重点大学教授的生物化学笔记

合集下载

生物化学笔记(整理版)1

生物化学笔记(整理版)1

《生物化学》绪论生物化学可以认为是生命的化学,是研究微生物、植物、动物及人体等的化学组成和生命过程中的化学变化的一门科学。

生命是发展的,生命起源,生物进化,人类起源等,说明生命是在发展,因而人类对生命化学的认识也在发展之中。

20世纪中叶直到80年代,生物化学领域中主要的事件:(一)生物化学研究方法的改进a. 分配色谱法的创立——快捷、经济的分析技术由Martin.Synge创立。

b. Tisellius用电泳方法分离血清中化学构造相似的蛋白质成分。

吸附层析法分离蛋白质及其他物质。

c. Svedberg第一台超离心机,测定了高度复杂的蛋白质。

d. 荧光分析法,同位素示踪,电子显微镜的应用,生物化学的分离、纯化、鉴定的方法向微量、快速、精确、简便、自动化的方向发展。

(二)物理学家、化学家、遗传学家参加到生命化学领域中来1. Kendrew——物理学家,测定了肌红蛋白的结构。

2. Perutz——对血红蛋白结构进行了X-射线衍射分析。

3. Pauling——化学家,氢键在蛋白质结构中以及大分子间相互作用的重要性,认为某些protein具有类似的螺旋结构,镰刀形红细胞贫血症。

(1.2.3.都是诺贝尔获奖者)4.Sanger―― 生物化学家 1955年确定了牛胰岛素的结构,获1958年Nobel prize化学奖。

1980年设计出一种测定DNA内核苷酸排列顺序的方法,获1980年诺贝尔化学奖。

5.Berg―― 研究DNA重组技术,育成含有哺乳动物激素基因的菌株。

6.Mc clintock―― 遗传学家发现可移动的遗传成分,获1958年诺贝尔生理奖。

7.Krebs―― 生物化学家 1937年发现三羧酸循环,对细胞代谢及分生物的研究作出重要贡献,获1953年诺贝尔生理学或医学奖。

8.Lipmann―― 发现了辅酶A。

9. Ochoa——发现了细菌内的多核苷酸磷酸化酶10.Korberg——生物化学家,发现DNA分子在细菌内及试管内的复制方式。

生物化学笔记(整理版)

生物化学笔记(整理版)

教学目标:1.掌握蛋白质的概念、重要性和分子组成。

2.掌握α-氨基酸的结构通式和20种氨基酸的名称、符号、结构、分类;掌握氨基酸的重要性质;熟悉肽和活性肽的概念。

3.掌握蛋白质的一、二、三、四级结构的特点及其重要化学键。

4.了解蛋白质结构与功能间的关系。

5.熟悉蛋白质的重要性质和分类导入:100年前,恩格斯指出“蛋白体是生命的存在形式”;今天人们如何认识蛋白质的概念和重要性?1839年荷兰化学家马尔德(G.J.Mulder)研究了乳和蛋中的清蛋白,并按瑞典化学家Berzelius的提议把提取的物质命名为蛋白质(Protein,源自希腊语,意指“第一重要的”)。

德国化学家费希尔(E.Fischer)研究了蛋白质的组成和结构,在1907年奠立蛋白质化学。

英国的鲍林(L.Pauling)在1951年推引出蛋白质的螺旋;桑格(F.Sanger)在1953年测出胰岛素的一级结构。

佩鲁茨(M.F.Perutz)和肯德鲁(J.C.kendrew) 在1960年测定血红蛋白和肌红蛋白的晶体结构。

1965年,我国生化学者首先合成了具有生物活性的蛋白质——胰岛素(insulin)。

蛋白质是由L-α-氨基酸通过肽键缩合而成的,具有较稳定的构象和一定生物功能的生物大分子(biomacromolecule)。

蛋白质是生命活动所依赖的物质基础,是生物体中含量最丰富的大分子。

单细胞的大肠杆菌含有3000多种蛋白质,而人体有10万种以上结构和功能各异的蛋白质,人体干重的45%是蛋白质。

生命是物质运动的高级形式,是通过蛋白质的多种功能来实现的。

新陈代谢的所有的化学反应几乎都是在酶的催化下进行的,已发现的酶绝大多数是蛋白质。

生命活动所需要的许多小分子物质和离子,它们的运输由蛋白质来完成。

生物的运动、生物体的防御体系离不开蛋白质。

蛋白质在遗传信息的控制、细胞膜的通透性,以及高等动物的记忆、识别机构等方面都起着重要的作用。

随着蛋白质工程和蛋白质组学的兴起和发展,人们对蛋白质的结构与功能的认识越来越深刻。

生物化学学习笔记(整理总结)

生物化学学习笔记(整理总结)

第1章蛋白质的结构与功能1.等电点:氨基酸分子所带正、负电荷相等,呈电中性时,溶液的pH值称为该氨基酸的等电点(isoelectric point, pI)当蛋白质溶液处于某一pH时,蛋白质解离成正、负离子的趋势相等,即成为兼性离子,净电荷为零,此时溶液的pH称为蛋白质的等电点。

结构域:分子量大的蛋白质三级结构常由几个在功能上相对独立的,结构较为紧凑的区域组成,称为结构域(domain)。

亚基:有些蛋白质分子含有二条或多条多肽链,每一条多肽链都有完整的三级结构,称为蛋白质的亚基(subunit)。

别构效应:蛋白质空间结构的改变伴随其功能的变化,称为变构效应。

蛋白质变性:在某些物理和化学因素作用下,其特定的空间构象被破坏,也即有序的空间结构变成无序的空间结构,从而导致其理化性质改变和生物活性的丧失。

2.蛋白质的组成单位、连接方式及氨基酸的分类,酸碱性氨基酸的名称。

组成单位:氨基酸. 连接方式:肽键氨基酸可根据侧链结构和理化性质进行分类:非极性脂肪族氨基酸、极性中性氨基酸、芳香族氨基酸、酸性氨基酸、碱性氨基酸、非极性侧链氨基酸、极性中性/非电离氨基酸、酸性氨基酸、碱性氨基酸酸性氨基酸:天冬氨酸,谷氨酸碱性氨基酸:精氨酸,组氨酸3.蛋白质一-四级结构的概念的稳定的化学键。

