点K,过O作OL⊥QR于点L,作OF⊥AB于F,作OG⊥BE于点G,与AB交于点H,连接OA,OB,当当O、M、N、P、Q五点共线时,OM+MN+ND+√2NR =OQ的值最小,求出此时的OQ和OM便可求得MN+ND+√2NR的最小值.【解析】(1)①过点F作FG⊥AB,与BA的延长线交于点G,如图1,∵四边形ABCD为正方形,AB=√2,∴∠DAG=∠BAD=∠ADC=∠ABC=90°,BD平分∠ADC和∠ABC,AB=AD=√2,∴∠ADB=45°,BD=√AB2+AD2=2,∵AF∥BD,∴∠DAF=∠ADB=45°,∴∠GAF=45°,∴∠AGF=∠GAF=45°,∴AG=GF,不妨设AG=GF=x,则BG=x+√2,∵BG2+GF2=BF2,BF=BD=2,∴x2+(x+√2)2=22,解得,x=√6−√22,或x=−√6+√22(舍),∴AF=√2AG=√3−1;②连接PF和DF,如图2,∵DG⊥BF,∴∠DGE=∠BAE=90°,∵∠AEB=∠DEG,∴∠ABE=∠GDE,∵∠BAE=∠DAP=90°,AB=AD,∴△ABE≌△ADP(ASA),∴BE=DP,AE=AP,设AB=a,则BF=BE=√2a,∵AF∥BD,∴S△FBD=S△ABD,∴12×√2a⋅FQ=12a2,∴FQ=√22a,∴sin∠QBF=FQBF=√22a√2a=12,∴∠QBF=30°,∵AF∥BD,∴∠AFB=∠DBF=30°,∠EAF=∠ADB=45°,∴∠EAF=∠P AF=45°,∵AF=AF,∴△AEF≌△APF(SAS),∴∠AFE=∠AFP=30°,∴∠EFP=60°,∴PG=√3FG,∵DG+PG=DP=BE,∴BE=DG+√3FG;(2)将△DNR绕点R顺时针旋转90°得△RPQ,作△BME的外接圆⊙O,连接OM、NP、PQ,连接OQ 与⊙O交于M',连接QR,延长AB与QR的延长线交于点K,过O作OL⊥QR于点L,作OF⊥AB于F,作OG⊥BE于点G,与AB交于点H,连接OA,OB,如图3,则QR=DR,RK=BC,KL=OF,CR=BK,OL=FK,∵OE=OM=OB,∴∠OEM=∠OME,∠OBM=∠OMB,∵∠BME=135°,∴∠OEM+∠OBM=∠OME+∠OMB=135°,∴∠BOE=90°,∵四边形ABCD是正方形,AB=5,∴AB=BC=CD=AD=RK=6,∵AE=CR=1,∴QR=DR=5+1=6,BK=1,∴BE=√AB2+AE2=√26,∴OG=BG=12BE=12√26,OA=OB=OM'=√22BE=√13,∵∠BGH=∠BAE=90°,∠HBG=∠EBA,∴△BGH∽△BAE,∴GHAE=BGBA=BHBE,即GH1=12√265=√26,∴GH=110√26,BH=135,∴OH=OG﹣GH=25√26,∵∠OFH=∠BGH=90°,∠OHF=∠BHG,∴△OHF∽△BHG,∴HFHG=OHBH=OFBG,即HF110√26=25√26135=OF12√26,∴HF=25,OF=2,∴KL=OF=2,OL=FK=FH+BH+BK=4,∴QL=QR+RK+KL=12,∴OQ=√OL2+QL2=√42+122=4√10,由旋转知,∠PRN=90°,PR=RN,PQ=DN,∴PN=√2RN,∵OM+MN+ND+√2NR=OM+MN+PN+PQ≥OQ,∴当O、M、N、P、Q五点共线时,OM+MN+ND+√2NR=OQ=4√10的值最小,∵OM=OB=√13,∴MN+ND+√2NR的最小值为:4√10−√13.27.(12分)如图1,抛物线y=x2﹣(a+1)x+a与x轴交于A,B两点(点A位于点B的左侧),与y轴负半轴交于点C,若AB=4.(1)求抛物线的解析式;(2)如图2,E是第三象限内抛物线上的动点,过点E作EF∥AC交抛物线于点F,过E作EG⊥x轴交AC于点M,过F作FH⊥x轴交AC于点N,当四边形EMNF的周长最大值时,求点E的横坐标;(3)在x轴下方的抛物线上是否存在一点Q,使得以Q、C、B、O为顶点的四边形被对角线分成面积相等的两部分?如果存在,求点Q的坐标;如果不存在,请说明理由.【分析】(1)x2﹣(a+1)x+a=0,则AB=√(x1+x2)2−4x1x2=(a﹣1)2=16,即可求解;(2)设点E(m,m2+2m﹣3),点F(﹣3﹣m,m2+4m),四边形EMNF的周长S=ME+MN+EF+FN,即可求解;(3)分当点Q在第三象限、点Q在第四象限两种情况,分别求解即可.【解析】(1)x2﹣(a+1)x+a=0,则x1+x2=a+1,x1x2=a,则AB=√(x1+x2)2−4x1x2=(a﹣1)2=16,解得:a=5或﹣3,抛物线与y轴负半轴交于点C,故a=5舍去,则a=﹣3,则抛物线的表达式为:y=x2+2x﹣3…①;(2)由y=x2+2x﹣3得:点A、B、C的坐标分别为:(﹣3,0)、(1,0)、(0,﹣3),设点E(m,m2+2m﹣3),OA=OC,故直线AC的倾斜角为45°,EF∥AC,直线AC的表达式为:y=﹣x﹣3,则设直线EF的表达式为:y=﹣x+b,将点E的坐标代入上式并解得:直线EF的表达式为:y=﹣x+(m2+3m﹣3)…②,联立①②并解得:x=m或﹣3﹣m,故点F(﹣3﹣m,m2+4m),点M、N的坐标分别为:(m,﹣m﹣3)、(﹣3﹣m,m+3),则EF=√2(x F﹣x E)=√2(﹣2m﹣3)=MN,四边形EMNF的周长S=ME+MN+EF+FN=﹣2m2﹣(6+4√2)m﹣6√2,∵﹣2<0,故S有最大值,此时m=−3+2√22,故点E的横坐标为:−3+2√22;(3)①当点Q在第三象限时,﹣﹣﹣﹣当QC 平分四边形面积时, 则|x Q |=x B =1,故点Q (﹣1,﹣4); ﹣﹣﹣﹣当BQ 平分四边形面积时, 则S △OBQ =12×1×|y Q |,S 四边形QCBO =12×1×3+12×3×|x Q |, 则2(12×1×|y Q |)=12×1×3+12×3×|x Q |, 解得:x Q =−32,故点Q (−32,−154);②当点Q 在第四象限时, 同理可得:点Q (−5+√372,15−3√372); 综上,点Q 的坐标为:(﹣1,﹣4)或(−32,−154)或(−5+√372,15−3√372).。

