高一数学三角函数单元测试题 人教版

合集下载

(常考题)人教版高中数学必修第一册第五单元《三角函数》测试题(含答案解析)(3)

(常考题)人教版高中数学必修第一册第五单元《三角函数》测试题(含答案解析)(3)

一、选择题1.函数()[sin()cos()]f x A x x ωθωθ=+++部分图象如图所示,当[,2]x ππ∈-时()f x 最小值为( )A .1-B .2-C .2-D .3-2.已知函数()()2sin 3cos ,0,2f x x x x π=+∈⎛⎫⎡⎤ ⎪⎢⎥⎣⎦⎝⎭,则()f x 的单调递增区间是( )A .06,π⎡⎤⎢⎥⎣⎦B .0,4⎡⎤⎢⎥⎣⎦πC .0,3π⎡⎤⎢⎥⎣⎦D .0,2π⎡⎤⎢⎥⎣⎦3.已知函数()()sin 0,2f x A x πωϕωϕ⎛⎫=+>< ⎪⎝⎭的部分图象如图所示,则()f x 的解析式为( )A .()2sin 26f x x π⎛⎫=+ ⎪⎝⎭B .()2sin 26f x x π⎛⎫=- ⎪⎝⎭C .()sin 23f x x π⎛⎫=+⎪⎝⎭D .()sin 23πf x x ⎛⎫=-⎪⎝⎭4.如果角α的终边过点2sin 30,2cos3()0P -,则sin α的值等于( ) A .12B .12-C .3D .35.计算cos21cos9sin 21sin9︒︒-︒︒的结果是( ).A.3-B.12-C.32D.126.函数1 ()11f xx=+-的图象与函数()2sin1(24)g x x xπ=+-的图象所有交点的横坐标之和等于()A.8 B.6 C.4 D.27.已知函数()()ππ36sin0f x A x A⎛⎫=>⎪⎝⎭+在它的一个最小正周期内的图像上,最高点与最低点的距离是5,则A等于().A.1 B.2 C.2.5D.48.若2cos23sin2cos()4θθπθ=-,则sin2θ=()A.13B.23C.23-D.13-9.已知将向量13,2a⎛⎫= ⎪⎪⎝⎭绕起点逆时针旋转4π得到向量b,则b=()A.6262,⎛⎫-+⎪⎪⎝⎭B.6262,⎛⎫+-⎪⎪⎝⎭C.2662,⎛⎫-+⎪⎪⎝⎭D.2626,⎛⎫+-⎪⎪⎝⎭10.已知sin()cos(2)()cos()tanx xf xx xπππ--=--,则313fπ⎛⎫-⎪⎝⎭的值为()A.12B.13C.12-D.13-11.函数()()cosf x A xωϕ=+(其中0A>,0>ω,2πϕ<)的图象如图所示.为了得到()cosg x A xω=-的图象,只需把()y f x=的图象上所有的点()A.向右平移12π个单位长度B.向右平移512π个单位长度C .向左平移12π个单位长度 D .向左平移512π个单位长度 12.已知tan 62πα⎛⎫= ⎪⎝⎭-,()tan 3αβ+=-,则πtan 6β⎛⎫+= ⎪⎝⎭( ) A .1B .2C .3D .4二、填空题13.若1sin 42πθ⎛⎫+= ⎪⎝⎭,则sin 2θ=____________ 14.若tan 4α=,则2cos 2sin 2αα+= ________.15.已知α是第一象限角,且4tan 3α=,则sin 2α=_______ 16.若函数cos()y x ϕ=+为奇函数,则最小的正数ϕ=_____;17.若函数()|2cos |f x a x =+的最小正周期为π,则实数a 的值为____. 18.先将函数()()()cos 0,y x ϕϕπ=+∈的图象上所有点的横坐标伸长为原来的2倍(纵坐标不变),再向左平移3π个单位长度,所得函数图象关于y 轴对称,则ϕ=________.19.设α、β都是锐角,且()3cos 5ααβ=+=,则cos β=____________.20.在①a ,②S =2ccos B ,③C =3π这三个条件中任选-一个,补充在下面问题中,并对其进行求解.问题:在ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,面积为S ,b cos A =a cos C +c cos A ,b =1,____________,求c 的值.注:如果选择多个条件分别解答,按第一个解答计分.三、解答题21.已知()()1sin 2cos 3παπα+--=(2παπ<<),求: (1)sin cos αα⋅; (2)sin cos αα-.22.已知向量2(cos ,sin )m x a x =,(3,cos )n x =-,函数3()f x m n =⋅-. (1)若1a =,当[0,]2x π∈时,求()f x 的值域; (2)若()f x 为偶函数,求方程3()4f x =-在区间[,]-ππ上的解.23.已知函数()2cos cos f x x x x =.(1)求()f x 的最小正周期; (2)函数()f x 的单调递减区间. 24.在①函数()f x 的图象关于点,6b π⎛⎫-⎪⎝⎭对称; ②函数()f x 在,44ππ⎡⎤-⎢⎥⎣⎦上的最小值为12;③函数()f x 的图象关于直线12x π=对称.这三个条件中任选两个补充在下面的问题中,再解答这个问题.已知函数()()n 22si f x x b ϕϕπ=⎛⎫ ⎪⎝+<⎭+,若满足条件 与.(1)求函数()f x 的解析式;(2)若将函数()y f x =的图象上点的横坐标缩短到原来的12,纵坐标不变,再将所得图象向右平移8π个单位,得到函数()y g x =的图象,求函数()g x 的单调递减区间. 25.已知函数()()1cos sin cos 2f x x x x =+-.(Ⅰ)若0,2πα<<且1sin 3α=.求()f α;(Ⅱ)求函数()f x 的最小正周期及单调递增区间. 26.已知函数()33sin 22f x x x =.(1)若62A f ⎛⎫= ⎪⎝⎭,0A π<<,求A 的值.(2)先将函数()y f x =的图像上所有点向左平移3π个单位,再把所有点的横坐标缩短为原来的12,纵坐标不变,得到函数y g x 的图像,求函数y g x 的单调递增区间.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】首先结合图像求得()f x 的解析式,然后根据三角函数最值的求法,求得()f x 在区间[],2ππ-上的最小值.【详解】由已知()()sin 04f x x πωθω⎛⎫=⋅++> ⎪⎝⎭,由图象可知取A =,52433T πππ=-=, 故最小正周期4T π=,所以212T πω==, 所以()12sin 24f x x πθ⎛⎫=++⎪⎝⎭,由55152sin 2sin 0332464f πππππθθ⎛⎫⎛⎫⎛⎫=⨯++=++= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,及图象单调性知,取564ππθπ++=,则46ππθ+=所以()12sin 26x f x π⎛⎫=+⎪⎝⎭,[],2x ππ∈-,17,2636x πππ⎡⎤+∈-⎢⎥⎣⎦, ()f x 最小值为()2sin 3f ππ⎛⎫-=-= ⎪⎝⎭故选:D2.A解析:A 【分析】根据三角恒等变换公式化简()f x ,结合x 的范围,可得选项. 【详解】因为()()2sin ,0,2f x x xx π=+∈⎛⎫⎡⎤ ⎪⎢⎥⎣⎦⎝⎭,所以 ()()222sin sin cos +3cos f x x xx x x x +==222cos +12cos 2+22sin 2+26x x x x x π⎛⎫=+=+=+ ⎪⎝⎭,因为0,2x π⎡⎤∈⎢⎥⎣⎦,所以72+,666x πππ∈⎡⎤⎢⎥⎣⎦,所以由2+662x πππ≤≤,解得06x π≤≤, 所以()f x 的单调递增区间是06,π⎡⎤⎢⎥⎣⎦,故选:A.3.A解析:A 【分析】利用图象可得出()max A f x =,求出函数()f x 的最小正周期,可求得ω的值,再将点,26π⎛⎫⎪⎝⎭代入函数()f x 的解析式,结合ϕ的取值范围,求出ϕ的值,进而可得出函数()f x 的解析式.【详解】由图象可得()max 2A f x ==,函数()f x 的最小正周期为2236T πππ⎛⎫=⨯-=⎪⎝⎭, 22Tπω∴==,()()2sin 2f x x ϕ∴=+, 又2sin 2266f ππϕ⎛⎫⎛⎫=⨯+=⎪ ⎪⎝⎭⎝⎭,可得sin 13πϕ⎛⎫+= ⎪⎝⎭, 22ππϕ-<<,5636πππϕ∴-<+<,32ππϕ∴+=,解得6π=ϕ, 因此,()2sin 26f x x π⎛⎫=+ ⎪⎝⎭. 故选:A. 【点睛】方法点睛:根据三角函数()()sin f x A x b ωϕ=++的部分图象求函数解析式的方法: (1)求A 、()()max min:2f x f x b A -=,()()max min2f x f x b +=;(2)求出函数的最小正周期T ,进而得出2Tπω=; (3)取特殊点代入函数可求得ϕ的值.4.C解析:C 【分析】先计算三角函数值得(1,P ,再根据三角函数的定义sin ,yr rα==可. 【详解】解:由题意得(1,P ,它与原点的距离2r ==,所以sin y r α===. 故选:C.5.C解析:C 【分析】 直接化简求值即可. 【详解】解: cos21cos9sin 21sin9︒︒-︒︒()cos 219=︒+︒cos30=︒3=. 故选:C.6.A解析:A 【分析】根据函数图象的对称性,可知交点关于对称中心对称,即可求解. 【详解】由函数图象的平移可知,函数1()11f x x=+-与函数()2sin 1g x x π=+的图象都关于(1,1)M 对称. 作出函数的图象如图,由图象可知交点个数一共8个(四组,两两关于点(1,1)对称), 所以所有交点的横坐标之和等于428⨯=. 故选:A 【点睛】关键点点睛:由基本初等函数及图象的平移可知1()11f x x=+-与()2sin 1g x x π=+都是关于(1,1)中心对称,因此图象交点也关于(1,1)对称,每组对称点的横坐标之和为2,由图象可知共8个交点,4组对称点.7.B解析:B 【分析】根据正弦型函数图象性质确定函数()f x 的最小正周期T ,再根据最高点与最低点的距离是55=,从而解得A 的值. 【详解】解:函数()()ππ36sin 0f x A x A ⎛⎫=> ⎪⎝⎭+的最小正周期2263T πππω=== 函数()()ππ36sin 0f x A x A ⎛⎫=> ⎪⎝⎭+在它的一个最小正周期内的图像上,最高点与最低点的距离是5,5=,解得2A =.故选:B. 【点睛】对于三角函数,求最小正周期和最值时可先把所给三角函数式化为()sin y A ωx φ=+或()cos y A x ωϕ=+的形式,则最小正周期为2T ωπ=,最大值为A ,最小值为A -;奇偶性的判断关键是解析式是否为sin y A x ω=或cos y A x ω=的形式.8.B解析:B 【分析】由二倍角公式和差的余弦公式化简得出()2cos sin 2θθθ-=,再平方即可求出. 【详解】)22cos sin 2cos()coscos sinsin 444θθθπππθθθ-=-+()cos sin cos sin 2cos sin 2θθθθθθ+-==-,()2cos sin 2θθθ∴-=,两边平方得()241sin 23sin 2θθ-=,解得sin 22θ=-(舍去)或2sin 23θ=. 故选:B. 【点睛】关键点睛:本题考查三角恒等变换的化简问题,解题的关键是能正确利用二倍角公式和差的余弦公式将已知等式化简为()2cos sin 2θθθ-=,再平方求解.9.C解析:C 【分析】先求出a 与x 轴正方向的夹角为3πθ=,即可得b 与x 轴正方向的夹角为73412πππα=+=, 再利用向量坐标的定义即可求解. 【详解】设a 的起点是坐标原点,a 与x 轴正方向的夹角为θ,1a =由13,22a ⎛= ⎝⎭可得2tan 12θ==3πθ=, 设b 与x 轴正方向的夹角为α,则73412πππα=+=且1b =因为7sinsin sin cos cos sin 12434343y πππππππ⎛⎫==+=⨯+⨯=⎪⎝⎭7coscos cos cos sin sin 12434343x πππππππ⎛⎫==+=⨯-⨯=⎪⎝⎭故2,44b ⎛⎫-= ⎪ ⎪⎝⎭, 故选:C.10.C解析:C 【分析】利用诱导公式先化简整理函数()f x ,再利用诱导公式求值即可. 【详解】 由sin()cos(2)()cos()tan x x f x x xπππ--=--,利用诱导公式得:sin cos ()cos cos tan x xf x x x x==--,所以31311cos cos 103332f ππππ⎛⎫⎛⎫⎛⎫-=--=---=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭; 故选:C.11.B解析:B 【分析】先根据图象求出,,A ωϕ的值即可得()f x 和()g x 的解析式,再利用函数图象的平移变换即可得正确选项. 【详解】 由图知:1A =,74123T πππ⎛⎫=-= ⎪⎝⎭,所以22T πω==,()()cos 2f x x φ=+,当712x π=时,()()cos 2f x x φ=+有最小值,所以()72212k k Z πϕππ⨯+=+∈, 所以()26k k Z πϕπ=-+∈,又因为2πϕ<,所以0,6k πϕ==-,所以()cos 26f x x π⎛⎫=- ⎪⎝⎭,()()cos2cos 2g x x x π=-=-,所以只需要把()cos 26f x x π⎛⎫=- ⎪⎝⎭图象上所有的点向右平移512π个单位长度得()()5cos 2cos 2cos 2126x x x g x πππ⎡⎤⎛⎫--=-=-= ⎪⎢⎥⎝⎭⎣⎦,故选:B 【点睛】关键点点睛:本题的关键点是由函数的部分图象求出,,A ωϕ的值,进而求出()f x 和()g x 的解析式,()()cos2cos 2g x x x π=-=-,由平移变换的规律求解,注意左右平移指一个x 变化多少,此点容易出错,属于中档题.12.A解析:A 【分析】根据两角差的正切公式,由题中条件,直接得出结果. 【详解】 因为tan 62πα⎛⎫= ⎪⎝⎭-,()tan 3αβ+=-, 则()()()πta tan πtan t n 6an 661tan πtan 6αβααβπβαβαα⎛⎫ ⎪⎡⎤⎛⎫⎛⎫⎝⎭+=+--= ⎪ ⎪⎢⎥⎛⎫⎝⎭⎝⎭⎣⎦+ ⎪⎝+--+⎭-123321==-⨯--.故选:A.二、填空题13.【分析】由题意结合诱导公式二倍角余弦公式直接运算即可得解【详解】若则故答案为:解析:12-【分析】由题意结合诱导公式、二倍角余弦公式直接运算即可得解. 【详解】若π1sin 42θ⎛⎫+= ⎪⎝⎭,则2ππ11cos 2sin212sin 122442θθθ⎛⎫⎛⎫+=-=-+=-⨯= ⎪ ⎪⎝⎭⎝⎭, ∴1sin22θ=-.故答案为:12-. 14.1【分析】把求值式转化为关于的二次齐次分式然后转化为代入求值【详解】∵∴故答案为:1【点睛】方法点睛:本题考查二倍角公式考查同角间的三角函数关系在已知求值时对关于的齐次式一般转化为关于的式子再代入值解析:1 【分析】把求值式转化为关于sin ,cos αα的二次齐次分式.然后转化为tan α,代入求值. 【详解】 ∵tan 4α=,∴222222cos 4sin cos 14tan 144cos 2sin 21sin cos tan 141ααααααααα+++⨯+====+++.故答案为:1. 【点睛】方法点睛:本题考查二倍角公式,考查同角间的三角函数关系.在已知tan α求值时,对关于sin ,cos αα的齐次式,一般转化为关于tan α的式子.再代入tan α值计算.如一次齐次式:sin cos sin cos a b c d αααα++,二次齐次式:2222sin sin cos cos sin sin cos cos a b c d e f αααααααα++++, 另外二次式22sin sin cos cos m n p αααα++也可化为二次齐次式.15.【分析】根据同角三角函数的关系解出根据二倍角公式即可求出【详解】是第一象限角且则解得故答案为: 解析:2425【分析】根据同角三角函数的关系解出43sin ,cos 55αα==,根据二倍角公式即可求出sin 2α. 【详解】α是第一象限角,且4tan 3α=, 则22sin 4cos 3sin cos 1αααα⎧=⎪⎨⎪+=⎩,解得43sin ,cos 55αα==,∴24sin 22sin cos 25ααα==. 故答案为:2425. 16.【分析】根据函数奇偶性表示出进而可得结果【详解】因为函数为奇函数所以只需又即所以时取最小值故答案为:解析:2π 【分析】 根据函数奇偶性,表示出ϕ,进而可得结果. 【详解】因为函数cos()y x ϕ=+为奇函数, 所以只需,2k k Z πϕπ=+∈,又0ϕ>,即0,2k k Z ππ+>∈,所以0k =时,ϕ取最小值2π. 故答案为:2π. 17.【分析】利用来求解【详解】因为函数的最小正周期为所以都有成立故则故答案为: 解析:0【分析】利用()()f x f x π=+来求解. 【详解】因为函数()f x 的最小正周期为π,所以x R ∀∈,都有()()f x f x π=+成立, 故()2cos 2cos 2cos a x a x a x π+=++=-,则0a =. 故答案为:0.18.【分析】由题意利用函数的图象变换规律三角函数的图象的对称性求得的值【详解】先将函数的图象上所有点的横坐标伸长为原来的2倍(纵坐标不变)可得的图象;再向左平移个单位长度可得函数的图象根据所得函数图象关 解析:56π 【分析】由题意利用函数()cos y A x ωϕ=+的图象变换规律,三角函数的图象的对称性,求得ϕ的值. 【详解】先将函数()()()cos 0,y x ϕϕπ=+∈的图象上所有点的横坐标伸长为原来的2倍(纵坐标不变),可得1cos 2y x ϕ⎛⎫=+⎪⎝⎭的图象; 再向左平移3π个单位长度,可得函数1cos 26y x πϕ⎛⎫=++⎪⎝⎭的图象, 根据所得函数图象关于y 轴对称,可得6k πϕπ+=,k Z ∈,因为()0,ϕπ∈,所以1k =,56πϕ=. 故答案为:56π. 【点睛】关键点点睛:熟练掌握函数()cos y A x ωϕ=+的图象变换规律,三角函数的图象的对称性是解题关键..19.【分析】由α是锐角求出的值再由β是锐角得出的值将角转化成利用两角和差的余弦公式化简计算并验证即可【详解】因为α是锐角所以因为β是锐角所以又所以所以当时此时即与矛盾舍去当时符合要求故答案为:【点睛】本解析:25【分析】由α是锐角,cos 5α=求出sin α的值,再由β是锐角,()3sin 5αβ+=得出()cos αβ+的值,将β角转化成()αβα+-,利用两角和差的余弦公式化简计算,并验证即可. 【详解】因为α是锐角,cos 5α=,所以sin 5α==, 因为β是锐角,所以0αβ<+<π,又()3sin 5αβ+=,所以()4cos 5αβ+==±, 所以()()()cos cos cos cos sin sin βαβααβααβα=+-=+++当()4cos 5αβ+=时, 43cos +55555β=⨯⨯=,此时cos sin βα=,即2παβ+=,与()3sin 5αβ+=矛盾,舍去,当()4cos 5αβ+=-时, 43cos 55β=-=.【点睛】本题主要考查了两角和与差的正余弦公式以及同角三角函数基本关系,属于中档题,熟练掌无公式并应用是解题的关键.20.答案见解析【分析】利用正弦定理进行边化角得到然后利用余弦定理以及正弦函数的两角和与差公式进行选择①②或③进行求解即可【详解】在中因为所以根据正弦定理得所以因为所以选择①由余弦定理得解得选择②所以所以解析:答案见解析. 【分析】利用正弦定理进行边化角,得到cos A =,然后利用余弦定理以及正弦函数的两角和与差公式进行选择①,②或③,进行求解即可 【详解】在ABC cos cos cos A a C c A =+,cos sin cos sin cos B A A C C A =+cos sin B A B =,因为sin 0B ≠,所以cos 3A =选择①,由余弦定理2222cos a b c bc A =+-得2103c --=,解得c =选择②,1cos sin 22c S B bc A ==,所以cos sin cos()2B A A π==-所以2B A π=-,即2C π=,解得c =选择③,3C π=,因为sin sin()sin cos cos sin 333B A A A πππ=+=+所以由sin sin c b C B=得sin 4sin b Cc B == 【点睛】关键点睛:解题关键在于由正弦定理进行边化角,得到cos 3A =,然后利用三角函数的相关公式进行求解,难度属于中档题三、解答题21.(1)49-;(2. 【分析】(1)用诱导公式化简已知式为1sin cos 3αα+=,已知式平方后可求得sin cos αα; (2)已知式平方后减去4sin cos αα,再考虑到sin cos αα>就可求得sin cos αα-. 【详解】(1)由()()1sin 2cos 3παπα+--=可得1sin cos 3αα+=,所以()2221sin cos sin 2sin cos cos 12sin cos 9αααααααα+=++=+=, 所以4sin cos 9αα=-; (2)()()221417sin cos sin cos 4sin cos 4999αααααα⎛⎫-=+-=-⨯-= ⎪⎝⎭, 又因为,2παπ⎛⎫∈⎪⎝⎭,所以sin 0cos αα>>,sin cos 0αα->,所以sin cos αα-=. 【点睛】关键点点睛:本题解题的关键是熟记诱导公式,以及sin cos αα+,sin cos αα,sin cos αα-之间的联系即()2sin cos 12sin cos αααα+=+,()2sin cos 12sin cos αααα-=-.22.(1)[-;(2)75,1212x ππ=±±. 【分析】(1)将()f x 化为()cos(2)6f x x π=+,然后可得答案; (2)由()f x 为偶函数可求出0a =,然后可得答案.【详解】(1)2()sin cos 2sin 22a f x x a x x x x =-=-当1a =,1()2sin 2cos(2)26f x x x x π=-=+由7[0,],2[,],cos(2)[1,266662x x x πππππ∈∴+∈∴+∈-所以()f x 的值域为[-(2)若()f x 为偶函数,则()()f x f x -=恒成立2sin 22sin 222a a x x x x +=-成立,整理得sin 20,0a x a =∴=所以由3()24f x x ==-得cos 2x =又752[2,2],,1212x x ππππ∈-∴=±± 23.(1)π;(2)2,,63k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦【分析】(1)利用二倍角的正弦、余弦公式将函数化为()1sin 262f x x π⎛⎫=++ ⎪⎝⎭,由周期公式即可求解.(2)由正弦函数的单调递减区间32,2,22k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦,整体代入即可求解. 【详解】(1)()21cos 21cos cos sin 2262x f x x x x x π+⎛⎫===++ ⎪⎝⎭, 所以函数的最小正周期222T πππω===, (2)3222,262k x k k Z πππππ+≤+≤+∈, 解不等式可得2,63k x k k Z ππππ+≤≤+∈, 所以函数()f x 的单调递减区间为2,,63k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦24.(1)答案见解析;(2)5,,26212k k k ππππ⎡⎤++∈⎢⎥⎣⎦Z . 【分析】(1)分别选①②,②③,①③三种情况,根据三角函数的性质,即可求出函数解析式;(2)由(1)的结果根据三角函数的伸缩变换与平移原则,求出()g x ,再根据正弦函数的单调性,即可求出单调递减区间. 【详解】 解:(1)选①②因为,6b π⎛⎫- ⎪⎝⎭为()f x 的对称中心,所以2,,63k k k ππϕπϕπ⎛⎫⨯-+==+∈ ⎪⎝⎭Z 又2πϕ<,所以3πϕ=;因为44x ππ-≤≤,所以52636x πππ-≤+≤,所以1sin 2123x π⎛⎫-≤+≤ ⎪⎝⎭ 所以()min 1122f x b =-+=,所以1b =; 所以()sin 213f x x π⎛⎫=++ ⎪⎝⎭选②③因为12x π=为()f x 的一条对称轴,所以2122k ππϕπ⨯+=+, 所以,3k k πϕπ=+∈Z ,又2πϕ<,所以3πϕ=,因为44x ππ-≤≤,所以52636x πππ-≤+≤;所以1sin 2123x π⎛⎫-≤+≤ ⎪⎝⎭, 所以()min 1122f x b =-+=,所以1b =, 所以()sin 213f x x π⎛⎫=++ ⎪⎝⎭; 选①③,由前面两种情况,可得,根据对称性只能求得3πϕ=,所以()sin 23f x x b π⎛⎫=++ ⎪⎝⎭; (2)当()sin 213f x x π⎛⎫=++ ⎪⎝⎭时,将函数()y f x =的图象上点的横坐标缩短到原来的12,纵坐标不变,可得sin 413y x π⎛⎫=++ ⎪⎝⎭的图像,再将所得图象向右平移8π个单位,得到函数()y g x =的图象,所以()sin 416g x x π⎛⎫=-+ ⎪⎝⎭; 当()sin 23f x x b π⎛⎫=++ ⎪⎝⎭时,同理可得()sin 46g x x b π⎛⎫=-+ ⎪⎝⎭, 令3242,262k x k k πππππ+≤-≤+∈Z 解得:5,26212k k x k ππππ+≤≤+∈Z 所以函数()g x 的减区间为5,,26212k k k ππππ⎡⎤++∈⎢⎥⎣⎦Z . 【点睛】 思路点睛:求解三角函数解析式,以及三角函数性质的题目,一般需要根据三角函数的单调性、对称性等,结合题中条件,求出参数,即可得出解析式;求解三角函数性质问题时,一般根据整体代入的方法,结合正余弦函数的性质求解.25.(Ⅰ;(Ⅱ)最小正周期为π.3ππππ88k k ⎡⎤-+⎢⎥⎣⎦,.k Z ∈.【分析】 (Ⅰ)根据1sin 3α=以及α的范围,得到cos α,代入到()f α中,得到答案;(Ⅱ)对()f x 进行整理化简,得到()π24f x x ⎛⎫=+ ⎪⎝⎭,根据正弦型函数的图像和性质,求出其周期和单调减区间. 【详解】(Ⅰ)解:因为π02α<<.且1sin 3α=.所以cos 3α==.故()()17cos sin cos 218f αααα=+-=. (Ⅱ)解:因为 ()21sin cos cos 2f x x x x =+-11cos 21sin 2222x x +=+-11πsin 2cos 22224x x x ⎛⎫=+=+ ⎪⎝⎭. 所以函数()f x 的最小正周期为π.设π24t x =+.由y t =的单调递增区间是ππ2π 2π22k k ⎡⎤-+⎢⎥⎣⎦,.k Z ∈. 令πππ2π22π242k x k -++≤≤.解得3ππππ88k x k -+≤≤.k Z ∈. 故函数()f x 的单调递增区间为3ππππ88k k ⎡⎤-+⎢⎥⎣⎦,.k Z ∈.【点睛】本题考查同角三角函数关系,利用二倍角公式、降幂公式、辅助角公式对三角函数进行化简,求正弦型函数的周期和单调区间,属于基础题. 26.(1)512A π=或1112A π=;(2),,422k k k πππ⎡⎤-+∈⎢⎥⎣⎦Z . 【分析】(1)化简得())6f x x π=-6A π⎛⎫-= ⎪⎝⎭(2)先求出函数()g x 的解析式,再求函数的单调递增区间. 【详解】(1)())6f x x π=-)所以26A f A π⎛⎫⎛⎫=-= ⎪ ⎪⎝⎭⎝⎭,即sin 6A π⎛⎫-= ⎪⎝⎭又0A π<<,所以5666A πππ-<-<, 所以64A ππ-=或34π, 所以512A π=或1112A π=(2)()2,6f x x π⎛⎫- ⎪⎝⎭将函数()y f x =的图像上所有点向左平移3π个单位得到)])362y x x πππ=+-=+,再把所有点的横坐标缩短为原来的12,纵坐标不变,得到函数()442g x x x π⎛⎫=+= ⎪⎝⎭的图像,令242k x k πππ-+≤≤,k Z ∈, 所以422k k x πππ-+≤≤, 所以递增区间为,,422k k k πππ⎡⎤-+∈⎢⎥⎣⎦Z . 【点睛】方法点睛:求函数sin()y A wx h φ=++的单调区间,一般利用复合函数的单调性原理解答:首先是对复合函数进行分解,接着是根据复合函数的单调性原理分析出分解出的函数的单调性,最后根据分解函数的单调性求出复合函数的单调区间.。

高一年级新教材三角函数单元测试卷

高一年级新教材三角函数单元测试卷

高一年级新教材三角函数单元测试卷班级: 姓名:一、单选题1.() 1920sin -=( ) A.21 B.21- C. 23 D.23- 2.已知扇形的圆心角为3弧度,弧长为6cm,则扇形的面积为( )2cmA.2B.3C.6D.12 3.已知α为第三象限角,且25sin α=,则cos (α= ) 5 B.5 25 D.25 4.已知函数)32sin()(π+=x x f ,为了得到函数)62cos()(π+=x x g 的图象,可以将)(x f 的图象( )A.向右平移6π个单位长度B.向左平移12π个单位长度 C.向左平移6π个单位长度 D.向右平移12π个单位长度 5.函数)1sin 2lg(+=x y 的定义域为( ) A.},656|{Z k k x k x ∈+<<+ππππ B.},676|{Z k k x k x ∈+<<+ππππ C.},65262|{Z k k x k x ∈+<<+ππππ D.},67262|{Z k k x k x ∈+<<-ππππ 6.若函数()()⎪⎭⎫ ⎝⎛≤-=2sin πϕϕωx x f 的部分图象如图所示,则ω和ϕ的值是( ) A.3,1πϕω== B.3,1πϕω-== C.6,21πϕω== D.6,21πϕω-== 7.如图,在平面直角坐标系中,角)0(παα≤≤的始边为x 轴的非负半轴,终边与单位圆的交点为A ,将OA 绕坐标原点逆时针旋转2π至OB ,过点B 轴作x 的垂线,垂足为Q ,记线段BQ 的长为y ,则函数)(αf y =的图象大致是( )8.若将函数()()⎪⎭⎫ ⎝⎛<+=22sin 2πϕϕx x f 的图象向左平移6π个单位后得到的图象关于轴对称,则函数()x f 在⎥⎦⎤⎢⎣⎡2,0π上的最大值为( ) A. 2 B. 3 C. 1 D. 23 二、多选题9. 下列结论正确的是( )A. 67π-是第三象限角B. 若圆心角为3π的扇形的弧长为π,则该扇形面积为23π C. 若角的终边过点P(-3,4),则53cos -=α D. 若角为锐角,则角为钝角 10.下列各式中,值为23的是( ) A. 15cos 15sin 2 B. 15sin 15cos 22- C. 15sin 212- D. 15cos 15sin 22+11.要得到sin 25y x π⎛⎫=- ⎪⎝⎭的图象,可以将函数y =sin x 的图象上所有的点( ) A.向右平行移动5π个单位长度,再把所得各点的横坐标缩短到原来的12倍 B.向右平行移动10π个单位长度,再把所得各点的横坐标缩短到原来的12倍 C.横坐标缩短到原来的12倍,再把所得各点向右平行移动5π个单位长度 D.横坐标缩短到原来的12倍,再把所得各点向右平行移动10π个单位长度 12.已知函数()sin()(0f x x ωϕω=+>,||)2πϕ<,其图象相邻两条对称轴之间的距离为4π,且直线12x π=-是其中一条对称轴,则下列结论正确的是( ) A.函数()f x 的最小正周期为2π B.函数()f x 在区间[6π-,]12π上单调递增 C.点5(24π-,0)是函数()f x 图象的一个对称中心D.将函数()f x 图象上所有点的横坐标伸长为原来的2倍,纵坐标不变,再把得到的图象向左平移6π个单位长度,可得到()sin 2g x x =的图象13.已知3)tan(,4tan =-=βπα,则)tan(βα+= .14.函数()⎥⎦⎤⎢⎣⎡∈++-=65,6,23sin 2cos 22ππx x x x f 的值域是 . 15.已知)4,0(,34cos sin πθθθ∈=+,则θθcos sin -= . 16.已知π1sin 63x ⎛⎫+= ⎪⎝⎭,则25πsin sin 6π3x x -+⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭的值为 . 17.已知3sin(3π)cos(2π)sin π2()cos(π)sin(π)f αααααα⎛⎫-⋅-⋅-+ ⎪⎝⎭=--⋅--. (1)化简()f α;(2)若α为第四象限角且31sin π25α⎛⎫-= ⎪⎝⎭,求()f α的值;(3)若31π3α=-,求()f α.18.已知α,β为锐角,1cos 7α=,11cos()14αβ+=-.(1)求sin()αβ+的值;(2)求cos β的值.19.已知函数2()2sin cos 2cos ()f x x x x x =+∈R .(1)求()f x 的最小正周期;(2)求()f x 的最值及取得最值时x 的集合.20.海水受日月的引力,在一定的时候发生涨落的现象叫潮,一般地,早潮叫潮,晚潮叫汐.在通常情况下,船在涨潮时驶进航道,靠近码头;在落潮时返回海洋.下面是某时刻 2:00 5:00 8:00 11:00 14:00 17:00 20:00 23:00水深/米 7.0 5.0 3.0 5.07.0 5.0 3.0 5.0 似用函数()()⎪⎭⎫ ⎝⎛<>++=2,0,sin πϕωϕωA B t A t f 描述. (1)根据以上数据,求出函数()()B t A t f ++=ϕωsin 的表达式; (2)一条货船的吃水深度(船底与水面的距离)为4.0米,安全条例规定至少要有2米的安全间隙(船底与洋底的距离),该船在一天内(0:00~24:00)何时能进入港口然后离开港口?每次在港口能停留多久?21.已知0a >,函数()2sin(2)26f x a x a b π=-+++,当[0,]2x π∈时,()51f x -≤≤. (1)求常数,a b 的值;(2)设()()2g x f x π=+且()lg 0g x >,求()g x 的单调区间.22.已知函数()()2sin 24sin 206x x x f πωωω⎛⎫=--+> ⎪⎝⎭,其图象与x 轴相邻两交点的距离为2π. (1)求函数()f x 的解析式;(2)若将()f x 的图象向左平移()0m m >个长度单位得到函数()g x 的图象恰好经过点,03π⎛-⎫ ⎪⎝⎭,求当m 取得最小值时,()g x 在7,612ππ⎡⎤-⎢⎥⎣⎦上的单调区间.。

高中数学必修一第五章三角函数单元测试(1)(含答案解析)

高中数学必修一第五章三角函数单元测试(1)(含答案解析)