一级结构:蛋白质的一级结构指在蛋白质分子从N-端至C-端的氨基酸排列顺序。

主要的化学键:肽键,有些蛋白质还包括二硫键。

二级结构:蛋白质分子中多肽主链的局部空间结构,即该段肽链主链骨架原子的相对空间位置,并不涉及氨基酸残基侧链的构象。

主要的化学键:氢键三级结构:整条肽链中全部氨基酸残基的相对空间位置。

即肽链中所有原子在三维空间的排布位置。

主要的化学键:疏水键、离子键、氢键和范德华力等。

四级结构:蛋白质分子中各亚基的空间排布及亚基接触部位的布局和相互作用,称为蛋白质的四级结构。

主要的化学键:氢键和离子键。

4.蛋白质的构象与功能的关系。

一、蛋白质一级结构是高级结构与功能的基础二、蛋白质的功能依赖特定空间结构5.蛋白质变形的概念的本质。

生物化学总结复习笔记

生物化学总结复习笔记

11章.蛋白质的降解和氨基酸的代谢1.蛋白质的酶促降解1.1.细胞内蛋白质的降解一般认为真核细胞对蛋白质的降解有两个体系.其一是溶酶体降解.其二是依赖ATP,在细胞溶胶中以泛素标记的选择性蛋白质的降解.1.2外源蛋白质的酶促降解外源蛋白质进入体内,必须先经过水解作用变为小分子的氨基酸,然后才能被吸收.就高等动物来说,外界食物蛋白质经消化吸收的氨基酸和体内合成及组织蛋白质经降解的氨基酸,共同组成体内氨基酸代谢库.所谓氨基酸代谢库即指体内氨基酸的总量.氨基酸代谢库中的氨基酸大部分用于合成蛋白质,一部分可以作为能源,体内有一些非蛋白质的含氮化合物也是以某些氨基酸作为合成的原料.2.氨基酸的分解代谢氨基酸的共同分解代谢途径包括脱氨基作用和脱羧基作用两个方面.氨基酸经脱氨基作用生成氨及α-酮酸.氨基酸经脱羧基作用产生二氧化碳及胺.胺可随尿直接排出,也可在酶的作用下,转化为可被排出的物质和合成体内有用的物质.氨基酸脱氨基的方式有氧化脱氨基作用、转氨基作用、联合脱氨基作用、非氧化脱氨基作用和脱酰胺基作用.3.氨的排泄方式水生动物排氨鸟类及爬行动物排尿酸哺乳动物排尿素尿素是哺乳动物蛋白质代谢的最终产物10章.脂质代谢1脂质的酶促水解1.1三酰甘油的酶促水解三酰甘油是重要的储能物质.在脂肪酶的作用下水解为甘油和脂肪酸.甘油可氧化供能也可糖酵解途径生成糖.脂肪酸可彻底氧化供能.1.2磷脂的酶促水解磷脂酶A1和A2分别专一的出去Sn-1位或sn-2位上的脂肪酸,生成的仅含有一个脂肪酸的产物称溶血磷脂.溶血磷脂是一种很强的表面活性剂,能使细胞膜和红细胞膜溶解.2.脂肪酸的β-氧化作用2.1脂肪酸的β-氧化作用是指:脂肪酸在氧化分解时,碳链的断裂发生在脂肪酸的β位,即脂肪酸的碳链的断裂方式是每次切除2个碳原子.细胞溶胶中的长链脂肪酸首先被活化为脂酰辅酶A,然后长链脂酰辅酶A在肉碱的携带下进入线粒体.需要肉碱脂酰转移酶脂肪酸的β-氧化作用四步:脱氢、加水、再脱氢、硫解.循环一次,产生少两个碳原子的脂酰辅酶A和一分子乙酰辅酶A.1mol软脂酸彻底氧化需要进行7次β-氧化,产生8mol乙酰辅酶A.每次β-氧化产生1mol FADH2 和1mol NADH+H+ ,则共产生7molFADH2和7molNADH+H+ .进入呼吸链氧化生成28mol ATP1.5×7+2.5×7=28;8mol 乙酰辅酶A进入TCA循环氧化可生成80molATP10×8;这样1mol软脂酸彻底氧化一共产生108molATP,因活化时消耗2molATP,故净得106molATP.不饱和脂肪酸的氧化与饱和脂肪酸基本相同,单不饱和脂肪酸氧化需要△3-顺,△2-反烯脂酰辅酶A异构酶;多不饱和脂肪酸氧化还需要△2-反,△4-顺二烯脂酰辅酶A还原酶和△3-反,△2-反烯脂酰辅酶A异构酶的共同作用.3.酮体乙酰乙酸、β-羟丁酸和丙酮,统称为酮体.酮体在肝中产生,可被肝外组织利用.酮体的生成:在肝中脂肪酸的氧化不是很完全,二分子的乙酰辅酶A可以缩合成乙酰乙酰辅酶A;乙酰乙酰辅酶A再与一分子乙酰辅酶A缩合成β-羟-β-甲戊二酸单酰辅酶A,后者裂解成乙酰乙酸;乙酰乙酸在肝线粒体中可以还原生成β-羟丁酸,乙酰乙酸可以脱羧生成丙酮.酮体的氧化:在肝中形成的乙酰乙酸和β-羟丁酸进入血液循环后送至肝外组织,通过三羧酸循环循环氧化.β-羟丁酸首先氧化成乙酰乙酸,然后乙酰乙酸在β-酮脂酰辅酶A转移酶或乙酰乙酸硫激酶的作用下,生成乙酰乙酸辅酶A,再与第二个辅酶A作用形成两分子一线辅酶A,乙酰辅酶A可进入三羧酸循环循环进行氧化.9.糖的分解代谢1.淀粉的酶促水解1.1 α-淀粉酶可以水解淀粉中任何部位的α-1,4糖苷键,β-淀粉酶只能从非还原端开始水解.,β-淀粉酶不能水解α-1,6糖苷键.水解淀粉中的α-1,6糖苷键的酶是α-1,6糖苷酶.2.糖的分解代谢途径包括糖酵解、三羧酸循环、戊糖磷酸途径、葡萄糖醛酸途径、乙醛酸途径.3.糖酵解无氧条件下,1mol葡萄糖变成2mol丙酮酸并伴随ATP生成的过程称为糖酵解.丙酮酸的三条代谢去路:①在组织缺氧情况下丙酮酸还原为乳酸;②酵母菌可以使丙酮酸还原为乙醇;③有氧条件下,丙酮酸转化为乙酰辅酶A,进入三羧酸循环,彻底氧化为二氧化碳和水.糖酵解从葡萄糖开始,分为10步酶促反应,均在细胞液中进行.糖酵解的调控:从单细胞生物到高等动植物都存在糖酵解过程,其生理意义主要是释放能量,使机体在缺氧情况下仍能进行生命活动.糖酵解的中间产物可为机体提供碳骨架.糖酵解主要受3中酶的调控:①果糖磷酸激酶;①果糖磷酸激酶是最关键的限速酶.1.ATP/AMP比值对该酶活性的调节具有重要的生理意义.当ATP浓度较高时,果糖磷酸激酶几乎无活性,糖酵解作用减弱;当AMP积累,ATP减少时,酶活性恢复,糖酵解作用增强.2.氢离子H可抑制果糖磷酸激酶的活性,防止肌肉中形成过量乳酸而使血液酸中毒.3.柠檬酸可增加ATP对酶活性的抑制作用.果糖-2,6-二磷酸能消除ATP对酶的抑制效应,使酶活化.②己糖激酶活性的调节.果糖-6-磷酸是的别构抑制剂.③丙酮酸激酶活性的调节.果糖-1,6-二磷酸是丙酮酸激酶的激活剂;丙氨酸是该酶的别构抑制剂.ATP、乙酰CoA 也可以抑制该酶的活性.糖酵解中ATP的变化:糖酵解阶段中,由己糖激酶和果糖磷酸激酶催化的两步反应,各消耗1分子的ATP.在丙糖阶段,甘油酸—1,3—二磷酸和烯醇丙酮酸磷酸经底物水平磷酸化反应,个生成1分子ATP,由于果糖—1,6—二磷酸在醛缩酶催化下裂解,相当于生成2分子甘油醛—3—磷酸.因此,每分子葡萄糖在糖酵解阶段净生成2分子ATP.在糖酵解过程中有3步不可逆反应,分别由己糖激酶、果糖磷酸激酶和丙酮酸激酶.其中果糖磷酸激酶是最关键的限速酶,其活性被ATP、柠檬酸所抑制;被AMP和果糖-2,6-二磷酸变构激活.2.糖的有氧分解将糖的有氧分解分为3个阶段,第一是糖酵解阶段,第二是丙酮酸进入线粒体被氧化脱羧成乙酰辅酶A.第三阶段是乙酰辅酶A进入柠檬酸循环生成二氧化碳和水.三羧酸循环循环:乙酰CoA和草酰乙酸缩合为柠檬酸进入三羧酸循环循环.丙酮酸经三羧酸循环循环途径能形成12.5个ATP,每分子葡萄糖能产生2分子的丙酮酸,将产生25个ATP.柠檬酸合酶、异柠檬酸脱氢酶与α-酮戊二酸脱氢酶系是调控三羧酸循环循环的限速酶.其活性受ATP、NADH等物质的抑制.