中考数学 圆的综合 综合题及详细答案

中考数学 圆的综合 综合题及详细答案

中考数学圆的综合综合题及详细答案一、圆的综合1.如图,以O为圆心,4为半径的圆与x轴交于点A,C在⊙O上,∠OAC=60°.(1)求∠AOC的度数;(2)P为x轴正半轴上一点,且PA=OA,连接PC,试判断PC与⊙O的位置关系,并说明理由;(3)有一动点M从A点出发,在⊙O上按顺时针方向运动一周,当S△MAO=S△CAO时,求动点M所经过的弧长,并写出此时M点的坐标.【答案】(1)60°;(2)见解析;(3)对应的M点坐标分别为:M1(2,﹣3M2(﹣2,﹣3)、M3(﹣2,3M4(2,3).【解析】【分析】(1)由于∠OAC=60°,易证得△OAC是等边三角形,即可得∠AOC=60°.(2)由(1)的结论知:OA=AC,因此OA=AC=AP,即OP边上的中线等于OP的一半,由此可证得△OCP是直角三角形,且∠OCP=90°,由此可判断出PC与⊙O的位置关系.(3)此题应考虑多种情况,若△MAO、△OAC的面积相等,那么它们的高必相等,因此有四个符合条件的M点,即:C点以及C点关于x轴、y轴、原点的对称点,可据此进行求解.【详解】(1)∵OA=OC,∠OAC=60°,∴△OAC是等边三角形,故∠AOC=60°.(2)由(1)知:AC=OA,已知PA=OA,即OA=PA=AC;∴AC=1OP,因此△OCP是直角三角形,且∠OCP=90°,2而OC是⊙O的半径,故PC与⊙O的位置关系是相切.(3)如图;有三种情况:①取C点关于x轴的对称点,则此点符合M点的要求,此时M点的坐标为:M1(2,﹣23);劣弧MA的长为:6044 1803ππ⨯=;②取C点关于原点的对称点,此点也符合M点的要求,此时M点的坐标为:M2(﹣2,﹣23);劣弧MA的长为:12048 1803ππ⨯=;③取C点关于y轴的对称点,此点也符合M点的要求,此时M点的坐标为:M3(﹣2,23);优弧MA的长为:240416 1803ππ⨯=;④当C、M重合时,C点符合M点的要求,此时M4(2,23);优弧MA的长为:300420 1803ππ⨯=;综上可知:当S△MAO=S△CAO时,动点M所经过的弧长为481620,,,3333ππππ对应的M点坐标分别为:M1(2,﹣23)、M2(﹣2,﹣23)、M3(﹣2,23)、M4(2,23).【点睛】本题考查了切线的判定以及弧长的计算方法,注意分类讨论思想的运用,不要漏解.2.图1和图2,半圆O的直径AB=2,点P(不与点A,B重合)为半圆上一点,将图形延BP折叠,分别得到点A,O的对称点A′,O′,设∠ABP=α.(1)当α=15°时,过点A′作A′C∥AB,如图1,判断A′C与半圆O的位置关系,并说明理由.(2)如图2,当α= °时,BA′与半圆O相切.当α= °时,点O′落在上.(3)当线段BO′与半圆O只有一个公共点B时,求α的取值范围.【答案】(1)A′C与半圆O相切;理由见解析;(2)45;30;(3)0°<α<30°或45°≤α<90°.【解析】试题分析:(1)过O作OD⊥A′C于点D,交A′B于点E,利用含30°角的直角三角形的性质可求得DE+OE=A′B=AB=OA,可判定A′C与半圆相切;(2)当BA′与半圆相切时,可知OB⊥A′B,则可知α=45°,当O′在上时,连接AO′,则可知BO′=AB,可求得∠O′BA=60°,可求得α=30°;(3)利用(2)可知当α=30°时,线段O′B与圆交于O′,当α=45°时交于点B,结合题意可得出满足条件的α的范围.试题解析:(1)相切,理由如下:如图1,过O作OD过O作OD⊥A′C于点D,交A′B于点E,∵α=15°,A′C∥AB,∴∠ABA′=∠CA′B=30°,∴DE=A′E,OE=BE,∴DO=DE+OE=(A′E+BE)=AB=OA,∴A′C与半圆O相切;(2)当BA′与半圆O相切时,则OB⊥BA′,∴∠OBA′=2α=90°,∴α=45°,当O′在上时,如图2,连接AO′,则可知BO′=AB,∴∠O′AB=30°,∴∠ABO′=60°,∴α=30°,(3)∵点P,A不重合,∴α>0,由(2)可知当α增大到30°时,点O′在半圆上,∴当0°<α<30°时点O′在半圆内,线段BO′与半圆只有一个公共点B;当α增大到45°时BA′与半圆相切,即线段BO′与半圆只有一个公共点B.当α继续增大时,点P逐渐靠近点B,但是点P,B不重合,∴α<90°,∴当45°≤α<90°线段BO′与半圆只有一个公共点B.综上所述0°<α<30°或45°≤α<90°.考点:圆的综合题.3.已知▱ABCD的周长为26,∠ABC=120°,BD为一条对角线,⊙O内切于△ABD,E,F,G 为切点,已知⊙O的半径为3▱ABCD的面积.【答案】3【解析】【分析】首先利用三边及⊙O的半径表示出平行四边形的面积,再根据题意求出AB+AD=13,然后利用切线的性质求出BD的长即可解答.【详解】设⊙O分别切△ABD的边AD、AB、BD于点G、E、F;平行四边形ABCD的面积为S;则S=2S△ABD=2×12(AB·OE+BD·OF+AD·3(AB+AD+BD);∵平行四边形ABCD的周长为26,∴AB+AD=13,∴3;连接OA;由题意得:∠OAE=30°,∴AG=AE=3;同理可证DF=DG,BF=BE;∴DF+BF=DG+BE=13﹣3﹣3=7,即BD=7,∴S=3(13+7)=203.即平行四边形ABCD的面积为203.4.