⾼中数学必修⼀第五章三⾓函数单元测试(1)(含答案解析)⾼中数学必修⼀第五章三⾓函数单元测试 (1)⼀、选择题(本⼤题共9⼩题,共45.0分)1.以罗尔中值定理、拉格朗⽇中值定理、柯西中值定理为主体的“中值定理”反映了函数与导数之间的重要联系,是微积分学重要的理论基础,其中拉格朗⽇中值定理是“中值定理”的核⼼内容,其定理陈述如下:如果函数y=f(x)在闭区间[a,b]上连续,在开区间(a,b)内可导,则在区间(a,b)内⾄少存在⼀个点x0∈(a,b),使得f(b)?f(a)=f?(x0)(b?a),x=x0称为函数y= f(x)在闭区间[a,b]上的中值点,则函数f(x)=sinx+√3cosx在区间[0,π]上的“中值点”的个数为参考数据:√2≈1.41,√3≈1.73,π≈3.14.A. 1B. 2C. 3D. 42.若α∈(π2,π),cos?2α=?13,则tan?α=()A. ?√33B. ?√3 C. ?√2 D. ?√223.cos20o cos40°?sin20°sin40°=()A. 1B. 12C. ?12D. √324.为了得到函数f(x)=sin(2x+3π4)的图象,可以将函数g(x)=cos2x的图象()A. 向右平移π4个单位 B. 向左平移π4个单位5.在△ABC中,⾓A,B,C的对边分别为a,b,c,若2c?ba =cosBcosA,a=2√3,则△ABC⾯积的最⼤值为()A. √3B. 2√3C. 3√3D. 4√36.已知sinα?cosα=13,则cos2(π4α)=()A. 1718B. 19C. √29D. 1187.若将函数f(x)=sin(2x+φ)+√3cos(2x+φ)(0<φ<π)的图象向左平移π4个单位长度,平移后的图象关于点(π2,0)对称,则函数g(x)=cos(x+φ)在[?π2,π6]上的最⼩值()A. ?12B. ?√3228.若函数f(cos x)=cos2x+1,则f(cos30°)的值为()A. 12B. 32C. 72D. 49.3?sin110°8?4cos210°=()A. 2B. √22C. 12D. √32⼆、填空题(本⼤题共5⼩题,共25.0分)10.已知cos?(α+π4)=13,α∈(0,π4),则cos2α=________.11.已知△ABC的内⾓A,B,C所对的边分别为a,b,c,B=π4,tan(π4A)=12,且△ABC的⾯积为25,则a+b=_________.12.函数y=√3sin2x?cos2x的图象向右平移φ(0<φ<π)个长度单位后,得到函数g(x)的图象,若函数g(x)为偶函数,则φ的值为___________.13.在ΔABC中,cosB+√3sinB=2,且cosBb +cosCc=2√3sinA3sinC,则a+c的取值范围是________.14.已知函数f(x)=sinxcos(x+π3)+√34,x∈[?π3,π6],则函数的单调减区间为___________,函数的值域为____________.三、解答题(本⼤题共6⼩题,共72.0分)15.如图,在四边形ABCD中,已知∠DAB=π3,AD︰AB=2︰3,BD=√7,AB⊥BC.(1)求sin∠ABD的值;(2)若∠BCD=2π3,求CD的长.16.已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<π2)的最⼩值为?3,若f(x)图象相邻的最⾼点与最低点的横坐标之差为2π,且f(x)的图象经过点(0,32).(2)若⽅程f(x)?k=0在x∈[0,11π3]上有两个零点x1,x2,求k的取值范围,并求出x1+x2的值.17.在△ABC中,⾓A,B,C的对边分别为a,b,c.已知向量m =(b,a?2c),n?=(cosA?2cosC,cosB),且n?⊥m .(1)求sinCsinA的值;(2)若a=2,|m |=3√5,求△ABC的⾯积S.18.化简,求值:(1)已知tanα=34,求tan(α+π4)的值;(2)sin20°sin40°?cos20°cos40°.19.在△ABC中,内⾓A,B,C对边的边长分别是a、b、c,△ABC的⾯积为S⑴若c=2,C=π3,S=√3,求a+b;)=a,求⾓A;⑴若√3(bsinC?ccosBtanC20.如图,某住宅⼩区的平⾯图呈圆⼼⾓为120°的扇形AOB,⼩区的两个出⼊⼝设置在点A及点C处,且⼩区⾥有⼀条平⾏于BO的⼩路CD.(1)已知某⼈从C沿CD⾛到D⽤了10分钟,从D沿DA⾛到A⽤了6分钟,若此⼈步⾏的速度为每分钟50⽶,求该扇形的半径OA的长(精确到1⽶);(2)若该扇形的半径为OA=a,已知某⽼⼈散步,从C沿CD⾛到D,再从D沿DO⾛到O,试确定C的位置,使⽼⼈散步路线最长.-------- 答案与解析 --------本题考查导数运算、余弦函数性质,属于中档题.求出f(x)的导数,利⽤f′(x0)=f(b)?f(a)b?a,可得结合余弦函数性质易知⽅程在区间(0,π)内有2解,【解答】解:由知由拉格朗⽇中值定理:令f′(x0)=f(b)?f(a)b?a,即,由?√3π∈(?1,?12),结合余弦函数性质易知⽅程在区间(0,π)内有2解,故在区间[0,π]上的“中值点”有2个,故选B.2.答案:C解析:【分析】本题考查三⾓函数的化简求值,考查同⾓三⾓函数基本关系式和⼆倍⾓公式,是基础题.由已知可得tanα<0,再由⼆倍⾓公式和同⾓三⾓函数基本关系可得tanα的⽅程,解之可得答案.【解答】解:∵α∈(π2,π),且cos2α=?13,∴tanα<0,且cos2α=cos2α?sin2α=cos2α?sin2αcos2α+sin2α=1?tan2α1+tan2α=?13,解得tanα=?√2.故选C.3.答案:B本题考查两⾓和与差的三⾓函数公式,属于基础题.由题直接计算求解即可得到答案.【解答】解:cos20o cos40°?sin20°sin40°=cos(20°+40°) =cos60°=12.故选B . 4.答案:D解析:【分析】本题考查三⾓函数的图象变换规律,是基础题.根据题意,进⾏求解即可.【解答】解:,,⼜,∴只需将函数g(x)=cos2x 的图象向左平移π8个单位即可得到函数f(x)=sin?(2x +3π4)的图象.故选D . 5.答案:C解析:【分析】本题考查正余弦定理、三⾓形⾯积公式,两⾓和的正弦公式和基本不等式,属于中档题.先由正弦定理和两⾓和的正弦公式得出cosA =12,再由余弦定理和基本不等式解得bc ≤12,最后由三⾓形⾯积公式求得△ABC ⾯积的最⼤值.【解答】解:由已知可得(2c ?b)cosA =acosB ,由正弦定理可得(2sinC ?sinB)cosA =sinAcosB ,所以2sinCcosA =sinBcosA +sinAcosB =sin(A +B)=sinC ,由sinC ≠0可得cosA =12,则,由余弦定理可得12=b 2+c 2?2bc ×12=b 2+c 2?bc ,由基本不等式可得12=b 2+c 2?bc ≥2bc ?bc =bc ,解得bc ≤12,当且仅当b =c =2√3时,取等号,故△ABC ⾯积S =12bcsinA =√34bc ≤√34×12=3√3.故选C .6.答案:A解析:【分析】本题主要考查⼆倍⾓公式、诱导公式以及同⾓三⾓函数基本关系的应⽤,属于基础题.由条件利⽤⼆倍⾓公式可得sin2α=81+cos(π22α)2=12+sin2α2,计算求得结果.【解答】解:∵sinα?cosα=13,∴1?2sinαcosα=1?sin2α=19,∴sin2α=89,则cos2(π4?α)=1+cos(π22α)2=12+sin2α2=1718,故选A.7.答案:D解析:【分析】本题主要考查函数y=Asin(ωx+φ)的图像变换规律、诱导公式和三⾓函数的性质.3]=2cos(2x+φ+π3),再根据图像关于点(π2,0)对称,得到φ=π6,得到g(x)=cos(x+π6),进⽽求出g(x)的最⼩值.【解答】解:∵f(x)=sin?(2x+φ)+√3cos?(2x+φ)=2sin?(2x+φ+π3),∴将函数f(x)的图像向左平移π4个单位长度后,得到图像的函数解析式为y=2sin?[2(x+π4)+φ+π3]=2cos?(2x+φ+π3).∵函数y=2cos(2x+φ+π3)的图像关于点(π2,0)对称,∴2cos(2×π2+φ+π3)=0,所以π+φ+π3=kπ+π2解得φ=kπ?5π6,k∈Z.∵0<φ<π,∴φ=π6,∴g(x)=cos(x+π6).∵x∈[?π2,π6],∴x+π6∈[?π3,π3],∴cos(x+π6)∈[12,1],则函数g(x)=cos(x+φ)在[?π2,π6]上的最⼩值是12.故选D.8.答案:B解析:【分析】本题主要考查⼆倍⾓公式的应⽤,属于基础题.利⽤⼆倍⾓公式,然后求出函数值即可.【解答】解:∵f(cos x)=cos 2x +1=2cos 2x ,∴f(cos?30°)=2cos 230°32)2=32.故选B . 9.答案:C解析:【分析】本题考查三⾓函数的化简求值问题,属于基础题.根据诱导公式与⼆倍⾓的余弦公式即可求出结果.【解答】解:原式=3?sin110°8?4cos 210°=3?cos20°8?2(1+cos20°)=3?cos20°6?2cos20°=12.故选C .10.答案:4√29解析:解:因为cos(α+π4)=13,α∈(0,π4),所以sin(α+π4)=2√23,所以cos2α=cos[2(α+π4)?π2]=sin2(α+π4) =2sin(α+π4)cos(α+π4)=2×2√23×13=4√29.答案:4√29由诱导公式可知cos2α=cos[2(α+π4)?π2]=sin2(α+π4),然后结合⼆倍⾓的正弦公式展开可求.本题主要考查函数值的计算,利⽤三⾓函数的倍⾓公式是解决本题的关键. 11.答案:5+5√5解析:【分析】本题考查两⾓和与差的三⾓公式的应⽤,考查正弦定理及三⾓形⾯积公式的应⽤,属中档题.依题意,根据两⾓和与差的三⾓公式求得tanA =13,进⽽得sin?A ,cos?A .⼜B =π4,求得sinC ,再结合三⾓形⾯积及正弦定理求解即可.【解答】解:因为tan?(π4?A)=12,所以1?tan?A1+tan?A =12,则tan?A =13,因此sinA =√1010,cosA =3√1010.所以sinC =sin (A +B )=sinAcosB +cosAsinB =√1010×√22+3√1010×√22=2√55,根据△ABC 的⾯积为25,得12absinC =12ab ×2√55=25,得ab =25√5,⼜由正弦定理得a sinA =bsinB ,得b =√5a ,联⽴{ab =25√5b =√5ab =5√5,所以a +b =5+5√5.故答案为5+5√5.12.答案:π6解析:【分析】先将y =√3sin2x ?cos2x 化为y =2sin(2x ?π6),然后再利⽤图象平移知识,求出g(x),根据g(x)是偶函数,则g(0)取得最值,求出φ.本题考查三⾓函数图象变换的⽅法以及性质,将奇偶性、对称性与函数的最值联系起来,是此类问题的常规思路,属于中档题.【解答】解:由已知得y =√3sin2x ?cos2x =2(sin2x ?√32cos2x 12)=2sin(2x π6).所以g(x)=2sin[2(x ?φ)?π6],由g(x)是偶函数得g(0)=2sin(?2φ?π6)=±2,∴?2φ?π6=π2+kπ,k ∈Z ,∴φ=?π3kπ2,k ∈Z ,当k =?1时,φ=π6即为所求.故答案为:π6.13.答案:(√32,√3]解析:【分析】本题考查正、余弦定理,三⾓函数恒等变换的应⽤,正弦函数的性质,考查了计算能⼒和转化思想,属于中档题.由题意可得⾓B和边b,然后利⽤正弦定理,三⾓函数恒等变换的应⽤可求a+c=√3sin(A+π6),66<5π6,利⽤正弦函数的性质可求其取值范围.【解答】解:∵在ΔABC中,cosB+√3sinB=2,∴2(12cos?B+√32sin?B)=2,即2sin(B+π6)=2,所以B+π6=π2,B=π3,⼜cosBb +cosCc=2√3sinA3sinC=2√3a3c,所以ccosB+bcosC=2√33ab,故c?a2+c2?b22ac +b?a2+b2?c22ab=2√3即a=2√33ab,解得b=√32,∴由正弦定理可得bsinB =√32√32=1=asinA=csinC,故a=sinA,c=sinC,所以a+c=sinA+sinC=sinA+sin(2π3A)=sinA+√32cosA+12sinA=32sinA+√32cosA=√3sin(A+π63,π66<5π6,所以sin(A+π6)∈(12,1]∴a+c=√3sin(A+π6)∈(√32,√3].故答案为(√32,√3].14.答案:;[?√34,12]解析:【分析】本题主要考查了两⾓和与差的三⾓函数公式、⼆倍⾓公式、函数的单调区间以及函数的值域,属于基础题.由题意化简可得,且,,由此即可得到函数的单调减区间以及值域.【解答】解:=sinx (12cosx ?√32sinx)+√34=14sin2x ?√32sin 2x +√34 =14sin2x +√34cos2x ,令,解得,,令k =0,可得,即函数的单调减区间为,此时,,即函数的值域为[?√34,12],故答案为;[?√34,12].15.答案:解:(1)由题意可设AD =2k ,AB =3k(k >0).∵BD =√7,∠DAB =π3,∴由余弦定理,得(√7)2=(3k)2+(2k)2?2×3k ×2kcos π3,解得k =1,∴AD =2,AB =3..(2)∵AB ⊥BC ,,,,∴CD =√7×2√77√32=4√33.解析:本题主要考查了余弦定理,⽐例的性质,正弦定理,同⾓三⾓函数之间的关系以及特殊⾓的三⾓函数值在解三⾓形中的综合应⽤,考查了计算能⼒和转化思想,属于中档题.(1)在△ABC 中,由已知及余弦定理,⽐例的性质即可解得AD =2,AB =3,由正弦定理即可解得sin∠ABD 的值;(2)由(1)可求cos∠DBC ,利⽤同⾓三⾓函数关系式可求sin∠DBC 的值,利⽤正弦定理即可计算得解.16.答案:解:(1)由题意得:A =3,T2=2π,则T =4π,即ω=2πT=12,所以f(x)=3sin(12x +φ),⼜f(x)的图象经过点(0,32),则32=3sinφ,由|φ|<π2得φ=π6,所以f(x)=3sin(12x +π6); (2)由题意得,f(x)?k =0在x ∈[0,11π3]有且仅有两个解x 1,x 2,即函数y =f(x)与y =k 在x ∈[0,11π3]且仅有两个交点,由x ∈[0,11π3]得,12x +π6∈[π6,2π],则f(x)=3sin(12x +π6)∈[?3,3],设t =12x +π6,则函数为y =3sint ,且t ∈[π6,2π],画出函数y =3sint 在t ∈[π6,2π]上的图象,如图所⽰:由图可知,k 的取值范围为:k ∈(?3,0]∪[3 2,3),当k ∈(?3,0]时,由图可知t 1,t 2关于t =3π2对称,即x =83π对称,所以x 1+x 2=16π3当k ∈[32,3)时,由图可知t 1,t 2关于t =π2对称,即x =23π对称,所以x 1+x 2=4π3,综上可得,x 1+x 2的值是16π3或4π3.解析:(1)由题意求出A 和周期T ,由周期公式求出ω的值,将点(0,32)代⼊化简后,由φ的范围和特殊⾓的三⾓函数值求出φ的值,可得函数f(x)的解析式;(2)将⽅程的根转化为函数图象交点问题,由x 的范围求出12x +π6的范围,由正弦函数的性质求出f(x)的值域,设设t =12x +π6,函数画出y =3sint ,由正弦函数的图象画出y =3sint 的图象,由图象和条件求出k 的范围,由图和正弦函数的对称性分别求出x 1+x 2的值.本题考查了形如f(x)=Asin(ωx +φ)的解析式的确定,正弦函数的性质与图象,以及⽅程根转化为函数图象的交点问题,考查分类讨论思想,数形结合思想,以及化简、变形能⼒.17.答案:解:(1)由m⊥n ? ,可得b(cosA ?2cosC)+(a ?2c)cosB =0,根据正弦定理可得,sinBcosA ?2sinBcosC +sinAcosB ?2sinCcosB =0∴(sinBcosA +sinAcosB)?2(sinBcosC +sinCcosB)=0∴sin(A +B)?2sin(B +C)=0,∵A +B +C =π,∴sinC ?2sinA =0,所以(2)由(1)得:c =2a ,因为a =2,|m |=3√5,所以c =4,b =3,所以cosA =32+42?222×3×4=78,因为A ∈(0,π),所以sinA =√1?(78)2=√158,所以△ABC 的⾯积为=12bcsinA =12×3×4×√158=3√154解析:本题考查平⾯向量的数量积、垂直的应⽤、考查两⾓和与差的三⾓函数、正弦定理、余弦定理以及三⾓形⾯积公式的运⽤,考查计算能⼒和转化能⼒,属于中档题.(1)由⊥m n?,可得b(cosA?2cosC)+(a?2c)cosB=0,根据正弦定理可得,sinBcosA?2sinBcosC+sinAcosB?2sinCcosB=0,化简即可;(2)由(1)c=2a可求c,由|m |=3√5可求b,结合余弦定理可求cos A,利⽤同⾓平⽅关系可求sin A,代⼊三⾓形的⾯积公式S=12bcsinA可求.18.答案:解:(1)∵tan?α=34,∴tan?(α+π4)=tanα+tanπ41?tanα·tanπ4=34+11?34×1=7.(2)sin?20°sin?40°?cos?20°cos?40°=?(cos?20°cos?40°?sin20°sin40°)=?cos(?20°+?40°)=?cos60°=?12.解析:本题主要考查了两⾓和差公式,三⾓函数的化简与求值,属于较易题.(1)利⽤两⾓和的正切公式直接代值求解.(2)sin?20°sin?40°?cos?20°cos?40°=?(cos?20°cos?40°?sin20°sin40°),利⽤两⾓和的余弦公式求解.19.答案:解:,∴ab=4 ①,⼜c2=a2+b2?2abcosC,c=2,∴a2+b2?2ab=4 ②,由①②得a+b=4;(2)∵√3(bsinC?ccosBtanC)=a,∴∵√3(sinBsinC?sinCcosBcosCsinC)=sinA,∴?√3cos(B+C)=sinA,∴tanA=√3,⼜,.解析:本题考查解三⾓形和三⾓恒等变换,考查推理能⼒和计算能⼒,属于⼀般题.(1)利⽤三⾓形的⾯积公式和余弦定理即可求解;(2)由正弦定理和三⾓恒等变换公式得tanA=√3,结合范围即可求出A.20.答案:解:(1)设该扇形的半径为r⽶,连接CO.由题意,得CD=500(⽶),DA=300(⽶),∠CDO=60°,在△CDO中,CD2?+OD2?2CD?OD?cos60°=OC2,即,5002+(r?300)2??2×500×(r?300)×1 2=r?2,解得r=490011≈445(⽶).(2)连接OC,设∠DOC=θ,θ∈(0,2π3),在△DOC中,由正弦定理得:CDsinθ=DOsin(2π3θ)=OCsinπ3=√3,于是CD=3,DO=3sin(2π3θ),则DC+DO=√3+sin(2π3θ)]=2asin(θ+π6),θ∈(0,2π3),所以当θ=π3时,DC+DO最⼤为 2a,此时C在弧AB的中点处.解析:本题主要考查解三⾓形在实际问题中的运⽤,属于中档题.(1)连接OC,由CD//OB知∠CDO=60°,可由余弦定理得到OC的长度.(2)连接OC,设∠DOC=θ,θ∈(0,2π3),由正弦定理,三⾓恒等变换可求DC+DO=2asin(θ+π6),θ∈(0,2π3),利⽤正弦函数的性质可求最⼤值,即可得解.。

高一数学(人教版)必修四单元测试:三角函数(word版,有答案)

高一数学(人教版)必修四单元测试:三角函数(word版,有答案)

高一数学三角函数部分单元试卷班级________ 姓名__________学号________一、 选择题(每题5分)1. 集合|,24k M x x k Z ππ⎧⎫==+∈⎨⎬⎩⎭,|,42k N x x k Z ππ⎧⎫==+∈⎨⎬⎩⎭( ) (A)M N = (B)M N ≠⊂ (C) N M ≠⊂ (D)M N φ=2.下列函数中,周期为π,且在[,]42ππ上为减函数的是 ( )(A )sin ||y x =-(B )cos ||y x =(C )sin(2)2y x π=+ (D )cos(2)2y x π=+ 3.如果1cos()2A π+=-,那么sin()2A π+的值是 ( )(A ).12-(B )12(C )4.已知1sin 1a a θ-=+,31cos 1a aθ-=+,若θ为第二象限角,则下列结论正确的是( ) (A ).1(1,)3a ∈- (B ). 1a = (C). 119a a ==或 (D). 19a = 5. 方程cos x x =在(,)-∞+∞内 ( )(A).没有根 (B).有且只有一个根 (C).有且仅有两个根 (D).有无穷多个根 6. 设将函数()cos (0)f x x ωω=>的图像向右平移3π个单位后与原图像重合,则ω的最小值是 (A )13(B ) 3 (C ) 6 (D ) 9 7.为了得到函数sin(2)3y x π=-的图像,只需把函数sin(2)6y x π=+的图像 ( )(A )向左平移4π个长度单位 (B )向右平移4π个长度单位 (C )向左平移2π个长度单位 (D )向右平移2π个长度单位8.已知函数()sin(2),f x x ϕ=+其中ϕ为实数. 若()()6f x f π≤对x R ∈恒成立,且()()2f f ππ>,则()f x 的单调递增区间是 ( )A . ,()36k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦ B. ,()2k k k Z πππ⎡⎤+∈⎢⎥⎣⎦C . 2,()63k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦ D . ,()2k k k Z πππ⎡⎤-∈⎢⎥⎣⎦二、填空题(每题4分)9.函数sin y x ω=和函数tan (0)y x ωω=>的最小正周期之和为π,则ω=________ 10.已知α、β∈[-π2,π2]且α+β<0,若sin α=1-m ,sin β=1-m 2,则实数m 的取值范围是_________________11.令tan a θ=,sin b θ=,cos c θ=,若在集合π3π,44θθθ⎧-<<≠⎨⎩ππ0,,42⎫⎬⎭中,给θ取一个值,,,a b c三数中最大的数是b ,则θ的值所在范围是____________ 12.若函数()2sin (01)f x x ωω=<<在闭区间0,3π⎡⎤⎢⎥⎣⎦2,则ω的值为______ 13.22sin120cos180tan 45cos (330)sin(210)︒+︒+︒--︒+-︒=_______三、解答题(每题10分)14. 已知tan 2α=,计算①2cos()cos()2sin()3sin()2παπαπαπα+----+ ②33sin cos sin 2cos αααα-+15. 已知函数3)62sin(3)(++=πx x f(1(2)指出)(x f16.已知在ABC ∆中,17sin cos 25A A += ①求sin cos A A②判断ABC ∆是锐角三角形还是钝角三角形 ③求tan A 的值17.已知函数lg cos(2)y x ,(1)求函数的定义域、值域; (2)讨论函数的奇偶性;(3)讨论函数的周期性 (4)讨论函数的单调性高一数学三角函数部分试卷参考答案一、 选择题(每小题3分,共40分)二、 填空题(每小题4分,共20分)9. 3 10.11. 3(,)24ππ 12. 3413. 1三.解答题:(本大题共4小题,共40分,解答应写出文字说明,证明过程或演算步骤) 14.解 (1)tan 2α=2sin cos 2tan 13cos 3sin 13tan 7αααααα-+-+∴==-++原式=(5分)(2)322322sin cos (sin cos )sin 2cos sin cos αααααααα-+=++原式()3232tan tan 11tan 2tan 26αααα--==++ (10分) 15解:(1)图略 (5分) (2)04,3,6T A ππϕ===,22()3x k k Z ππ=+∈对称轴 3ππ对称中心(-+2k ,3), (10分)16解:(1)17sin cos 25A A +=两边平方得 21712sin cos 25A A ⎛⎫+= ⎪⎝⎭336sin cos 625A A =-.......(3分)(2)17sin cos 125A A +=< 2A π∴>,ABC ∆为钝角三角形 ..................(6分)(3)2217sin cos 25sin cos 1A A A A ⎧+=⎪⎨⎪+=⎩ 得24sin 257cos 25A A ⎧=⎪⎪⎨-⎪=⎪⎩24tan 7∴=- ....(10分)17. 解(1)定义域(,)()44k k k Z ππππ-++∈ 值域(,0]-∞ ....(3分)(2) 偶函数 ........(5分) (3)T π= ........(8分) (4)增区间(,)()4k k k Z πππ-+∈减区间(,)()4k k k Z πππ+∈ ........(10分)。

新人教版高中数学必修第一册第五单元《三角函数》测试题(包含答案解析)

新人教版高中数学必修第一册第五单元《三角函数》测试题(包含答案解析)