葡萄糖在有氧条件下氧化分解为二氧化碳和水净生成32分子ATP.乙醛酸途径两种关键酶是苹果酸合酶和异柠檬酸裂解酶.戊糖磷酸途径:两个5碳糖相加生成3碳和7碳糖,后二者相加在生成6碳和4碳糖,5碳与4碳糖相加生成3碳和6碳糖.糖原的分解与合成的关键酶是磷酸化酶与糖原合酶.糖异生:糖异生作用是指非糖物质如甘油,生糖氨基酸和乳酸等合成葡萄糖或糖原的过程.为什么糖异生并非完全是糖酵解的逆转反应8新陈代谢总论和生物氧化1ATP是生物细胞内能量代谢的偶联剂.从低等的单细胞生物到高等的人类,能量的释放、贮存和利用都是以ATP 为中心.ATP含有一个磷酯键和两个由磷酸基团形成的磷酸酐键.6 酶1酶的概念与特点:酶是具有高效性与专一性的生物催化剂.三层含义:一,酶是催化剂;二,酶是生物催化剂;三,酶在行使催化剂功能时,具有高效性与专一性的特点酶的催化效率可以用转换数来表示.2酶的化学本质与组成除核酶外,酶都是蛋白质.酶可以分为单纯蛋白质与缀合蛋白质.缀合蛋白质除了氨基酸残基外,还含有金属离子、有机小分子等化学成分,这类酶称为全酶.全酶中蛋白质部分称为辅酶.非蛋白质部分称为辅因子.酶的分类:1.氧化还原酶类;2.转移酶类;3.水解酶类;4裂合酶类;5异构酶类;6合成酶类.酶的专一性分类:①结构专一性分为绝对专一性与相对专一性;②立体异构专一性旋光异构专一性和几何异构专一性酶的作用机制:活化分子:反应物一种更高能量的状态.过渡态:活化分子所处的这种需要更多能量的状态.基态:与活化分子相对应的普通反应物分子所处的状态.活化能:处于过渡态的分子比处于基态的分子多出来的Gibbs 自由能.酶通过降低反应活化能使反应速率加快.酶活性部位的结构是酶作用机理的结构基础.酶具有高效催化效率的分子机制:酶分子的活性部位结合底物分子形成酶—底物复合物,在酶的帮助下,底物分子进入一种特定的状态,形成此类过渡态所需的活化能远小于非酶促反应所需的活化能,使反应能够顺利进行,形成产物释放出游离的酶,使其能够参与其余底物的反应.与该分子机理相关的因素:1.邻近效应:邻近效应指酶与底物结合以后,使原来游离的底物集中于酶的活性部位,从而减少底物之间或底物与酶的催化基团之间的距离,使反应更容易进行.2.定向效应:指底物的反应基团之间、酶的催化基团与底物的反应基团之间的正确定位与取向所产生的增进反应速率的效应.3.促进底物过渡态形成的非共价作用:当酶与底物结合后,酶与底物之间的非共价可以使底物分子围绕其敏感键发生形变,从而促进底物过渡态的形成.4.酸碱催化:5.共价催化:酶促反应动力学:酶底物中间复合物学说:即酶首先和底物结合生成中=v 间复合物,中间复合物再生成产物.米氏方程:m K S S v v +=][][max ;K m 物理意义:K m 值是反应速率为最大值的一半时的底物浓度.其单位是mol/l影响酶促反应速率的因素包括:抑制剂、温度、ph 值,激活剂.1,通过改变酶必需基团的化学性质从而引起酶活力的降低或丧失的作用称为抑制作用.酶的抑制剂包括不可逆抑制剂与可逆抑制剂.可逆抑制剂可分为:竞争性抑制剂、非竞争性抑制剂、反竞争性抑制剂.氯离子是唾液淀粉酶的激活剂.酶活性的调节酶活性的调节方式:1.通过改变酶的分布于数量来调节酶的活性.2.通过改变细胞内已有的酶分子的活性来调节酶的活性.酶的别构调控许多酶具有活性部位外,还具有调节部位.酶的调节部位可与某些化合物可逆的非共价结合,使酶的结构发生改变,进而改变酶的活性,这种酶活性的调节方式称为别构调节.对别构酶加热或用化学试剂处理,可以使别构酶解离并失去调节活性,称为脱敏作用.对酶分子具有别构调节作用的化合物称为效应物.效应物对别构酶的调节作用可分为同促效应与异促效应.同促效应中,酶的活性部位与调节部位是相同的,效应物是底物,底物与别构酶的某一活性部位相结合可促使剩余底物与其它剩余活性部位相结合,导致酶促反应速率增加,这称为正协同效应.如果底物与酶的某一活性部位结合导致剩余底物更难与其余剩余活性部位结合,则称为负协同效应.异促效应中,酶的活性部位与调节部位是不同的.效应物是非底物分子.酶原的激活酶原:指的是生活物体内合成的无活性的酶的前体.酶原激活:在特定蛋白水解酶的催化作用下,酶原的结构发生改变,形成酶的活性部位,变成有活性的酶.酶原的激活是一个不可逆的过程.5脂质与生物膜1.1.1动植物油的化学本质是脂酰甘油.1.1三酰甘油的理化性质:1.3磷脂分为甘油磷脂与鞘磷脂.最简单的甘油磷脂是磷脂酸.1.4生物膜主要由蛋白质与脂质.4糖类单糖一般是含有3--6个碳原子的多羟基醛或多羟基酮.最简单的单糖是甘油醛和二羟丙酮.单糖的构型以距离醛基最远端不对称碳原子为准,羟基在左边的为L构型,羟基在右边的为D构型.单糖分子中醛基和其他碳原子上羟基成环反应生成的产物为半缩醛.六元环是吡喃糖,五元环为呋喃糖.六元环更稳定.连接半缩醛羟基的碳称为异头碳.异头物的半缩醛羟基与决定构型的羟基在同侧着为α型,在相反者为β构型.单糖的构型:椅式构象更稳定.糖类衍生物甘露醇在临床上用来降低颅内压和治疗急性肾衰竭.葡糖醛酸是人体一种重要的解毒剂.寡糖寡糖是少数单糖2-10缩合的聚合物,低聚糖是指20个以下单糖缩合的聚合物.麦芽糖成键类型:α1-4糖苷键,多糖多糖是由多个单糖基以糖苷键相连而成的高聚物.多糖没有还原性和变旋性.淀粉天然淀粉一般由直链淀粉与支链淀粉组成.直链淀粉是D—葡萄糖基以α—1,4糖苷键连接的多糖链.直链淀粉分子的空间构象是卷曲成螺旋形的,每一回旋为6个葡萄糖基.显色螺旋构象是碘显色的必要条件,碘分子进入淀粉螺旋圈内,糖游离羟基称为电子供体,碘分子成为电子受体,形成淀粉碘络合物,呈现颜色.其颜色与糖链的长度有关.直链淀粉成蓝色,支链淀粉成紫红色.纤维素自然界中最丰富的有机化合物是纤维素.纤维素是一种线性的由D—吡喃葡糖基以β—1,4糖苷键3.核酸RNA:核糖核酸DNA:脱氧核糖核酸A 腺嘌呤T 胸腺嘧啶G 鸟嘌呤C胞嘧啶U 尿嘧啶核苷:是戊糖和含氮碱基生成的糖苷.核苷酸间的连接键是3,5—磷酸二酯键.碱基序列表示核酸的一级结构,DNA双链的螺旋形空间结构称DNA的二级结构.A与T配对形成2个氢键,G与C配对形成3个氢键.增色效应:核酸水解为核苷酸,紫外吸收值增加.核酸结构的稳定性因素:1 碱基对间的氢键.2 碱基堆积力.3 环境中的正离子核酸变性在核酸变性时,将紫外吸收的增加量达到最大增量的一半时的温度值称溶解温度,即Tm.影响Tm的因素:1.G—C对含量,G—C对含量越高,Tm也越高.2.溶液的离子强度离子强度较低的介质中,Tm较低.3.溶液的Ph4.变性剂复性:变性核酸的互补链在适当的条件下重新缔合成双螺旋的过程成为复性.变性核酸复性时需要缓慢冷却,故又称退火.变性核酸复性后,核酸的紫外吸收降低,这种现象称为减色效应.影响复性的因素:1 复性的温度 2单链片段的浓度 3 单链片段的长度 4 单链片段的复杂度 5 溶液的离子强度分子杂交:在退火条件下,不同来源的DNA互补区形成双链,或DNA单链和RNA单链的互补区形成DNA—RNA杂合双链的过程称为分子杂交.2蛋白质1.蛋白质的分类蛋白质的平均含氮量为16%.2.蛋白质的组成蛋白质的水解产物为氨基酸等电点:。