如图,PA、PB是⊙O的切线,A,B为切点,∠APB=60°,连接PO并延长与⊙O交于C 点,连接AC、BC.(Ⅰ)求∠ACB的大小;(Ⅱ)若⊙O半径为1,求四边形ACBP的面积.33【答案】(Ⅰ)60°;(Ⅱ)【解析】分析:(Ⅰ)连接AO,根据切线的性质和切线长定理,得到OA⊥AP,OP平分∠APB,然后根据角平分线的性质和三角形的外角的性质,30°角的直角三角形的性质,得到∠ACB的度数;(Ⅱ)根据30°角的直角三角形的性质和等腰三角形的性质,结合等底同高的性质求三角形的面积即可.详解:(Ⅰ)连接OA,如图,∵PA、PB是⊙O的切线,∴OA⊥AP,OP平分∠APB,∠APB=30°,∴∠APO=12∴∠AOP=60°,∵OA=OC,∴∠OAC=∠OCA,∴∠ACO=12AOP=30°,同理可得∠BCP=30°,∴∠ACB=60°;(Ⅱ)在Rt△OPA中,∵∠APO=30°,∴AP=3OA=3,OP=2OA=2,∴OP=2OC,而S△OPA=12×1×3,∴S△AOC=12S△PAO=3,∴S△ACP=33,∴四边形ACBP的面积=2S△ACP=33.点睛:本题考查了切线的性质,解直角三角形,等腰三角形的判定,熟练掌握切线的性质是解题的关键.5.如图,在⊙O中,直径AB⊥弦CD于点E,连接AC,BC,点F是BA延长线上的一点,且∠FCA=∠B.(1)求证:CF是⊙O的切线;(2)若AE=4,tan∠ACD=3,求FC的长.【答案】(1)见解析【解析】分析:(1)利用圆周角定理以及等腰三角形的性质得出∠OCF=90°,进而得出答案;(2)根据正切的性质求出EC的长,然后利用垂径定理求出圆的半径,再根据等边三角形的性质,利用勾股定理求出即可.详解:(1)证明:连接OC.∵AB是⊙O的直径,∴∠ACB=90°,∴∠OCB+∠ACO=90°.∵OB=OC,∴∠B=∠OCB.又∵∠FCA=∠B,∴∠FCA=∠OCB,∴∠FCA+∠ACO=90°,即∠FCO=90°,∴FC⊥OC,∴FC是⊙O切线.(2)解:∵AB⊥CD,∴∠AEC=90°,∴EC=AE43 tan ACE33∠==,设OA=OC=r,则OE=OA-AE=r-4.在Rt△OEC中,OC2=OE2+CE2,即r2=(r-4)2+(43)2,解得r=8.∴OE=r-4=4=AE.∵CE⊥OA,∴CA=CO=8,∴△AOC是等边三角形,∴∠FOC=60°,∴∠F=30°.在Rt△FOC中,∵∠OCF=90°,OC=8,∠F=30°,∴OF=2OC=16,∴FC=22OF OC83-=.点睛:此题主要考查了切线的判定、垂径定理的推论以及勾股定理等知识,得出BC的长是解题关键.6.如图,正三角形ABC内接于⊙O,P是BC上的一点,且PB<PC,PA交BC于E,点F 是PC延长线上的点,CF=PB,AB=13,PA=4.(1)求证:△ABP≌△ACF;(2)求证:AC2=PA•AE;(3)求PB和PC的长.【答案】(1)证明见解析;(2)证明见解析;(3)PB=1,PC=3.【解析】试题分析:(1)先根据等边三角形的性质得到AB=AC,再利用圆的内接四边形的性质得∠ACF=∠ABP,于是可根据“SAS”判断△ABP≌△ACF;(2)先根据等边三角形的性质得到∠ABC=∠ACB=60°,再根据圆周角定理得∠APC=∠ABB=60°,加上∠CAE=∠PAC,于是可判断△ACE∽△APC,然后利用相似比即可得到结论;(3)先利用AC2=PA•AE计算出AE=134,则PE=AP-AE=34,再证△APF为等边三角形,得到PF=PA=4,则有PC+PB=4,接着证明△ABP∽△CEP,得到PB•PC=PE•A=3,然后根据根与系数的关系,可把PB和PC看作方程x2-4x+3=0的两实数解,再解此方程即可得到PB和PC 的长.试题解析:(1)∵∠ACP+∠ABP=180°,又∠ACP+∠ACF=180°,∴∠ABP=∠ACF在ABP ∆和ACF ∆中,∵AB=AC ,∠ABP=∠ACF , CF PB =∴ABP ∆≌ACF ∆.(2)在AEC ∆和ACP ∆中,∵∠APC=∠ABC ,而ABC ∆是等边三角形,故∠ACB=∠ABC=60º,∴∠ACE =∠APC .又∠CAE =∠PAC ,∴AEC ∆∽ACP ∆ ∴AC AE AP AC=,即2AC PA AE =⋅. 由(1)知ABP ∆≌ACF ∆,∴∠BAP=∠CAF , CF PB =∴∠BAP+∠PAC=∠CAF+∠PAC∴∠PAF=∠BAC=60°,又∠APC =∠ABC =60°.∴APF ∆是等边三角形∴AP=PF∴4PB PC PC CF PF PA +=+===在PAB ∆与CEP ∆中,∵∠BAP=∠ECP ,又∠APB=∠EPC=60°,∴PAB ∆∽CEP ∆ ∴PB PA PE PC=,即PB PC PA PE ⋅=⋅ 由(2)2AC PA AE =⋅, ∴()22AC PB PC PA AE PA PE PA AE PE PA +⋅=⋅+⋅=+= ∴()22AC PB PC PA AE PA PE PA AE PE PA +⋅=⋅+⋅=+=∴22222243PB PC PA AC PA AB ⋅=-=-=-=因此PB 和PC 的长是方程2430x x --=的解.解这个方程,得11x =, 23x =.∵PB<PB ,∴PB=11x =,PC=23x =,∴PB 和PC 的长分别是1和3。