一、选择题1.将函数()22sin cos f x x x x =+的图象向右平移π6个单位长度后,得到函数()g x 的图象,则函数()g x 的图象的一个对称中心是( )A .π,03⎛⎫⎪⎝⎭B.(πC .π,06⎛⎫-⎪⎝⎭D.π6⎛-⎝ 2.在ABC 中,tan sin cos A B B <,则ABC 的形状是( ) A .锐角三角形 B .直角三角形 C .钝角三角形D .不确定3.将函数()sin 2cos 2f x x x =+的图象向左平移12π个单位长度后,得到函数()g x 的图象,则函数()g x 图象的一条对称轴方程为( ) A .6x π=B .12x π=C .3x π=D .24x π=4.将函数()f x 的图象向左平移02πϕϕ⎛⎫<<⎪⎝⎭个单位后得到函数()sin 2g x x =的图象,若对满足()()122f x g x -=的1x ,2x ,有12min3x x π-=,则ϕ=( ) A .512π B .3π C .4π D .6π 5.已知函数()cos 2cos sin(2)sin f x x x ϕπϕ=⋅-+⋅在3x π=处取得最小值,则函数()f x 的一个单调递减区间为( )A .4,33ππ⎛⎫⎪⎝⎭B .2,33ππ⎛⎫-⎪⎝⎭ C .5,36ππ⎛⎫⎪⎝⎭D .,63ππ⎛⎫-⎪⎝⎭ 6.设1cos 29sin 2922a=-,b =22tan161tan 16c =+,则有( ) A .a b c >>B .b c a >>C .c a b >>D .c b a >>7.已知3πin 325s α⎛⎫+= ⎪⎝⎭,0απ<<,则tan α=( ) A .43-B .34-C .34D .438.若4cos 5θ=-,θ是第三象限的角,则1tan21tan 2θθ-=+( )A .12B .12-C .35D .-29.已知将向量13,2a ⎛= ⎝⎭绕起点逆时针旋转4π得到向量b ,则b =( )A .⎝⎭B .⎝⎭C .44⎛⎫⎪⎪⎝⎭ D .44⎛⎝⎭10.在ABC 中,2,6AB C π==,则AC 的最大值为( )A .B .C .D .11.刘徽是中国魏晋时期杰出的数学家,他提出“割圆求周”方法:当n 很大时,用圆内接正n 边形的周长近似等于圆周长,并计算出精确度很高的圆周率 3.1416π≈.在《九章算术注》中总结出“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣”的极限思想,可以说他是中国古代极限思想的杰出代表.运用此思想,当π取3.1416时可得cos89︒的近似值为( ) A .0.00873B .0.01745C .0.02618D .0.0349112.已知tan 2α=,则sin sin 44ππαα⎛⎫⎛⎫-+= ⎪ ⎪⎝⎭⎝⎭( ) A .310-B .310 C .35D .35二、填空题13.已知角θ和角ϕ的始边均与x 轴正半轴重合,终边互相垂直,若角θ的终边与单位圆交于点01,3P x ⎛⎫ ⎪⎝⎭,则cos ϕ=__________________.14.已知函数()sin 2cos 2f x x a x =+,对x R ∀∈,|()|8f x f π⎛⎫≤⎪⎝⎭成立,则a =_______.15.已知()0,απ∈且tan 3α=,则cos α=______.16.若()5sin 4513α︒+=,则()sin 225α︒+=________. 17.已知一扇形的圆心角为3π,弧长是cm π,则扇形的面积是__________2cm .18.已知函数()()()2cos 0,0f x x ωϕωϕπ=+><<的图象关于原点对称,且在区间2,23ππ⎡⎤-⎢⎥⎣⎦上是减函数,则ω的取值范围为______.19.将函数()cos 2f x x =图象上的所有的点向左平移4π个单位长度后,得到函数g (x )的图象,如果g (x )在区间[0]a ,上单调递减,那么实数a 的最大值为_________. 20.已知:3sin 25πα⎛⎫+= ⎪⎝⎭,且α为第四象限角,则cos 4πα⎛⎫+= ⎪⎝⎭___________. 三、解答题21.已知函数2()2sin 23sin cos 1f x x x x =++.求: (1)()f x 的最小正周期; (2)()f x 在0,2π⎡⎤⎢⎥⎣⎦上的最值. 22.已知 3sin 5α=,12cos 13,,2παπ⎛⎫∈ ⎪⎝⎭,3,2πβπ⎛⎫∈ ⎪⎝⎭求sin()αβ+,cos()αβ-,tan2α的值.23.如图,以坐标原点O 为圆心的单位圆与x 轴正半轴相交于点A ,点B ,P 在单位圆上,且525,B ⎛⎫- ⎪ ⎪⎝⎭,AOB α∠=.(1)求4cos 3sin 5cos 3sin -+αααα的值;(2)若四边形OAQP 是平行四边形,(i )当P 在单位圆上运动时,求点Q 的轨迹方程;(ii )设0)2(POA θθπ∠=≤≤,点(,)Q m n ,且()3f m n θ=+.求关于θ的函数()f θ的解析式,并求其单调增区间.24.已知函数()()1cos sin cos 2f x x x x =+-. (Ⅰ)若0,2πα<<且1sin 3α=.求()f α; (Ⅱ)求函数()f x 的最小正周期及单调递增区间.25.如图为函数()sin()(0,0,||)2f x A x A πωφωφ=+>><的一个周期内的图象.(1)求函数()f x 的解析式及单调递减区间; (2)当1,43x ⎛⎫∈ ⎪⎝⎭时,求()f x 的值域.26.如图,在平面直角坐标系xOy 中,角θ的终边与单位圆交于点P .(1)若点P 的横坐标为35,求cos2sin cos θθθ-⋅的值. (2)若将OP 绕点O 逆时针旋转4π,得到角α(即4παθ=+),若1tan 2α=,求tan θ的值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】首先利用二倍角公式及辅助角公式将函数()f x 化简 ,再根据三角函数的变换规则求出()g x 的解析式,最后根据正弦函数的性质求出函数的对称中心;【详解】解:()22sin cos 23f x x x x =+())sin 23cos21f x x x ∴=+ ()sin 233f x x x ∴=()π2sin 233f x x ⎛⎫∴=++ ⎪⎝⎭将()f x 向右平移π6个单位长度得到()g x , ()ππ2sin 263g x x ⎡⎤⎛⎫∴=-+ ⎪⎢⎥⎝⎭⎣⎦()2sin 2g x x ∴=∴()g x 的对称中心为()π2k k ⎛∈ ⎝Z ,当2k =时为(π. 故选:B.2.C解析:C 【详解】∵tan sin cos A B B <,∴sin sin cos cos A BB A<,若A 是钝角,此不等式显然成立,三角形为钝角三角形,若A 是锐角,则sin sin cos cos A B A B <,cos cos sin sin cos()0A B A B A B -=+>,,A B 是三角形内角,∴02A B π<+<,从而()2C A B ππ=-+>,C 为钝角,三角形仍然为钝角三角形. 故选:C . 【点睛】易错点睛:本题考查三角形形状的判断.解题过程中,由sin sin cos cos A BB A<常常直接得出sin sin cos cos A B A B <,然后可判断出C 是钝角,三角形是钝角三角形,也选择了正确答案,但解题过程存在不全面.即应该根据A 角是锐角还是钝角分类讨论.实际上就是不等式性质的应用要正确.3.D解析:D 【分析】由()24f x x π⎛⎫=+ ⎪⎝⎭,向左平移12π个单位长度得到()5212g x x π⎛⎫=+ ⎪⎝⎭,再令52122x k πππ+=+求解. 【详解】因为函数()sin 2cos 224f x x x x π⎛⎫=+=+ ⎪⎝⎭,由题意得()5212g x x π⎛⎫=+ ⎪⎝⎭,所以52122x k πππ+=+, 解得1,224x k k Z ππ=+∈, 故选:D4.D解析:D 【分析】利用三角函数的最值,取自变量1x 、2x 的特值,然后判断选项即可. 【详解】因为函数()sin 2g x x =的周期为π,由题意可得:()()sin 2x f x ϕ=-⎡⎤⎣⎦, 若()()122f x g x -=,两个函数的最大值与最小值的差等于2,有12min3x x π-=,所以不妨取24x π=,则1712x π=,即()()sin 2x f x ϕ=-⎡⎤⎣⎦在1712x π=取得最小值, 所以77121s 12in 2f ϕππ⎛⎫=-=- ⎪⎡⎤⎛⎫⎪⎢⎝⎥⎭⎣⎦⎭⎝,此时5+,6k k Z πϕπ=∈,又02πϕ<<,所以此时不符合题意,取24x π=,则112x π=-,即()()sin 2x f x ϕ=-⎡⎤⎣⎦在112x π=-取得最小值, 所以12sin 21ϕπ⎡⎤⎛⎫-=- ⎪⎢⎥⎝⎭⎣⎦-,此时,6k k Z πϕπ=-∈,当0k =时,6π=ϕ满足题意,故选:D . 【点睛】本题考查三角函数的图象的平移,三角函数性质之最值,关键在于取出2x ,得出1x ,再利用正弦函数取得最小值的点,求得ϕ的值,属于中档题.5.D解析:D 【分析】先化简()f x 并根据已知条件确定出ϕ的一个可取值,然后根据余弦函数的单调递减区间求解出()f x 的一个单调递减区间. 【详解】 因为()()()cos2cos sin 2sin cos2cos sin 2sin cos 2f x x x x x x ϕπϕϕϕϕ=⋅-+⋅=⋅+⋅=-,且()f x 在3x π=处有最小值,所以2cos 133f ππϕ⎛⎫⎛⎫=-=-⎪ ⎪⎝⎭⎝⎭,所以22,3k k Z πϕππ-=+∈, 所以2,3k k Z πϕπ=--∈,取ϕ的一个值为3π-, 所以()cos 23f x x π⎛⎫=+ ⎪⎝⎭,令222,3k x k k Z ππππ≤+≤+∈, 所以,63k x k k Z ππππ-≤≤+∈,令0k =,所以此时单调递减区间为,63ππ⎡⎤-⎢⎥⎣⎦, 故选:D. 【点睛】思路点睛:求解形如()()cos f x A x ωϕ=+的函数的单调递减区间的步骤如下: (1)先令[]2,2+,k k k x Z ωϕπππ+∈∈;(2)解上述不等式求解出x 的取值范围即为()f x 的单调递减区间.6.B解析:B 【分析】由两角差的正弦公式,余弦和正正弦的二倍角公式化简,,a b c ,然后由正弦函数的单调性得出结论. 【详解】129si sin(6029)si 3n 29122n a =︒-︒=︒=-, b =sin 33==︒,2222sin162tan16cos162sin16sin 161tan 161c cos16sin 32os 16c ===︒︒︒︒=︒︒︒++, 显然sin31sin32sin33︒<︒<︒,所以a c b <<. 故选:B . 【点睛】关键点点睛:本题考查三角函数值的比较大小,解题方法是首先化简各函数,应用三角函数恒等变换公式化简函数,注意转化为同一个三角函数,并且把角转化到三角函数的同一单调区间上,然后由三角函数的单调性得大小关系.7.A解析:A【分析】根据诱导公式,可得cos α的值,根据同角三角函数的关系,结合α的范围,可求得sin α的值,即可求得答案. 【详解】因为3πin 325s α⎛⎫+=⎪⎝⎭,所以3cos 5α=-,所以4sin 5α===±, 又0πα<<,所以α为第二象限角,所以4sin 5α 所以sin tan s 43co ααα==-. 故选:A .8.D解析:D 【分析】根据4cos 5θ=-,θ是第三象限的角,先利用半角公式求得tan 2θ,然后代入1tan21tan 2θθ-+求解. 【详解】因为θ为第三象限角, 所以2θ可能为二、四象限角,所以tan 32θ===-, 所以1tan1322131tan2θθ-+==--+. 故选:D.9.C解析:C 【分析】先求出a 与x 轴正方向的夹角为3πθ=,即可得b 与x 轴正方向的夹角为73412πππα=+=, 再利用向量坐标的定义即可求解. 【详解】设a 的起点是坐标原点,a 与x 轴正方向的夹角为θ,1a =由13,2a ⎛= ⎝⎭可得2tan 12θ==3πθ=, 设b 与x 轴正方向的夹角为α,则73412πππα=+=且1b =因为7sinsin sin cos cos sin 12434343y πππππππ⎛⎫==+=⨯+⨯=⎪⎝⎭7coscos cos cos sin sin 12434343x πππππππ⎛⎫==+=⨯-⨯=⎪⎝⎭故2,44b ⎛⎫-= ⎪ ⎪⎝⎭, 故选:C.10.B解析:B 【分析】将AC +表示为角的形式,结合三角函数最值的求法,求得AC 的最大值. 【详解】有正弦定理得24sin sin sin sin 6a b c A B C π====, 所以4sin ,4sin a Ab B ==,所以AC+4sinb B A =+=+()4sin 4sin 6B B CB B π⎛⎫=++=++ ⎪⎝⎭4sin sin cos cos sin 66B B B ππ⎫=++⎪⎭14sin cos 2B B B⎫=++⎪⎪⎭()()10sin B B B B ϕϕ=+=+=+.其中tan 010536πϕϕ==<⇒<<, 由于566B ππ<<,所以3B πϕπ<+<,故当2B πϕ+=时,AC +的最大值为故选:B 【点睛】要求与三角形边长有关的最值问题,可以利用正弦定理将边转化为角,然后利用三角函数的最值的求法来求最值.11.B解析:B 【分析】根据cos89sin1︒=,将一个单位圆分成360个扇形,由这360个扇形的面积之和近似为单位圆的面积求解. 【详解】因为()cos89cos 901sin1︒=-=,所以将一个单位圆分成360个扇形,则每一个扇形的圆心角为1︒, 所以这360个扇形的面积之和近似为单位圆的面积,即2136011sin112π⨯⨯⨯⨯≈,所以 3.1416sin10.01745180180π≈≈≈, 故选:B12.B解析:B 【分析】利用两角和与差的正弦公式、同角三角函数的基本关系式化简所求表达式,由此求得所求表达式的值. 【详解】sin sin sin cos cos sin sin cos cos sin 444444ππππππαααααα⎛⎫⎛⎫⎛⎫⎛⎫-+=-⋅+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭()22222211sin cos sin cos 22sin cos αααααα-=-=⨯+ 221tan 114132tan 124110αα--=⨯=⨯=++. 故选:B二、填空题13.【分析】由题意可得:利用已知条件可以求出利用即可求解【详解】因为角和角的始边均与轴正半轴重合终边互相垂直所以若角的终边与单位圆交于点所以则故答案为:解析:13±【分析】由题意可得:,2k k Z πϕθπ=++∈,利用已知条件可以求出1sin 3θ=,利用 cos sin ϕθ=±即可求解.【详解】因为角θ和角ϕ的始边均与x 轴正半轴重合,终边互相垂直, 所以,2k k Z πϕθπ=++∈,若角θ的终边与单位圆交于点01,3P x ⎛⎫ ⎪⎝⎭,所以1sin 3θ=, 则1cos sin 3ϕθ=±=±, 故答案为:13±14.1【分析】利用辅助角公式和为的形式:根据已知可得是f(x)的图象的对称轴进而求得利用的关系和诱导公式求得的值【详解】解:其中∵对成立∴是f(x)的图象的对称轴即∴故答案为:1【点睛】本题考查三角函数解析:1 【分析】利用辅助角公式和为()Asin x ωϕ+的形式:()sin 2cos2)f x x a x x ϕ=+=+,根据已知可得π8x =是f(x)的图象的对称轴,进而求得ϕ,利用,a ϕ的关系tan a ϕ=和诱导公式求得a 的值. 【详解】解:()sin 2cos2)f x x a x x ϕ=+=+, 其中sin tan a ϕϕϕ===.∵对x R ∀∈,|()|8f x f π⎛⎫≤⎪⎝⎭成立,∴π8x =是f(x)的图象的对称轴,即π2,82k k Z πϕπ⨯+=+∈, ∴,4k k Z πϕπ=+∈,tan 1a ϕ==,故答案为:1. 【点睛】本题考查三角函数的图象和性质,涉及辅助角公式化简三角函数,利用辅助角化简是前提,理解,a ϕ的关系是基础,由对x R ∀∈,|()|8f x f π⎛⎫≤ ⎪⎝⎭成立,得出π8x =是f(x)的图象的对称轴是关键.15.【分析】本题考查同角三角函数及其关系借助公式求解即可求解时需要判定符号的正负【详解】解:法一:由可得代入解得因为所以所以法二:由且可取终边上的一点坐标为根据三角函数终边定义公式故答案为:【点睛】方法【分析】本题考查同角三角函数及其关系,借助公式sin tan cos ααα=,22sin +cos =1αα求解即可,求解时需要判定符号的正负. 【详解】解:法一:由sin tan =3cos ααα=可得sin =3cos αα,代入22sin +cos =1αα解得cos α= 因为()0,tan 30απα∈=>,,所以0,2πα⎛⎫∈ ⎪⎝⎭,所以cos α=. 法二:由()0,απ∈且tan 3α=可取α终边上的一点坐标为(1,3),根据三角函数终边定义公式cos 10α===.【点睛】方法点睛:同角三角函数基本关系的3个应用技巧:(1)弦切互化利用公式sin tan ()cos 2k απααπα=≠+实现角α的弦切互化; (2)和(差)积转换利用2(sin cos )=1sin 2ααα±±进行变形、转化;(3)巧用“1”的变换22222211sin+cos =cos (tan 1)sin (1)tan αααααα=+=+. 16.【分析】直接利用诱导公式计算可得;【详解】解:因为故答案为: 解析:513-【分析】直接利用诱导公式计算可得; 【详解】解:因为()5sin 4513α︒+=,()()()5sin 225sin 45180sin 4513ααα︒+=︒++︒=-︒+=-⎡⎤⎣⎦ 故答案为:513-17.【分析】先由弧长公式求出扇形所在圆的半径再根据扇形面积公式即可得出结果【详解】因为一扇形的圆心角为弧长是所以其所在圆的半径为因此该扇形的面积是故答案为:解析:32π【分析】先由弧长公式求出扇形所在圆的半径,再根据扇形面积公式,即可得出结果. 【详解】因为一扇形的圆心角为3π,弧长是cm π, 所以其所在圆的半径为33r ππ==,因此该扇形的面积是1133222S lr ππ==⨯⨯=. 故答案为:32π. 18.【分析】由函数图象关于原点对称可得再由在区间上是增函数可得解不等式即可【详解】由函数的图象关于原点对称得即因为在区间上是减函数所以在区间上是增函数又是函数的单调递增区间所以又解得故答案为:解析:30,4⎛⎤⎥⎝⎦【分析】由函数图象关于原点对称可得2ϕπ=,再由2sin y x ω=在区间2,23ππ⎡⎤-⎢⎥⎣⎦上是增函数,可得22232ππωππω⎧-≤-⎪⎪⎨⎪≤⎪⎩,解不等式即可.【详解】由函数()()()2cos 0,0f x x ωϕωϕπ=+><<的图象关于原点对称,得2ϕπ=, 即()2cos 2sin 2f x x x πωω⎛⎫=+=- ⎪⎝⎭,因为()f x 在区间2,23ππ⎡⎤-⎢⎥⎣⎦上是减函数, 所以2sin y x ω=在区间2,23ππ⎡⎤-⎢⎥⎣⎦上是增函数, 又,22ππωω⎡⎤-⎢⎥⎣⎦是函数2sin y x ω=的单调递增区间, 所以22232ππωππω⎧-≤-⎪⎪⎨⎪≤⎪⎩,又0>ω,解得304ω<≤.故答案为:30,4⎛⎤ ⎥⎝⎦19.【分析】求出的平移后的解析式再利用函数在区间上是单调递减函数从而得到的最大值【详解】由题意将函数的图象向左平移个单位长度得到函数的图象因为函数在区间上是单调递减所以解得所以实数的最大值为故答案为:解析:4π【分析】求出()y g x =的平移后的解析式,再利用函数()g x 在区间0,2π⎡⎤⎢⎥⎣⎦上是单调递减函数,从而得到a 的最大值. 【详解】由题意,将函数()cos 2f x x =的图象向左平移4x个单位长度,得到函数()cos 2+n 4si 2g x x x π⎡⎤⎛⎫==- ⎪⎢⎥⎝⎭⎣⎦的图象,因为函数()g x 在区间[0]a ,上是单调递减,所以022a π<≤,解得04a π<≤,所以实数a 的最大值为4π. 故答案为:4π. 20.【分析】由诱导公式求得然后由平方关系求得再由两角和的余弦公式可得结论【详解】由已知又为第四象限角∴∴故答案为:解析:10【分析】由诱导公式求得cos α,然后由平方关系求得sin α,再由两角和的余弦公式可得结论. 【详解】 由已知3sin cos 25παα⎛⎫+== ⎪⎝⎭,又α为第四象限角,∴4sin 5α=-,∴34cos cos cos sin sin ()444525210πππααα⎛⎫+=-=⨯--⨯= ⎪⎝⎭. 三、解答题21.(1)π;(2)最小值为1,最大值为4. 【分析】(1)由二倍角降幂,由两角差的正弦公式化函数为一个角的一个三角函数形式,然后结合正弦函数性质可求得最小正周期; (2)求出26x π-的范围,然后由正弦函数性质得最值.【详解】(1)因为2()2sin cos 1f x x x x =++1cos2cos 1x x x =-++2cos 22x x =-+2sin 226x π⎛⎫=-+ ⎪⎝⎭,所以()f x 的最小正周期22T ππ==.(2)因为02x π≤≤,所以52666x πππ-≤-≤. 所以1sin 2126x π⎛⎫-≤-≤ ⎪⎝⎭. 所以()2sin 22[1,4]6f x x π⎛⎫=-+∈ ⎪⎝⎭.即()f x 的最小值为1,最大值为4. 【点睛】方法点睛:本题考查两角差的正弦公式,二倍角公式,考查正弦函数的性质.此类问题的解题方法是:利用二倍角公式降幂,利用诱导公式、两角和与差的正弦(余弦)公式展开与合并,最终把函数化为()sin()f x A x m ωϕ=++形式,然后结合正弦函数性质求解. 22.1665-;3365;247- 【分析】由已知条件,利用同角三角函数基本关系结合角所在的象限求出cos α,sin β,以及tan α的值,再利用两角和的正弦公式,两角差的余弦公式,正切的二倍角公式即可求解.【详解】 因为,2παπ⎛⎫∈⎪⎝⎭,3sin 5α=,所以4cos 5α===-,因为3,2πβπ⎛⎫∈ ⎪⎝⎭,12cos 13,所以5sin 13β===-, 所以3124516sin()sin cos cos sin 51351365αβαβαβ⎛⎫⎛⎫⎛⎫+=+=⨯-+-⨯-=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 4123533cos()cos cos sin sin 51351365αβαβαβ⎛⎫⎛⎫⎛⎫-=+=-⨯-+⨯-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭因为sin 3tan cos 4ααα==-,所以22322tan 244tan 21tan 7314ααα⎛⎫⨯- ⎪⎝⎭===--⎛⎫-- ⎪⎝⎭, 综上所述:16sin()65αβ+=-,33cos()65αβ-=,24tan 27α=-. 23.(1)10-;(2)(i )22(1)1x y -+=;(ii )()2sin 16f πθθ⎛⎫=++ ⎪⎝⎭;增区间为0,3π⎡⎤⎢⎥⎣⎦和4,23ππ⎡⎤⎢⎥⎣⎦. 【分析】(1)由三角函数定义得tan 2α,再弦化切代入计算,即可求4cos 3sin 5cos 3sin -+αααα的值;(2)(i )设PA 中点为H ,()11,P x y ,(),Q x y ,则22111x y +=,111,22x y H +⎛⎫⎪⎝⎭,由此可求点O 的轨迹方程;(ii)确定()cos 12sin 16f πθθθθ⎛⎫=++=++ ⎪⎝⎭,即可求其单调增区间. 【详解】解:(1)由三角函数定义得tan 2α==-,所以44cos 3sin 5cos 3si 3tan 1010tan 1n 53αααααα-===-+--+.(2)∵四边形OAQP 是平行四边形,∴PA 与OQ 互相平分,(i )设PA 中点为H ,()11,P x y ,(),Q x y ,则22111x y +=,111,22x y H +⎛⎫⎪⎝⎭, 又,22x y H ⎛⎫⎪⎝⎭,所以111x x y y =-⎧⎨=⎩, 代入上式得点Q 的轨迹方程为22(1)1x y -+=. (ii )因为0)2(POA θθπ∠=≤≤,所以11cos sin x y θθ=⎧⎨=⎩,又由(i )知111x m y n =-⎧⎨=⎩,∴cos 1sin m n θθ=+⎧⎨=⎩,∴()cos 12sin 16f πθθθθ⎛⎫=+=++ ⎪⎝⎭∵22,26202k k k ππππθπθπ⎧-≤+≤+∈⎪⎨⎪≤≤⎩Z , ∴03πθ≤≤或423πθπ≤≤,∴()fθ的增区间为0,3π⎡⎤⎢⎥⎣⎦和4,23ππ⎡⎤⎢⎥⎣⎦. 【点睛】方法点睛:求轨迹方程的常用方法(1)直接法:如果动点满足的几何条件本身就是一些几何量,如(距离和角)的等量关系,或几何条件简单明了易于表达,只需要把这种关系转化为,x y 的等式,就能得到曲线的轨迹方程;(2)定义法:某动点的轨迹符合某一基本轨迹如直线、圆锥曲线的定义,则可根据定义设方程,求方程系数得到动点的轨迹方程;(3)几何法:若所求轨迹满足某些几何性质,如线段的垂直平分线,角平分线的性质,则可以用几何法,列出几何式,再代入点的坐标即可;(4)相关点法(代入法):若动点满足的条件不变用等式表示,但动点是随着另一动点(称之为相关点)的运动而运动,且相关点满足的条件是明显的或是可分析的,这时我们可以用动点的坐标表示相关点的坐标,根据相关点坐标所满足的方程,求得动点的轨迹方程;(5)交轨法:在求动点轨迹时,有时会出现求两个动曲线交点的轨迹问题,这类问题常常通过解方程组得出交点(含参数)的坐标,再消去参数参数求出所求轨迹的方程.24.(Ⅰ;(Ⅱ)最小正周期为π.3ππππ88k k ⎡⎤-+⎢⎥⎣⎦,.k Z ∈.【分析】 (Ⅰ)根据1sin 3α=以及α的范围,得到cos α,代入到()f α中,得到答案;(Ⅱ)对()f x 进行整理化简,得到()π24f x x ⎛⎫=+ ⎪⎝⎭,根据正弦型函数的图像和性质,求出其周期和单调减区间. 【详解】(Ⅰ)解:因为π02α<<.且1sin 3α=.所以cos 3α==.故()()17cos sin cos 218f αααα=+-=. (Ⅱ)解:因为 ()21sin cos cos 2f x x x x =+-11cos 21sin 2222x x +=+-11πsin 2cos 22224x x x ⎛⎫=+=+ ⎪⎝⎭. 所以函数()f x 的最小正周期为π.设π24t x =+.由y t =的单调递增区间是ππ2π 2π22k k ⎡⎤-+⎢⎥⎣⎦,.k Z ∈. 令πππ2π22π242k x k -++≤≤.解得3ππππ88k x k -+≤≤.k Z ∈.故函数()f x 的单调递增区间为3ππππ88k k ⎡⎤-+⎢⎥⎣⎦,.k Z ∈.【点睛】本题考查同角三角函数关系,利用二倍角公式、降幂公式、辅助角公式对三角函数进行化简,求正弦型函数的周期和单调区间,属于基础题.25.(1)()2sin()44f x x ππ=+,[]8 1.85,k k k Z ++∈;(2)(2⎤⎦. 【分析】(1)由图可求出()2sin()44f x x ππ=+,令322()2442k x k k Z ππππππ+≤+≤+∈,即可求出单调递减区间; (2)由题可得5,4434x ππππ⎛⎫+∈ ⎪⎝⎭,则可求得值域. 【详解】(1)由题图,知2,7(1)8A T ==--=, 所以2284T πππω===, 所以()2sin()4f x x πφ=+.将点(-1,0)代入,得2sin()04πφ-+=.因为||2πφ<,所以4πφ=,所以()2sin()44f x x ππ=+.令322()2442k x k k Z ππππππ+≤+≤+∈, 得8185()k x k k Z +≤≤+∈.所以()f x 的单调递减区间为[]8 1.85,k k k Z ++∈. (2)当1,43x ⎛⎫∈ ⎪⎝⎭时,5,4434x ππππ⎛⎫+∈ ⎪⎝⎭,此时sin()1244x ππ-<+≤,则()2f x <≤,即()f x 的值域为(2⎤⎦. 【点睛】方法点睛:根据三角函数()sin()f x A x ωϕ=+部分图象求解析式的方法: (1)根据图象的最值可求出A ;(2)求出函数的周期,利用2T πω=求出ω;(3)取点代入函数可求得ϕ. 26.(1)15(2)13-【分析】(1)由三角函数的定义知,3cos 5θ=-,4sin 5θ=,又2cos22cos 1θθ=-,代入即可得到答案;(2)利用公式()tan tan tan 1tan tan αβαβαβ--=+⋅计算即可.【详解】 (1)P 在单位圆上,且点P 的横坐标为35,则3cos 5θ=-,4sin 5θ=,2cos2sin cos 2cos 1sin cos θθθθθθ∴-⋅=--⋅93412125555⎛⎫=⨯---⨯= ⎪⎝⎭. (2)由题知4παθ=+,则4πθα=-则1tan tan1142tan tan 1431tan tan 142παπθαπα--⎛⎫=-===- ⎪⎝⎭+⋅+. 【点睛】本题考查二倍角公式以及两角差的正切公式的应用,涉及到三角函数的定义,是一道容易题.。

2023最新人教版高中数学必修一第五章《三角函数》单元测试(附答案解析)

2023最新人教版高中数学必修一第五章《三角函数》单元测试(附答案解析)

试卷第 4 页,共 4 页
1.C
参考答案:
【解析】运用诱导公式,结合特殊角的三角函数值即可化简求解..
【详解】 cos
150
cos150 cos(1800 300 ) cos 300
3, 2
故选:C.
【点睛】关键点点睛:该题考查的是有关三角函数化简求值问题,正确解题的关键是熟练应 用诱导公式以及熟记特殊角三角函数值. 2.A
答案第 2 页,共 12 页
【详解】 f (x) sin x cos
2
sin( x
π 4
)
,因为
x
a
,
b
,所以
x
π 4
a
π 4
,
b
π 4
,因
为 1
2
sin( x
π 4
)
2 ,所以
2 2
sin( x
π 4
)
1.
正弦函数
y
sin
x
在一个周期
π 2
,
3π 2
内,要满足上式,则
x
π 4
π 4
f
x
sin x
的图象过点
1 3
,1
,若
f
x 在2, a 内有
5

零点,则 a 的取值范围为______.
四、解答题
17.在① sin
6 3
,②
tan 2
2 tan 4 0 这两个条件中任选一个,补充到下面的
问题中,并解答.
已知角 a 是第一象限角,且___________.
(1)求 tan 的值;
S1 S2
2
1 2
可求得

(常考题)人教版高中数学必修第一册第五单元《三角函数》检测题(答案解析)

(常考题)人教版高中数学必修第一册第五单元《三角函数》检测题(答案解析)

一、选择题1.函数()2sin(2)33f x x π=-+的最小正周期为( )A .2π B .πC .2πD .4π2.已知函数()()sin 0,2f x A x πωϕωϕ⎛⎫=+>< ⎪⎝⎭的部分图象如图所示,则()f x 的解析式为( )A .()2sin 26f x x π⎛⎫=+ ⎪⎝⎭B .()2sin 26f x x π⎛⎫=- ⎪⎝⎭C .()sin 23f x x π⎛⎫=+⎪⎝⎭D .()sin 23πf x x ⎛⎫=-⎪⎝⎭3.如果角α的终边过点2sin 30,2cos3()0P -,则sin α的值等于( ) A .12B .12-C .3D .33-4.计算cos 20cos80sin160cos10+=( ). A .12B .32C .12-D .3 5.计算cos21cos9sin 21sin9︒︒-︒︒的结果是( ). A .3 B .12-C 3D .126.把函数sin y x =的图象上所有的点向左平行移动6π个单位长度,再把所得图象上所有点的横坐标缩短到原来的12倍(纵坐标不变),得到的图象所表示的函数解析式是( ) A .sin 23y x π⎛⎫=-⎪⎝⎭B .sin 26x y π⎛⎫=+⎪⎝⎭C .sin 26y x π⎛⎫=-⎪⎝⎭D .sin 26y x π⎛⎫=+⎪⎝⎭7.已知函数()22sin cos f x x x x ωωω=-,且()f x 图象的相邻对称轴之间的距离为4π,则当0,4x π⎡⎤∈⎢⎥⎣⎦时,()f x 的最小值为( )A .1-B .C .D .-8.已知函数()()ππ36sin 0f x A x A ⎛⎫=>⎪⎝⎭+在它的一个最小正周期内的图像上,最高点与最低点的距离是5,则A 等于( ). A .1B .2C .2.5D .49.若角α,β均为锐角,sin α=,()4cos 5αβ+=-,则cos β=( )A B C D . 10.已知1cos 2α=,322παπ<<,则sin(2)πα-=( )A .B .12C .12-D 11.已知某扇形的弧长为32π,圆心角为2π,则该扇形的面积为( ) A .4π B .6π C .2π D .94π 12.要得到cos 26y x π⎛⎫=- ⎪⎝⎭的图像,只需将函数sin 22y x π⎛⎫=+⎪⎝⎭的图像( ) A .向左平移12π个单位B .向右平移12π个单位C .向左平移6π个单位 D .向右平移6π个单位 二、填空题13.已知()0,απ∈且tan 3α=,则cos α=______. 14.设函数()2sin (0)6f x x πωω⎛⎫=+> ⎪⎝⎭,若()4f x f π⎛≤⎫⎪⎝⎭对任意的实数x 都成立,则ω的最小值为___________________.15.求值tan 2010︒=_______. 16.下列四个命题中:①已知()()()sin cos 21,sin cos 2πααπαπα-+-=++则tan 1α=-;②()00tan 30tan 303-=-=-③若sin ,2α=-则1cos 2;2α=-④在锐角三角形ABC 中,已知73sin ,cos ,255A B ==则119sin .125C =其中真命题的编号有_______. 17.已知7sin cos 17αα+=,()0,απ∈,则tan α= ________. 18.已知1cos cos 2αβ+=,1sin sin 3αβ+=,则()cos αβ-=________. 19.若3sin 5αα=,是第二象限角,则sin 24πα⎛⎫+= ⎪⎝⎭__________.20.已知α为第二象限角,且sin 3α=sin()πα+___________. 三、解答题21.已知α,β为锐角,4tan 3α=,()tan 2αβ+=-. (1)求cos2α的值. (2)求()tan αβ-的值. 22.已知0,2πα⎛⎫∈ ⎪⎝⎭,3cos 5α=. (1)求sin 6απ⎛⎫+⎪⎝⎭的值; (2)求cos 23πα⎛⎫+ ⎪⎝⎭的值. 23.若函数()sin cos f x x x =+在[]0,a 上单调递增,求a 的取值范围. 24.已知m ∈R ,函数2222()1sin cos (2)|sin |33f x x x m x =++-+. (1)若0m =,求()f x 的最大值; (2)若()f x 在02x π≤≤时的最小值为12,求m 的值. 25.(1)在面积为16的扇形中,半径多少时扇形的周长最小; (2.26.已知向量a =cos x ,-1),b =(sin x ,cos 2x ),函数()f x a b =⋅. (1)求函数()f x 的单调递增区间; (2)求函数()f x 在区间[2π-,0]上的最大值和最小值,并求出相应的x 的值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】利用函数()sin y A ωx φ=+的周期公式2T ωπ=即可求解.【详解】22T ππ==, 故函数()2sin(2)33f x x π=-+的最小正周期为π,故选:B2.A解析:A 【分析】利用图象可得出()max A f x =,求出函数()f x 的最小正周期,可求得ω的值,再将点,26π⎛⎫⎪⎝⎭代入函数()f x 的解析式,结合ϕ的取值范围,求出ϕ的值,进而可得出函数()f x 的解析式.【详解】由图象可得()max 2A f x ==,函数()f x 的最小正周期为2236T πππ⎛⎫=⨯-=⎪⎝⎭, 22Tπω∴==,()()2sin 2f x x ϕ∴=+, 又2sin 2266f ππϕ⎛⎫⎛⎫=⨯+=⎪ ⎪⎝⎭⎝⎭,可得sin 13πϕ⎛⎫+= ⎪⎝⎭, 22ππϕ-<<,5636πππϕ∴-<+<,32ππϕ∴+=,解得6π=ϕ, 因此,()2sin 26f x x π⎛⎫=+ ⎪⎝⎭.故选:A. 【点睛】方法点睛:根据三角函数()()sin f x A x b ωϕ=++的部分图象求函数解析式的方法:(1)求A 、()()max min:2f x f x b A -=,()()max min2f x f x b +=;(2)求出函数的最小正周期T ,进而得出2Tπω=; (3)取特殊点代入函数可求得ϕ的值.3.C解析:C 【分析】先计算三角函数值得(1,P ,再根据三角函数的定义sin ,yr rα==可. 【详解】解:由题意得(1,P ,它与原点的距离2r ==,所以sin 22y r α===-. 故选:C.4.A解析:A 【分析】将160化为20,10化为80后,利用两角差的余弦公式可求得结果. 【详解】cos 20cos80sin160cos10+cos 20cos80sin 20sin80=+()cos 8020=-cos60=12=. 故选:A .5.C解析:C 【分析】 直接化简求值即可. 【详解】解: cos21cos9sin 21sin9︒︒-︒︒()cos 219=︒+︒cos30=︒= 故选:C.6.D解析:D【分析】根据三角函数的图象变换规律可得解析式. 【详解】函数sin y x =的图象上所有的点向左平行移动6π个单位长度,得sin 6y x π⎛⎫=+ ⎪⎝⎭,再把所得图象上所有点的横坐标缩短到原来的12倍(纵坐标不变),可得sin 26y x π⎛⎫=+ ⎪⎝⎭. 故选:D .7.D解析:D 【分析】先将函数化简整理,根据相邻对称轴之间距离求出周期,确定2ω=,再根据正弦函数的性质,结合给定区间,即可求出最值. 【详解】因为()21cos 22sin cos sin 22xf x x x x x ωωωωω+=-=- πsin 222sin 23x x x ωωω⎛⎫=-=-- ⎪⎝⎭由题意知()f x 的最小正周期为ππ242⨯=,所以2ππ22ω=,即2ω=,所以()π2sin 43f x x ⎛⎫=-⎪⎝⎭当π0,4x ⎡⎤∈⎢⎥⎣⎦时,ππ2π4,333x ⎡⎤-∈-⎢⎥⎣⎦,所以π2sin 423x ⎛⎫⎡⎤-∈ ⎪⎣⎦⎝⎭,因此()π2sin 423f x x ⎛⎫⎡=-- ⎪⎣⎝⎭,所以函数()f x 的最小值为-. 故选:D.8.B解析:B 【分析】根据正弦型函数图象性质确定函数()f x 的最小正周期T ,再根据最高点与最低点的距离是55=,从而解得A 的值. 【详解】解:函数()()ππ36sin 0f x A x A ⎛⎫=> ⎪⎝⎭+的最小正周期2263T πππω=== 函数()()ππ36sin 0f x A x A ⎛⎫=> ⎪⎝⎭+在它的一个最小正周期内的图像上,最高点与最低点的距离是5,5=,解得2A =.故选:B. 【点睛】对于三角函数,求最小正周期和最值时可先把所给三角函数式化为()sin y A ωx φ=+或()cos y A x ωϕ=+的形式,则最小正周期为2T ωπ=,最大值为A ,最小值为A -;奇偶性的判断关键是解析式是否为sin y A x ω=或cos y A x ω=的形式.9.B解析:B 【分析】由平方关系求得cos α,sin()αβ+,然后由两角差的余弦公式计算. 【详解】α,β均为锐角,sin α=()4cos 5αβ+=-,cos α∴==,()3sin 5αβ+==, cos cos[()]βαβα∴=+-cos()cos sin()sin αβααβα=+++4355=-=. 故选:B .10.D解析:D 【分析】由已知利用同角三角函数基本关系式可求sin α的值,进而根据诱导公式即可求解. 【详解】 解:因为1cos 2α=,322παπ<<,所以sin 2α==-,所以sin(2)sin 2παα-=-=. 故选:D .11.D解析:D 【分析】由弧长公式求出3r =,再由扇形的面积公式求出答案. 【详解】扇形的圆心角322l r r ππθ===,所以3r =,则扇形的面积113932224S lr ππ==⨯⨯=. 故选:D. 12.B解析:B 【分析】化简函数cos 2cos 2612y x x ππ⎛⎫⎛⎫=-=- ⎪ ⎪⎝⎭⎝⎭,sin 2cos 22y x x π⎛⎫=+= ⎪⎝⎭,即可判断. 【详解】cos 2cos 2612y x x ππ⎛⎫⎛⎫=-=- ⎪ ⎪⎝⎭⎝⎭,sin 2cos 22y x x π⎛⎫=+= ⎪⎝⎭,∴需将函数sin 22y x π⎛⎫=+ ⎪⎝⎭的图象向右平移12π个单位.故选:B.二、填空题13.【分析】本题考查同角三角函数及其关系借助公式求解即可求解时需要判定符号的正负【详解】解:法一:由可得代入解得因为所以所以法二:由且可取终边上的一点坐标为根据三角函数终边定义公式故答案为:【点睛】方法【分析】本题考查同角三角函数及其关系,借助公式sin tan cos ααα=,22sin +cos =1αα求解即可,求解时需要判定符号的正负. 【详解】解:法一:由sin tan =3cos ααα=可得sin =3cos αα,代入22sin +cos =1αα解得cos 10α=±, 因为()0,tan 30απα∈=>,,所以0,2πα⎛⎫∈ ⎪⎝⎭,所以cos 10α=. 法二:由()0,απ∈且tan 3α=可取α终边上的一点坐标为(1,3),根据三角函数终边定义公式cos α===.【点睛】方法点睛:同角三角函数基本关系的3个应用技巧: (1)弦切互化利用公式sin tan ()cos 2k απααπα=≠+实现角α的弦切互化; (2)和(差)积转换利用2(sin cos )=1sin 2ααα±±进行变形、转化;(3)巧用“1”的变换22222211sin+cos =cos (tan 1)sin (1)tan αααααα=+=+. 14.【分析】由是最大值点结合正弦函数的最大值可得的表达式再求得的最小值即可【详解】由可知时函数取得最大值故有解得所以最小值为故答案为:解析:43【分析】 由4x π=是最大值点,结合正弦函数的最大值可得ω的表达式,再求得ω的最小值即可.【详解】 由()4f x f π⎛≤⎫⎪⎝⎭可知4x π=时函数取得最大值. 故有2()462k k Z πππωπ+=+∈,解得48()3k k Z ω=+∈,所以最小值为43.故答案为:43. 15.【分析】根据诱导公式化为锐角后可求得结果【详解】故答案为:解析:3【分析】根据诱导公式化为锐角后可求得结果.【详解】tan 2010tan(5360210)=⨯+tan 210=3tan(18030)tan 30=+==。

人教版高一数学必修一第五单元《三角函数》单元练习题(含答案)

人教版高一数学必修一第五单元《三角函数》单元练习题(含答案)