生物化学笔记完整版

生物化学笔记完整版

生物化学笔记(完整版)————————————————————————————————作者: ————————————————————————————————日期:ﻫ第一章绪论一、生物化学的的概念: ﻫ生物化学(biochemistry)是利用化学的原理与方法去探讨生命的一门科学,它是介于化学、生物学及物理学之间的一门边缘学科。

ﻫﻫ二、生物化学的发展:ﻫ1.叙述生物化学阶段:是生物化学发展的萌芽阶段,其主要的工作是分析和研究生物体的组成成分以及生物体的分泌物和排泄物。

2.动态生物化学阶段:是生物化学蓬勃发展的时期。

就在这一时期,人们基本上弄清了生物体内各种主要化学物质的代谢途径。

3.分子生物学阶段:这一阶段的主要研究工作就是探讨各种生物大分子的结构与其功能之间的关系。

三、生物化学研究的主要方面:1.生物体的物质组成:高等生物体主要由蛋白质、核酸、糖类、脂类以及水、无机盐等组成,此外还含有一些低分子物质。

2.物质代谢:物质代谢的基本过程主要包括三大步骤:消化、吸收→中间代谢→排泄。

其中,中间代谢过程是在细胞内进行的,最为复杂的化学变化过程,它包括合成代谢,分解代谢,物质互变,代谢调控,能量代谢几方面的内容。

3.细胞信号转导:细胞内存在多条信号转导途径,而这些途径之间通过一定的方式方式相互交织在一起,从而构成了非常复杂的信号转导网络,调控细胞的代谢、生理活动及生长分化。

ﻫ4.生物分子的结构与功能:通过对生物大分子结构的理解,揭示结构与功能之间的关系。

ﻫ5.遗传与繁殖:对生物体遗传与繁殖的分子机制的研究,也是现代生物化学与分子生物学研究的一个重要内容。

第二章蛋白质的结构与功能一、氨基酸:1.结构特点:氨基酸(amino acid)是蛋白质分子的基本组成单位。

构成天然蛋白质分子的氨基酸约有20种,除脯氨酸为α-亚氨基酸、甘氨酸不含手性碳原子外,其余氨基酸均为L-α-氨基酸。

ﻫ2.分类:根据氨基酸的R基团的极性大小可将氨基酸分为四类:①非极性中性氨基酸(8种);②极性中性氨基酸(7种);③酸性氨基酸(Glu和Asp);④碱性氨基酸(Lys、Arg和His)。

生物化学笔记(完整版)

生物化学笔记(完整版)

第一章绪论一、生物化学的的概念:生物化学(biochemistry)就是利用化学的原理与方法去探讨生命的一门科学,它就是介于化学、生物学及物理学之间的一门边缘学科。

二、生物化学的发展:1.叙述生物化学阶段:就是生物化学发展的萌芽阶段,其主要的工作就是分析与研究生物体的组成成分以及生物体的分泌物与排泄物。

2.动态生物化学阶段:就是生物化学蓬勃发展的时期。

就在这一时期,人们基本上弄清了生物体内各种主要化学物质的代谢途径。

3.分子生物学阶段:这一阶段的主要研究工作就就是探讨各种生物大分子的结构与其功能之间的关系。

三、生物化学研究的主要方面:1.生物体的物质组成:高等生物体主要由蛋白质、核酸、糖类、脂类以及水、无机盐等组成,此外还含有一些低分子物质。

2.物质代谢:物质代谢的基本过程主要包括三大步骤:消化、吸收→中间代谢→排泄。

其中,中间代谢过程就是在细胞内进行的,最为复杂的化学变化过程,它包括合成代谢,分解代谢,物质互变,代谢调控,能量代谢几方面的内容。

3.细胞信号转导:细胞内存在多条信号转导途径,而这些途径之间通过一定的方式方式相互交织在一起,从而构成了非常复杂的信号转导网络,调控细胞的代谢、生理活动及生长分化。