中考数学《圆的综合题》专项练习题及答案

中考数学《圆的综合题》专项练习题及答案

中考数学《圆的综合题》专项练习题及答案一、单选题1.如图,在一块正三角形飞镖游戏板上画一个正六边形(图中阴影部分),假设飞镖投中游戏板上的每一点是等可能的(若投中边界或没有投中游戏板,则重投1次),任意投掷飞镖1次,则飞镖投中阴影部分的概率为()A.13B.49C.12D.232.如图,AB为⊙O的直径,弦DC垂直AB于点E,⊙DCB=30°,EB=3,则弦AC的长度为()A.3 √3B.4√3C.5√3D.6√33.如图,AB是⊙O的弦,半径OC⊙AB于点D,且AB=6cm,OD=4cm。

则DC的长为()A.cm B.1cm C.2cm D.5cm4.如图,四边形ABCD内接于⊙ O,AB为⊙ O的直径,∠ABD=20∘,则∠BCD的度数是()A.90°B.100°C.110°D.120°5.如图,点A,B,C,D都在⊙O上,AC,BD相交于点E,则⊙ABD=()A.⊙ACD B.⊙ADB C.⊙AED D.⊙ACB6.如图,在⊙O中,弦AB⊙CD,若⊙ABC=40°,则⊙BOD=()A.20°B.40°C.50°D.80°7.下列判断结论正确的有()(1)直径是圆中最大的弦.(2)长度相等的两条弧一定是等弧.(3)面积相等的两个圆是等圆.(4)同一条弦所对的两条弧一定是等弧.(5)圆上任意两点间的部分是圆的弦.A.1个B.2个C.3个D.4个8.已知如图,PA、PB切⊙O于A,B,MN切⊙O于C,交PB于N;若PA=7.5cm,则⊙PMN的周长是()A.7.5cm B.10cm C.15cm D.12.5cm9.若小李同学掷出的铅球在场地航砸出一个直径为10厘米,深2厘米的小坑,则该铅球的直径为()A.20厘米B.19.5厘米C.14.5厘米D.10厘米10.如图,如果从半径为9cm的圆形纸片剪去13圆周的一个扇形,将留下的扇形(阴影部分)围成一个圆锥(接缝处不重叠),那么这个圆锥的高为()A.6cm B.5√3cm C.8cm D.3√5cm11.如图,△ABC内接于⊙O,∠B=65o,∠C=70o,若BC=2√2,则弧BC长为()A.πB.√2πC.2πD.√2π12.如下图,点B,C,D在⊙O上,若⊙BCD=130°,则⊙BOD的度数是()A.96°B.98°C.102°D.100°二、填空题13.如图,在扇形AOB中,OA=4,⊙AOB=90°,点P是弧AB上的动点,连接OP,点C是线段OP的中点,连接BC并延长交OA于点D,则图中阴影部分面积最小值为.14.如图,在边长为√2的正方形ABCD中,分别以四个顶点为圆心,以边长为半径画弧,分别与正方形的边和对角线相交,则图中阴影部分的面积为(结果保留π).15.如图,⊙ABC的顶点A,B,C均在⊙O上,若⊙ABC+⊙AOC=90°,则⊙AOC的大小是.16.如图:⊙O为⊙ABC的内切圆,⊙C=90°,AO的延长线交BC于点D,AC=4,CD=1,则⊙O的半径为.17.如图,在正八边形ABCDEFGH中,AC、GC是两条对角线,则tan⊙ACG=.18.如图,菱形ABCD中,已知AB=2,∠DAB=60°将它绕着点A逆时针旋转得到菱形ADEF,使AB与AD重合,则点C运动的路线CE⌢的长为.三、综合题19.如图,AB是⊙O的直径,AP是⊙O的切线,A是切点,BP与⊙O交于点C,点D为AP的中点,连结AC.求证:(1)⊙P=⊙BAC(2)直线CD是⊙O的切线.20.如图,以△ABC的边AB为直径的⊙O交AC于点F,点E是BF⌢的中点,连接BE并延长交AC于点D,若∠CBD=12∠CAB.(1)求证:BC是⊙O的切线;(2)若⊙O的半径为2,cos∠BAC=25,求CD的长.21.如图,⊙O是⊙ABC的外接圆,AC是O的直径,BD=BA=12,BC=5,BE⊙DC,交D的延长线于点E,BD交直径AC于点F.(1)求证:⊙BCA=⊙BAD.(2)求证:BE是⊙O的切线.(3)若BD平分⊙ABC,交⊙O于点D,求AD的长.22.如图,⊙OAB中,OA=OB=10cm,⊙AOB=80°,以点O为圆心,半径为6cm的优弧弧MN分别交OA,OB于点M,N.(1)点P在右半弧上(⊙BOP是锐角),将OP绕点O逆时针旋转80°得OP′.求证:AP=BP′;(2)点T在左半弧上,若AT与弧相切,求A T的长.23.如图,有一直径是√2米的圆形铁皮,现从中剪出一个圆周角是90°的最大扇形ABC,则:(1)AB的长为米;(2)用该扇形铁皮围成一个圆锥,所得圆锥的底面圆的半径为米.⌢的中点,CE⊥AB于点E,BD交CE于点F.24.如图,AB是⊙O的直径,C是BD(1)求证:CF=BF;(2)若CD﹦5,AC﹦12,求⊙O的半径和CE的长.参考答案1.【答案】D2.【答案】D3.【答案】B4.【答案】C5.【答案】A6.【答案】D7.【答案】B8.【答案】C9.【答案】C10.【答案】D11.【答案】A12.【答案】D13.【答案】4π−8√3314.【答案】4-π15.【答案】60°16.【答案】0.817.【答案】118.【答案】2√33π19.【答案】(1)解:证明:∵AB是⊙O的直径∴⊙ACB=90°∴⊙ACP=90°∴⊙P+⊙CAP=90°∵AP⊙O是切线∴⊙BAP=90°即⊙CAP+⊙BAC=90°∴⊙P=⊙BAC;(2)解:∵CD是Rt⊙PAC斜边PA的中线∴CD=AD∴⊙DCA=⊙DAC连接OC∵OC=OA∴⊙OCA=⊙OAC∴⊙DCO=⊙DAO=90°∴CD是⊙O的切线.20.【答案】(1)证明:连接AE,如图所示:∵AB是⊙O的直径∴∠AEB=90°∴∠BAE+∠ABE=90°.∵点E为弧BF的中点∴EF⌢=EB⌢∴∠BAE=∠DAE=12∠CAB.又∵∠CBD=12∠CAB∴∠BAE=∠CBD∴∠CBD+∠ABE=90°∴AB⊥CB∴BC是⊙O的切线.(2)解:∵∠BAE=∠DAE,∠AED=∠AEB=90°∴∠ADE=∠ABE∴AD=AB=2×2=4.∵cos∠BAC=2 5∴在Rt△ABC中即4AC=25,得AC=10∴CD=AC−AD=10−4=6.21.【答案】(1)证明:∵BD=BA ∴∠BDA=∠BAD.∵∠BCA=∠BDA∴∠BCA=∠BAD.(2)证明:连结OB,如图∵∠BCA=∠BAD又∵∠BCE=∠BAD∴∠BCA=∠BCE∵OB=OC∴∠BCO=∠CBO∴∠BCE=∠CBO∴OB//ED.∵BE⊥ED∴EB⊥BO.∴BE是⊙O的切线.(3)解:∵AC是⊙O的直径∴∠ABC=90°∴AC=√AB2+BC2=√122+52=13.∵∠BDE=∠CAB∴△BED∽△CBA∴BDAC=DEAB,即1213=DE12∴DE=14413∴BE=√BD2−DE2=6013∴CE=√BC2−BE2=2513∴CD=DE−CE=119 13∵BD平分⊙ABC ∴∠CBD=∠ABD∴AD=CD=119 13.22.【答案】(1)证明:∵⊙AOB=⊙POP′=80°∴⊙AOB+⊙BOP=⊙POP′+⊙BOP即⊙AOP=⊙BOP′在⊙AOP 与⊙BOP′中 OA=OB ⊙AOP=⊙BOP OP=OP′∴⊙AOP⊙⊙BOP′ ∴AP=BP′(2)解:∵A T 与弧相切,连结OT .∴OT⊙A T在Rt⊙AOT 中,根据勾股定理得,A T= √OA 2−OT 2 ∵OA=10,OT=6 ∴AT=823.【答案】(1)1 (2)1424.【答案】(1)证明:∵AB 是 ⊙O 的直径∴∠ACB =90° ∴∠A +∠ABC =90° 又∵CE ⊥AB ∴∠CEB =90° ∴∠BCE +∠ABC =90° ∴∠BCE =∠A∵C 是 BD ⌢ 的中点 ∴CD⌢=CB ⌢ ∴∠DBC =∠A ∴∠DBC =∠BCE ∴CF =BF(2)解:∵CD⌢=CB ⌢,CD =5 ∴∠DBC =∠BDC∴BC=CD=5∵∠ACB=90°∴AB=√AC2+BC2=√122+52=13∴AO=6.5∵∠BCE=∠A,∠ACB=∠CEB=90°∴△CEB⊙ △ACB∴CE=AC⋅BCAB=12×513=6013故⊙O的半径为6.5,CE的长是6013.第11页共11。