人教版高一数学必修一第五单元《三角函数》单元练习题(含答案)一、单选题 1.把85π化为角度是( ) A .270°B .280°C .288°D .318°2.由函数cos 2y x =的图象,变换得到函数cos 23y x π⎛⎫=- ⎪⎝⎭的图象,这个变换可以是( ) A .向左平移6π B .向右平移6π C .向左平移3π D .向右平移3π 3.已知,αβ为锐角,且cos α=10,cos β=5,则αβ+的值是( )A .23π B .34πC .4π D .3π 4.在ABC 中,()()sin sin A B A B +=-,则ABC 一定是( ) A .等腰三角形 B .等边三角形C .直角三角形D .锐角三角形5.设 ,,,,则下列不等式正确的是 A .B .C .D .6.已知sin cos 1αα+=,则sin 2α的值为( ) A .-1B .0C .1D .227.已知0,2πα⎛⎫∈ ⎪⎝⎭,3cos α= ,则cos 6πα⎛⎫+ ⎪⎝⎭等于( ) A .1626-B .616-C .16 26-+D .616-+8.已知函数()()sin 202A x f x A πϕϕ⎛⎫=+≠< ⎪⎝⎭,,若23x π=是()f x 图象的一条对称轴的方程,则下列说法正确的是( ) A .()f x 图象的一个对称中心5012π⎛⎫⎪⎝⎭, B .()f x 在36ππ⎡⎤-⎢⎥⎣⎦,上是减函数 C .()f x 的图象过点102⎛⎫ ⎪⎝⎭,D .()f x 的最大值是A9.{}n a 为等差数列,公差为d ,且01d <<,5()2k a k Z π≠∈,223557sin 2sin cos sin a a a a +⋅=,函数()sin(4)(0)f x d wx d w =+>在20,3π⎛⎫⎪⎝⎭上单调且存在020,3x π⎛⎫∈ ⎪⎝⎭,使得()f x 关于0(,0)x 对称,则w 的取值范围是( ) A .20,3⎛⎤ ⎥⎝⎦ B .30,2⎛⎤ ⎥⎝⎦C .24,33⎛⎤⎥⎝⎦D .33,42⎛⎤⎥⎝⎦10.为了得到函数sin(2)4y x π=-的图象,可以将函数sin 2y x =的图象( )A .向左平移4π个单位长度 B .向右平移4π个单位长度 C .向左平移8π个单位长度 D .向右平移8π个单位长度11.函数()sin 22f x x x =+的对称中心坐标为( )A .,0()62k k Z ππ⎛⎫-+∈ ⎪⎝⎭ B .,0()62k k Z ππ⎛⎫+∈ ⎪⎝⎭ C .,0()6k k Z ππ⎛⎫-+∈ ⎪⎝⎭ D .,0()6k k Z ππ⎛⎫+∈⎪⎝⎭12.下列函数中,既是偶函数,又在(0,)+∞上单调递减的是( ). A .y x =- B .cos y x =C .23y x =D .2y x =-第II 卷(非选择题)二、填空题13.若函数2tan tan ||4y x a x x π⎛⎫=-≤ ⎪⎝⎭的最小值为-6,则实数a 的值为________.14.已知函数()sin f x a x x =图象的一条对称轴为直线76x π=,若函数7()()5F x f x =-在7,22ππ⎡⎤-⎢⎥⎣⎦上的所有零点依次记为1x ,2x ,3x ,…,n x ,则12n x x x +++=___________. 15.若方程3sin 265x π⎛⎫-= ⎪⎝⎭在(0,)π上的解为12x x 、,且12x x >,则()12sin x x -=________.16.若4sin()5πα+=-,则cos2α的值为________.三、解答题17.已知02ω<<,函数()sin 4f x x πω⎛⎫=+ ⎪⎝⎭,且()2f x f x π⎛⎫=-⎪⎝⎭. (1)求()f x 的最小正周期;(2)若()f x 在[],t t -上单调递增,求t 的最大值.18.求函数()2sin(2)3f x x π=+单调增区间19.已知πcos(2π)sin(π)sin 2()sin(2π)3πcos(π)cos 2f ααααααα⎛⎫+⋅-⋅+ ⎪⎝⎭=+-⎛⎫+⋅- ⎪⎝⎭.(1)化简()f α;(2)若()5f α=,求11sin cos αα-的值.20.已知函数sin ωφf x A x B (0A >,0>ω,2πϕ<),在同一个周期内,当6x π=时,()f x 取得最大值322,当23x π=时,()f x 取得最小值2-.(1)求函数()f x 的解析式,并求()f x 在[0,π]上的单调递增区间. (2)将函数()f x 的图象向左平移12π个单位长度,再向下平移22个单位长度,得到函数()g x 的图象,方程()g x a =在0,2π⎡⎤⎢⎥⎣⎦有2个不同的实数解,求实数a 的取值范围.21.如图,某城市小区有一个矩形休闲广场,20AB =米,广场的一角是半径为16米的扇形BCE 绿化区域,为了使小区居民能够更好的在广场休闲放松,现决定在广场上安置两排休闲椅,其中一排是穿越广场的双人靠背直排椅MN (宽度不计),点M 在线段AD 上,并且与曲线CE 相切;另一排为单人弧形椅沿曲线CN (宽度不计)摆放.已知双人靠背直排椅的造价每米为2a 元,单人弧形椅的造价每米为a 元,记锐角NBE θ∠=,总造价为W 元.(1)试将W 表示为θ的函数()W θ,并写出的取值范围;(2)如何选取点M 的位置,能使总造价W 最小.22.已知函数()2cos 3cos )1f x x x x =+-.(1)求函数()f x 的最小正周期并用五点作图法画出函数()y f x =在区间[0,]π上的图象; (2)若将函数()f x 的图象向右平移6π个单位长度,得到函数()g x 的图象,求函数()g x 的解析式,并求当2[,]123x ππ∈-时,函数()g x 的最小值及此时的x 值.23.设函数()2222,3f x cos x cos x x R π⎛⎫=++∈ ⎪⎝⎭. (1)求函数()f x 的最小正周期和单调增区间; (2)将函数()f x 的图象向右平移3π个单位长度后得到函数()g x 的图象,求函数()g x 在区间0,2π⎡⎤⎢⎥⎣⎦上的值域.24.已知角α的终边在第二象限,且与单位圆交于点15(,4P m . (1)求实数m 的值;(2)求sin()23tan()cos()2παππαα-+--的值.25.已知()2sin3cos sin 1222x x x f x ⎛⎫=-+ ⎪⎝⎭(1)若π2π,63x ⎡⎤∈⎢⎥⎣⎦,求()f x 的值域;(2)在ΔABC 中,A 为BC 边所对内角,若()1,1,f A BC ==求·AB AC 的最大值.参考答案1.C2.B3.B4.C5.B6.B7.A8.A9.D10.D11.A12.D 13.-7或714.143π15.4516.725-17.(1)2π;(2)4π. 18.5,,1212k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦. 19.(1)cos sin αα-;(2)210. 20.(1)()22sin 262f x x π⎛⎫=++ ⎪⎝⎭,单调增区间为06,π⎡⎤⎢⎥⎣⎦,2π,π3;(2)6,2a ⎡⎤∈⎢⎥⎣ 21.(1)2016cos ()216(),sin 2W a a θπθθθ-=⋅+-(2)43AM =22.(1)π,图象见解析;(2)()2sin 26g x x π⎛⎫=- ⎪⎝⎭,最小值-312x π=-时取到. 23.(1)π,5[,],36k k k Z ππππ++∈;(2)1[,2]2. 24.(1)14m =-;(2)1525. (1)[]1,2.(2)12.。

三角函数》单元测试卷含答案

三角函数》单元测试卷含答案

三角函数》单元测试卷含答案三角函数》单元测试卷一、选择题(本大题共10小题,每小题5分,共50分)1.已知点P(tanα,cosα)在第三象限,则角α的终边在(。

)A.第一象限B.第二象限C.第三象限D.第四象限2.集合M={x|x=kπ/2±π/4,k∈Z}与N={x|x=kπ/4,k∈Z}之间的关系是(。

)A.M∩NB.M∪NC.M=ND.M∩N=∅3.若将分针拨慢十分钟,则分针所转过的角度是(。

)A.60°B.-60°C.30°D.-30°4.已知下列各角(1)787°,(2)-957°,(3)-289°,(4)1711°,其中在第一象限的角是(。

)A.(1)(2)B.(2)(3)C.(1)(3)D.(2)(4)5.设a>0,角α的终边经过点P(-3a,4a),那么sinα+2cosα的值等于(。

)A.5/21B.-1/55C.-5/13D.-2/56.若cos(π+α)=-3/22,π<α<2π,则sin(2π-α)等于(。

)A.-2/3B.3/2C.-2/5D.3/47.若是第四象限角,则απ-α是(。

)A.第一象限角B.第二象限角C.第三象限角D.第四象限角8.已知弧度数为2的圆心角所对的弦长也是2,则这个圆心角所对的弧长是(。

)A.2B.2sin1C.2cos1D.sin29.如果sinx+cosx=4/3,且π/4<x<π/2,那么cotx的值是(。

)A.-3/4B.-4/3或-3/4C.-4/3D.3/4或-3/410.若实数x满足log2x=2+sinθ,则|x+1|+|x-10|的值等于(。

)A.2x-9B.9-2xC.11D.9二、填空题(本大题共6小题,每小题5分,共30分)11.tan300°+cot765°的值是_____________.12.若sinα+cosα=2,则sinαcosα的值是_____________.13.不等式(lg20)2cosx>1,(x∈(0,π))的解集为_____________.14.若θ满足cosθ>-1/2,则角θ的取值集合是_____________.15.若cos130°=a,则tan50°=_____________.16.已知f(x)=sin2x+cosx,则f(π/6)为_____________.sinα=√(1-cos^2α)=√(1-(2x^2/(x^2+5^2)))=√((25-x^2)/(x^2+25)),tanα=sinα/cosα=(25-x^2)/(2x)。

人教版高一上学期数学必修一《第五章三角函数》章节检测卷-含答案

人教版高一上学期数学必修一《第五章三角函数》章节检测卷-含答案

人教版高一上学期数学必修一《第五章三角函数》章节检测卷-含答案1.已知cos θ·tan θ<0,那么角θ是第 3,4 象限角.2.已知θ∈⎪⎭⎫⎝⎛-2,2ππ且sin θ+cos θ=a ,其中a ∈(0,1),则关于tan θ的值,以下四个答案中,可能正确的是 3 (填序号). ①-3 ②3或31③-31 ④-3或-313.设θ为第三象限角,试判断2cos2sin θθ的符号为 负号 .4.已知sin(π-α)-cos(π+α)=⎪⎭⎫⎝⎛<<παπ232.求下列各式的值: (1)sin α-cos α=34; (2))2(cos )2(sin 33a a ++-ππ= 2722-5. 已知函数f (x )=1cos 21cos 3cos 2224-+-x x x 的定义域为 ⎭⎬⎫⎩⎨⎧∈+≠Z k k x x ,42ππ值域为 ]0,1[- ,奇偶性为 偶 .6.函数f (x )=tan ωx (ω>0)的图象的相邻的两支截直线y =4π所得线段长为4π,则f (4π)的值是 0 .7.为了得到函数y =2sin ⎪⎭⎫⎝⎛+63πx ,x ∈R 的图象,只需把函数y =2sin x ,x ∈R 的图象上所有的点向 平移单位,再把所有各点的横坐标变为原来的 倍.8.函数y =2sin (6π-2x )(x ∈[0,π])为增函数的区间是 ]65,3[ππ .10.给出下列命题:①函数y =cos ⎪⎭⎫ ⎝⎛+232πx 是奇函数;②存在实数α,使得sin +cos =;③若、是第一象限角且α<β,则tan α<tan β; ④x =8π是函数y =sin ⎪⎭⎫ ⎝⎛+452πx 的一条对称轴方程;⑤函数y =sin ⎪⎭⎫⎝⎛+32πx 的图象关于点⎪⎭⎫⎝⎛0,12π成中心对称图形. 其中命题正确的是 1,4 (填序号).11 如图为y =A sin (ωx +ϕ)的图象的一段,求其解析式为 .12.方程x e +x=2的根所在的一个区间是( )A.(-2,-1)B.(-1,0)C.(0,1)D.(1,2)13.设定义域为),0(+∞的单调函数)(x f ,若对任意的),0(+∞∈x ,都有11)log )((21=+x x f f ,则方程xx f 2)(=解的个数是( )A .3B .2C .1D .014.已知函数()x f 为R 上的奇函数,当时αα23αβ)322sin(3π-=x y 0>x )cos 3cos 2cos (21)(ααα++++=x x x f(),若对任意实数,则实数的取值范围是( )A .B .5π5π,66⎡⎤-⎢⎥⎣⎦C .D .15.已知函数y =3sin ⎪⎭⎫ ⎝⎛-421πx(1)用五点法作出函数的图象;(2)说明此图象是由y =sin x 的图象经过怎么样的变化得到的; (3)求此函数的振幅、周期和初相; (4)求此函数图象的对称轴方程、对称中心.16、已知定义域R 的函数的奇函数.(1)求;(2)若对任意的,不等式恒成立,求k 的取值范围.ππα-≤≤,(()x f x f x ∈-R 都有≤恒成立α2ππ,3⎡⎤--⎢⎥⎣⎦2π2π,33⎡⎤-⎢⎥⎣⎦5π,π6⎡⎤⎢⎥⎣⎦abx f x x ++-=+122)(的值b a ,R t ∈0)2()2(22<-+-k t f t t f参考答案1.已知cos θ·tan θ<0,那么角θ是第 象限角. 答案 三或四2.已知θ∈⎪⎭⎫⎝⎛-2,2ππ且sin θ+cos θ=a ,其中a ∈(0,1),则关于tan θ的值,以下四个答案中,可能正确的是 (填序号). ①-3 ②3或31③-31④-3或-31答案 ③3.设θ为第三象限角,试判断2cos2sin θθ的符号为 . 解 ∵θ为第三象限角∴2k π+π<θ<2k π+(k ∈Z )k +(k ∈Z ). 当k -2n (n ∈Z )时,2n +ππθπ43222+<<n此时在第二象限. ∴sin2θ>0,kos 2θ<0. 因此<0. 当k =2n +1(n ∈Z )时(2n +1)π+2π<2θ<(2n +1)π+43π(n ∈Z ) 即2n π+23π<2θ<2n π+47π(n ∈Z )此时2θ在第四象限. ∴sin2θ<0,cos2θ>0,因此2cos2sin θθ<0 综上可知:2cos2sin θθ<0. 4.已知sin(π-α)-cos(π+α)=⎪⎭⎫⎝⎛<<παπ232.求下列各式的值: (1)sin α-cos α= ;(2))2(cos )2(sin 33a a ++-ππ=5.已知函数f (x )=1cos 21cos 3cos 2224-+-x x x ,求它的定义域和值域,并判断它的奇偶性.解 由题意知cos2x ≠0,得2x ≠k π+2π解得x ≠42ππ+k (k ∈Z ). 所以f (x )的定义域为2cos2sin θθ⎭⎬⎫⎩⎨⎧∈+≠∈k k x x x ,42ππ且,. 又f (x )= x x x 2cos 1cos 3cos 224+-=xx x 2cos 1cos )1cos 2(22--=cos 2x -1=-sin 2x .又定义域关于原点对称,∴f (x )是偶函数. 显然-sin 2x ∈[-1,0],但∵x ≠42ππ+k ,k ∈Z . ∴-sin 2x ≠-21. 所以原函数的值域为⎭⎬⎫⎩⎨⎧≤<--<≤-021211|y y y 或.6.函数f (x )=tan ωx (ω>0)的图象的相邻的两支截直线y =4π所得线段长为4π,则f (4π)的值是 . 答案 07.为了得到函数y =2sin ⎪⎭⎫⎝⎛+63πx ,x ∈R 的图象,只需把函数y =2sin x ,x ∈R 的图象上所有的点向 平移单位,再把所有各点的横坐标变为原来的 倍. 答案 左6π3 8.函数y =2sin (6π-2x )(x ∈[0,π])为增函数的区间是 . 答案 ⎥⎦⎤⎢⎣⎡65,3ππ 9.函数f (x )=lg(sin2x +3cos2x -1)的定义域是 . 答案 ⎭⎬⎫⎩⎨⎧Z ∈+<<-k k x k x ,412|ππππ 10.给出下列命题:①函数y =cos ⎪⎭⎫ ⎝⎛+232πx 是奇函数;②存在实数α,使得sin α+cos α=23;③若α、β是第一象限角且α<β,则tan α<tan β; ④x =8π是函数y =sin ⎪⎭⎫ ⎝⎛+452πx 的一条对称轴方程;⑤函数y =sin ⎪⎭⎫⎝⎛+32πx 的图象关于点⎪⎭⎫⎝⎛0,12π成中心对称图形. 其中命题正确的是 (填序号). 答案 ①④11 如图为y =A sin (ωx +ϕ)的图象的一段,求其解析式. 解 方法一 以N 为第一个零点Z R则A=-3,T =2⎪⎭⎫⎝⎛-365ππ=π ∴ω=2,此时解析式为y =-3sin (2x +ϕ).∵点N ⎪⎭⎫⎝⎛-0,6π,∴-6π×2+ϕ=0,∴ϕ=3π所求解析式为y =-3sin ⎪⎭⎫⎝⎛+32πx .①方法二 由图象知A =3以M ⎪⎭⎫ ⎝⎛0,3π为第一个零点,P ⎪⎭⎫⎝⎛0,65π为第二个零点. 列方程组⎪⎪⎩⎪⎪⎨⎧=+•=+•πϕπωϕπω6503 解之得⎪⎩⎪⎨⎧-==322πϕω. ∴所求解析式为y =3sin ⎪⎭⎫ ⎝⎛-322πx .15.已知函数y =3sin ⎪⎭⎫ ⎝⎛-421πx(1)用五点法作出函数的图象;(2)说明此图象是由y =sin x 的图象经过怎么样的变化得到的; (3)求此函数的振幅、周期和初相;(4)求此函数图象的对称轴方程、对称中心. 解 (1)列表:描点、连线,如图所示:(2)方法一 “先平移,后伸缩”. 先把y =sin x 的图象上所有点向右平移4π个单位,得到y =sin ⎪⎭⎫⎝⎛-4πx 的图象;再把y =sin ⎪⎭⎫⎝⎛-4πx 的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),得到y =sin ⎪⎭⎫ ⎝⎛-421πx 的图象,最后将y =sin ⎪⎭⎫ ⎝⎛-421πx 的图象上所有点的纵坐标伸长到原来的3倍(横坐标不变),就得到y =3sin ⎪⎭⎫ ⎝⎛-421πx 的图象.方法二 “先伸缩,后平移”先把y =sin x 的图象上所有点的横坐标伸长为原来的2倍(纵坐标不变),得到y =sin 21x 的图象;再把y =sin21x 图象上所有的点向右平移2π个单位 得到y =sin 21(x -2π)=sin ⎪⎭⎫ ⎝⎛-42πx 的图象,最后将y =sin ⎪⎭⎫⎝⎛-42πx 的图象上所有点的纵坐标伸长到原来的3倍(横坐标不变),就得到y =3sin ⎪⎭⎫⎝⎛-421πx 的图象.(3)周期T =ωπ2=212π=4π,振幅A =3,初相是-. (4)令=+k (k ∈Z ) 得x =2k +(k ∈Z ),此为对称轴方程. 令x -=k (k ∈Z )得x =+2k (k ∈Z ). 对称中心为(k ∈Z ).4π421π-x 2πππ23π214ππ2ππ⎪⎭⎫⎝⎛+0,22ππk。

人教版高一上学期数学必修一《第五章三角函数》章节检测卷-带答案

人教版高一上学期数学必修一《第五章三角函数》章节检测卷-带答案

人教版高一上学期数学必修一《第五章三角函数》章节检测卷-带答案1.已知θ2sin )21(<1,则θ所在象限为第 象限.2.已知点P (tan α,cos α)在第三象限,则角α的终边在第 象限.3.已知sin θ=a a+-11,cos θ=aa +-113,若θ是第二象限角,则cot a = .4.sin 2(π+α)-cos(π+α)cos(-α)+1的值为 .5.如果cos α=51,且α是第四象限的角,那么cos ⎪⎭⎫⎝⎛+2πα= .6.已知cos(π+α)=-21,且α是第四象限角,计算: (1)sin(2π-α)= ; (2) [][])2cos()2sin()12(sin )12(sin παπαπαπαn n n n -•++-+++ (n ∈Z )= .7.化简:αααα6644sin cos 1sin cos 1----= .8.已知函数f (x )=2sin ωx (ω>0)在区间⎥⎦⎤⎢⎣⎡-4,3ππ上的最小值是-2,则ω的最小值等于 .9.函数y =A sin(ωx +ϕ)(ω>0,|ϕ|< 2π,x ∈R )的部分图象如图所示,则函数表达式为 .10. 某三角函数图象的一部分如下图所示,则该三角函数为 .11.若函数f (x )=2sin(ϕω+x )对任意x 都有f ⎪⎭⎫ ⎝⎛+x 6π=f ⎪⎭⎫ ⎝⎛-x 6π,则f ⎪⎭⎫⎝⎛6π= .12.函数y =2sin ⎪⎭⎫⎝⎛-x 4π的单调减区间为 .13.求f (x )=)2cos(21x --π的定义域和值域.14.已知函数y =2sin ⎪⎭⎫ ⎝⎛+32πx(1)求它的振幅、周期、初相;(2)用“五点法”作出它在一个周期内的图象;(3)说明y =2sin ⎪⎭⎫⎝⎛+32πx 的图象可由y =sin x 的图象经过怎样的变换而得到.15.已知函数f (x )=2A - 2A cos(2ωx +2ϕ) (A >0, ω>0,0<ϕ<2π),且y =f (x )的最大值为2,其图象相邻 两对称轴间的距离为2,并过点(1,2). (1)求ϕ;(2)计算f (1)+f (2)+…+f (2 008).参考答案1.已知θ2sin )21(<1,则θ所在象限为第 象限.答案 一或三2.已知点P (tan α,cos α)在第三象限,则角α的终边在第 象限. 答案 二3.已知sin θ=a a+-11,cos θ=aa +-113,若θ是第二象限角,则cot a = . 解 ∵θ是第二象限角,∴sin θ>0,cos θ<0∴⎪⎪⎩⎪⎪⎨⎧<+-=<-<+-=<0113cos 1111sin 0a a a a θθ,解得0<a <31.又∵sin 2θ+cos 2θ=1∴11131122=⎪⎭⎫ ⎝⎛+-+⎪⎭⎫ ⎝⎛+-a a a a解得a =91或a =1(舍去),故实数a 的值为91.4.sin 2(π+α)-cos(π+α)cos(-α)+1的值为 .答案 25.如果cos α=51,且α是第四象限的角,那么cos ⎪⎭⎫⎝⎛+2πα= .答案562 6.已知cos(π+α)=-21,且α是第四象限角,计算: (1)sin(2π-α)= ; (2)[][])2cos()2sin()12(sin )12(sin παπαπαπαn n n n -•++-+++ (n ∈Z )= .解 ∵cos(π+α)=-21,∴-cos α=-21,cos α=21又∵α是第四象限角,∴sin α=-23cos 12-=-α. (1)sin(2π-α)=sin [2π+(-α)] =sin(-α)=-sin α=23. (2)[][])2cos()2sin()12(sin )12(sin παπαπαπαn n n n -•++-+++=)2cos()2sin()2sin()2sin(απαπαππαππ+-•++--+++n n n n=αααπαπcos sin )sin()sin(•+-++=αααπαcos sin )sin(sin •---=αααcos sin sin 2•-=αcos 2-=-4.7.化简:αααα6644sin cos 1sin cos 1----= .解 方法一 原式=αααααααα6632244222sin cos )sin (cos sin cos )sin (cos --+--+=32)sin (cos sin cos 3sin cos 2222222=+•αααααα. 方法二 原式=ααααααα6422422sin )cos cos 1)(cos 1(sin )cos 1)(cos 1(-++--+-8.已知函数f (x )=2sin ωx (ω>0)在区间⎥⎦⎤⎢⎣⎡-4,3ππ上的最小值是-2,则ω的最小值等于 .答案 239.函数y =A sin(ωx +ϕ)(ω>0,|ϕ|<2π,x ∈R )的部分图象如图所示,则函数表达式为 . 答案 y =-4sin ⎪⎭⎫ ⎝⎛+48ππx10.某三角函数图象的一部分如下图所示,则该三角函数为 .答案 y =cos ⎪⎭⎫⎝⎛-62πx11.若函数f (x )=2sin(ϕω+x )对任意x 都有f ⎪⎭⎫ ⎝⎛+x 6π=f ⎪⎭⎫ ⎝⎛-x 6π,则f ⎪⎭⎫⎝⎛6π= .答案 -2或212.求函数y =2sin ⎪⎭⎫⎝⎛-x 4π的单调减区间为 .解 方法一 y =2sin ⎪⎭⎫ ⎝⎛-x 4π化成y =-2sin ⎪⎭⎫ ⎝⎛-4πx .1分∵y =sin u (u ∈R )的递增、递减区间分别为⎥⎦⎤⎢⎣⎡+-22,22ππππk k (k ∈Z ) ⎥⎦⎤⎢⎣⎡++232,22ππππk k (k ∈Z ) ∴函数y =-2sin ⎪⎭⎫ ⎝⎛-4πx 的递增、递减区间分别由下面的不等式确定2k π+2π≤x -4π≤2k π+23π(k ∈Z ) 即2k π+43π≤x ≤2k π+47π(k ∈Z ) 2k π-2π≤x -4π≤2k π+2π(k ∈Z )即2k π-4π≤x ≤2k π+43π(k ∈Z ).∴函数y=2sin ⎪⎭⎫ ⎝⎛-x 4π的单调递减区间、单调递增区间分别为⎥⎦⎤⎢⎣⎡+-432,42ππππk k (k ∈Z ) ⎥⎦⎤⎢⎣⎡++472,432ππππk k (k ∈Z ).方法二 y =2sin ⎪⎭⎫⎝⎛-x 4π可看作是由y =2sin u 与u =x -4π复合而成的.又∵u =x -4π为减函数∴由2k π-2π≤u ≤2k π+2π(k ∈Z ) -2k π-4π≤x ≤-2k π+43π (k ∈Z ). 即⎥⎦⎤⎢⎣⎡+---432,42ππππk k (k ∈Z )为y =2sin ⎪⎭⎫⎝⎛-x 4π的递减区间. 由2k π+2π≤u ≤2k π+23π(k ∈Z ) 即2k π+2π≤4π-x ≤2k π+23π (k ∈Z )得 -2k π-45π≤x ≤-2k π-4π(k ∈Z ) 即⎥⎦⎤⎢⎣⎡----42,452ππππk k (k ∈Z )为y =2sin ⎪⎭⎫⎝⎛-x 4π的递增区间.综上可知:y =2sin ⎪⎭⎫⎝⎛-x 4π的递增区间为⎥⎦⎤⎢⎣⎡----42,452ππππk k (k ∈Z ); 递减区间为⎥⎦⎤⎢⎣⎡+---432,42ππππk k (k ∈Z ).13.求f (x )=)2cos(21x --π的定义域和值域.解 由函数1-2cos ⎪⎭⎫⎝⎛-x 2π≥0,得sin x ≤22,利用单位圆或三角函数的图象,易得所求函数的定义域是⎭⎬⎫⎩⎨⎧∈+≤≤-k k x k x ,42452|ππππ. 当sin x =cos ⎪⎭⎫⎝⎛-x 2π=22时,y min =0; 当sin x =cos ⎪⎭⎫⎝⎛-x 2π=-1时,y max =21+.所以函数的值域为[0,21+].Z14.已知函数y =2sin ⎪⎭⎫ ⎝⎛+32πx(1)求它的振幅、周期、初相;(2)用“五点法”作出它在一个周期内的图象;(3)说明y =2sin ⎪⎭⎫⎝⎛+32πx 的图象可由y =sin x 的图象经过怎样的变换而得到.解 (1)y =2sin ⎪⎭⎫⎝⎛+32πx 的振幅A =2,周期T =22π=π 初相ϕ=3π. (2)令X =2x +3π,则y =2sin ⎪⎭⎫ ⎝⎛+32πx =2sin X .列表,并描点画出图象:(3)方法一 把y =sin x 的图象上所有的点向左平移3π个单位,得到y =sin ⎪⎭⎫ ⎝⎛+3πx 的图象,再把y =sin⎪⎭⎫ ⎝⎛+3πx 的图象上的点的横坐标缩短到原来的21倍(纵坐标不变),得到y =sin ⎪⎭⎫ ⎝⎛+32πx 的图象,最后把y =sin ⎪⎭⎫ ⎝⎛+32πx 上所有点的纵坐标伸长到原来的2倍(横坐标不变),即可得到y =2sin ⎪⎭⎫ ⎝⎛+32πx 的图象. 方法二 将y =sin x 的图象上每一点的横坐标x 缩短为原来的21倍,纵坐标不变,得到y =sin2x 的图象; 再将y =sin2x 的图象向左平移6π个单位; 得到y =sin2⎪⎭⎫ ⎝⎛+6πx =sin ⎪⎭⎫ ⎝⎛+32πx 的图象;再将y =sin ⎪⎭⎫⎝⎛+32πx 的图象上每一点的横坐标保持不变,纵坐标伸长为原来的2倍,得到y =2sin ⎪⎭⎫⎝⎛+32πx 的图象.15.已知函数f (x )=2A - 2A cos(2ωx +2ϕ) (A >0, ω>0,0<ϕ<2π),且y =f (x )的最大值为2,其图象相邻 两对称轴间的距离为2,并过点(1,2).(1)求ϕ;(2)计算f (1)+f (2)+…+f (2 008). 解 (1)∵y =2A - 2Acos(2ωx +2ϕ) 且y =f (x )的最大值为2,A >0 ∴2A +2A=2,A =2. 又∵其图象相邻两对称轴间的距离为2,ω>0 ∴21⎪⎭⎫ ⎝⎛ωπ22=2, ω=4π.∴f (x )= 22-22cos ⎪⎭⎫ ⎝⎛+ϕπ22x =1-cos ⎪⎭⎫⎝⎛+ϕπ22x .∵y =f (x )过(1,2)点,∴cos ⎪⎭⎫⎝⎛+ϕπ22=-1.ϕπ22+=2k π+π,k ∈Z .∴ϕ=k π+4π,k ∈Z . 又∵0<ϕ<2π,∴ϕ=4π.(2)∵ϕ=4π,∴f (x )=1-cos ⎪⎭⎫ ⎝⎛+22ππx =1+sin x 2π.∴f (1)+f (2)+f (3)+f (4)=2+1+0+1=4.又∵y =f (x )的周期为4,2 008=4×502∴f (1)+f (2)+…+f (2 008)=4×502=2 008.。

人教版高一数学必修一第五单元《三角函数》单元练习题(含答案)

人教版高一数学必修一第五单元《三角函数》单元练习题(含答案)

人教版高一数学必修一第五单元《三角函数》单元练习题(含答案)一、单选题1.将函数()y f x =的图象按以下次序变换:①纵坐标不变,横坐标变为原来的12,②向左平移6π个单位,得到函数()y g x =的图象(如图所示),其中点2,03D π⎛⎫- ⎪⎝⎭,点,03E π⎛⎫⎪⎝⎭,则函数()()f x y f x ='在区间[]0,2π上的对称中心为( )A .(),0π,()2,0πB .(),0πC .()0,0,(),0πD .()0,0,(),0π,()2,0π2.已知函数()|sin |cos f x x x =+.有下列四个结论:①函数的值域为2,2⎡-⎣; ②函数的最小正周期为2π;③函数在[],2ππ上单调递增; ④函数的图像的一条对称轴为x π=. 其中正确的结论是( ) A .②③B .②④C .①④D .①②3.设函数()sin3sin3,f x x x =+则()f x 为( ) A .周期函数,最小正周期为3πB .周期函数,最小正周期为23π C .周期函数,最小正周期为2π D .非周期函数4.函数()1πsin 223f x x ⎛⎫=+ ⎪⎝⎭的单调递增区间为( ) A .5πππ,π1212k k ⎡⎤-+⎢⎥⎣⎦,k Z ∈B .π3ππ,π44k k ⎡⎤++⎢⎥⎣⎦,k Z ∈C .2πππ,π36k k ⎡⎤--⎢⎥⎣⎦,k Z ∈ D .πππ,π44k k ⎡⎤++⎢⎥⎣⎦,k Z ∈ 5.已知π3sin 25α⎛⎫+= ⎪⎝⎭,π0,2α⎛⎫∈ ⎪⎝⎭,则sin(π)α+=( ).A .35B .35C .45D .45-, 6.将函数cos 21y x =+的图象向右平移4π个单位长度,再向下平移1个单位长度,得到的图象对应的函数解析式为()f x =( ) A .cos 24x π⎛⎫+ ⎪⎝⎭B .cos 24x π⎛⎫- ⎪⎝⎭C .sin 2xD .sin 2x -7.已知函数f (x )=2sin (ωx +φ)(ω>0)满足f (3π)=2,f (π)=0,且f (x )在区间(5,312ππ)单调,则ω的取值个数为( ) A .7B .8C .9D .108.若对于任意x ∈R 都有()2()3cos sin f x f x x x +-=-,则函数(2)cos 2y f x x =-的图象的对称中心为( ) A .,0,4k k ππ⎛⎫-∈ ⎪⎝⎭Z B .(),0,k k π∈ZC .,0,24k k ππ⎛⎫-∈⎪⎝⎭Z D .,0,2k k π⎛⎫∈⎪⎝⎭Z 9.在(0,2π)上使cos sin x x >成立的x 的取值范围是( )A .π5π(0,)(,2π)44B .ππ5π(,)(π,)424C .π5π(,)44D .3ππ(,)44-10.下列函数中偶函数是( )A .y 11x x e e -=+B .y =sinx +2|sinx |C .y =ln (x )D .y =e x +e ﹣x11.化简cos()cos sin()sin αββαββ---的结果为( ) A .sin(2)αβ+B .cos(2)αβ-C .cos αD .cos β12.函数3sin 2y x =-+的最小值为( ) A .2 B .-1C .-2D .5第II 卷(非选择题)二、填空题13.满足tan (x+3πx 的集合是 . 14.已知4cos 5α=-,且,2παπ⎛⎫∈ ⎪⎝⎭,则tan 4πα⎛⎫- ⎪⎝⎭等于_______. 15.已知α是第三象限的角,若4cos 5α=-,则tan 4πα⎛⎫+= ⎪⎝⎭______ .16.已知实数a ,b 满足22182a b+=θθ取最大值时,tan θ=________.三、解答题17.已知向量m =sin,12x ⎛⎫ ⎪⎝⎭,n =,2cos 2x x ⎛⎫⎪⎝⎭,设函数()f x =m ·n . (1)求函数()f x 的解析式.(2)求函数()f x ,[],x ππ∈-的单调递增区间.18.在ABC ∆中,已知14,,tan422B b A π===,求三角形ABC ∆面积19.已知0,2πα⎛⎫∈ ⎪⎝⎭,()0,βπ∈,cos β=,且tan(2)3αβ+=. (1)求tan2α的值;(2)求αβ+的值.20.如图是某设计师设计的Y 型饰品的平面图,其中支架OA ,OB ,OC 两两成120︒,1OC =,AB OB OC =+,且OA OB >,现设计师在支架OB 上装点普通珠宝,普通珠宝的价值为M ,且M 与OB 长成正比,比例系数为(k k 为正常数):在AOC ∆区域(阴影区域)内镶嵌名贵珠宝,名贵珠宝的价值为N ,且N 与AOC ∆的面积成正比,比例系数为43k ,设OA x =,OB y =.(1)求y 关于x 的函数关系式,并写出x 的取值范围; (2)求N M -的最大值及相应的x 的值.21.如图,已知AB 是一幢6层的写字楼,每层高均为3m ,在AB 正前方36m 处有一建筑物CD ,从楼顶A 处测得建筑物CD 的张角为45.()1求建筑物CD 的高度;()2一摄影爱好者欲在写字楼AB 的某层拍摄建筑物.CD 已知从摄影位置看景物所成张角最大时,拍摄效果最佳.问:该摄影爱好者在第几层拍摄可取得最佳效果(不计人的高度)?22.(1)已知4cos 5α=-,且α为第三象限角,求sin α,tan α的值 (2)已知tan 3α=,求4sin 2cos 5cos 3sin αααα-+ 的值.23.已知函数()sin 232f x x π⎛⎫=-+ ⎪⎝⎭. (Ⅰ)当0,3x π⎡⎤∈⎢⎥⎣⎦时,求()f x 的值域;(Ⅱ)已知ABC ∆的内角,,A B C 的对边,,a b c ,若4,52A f a b c ⎛⎫==+= ⎪⎝⎭,求ABC ∆的面积.24.已知函数()2sin 213f x x π⎛⎫=++ ⎪⎝⎭.(1)求()f x 的单调递增区间; (2)求()f x 在区间,44ππ⎡⎤-⎢⎥⎣⎦上的最值,并求出取最值时x 的值; (3)求不等式()2f x 的解集. 25.已知函数2()122cos f x x x =-+. (Ⅰ)求()f x 的最大值及取得最大值时的x 集合;(Ⅱ)设ABC ∆的角,,A B C 的对边分别为,,a b c ,且1,()0a f A ==,求b c +的取值范围参考答案1.D2.B3.B4.A5.D6.C7.B8.D9.A10.D11.C12.B 13.2,36k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦14.7. 15.7 16.117.(1)()4sin 6f x x π⎛⎫=+ ⎪⎝⎭;(2)2,33ππ⎡⎤-⎢⎥⎣⎦. 18.7 19.(1)43.(2)4π20.(1)212x y x -=-,⎛ ⎝⎭;(2)22x =-时,N M -的最大值是(10k =-. 21.(1)30米;(2) 当6n =时,张角CMD ∠最大,拍摄效果最佳. 22.(1)35,34;(2)5723.(Ⅰ)⎡⎣;(Ⅱ) ABC S =△. 24.(1)5,,1212k k k ππππ⎡⎤-+∈⎢⎥⎣⎦Z (2)12x π=时,()f x 取最大值3;4πx =-时,()f x 取得最小值0(3),,124k k k ππππ⎡⎤-+∈⎢⎥⎣⎦Z25.(Ⅰ)4,|,6x x k k Z ππ⎧⎫=-∈⎨⎬⎩⎭;(Ⅱ)(]1,2.。