4.生物分子的结构与功能:通过对生物大分子结构的理解,揭示结构与功能之间的关系。

5.遗传与繁殖:对生物体遗传与繁殖的分子机制的研究,也就是现代生物化学与分子生物学研究的一个重要内容。

第二章蛋白质的结构与功能一、氨基酸:1.结构特点:氨基酸(amino acid)就是蛋白质分子的基本组成单位。

构成天然蛋白质分子的氨基酸约有20种,除脯氨酸为α-亚氨基酸、甘氨酸不含手性碳原子外,其余氨基酸均为L-α-氨基酸。

2.分类:根据氨基酸的R基团的极性大小可将氨基酸分为四类:①非极性中性氨基酸(8种);②极性中性氨基酸(7种);③酸性氨基酸(Glu与Asp);④碱性氨基酸(Lys、Arg与His)。

二、肽键与肽链:肽键(peptide bond)就是指由一分子氨基酸的α-羧基与另一分子氨基酸的α-氨基经脱水而形成的共价键(-CO-NH-)。

生物化学王镜岩朱圣庚笔记

生物化学王镜岩朱圣庚笔记

生物化学王镜岩朱圣庚笔记
以下是《生物化学(王镜岩、朱圣庚)》的部分笔记,仅供参考:
1.1998年8月美国众议院通过了“营养标识和教育法案”,规定从1999年
11月15日起,所有在美国销售的食物外包装上都必须注明卡路里含量,并标注出5种必须标明的营养素(脂肪、饱和脂肪、胆固醇、钠和碳水化合物)。

2.酶的专一性是指一种酶只能催化一种或一类化学反应的进行,按照酶的专
一性可将酶分成三种类型:绝对专一性、相对专一性和立体异构专一性。

3.酶促反应动力学主要研究酶促反应的速率及影响酶促反应速率的各种因素。

通过米氏方程来表达速率与底物浓度之间的关系。

4.维生素是一类调节物质,它们既不是构成细胞的主要原料,也不是能量的
来源,而是一类参与机体代谢过程和生化反应的必需的有机物。

5.维生素B1又称抗脚气病维生素,是白色针状结晶或白色粉末,有微弱的特
异臭和味苦,易溶于水,遇碱易分解。

6.维生素C又称抗坏血酸,是无色晶体,易溶于水,水溶液呈酸性,具有强
还原性。

7.蛋白质是一切生命的物质基础,没有蛋白质就没有生命。

8.氨基酸是组成蛋白质的基本单位,在生物体内蛋白质通过特定的氨基酸序
列形成多肽链,再经过特定的化学键连接形成具有一定空间结构的蛋白质。

9.酶是由生物体产生的具有生物活性的蛋白质,能够降低生化反应所需要的
活化能,具有高度的专一性、温和的反应条件以及反应的可调控性等特点。

10.维生素是生物体正常生长和代谢所必需的微量有机物,分为脂溶性维生素
和水溶性维生素两类。

以上仅为部分内容,建议查阅教材或者查阅考研论坛等网站获取更全面和准确的信息。

生物化学重点笔记

生物化学重点笔记

生物化学重点笔记生物化学是一门研究生物体化学组成和生命过程中化学变化的科学。

它是生命科学领域的重要基础学科,对于理解生命现象、疾病发生机制以及药物研发等方面都具有重要意义。

以下是生物化学的一些重点内容:一、蛋白质蛋白质是生物体中最重要的大分子之一,具有多种重要的功能,如催化、结构支持、运输、免疫防御等。

1、氨基酸氨基酸是构成蛋白质的基本单位。

人体中有 20 种常见的氨基酸,它们的结构通式为一个中心碳原子连接着一个氨基、一个羧基、一个氢原子和一个侧链基团。

根据侧链基团的性质,氨基酸可以分为酸性氨基酸、碱性氨基酸、中性氨基酸等。

2、蛋白质的结构蛋白质具有四级结构。

一级结构是指氨基酸通过肽键连接形成的线性多肽链,其序列决定了蛋白质的性质和功能。

二级结构包括α螺旋、β折叠和β转角等,是通过氢键维持的局部构象。

三级结构是多肽链在二级结构的基础上进一步折叠形成的三维结构,主要由疏水相互作用、氢键、离子键和范德华力等维持。

四级结构是指由两条或多条多肽链通过非共价键结合形成的具有特定功能的蛋白质复合物。

3、蛋白质的性质蛋白质具有两性解离、胶体性质、变性和复性等性质。

变性是指蛋白质在某些物理和化学因素的作用下,其空间结构被破坏,导致生物活性丧失。

复性则是指变性的蛋白质在适当条件下恢复其天然构象和生物活性。

二、核酸核酸包括脱氧核糖核酸(DNA)和核糖核酸(RNA),它们是遗传信息的携带者。

1、 DNADNA 是由两条反向平行的脱氧核苷酸链通过碱基互补配对形成的双螺旋结构。

其碱基包括腺嘌呤(A)、鸟嘌呤(G)、胸腺嘧啶(T)和胞嘧啶(C),A 与 T 配对,G 与 C 配对。

DNA 具有自我复制、转录和遗传信息传递等功能。

2、 RNARNA 包括信使 RNA(mRNA)、核糖体 RNA(rRNA)和转运RNA(tRNA)等。

mRNA 是从 DNA 转录而来的,携带遗传信息,指导蛋白质的合成。

rRNA 是核糖体的组成部分,参与蛋白质的合成。

《生物化学基础》重点笔记(完整版)

《生物化学基础》重点笔记(完整版)

绪论学习目标:知识目标:掌握:生物化学的定义和研究方法;了解:生物化学的发展史;认识:生物化学与医学、药学的关系。

技能目标:熟悉:生物化学的研究方法一、生物化学的概念生物化学是从分子水平研究生物体中各种化学变化规律的科学。

因此生物化学又称为生命的化学(简称:生化),是研究生命分子基础的学科。

生物化学是一门医学基础理论课。

二、生物化学的主要内容1.研究生物体的物质组织、结构、特性及功能。

蛋白质、核酸2.研究物质代谢、能量代谢、代谢调节。

研究糖、脂、蛋白质、核酸等物质代谢、代谢调节等规律,是本课程的主要内容。

3.遗传信息的贮存、传递和表达,研究遗传信息的贮存、传递及表达、基因工程等,是当代生命科学发展的主流,是现代生化研究的重点。

三、生物化学的发展史四、生物化学与健康的关系生化是医学的基础,并在医、药、卫生各学科中都有广泛的应用。

本课程不仅是基础医学如生理学、药理学、微生物学、免疫学及组织学等的必要基础课,而且也是医学检验、护理等各医学专业的必修课程。

五、学好生物化学的几点建议1.加强复习有关的基础学科课程,前、后期课程有机结合,融会贯通、熟练应用。

2.仔细阅读、理解本课程的“绪论”,了解本课程重要性,激发起学习生物化学的兴趣和求知欲望。

3.每次学习时,首先必须了解教学大纲的具体要求,预读教材,带着问题进入学习。

4.学习后及时做好复习,整理好笔记。

5.学生应充分利用所提供的相关网站,从因特网上查找学习资料,提高课外学习和主动学习的能力。

6.实验实训课是完成本课程的重要环节。

亲自动手,认真、仔细完成每步操作过程,观察各步反应的现象,详细、科学、实事求是地记录并分析实验结果,独立完成实验报告。

第一章蛋白质的化学及氨基酸代谢知识目标:掌握:1.蛋白质的元素组成及特点,2.蛋白质的基本组成单位-氨基酸、肽链与肽、蛋白质各级结构的概念、特点及主要化学键,3.蛋白质的主要理化性质。