初三数学全套试卷及答案

初三数学全套试卷及答案

一、选择题(每题4分,共40分)1. 若实数a、b满足a+b=1,则a^2+b^2的最小值为()。

A. 0B. 1C. 2D. 32. 在△ABC中,若∠A=60°,∠B=45°,则∠C的度数为()。

A. 45°B. 60°C. 75°D. 90°3. 下列函数中,在其定义域内单调递增的是()。

A. y=x^2B. y=2^xC. y=x^3D. y=x^44. 若方程x^2-4x+4=0的两个根分别为a和b,则a+b和ab的值分别是()。

A. 4,4B. 4,-4C. 2,4D. 2,-45. 已知数列{an}的通项公式为an=3n-2,则数列的前10项和S10为()。

A. 145B. 150C. 155D. 1606. 在平面直角坐标系中,点P(-2,3)关于原点的对称点为()。

A. (2,3)B. (-2,-3)C. (-2,3)D. (2,-3)7. 若等差数列{an}的前n项和为Sn,公差为d,首项为a1,则Sn=()。

A. na1+n(n-1)d/2B. n(a1+an)/2C. n(a1+an)/4D. n(a1+an)/38. 若函数y=f(x)在区间[0,1]上单调递增,且f(0)=1,f(1)=3,则f(0.5)的值在()。

A. 1.5~2之间B. 1~1.5之间C. 0.5~1之间D. 0~0.5之间9. 下列图形中,对称轴为x=1的是()。

A. B. C. D.10. 若等比数列{an}的公比为q,首项为a1,且a1+a2+a3=27,a2+a3+a4=81,则q 的值为()。

A. 2B. 3C. 4D. 5二、填空题(每题4分,共40分)11. 若x=2+√3,则x^2-4x+3的值为______。

12. 在△ABC中,若∠A=30°,∠B=45°,则△ABC的外接圆半径R为______。

13. 函数y=2^x在定义域内是______函数。

河南省2024年中考数学试卷(含答案)

河南省2024年中考数学试卷(含答案)

三、解答题(本大题共 8 个小题,共 75 分)
16.(1)计算:
t;
(2)化简: 㼒
tt
㼒t 㼒
S.
17.为提升学生体质健康水平,促进学生全面发展,学校开展了丰富多彩的课外体育活动.在八年级组织的篮球 联赛中,甲、乙两名队员表现优异,他们在近六场比赛中关于得分、篮板和失误三个方面的统计结果如下.
技术统计表
2.【答案】C
【解析】【解答】解: 5784 亿=578400000000= .imS
.
故答案为:C.
【分析】用科学记数法表示较大的数,一般表示成 a×10n 的形式,其中 1≤a<10,n 等于原数的整数位数减去 1,
据此可得答案.小技巧备注:“亿”后有 8 位,即 5784 亿为 12 位数.
3.【答案】B
(2)性质探究 根据定义可得出邻等对补四边形的边、角的性质.下面研究与对角线相关的性质. 如图 2,四边形 ABCD 是邻等对补四边形, у ⺁,AC 是它的一条对角线.
①写出图中相等的角,并说明理由;
②若 у ,⺁ у ⺁, ⺁ у ,求 AC 的长(用含 m,n, 的式子表示).
(3)拓展应用
如图 3,在
∴∠BDC=180°-∠BAC=120°,
∵D 的 的中点 ,
∴BD=CD,
又∵AD=AD,
∴△ABD≌△ACD(SSS),
∴∠BAD=∠CAD=
=30°,∠ADB=∠ADC= ⺁ у ,
∴∠ABD=180°-∠BAD-∠BDA=90°, 在 Rt△ABD 中, tan∠BAD=tan30°= ⺁ у S ⺁ у , 解得 BD=4.
∴ 扇形 ⺁ у
Sу .
故答案为:C.