完整版)高中三角函数测试题及答案

完整版)高中三角函数测试题及答案

完整版)高中三角函数测试题及答案高一数学必修4第一章三角函数单元测试班级:__________ 姓名:__________ 座号:__________评分:__________一、选择题:共12小题,在每小题给出的四个选项中,只有一项是符合题目要求的。

(48分)1、已知$A=\{\text{第一象限角}\}$,$B=\{\text{锐角}\}$,$C=\{\text{小于90°的角}\}$,那么$A$、$B$、$C$ 关系是()A.$B=A\cap C$B.$B\cup C=C$C.$A\cap D$D.$A=B=C$2、将分针拨慢5分钟,则分钟转过的弧度数是A。

$\frac{\pi}{3}\sin\alpha-\frac{2}{3}\cos\alpha$ B。

$-\frac{\pi}{3}$C。

$\frac{\pi}{6}$D。

$-\frac{\pi}{6}$3、已知 $\tan\alpha=-5$,那么 $\tan\alpha$ 的值为A。

2B。

$\frac{1}{6164}$C。

$-\frac{1}{6164}$D。

$-\frac{2}{3}$4、已知角 $\alpha$ 的余弦线是单位长度的有向线段,那么角 $\alpha$ 的终边()A。

在 $x$ 轴上B。

在直线 $y=x$ 上C。

在 $y$ 轴上D。

在直线 $y=x$ 或 $y=-x$ 上5、若 $f(\cos x)=\cos 2x$,则 $f(\sin 15^\circ)$ 等于()A。

$-\frac{2}{3}$B。

$\frac{3}{2}$C。

$\frac{1}{2}$D。

$-\frac{1}{2}$6、要得到 $y=3\sin(2x+\frac{\pi}{4})$ 的图象只需将$y=3\sin 2x$ 的图象A。

向左平移 $\frac{\pi}{4}$ 个单位B。

向右平移 $\frac{\pi}{4}$ 个单位C。

新人教版高中数学必修第一册第五单元《三角函数》检测题(包含答案解析)

新人教版高中数学必修第一册第五单元《三角函数》检测题(包含答案解析)

一、选择题1.sin 3π=( )A .12B .12-C .32D .32-2.如图,为测塔高,在塔底所在的水平面内取一点C ,测得塔顶的仰角为θ,由C 向塔前进30米后到点D ,测得塔顶的仰角为2θ,再由D 向塔前进103米后到点E ,测得塔顶的仰角为4θ,则塔高为( )米.A .10B .102C .15D .1523.7sin 6π⎛⎫-= ⎪⎝⎭( ) A .3-B .3C .12-D .124.如果角α的终边过点2sin 30,2cos3()0P -,则sin α的值等于( ) A .12B .12-C .3-D .3-5.函数()()sin 0,0,22f x A x A ωϕωϕππ⎛⎫=+>>-<< ⎪⎝⎭的部分图象如图所示,则()f x =( )A .sin 6x ππ⎛⎫+⎪⎝⎭B .sin 3x ππ⎛⎫+⎪⎝⎭C .sin 6x ππ⎛⎫-⎪⎝⎭D .sin 3x ππ⎛⎫-⎪⎝⎭6.已知函数()2sin 46f x x π⎛⎫=+ ⎪⎝⎭,则( )A .()f x 的最小正周期为πB .()f x 的单调递增区间为(),26212k k k ππππ⎡⎤-+∈⎢⎥⎣⎦Z C .()f x 的图象关于直线6x π=对称D .()f x 的图象关于点,024π⎛⎫⎪⎝⎭对称 7.2cos 23sin 2cos()4θθπθ=-,则sin 2θ=( )A .13B .23 C .23- D .13-8.下面函数中最小正周期为π的是( ).A .cos y x =B .π2sin 3y x ⎛⎫=- ⎪⎝⎭C .tan2xy = D .22cos sin 2y x x =+9.3tan 26tan 34tan 26tan 34++=( ) A .33B .3-C .3D .33-10.函数()()cos f x A x ωϕ=+(其中0A >,0>ω,2πϕ<)的图象如图所示.为了得到()cos g x A x ω=-的图象,只需把()y f x =的图象上所有的点( )A .向右平移12π个单位长度 B .向右平移512π个单位长度 C .向左平移12π个单位长度D .向左平移512π个单位长度 11.已知函数()()()cos >0,0<<f x x ωθωθπ=+的最小正周期为π,且()()0f x f x -+=,若tan 2α=,则()f α等于( )A .45-B .45C .35D .3512.在ABC 中,2,6AB C π==,则AC 的最大值为( )A .B .C .D .二、填空题13.已知角θ和角ϕ的始边均与x 轴正半轴重合,终边互相垂直,若角θ的终边与单位圆交于点01,3P x ⎛⎫ ⎪⎝⎭,则cos ϕ=__________________.14.设函数()2sin (0)6f x x πωω⎛⎫=+> ⎪⎝⎭,若()4f x f π⎛≤⎫⎪⎝⎭对任意的实数x 都成立,则ω的最小值为___________________.15.已知函数7()4sin 2066f x x x ππ⎛⎫⎛⎫=+≤≤ ⎪⎪⎝⎭⎝⎭,若函数()()F x f x a =-恰有3个零点,分别为()123123,,x x x x x x <<,则1232x x x ++的值为________. 16.若函数()|2cos |f x a x =+的最小正周期为π,则实数a 的值为____. 17.已知1cos 3α=-,则|sin |α=___________ 18.已知函数()3sin cos f x x x =+.若关于x 的方程()f x m =在[0,2)π上有两个不同的解α和β(其中m <<cos()αβ-=_____(结果用m 表示).19.若6x π=是函数()3sin 2cos2f x x a x =+的一条对称轴,则函数()f x 的最大值是___________.20.已知7sin cos 5αα+=-,22sin cos 5αα-=-,则cos2=α_______.三、解答题21.已知函数)(cos cos 2f x x x x =+.(1)求)(f x 的最小正周期和值域.(2)求)(f x 的单调区间.22.若函数2cos 2cos y x x x =+. (1)求这个函数的单调递增区间.(2)求这个函数的最值及取得最值时的x 集合. 23.已知()()cos 0f x x ωω=>(1)若f (x )的周期是π,求ω,并求此时()12f x =的解集;(2)若()()()21,32g x fx f x f x πω⎛⎫==+-+ ⎪⎝⎭,0,2x π⎡⎤∈⎢⎥⎣⎦,求()g x 的值域.24.在①函数()f x 的图象关于点,6b π⎛⎫- ⎪⎝⎭对称; ②函数()f x 在,44ππ⎡⎤-⎢⎥⎣⎦上的最小值为12;③函数()f x 的图象关于直线12x π=对称.这三个条件中任选两个补充在下面的问题中,再解答这个问题. 已知函数()()n 22si f x x b ϕϕπ=⎛⎫⎪⎝+<⎭+,若满足条件 与 .(1)求函数()f x 的解析式;(2)若将函数()y f x =的图象上点的横坐标缩短到原来的12,纵坐标不变,再将所得图象向右平移8π个单位,得到函数()y g x =的图象,求函数()g x 的单调递减区间. 25.已知2510sin cos 510αβ==,α、(0)2πβ∈,. (1)求cos(2)3πα-的值;(2)求αβ+的值.26.已知函数()33sin 22f x x x =.(1)若62A f ⎛⎫= ⎪⎝⎭,0A π<<,求A 的值.(2)先将函数()y f x =的图像上所有点向左平移3π个单位,再把所有点的横坐标缩短为原来的12,纵坐标不变,得到函数y g x 的图像,求函数y g x 的单调递增区间.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】根据特殊角对应的三角函数值,可直接得出结果. 【详解】sin32π=. 故选:C.2.C解析:C 【分析】由,2,4PCA PDA PEA θθθ∠=∠=∠=,得PDE △是等腰三角形,且可求得230θ=︒,在直角PEA 中易得塔高PA . 【详解】由题知,2CPD PCD DPE PDE θθ∠=∠=∠=∠= ∴30PE DE PD CD ====∴等腰EPD △的230θ︒=,∴460θ︒= ∴Rt PAE中,AE =15PA =. 故选:C .3.D解析:D 【分析】直接利用诱导公式求解. 【详解】771sin sin sin sin 66662πππππ⎛⎫⎛⎫-=-=-+== ⎪ ⎪⎝⎭⎝⎭, 故选:D4.C解析:C 【分析】先计算三角函数值得(1,P ,再根据三角函数的定义sin ,yr rα==可. 【详解】解:由题意得(1,P ,它与原点的距离2r ==,所以sin y r α===. 故选:C.5.C解析:C 【分析】由函数的图象的顶点坐标求出A ,由周期求出ω,由五点法作图求出ϕ的值,从而得到函数的解析式. 【详解】解:由图象可得1A =,再根据35134362T =-=,可得2T =, 所以22πωπ==, 再根据五点法作图可得1,6k k Z πϕπ⨯+=∈,求得6πϕ=-, 故函数的解析式为()sin 6f x x ππ⎛⎫=- ⎪⎝⎭.故选:C.6.B解析:B 【分析】对A ,根据解析式可直接求出最小正周期;对B ,令242,262k x k k Z πππππ-+≤+≤+∈可求出单调递增区间;对C ,计算6f π⎛⎫⎪⎝⎭可判断; 对D ,计算24f π⎛⎫⎪⎝⎭可判断.【详解】 对于A ,()2sin 46f x x π⎛⎫=+ ⎪⎝⎭,∴()f x 的最小正周期为242T ππ==,故A 错误;对于B ,令242,262k x k k Z πππππ-+≤+≤+∈,解得,26212k k x k Z ππππ-≤≤+∈,∴()f x 的单调递增区间为(),26212k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦,故B 正确;对于C ,2sin 412666f πππ⎛⎫⨯+=≠± ⎪⎝=⎭⎛⎫ ⎪⎝⎭,∴()f x 的图象不关于直线6x π=对称,故C 错误;对于D ,2sin 4026244f πππ⎛⎫⨯⎛⎫= +=≠ ⎪⎭⎭⎪⎝⎝,∴()f x 的图象不关于点,024π⎛⎫⎪⎝⎭对称. 故选B. 【点睛】方法点睛:判断正弦型函数()()=sin f x A x ωϕ+对称轴或对称中心的方法:(1)利用正弦函数的性质求出对称轴或对称中心,令()2x k k Z πωϕπ+=+∈可求得对称轴,令()x k k Z ωϕπ+=∈可求得对称中心;(2)代入求值判断,若()()00=sin f x A x A ωϕ+=±,则0x x =是对称轴;若()()00=sin 0f x A x ωϕ+=,则()0,0x 是对称中心. 7.B解析:B 【分析】由二倍角公式和差的余弦公式化简得出()2cos sin 2θθθ-=,再平方即可求出. 【详解】)22cos sin 2cos()coscos sinsin 444θθθπππθθθ-=-+()cos sin cos sin 2cos sin θθθθθθ+-==-,()2cos sin 2θθθ∴-=,两边平方得()241sin 23sin 2θθ-=, 解得sin 22θ=-(舍去)或2sin 23θ=. 故选:B. 【点睛】关键点睛:本题考查三角恒等变换的化简问题,解题的关键是能正确利用二倍角公式和差的余弦公式将已知等式化简为()2cos sin 2θθθ-=,再平方求解.8.D解析:D 【分析】根据三角函数的周期公式结合图象对选项进行逐一判断,可得答案. 【详解】()cos cos x x -=,cos cos y x x ∴==,周期为2π,故A 不符合题意; π3y x ⎛⎫=- ⎪⎝⎭的周期为2π,故B 不符合题意;画出函数tan2x y =的图象,易得函数tan 2xy =的周期为2π,故C 不符合题意;2π2cos sin 2cos 21sin 22sin 214x x x x x ⎛⎫+=++=++ ⎪⎝⎭,周期为π,故D 符合题意. 故选:D9.C解析:C 【分析】利用两角和的正切公式,特殊角的三角函数值化简已知即可求解. 【详解】326tan34tan 26tan34︒︒+︒+︒326tan 34tan(2634)(1tan 26tan 34)=︒︒+︒+︒-︒︒ 326tan 343(1tan 26tan 34)=︒︒+-︒︒ 326tan343326tan34=︒︒︒︒3=故选:C .10.B解析:B 【分析】先根据图象求出,,A ωϕ的值即可得()f x 和()g x 的解析式,再利用函数图象的平移变换即可得正确选项. 【详解】 由图知:1A =,74123T πππ⎛⎫=-= ⎪⎝⎭,所以22T πω==,()()cos 2f x x φ=+,当712x π=时,()()cos 2f x x φ=+有最小值,所以()72212k k Z πϕππ⨯+=+∈, 所以()26k k Z πϕπ=-+∈,又因为2πϕ<,所以0,6k πϕ==-,所以()cos 26f x x π⎛⎫=- ⎪⎝⎭,()()cos2cos 2g x x x π=-=-,所以只需要把()cos 26f x x π⎛⎫=- ⎪⎝⎭图象上所有的点向右平移512π个单位长度得()()5cos 2cos 2cos 2126x x x g x πππ⎡⎤⎛⎫--=-=-= ⎪⎢⎥⎝⎭⎣⎦,故选:B 【点睛】关键点点睛:本题的关键点是由函数的部分图象求出,,A ωϕ的值,进而求出()f x 和()g x 的解析式,()()cos2cos 2g x x x π=-=-,由平移变换的规律求解,注意左右平移指一个x 变化多少,此点容易出错,属于中档题.11.A解析:A 【分析】利用三角函数的周期性和奇偶性得到()cos 2sin 22f x x x π⎛⎫=+=- ⎪⎝⎭,进而求出()f α【详解】 由2ππω=,得2ω=,又()()0f x f x -+=,()()()cos cos 2f x x x ωθθ=+=+为奇函数,()2k k Z πθπ∴=+∈,,又0θπ<<,得2πθ=,()cos 2sin 22f x x x π⎛⎫∴=+=- ⎪⎝⎭,又由tan 2α=,可得()2222sin cos 2tan 4sin 2sin cos tan 15f αααααααα-=-==-=-++故选:A 【点睛】关键点睛:解题关键在于通过三角函数性质得到()cos 2sin 22f x x x π⎛⎫=+=- ⎪⎝⎭,难度属于基础题12.B解析:B 【分析】将AC +表示为角的形式,结合三角函数最值的求法,求得AC 的最大值. 【详解】有正弦定理得24sin sin sin sin 6a b c A B C π====, 所以4sin ,4sin a A b B ==,所以AC +4sin b B A =+=+()4sin 4sin 6B B C B B π⎛⎫=++=++ ⎪⎝⎭4sin sin cos cos sin 66B B B ππ⎫=++⎪⎭14sin sin cos 22B B B ⎫=++⎪⎪⎭()()10sin B B B B ϕϕ=+=+=+.其中tan 010536πϕϕ==<⇒<<, 由于566B ππ<<,所以3B πϕπ<+<,故当2B πϕ+=时,AC +的最大值为故选:B 【点睛】要求与三角形边长有关的最值问题,可以利用正弦定理将边转化为角,然后利用三角函数的最值的求法来求最值.二、填空题13.【分析】由题意可得:利用已知条件可以求出利用即可求解【详解】因为角和角的始边均与轴正半轴重合终边互相垂直所以若角的终边与单位圆交于点所以则故答案为:解析:13±【分析】由题意可得:,2k k Z πϕθπ=++∈,利用已知条件可以求出1sin 3θ=,利用 cos sin ϕθ=±即可求解.【详解】因为角θ和角ϕ的始边均与x 轴正半轴重合,终边互相垂直, 所以,2k k Z πϕθπ=++∈,若角θ的终边与单位圆交于点01,3P x ⎛⎫ ⎪⎝⎭,所以1sin 3θ=,则1cos sin 3ϕθ=±=±, 故答案为:13±14.【分析】由是最大值点结合正弦函数的最大值可得的表达式再求得的最小值即可【详解】由可知时函数取得最大值故有解得所以最小值为故答案为:解析:43【分析】 由4x π=是最大值点,结合正弦函数的最大值可得ω的表达式,再求得ω的最小值即可.【详解】由()4f x f π⎛≤⎫⎪⎝⎭可知4x π=时函数取得最大值.故有2()462k k Z πππωπ+=+∈,解得48()3k k Z ω=+∈,所以最小值为43.故答案为:43.15.【分析】令则通过正弦函数的对称轴方程求出函数的对称轴方程分别为和结合图像可知从而求得进而求得的值【详解】令则函数恰有3零点等价于的图像与直线恰有3个交点即与直线恰有3个交点设为如图函数的图像取得最值 解析:53π【分析】 令26x t π+=,则5,62t ππ⎡⎤∈⎢⎥⎣⎦,通过正弦函数的对称轴方程,求出函数的对称轴方程分别为2t π=和32t π=,结合图像可知12t t π+=,233t t π+=,从而求得123x x π+=,2343x x π+=,进而求得1232x x x ++的值. 【详解】 令26x t π+=,则5,62t ππ⎡⎤∈⎢⎥⎣⎦函数()()F x f x a =-恰有3零点,等价于()y f x =的图像与直线y a =恰有3个交点,即4sin y t =与直线y a =恰有3个交点,设为123,,t t t ,如图函数4sin y t =,5,62t ππ⎡⎤∈⎢⎥⎣⎦的图像取得最值有2个t 值,分别为2t π=和32t π=,由正弦函数图像的对称性可得1212222662t t x x ππππ+=+++=⨯=,即123x x π+=232332223662t t x x ππππ+=+++=⨯=,即2343x x π+=,故1231223452333x x x x x x x πππ++=+++=+= , 故答案为:53π. 【点睛】方法点睛:已知函数有零点(方程有根)求参数值(取值范围)常用的方法: (1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围; (2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解.16.【分析】利用来求解【详解】因为函数的最小正周期为所以都有成立故则故答案为: 解析:0【分析】利用()()f x f x π=+来求解. 【详解】因为函数()f x 的最小正周期为π,所以x R ∀∈,都有()()f x f x π=+成立, 故()2cos 2cos 2cos a x a x a x π+=++=-,则0a =. 故答案为:0.17.【分析】根据同角三角函数的关系即可求出【详解】故答案为:解析:3【分析】根据同角三角函数的关系即可求出.【详解】1cos3α=-,|sin|3α∴==.故答案为:3.18.【分析】先利用辅助角公式化简再利用同角三角函数关系计算出与最后利用化简计算即可【详解】解:其中为锐角且又在上有两个不同的解和即由题意知:与异号不妨设则故答案为:【点睛】关键点点睛:本题解题的关键是利解析:215m-【分析】先利用辅助角公式化简()f x,再利用同角三角函数关系计算出()cosαϕ+与()cosβϕ+,最后利用()()cos()cosαβαϕβϕ-=+-+⎡⎤⎣⎦化简计算即可.【详解】解:()()3sin cosf x x x xϕ=+=+,其中ϕ为锐角且1tan3ϕ=,又()f x m=在[0,2)π上有两个不同的解α和β,()()mmαϕβϕ+=∴+=,即()sin10mαϕ+=,()sin10βϕ+=,()cosαϕ∴+==()cosβϕ∴+==由题意知:()cosαϕ+与()cosβϕ+异号,不妨设()cos αϕ+=,则()cos βϕ+=, cos()αβ-()()cos αϕβϕ=+-+⎡⎤⎣⎦()()()()cos cos sin sin αϕβϕαϕβϕ=+++++(1010m m =-⨯ 215m =-. 故答案为:215m -.【点睛】关键点点睛:本题解题的关键是利用辅助角公式对()f x 进行化简.19.【分析】利用对称关系得代入即可求解值再结合辅助角公式化简可求最值【详解】由对称轴关系得令得求得从而当时取到最大值故答案为:解析:【分析】利用对称关系,得()03f f π⎛⎫=⎪⎝⎭,代入即可求解a 值,再结合辅助角公式化简可求()f x 最值【详解】由对称轴关系得66f x f x ππ⎛⎫⎛⎫-=+⎪ ⎪⎝⎭⎝⎭,令6x π=得()03f f π⎛⎫= ⎪⎝⎭,求得a =从而()3sin 2226f x x x x π⎛⎫=+=+ ⎪⎝⎭,当22,62x k k Z πππ+=+∈时,()f x 取到最大值故答案为:20.【分析】联立方程组求得的值结合余弦的倍角公式即可求解【详解】由题意知:联立方程组求得所以故答案为: 解析:725【分析】联立方程组,求得sin ,cos αα的值,结合余弦的倍角公式,即可求解. 【详解】由题意知:7sin cos 5αα+=-,22sin cos 5αα-=-,联立方程组,求得34sin ,cos 55αα=-=-,所以2247cos 22cos 12()1525αα=-=⨯--=. 故答案为:725. 三、解答题21.(1)周期为π,值域为]2,2⎡-⎣;(2)单调递增区间为)(,36k k k Z ππππ⎡⎤-+∈⎢⎥⎦⎣,单调递减区间为)(2,63k k k Z ππππ⎡⎤++∈⎢⎥⎦⎣. 【分析】(1)利用二倍角公式和辅助角公式化简可得)(2sin 26f x x π⎛⎫=+⎪ ⎭⎝,则可求出周期和值域;(2)解不等式)(222262k x k k Z πππππ-≤+≤+∈可得单调递增区间,解不等式)(3222262k x k k Z πππππ+≤+≤+∈可得单调递减区间. 【详解】(1)∵)(cos 222sin 26f x x x x π⎛⎫==+⎪ ⎭⎝, 所以,函数)(y f x =的周期为22T ππ==,值域为]2,2⎡-⎣. (2)解不等式)(222262k x k k Z πππππ-≤+≤+∈,得)(36k k k Z ππππ-≤+∈, 所以,函数)(y f x =的单调递增区间为)(,36k k k Z ππππ⎡⎤-+∈⎢⎥⎦⎣, 解不等式)(3222262k x k k Z πππππ+≤+≤+∈,得)(263k x k k Z ππππ+≤≤+∈, 因比,函数)(y f x =的单调递减区间为)(2,63k k k Z ππππ⎡⎤++∈⎢⎥⎦⎣. 22.(1),,36k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦;(2)函数的最大值为max 3y =,取得最大值时的x集合为,6x x k k Z ππ⎧⎫=+∈⎨⎬⎩⎭;函数的最小值为min 1y =-,取得最小值时的x 集合为,3x x k k Z ππ⎧⎫=-+∈⎨⎬⎩⎭【分析】(1)根据二倍角公式和辅助角公式化简得2sin 216y x π⎛⎫=++ ⎪⎝⎭,再根据整体代换法求函数的单调递增区间即可;(2)根据三角函数的性质求解即可. 【详解】解:(1)2cos 2cos 2cos 212sin 216y x x x x x x π⎛⎫=+=++=++ ⎪⎝⎭, 因为函数sin y x =在区间2,2,22k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦上单调递增, 所以222,262k x k k Z πππππ-≤+≤+∈,解得,36k x k k Z ππππ-≤≤+∈,所以函数2cos 2cos y x x x =+的单调递增区间为,,36k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦ (2)由(1)得2sin 216y x π⎛⎫=++ ⎪⎝⎭, 所以函数的最大值为max 3y =,当且仅当22,62x k k Z πππ+=+∈,即:,6x k k Z ππ=+∈时取得;函数的最小值为min 1y =-,当且仅当22,62x k k Z πππ+=-+∈,即:,3x k k Z ππ=-+∈时取得;所以函数的最大值为max 3y =,取得最大值时的x 集合为,6x x k k Z ππ⎧⎫=+∈⎨⎬⎩⎭;函数的最小值为min 1y =-,取得最小值时的x 集合为,3x x k k Z ππ⎧⎫=-+∈⎨⎬⎩⎭【点睛】关键点点睛:本题解题的关键在于根据题意,结合二倍角公式和辅助角公式将已知三角函数表达式化简整理得2sin 216y x π⎛⎫=++ ⎪⎝⎭,考查运算求解能力,是中档题. 23.(1)2ω=;{|,}6ππ=±∈x x k k Z ;(2)1[-,1]2.【分析】(1)由条件求出2ω=,然后可得答案;(2)将()g x 化为()1cos(2)32g x x π=++,然后可算出其值域.【详解】 (1)由2T ππω==得2ω=;此时令1()cos22f x x ==得223x k ππ=±,6x k k Z ππ∴=±∈ 所求方程的解集为{|,}.6x x k k Z ππ=±∈(2)()2cos )cos()2g x x x x π=-+2cos sin x x x =1cos212cos(2)232x x x π+==++ 4022333x x ππππ≤≤∴≤+≤11cos(2)32x π∴-≤+≤ 11cos(2)1232x π∴-≤++≤即()g x 的值域为1[-,1]224.(1)答案见解析;(2)5,,26212k k k ππππ⎡⎤++∈⎢⎥⎣⎦Z . 【分析】(1)分别选①②,②③,①③三种情况,根据三角函数的性质,即可求出函数解析式;(2)由(1)的结果根据三角函数的伸缩变换与平移原则,求出()g x ,再根据正弦函数的单调性,即可求出单调递减区间. 【详解】 解:(1)选①②因为,6b π⎛⎫- ⎪⎝⎭为()f x 的对称中心,所以2,,63k k k ππϕπϕπ⎛⎫⨯-+==+∈ ⎪⎝⎭Z 又2πϕ<,所以3πϕ=;因为44x ππ-≤≤,所以52636x πππ-≤+≤,所以1sin 2123x π⎛⎫-≤+≤ ⎪⎝⎭所以()min 1122f x b =-+=,所以1b =; 所以()sin 213f x x π⎛⎫=++ ⎪⎝⎭选②③因为12x π=为()f x 的一条对称轴,所以2122k ππϕπ⨯+=+, 所以,3k k πϕπ=+∈Z ,又2πϕ<,所以3πϕ=,因为44x ππ-≤≤,所以52636x πππ-≤+≤;所以1sin 2123x π⎛⎫-≤+≤ ⎪⎝⎭, 所以()min 1122f x b =-+=,所以1b =, 所以()sin 213f x x π⎛⎫=++ ⎪⎝⎭; 选①③,由前面两种情况,可得,根据对称性只能求得3πϕ=,所以()sin 23f x x b π⎛⎫=++ ⎪⎝⎭; (2)当()sin 213f x x π⎛⎫=++ ⎪⎝⎭时, 将函数()y f x =的图象上点的横坐标缩短到原来的12,纵坐标不变,可得sin 413y x π⎛⎫=++ ⎪⎝⎭的图像,再将所得图象向右平移8π个单位,得到函数()y g x =的图象,所以()sin 416g x x π⎛⎫=-+ ⎪⎝⎭; 当()sin 23f x x b π⎛⎫=++ ⎪⎝⎭时,同理可得()sin 46g x x b π⎛⎫=-+ ⎪⎝⎭, 令3242,262k x k k πππππ+≤-≤+∈Z 解得:5,26212k k x k ππππ+≤≤+∈Z 所以函数()g x 的减区间为5,,26212k k k ππππ⎡⎤++∈⎢⎥⎣⎦Z . 【点睛】求解三角函数解析式,以及三角函数性质的题目,一般需要根据三角函数的单调性、对称性等,结合题中条件,求出参数,即可得出解析式;求解三角函数性质问题时,一般根据整体代入的方法,结合正余弦函数的性质求解.25.(1)310;(2)34αβπ+=. 【分析】(1)先求出cos2α的值,再计算sin 2α的值,将cos(2)3πα-展开即可求解;(2)求出cos α和sin β的值,再计算()cos αβ+的值,结合α、(0)2πβ∈,,即可求出αβ+的值.【详解】(1)因为02πα<<,sin α=,所以cos 5α===,所以223cos 212sin 1255αα⎛⎫=-=-⨯=- ⎪ ⎪⎝⎭,4sin 22sin cos 25ααα===,3143cos 2cos 2cos sin 2sin 333525210πππααα⎛⎫-=+=-⨯+⨯=⎪⎝⎭;(2)因为02πβ⎛⎫∈ ⎪⎝⎭,,cos β=sin 10β==,()cos cos sin sin 510510502cos αβαβαβ-+=-=⨯-==-, 因为02πα<<,02πβ<<,所以0αβ<+<π,所以34παβ+=. 【点睛】方法点睛:解给值求角问题的一般步骤 (1)求角的某一个三角函数值; (2)确定角的范围;(3)根据角的范围写出角的大小. 26.(1)512A π=或1112A π=;(2),,422k k k πππ⎡⎤-+∈⎢⎥⎣⎦Z .(1)化简得())6f x x π=-6A π⎛⎫-= ⎪⎝⎭(2)先求出函数()g x 的解析式,再求函数的单调递增区间. 【详解】(1)())6f x x π=-)所以26A f A π⎛⎫⎛⎫=-= ⎪ ⎪⎝⎭⎝⎭,即sin 6A π⎛⎫-= ⎪⎝⎭又0A π<<,所以5666A πππ-<-<, 所以64A ππ-=或34π, 所以512A π=或1112A π=(2)()2,6f x x π⎛⎫- ⎪⎝⎭将函数()y f x =的图像上所有点向左平移3π个单位得到)])362y x x πππ=+-=+,再把所有点的横坐标缩短为原来的12,纵坐标不变,得到函数()442g x x x π⎛⎫=+= ⎪⎝⎭的图像,令242k x k πππ-+≤≤,k Z ∈, 所以422k k x πππ-+≤≤, 所以递增区间为,,422k k k πππ⎡⎤-+∈⎢⎥⎣⎦Z . 【点睛】方法点睛:求函数sin()y A wx h φ=++的单调区间,一般利用复合函数的单调性原理解答:首先是对复合函数进行分解,接着是根据复合函数的单调性原理分析出分解出的函数的单调性,最后根据分解函数的单调性求出复合函数的单调区间.。

最新人教版高中数学必修第一册第五单元《三角函数》检测(含答案解析)

最新人教版高中数学必修第一册第五单元《三角函数》检测(含答案解析)