了解:蛋白质的主要功能、氨基酸的来源与去路及一碳单位的概念;技能目标:1.能举例说明蛋白质结构与功能的关系,解释分子病与构象并的发病机制。

侯英健核心笔记生物化学

侯英健核心笔记生物化学

侯英健核心笔记生物化学内容如下:
1. 氨基酸和多肽:氨基酸是蛋白质的基本单位。

有8种氨基酸的异构体在生物化学上最重要,且合成蛋白质的酶很稳定。

通过肽键作用,两个氨基酸形成多肽,进一步聚合形成蛋白质。

氨基酸和多肽有重要的化学性质,如等电点。

了解氨基酸和多肽的性质有助于理解蛋白质的结构和功能。

2. 酶与生物催化:酶是一种生物催化剂,比许多无机催化剂效率更高。

酶催化反应具有选择性,这与它的三维结构有关。

生物催化是指一些生物体通过化学反应而产生的代谢或合成反应。

了解酶和生物催化对于理解生命的化学过程至关重要。

3. 核酸:核酸是所有生物体的遗传物质,包括DNA和RNA。

DNA主要存在于细胞核中,而RNA主要存在于细胞质中。

了解核酸的结构、功能以及基因表达对于理解生命的本质至关重要。

4. 糖类和脂质:糖类、脂质和蛋白质是构成生物体的主要有机化合物。

糖类和脂质在能量储存和运输、细胞膜的结构和功能等方面发挥着重要作用。

5. 蛋白质折叠与稳定:蛋白质折叠是指一个未折叠的氨基酸链如何形成一个有功能的蛋白质结构。

蛋白质的折叠和稳定受到许多因素的影响,如氨基酸序列、环境因素等。

在回答侯英健核心笔记生物化学时,可以围绕以上五个主题展开论述,详细解释每个主题的基本概念、化学性质、功能以及它们在生命过程中的作用。

同时,可以讨论蛋白质折叠问题、基因工程、蛋白质组学等前沿领域的研究进展,以帮助读者更好地理解现代生物化学的发展和应用。

总之,要确保回答清晰、准确、全面,以便帮助读者更好地理解和掌握生物化学知识。

生物化学考试重点笔记(完整版)

生物化学考试重点笔记(完整版)

第一章蛋白质的结构与功能第一节蛋白质的分子组成一、组成蛋白质的元素1、主要有C、H、O、N和S,有些蛋白质含有少量磷或金属元素铁、铜、锌、锰、钴、钼,个别蛋白质还含有碘。

2、蛋白质元素组成的特点:各种蛋白质的含氮量很接近,平均为16%。

3、由于体内的含氮物质以蛋白质为主,因此,只要测定生物样品中的含氮量,就可以根据以下公式推算出蛋白质的大致含量:100克样品中蛋白质的含量( g % )= 每克样品含氮克数×6.25×100二、氨基酸——组成蛋白质的基本单位(一)氨基酸的分类1.非极性氨基酸(9):甘氨酸(Gly)丙氨酸(Ala)缬氨酸(Val)亮氨酸(Leu)异亮氨酸(Ile)苯丙氨酸(Phe)脯氨酸(Pro)色氨酸(Try)蛋氨酸(Met)2、不带电荷极性氨基酸(6):丝氨酸(Ser)酪氨酸(Try) 半胱氨酸 (Cys) 天冬酰胺 (Asn) 谷氨酰胺(Gln ) 苏氨酸(Thr )3、带负电荷氨基酸(酸性氨基酸)(2):天冬氨酸(Asp ) 谷氨酸(Glu)4、带正电荷氨基酸(碱性氨基酸)(3):赖氨酸(Lys) 精氨酸(Arg) 组氨酸( His)(二)氨基酸的理化性质1. 两性解离及等电点等电点:在某一pH的溶液中,氨基酸解离成阳离子和阴离子的趋势及程度相等,成为兼性离子,呈电中性。

此时溶液的pH值称为该氨基酸的等电点。

2. 紫外吸收(1)色氨酸、酪氨酸的最大吸收峰在280 nm 附近。

(2)大多数蛋白质含有这两种氨基酸残基,所以测定蛋白质溶液280nm的光吸收值是分析溶液中蛋白质含量的快速简便的方法。

3. 茚三酮反应氨基酸与茚三酮水合物共热,可生成蓝紫色化合物,其最大吸收峰在570nm处。

由于此吸收峰值与氨基酸的含量存在正比关系,因此可作为氨基酸定量分析方法三、肽(一)肽1、肽键是由一个氨基酸的α-羧基与另一个氨基酸的α-氨基脱水缩合而形成的化学键。

2、肽是由氨基酸通过肽键缩合而形成的化合物。

生物化学笔记(完整版)

生物化学笔记(完整版)

第一章绪论一、生物化学的的概念:生物化学(biochemistry)是利用化学的原理与方法去探讨生命的一门科学,它是介于化学、生物学及物理学之间的一门边缘学科。

二、生物化学的发展:1.叙述生物化学阶段:是生物化学发展的萌芽阶段,其主要的工作是分析和研究生物体的组成成分以及生物体的分泌物和排泄物。

2.动态生物化学阶段:是生物化学蓬勃发展的时期。

就在这一时期,人们基本上弄清了生物体内各种主要化学物质的代谢途径。

3.分子生物学阶段:这一阶段的主要研究工作就是探讨各种生物大分子的结构与其功能之间的关系。

三、生物化学研究的主要方面:1.生物体的物质组成:高等生物体主要由蛋白质、核酸、糖类、脂类以及水、无机盐等组成,此外还含有一些低分子物质。

2.物质代谢:物质代谢的基本过程主要包括三大步骤:消化、吸收→中间代谢→排泄。

其中,中间代谢过程是在细胞内进行的,最为复杂的化学变化过程,它包括合成代谢,分解代谢,物质互变,代谢调控,能量代谢几方面的内容。

3.细胞信号转导:细胞内存在多条信号转导途径,而这些途径之间通过一定的方式方式相互交织在一起,从而构成了非常复杂的信号转导网络,调控细胞的代谢、生理活动及生长分化。