初三中考数学模拟试题及答案

初三中考数学模拟试题及答案

初三中考数学模拟试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项是二次函数的一般形式?A. y = ax^2 + bx + cB. y = ax^3 + bx^2 + cx + dC. y = ax^2 + bx + c + dD. y = ax^2 + bx + c + dx2. 已知一个直角三角形的两条直角边长分别为3和4,求斜边的长度。

A. 5B. 6C. 7D. 83. 以下哪个分数是最简分数?A. 2/4B. 3/6C. 4/8D. 5/104. 一个数的相反数是-3,那么这个数是多少?A. 3B. -3C. 0D. 65. 一个等腰三角形的底角是45度,求顶角的度数。

A. 45度B. 60度C. 90度D. 135度6. 圆的半径是5厘米,求圆的面积。

A. 25π平方厘米B. 50π平方厘米C. 75π平方厘米D. 100π平方厘米7. 一个数的绝对值是5,这个数可能是?A. 5B. -5C. 5或-5D. 08. 以下哪个选项是不等式的基本性质?A. 如果a > b,那么a + c > b + cB. 如果a > b,那么ac > bcC. 如果a > b,那么a/c > b/cD. 如果a > b,那么a^2 > b^29. 一个长方体的长、宽、高分别是2cm、3cm、4cm,求其体积。

A. 8立方厘米B. 12立方厘米C. 24立方厘米D. 36立方厘米10. 一个多项式的最高次项系数是-1,且次数为3,这个多项式可能是?A. -x^3 + 2x^2 - 3x + 4B. -x^3 + 2x^2 + 3x - 4C. x^3 + 2x^2 - 3x + 4D. x^3 + 2x^2 + 3x - 4二、填空题(每题3分,共15分)1. 一个数的立方根是2,那么这个数是______。

2. 一个数的平方是9,那么这个数是______或______。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019年河南省中考数学预测卷3参考答案与试题解析一、选择题(每题只有一个正确选项,本题共10小题,每题3分,共30分)1.(3分)﹣4的相反数是()A.﹣4 B.C.4 D.【分析】根据相反数的概念:只有符号不同的两个数叫做互为相反数可得答案.【解答】解:﹣4的相反数是4,故选:C.【点评】本题考查了相反数的概念,熟记相反数的概念是解题的关键.2.(3分)0001A型航母于2018年5月13日清晨离开码头进行首次海试,最大排水量约为6万5千吨,将6万5千用科学记数法表示为()A.6.5×10﹣4 B.﹣6.5×104C. 6.5×104 D.65×104【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:65000=6.5×104,故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(3分)把图1中的正方体的一角切下后摆在图2所示的位置,则图2中的几何体的俯视图为()A.BC.D【分析】根据从上面看得到的图形是俯视图,可得答案.【解答】解:从上面看是一个正三角形,三条棱为实线.故选:A.【点评】本题主要考查了几何体的三视图,能将物体摆放的形式按“长对正,高平齐宽相等”的规则画出来是重点,要注意看到的线条用实线.4.(3)下列计算正确的是()A.B.;C.;D.【分析】根据合并同类项法则、完全平方公式、积的乘方法则、同底数幂的乘法法则计算,判断即可.【解答】解:,A错误;,B错误;,D错误;故选:C.【点评】本题主要考查整式的运算,解题的关键是掌握幂的乘方、同类项概念、同底数幂相乘及合并同类项法则.5.(3分)7与3日,某体育用品店举行了首届电动平衡车大赛,其中8名选手某项得分如下:80,86,89 ,84,84,84,92,92则这8名选手得分的众数、中位数分别是()A.85、85 B.87、85 C.85、86 D.85、87【答案】A.【解析】众数是一组数据中出现次数最多的数据,∴众数是84;把数据按从小到大顺序排列,80, 84,84,84,86,89,92,92可得中位数=(84+86)÷2=85;故选C.【点评】此题主要考查了众数和中位数的定义,正确把握相关定义是解题关键.6.(3分)我国古代数学著作《九章算术》卷七有下列问题:“今有共买物,人出八,盈三:人出七,不足四,问人数、物价几何?”意思是:现在有几个人共同出钱去买件物品,如果每人出8钱,则剩余3钱:如果每人出7钱,则差4钱.问有多少人,物品的价格是多少?设有x人,物品的价格为y 元,可列方程(组)为()A. B.C. D.【分析】设有x人,物品的价格为y元,根据所花总钱数不变列出方程即可.【解答】解:设有x人,物品的价格为y元,根据题意,可列方程:,故选:D.【点评】根据分析,找出题中的等量关系,代入设定的未知数,列出方程即可.7.(3分)已知关于x的一元二次方程有两个实数根,a为正整数,则符合条件的所有正整数a的个数为()A.6个B.5个C.4个D.3个【分析】根据方程的系数结合根的判别式△≥0,即可得出a≤6,由a为正整数,即可求出a的值,将其相加即可得出结论.【解答】解:∵a=1,b=4,c=a﹣3,关于x的一元二次方程有实数根∴,∴a≤6.∵a为正整数,且该方程的根都是整数,∴a=1,2,3,4,5,6∴共6个【点评】本题考查的是一元二次方程根的判别式,一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:①当△>0时,方程有两个不相等的两个实数根;②当△=0时,方程有两个相等的两个实数根;③当△<0时,方程无实数根.8.(3分)下列四个图案中,既是轴对称图形又是中心对称图形的是()A.B.C. D.【分析】根据轴对称以及中心对称的概念对各选项分析判断利用排除法求解.【解答】解:A、是轴对称图形,但不是中心对称图形,故本选项错误;B、是中心对称图形,但不是轴对称图形,故本选项错误;C、是轴对称图形,也是中心对称图形,故本选项正确;D、是轴对称图形,但不是轴对称图形,故本选项错误.故选:C.【点评】本题主要考察了轴对称图形、中心对称图形的概念,以及概率的定义。

轴对称图形指的是沿着对称轴折叠后,图形两旁的部分能完全重合;中心对称图形指的是一个图形沿着对称中心旋转180°后能与本身重合的图形.9.(3分)如图,某同学学习尺规作图后所留下的画图痕迹:(1)作线段AB,分别以A,B为圆心,以AB长为半径作弧,两弧的交点为C;(2)以C为圆心,仍以AB长为半径作弧交AC的延长线于点D;(3)连接BD,BC.下列说法正确的是()A.∠A=45° B.C.点C是△ABD的内心D.sinA =【分析】根据等边三角形的判定方法,直角三角形的判定方法以及等边三角形的性质,直角三角形的性质一一判断即可;解:由作图可知:AC=AB=BC,∴△ABC是等边三角形,故∠A=60°, sinA =,故A,D错误由作图可知:CB=CA=CD,∴点C是△ABD的外接圆圆心,故C错误∵△ABC是等边三角形,∴∵C为AD边中线,故故选:C.【点评】本题主要考查了尺规作图,等边三角形,直角三角形的相关知识。