一、选择题1.已知5π2sin 63α⎛⎫+= ⎪⎝⎭,则πcos 23α⎛⎫-= ⎪⎝⎭( )A .B .19-C .3D .192.下列三个关于函数()sin 2sin 23f x x x π⎛⎫=-+ ⎪⎝⎭的命题:①只需将函数()2g x x =的图象向右平移6π个单位即可得到()f x 的图象;②函数()f x 的图象关于5,012π⎛⎫⎪⎝⎭对称; ③函数()f x 在,63ππ⎡⎤-⎢⎥⎣⎦上单调递增.其中,真命题的个数为( ) A .3B .2C .1D .03.在ABC 中,tan sin cos A B B <,则ABC 的形状是( )A .锐角三角形B .直角三角形C .钝角三角形D .不确定4.计算cos21cos9sin 21sin9︒︒-︒︒的结果是( ).A .B .12-C .2 D .125.cos45sin15sin 45cos15︒︒-︒︒=( ).A .1B .12-C .2D .126.已知函数()2sin 46f x x π⎛⎫=+ ⎪⎝⎭,则( )A .()f x 的最小正周期为πB .()f x 的单调递增区间为(),26212k k k ππππ⎡⎤-+∈⎢⎥⎣⎦Z C .()f x 的图象关于直线6x π=对称D .()f x 的图象关于点,024π⎛⎫⎪⎝⎭对称 7.已知函数()sin (0)6f x x πωω⎛⎫=+> ⎪⎝⎭在区间2,43ππ⎡⎤-⎢⎥⎣⎦上单调递增,则ω的取值范围为( )A .80,3⎛⎤ ⎥⎝⎦B .10,2⎛⎤ ⎥⎝⎦C .18,23⎡⎤⎢⎥⎣⎦D .3,28⎡⎤⎢⎥⎣⎦8.要得到函数224y x π⎛⎫=++ ⎪⎝⎭的图象只需将函数22y x π⎛⎫=- ⎪⎝⎭的图象( )A .先向右平移8π个单位长度,再向下平移2个单位长度 B .先向左平移8π个单位长度,再向上平移2个单位长度C .先向右平移4π个单位长度,再向下平移2个单位长度D .先向左平移4π个单位长度,再向上平移2个单位长度9.已知函数()cos 2cos sin(2)sin f x x x ϕπϕ=⋅-+⋅在3x π=处取得最小值,则函数()f x 的一个单调递减区间为( )A .4,33ππ⎛⎫⎪⎝⎭B .2,33ππ⎛⎫-⎪⎝⎭ C .5,36ππ⎛⎫⎪⎝⎭D .,63ππ⎛⎫-⎪⎝⎭ 10.若22cos()4θθπθ=-,则sin 2θ=( )A .13B .23C .23-D .13-11.设129sin 292a=-,b =22tan161tan 16c =+,则有( ) A .a b c >>B .b c a >>C .c a b >>D .c ba >>1226tan 34tan 26tan 34++=( ) A.3B.CD .3-二、填空题13.已知角θ和角ϕ的始边均与x 轴正半轴重合,终边互相垂直,若角θ的终边与单位圆交于点01,3P x ⎛⎫ ⎪⎝⎭,则cos ϕ=__________________. 14.田忌赛马是中国古代对策论与运筹思想的著名范例,故事中齐将田忌与齐王赛马,孙膑献策以下马对齐王上马,以上马对齐王中马,以中马对齐王下马,结果田忌一负两胜从而获胜,该故事中以局部的牺牲换取全局的胜利成为军事上一条重要的用兵规律,在比大小游戏中(大者为胜),已知我方的三个数为cos a θ=,sin cos b θθ=+,cos sin c θθ=-,对方的三个数以及排序如表:第一局 第二局 第三局对方 2tan θ sin θ当04θ<<时,则我方必胜的排序是______.15.已知()3sin 23cos sin 1f x x x x =-⋅+,若()32f a =,则()f a -=______. 16.已知23sin 3x π⎛⎫-=-⎪⎝⎭,则cos 6x π⎛⎫-= ⎪⎝⎭________. 17.某中学开展劳动实习,学生加工制作零件,零件的截面如图所示,1O 为圆孔及轮廓圆弧AB 所在圆的圆心,2O 为圆弧CD 所在圆的圆心,点A 是圆弧AB 与直线AC 的切点,点B 是圆弧AB 与直线BD 的切点,点C 是圆弧CD 与直线AC 的切点,点D 是圆弧CD 与直线BD 的切点,1218cm O O =,16cm AO =,215cm CO =,圆孔1O 的半径为3cm ,则图中阴影部分的的面积为______2cm .18.已知tan 34πα⎛⎫+= ⎪⎝⎭,则2sin sin 2αα+=______.19.对任意闭区间I ,用I M 表示函数sin y x =在I 上的最大值,若有且仅有一个正数a 使得[][]0,,2a a a M kM =成立,则实数k 的取值范围是_________. 20.已知sin θ+cos θ=15,则tan θ+cos sin θθ的值是____________________. 三、解答题21.已知函数()2sin cos f x x x = (1)求函数()f x 的最小正周期和最大值; (2)求函数()f x 的单调递减区间.22.有一展馆形状是边长为2的等边三角形ABC ,DE 把展馆分成上下两部分面积比为1:2(如图所示),其中D 在AB 上,E 在AC 上.(1)若D 是AB 中点,求AE 的值; (2)设AD x =,ED y =. ①求用x 表示y 的函数关系式;②若DE 是消防水管,为节约成本,希望它最短,DE 的位置应在哪里? 23.已知函数()2cos 3sin cos f x x x x =.(1)求()f x 的最小正周期; (2)函数()f x 的单调递减区间.24.已知向量31cos 2,cos 22m x x x ⎛⎫=- ⎪ ⎪⎝⎭,311,sin cos 22n x x ⎛⎫=- ⎪ ⎪⎝⎭,设函数()f x m n =⋅.(1)求函数()f x 取得最大值时x 取值的集合;(2)设A ,B ,C 为锐角三角形ABC 的三个内角,若3cos 5B =,()14f C =-,求cos A 的值.25.已知sin ,2sin 212a x x π⎛⎫⎛⎫=++ ⎪ ⎪⎝⎭⎝⎭,2cos ,sin 112b x x π⎛⎫⎛⎫=+- ⎪ ⎪⎝⎭⎝⎭且()f x a b =⋅ (1)求函数()y f x =的单调减区间和对称轴; (2)若关于x 的不等式()1f x m +<在0,3π⎡⎤⎢⎥⎣⎦上恒成立,求m 的取值范围. 26.如图,设矩形()ABCD AB BC >的周长为m ,把ABC 沿AC 翻折到AB C ',AB '交DC 于点P ,设AB x =.(1)若CP =2PD ,求x 的值; (2)求ADP △面积的最大值.参考答案【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】先用诱导公式化为5cos 2cos 233ππαα⎛⎫⎛⎫-=+ ⎪ ⎪⎝⎭⎝⎭,再用二倍角公式计算.【详解】225521cos 2cos 212sin 1233639a a πππα⎛⎫⎛⎫⎛⎫⎛⎫-=+=-+--⨯= ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭.故选:D 2.C解析:C 【分析】先对函数()f x 进行化简,得到()3sin 26f x x π⎛⎫- ⎪⎝⎭,对于①运用三角函数图像平移进行判断;对于②计算出函数()f x 的对称中心进行判断;对于③计算出函数()f x 的单调增区间进行判断. 【详解】因为1()sin 2sin 2sin 22sin 232f x x x x x x π⎛⎫=-+=+ ⎪⎝⎭3sin 2222x x =-26x π⎛⎫=- ⎪⎝⎭对于①,将函数()2g x x =的图像向右平移6π个单位可得函数23y x π⎛⎫=- ⎪⎝⎭的图像,得不到()26f x x π⎛⎫=- ⎪⎝⎭,故①错误; 对于②,令()26x k k Z ππ-=∈,解得()122k x k Z ππ=+∈,故无论k 取何整数,函数()f x 的图像不会关于点5,012π⎛⎫⎪⎝⎭对称,故②错误; 对于③,当()222262k x k k Z πππππ-+≤-≤+∈,即()63k x k k Z ππππ-+≤≤+∈时函数()f x 递增,当0k =时,()f x 的一个递增区间为,63ππ⎡⎤-⎢⎥⎣⎦,故③正确.只有1个命题正确. 故选:C 【点睛】思路点睛:解答此类题目需要熟练掌握正弦型函数的单调性、对称性,以及三角函数的图像平移,在计算单调区间和对称中心时要能够通过整体代入计算求出结果,如()222262k x k k Z πππππ-+≤-≤+∈等.3.C解析:C 【详解】∵tan sin cos A B B <,∴sin sin cos cos A BB A<,若A 是钝角,此不等式显然成立,三角形为钝角三角形,若A 是锐角,则sin sin cos cos A B A B <,cos cos sin sin cos()0A B A B A B -=+>,,A B 是三角形内角,∴02A B π<+<,从而()2C A B ππ=-+>,C 为钝角,三角形仍然为钝角三角形. 故选:C . 【点睛】易错点睛:本题考查三角形形状的判断.解题过程中,由sin sin cos cos A BB A<常常直接得出sin sin cos cos A B A B <,然后可判断出C 是钝角,三角形是钝角三角形,也选择了正确答案,但解题过程存在不全面.即应该根据A 角是锐角还是钝角分类讨论.实际上就是不等式性质的应用要正确.4.C解析:C 【分析】 直接化简求值即可. 【详解】解: cos21cos9sin 21sin9︒︒-︒︒()cos 219=︒+︒cos30=︒= 故选:C.5.B解析:B 【分析】根据两角差的正弦公式,准确运算,即可求解. 【详解】由()1cos 45sin15sin 45cos15sin 1545sin 302︒︒-︒︒=︒-︒=-︒=-. 故选:B.6.B解析:B 【分析】对A ,根据解析式可直接求出最小正周期;对B ,令242,262k x k k Z πππππ-+≤+≤+∈可求出单调递增区间;对C ,计算6f π⎛⎫⎪⎝⎭可判断; 对D ,计算24f π⎛⎫⎪⎝⎭可判断.【详解】 对于A ,()2sin 46f x x π⎛⎫=+ ⎪⎝⎭,∴()f x 的最小正周期为242T ππ==,故A 错误;对于B ,令242,262k x k k Z πππππ-+≤+≤+∈,解得,26212k k x k Z ππππ-≤≤+∈,∴()f x 的单调递增区间为(),26212k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦,故B 正确;对于C ,2sin 412666f πππ⎛⎫⨯+=≠± ⎪⎝=⎭⎛⎫ ⎪⎝⎭,∴()f x 的图象不关于直线6x π=对称,故C 错误; 对于D,2sin 4026244f πππ⎛⎫⨯⎛⎫= +=≠ ⎪⎭⎭⎪⎝⎝,∴()f x 的图象不关于点,024π⎛⎫⎪⎝⎭对称. 故选B. 【点睛】方法点睛:判断正弦型函数()()=sin f x A x ωϕ+对称轴或对称中心的方法: (1)利用正弦函数的性质求出对称轴或对称中心,令()2x k k Z πωϕπ+=+∈可求得对称轴,令()x k k Z ωϕπ+=∈可求得对称中心;(2)代入求值判断,若()()00=sin f x A x A ωϕ+=±,则0x x =是对称轴;若()()00=sin 0f x A x ωϕ+=,则()0,0x 是对称中心. 7.B解析:B 【分析】由正弦函数的性质可得121(2)(2),33k x k k Z ππππωω-≤≤+∈,结合已知单调区间列不等式组求ω解集即可. 【详解】由函数解析式知:()f x 在()2,222k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦上单调递增,∴121(2)(2),33k x k k Z ππππωω-≤≤+∈,()f x 单调递增, 又∵()f x 在区间2,43ππ⎡⎤-⎢⎥⎣⎦上单调递增, ∴12(2)3412(2)33k k πππωπππω⎧-≤-⎪⎪⎨⎪+≥⎪⎩,解得8831320k k k Z ωωω⎧≤-⎪⎪⎪≤+⎨⎪>⎪⎪∈⎩,所以当0k =时,有102ω<≤,故选:B 【点睛】关键点点睛:利用整体代入法得到121(2)(2),33k x k k Z ππππωω-≤≤+∈,结合已知单调区间与所得区间的关系求参数范围.8.B解析:B 【分析】根据三角函数图像平移规则,进行平移即可 【详解】解:由函数222248y x x ππ⎛⎫⎛⎫=++=++ ⎪ ⎪⎝⎭⎝⎭,222y x x π⎛⎫=-= ⎪⎝⎭,所以先向左平移8π个单位长度,得2())84y x x ππ=+=+的图像,再向上平移2个单位长度,得 224y x π⎛⎫=++ ⎪⎝⎭的图像,故选:B9.D解析:D 【分析】先化简()f x 并根据已知条件确定出ϕ的一个可取值,然后根据余弦函数的单调递减区间求解出()f x 的一个单调递减区间. 【详解】 因为()()()cos2cos sin 2sin cos2cos sin 2sin cos 2f x x x x x x ϕπϕϕϕϕ=⋅-+⋅=⋅+⋅=-,且()f x 在3x π=处有最小值,所以2cos 133f ππϕ⎛⎫⎛⎫=-=-⎪ ⎪⎝⎭⎝⎭,所以22,3k k Z πϕππ-=+∈, 所以2,3k k Z πϕπ=--∈,取ϕ的一个值为3π-, 所以()cos 23f x x π⎛⎫=+ ⎪⎝⎭,令222,3k x k k Z ππππ≤+≤+∈, 所以,63k x k k Z ππππ-≤≤+∈,令0k =,所以此时单调递减区间为,63ππ⎡⎤-⎢⎥⎣⎦, 故选:D. 【点睛】思路点睛:求解形如()()cos f x A x ωϕ=+的函数的单调递减区间的步骤如下: (1)先令[]2,2+,k k k x Z ωϕπππ+∈∈;(2)解上述不等式求解出x 的取值范围即为()f x 的单调递减区间.10.B解析:B 【分析】由二倍角公式和差的余弦公式化简得出()2cos sin 2θθθ-=,再平方即可求出. 【详解】)22cos sin 2cos()coscos sinsin 444θθθπππθθθ-=-+()cos sin cos sin 2cos sin 2θθθθθθ+-==-,()2cos sin 2θθθ∴-=,两边平方得()241sin 23sin 2θθ-=,解得sin 22θ=-(舍去)或2sin 23θ=. 故选:B. 【点睛】关键点睛:本题考查三角恒等变换的化简问题,解题的关键是能正确利用二倍角公式和差的余弦公式将已知等式化简为()2cos sin 2θθθ-=,再平方求解.11.B解析:B 【分析】由两角差的正弦公式,余弦和正正弦的二倍角公式化简,,a b c ,然后由正弦函数的单调性得出结论. 【详解】129si sin(6029)si 3n 29122n a =︒-︒=︒=-, b =sin 33==︒,2222sin162tan16cos162sin16sin 161tan 161c cos16sin 32os 16c ===︒︒︒︒=︒︒︒++,显然sin31sin32sin33︒<︒<︒,所以a c b <<. 故选:B .【点睛】关键点点睛:本题考查三角函数值的比较大小,解题方法是首先化简各函数,应用三角函数恒等变换公式化简函数,注意转化为同一个三角函数,并且把角转化到三角函数的同一单调区间上,然后由三角函数的单调性得大小关系.12.C解析:C 【分析】利用两角和的正切公式,特殊角的三角函数值化简已知即可求解. 【详解】26tan34tan 26tan34︒︒+︒+︒26tan 34tan(2634)(1tan 26tan 34)=︒︒+︒+︒-︒︒26tan 34tan 26tan 34)=︒︒+-︒︒26tan3426tan34=︒︒︒︒=故选:C .二、填空题13.【分析】由题意可得:利用已知条件可以求出利用即可求解【详解】因为角和角的始边均与轴正半轴重合终边互相垂直所以若角的终边与单位圆交于点所以则故答案为:解析:13±【分析】由题意可得:,2k k Z πϕθπ=++∈,利用已知条件可以求出1sin 3θ=,利用 cos sin ϕθ=±即可求解.【详解】因为角θ和角ϕ的始边均与x 轴正半轴重合,终边互相垂直, 所以,2k k Z πϕθπ=++∈,若角θ的终边与单位圆交于点01,3P x ⎛⎫ ⎪⎝⎭,所以1sin 3θ=, 则1cos sin 3ϕθ=±=±,故答案为:13±14.【分析】由三角函数值的大小比较得:当时结合田忌赛马的事例进行简单的推理即可得答案【详解】因为当时故答案为:【点睛】关键点点睛:本题的关键点是当时比较出以及的大小关系利用田忌赛马的事例进行推理即可 解析:c ,b ,a【分析】由三角函数值的大小比较得:当04πθ<<时,cos sin cos cos sin θθθθθ-<<+,sin tan θθ<<,结合田忌赛马的事例进行简单的推理,即可得答案. 【详解】因为当04πθ<<时,cos sin cos cos sin θθθθθ-<<+,sin tan θθ<<,tan sin cos θθθ<+,sin cos θθ<. 故答案为:c ,b ,a 【点睛】关键点点睛:本题的关键点是当04πθ<<时,比较出sin tan θθ<<,以及a 、b 、c 的大小关系,利用田忌赛马的事例进行推理即可.15.【分析】令求出再由奇函数的性质求解【详解】令易证为奇函数所以所以故答案为: 解析:12【分析】令()3sin 23cos sin g x x x x =-⋅,求出()12g a =,再由奇函数的性质求解()f a -. 【详解】令()3sin 23cos sin g x x x x =-⋅,易证()g x 为奇函数.()()312f a g a =+=,所以()12g a =,所以()()()1112f ag a g a -=-+=-+=.故答案为:1216.【分析】由再结合诱导公式可得结果【详解】【点睛】方法点睛:利用诱导公式求值或化简时常用拼凑角常见的互余关系有:与与与等;常见的互补关系有:与与等;解析:3-【分析】由2623x x πππ⎛⎫-=-- ⎪⎝⎭,再结合诱导公式可得结果. 【详解】223cos cos sin 62333x x x ππππ⎛⎫⎛⎫⎛⎫⎛⎫-=--=-=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭【点睛】方法点睛:利用诱导公式求值或化简时,常用拼凑角,,常见的互余关系有:3πα+与6πα-,3πα-与6πα+,4πα-与4απ+等;常见的互补关系有: 3πα+与23πα-,4πα+与34πα-等; 17.【分析】根据图形的割补思想可得阴影部分的面积为:两个直角梯形的面积减去一个扇形面积减去圆的面积再加上小扇形的面积即可得答案;【详解】如图所示:则故答案为:【点睛】利用割补思想发现图形间的关系结合直角 解析:189372π-【分析】根据图形的割补思想可得阴影部分的面积为:两个直角梯形的面积减去一个扇形面积,减去圆的面积,再加上小扇形的面积,即可得答案; 【详解】如图所示:12O M CO ⊥,则21219,18,93O M OO O M ===,∴1221233O O M CO D AO B ππ∠=⇒∠=∠=,1121221O AO O C BO O D CO D AO B S S S S S S =+--+圆梯形梯形扇形扇形,∴222112122(615)93153618937222323S ππππ=⨯⨯+⨯⨯⨯-⨯+⨯⨯=,故答案为:189372π. 【点睛】利用割补思想发现图形间的关系,结合直角梯形的面积公式、扇形的面积公式,是求解本题的关键.18.1【分析】首先根据已知条件求得再结合齐次方程求得【详解】由已知得解得所以故答案为:1解析:1 【分析】首先根据已知条件求得tan α,再结合齐次方程求得2sin sin 2αα+. 【详解】 由已知得1tan 31tan αα+=-,解得1tan 2α=.所以22222211sin 2sin cos tan 2tan 4sin sin 211sin cos tan 114αααααααααα++++====+++. 故答案为:119.【分析】讨论的范围得出的表达式求出的值域即可【详解】①当时由得所以此时即则即;②当时由得此时即;③当时由得所以此时则即;④当时则由得不成立此时不存在;⑤当时由得所以此时则即;⑥当时由得综上实数的取值解析:1,2⎡⎫+∞⎪⎢⎣⎭【分析】讨论a 的范围得出k 的表达式,求出()k f a =的值域即可. 【详解】①当0,4πa ⎡⎤∈⎢⎥⎣⎦时,[0,][,2]20,,sin ,sin 22a a a πa M a M a ⎡⎤∈==⎢⎥⎣⎦,由[][]0,,2a a a M kM =,得sin sin 2a k a =,所以12cos k a=,此时cos 12a ≤≤2cos 2a ≤≤,则1122cos a ≤≤12k ⎡∈⎢⎣⎦; ②当,42ππa ⎡⎤∈⎢⎥⎣⎦时,[0,][,2]2,,sin ,12a a a πa πM a M ⎡⎤∈==⎢⎥⎣⎦, 由[][]0,,2a a a M kM =,得sin k a =,此时sin 12a ≤≤,即2k ⎤∈⎥⎣⎦; ③当,2a ππ⎛⎫∈⎪⎝⎭时,()[0,][,2]2,2,1,sin a a a a M M a ππ∈==, 由[][]0,,2a a a M kM =,得1sin k a =,所以1sin k a=, 此时0sin 1a <<,则11sin a>,即()1,k ∈+∞; ④当a π=时,22a π=,则[0,][,2]1,0a a a M M ==,由[][]0,,2a a a M kM =,得10=不成立,此时k 不存在; ⑤当5,4πa π⎛⎫∈ ⎪⎝⎭时,[0,][,2]522,,1,sin 22a a a a ππM M a ⎛⎫∈== ⎪⎝⎭, 由[][]0,,2a a a M kM =,得1sin 2k a =,所以1sin 2k a=, 此时0sin 21a <<,则11sin 2a>,即()1,k ∈+∞; ⑥当5,+4a π⎡⎫∈∞⎪⎢⎣⎭时,[0,][,2]52,,1,12a a a a πM M ⎡⎫∈+∞==⎪⎢⎣⎭, 由[][]0,,2a a a M kM =,得1k =, 综上,实数k 的取值范围是1,2⎡⎫+∞⎪⎢⎣⎭. 【点睛】本题考查三角函数最值的求解,解题的关键是分段讨论a 的范围,根据a 的不同取值范围得出k 的表达式,再利用三角函数的性质求解.20.【分析】先通过已知求出再化简tanθ+即得解【详解】由sinθ+cosθ=得tanθ+故答案为:【点睛】关键点睛:解答本题的关键是把sinθ+cosθ=两边平方得到 解析:2512-【分析】先通过已知求出12sin cos 25θθ=-,再化简tan θ+cos sin θθ即得解. 【详解】 由sin θ+cos θ=15得1121+2sin cos ,sin cos 2525θθθθ=∴=-. tan θ+cos sin θθsin cos 125cos sin sin cos 12θθθθθθ=+==-.故答案为:2512- 【点睛】关键点睛:解答本题的关键是把sin θ+cos θ=15两边平方得到12sin cos 25θθ=-. 三、解答题21.(1)T π=;最大值为1;(2)3[,]()44k k k Z ππππ++∈【分析】(1)应用二倍角公式,将函数化为正弦型三角函数,即可求解; (2)根据正弦函数的单调递减区间结合整体代换,即可求出结论. 【详解】(1)()2sin cos sin 2f x x x x ==, 最小正周期为22T ππ==,最大值为1; (2)由3222()22k x k k Z ππππ+≤≤+∈, 解得3()44k x k k Z ππππ+≤≤+∈, ()f x ∴单调递减区间是3[,]()44k k k Z ππππ++∈.22.(1)43AE =;(2)①2,23y x ⎡⎤=∈⎢⎥⎣⎦;②//DE BC . 【分析】(1)利用三角形的面积公式,得到43AD AE ⋅=,根据D 是AB 中点,即可求得AE 的长;(2)对于①中,由(1)得到4433AE AD x==,求得223x ≤≤,在ADE 中,由余弦定理,即可求得函数的解析式;②根据DE 是消防水管,结合基本不等式,即可求得x 的值,得到DE 的位置. 【详解】(1)依题意,可得211112sin 60sin 6033232ADE ABC S S AD AE ==⋅⋅⋅︒==⋅︒△△ 解得43AD AE ⋅=, 又因为D 是AB 中点,则1AD =,所以43AE =. (2)对于①中,由(1)得43AD AE ⋅=,所以4433AE AD x==, 因为2AE ≤,可得23x ≥,所以223x ≤≤, 在ADE 中,由余弦定理得2222221642cos6093y DE AD AE AD AE x x ==+-⋅⋅︒=+-,所以2,23y x ⎡⎤=∈⎢⎥⎣⎦.②如果DE 是消防水管,可得y =≥=,当且仅当243x =,即x =此时3AE =,故//DE BC ,且消防水管路线最短为3DE =. 【点睛】利用基本不等式求解实际问题的解题技巧:利用基本不等式求解实际应用问题时,一定要注意变量的实际意义及其取值范围; 根据实际问题抽象出函数的解析式,再利用基本不等式求得函数的最值; 在应用基本不等式求最值时,若等号取不到,可利用函数的单调性求解. 23.(1)π;(2)2,,63k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦【分析】(1)利用二倍角的正弦、余弦公式将函数化为()1sin 262f x x π⎛⎫=++ ⎪⎝⎭,由周期公式即可求解.(2)由正弦函数的单调递减区间32,2,22k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦,整体代入即可求解. 【详解】(1)()21cos 221cos cos sin 22262x x f x x x x x π+⎛⎫==+=++ ⎪⎝⎭, 所以函数的最小正周期222T πππω===, (2)3222,262k x k k Z πππππ+≤+≤+∈, 解不等式可得2,63k x k k Z ππππ+≤≤+∈, 所以函数()f x 的单调递减区间为2,,63k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦24.(1)|,12x x k k Z ππ⎧⎫=-∈⎨⎬⎩⎭;(2)310【分析】(1)利用三角函数公式和平面向量数量积对函数简化,再根据三角函数的性质求得函数取得最大值时x 取值的集合;(2)根据已知条件求得的B ,C 大小,然后利用()cos cos A B C =-+展开即可求解. 【详解】(1)21()cos 2cos 2f x m n x x x ⎫=⋅=+-⎪⎪⎝⎭2231cos 2sin cos sin cos 442x x x x x =++-31cos 211cos 2cos 224242x x x x -+=+⨯+⨯-311cos 2sin 22442223x x x π⎛⎫=-+=-- ⎪⎝⎭, 要使函数()f x 取得最大值,需要满足sin 23x π⎛⎫- ⎪⎝⎭取得最小值, 所以()2232x k k Z πππ-=-+∈,所以12x k ππ=-()k Z ∈,所以当()f x 取得最大值时x 取值的集合为|,12x x k k Z ππ⎧⎫=-∈⎨⎬⎩⎭, (2)因为A ,B ,C 为锐角三角形ABC 的三个内角,3cos 5B =所以4sin 5B ==,由()11sin 22234f C C π⎛⎫=--=- ⎪⎝⎭,得sin 232C π⎛⎫-=⎪⎝⎭, 因为22333C πππ-<-<所以233C ππ-=,解得3C π=,所以()314cos cos cos cos sin sin 525A B C B C B C =-+=-+=-⨯+=所以cos A = 【点睛】关键点点睛:本题的关键点是熟记两角和差的正弦余弦公式,辅助角公式,诱导公式,同角三角函数基本关系,向量的数量积的坐标表示,注意三角形是锐角三角形以确定角的范围.25.(1)单调递减区间为5,36ππk πk π⎡⎤++⎢⎥⎣⎦,k ∈Z ;对称轴为23k x ππ=+,k ∈Z ;(2)()1,+∞. 【分析】(1)根据平面向量数量积的坐标运算及三角恒等变换公式将函数化简,再结合正弦函数的性质计算可得;(2)由(1)可令()()sin 261g f x x x π⎛⎫-== ⎝+⎪⎭,依题意可得()m g x >在0,3π⎡⎤⎢⎥⎣⎦上的最大值.根据正弦函数的性质计算可得; 【详解】解:(1)()()22sin cos 2sin 11212a b x x x f x ππ⎛⎫⎛⎫=⋅=+++- ⎪ ⎪⎝⎭⎝⎭ 2sin 22cos sin 2cos 2166x x x x ππ⎛⎫⎛⎫=+-=+-- ⎪ ⎪⎝⎭⎝⎭12cos 21sin 21226x x x π⎛⎫=--=-- ⎪⎝⎭ 令3222262k x k πππππ+≤-≤+,解得536k x k ππππ+≤≤+, 所以()f x 的单调递减区间为5,36ππk πk π⎡⎤++⎢⎥⎣⎦,k ∈Z 再令262x k πππ-=+,解得23k x ππ=+, 所以()f x 的对称轴为23k x ππ=+,k ∈Z (2)令()()sin 261g f x x x π⎛⎫-== ⎝+⎪⎭因为()1f x m +<在0,3π⎡⎤⎢⎥⎣⎦上恒成立,所以()m g x >在0,3π⎡⎤⎢⎥⎣⎦上的最大值. 因为0,3x π⎡⎤∈⎢⎥⎣⎦,所以2,662x πππ⎡⎤-∈-⎢⎥⎣⎦,所以()max 13x g g π⎛⎫== ⎪⎝⎭ 所以1m ,于是m 的取值范围是()1,+∞ 【点睛】本题解答的关键是三角恒等变换及三角函数的性质的应用,利用恒等变换公式及辅助角公式()sin cos a x b x x ϕ+=+,其中(tan baϕ=)26.(1)(34m ;(2)(2316m ⋅-. 【分析】(1)设CAB CAP θ∠=∠=,求得222PAD APD πθθ∠=-∠=,,得到且tan 23tan θθ=,结合正切的二倍角公式,即可求解.(2)设CAB CAP θ∠=∠=,则2APD θ∠=,且()tan 01θ∈,,由()tan 2x x m θ+⨯=,求得x 得值,求得()tan 21tan m AD BC θθ==+,1tan 4PD m θ-=,设1tan t θ+=,得到()12t ∈,,利用三角形的面积公式和二次函数的性质,即可求解. 【详解】(1)由题意,在ABC 中,可设CAB CAP θ∠=∠=, 则由角度关系可得222PAD APD πθθ∠=-∠=,,设BC y = ,且tan tan 23tan 3y yx xθθθ===,, 则有22tan tan 23tan 1tan θθθθ==-,解得tan θ=,则有y x =,所以23x x m ⎛⎫+= ⎪ ⎪⎝⎭,解得(34x m =. (2)设CAB CAP θ∠=∠=,则222PAD APD πθθ∠=-∠=,,且()tan 01θ∈,, 则有()tan 2x x m θ+⨯=,解得()21tan m x θ=+,即()tan 21tan m AD BC θθ==+,所以()2tan 1tan 1tan tan 221tan 2tan 4AD PD m m θθθθθθ--==⋅=+, 则S △ADP =()2221tan 1tan tan tan 221tan 4161tan m m θθθθθθ--⋅⋅=⋅++,令()1tan 12t t θ+=∈,, 所以S △ADP =()22222113223161616t t m m t t m t t t t ---⎡⎤-+-⎛⎫⋅=⋅=⋅-++ ⎪⎢⎥⎝⎭⎣⎦(2316m ≤⋅-,当且仅当2t t t==,时取等号. 则ADP △面积的最大值为(2316m ⋅-.【点睛】对于三角函数模型的应用问题,解答的关键是建立符合条件的函数模型,结合示意图,然后再由三角形中的相关知识进行求解,解题时要注意综合利用所学的三角恒等变换的公式及三角函数的性质求解.。

人教版高中数学必修第一册第五单元《三角函数》检测卷(有答案解析)

人教版高中数学必修第一册第五单元《三角函数》检测卷(有答案解析)