4.生物分子的结构与功能:通过对生物大分子结构的理解,揭示结构与功能之间的关系。

5.遗传与繁殖:对生物体遗传与繁殖的分子机制的研究,也是现代生物化学与分子生物学研究的一个重要内容。

第二章蛋白质的结构与功能一、氨基酸:1.结构特点:氨基酸(amino acid)是蛋白质分子的基本组成单位。

构成天然蛋白质分子的氨基酸约有20种,除脯氨酸为α-亚氨基酸、甘氨酸不含手性碳原子外,其余氨基酸均为L-α-氨基酸。

2.分类:根据氨基酸的R基团的极性大小可将氨基酸分为四类:①非极性中性氨基酸(8种);②极性中性氨基酸(7种);③酸性氨基酸(Glu和Asp);④碱性氨基酸(Lys、Arg和His)。

二、肽键与肽链:肽键(peptide bond)是指由一分子氨基酸的α-羧基与另一分子氨基酸的α-氨基经脱水而形成的共价键(-C O-NH-)。

生物化学重点笔记

生物化学重点笔记

生物化学重点笔记一、生物大分子(一)蛋白质1、蛋白质的组成蛋白质主要由碳、氢、氧、氮、硫等元素组成,其基本组成单位是氨基酸。

氨基酸通过肽键连接形成多肽链,多肽链经过折叠和修饰形成具有特定空间结构和功能的蛋白质。

2、蛋白质的结构蛋白质的结构层次包括一级结构、二级结构、三级结构和四级结构。

一级结构是指氨基酸的排列顺序,二级结构包括α螺旋、β折叠等,三级结构是指整条多肽链的空间构象,四级结构是指多个亚基通过非共价键结合形成的蛋白质复合物。

3、蛋白质的性质蛋白质具有两性解离、胶体性质、变性和复性等性质。

变性是指蛋白质在某些物理或化学因素的作用下,其空间结构被破坏,导致生物活性丧失。

复性则是指变性的蛋白质在适当条件下恢复其天然构象和生物活性。

(二)核酸1、核酸的分类核酸分为脱氧核糖核酸(DNA)和核糖核酸(RNA)两大类。

DNA 是遗传信息的携带者,RNA 则在遗传信息的表达过程中发挥重要作用。

2、核酸的组成核酸由核苷酸组成,核苷酸包括碱基、戊糖和磷酸。

碱基分为嘌呤碱和嘧啶碱,DNA 中的碱基有腺嘌呤(A)、鸟嘌呤(G)、胸腺嘧啶(T)和胞嘧啶(C),RNA 中的碱基有腺嘌呤(A)、鸟嘌呤(G)、尿嘧啶(U)和胞嘧啶(C)。

3、核酸的结构DNA 是双螺旋结构,两条反向平行的多核苷酸链围绕同一中心轴相互缠绕形成右手螺旋。

RNA 通常以单链形式存在,但在某些情况下也可以形成局部的双螺旋结构。

(三)多糖1、多糖的分类多糖分为同多糖和杂多糖。

同多糖是由相同的单糖组成,如淀粉、糖原和纤维素;杂多糖是由不同的单糖组成,如肝素、透明质酸等。

2、多糖的功能多糖在生物体中具有多种功能,如储存能量(淀粉和糖原)、构成细胞壁(纤维素)、参与细胞识别和信号转导(糖蛋白和糖脂)等。

二、酶(一)酶的概念和特点酶是生物体内具有催化作用的蛋白质或 RNA。

酶具有高效性、专一性、可调节性和不稳定性等特点。

(二)酶的作用机制酶通过降低反应的活化能来加速化学反应的进行。

生物化学笔记总结

生物化学笔记总结

绪论1.生命有机体的特征:①化学成分复杂但条理性很强;②新陈代谢;③能自我繁殖。

2.细胞是生物体基本的结构和功能单位。

3.生化研究内容:①生物体的化学组成及生物分子的结构与功能;②代谢及其调节;③遗传信息的表达及调控;4.自然界化合物:①有机物:糖、脂、蛋白质、核酸;②无机物:水、无机盐5.生物分子:①有机小分子:维生素、辅酶、激素、有机酸、色素;②生物大分子:糖、脂、蛋白质、核酸生物复杂多样,但在分子水平具有简单同一性6.生物大分子的基本特征:①由结构简单的小分子聚合而成②都有非常复杂的结构③作为信息分子的基础④生物分子之间相互作用和识别特性7.代谢及其调节特点:①细胞内发生②包括物质和能量代谢③需要精细的相互协调8.发展简史:①叙述生物化学;②动态生物化学;③分子生物化学。

生物活动的化学基础1.化学键:相邻原子或离子之间强烈的相互作用,分离子键和共价键。

2.次级键:氢键和范德华力等较弱化学键的总称。

3.官能团:决定性质的原子或基团。

4.基本化学反应类型:氧化、还原、中和、置换、合成等。

5.氧化反应:有机物反应时加氧或脱氢的作用。

6.还原反应:有机物反应时加氢或脱氧的作用。

7.正常血液PH:7.35~7.45糖化学1.糖:化学本质为多羟基醛或多羟基酮类及其衍生物、缩聚物。

2.单糖:不能在水解的糖。

3.寡糖:能水解生成几分子单糖的糖,各单糖之间借脱水缩合的糖苷键相连。

4.多糖:能水解生成多个分子单糖的糖,包括同多糖、杂多糖。

5.手性原子:结构具有不对称性、不能与其镜像重合的原子。

6.手性碳原子:所连接的四个化学基团完全不同的碳原子。

7.旋光性:使平面偏振光发生旋转的性质。

只有手性分子才有旋光性8.旋光度:平面偏振光旋转的角度。

9.比旋光度:手性分子的特征常数。

10.D、L构型:距离羰基最远的手性碳上-OH的位置,在左为L,在右为D。

自然界存在的单糖大多使D型11.变旋光现象:几种构型之间相互转换,动态平衡的现象。

生物化学重点笔记(基本知识)

生物化学重点笔记(基本知识)

生物化学重点绪论一、生物化学的的概念:生物化学(biochemistry)是利用化学的原理与方法去探讨生命的一门科学,它是介于化学、生物学及物理学之间的一门边缘学科。

二、生物化学的发展:1.叙述生物化学阶段:是生物化学发展的萌芽阶段,其主要的工作是分析和研究生物体的组成成分以及生物体的分泌物和排泄物。

2.动态生物化学阶段:是生物化学蓬勃发展的时期。

就在这一时期,人们基本上弄清了生物体内各种主要化学物质的代谢途径。

3.分子生物学阶段:这一阶段的主要研究工作就是探讨各种生物大分子的结构与其功能之间的关系。

三、生物化学研究的主要方面:1.生物体的物质组成:高等生物体主要由蛋白质、核酸、糖类、脂类以及水、无机盐等组成,此外还含有一些低分子物质。

2.物质代谢:物质代谢的基本过程主要包括三大步骤:消化、吸收→中间代谢→排泄。

其中,中间代谢过程是在细胞内进行的,最为复杂的化学变化过程,它包括合成代谢,分解代谢,物质互变,代谢调控,能量代谢几方面的内容。

3.细胞信号转导:细胞内存在多条信号转导途径,而这些途径之间通过一定的方式方式相互交织在一起,从而构成了非常复杂的信号转导网络,调控细胞的代谢、生理活动及生长分化。