解题时候注意尺规作图的相关要点是判断图形形状的关键.10.(3分)如图所示:边长分别为a和2a的两个正方形,其中一边在同一水平线上,小正方形沿该水平线以自左向右匀速穿过大正方形,设穿过的时间为t,两各正方形重合部分的面积为 s,那么s与t的大致图象应为()A.B.C.D.解:根据题意,设小正方形运动的速度为v,分三个阶段;①小正方形向右未完全穿入大正方形,重合部分的面积从0逐渐增大接近至1,②小正方形穿入大正方形但未穿出大正方形,重合部分的面积为1,③小正方形向右未完全穿入大正方形,重合部分的面积从1逐渐减小接近至0,分析选项可得,A符合;故选A.点评:解决此类问题,注意将过程分成几个阶段,依次分析各个阶段得变化情况,进而综合可得整体得变化情况.二、细心填一填(本大题共5小题,每小题3分,满分15分,请把答案填在答題卷相应题号的横线上)11.(3分)计算:.【答案】-5【解答】解:【点评】本题考查实数的运算、0整数指数幂、结合分配律计算是重点,而理解0次幂的意义是关键.12(3分)如图,∠ACD是△ABC的外角,CE平分∠ACD,BE平分∠ABC,若∠A=40°,则∠E 等于()A.20° B.25° C.30° D.35°【答案】A【解答】解:∵CE平分∠ACD,BE平分∠ABC,∴∠ECD=∠ACD, ∠EBC=∠ABC,∵∠ACD是△ABC的外角,∠ECD是△EBC的外角,∴∠ACD=∠A+∠ABC①,∠ECD=∠E+∠EBC②①-2×②得:∠A=2∠E∵∠A=40°,∴∠E=20°故选:A.【点评】此题主要考查了角平分线以及三角形的外角的相关知识,三角形的外角等于不相邻的两个内角的和,正确把握题干条件列出等式变形后求差即可.13.不等式组它的解集为.【答案】解:解不等式①得:解不等式②得:,故不等式组的解集为.14.如图,在圆心角为90°的扇形ABC中,半径BC=4,E为的中点,D、E分别是BC、BA的中点,则图中阴影部分的面积为________.【分析】【解答】如解析图所示,原图①是轴对称图形,阴影部分可拼成如图②的情况,故阴影的面积等于45°的扇形面积减去一个等腰直角△FBG的面积.∵,,得∴阴影部分的面积为.【点评】本题考察了轴对称知识,三角形面积以及扇形面积计算公式.在计算的时候通过轴对称转换将阴影面积进行整合是关键。