一、选择题1.已知0>ω,函数()sin 3f x x πω⎛⎫=+ ⎪⎝⎭在,2ππ⎛⎫⎪⎝⎭上单调递减,则ω的取值范围是( ) A .15,36⎡⎤⎢⎥⎣⎦B .17,36⎡⎤⎢⎥⎣⎦C .15,46⎡⎤⎢⎥⎣⎦D .17,46⎡⎤⎢⎥⎣⎦2.函数πcos 24y x ⎛⎫=+ ⎪⎝⎭的一条对称轴方程是( ) A .π2x =-B .π4x =-C .π8x =-D .πx =3.若把函数sin y x =的图象沿x 轴向左平移3π个单位,然后再把图象上每个点的横坐标伸长到原来的2倍(纵坐标保持不变),得到函数()y f x =的图象,则()y f x =的解析式为( ) A .sin 23y x π⎛⎫=+ ⎪⎝⎭B .2sin 23y x π⎛⎫=+⎪⎝⎭C .1sin 23y x π⎛⎫=+⎪⎝⎭D .12sin 23y x π⎛⎫=+ ⎪⎝⎭4.已知函数()1cos 2f x x x ωω=-(0>ω)的图象与直线1y =的相邻两个交点距离等于π,则()f x 的图象的一条对称轴是( ) A .12x π=-B .12x π=C .3x π=-D .3x π=5.已知函数()()2sin ,0,2f x x x x π=∈⎛⎫⎡⎤ ⎪⎢⎥⎣⎦⎝⎭,则()f x 的单调递增区间是( )A .06,π⎡⎤⎢⎥⎣⎦B .0,4⎡⎤⎢⎥⎣⎦πC .0,3π⎡⎤⎢⎥⎣⎦D .0,2π⎡⎤⎢⎥⎣⎦6.7sin 6π⎛⎫-= ⎪⎝⎭( )A .BC .12-D .127.已知函数()sin (0)6f x x πωω⎛⎫=+> ⎪⎝⎭在区间2,43ππ⎡⎤-⎢⎥⎣⎦上单调递增,则ω的取值范围为( ) A .80,3⎛⎤ ⎥⎝⎦B .10,2⎛⎤ ⎥⎝⎦C .18,23⎡⎤⎢⎥⎣⎦D .3,28⎡⎤⎢⎥⎣⎦8.要得到函数3sin 224y x π⎛⎫=++ ⎪⎝⎭的图象只需将函数3cos 22y x π⎛⎫=- ⎪⎝⎭的图象( )A .先向右平移8π个单位长度,再向下平移2个单位长度 B .先向左平移8π个单位长度,再向上平移2个单位长度C .先向右平移4π个单位长度,再向下平移2个单位长度D .先向左平移4π个单位长度,再向上平移2个单位长度9.sin15cos15+=( ) A .12B .22C .32D .6210.已知1sin cos 3αα+=,则sin 2α的值是( ). A .89B .89-C .17 D .17-11.已知函数()y f x =的图象如图所示,则此函数可能是( )A .sin 6()22x x x f x -=- B .sin 6()22x x x f x -=- C .cos6()22x xx f x -=- D .cos6()22x x xf x -=-12.已知1sin()43πα-=,则cos()4πα+=( ) A .13-B .13C .223-D .23二、填空题13.若tan 4α=,则2cos 2sin 2αα+= ________. 14.方程cos 306x π⎛⎫+= ⎪⎝⎭在[]0,π上的解的个数为______.15.已知2sin 3x π⎛⎫-=⎪⎝⎭,则cos 6x π⎛⎫-= ⎪⎝⎭________. 16.设()sin 2cos2f x a x b x =+,0ab ≠,若()6f x f π⎛⎫≤ ⎪⎝⎭对任意x ∈R 成立,则下列命题中正确的命题是______.(填序号)①11012f π⎛⎫= ⎪⎝⎭;②7105f f ππ⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭;③()f x 不具有奇偶性;④()f x 的单调增区间是()2,63k k k ππ⎡⎤π+π+∈⎢⎥⎣⎦Z ;⑤可能存在经过点(),a b 的直线与函数的图象不相交. 17.若()()2sin 03f x x πωω⎛⎫=+> ⎪⎝⎭的最小正周期为4π,则()()tan 06g x x πωω⎛⎫=+> ⎪⎝⎭的最小正周期为______.18.函数f (x )=sin 2x +sin x cos x +1的最大值是________. 19.已知tan 2α=,则cos2=α__. 20.将函数()y f x =图象右移6π个单位,再把所得的图象保持纵坐标不变,横坐标伸长到原来的2倍得到sin 3y x π⎛⎫=-⎪⎝⎭,则6f π⎛⎫=⎪⎝⎭______. 三、解答题21.已知向量()cos ,sin m x x =,()cos x n x =,设函数()12f x m n =⋅-,π0,3x ⎡⎤∈⎢⎥⎣⎦. (1)讨论()f x 的单调性; (2)若方程()23f x =有两个不相等的实数根1x ,2x ,求()12cos x x +,()12cos x x -的值. 22.已知tan 1tan 1αα=--,求下列各式的值:(1)sin 3cos sin cos αααα-+;(2)2sin sin cos 2ααα++.23.若函数()sin cos f x x x =+在[]0,a 上单调递增,求a 的取值范围. 24.在①函数()()sin 20,2f x x πωϕωϕ⎛⎫=+><⎪⎝⎭的图象向右平移6π个单位长度得到()g x 的图像,()g x 图像关于,012π⎛⎫⎪⎝⎭对称;②函数()()12cos sin 062f x x x πωωω⎛⎫=+-> ⎪⎝⎭这两个条件中任选一个,补充在下而问题中,并解答.已知______,函数()f x 的图象相邻两条对称轴之间的距离为2π. (1)若()f x 在[]0,α上的值域为1,12⎡⎤⎢⎥⎣⎦,求a 的取值范围; (2)求函数()f x 在[]0,2π上的单调递增区间.25.已知向量a =cos x ,-1),b =(sin x ,cos 2x ),函数()f x a b =⋅. (1)求函数()f x 的单调递增区间; (2)求函数()f x 在区间[2π-,0]上的最大值和最小值,并求出相应的x 的值. 26.设函数2()cos sin 3f x x x x π⎛⎫=⋅+ ⎪⎝⎭. (1)求()f x 的最小正周期;(2)当0,3x π⎡⎤∈⎢⎥⎣⎦时,求函数()f x 的最值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】 由322232k x k ππππωπ+++求得22766k k x ππππωωωω++,k z ∈.可得函数()f x 的一个减区间为[6πω,7]6πω.再由6276ππωππω⎧⎪⎪⎨⎪⎪⎩,求得ω的范围.函数()sin()3f x x πω=+在(,)2ππ上单调递减, 设函数的周期22T T πππω⇒=-,2ω∴. 再由函数()sin()3f x x πω=+满足322232k x k ππππωπ+++,k z ∈, 求得22766k k x ππππωωωω++,k z ∈. 取0k =,可得766x ππωω, 故函数()f x 的一个减区间为[6πω,7]6πω. 再由6276ππωππω⎧⎪⎪⎨⎪⎪⎩,求得1736ω, 故选:B . 【点睛】函数sin()y A x ωϕ=+的单调区间的求法:若0,0A ω>>,把x ωϕ+看作是一个整体,由22k x ππωϕ+≤+≤()322k k Z ππ+∈求得函数的减区间,由2222k x k πππωϕπ-+≤+≤+求得增区间2.C解析:C 【分析】根据余弦函数的对称轴可得π22π4x k +=,解方程即可求解. 【详解】π22π4x k +=,k Z ∈,则有ππ8x k =-+,k Z ∈ 当0k =时,πcos 24y x ⎛⎫=+ ⎪⎝⎭的一条对称轴方程为π8x =-. 故选:C3.C解析:C 【分析】根据三角函数图象平移、伸缩的公式,结合题中的变换加以计算,可得函数()y f x =的解【详解】 解:将函数sin y x =的图象沿x 轴向左平移3π个单位,得到函数sin()3y x π=+的图象; 将sin()3y x π=+的图象上每个点的横坐标伸长到原来的2倍(纵坐标保持不变),得到1sin()23y x π=+的图象.∴函数sin y x =的图象按题中变换得到函数()y f x =的图象,可得1()sin 23y f x x π⎛⎫==+ ⎪⎝⎭.故选:C .4.D解析:D 【分析】首先化简函数,根据条件确定函数的周期,求ω,再求函数的对称轴. 【详解】()()sin 06f x x πωω⎛⎫=-> ⎪⎝⎭,max 1y =,由题意可知T π=,22ππωω∴=⇒=,()sin 26f x x π⎛⎫∴=- ⎪⎝⎭,令2,62x k k Z πππ-=+∈,解得:32k x ππ=+,k Z ∈ 当0k =时,3x π=.故选:D5.A解析:A 【分析】根据三角恒等变换公式化简()f x ,结合x 的范围,可得选项. 【详解】因为()()2sin ,0,2f x x xx π=+∈⎛⎫⎡⎤ ⎪⎢⎥⎣⎦⎝⎭,所以()()222sin sin cos +3cos f x x xx x x x +==222cos +12cos 2+22sin 2+26x x x x x π⎛⎫=+=+=+ ⎪⎝⎭,因为0,2x π⎡⎤∈⎢⎥⎣⎦,所以72+,666x πππ∈⎡⎤⎢⎥⎣⎦,所以由2+662x πππ≤≤,解得06x π≤≤, 所以()f x 的单调递增区间是06,π⎡⎤⎢⎥⎣⎦,故选:A.6.D解析:D 【分析】直接利用诱导公式求解. 【详解】771sin sin sin sin 66662πππππ⎛⎫⎛⎫-=-=-+== ⎪ ⎪⎝⎭⎝⎭, 故选:D7.B解析:B 【分析】由正弦函数的性质可得121(2)(2),33k x k k Z ππππωω-≤≤+∈,结合已知单调区间列不等式组求ω解集即可. 【详解】由函数解析式知:()f x 在()2,222k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦上单调递增,∴121(2)(2),33k x k k Z ππππωω-≤≤+∈,()f x 单调递增, 又∵()f x 在区间2,43ππ⎡⎤-⎢⎥⎣⎦上单调递增, ∴12(2)3412(2)33k k πππωπππω⎧-≤-⎪⎪⎨⎪+≥⎪⎩,解得8831320k k k Z ωωω⎧≤-⎪⎪⎪≤+⎨⎪>⎪⎪∈⎩,所以当0k =时,有102ω<≤,故选:B 【点睛】关键点点睛:利用整体代入法得到121(2)(2),33k x k k Z ππππωω-≤≤+∈,结合已知单调区间与所得区间的关系求参数范围.8.B解析:B 【分析】根据三角函数图像平移规则,进行平移即可 【详解】解:由函数222248y x x ππ⎛⎫⎛⎫=++=++ ⎪ ⎪⎝⎭⎝⎭,222y x x π⎛⎫=-= ⎪⎝⎭,所以先向左平移8π个单位长度,得2())84y x x ππ=+=+的图像,再向上平移2个单位长度,得 224y x π⎛⎫=++ ⎪⎝⎭的图像,故选:B9.D解析:D 【分析】由辅助角公式可直接计算得到结果. 【详解】()6sin15cos152sin 15452sin 602+=+==. 故选:D.10.B解析:B 【分析】已知条件平方后,利用sin 22sin cos ααα=,直接计算结果. 【详解】 ∵1sin cos 3αα+=,平方得,)(21sin cos 9αα+=, ∴)()(221sin 2sin cos cos 9αααα++=,∴82sin cos 9αα=-,∴8sin29α=-.故选:B11.D解析:D 【分析】由函数图象可得()y f x =是奇函数,且当x 从右趋近于0时,()0f x >,依次判断每个函数即可得出. 【详解】由函数图象可得()y f x =是奇函数,且当x 从右趋近于0时,()0f x >,对于A ,当x 从右趋近于0时,sin60x >,22x x -<,故()0f x <,不符合题意,故A 错误; 对于B ,()()sin 6sin 6()2222x x x xx xf x f x ----===--,()f x ∴是偶函数,不符合题意,故B 错误; 对于C ,()()cos 6cos 6()2222x x x xx xf x f x ----===--,()f x ∴是偶函数,不符合题意,故C 错误; 对于D ,()()cos 6cos 6()2222x x x xx xf x f x ----===---,()f x ∴是奇函数,当x 从右趋近于0时,cos60x >,22x x ->,()0f x ∴>,符合题意,故D 正确. 故选:D. 【点睛】思路点睛:函数图象的辨识可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置. (2)从函数的单调性,判断图象的变化趋势; (3)从函数的奇偶性,判断图象的对称性; (4)从函数的特征点,排除不合要求的图象.12.A解析:A 【分析】 运用α-、2πα-的诱导公式,计算即可得到.【详解】 解:1sin()43πα-=,即为1sin()43πα-=-, 即有1sin[()]243ππα-+=-, 即1cos()43πα+=-. 故选:A.二、填空题13.1【分析】把求值式转化为关于的二次齐次分式然后转化为代入求值【详解】∵∴故答案为:1【点睛】方法点睛:本题考查二倍角公式考查同角间的三角函数关系在已知求值时对关于的齐次式一般转化为关于的式子再代入值解析:1 【分析】把求值式转化为关于sin ,cos αα的二次齐次分式.然后转化为tan α,代入求值. 【详解】 ∵tan 4α=,∴222222cos 4sin cos 14tan 144cos 2sin 21sin cos tan 141ααααααααα+++⨯+====+++.故答案为:1. 【点睛】方法点睛:本题考查二倍角公式,考查同角间的三角函数关系.在已知tan α求值时,对关于sin ,cos αα的齐次式,一般转化为关于tan α的式子.再代入tan α值计算.如一次齐次式:sin cos sin cos a b c d αααα++,二次齐次式:2222sin sin cos cos sin sin cos cos a b c d e f αααααααα++++, 另外二次式22sin sin cos cos m n p αααα++也可化为二次齐次式.14.3【分析】先求出解的一般形式再根据范围可求解的个数【详解】因为故故令故故答案为:3解析:3 【分析】先求出解的一般形式,再根据范围可求解的个数. 【详解】因为cos 306x π⎛⎫+= ⎪⎝⎭,故3,62x k k Z πππ+=+∈, 故,39k x k Z ππ=+∈,令039k πππ≤+≤,故0,1,2k =, 故答案为:3.15.【分析】由再结合诱导公式可得结果【详解】【点睛】方法点睛:利用诱导公式求值或化简时常用拼凑角常见的互余关系有:与与与等;常见的互补关系有:与与等;解析:【分析】 由2623x x πππ⎛⎫-=-- ⎪⎝⎭,再结合诱导公式可得结果. 【详解】22cos cos sin 6233x x x ππππ⎛⎫⎛⎫⎛⎫⎛⎫-=--=-= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭【点睛】方法点睛:利用诱导公式求值或化简时,常用拼凑角,,常见的互余关系有:3πα+与6πα-,3πα-与6πα+,4πα-与4απ+等;常见的互补关系有: 3πα+与23πα-,4πα+与34πα-等; 16.①③【分析】由题可知直线与函数的图象的一条对称轴可求得可化简函数的解析式为计算出的值可判断①的正误;计算可判断②的正误;利用特殊值法可判断③的正误;取利用正弦函数的单调性可判断④的正误;假设命题⑤正解析:①③ 【分析】 由题可知,直线6x π=与函数()f x 的图象的一条对称轴,可求得3ab ,可化简函数()f x 的解析式为()2sin 26f x b x π⎛⎫=+ ⎪⎝⎭.计算出1112f π⎛⎫⎪⎝⎭的值,可判断①的正误;计算710f π⎛⎫⎪⎝⎭、5f π⎛⎫⎪⎝⎭,可判断②的正误;利用特殊值法可判断③的正误;取0b >,利用正弦函数的单调性可判断④的正误;假设命题⑤正确,求出直线的方程,结合函数()f x 的最值可判断⑤的正误.【详解】 由题可知,直线6x π=与函数()f x 的图象的一条对称轴,可得162f b π⎛⎫=+= ⎪⎝⎭,整理可得2230a b -+=,即()20a -=,a ∴=.()sin 2cos 22sin 26f x x b x b x π⎛⎫∴=+=+ ⎪⎝⎭.对于命题①,11112sin 2012126f b πππ⎛⎫⎛⎫=⨯+= ⎪ ⎪⎝⎭⎝⎭,①正确; 对于命题②,7747172sin 22sin 2sin 101063030f b b b ππππππ⎛⎫⎛⎫⎛⎫=⨯+==+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭17172sin2sin 3030b b ππ=-=, 172sin 22sin 55630f b b ππππ⎛⎫⎛⎫=⨯+= ⎪ ⎪⎝⎭⎝⎭,所以,7105f f ππ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭,②不正确; 对于命题③,2sin 66f b b ππ⎛⎫⎛⎫-=-=- ⎪ ⎪⎝⎭⎝⎭,2sin 262f b b ππ⎛⎫== ⎪⎝⎭,则66f f ππ⎛⎫⎛⎫-≠ ⎪ ⎪⎝⎭⎝⎭且66f f ππ⎛⎫⎛⎫-≠- ⎪ ⎪⎝⎭⎝⎭,所以,函数()f x 不具有奇偶性,③正确; 对于命题④,当()2,63x k k k ππππ⎡⎤∈++∈⎢⎥⎣⎦Z 时,则()3222262k x k k Z πππππ+≤+≤+∈, 当0b >时,函数()f x 在区间()2,63k k k ππ⎡⎤π+π+∈⎢⎥⎣⎦Z 上单调递减,④错误; 对于命题⑤,假设经过点(),a b 的直线与函数()f x 的图象不相交,则该直线与x 轴平行,此时该直线的方程为y b =,则2b b >,由于0b ≠,矛盾,⑤错误.故答案为:①③. 【点睛】关键点点睛:本题考查正弦型函数()()sin f x A x =+ωϕ的单调性、奇偶性、三角函数值的计算,解题的关键就是从()6f x f π⎛⎫≤⎪⎝⎭分析得出直线6x π=与函数()f x 的图象的一条对称轴,进而借助辅助角公式化简得出a 、b 的倍数关系.17.【分析】先由的最小正周期求出的值再由的最小正周期公式求的最小正周期【详解】的最小正周期为即则所以的最小正周期为故答案为: 解析:8π【分析】 先由()f x 的最小正周期,求出ω的值,再由()tan y x ωϕ=+的最小正周期公式求()g x 的最小正周期. 【详解】()()2sin 03f x x πωω⎛⎫=+> ⎪⎝⎭的最小正周期为4π,即24ππω=,则8ω=所以()tan 86g x x π⎛⎫=+⎪⎝⎭的最小正周期为8T π=故答案为:8π 18.【分析】先根据二倍角公式辅助角公式将函数化为基本三角函数再根据三角函数有界性求最值【详解】因为函数f (x )=sin2x+sinxcosx+1所以因为所以即函数的最大值为故答案为:解析:32+ 【分析】先根据二倍角公式、辅助角公式将函数化为基本三角函数,再根据三角函数有界性求最值. 【详解】因为函数f (x )=sin 2x +sin x cos x +1,所以113()(1cos 2)sin 21)2242f x x x x π=-++=-+, 因为sin(2)14x π-≤,所以()f x ≤,,故答案为:32+ 19.【分析】利用余弦的倍角公式和三角函数的基本关系式即可求解【详解】由又由故答案为: 解析:35【分析】利用余弦的倍角公式和三角函数的基本关系式,即可求解. 【详解】由tan 2α=,又由22222222cos sin cos 2cos sin cos sin 1tan 1431tan 145ααααααααα--===-++-=-==+. 故答案为:35. 20.【分析】把的图象反过来变换可得的图象得然后再计算函数值【详解】把的图象上点的横坐标缩小为原来的纵坐标不变得的图象再向左平移个单位得∴故答案为:【点睛】结论点睛:本题考查三角函数的图象变换三角函数的图【分析】 把sin 3y x π⎛⎫=- ⎪⎝⎭的图象反过来变换可得()f x 的图象,得()f x ,然后再计算函数值. 【详解】 把sin 3y x π⎛⎫=-⎪⎝⎭的图象上点的横坐标缩小为原来的12,纵坐标不变得sin 23y x π⎛⎫=- ⎪⎝⎭的图象,再向左平移6π个单位得sin 2sin 263y x x ππ⎡⎤⎛⎫=+-= ⎪⎢⎥⎝⎭⎣⎦,∴()sin 2f x x =.sin 63f ππ⎛⎫= ⎪⎝⎭【点睛】结论点睛:本题考查三角函数的图象变换,三角函数的图象中注意周期变换与相位变换的顺序不同时,平移单位的变化.()y f x =向右平移ϕ个单位,再把横坐标变为原来的1ω倍得图象的解析式为()y f x ωϕ=+,而()y f x =的图象的横坐标变为原来的1ω倍,纵坐标不变,所得图象再向右平移ϕ个单位得图象的解析式为[]()y fx ωϕ=+.三、解答题21.(1)π0,6x ⎡⎤∈⎢⎥⎣⎦时,()f x 单调递增;ππ,63x ⎛⎤∈ ⎥⎝⎦时,()f x 单调递减;(2)()121cos 2x x +=,()122cos 3x x -=. 【分析】(1)根据平面向量的数量积和三角恒等变换,求出函数()f x 的解析式,再根据x 的范围,即可得到()f x 的单调性; (2)由方程()23f x =有两个不相等的实数根1x 、2x ,根据对称性求出12x x +的值,再计算()12cos x x +和()12cos x x -的值即可. 【详解】(1)因为向量()cos ,sin m x x =,()cos x n x =,所以函数()12f x m n =⋅-21cos cos 2x x x =-1cos 212222x x +=+- πcos 23x ⎛⎫=- ⎪⎝⎭,π0,3x ⎡⎤∈⎢⎥⎣⎦,当π0,3x ⎡⎤∈⎢⎥⎣⎦时,πππ2,333x ⎡⎤-∈-⎢⎥⎣⎦,令π203x -=,解得π6x =, 所以π0,6x ⎡⎤∈⎢⎥⎣⎦时,即ππ2,033x ⎡⎤-∈-⎢⎥⎣⎦时,()f x 单调递增, ππ,63x ⎛⎤∈ ⎥⎝⎦时,即ππ20,33x ⎛⎤-∈ ⎥⎝⎦时,()f x 单调递减;(2)当π0,3x ⎡⎤∈⎢⎥⎣⎦时,πππ2,333x ⎡⎤-∈-⎢⎥⎣⎦;所以π1cos 2,132x ⎛⎫⎡⎤-∈ ⎪⎢⎥⎝⎭⎣⎦,即()1,12f x ⎡⎤∈⎢⎥⎣⎦; 又方程()23f x =在π0,3x ⎡⎤∈⎢⎥⎣⎦上有两个不相等的实数根1x 、2x , 所以12ππ2220033x x ⎛⎫⎛⎫-+-=⨯= ⎪ ⎪⎝⎭⎝⎭,解得12π3x x +=, 所以()12π1cos cos 32x x +==; 由12π3x x =-, 所以()122πcos cos 23x x x ⎛⎫-=- ⎪⎝⎭2πcos 23x ⎛⎫=- ⎪⎝⎭()223f x ==.【点睛】解题的关键是熟练掌握三角函数的图象与性质、数量积公式、三角恒等变换公式,并灵活应用,()23f x =需结合余弦函数的对称性与值域进行求解,综合性较强,属中档题. 22.(1)53-;(2)2.6. 【分析】 由tan 1tan 1αα=--求出1tan 2α=.(1)由sin 3cos sin cos αααα-+分子分母同除以cos α求解;(2)将2sin sin cos 2ααα++,变形为22223sin sin cos 2cos sin cos αααααα+++,再分子分母同除以2cos α求解 【详解】因为tan 1tan 1αα=--,所以1tan 2α=.(1)sin 3cos tan 35sin cos tan 13αααααα--==-++;(2)2sin sin cos 2ααα++,22223sin sin cos 2cos sin cos αααααα++=+, 223tan tan 2tan 1ααα++=+, 31242114++=+, 2.6= 23.04a π<≤【分析】先利用辅助角公式化简得()4f x x π⎛⎫=+ ⎪⎝⎭,再利用正弦函数的性质求出()f x 的单调递增区间,即可求解. 【详解】()sin cos 4f x x x x π⎛⎫=+=+ ⎪⎝⎭,令()22242k x k k Z πππππ-+≤+≤-+∈,解得:()32244k x k k Z ππππ-+≤≤+∈, 令0k =,得3,44ππ⎡⎤-⎢⎥⎣⎦ 可得()sin cos f x x x =+在3,44ππ⎡⎤-⎢⎥⎣⎦单调递增, 若[]0,a 上单调递增,则04a π<≤,所以a 的取值范围是04a π<≤故答案为:04a π<≤【点睛】关键点点睛:本题的关键点是解得()32244k x k k Z ππππ-+≤≤+∈,求出()f x 的单调递增区间,可得()sin cos f x x x =+在3,44ππ⎡⎤-⎢⎥⎣⎦单调递增,进而可得04a π<≤.24.(1),63ππ⎡⎤⎢⎥⎣⎦;(2)06,π⎡⎤⎢⎥⎣⎦,27,36ππ⎡⎤⎢⎥⎣⎦,5,23ππ⎡⎤⎢⎥⎣⎦.【分析】先选条件①或条件②,结合函数的性质及图像变换,求得函数()sin 26f x x π⎛⎫+ ⎝=⎪⎭, (1)由[]0,x α∈,得到2,2666x πππα⎡⎤+∈+⎢⎥⎣⎦,根据由正弦函数图像,即可求解; (2)根据函数正弦函数的形式,求得36k x k ππππ-+≤≤+,k Z ∈,进而得出函数的单调递增区间. 【详解】 方案一:选条件①由函数()f x 的图象相邻两条对称轴之间的距离为2π,可得22T ππω==,解得1ω=, 所以()()sin 2f x x ϕ=+, 又由函数()f x 的图象向右平移6π个单位长度得到πsin 2φ3g x x, 又函数()g x 图象关于,012π⎛⎫⎪⎝⎭对称,可得6k πϕπ=+,k Z ∈,因为2πϕ<,所以6π=ϕ,所以()sin 26f x x π⎛⎫+ ⎝=⎪⎭.(1)由[]0,x α∈,可得2,2666x πππα⎡⎤+∈+⎢⎥⎣⎦, 因为函数()f x 在[]0,α上的值域为1,12⎡⎤⎢⎥⎣⎦,根据由正弦函数图像,可得52266ππαπ≤+≤,解得63ππα≤≤,所以α的取值范围为,63ππ⎡⎤⎢⎥⎣⎦.(2)由222262k x k πππππ-+≤+≤+,k Z ∈,可得36k x k ππππ-+≤≤+,k Z ∈,当0k =时,可得66x ππ-≤≤;当1k =时,可得2736x ππ≤≤; 当2k =时,可得51336x ππ≤≤, 所以函数()f x 在[]0,2π上的单调递增区间为06,π⎡⎤⎢⎥⎣⎦,27,36ππ⎡⎤⎢⎥⎣⎦,5,23ππ⎡⎤⎢⎥⎣⎦. 方案二:选条件②: 由()12cos sin 62f x x x πωω⎛⎫=+- ⎪⎝⎭12cos sin cos cos sin 662x x x ππωωω⎛⎫=+- ⎪⎝⎭211cos cos 2cos 2222x x x x x ωωωωω=+-=+sin 26x πω⎛⎫=+ ⎪⎝⎭,因为函数()f x 的图象相邻两条对称轴之间的距离为2π,可得22T ππω==,所以1ω=, 可得()()sin 2f x x ϕ=+, 又由函数()f x 的图象向右平移6π个单位长度得到πsin 2φ3g x x, 又函数()g x 图象关于,012π⎛⎫⎪⎝⎭对称,可得6k πϕπ=+,k Z ∈,因为2πϕ<,所以6π=ϕ,所以()sin 26f x x π⎛⎫+ ⎝=⎪⎭.(1)由[]0,x α∈,可得2,2666x πππα⎡⎤+∈+⎢⎥⎣⎦, 因为函数()f x 在[]0,α上的值域为1,12⎡⎤⎢⎥⎣⎦, 根据由正弦函数图像,可得52266ππαπ≤+≤,解得63ππα≤≤,所以α的取值范围为,63ππ⎡⎤⎢⎥⎣⎦.(2)由222262k x k πππππ-+≤+≤+,k Z ∈,可得36k x k ππππ-+≤≤+,k Z ∈,当0k =时,可得66x ππ-≤≤;当1k =时,可得2736x ππ≤≤; 当2k =时,可得51336x ππ≤≤, 所以函数()f x 在[]0,2π上的单调递增区间为06,π⎡⎤⎢⎥⎣⎦,27,36ππ⎡⎤⎢⎥⎣⎦,5,23ππ⎡⎤⎢⎥⎣⎦. 【点睛】解答三角函数图象与性质的综合问题的关键是首先将已知条件化为()sin()f x A wx ϕ=+或()cos()f x A wx ϕ=+的形式,然后再根据三角函数的基本性质,结合数形结合法的思想研究函数的性质(如:单调性、奇偶性、对称性、周期性与最值等),进而加深理解函数的极值点、最值点、零点及有界性等概念与性质. 25.(1),,63k k k ππππ⎡⎤-+∈⎢⎥⎣⎦Z ;(2)=2x π-时,最大值为0;=6x π-时, 最小值为32-. 【分析】(1)由()f x a b =⋅,根据向量的数量积的运算可得()f x 的解析式,将内层函数看作整体,放到正弦函数的减区间上,解不等式得函数的单调递减区间.(2)在0,2π⎡⎤⎢⎥⎣⎦上时,求出内层函数的取值范围,结合三角函数的图象和性质,可得出()f x 的最大值和最小值.【详解】解:(1)2()=3sin cos cos f x a b x x x =⋅-cos 21=2222x x -- 1=sin 2coscos 2sin662x x ππ-- 1=sin 2)62x π--(由2,262k x k k πππππ--+∈Z 2≤≤2,解得:,63k x k k ππππ-+∈Z ≤≤,所以函数()f x 的单调递增区间为:[,],63k k k ππππ-+∈Z . (2)因为02x π⎡⎤∈-⎢⎥⎣⎦,,所以72666x πππ⎡⎤-∈--⎢⎥⎣⎦,, 所以1sin2)62x π--1≤(≤,即31sin 2)0262x π---≤(≤, 当=2x π-时,()f x 有最大值为0;当=6x π-时, ()f x 有最小值为32-.【点睛】关键点睛:利用三角函数的二倍角公式,化简得到, 2()=3sin cos cos f x a b x x x=⋅-1=sin 2)62x π--(, 进而利用复合函数的单调性进行求解,难度属于中档题26.(1)π;(2)最小值为4- 【分析】(1)利用二倍角公式、两角和与差的正弦公式化函数为一个角的一个三角函数形式,然后利用正弦函数性质求解. (2)求出23x π-的取值范围,然后由正弦函数性质得最值.【详解】 (1)2211()cos (sin )sin cos cos 224224f x x x x x x x x =++=-+11sin 22sin(2)423x x x π==-, ∴()f x 的最小正周期是22T ππ==(2)0,3x π⎡⎤∈⎢⎥⎣⎦时,2,333x πππ⎡⎤-∈-⎢⎥⎣⎦,此时()f x ⎡∈⎢⎣⎦.()f x 233x ππ-=,3x π=,()f x 最小值为-233x ππ-=-,0x =.综上,()f x 的最小值为-【点睛】关键点睛:解题关键在于利用二倍角公式、两角和与差的正弦公式化简为标准的形态,然后利用正弦函数的性质求解,难度属于中档题。

(常考题)人教版高中数学必修第一册第五单元《三角函数》测试题(答案解析)

(常考题)人教版高中数学必修第一册第五单元《三角函数》测试题(答案解析)