15.如图,Rt△ABC中,AB=5,BC=4,∠C=90°,将△ABC折叠,使B点与AC的中点F重合,折痕为DE,则线段EF的长为( )A. B. C.4 D.5【解析】由勾股定理得BC=3,由折叠可得△BED≌△FED,即BE=EF,可设BE=x,则EF=x,EC=4-x,由D是BC的中点可知FC=,在Rt△ECF中,由EC2+FC2=EF2,得,解得x=.∴EF=.三、计算题(本大题共8题,共75分,请认真读题)16.(8分)先化简再求值:,其中;解:当时,原式.【点评】本题考查分式的运算,解题的关键是熟练运用因式分解以及分式的运算法则,代入求值一定要注意将分母有理化.17.(9分)网络时代,新兴词汇层出不穷.为了解大众对网络词汇的理解,某兴趣小组举行了一个“我是路人甲”的调查活动:选取四个热词A:“还是蛮拼的嘛”,B:“原来是酱紫的”,C:“扎心了,老铁”,D:“金砖四国”在街道上对流动人群进行了抽样调查,要求被调查的每位只能勾选一个最熟悉的热词,根据调查结果,该小组绘制了如下的两幅不完整的统计图.请你根据统计图提供的信息,解答下列问题:(1)本次调查中,一共调查了名路人.(2)补全条形统计图中.(3)条形图中的a=,扇形图中的b=.【分析】(1)观察可知条形图和扇形图中数据完备的是A,故可推测样本容量;(2)根据B中的人数为75,可知其所占的圆心角度数为90°,进而计算出C所占的圆心角度数为18°,计算比例可得C的人数为15人.(3)由(2)知道扇形图中的B所占的圆心角为90°;D所占的圆心角为108°,得出其所占比例为30%,计算D人数为90名.【解答】解:(1).(2)C所占的圆心角的度数为勾选 C词所占的人数为,故补全统计图如下:(3)由(2)知道b=90,勾选D词的所占圆心角度数为108°,故其人数为,故a=90.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图中的圆心角度数间接反映部分占总体的百分比大小.18.(9分))在矩形AODB中,AB=6,BD=4,分别以OD,OA所在直线为x轴和y轴,建立如图所示的平面直角坐标系.C为AB中点,过点C的反比例函数y=(k>0)的图像与BD边交于点E.(1)求反比例函数解析式;(2)求△OEC的面积.【分析】(1)由图知点C的坐标是(3,4)代入解析式,即可求得反比例函数解析式为.(2)过点E,点E的横坐标为4,故得点E的纵坐标为3;在知道线段BC,BE,DE的长度情况下,进而用切割法可得△OEC的面积.解:(1)∵C点是AB边中点,AB=6,BD=4,∴得点C的坐标为(3,4)∵C是反比例函数y=(k>0)图像上的点,∴k=3×4=12,故反比例函数的解析式为;(2)由题意知过点E,∵点E的横坐标为4,∴点E的纵坐标为12÷4=3,故点E的坐标为(4,3)∴BE=1,DE=3∴∴【点评】本题是反比例函数综合题,考察的知识点有反比例函数的应用、三角形的面积、切割法等知识点,在这道题里知道将线段的长度转化为点的坐标是重点,而合理使用切割法则是解题的关键.19.(9分)如图,△EDF为⊙O的内接三角形,FB平分∠DFE,连接BD,过点B作直线AC,使∠EBC=∠BFE.(1)求证:BD2=BG·BF;(2)求证:直线AC是⊙O的切线;【分析】(1)要证明BD2=BG·BF,首先要证明线段所在的△相似,然后利用对比边成比例即可得出结论,在这一问中说明∠BDE=∠DFB是解题的关键.(2)证明切线需要两个条件:过半径外端点,且与半径垂直.在本题中没有过切点的半径,也没有垂直的必要条件,因此合理添加辅助线证明是唯一途径.【解答】证明:(1)如图,∵FB平分∠DFE,∴∠DFB=∠EFB.又∵∠BDE=∠EFB,∴∠BDE==∠DFB,在△BDG和△BFD中,∵∠BDE=∠DFB,∠DBF=∠DBF,∴△BDG∽△BFD,∴即BD2=BG·BF;证明:如备用图,连接BO,并延长交⊙O于点P,连接PE;∵∠P与∠BFE为同弧所对圆周角,∴∠P=∠BFE,∵∠EBC=∠BFE,∴∠EBC=∠P,∵DG为⊙O的直径,∴∠PEB=90°,∴∠P+∠PBE=90°,∴∠EBC+∠PBE=90°,故OB⊥AC,∴直线AC是⊙O的切线.20.(9分)如图是某游乐公司修建的轮滑滑道草图,设计师从土台上直立大树的底端F出发,水平滑行10米到E点,沿着一个坡比为8:15的斜坡下行8.5米到B点,然后惯性滑行5.5米到C点停止,此时测得树梢P点的仰角为24°,若A,B,C,D均在一直线上,请你依据图中数据试求树高多少米?(参考数据:sin24°≈0.41,cos24°≈0.91,tan24°=0.45)【分析】作EG⊥AB,垂足为 G.首先解直角三角形Rt△EGB,求出EG,BG,再根据tan24°=,构建方程即可解决问题;【解答】解:作EG⊥AB,垂足为 G.在Rt△EGB,∵,设EG=8k,BG=15k,∴CD=8.5(米),∴(8k)2+(15k)2=8.52,∴k=,∴EG=4(米),BG=7.5(米),∵四边形FAGE是矩形,∴AF=EG=4(米),EF =AG=10(米),AC =10+7.5+5.5=22(米),在Rt△PAC中,tan24°=,∴,∴AB=5.9(米),答:树的高度约是5.9米.【点评】本题考察的是勾股定理、锐角三角函数以及坡比的相关知识,构造辅助线计算出树的底部距离水平面的距离是重点,而合理的利用比例列出等式计算是关键.21.(10分)小王创业开设一出售某品牌手套的小网店,定价为每双40元.物价部门规定其销售单价不高于70元,不低于40元.经一段时间的销售发现日销售量y(双)是销售单价x(元)存在一定的数量关系如下表(每天还要支付其他费用320元).(1)求出y与x的函数关系式,并写出自变量x的取值范围;(2)求小王的网店日获利W(元)与销售单价x(元)之间的函数关系式;(3)请问小王将售价定为多少日获利最多,最多为多少元?【分析】(1)根据图表可知图中的函数与自变量存在等差数列关系,故函数为一次函数,设函数解析式为y=kx+b,待定系数即可得解.(2)利润等于单价与所售手套数量的乘积,整理后化为顶点式或者一般式即可.(3)将函数化为顶点式,即可求出最大值.【解答】解:(1)设y与x的函数关系式为y=kx+b,根据题意,得解得,∴;(2)由题意,得∴所求函数的关系式为;(3)∵,∴当时, W随x的增大而增大又∵∴当x=70时,W有最大值为2030,∴当销售单价为70元时,该公司日获利最大,最大利润为2030元.【点评】本题考查了待定系数法求一次(二次)函数解析式、二次函数的性质等知识点.本题中根据待定系数法列出关系式是重点,而根据二次函数的性质结合自变量的取值范围求出最值是关键.22.(11分)如图,△ABC和△ADE是有公共顶点的等腰直角三角形,∠BAC=∠DAE=90°,BD,CE的交于点P.(1)把△ABC绕点A旋转到图1,BD,CE的关系是(“相等”或者“不相等”);简要说明理由(2)若AB=5,AD=3,把△ABC绕点A旋转,当∠EAC=90°时,在图2中作出旋转转后的图形,PD=,简单写出计算过程.(3)写出旋转过程中线段PD最小值为,最大值为.【分析】(1)欲证明BD=CE,只要证明△ABD≌△ACE即可.(2)根据△AEC和△ADB全等,可得∠AEC和∠ADB相等,然后根据对顶角∠ACE=∠PCD;可得△ACE∽△PCD,代入数据可求得PD.(3)如图3中,以A为圆心AC为半径画圆,当EC在⊙A下方与⊙A相切时,PD的值最小;当EC 在⊙A上方与⊙A相切时,PD的值最大.【解答】(1)相等,理由如下:图1中,∵△ABC和△ADE是等腰直角三角形,∠BAC=∠DAE=90°,∴AB=AC,AD=AE,∠DAB=∠CAE,∴△ADB≌△AEC,∴BD=CE.(2)作出旋转后的图形如下:∵∠EAC=90°,∴CE=,∵∠PDA=∠AEC,∠PCD=∠ACE,∴△PCD∽△ACE.∴,∴(3).如图3中,以A为圆心AC为半径画圆,当EC在⊙A下方与⊙A相切时,PD的值最小;当EC在⊙A右上方与⊙A相切时,PD的值最大.如图3,分(a)(b)两种情况分析:在Rt△PED中,因此,锐角∠PED的大小直接决定了PD的大小.(a)当小三角形旋转到图中△ACB位置时候在Rt△ACE中,;在Rt△DAE中,∵ACPD为正方形∴PC=AB=3得PE=3+4=7∴在Rt△PDE中,旋转过程中线段PD最小值为1.(a)当小三角形旋转到时,可得为最大值.此时,=4+3=7.23.如图,平面直角坐标系xOy中,已知抛物线经过点A(﹣1,0)和点C(0,3),顶点为P,点Q 在其对称轴上且位于点P下方,将线段PQ绕点Q按顺时针方向旋转90°,点P落在抛物线上的点M处.(1)求这条抛物线的表达式;(2)求线段PQ的长;(3)在O,C之间有点N坐标为(0,2),能否在对称轴上找一点D, 使得CD+DN最有最小值,若有请求出D点坐标,若没有请说明理由.【分析】(1)利用待定系数法求抛物线解析式;(2)利用配方法得到,则根据二次函数的性质得到P点坐标和抛物线的对称轴为直线,如图,设PQ=a,则Q(1,4﹣a),根据旋转性质得∠PQM=90°,=90°,PQ=QM=a,则M(1+a,4﹣a),然后把M(1+a,4﹣a)代入得到关于a的方程,从而解方程可得到PQ的长;(3)做N的对称点,连接与对称轴的交点即为所求点D.【解答】解:(1)已知抛物线经过点A(﹣1,0)和点C(0,3),∴,∴抛物线解析式为(2)将化为顶点式为,∴对称轴为直线,如图,设PQ=a,则Q(1,4﹣a),根据旋转性质知∠PQM=90°,PQ=QM=a,∴M(1+a,4﹣a),把M(1+a,4﹣a)代入得:故PQ=1(3)做N的对称点,连接与对称轴的交点即为所求点D,N点坐标为(0,2),关于x=1的对称点(2,2)设线段所在直线的解析式为y=kx+b,可得,,∴解析式为,将x=1代入得y= ,故D点坐标为.。

相关文档
最新文档