一、选择题1.下列函数中,既是奇函数,又在区间()0,1上是增函数的是( ) A .32()f x x = B .13()f x x -= C .()sin 2f x x =D .()22x x f x -=-2.已知曲线C 1:y =2sin x ,C 2:2sin(2)3y x π=+,则错误的是( )A .把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向左平行移动6π个单位长度,得到曲线C 2 B .把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向右平行移动56π个单位长度,得到曲线C 2 C .把C 1向左平行移动3π个单位长度,再把得到的曲线上各点的横坐标缩短到原来的12倍,纵坐标不变,得到曲线C 2 D .把C 1向左平行移动6π个单位长度,再把得到的曲线上各点的横坐标缩短到原来的12倍,纵坐标不变,得到曲线C 2 3.sin 3π=( )A .12B .12-C .2D . 4.将函数()2sin 23f x x π⎛⎫=+ ⎪⎝⎭图像上的每一个点的横坐标缩短为原来的一半,纵坐标不变,再将所得图像向左平移12π个单位得到函数()g x 的图像,在()g x 的图像的所有对称轴中,离原点最近的对称轴为( ) A .24x π=-B .4πx =-C .524x π=-D .12x π=5.若把函数sin y x =的图象沿x 轴向左平移3π个单位,然后再把图象上每个点的横坐标伸长到原来的2倍(纵坐标保持不变),得到函数()y f x =的图象,则()y f x =的解析式为( ) A .sin 23y x π⎛⎫=+⎪⎝⎭B .2sin 23y x π⎛⎫=+⎪⎝⎭C .1sin 23y x π⎛⎫=+⎪⎝⎭D .12sin 23y x π⎛⎫=+⎪⎝⎭6.已知()tan f x x =,x ∈Z ,则下列说法中正确的是( ) A .函数()f x 不为奇函数 B .函数()f x 存在反函数 C .函数()f x 具有周期性D .函数()f x 的值域为R7.已知函数()()2sin ,0,2f x x x x π=∈⎛⎫⎡⎤ ⎪⎢⎥⎣⎦⎝⎭,则()f x 的单调递增区间是( ) A .06,π⎡⎤⎢⎥⎣⎦B .0,4⎡⎤⎢⎥⎣⎦π C .0,3π⎡⎤⎢⎥⎣⎦D .0,2π⎡⎤⎢⎥⎣⎦8.设1cos 3x =-,则cos2x =( )A .13B .3C .79D .79-9.设129sin 292a =-,b =22tan161tan 16c =+,则有( ) A .a b c >> B .b c a >>C .c a b >>D .c b a >>10.已知1cos 2α=,322παπ<<,则sin(2)πα-=( )A .B .12C .12-D 11.已知函数()()()cos >0,0<<f x x ωθωθπ=+的最小正周期为π,且()()0f x f x -+=,若tan 2α=,则()f α等于( )A .45-B .45C .35D .3512.已知函数()()log 330,1a y x a a =-+>≠的图象恒过点P ,若角α的终边经过点P ,则sin 2α的值等于( )A .2425-B .35C .2425D .35二、填空题13.角θ的终边经过点(1,3)P -,则sin 6πθ⎛⎫+= ⎪⎝⎭____________. 14.已知1tan 43πθ⎛⎫-= ⎪⎝⎭,则cos2θ的值为_______.15.若()()2sin 03f x x πωω⎛⎫=+> ⎪⎝⎭的最小正周期为4π,则()()tan 06g x x πωω⎛⎫=+> ⎪⎝⎭的最小正周期为______.16.如下图所示,某农场有一块扇形农田,其半径为100m ,圆心角为3π,现要按图中方法在农田中围出一个面积最大的内接矩形用于种植,则围出的矩形农田的面积为___________2m .17.已知tan 2α=,则cos2=α__.18.已知α,β,且()()1tan 1tan 2αβ-+=,则αβ-=______. 19.若0,2x π⎛⎫∀∈ ⎪⎝⎭,sin cos m x x ≥+恒成立,则m 的取值范围为_______________. 20.已知sin θ+cos θ=15,则tan θ+cos sin θθ的值是____________________. 三、解答题21.已知函数()()30,22f x x ππωϕωϕ⎛⎫=+>-≤<⎪⎝⎭的图象关于直线3x π=对称,且图象上相邻两个最高点的距离为π. (1)求ω和ϕ的值; (2)当0,2x π⎡⎤∈⎢⎥⎣⎦时,求函数()y f x =的最大值和最小值. 22.已知函数()cos f x x =.(1)已知α,β为锐角,()5f αβ+=,4tan 3α=,求cos2α及()tan βα-的值;(2)函数()()321g x f x =+,若关于x 的不等式()()()2133g x a g x a ≥+++有解,求实数a 的最大值.23.已知函数()21()2cos 1sin 2cos 42=-+f x x x x . (1)求()f x 的最小正周期;(2)求()f x 的最大和最小值以及相应的x 的取值;(3)若,2παπ⎛⎫∈⎪⎝⎭,且()4f α=,求α的值. 24.已知sin ,2sin 212a x x π⎛⎫⎛⎫=++ ⎪ ⎪⎝⎭⎝⎭,2cos ,sin 112b x x π⎛⎫⎛⎫=+- ⎪ ⎪⎝⎭⎝⎭且()f x a b =⋅ (1)求函数()y f x =的单调减区间和对称轴; (2)若关于x 的不等式()1f x m +<在0,3π⎡⎤⎢⎥⎣⎦上恒成立,求m 的取值范围.25.已知函数()sin (sin )1f x x x x =+-. (1)若(0,)2πα∈,且1sin 2α=,求()f α的值;(2)求函数()f x 的最小正周期及单调递增区间. 26.已知函数()()sin 0,2f x x ϕωϕπω⎛⎫=->≤ ⎪⎝⎭的最小正周期为π. (1)求ω的值及()6g f ϕπ⎛⎫= ⎪⎝⎭的值域; (2)若3πϕ=,sin 2cos 0αα-=. 求()fα的值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】A.根据32()f x x ==[0,)+∞判断;B. 由幂函数的性质判断;C.由函数sin y x =的性质判断;D.由指数函数2x y =的性质判断. 【详解】A. 32()f x x ==[0,)+∞,不关于原点对称,所以函数是非奇非偶,故错误;B. 由幂函数知()1133()()f x x xf x ---=-=-=-是奇函数,在()0,1是减函数,故错误;C. 因为()()sin 2sin 2()f x x x f x -=-=-=-,所以()f x 是奇函数,在0,4π⎛⎫⎪⎝⎭上是增函数,在,14π⎛⎫⎪⎝⎭上减函数,故错误;D. 因为()()2222()xx x x f x f x ---=-=--=-,所以()f x 是奇函数,因为2,2x x y y -==-是增函数,()22x x f x -=-在区间()0,1上是增函数,故正确;故选:D2.D解析:D 【分析】利用函数()sin +y A x ωϕ=的图象变换规律对各个选项进行检验即可. 【详解】A. 1C 上各点横坐标缩短到原来的12倍,得到2sin 2y x =,再向左平移6π个单位长度,得到2sin 2+=2sin 2+63y x x ππ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭,正确;B. 1C 上各点的横坐标缩短到原来的12倍,得到2sin 2y x =,再向右平移56π个单位长度,得到5552sin 2=2sin 2=2sin 222sin 26333y x x x x πππππ⎛⎫⎛⎫⎛⎫⎛⎫=---+=+ ⎪⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,正确; C. 1C 向左平移3π个单位长度,得到2sin +3y x π⎛⎫= ⎪⎝⎭,再把各点横坐标缩短到原来的12倍,得到2sin 2+3y x π⎛⎫= ⎪⎝⎭,正确; D. 1C 向左平移6π个单位长度,得到2sin +6y x π⎛⎫= ⎪⎝⎭,再把各点横坐标缩短到原来的12倍,得到2sin 2+6y x π⎛⎫= ⎪⎝⎭,错误. 故选:D3.C解析:C 【分析】根据特殊角对应的三角函数值,可直接得出结果. 【详解】sin32π=. 故选:C.4.A解析:A 【分析】利用三角函数的伸缩变换和平移变换,得到()22sin 43g x x π⎛⎫=+⎪⎝⎭,然后令24,32x k k Z πππ+=+∈求解. 【详解】 将函数()2sin 23f x x π⎛⎫=+⎪⎝⎭图像上的每一个点的横坐标缩短为原来的一半,纵坐标不变,2sin 43y x π⎛⎫=+ ⎪⎝⎭,再将所得图像向左平移12π个单位得到函数()22sin 43g x x π⎛⎫=+⎪⎝⎭, 令24,32x k k Z πππ+=+∈, 解得,424k x k Z ππ=-∈, 所以在()g x 的图像的所有对称轴中,离原点最近的对称轴为24x π=-,故选:A5.C解析:C 【分析】根据三角函数图象平移、伸缩的公式,结合题中的变换加以计算,可得函数()y f x =的解析式. 【详解】 解:将函数sin y x =的图象沿x 轴向左平移3π个单位,得到函数sin()3y x π=+的图象; 将sin()3y x π=+的图象上每个点的横坐标伸长到原来的2倍(纵坐标保持不变),得到1sin()23y x π=+的图象.∴函数sin y x =的图象按题中变换得到函数()y f x =的图象,可得1()sin 23y f x x π⎛⎫==+ ⎪⎝⎭.故选:C .6.B解析:B 【分析】根据()tan f x x =,x ∈Z 图象与性质,逐一分析选项,即可得答案. 【详解】对于A :()f x 的定义域关于原点对称,且()tan()tan ()f x x x f x -=-=-=-,x ∈Z ,故()f x 为奇函数,故A 错误;对于B :()tan y f x x ==,x ∈Z 在定义域内一一对应,所以arctan =x y ,即()f x 的反函数为arctan y x =,故B 正确;对于C :因为()tan f x x =,x ∈Z ,故()f x 图象为孤立的点,不是连续的曲线,所以()f x 不具有周期性,故C 错误;对于D :因为()tan f x x =,x ∈Z ,所以()f x 图象为孤立的点,不是连续的曲线,所以()f x 的值域为一些点构成的集合,不是R ,故D 错误.故选:B7.A解析:A 【分析】根据三角恒等变换公式化简()f x ,结合x 的范围,可得选项. 【详解】因为()()2sin ,0,2f x x x x π=+∈⎛⎫⎡⎤ ⎪⎢⎥⎣⎦⎝⎭,所以 ()()222sin sin cos +3cos f x x xx x x x +==222cos +12cos 2+22sin 2+26x x x x x π⎛⎫=+=+=+ ⎪⎝⎭,因为0,2x π⎡⎤∈⎢⎥⎣⎦,所以72+,666x πππ∈⎡⎤⎢⎥⎣⎦,所以由2+662x πππ≤≤,解得06x π≤≤, 所以()f x 的单调递增区间是06,π⎡⎤⎢⎥⎣⎦,故选:A.8.D解析:D 【分析】利用二倍角的余弦公式可得解. 【详解】1cos 3x =-,2212723cos 22cos 11199x x ⎛⎫=-== ⎪⎝⎭∴=----故选:D.9.B解析:B 【分析】由两角差的正弦公式,余弦和正正弦的二倍角公式化简,,a b c ,然后由正弦函数的单调性得出结论. 【详解】129si sin(6029)si 3n 2912n a =︒-︒=︒=-, b =sin 33==︒,2222sin162tan16cos162sin16sin 161tan 161c cos16sin 32os 16c ===︒︒︒︒=︒︒︒++,显然sin31sin32sin33︒<︒<︒,所以a c b <<. 故选:B . 【点睛】关键点点睛:本题考查三角函数值的比较大小,解题方法是首先化简各函数,应用三角函数恒等变换公式化简函数,注意转化为同一个三角函数,并且把角转化到三角函数的同一单调区间上,然后由三角函数的单调性得大小关系.10.D解析:D 【分析】由已知利用同角三角函数基本关系式可求sin α的值,进而根据诱导公式即可求解. 【详解】解:因为1cos 2α=,322παπ<<,所以sin α==, 所以sin(2)sin παα-=-=. 故选:D .11.A解析:A 【分析】利用三角函数的周期性和奇偶性得到()cos 2sin 22f x x x π⎛⎫=+=- ⎪⎝⎭,进而求出()f α 【详解】 由2ππω=,得2ω=,又()()0f x f x -+=,()()()cos cos 2f x x x ωθθ=+=+为奇函数,()2k k Z πθπ∴=+∈,,又0θπ<<,得2πθ=,()cos 2sin 22f x x x π⎛⎫∴=+=- ⎪⎝⎭,又由tan 2α=,可得()2222sin cos 2tan 4sin 2sin cos tan 15f αααααααα-=-==-=-++ 故选:A 【点睛】关键点睛:解题关键在于通过三角函数性质得到()cos 2sin 22f x x x π⎛⎫=+=- ⎪⎝⎭,难度属于基础题12.C解析:C 【分析】由已知求出点P 的坐标,再利用三角函数的定义求出sin ,cos αα的值,进而可得到sin 2α的值 【详解】解:因为函数()()log 330,1a y x a a =-+>≠的图象恒过(4,3), 所以点P 的坐标为(4,3) 因为角α的终边经过点P , 所以34sin ,cos 55αα====, 所以3424sin 22sin cos 25525ααα==⨯⨯=, 故选:C二、填空题13.【分析】利用正弦函数定义求得再由正弦函数两角和的公式计算【详解】由题意所以故答案为:解析:12-【分析】利用正弦函数定义求得sin θ,再由正弦函数两角和的公式计算 【详解】由题意sin 2θ=,1cos 2θ=,所以,1sin cos 62πθθθ⎛⎫+=+ ⎪⎝⎭311442=-+=-, 故答案为:12-14.【分析】利用三角恒等变换公式得到求出后进而求出cos2即可【详解】由题意可知解得则故答案为 解析:35【分析】利用三角恒等变换公式,得到tan 11tan 41tan 3πθθθ-⎛⎫-== ⎪+⎝⎭,求出tan θ后,进而求出cos2θ即可 【详解】由题意可知,tan 11tan 41tan 3πθθθ-⎛⎫-== ⎪+⎝⎭,解得tan 2θ=,则222222cos sin 1tan 3cos 2cos sin 1tan 5θθθθθθθ--===-++ 故答案为35. 15.【分析】先由的最小正周期求出的值再由的最小正周期公式求的最小正周期【详解】的最小正周期为即则所以的最小正周期为故答案为:解析:8π 【分析】 先由()f x 的最小正周期,求出ω的值,再由()tan y x ωϕ=+的最小正周期公式求()g x 的最小正周期. 【详解】()()2sin 03f x x πωω⎛⎫=+> ⎪⎝⎭的最小正周期为4π,即24ππω=,则8ω=所以()tan 86g x x π⎛⎫=+ ⎪⎝⎭的最小正周期为8T π=故答案为:8π16.【分析】设利用直角三角形的边角关系和正弦定理分别求出矩形各边的边长表示出矩形的面积为借助于三角函数辅助角公式求出最大值即可【详解】解:如图:做的角平分线交于设则在中由正弦定理可知:则所以矩形农田的面 解析:()1000023-【分析】设EOA θ∠=,利用直角三角形的边角关系和正弦定理分别求出矩形各边的边长,表示出矩形的面积为()2sin 302sin S R R θθ=-⋅,借助于三角函数辅助角公式求出最大值即可. 【详解】解:如图:做AOB ∠的角平分线交BE 于D ,设EOA θ∠=,则()22sin 30DE R θ=-,150OFE ∠=,在OFE △中,由正弦定理可知:sin sin150EF Rθ= ,则2sin EF R θ= 所以矩形农田的面积为:()22sin 302sin 4sin sin(30)S R R R θθθθ=-⋅=- 22132sin 2cos 232R R θθ⎛⎫=+- ⎪ ⎪⎝⎭()222sin 2603R R θ=+-当()sin 2601θ+=时,即15θ=时,S 有最大值为()223R-又100R =,所以面积的最大值为()1000023-. 故答案为:()1000023-.【点睛】本题考查在扇形中求矩形面积的最值,属于中档题. 思路点睛:(1)在扇形中求矩形的面积,关键是设出合适的变量,一般情况下是以角度为变量; (2)合理的把长和宽放在三角形中,利用角度表示矩形的长和宽; (3)对三角函数合理变形,从而求出面积.17.【分析】利用余弦的倍角公式和三角函数的基本关系式即可求解【详解】由又由故答案为:解析:35【分析】利用余弦的倍角公式和三角函数的基本关系式,即可求解. 【详解】由tan 2α=,又由22222222cos sin cos 2cos sin cos sin 1tan 1431tan 145ααααααααα--===-++-=-==+. 故答案为:35. 18.【分析】将原式打开变形然后根据正切的差角公式求解【详解】即即即故答案为:【点睛】本题考查正切的和差角公式的运用常见的变形形式有:(1);(2) 解析:()+4k k Z ππ-∈【分析】将原式打开变形,然后根据正切的差角公式求解. 【详解】()()1tan 1tan 1tan tan tan tan 2αβαβαβ-+=-+-=,即tan tan 1tan tan βααβ-=+,tan tan 11tan tan βααβ-∴=+,即()tan 1βα-=,()π4k k Z βαπ∴-=+∈,即()+4k k Z παβπ-=-∈. 故答案为: ()+4k k Z ππ-∈.【点睛】本题考查正切的和差角公式的运用,常见的变形形式有: (1)()()tan tan tan tan tan tan αβαβαβαβ+=+++⋅⋅; (2)()()tan tan tan tan tan tan αβαβαβαβ-=---⋅⋅.19.【分析】根据三角函数的性质求得的最大值进而可求出结果【详解】因为由可得所以则因为恒成立所以只需故答案为:解析:)+∞【分析】根据三角函数的性质,求得sin cos x x +的最大值,进而可求出结果. 【详解】因为sin cos 4x x x π⎛⎫+=+ ⎪⎝⎭,由0,2x π⎛⎫∈ ⎪⎝⎭可得3,444x πππ⎛⎫+∈ ⎪⎝⎭,所以sin 4x π⎤⎛⎫+∈⎥ ⎪⎝⎭⎝⎦,则(sin cos 4x x x π⎛⎫+=+∈ ⎪⎝⎭,因为0,2x π⎛⎫∀∈ ⎪⎝⎭,sin cos m x x ≥+恒成立,所以只需m ≥故答案为:)+∞.20.【分析】先通过已知求出再化简tanθ+即得解【详解】由sinθ+cosθ=得tanθ+故答案为:【点睛】关键点睛:解答本题的关键是把sinθ+cosθ=两边平方得到 解析:2512-【分析】先通过已知求出12sin cos 25θθ=-,再化简tan θ+cos sin θθ即得解. 【详解】 由sin θ+cos θ=15得1121+2sin cos ,sin cos 2525θθθθ=∴=-. tan θ+cos sin θθsin cos 125cos sin sin cos 12θθθθθθ=+==-.故答案为:2512- 【点睛】关键点睛:解答本题的关键是把sin θ+cos θ=15两边平方得到12sin cos 25θθ=-. 三、解答题21.(1)2ω=,6πϕ=-;(2)max ()f x =min ()f x = 【分析】(1)由图象上相邻两个最高点的距离为π得()f x 的最小正周期T π=,故2ω=,由函数图象关于直线3x π=对称得232k ππϕπ⨯+=+,k Z ∈,再结合范围得6πϕ=-;(2)由(1)得()26f x x π⎛⎫=- ⎪⎝⎭,进而得52666x πππ-≤-≤,再结合正弦函数的性质即可得答案. 【详解】(1)因为()f x 的图象上相邻两个最高点的距离为π, 所以()f x 的最小正周期T π=,从而22Tπω==. 又因为()f x 的图象关于直线3x π=对称,所以232k ππϕπ⨯+=+,k Z ∈,又22ππϕ-≤<,所以2236ππϕπ=-=-. 综上,2ω=,6πϕ=-.(2)由(1)知()26f x x π⎛⎫=- ⎪⎝⎭.当0,2x π⎡⎤∈⎢⎥⎣⎦时,可知52666x πππ-≤-≤.故当226x ππ-=,即3x π=时,max ()f x =当266x ππ-=-,即0x =时,min ()2f x =-. 【点睛】本题解题的关键在于先根据0,2x π⎡⎤∈⎢⎥⎣⎦得52666x πππ-≤-≤,进而结合正弦函数的性质,采用整体思想求解,考查运算求解能力,是中档题. 22.(1)7cos 225α=-,()2tan 11βα-=;(2)a 的最大值为3. 【分析】(1)利用二倍角公式,求出cos2α,然后分别求出()cos αβ+,sin()αβ+,进而求出()tan αβ+,最后,利用()()tan tan 2βααβα-=+-求解即可(2)由()()[]3213cos212,4g x f x x =+=+∈-,得关于x 的不等式()()()2133g x a g x a ≥+++有解,化简得,即()()()213g x a g x ≥++⎡⎤⎣⎦有解,令()3t g x =+,然后,利用对勾函数的性质求解即可【详解】解:(1)∵4tan 3α=,∴222222cos sin cos 2cos sin cos sin ααααααα-=-=+2222411tan 73251tan 413αα⎛⎫- ⎪-⎝⎭===-+⎛⎫+ ⎪⎝⎭,∵α,β为锐角,即α,0,2πβ⎛⎫∈ ⎪⎝⎭, ∴()20,απ∈,()0,αβπ+∈.22422tan 243tan 21tan 7413ααα⨯===--⎛⎫- ⎪⎝⎭, ∵()cos f x x =,∴()()cos 5f αβαβ+=+=-, ∴()sin αβ+==,∴()()()sin tan 2cos αβαβαβ++==-+, ∴()()()()242tan tan 227tan tan 2241tan tan 211127αβαβααβααβα-++--=+-===+++⨯. 综上,7cos 225α=-,()2tan 11βα-=. (2)()()[]3213cos212,4g x f x x =+=+∈-, 关于x 的不等式()()()2133g x a g x a ≥+++有解,即()()()213gx a g x ≥++⎡⎤⎣⎦有解,令()3t g x =+,则[]1,7t ∈,()()231t a t -≥+有解,即916a t t+≤+-有解, max97a t t ⎛⎫+≤+ ⎪⎝⎭,设()9h t t t =+,则()h x 在[)1,3上单调递减,在(]3,7上单调递增,则()(){}max9max 1,710t h h t ⎛⎫+== ⎪⎝⎭, ∴3a ≤,故实数a 的最大值为3. 【点睛】关键点睛:(1)利用二倍角公式,以及正切函数的两角和差公式求解; (2)通过化简,把问题转化为()()()213gx a g x ≥++⎡⎤⎣⎦有解,令()3t g x =+,然后,利用对勾函数的性质求解;主要考查学生的转化化归思想以及运算能力,属于中档题 23.(1)2π;(2)函数()f x 的最大值为2,此时+,162k x k Z ππ=∈;函数()fx 的最小值为,此时3+,162k x k Z ππ=-∈;(3)3148πα=或4748π.(1)化简函数解析式为最简形式,利用公式求出周期 (2)根据正弦的性质可求得函数最值和相应的x 的取值; (3)根据限定范围和正弦函数的取值可求得答案. 【详解】(1),因为()()212cos 1sin 2cos 42f x x x x =-+1cos 2sin 2cos 42x x x =+()sin 124cos4x x +=)4x π=+,所以()f x )4x π=+, 所以()f x 的最小正周期为242ππ=,(2)由(1)得()f x )24x π=+,所以当sin(4)14x π+=时,函数()f x 的最大值为2,此时4+2,42x k k Z πππ+=∈,即+,162k x k Z ππ=∈;当sin(4)14x π+=-时,函数()f x 的最小值为2-,此时4+2,42x k k Z πππ+=-∈,即3+,162k x k Z ππ=-∈;所以函数()f x ,此时+,162k x k Z ππ=∈;函数()f x 的最小值为,此时3+,162k x k Z ππ=-∈;(3)因为(,)2παπ∈,所以9174(,)444πππα+∈.因为()4f α=,所以())244f παα=+=,即1sin(4)42πα+=. 所以17446ππα+=或256π,故3148πα=或4748π. 24.(1)单调递减区间为5,36ππk πk π⎡⎤++⎢⎥⎣⎦,k ∈Z ;对称轴为23k x ππ=+,k ∈Z ;(2)()1,+∞.(1)根据平面向量数量积的坐标运算及三角恒等变换公式将函数化简,再结合正弦函数的性质计算可得;(2)由(1)可令()()sin 261g f x x x π⎛⎫-== ⎝+⎪⎭,依题意可得()m g x >在0,3π⎡⎤⎢⎥⎣⎦上的最大值.根据正弦函数的性质计算可得; 【详解】解:(1)()()22sin cos 2sin 11212a b x x x f x ππ⎛⎫⎛⎫=⋅=+++- ⎪ ⎪⎝⎭⎝⎭ 2sin 22cos sin 2cos 2166x x x x ππ⎛⎫⎛⎫=+-=+-- ⎪ ⎪⎝⎭⎝⎭12cos 21sin 2126x x x π⎛⎫=--=-- ⎪⎝⎭ 令3222262k x k πππππ+≤-≤+,解得536k x k ππππ+≤≤+, 所以()f x 的单调递减区间为5,36ππk πk π⎡⎤++⎢⎥⎣⎦,k ∈Z 再令262x k πππ-=+,解得23k x ππ=+, 所以()f x 的对称轴为23k x ππ=+,k ∈Z (2)令()()sin 261g f x x x π⎛⎫-== ⎝+⎪⎭因为()1f x m +<在0,3π⎡⎤⎢⎥⎣⎦上恒成立,所以()m g x >在0,3π⎡⎤⎢⎥⎣⎦上的最大值. 因为0,3x π⎡⎤∈⎢⎥⎣⎦,所以2,662x πππ⎡⎤-∈-⎢⎥⎣⎦,所以()max 13x g g π⎛⎫== ⎪⎝⎭ 所以1m ,于是m 的取值范围是()1,+∞ 【点睛】本题解答的关键是三角恒等变换及三角函数的性质的应用,利用恒等变换公式及辅助角公式()sin cos a x b x x ϕ+=+,其中(tan baϕ=) 25.(1)12;(2)T π=;调递增区间为[,]63k k ππππ-+,k Z ∈. 【分析】先把函数()f x 化简,(1)根据条件即可求出角α的大小,代入解析式即可求解.(2)根据周期定义即可求出周期,再利用整体代换思想代入正弦函数的递增区间求出x 的范围即可求解. 【详解】21()sin (sin )1sin cos 1sin(2)62f x x x x x x x x π=-=-=--,(1)由(0,)2πα∈,1sin 2α=,可得6πα=,所以1()sin(2)sin 66662f ππππ=⨯-==,(2)函数周期为22T ππ==, 令2[2,2]622x k k πππππ-∈-+,k Z ∈, 解得[,]63x k k ππππ∈-+,k Z ∈, 所以函数()f x 的单调递增区间为[,]63k k ππππ-+,k Z ∈.26.(1)2ω=,()g ϕ的值域为1,12⎡⎤-⎢⎥⎣⎦;(2)()410f α=+. 【分析】(1)由函数()f x 的最小正周期可求得ω的值,求得()sin 3g πϕϕ⎛⎫=- ⎪⎝⎭,结合ϕ的取值范围可求得()g ϕ的值域;(2)求得tan 2α=,利用二倍角的正、余弦公式以及弦化切思想可求得()f α的值.【详解】(1)由于函数()()sin 0,2f x x ϕωϕπω⎛⎫=->≤⎪⎝⎭的最小正周期为π,则22πωπ==,()()sin 2f x x ϕ∴=-,()sin 63g f ππϕϕ⎛⎫⎛⎫∴==- ⎪ ⎪⎝⎭⎝⎭,22ππϕ-≤≤,5636πππϕ∴-≤-≤,所以,()1sin ,132g πϕϕ⎛⎫⎡⎤=-∈- ⎪⎢⎥⎝⎭⎣⎦; (2)sin 2cos 0αα-=,可得tan 2α=,3πϕ=,所以,()()21sin 2sin 22sin cos 2cos 13222f πααααααα⎛⎫=-=-=-- ⎪⎝⎭22222sin cos tan sin cos 2sin cos 2tan 12αααααααααα=-+=+=+++==【点睛】求函数()()sin f x A x =+ωϕ在区间[],a b 上值域的一般步骤:第一步:三角函数式的化简,一般化成形如()sin y A x k ωϕ=++的形式或()cos y A x k ωϕ=++的形式.第二步:由x 的取值范围确定x ωϕ+的取值范围,再确定()sin x ωϕ+(或()cos x ωϕ+)的取值范围;第三步:求出所求函数的值域(或最值).。

高一数学下学期三角函数单元测试一 人教版

高一数学下学期三角函数单元测试一 人教版

高一数学下学期三角函数单元测试一 人教版一、选择题: 1. 若 0sin >θ, 0cos <θ, 则θ所在的象限是 ( )A . 第一象限B . 第二象限C . 第三象限D . 第四象限 2. 已知35)2sin(=-, 则)22cos(+π的值为 ( ) A .35 B .35- C .32 D .32- 3. 下列等式恒成立的是 ( )A .ααcos )cos(-=- B . ααsin )360sin(=-C . )tan()2tan(απαπ+=-D . )cos()cos(απαπ-=+4. 若2=α, 则 ( )A .0cos 0sin >>αα且B .0cos 0sin ><αα且C .0cos 0sin <>αα且D .0cos 0sin <<αα且5. 函数x x y cot tan =的定义域是 ( )A . RB . ⎭⎬⎫⎩⎨⎧∈≠z k kx x ,2πC .{}z k k x x ∈≠,π D . {}z k k x x ∈+≠,ππ6. 要得到)33sin(π+=x y 的图象,只要把x y 3sin =的图象 ( )A . 向左平移3π个单位 B . 向右平移3π个单位C . 向左平移9π个单位 D . 向右平移9π个单位7. 函数1)4sin(3-+=πx y 在下列区间上是增函数的是 ( )A . ⎥⎦⎤⎢⎣⎡-2,2ππB . ⎥⎦⎤⎢⎣⎡-4,43ππC . []0,π-D . ⎥⎦⎤⎢⎣⎡-ππ43,4 8. 函数)34tan(2ππ+=y 的最小正周期是 ( )A .4πB .2πC . π2D . π49. 函数)43sin(π-=x y 的图象是中心对称图形,其中它的一个对称中心是 ( )A . ⎪⎭⎫ ⎝⎛-0,12π B . ⎪⎭⎫⎝⎛-0,127πC . ⎪⎭⎫ ⎝⎛0,127πD . ⎪⎭⎫⎝⎛0,1211π 10. )20(33tan παα<<=,则角α所有可能的值是 ( ) A .6πB .ππ676或 C .ππ343或 D .3π11. 函数x x y 2cos sin =是 ( )A . 周期为2π的奇函数 B . 周期为2π的偶函数C . 周期为π的奇函数D . 周期为π的偶函数12. 函数)323(6cos 6sin 42ππ≤≤--+=x x x y 的值域是 A .⎥⎦⎤⎢⎣⎡-41,6 B . ⎥⎦⎤⎢⎣⎡41,0 C . ⎥⎦⎤⎢⎣⎡-41,12 D . []0,6-二、填空题13. =315 ______ 弧度 , π127弧度= ______度.14. 计算:___4cot cos 613sin 2137cos 4tan 4222=⋅++-πππππ. 15. 已知α是锐角,且ααcos sin <,则αtan 和αcot 的大小关系是____.16. 已知函数2cot tan )(++=x x x f ,且m f =)2(,则____)2(=-f .17. 若B A 、是ABC ∆的内角,且53cos =A , 135sin =B , 则__sin =C . 18.若函数)0)(34sin(>--=b x b a y π的最大值为5最小值为1,则函数5sin 2+-=axy 的最大值M=______ , 周期T=_____.三、解答题19. 利用三角公式化简)10tan 31(50sin+.20. 已知函数1cos sin 23cos 212++=x x x y ,R x ∈. (1) 当函数y 取得最大值时,求自变量x 的集合;(2) 求该函数的单调递增区间; (3) 该函数的图象可由)(sin R x x y ∈=经过怎样的平移和伸缩变换得到?21.已知παβπ432<<<,1312)cos(=-βα,53)sin(-=+βα,求α2sin 的值.22.在ABC ∆中, c 、、b a 分别是角的A 、B 、C 对边,设b c a 2=+,3A π=-C ,求B sin 的值.参考答案一. 选择题1 B 2 B 3 D 4 C 5 B 6 C 7 B 8 D 9 B 10 B 11 A 12 A二. 填空题13 π47,105度 14 82315 ααcot tan <16 m -4 17 656318 9 , π6 三.解答题19 解: 原式)10cos 10sin 31(50sin+=10cos )10si n 2310cos 21(250si n +=10cos 10sin 30cos 10cos 30sin 50sin 2+=10cos 40sin 40cos ⋅== 10cos 80sin =10cos 10cos =120解: (1)1)cos sin 2(4341)1cos 2(412++++-=x x x y 45)62sin(21++πx y 取最大值必须且只需y πππk x 2262+=+,即ππk x+=6,z k ∈y ∴取最大值时,自变量的集合是⎭⎬⎫⎩⎨⎧∈+=z k k x x ,6ππ(2) 由 z k k x k ∈+≤+≤-,226222πππππ得 z k k x k ∈+≤≤-,63ππππ∴ 该函数的单调递增区间是zk k k ∈⎥⎦⎤⎢⎣⎡+-,6,3ππππ (3) 将函数x y sin =的图象依次进行如下变换 ① 把函数x y sin =的图象向左平移6π个单位,得到函数)6sin(π+=x y 的图象② 把得到的图象上各点的横坐标缩短到原来的21倍(纵坐标不变),得到函数)62sin(π+=x y 的图象③ 把得到的图象上各点的纵坐标缩短到原来的21倍(横坐标不变),得到函数)62sin(21π+=x y 的图象④ 把得到的图象向上平移45个单位,得到函数45)6sin(++=πx y 的图象 综上,得到函数1cos sin 23cos 212++=x x x y 的图象 21.由题设知βα-为第一象限角135)1312(1)(cos 1)sin(22=-=--=-∴βαβα 由题设知βα+为第三象限角54)53(1)(sin 1)cos(22-=---=+--=+∴βαβα 6556)53(1312)54(135)sin()cos()cos()sin()]()sin[(2sin -=-⨯+-⨯=+-++-=++-=∴βαβαβαβαβαβαα22.在ABC ∆中,2RsinA =a ,2RsinB =b ,2RsinC =cb c a 2=+ ,2sinB sinC sinA =+∴ 2sinB 2cos 2sin2=-+CA C A 又3A π=-C sinB 6cos 2sin=⋅+∴πC A 即C)sin(A 2sin 23+=+CA ,2cos 2sin 22sin 23CA C A C A ++=+,432cos=+C A即432cos=-Bπ,432sin =B 85163212sin 21cos 2=⨯-=-=∴B B839)85(1cos 1sin 22=-=-=∴B B。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

江苏省南京师范大学附属扬子中学高一数学三角函数单元测试题
一、选择题(每小题5分,共60分,请将所选答案填在括号内)
1.设a<0,角α的终边经过点P(-3a,4a),那么sin α+2cos α的值等于:
A.52
B.-52
C.51
D.-5
1 2.若cos(π+α)=-2
3
,21π<α<2π,则sin(2π-α)等于:
A.-
23 B.23 C.2
1 D.±23 3. 已知sin α>sin β,那么下列命题成立的是:
A.若α,β是第一象限角,则cos α>cos β
B.若α,β是第二象限角,则tan α>tan β
C.若α、β是第三象限角,则cos α>cos β
D.若α、β是第四象限角,则tan α>tan β
4.若sinx +cosx =1,那么sin n x +cos n
x 的值是:
A .1
B .0
C .-1
D .不能确定 5. 函数y=-x ·cos x 的部分图象是:
6. 函数x x y sin cos 2
-=的值域是: A 、[]1,1-
B 、⎥⎦
⎤⎢⎣⎡45,1
C 、[]2,0
D 、⎥⎦
⎤⎢⎣
⎡-45,1
7. 已知:函数
sin()y A x ωϕ=+,在同一周期内,当12
x π
=时取最大值4y =;当712
x π
=
时,取最小值4y =-,那么函数的解析式为:
A .4sin(2)3
y x π
=+ B. 4sin(2)3
y x π
=-+
C 4sin(4)3
=+
y x π
. D. 4sin(4)3
y x π
=-+
8. 在函数y =|tanx |,y =|sin(x +
2π)|,y =|sin2x |,y =sin(2x -2
π
)四个函数中,既是以π为周期的偶函数,又是区间(0,2
π
)上的增函数个数是:
A .1
B .2
C .3
D .4
9. 定义在R 上的函数)(x f 既是偶函数又是周期函数,若)(x f 的最小正周期是π,且当]2
,
0[π∈x 时,x x f sin )(=,则)3
5(πf 的值为:
A. 2
1- B. 2
3
C. 2
3- D 21
10. 下列函数中,最小正周期为π,且图象关于直线3
π
=x 对称的是:
A.)32sin(π-
=x y B.)62sin(π-=x y C .)6
2sin(π+=x y
D .)6
2sin(π+=x y
11.函数f(x)=cos(3x +φ)的图象关于原点中心对称,则:
A .φ=π2
B .φ=k π+π2
C .φ=k π
D .φ=2k π-π
2
(k ∈Z)
12.2002年8月,在北京召开的国际数学家大会会标如图所示,它是由4个相同的直角三角形
与中间的小正方形拼成的一大正方形,若直角三角形中较小的锐角为θ,大正方形的面积是1,小正方形的面积是θθ22cos sin ,25
1
-则的值等于:
A .1
B .2524-
C .257
D .725-
二.填空题:本大题共4小题,每小题4分,共16分。

13. 函数x x y 2
4
cos sin +=的最小正周期为 . 14. 函数sin 2y x =
的定义域是 .
15. 若1351016
()sin ()()()(n f n f f f f π=+++
+,)
= . 16.给出下列命题:(1)存在实数x ,使sinx+cosx =3
π
; (2)若αβ,是锐角△ABC 的内角,则sin α>cos β; (3)函数y =sin(32x-2
7π)是偶函数; (4)函数y =sin2x 的图象向右平

4π个单位,得到y =sin(2x+4
π
)的图象.其中正确的命题的序号是 . 三、解答题(本大题6小题,共74分,解答应写出文字说明,证明过程或演算步骤) 17. 已知α为第三象限角,且f(α)=sin(π-α)cos(2π―α).tan(―α+3π
2
)
cot α.sin(π+α)

(1)化简f(α);
(2)若cos(α-3π2)=1
5,求f(α)的值;
(3)若α=-1860°,求f(α)的值.
18.已知函数y =3sin3x .
(1)作出函数在x ∈[π6,5π
6
]上的图象.
(2)求(1)中函数的图象与直线y =3所围成的封闭图形的面积.
19. 设函数)(),0( )2sin()(x f y x x f =<<-+=ϕπϕ图像的一条对称轴是直线8
π
=x .
(Ⅰ)求ϕ;
(Ⅱ)求函数)(x f y =的单调增区间;
20. 已知5
1cos sin ,02
=
+<<-
x x x π
. (I )求sinx -cosx 的值;
(Ⅱ)求2232sin sin cos cos tan cot x x x x
x x
-++的值
21. 已知y =Asin(ωx +φ),(A >0, ω>0,ϕπ<)的图象过点P(π
12,0)图象上与点P 最近
的一个顶点是Q(π
3,5).
(1)求函数的解析式;
(2)求使y ≤0的x 的取值范围.
22.函数的性质通常指函数的定义域、值域、周期性、单调性、奇偶性等,请选择适当的 探究顺序,研究函数f(x)=x x sin 1sin 1++-的性质,并在此基础上,作出其在
[,]ππ-的图象。

参考答案
一、选择题 题号 1 2 3 4 5 6 7 8 9 10 11 12 答案
A
B
D
A
D
D
A
B
B
B
B
D
二、填空题13.

14.2,()k k k Z πππ⎡⎤+∈⎢⎥⎣⎦
15.2 16.(1),(2),(3)
三解答题
17. (1)f(α)=-cos α. (2) f(α)=265.(3) f(α)=-1
2.
18.(1)略 (2)2π 19.(1)3
4
ϕ
π=-(2)
1788,()k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦
20.(1)75
-
(2)804
625-
21.(1)
526sin()y x π=- (2) 511212,()k k k Z ππππ⎡
⎤-+∈⎢⎥⎣

22. 解:① ∵1sin 0
1sin 0x x -≥⎧⎨+≥⎩
∴()f x 的定义域为R ②

()()()()1sin 1sin 1sin 1sin f x x x x x f x -=--+-=+-= ∴f(x)为偶函数;
③ ∵f(x+π)=f(x), ∴f(x)是周期为π的周期函数; ④ 当[0,
]2x π
∈时f(x)=)2
cos 2|cos |22)sin 1sin 1(2x x x x =+=++- ∴当[0,
]2x π
∈时()f x 单减;当[]2
x π
π∈,时()f x 单增; 又∵()f x 是周期为π的偶函数 ∴f(x)的单调性为:在[,]2
k k π
πππ+
+上单增,在[,]2
k k π
ππ+上单减。

⑤ ∵当[0,]2x π
∈时()2cos 22x f x ⎡⎤=∈⎣
⎦,;当[]2x ππ∈,时()2sin 22x f x ⎤=∈⎦,∴()f x 的值域为:]2,2[ ⑥由以上性质可得:()f x 在[]ππ-,上的图象如图所示:。

相关文档
最新文档