4.生物分子的结构与功能:通过对生物大分子结构的理解,揭示结构与功能之间的关系。

5.遗传与繁殖:对生物体遗传与繁殖的分子机制的研究,也是现代生物化学与分子生物学研究的一个重要内容。

第一章蛋白质的结构与功能一、氨基酸:1.结构特点:氨基酸(amino acid)是蛋白质分子的基本组成单位。

构成天然蛋白质分子的氨基酸约有20种,除脯氨酸为α-亚氨基酸、甘氨酸不含手性碳原子外,其余氨基酸均为L-α-氨基酸。

2.分类:根据氨基酸的R基团的极性大小可将氨基酸分为四类:①非极性中性氨基酸(8种);②极性中性氨基酸(7种);③酸性氨基酸(Glu和Asp);④碱性氨基酸(Lys、Arg和His)。

二、肽键与肽链:肽键(peptide bond)是指由一分子氨基酸的α-羧基与另一分子氨基酸的α-氨基经脱水而形成的共价键(-CO-NH-)。

生物化学重点笔记

生物化学重点笔记

生物化学重点笔记生物化学是研究生物体的化学组成、结构、性质、功能以及生命过程中化学变化规律的一门科学。

它是生命科学领域的重要基础学科,对于理解生命现象、疾病发生机制以及药物研发等都具有重要意义。

以下是为您整理的生物化学重点笔记。

一、蛋白质化学1、蛋白质的组成与结构组成:蛋白质主要由碳、氢、氧、氮、硫等元素组成,其基本组成单位是氨基酸。

结构:蛋白质具有一级结构(氨基酸的排列顺序)、二级结构(如α螺旋、β折叠等)、三级结构(整条肽链的空间构象)和四级结构(多条肽链形成的复合物)。

2、蛋白质的性质两性解离:在一定的 pH 条件下,蛋白质可以解离成带正电荷或负电荷的离子。

胶体性质:蛋白质溶液是一种胶体溶液,具有丁达尔现象、布朗运动等特性。

变性与复性:在某些物理或化学因素作用下,蛋白质的空间结构被破坏,导致其理化性质和生物活性改变,称为变性;变性后的蛋白质在适当条件下可以恢复其原有的空间结构和生物活性,称为复性。

3、蛋白质的分离与纯化沉淀法:如盐析、有机溶剂沉淀等。

层析法:包括凝胶过滤层析、离子交换层析、亲和层析等。

电泳法:如聚丙烯酰胺凝胶电泳、等电聚焦电泳等。

二、核酸化学1、核酸的组成与结构组成:核酸分为脱氧核糖核酸(DNA)和核糖核酸(RNA),它们由核苷酸组成,核苷酸包括碱基、戊糖和磷酸。

结构:DNA 是双螺旋结构,RNA 有单链、双链等多种结构形式。

2、 DNA 的复制与转录DNA 复制:以亲代 DNA 为模板,按照碱基互补配对原则合成子代DNA 的过程。

转录:以 DNA 为模板合成 RNA 的过程。

3、 RNA 的种类与功能mRNA(信使 RNA):携带遗传信息,指导蛋白质合成。

tRNA(转运 RNA):在蛋白质合成中转运氨基酸。

rRNA(核糖体 RNA):参与核糖体的组成。

三、酶1、酶的本质与特性本质:酶是具有催化活性的蛋白质或 RNA。

特性:高效性、专一性、可调节性、不稳定性。

2、酶的催化机制降低反应的活化能:通过形成酶底物复合物,使反应更容易进行。

生物化学戴春峰笔记

生物化学戴春峰笔记

生物化学戴春峰笔记全文共四篇示例,供读者参考第一篇示例:生物化学是生物学和化学的交叉学科,研究生物体内的化学成分和反应过程。

戴春峰教授是中国著名的生物化学专家,他在这一领域取得了许多重要研究成果,为人类的健康和生活贡献了许多重要的知识。

下面我们将分享一些关于戴春峰教授的生物化学笔记。

第一部分:蛋白质的结构与功能戴春峰教授在蛋白质的结构与功能方面做出了许多重要的贡献。

蛋白质是生物体内最重要的有机分子,是生命活动的基本单位。

蛋白质由氨基酸残基通过肽键连接而成,具有多样的结构和功能。

戴春峰教授通过研究蛋白质的三维结构和功能机制,揭示了其在生物体内的重要作用。

蛋白质的结构包括一级结构、二级结构、三级结构和四级结构。

一级结构是指氨基酸残基的排列顺序;二级结构是指氨基酸残基之间的氢键形成的α螺旋和β折叠等结构;三级结构是指蛋白质整体的空间结构;四级结构是指由多个蛋白质分子组成的复合体。

蛋白质的功能包括酶活性、结构支持、激素作用、抗体作用等。

酶是生物体内负责催化化学反应的蛋白质,能够加速生物体内的代谢过程。

结构支持是指蛋白质在细胞内起到支撑和结构稳定的作用。

激素是细胞内的信使分子,可以调节细胞的代谢和生长。

抗体是抵抗疾病的重要分子,能够识别和中和病原体。

戴春峰教授通过对蛋白质结构和功能的研究,揭示了蛋白质在生物体内的重要作用,为药物研发和疾病治疗提供了重要的理论基础。

第二部分:代谢与生物能学代谢是生物体内发生的所有化学反应的总称,包括合成代谢和分解代谢。

生物体内的代谢过程受到多种因素的调控,如温度、pH值、酶活性等。

戴春峰教授在生物能学方面做出了许多重要的贡献,揭示了代谢过程的调控机制和生物体内能量转换的原理。

生物体内的代谢反应主要包括酶促反应和非酶促反应。

酶是生物体内催化化学反应的蛋白质,具有高度的专一性和高效率。

非酶促反应是指在不需要酶的参与下发生的化学反应,如一氧化碳和血红蛋白的结合。

生物能学研究生物体内的能量转化和转移过程,揭示了生物体内的能量流动和利用方式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

重点8+2大学教授的生物化学笔记1 [ 2006-10-4 10:05:00 | By: 嘀嘀踏雪狼&SCI ]生物化学Biochemistry【教学内容与学时】第1讲:1–2学时;序论1学时,单糖1学时;【教学目的和要求】了解生物化学的概念、研究对象和生物化学的发展简史;掌握单糖的结构和性质。

【教学重点与难点】生物化学的概念、单糖的立体结构、单糖的颜色反应。

绪论一、生物化学的概念生物化学是研究生命现象化学本质的学科。

生物化学就是生命的化学。

生物化学是研究生物体内的化学分子构成,分子结构、性质、功能及其在体内代谢过程的学科。

——代谢包括物质和能量两方面。

生物化学是研究生物的化学组成和化学变化的,所以生物化学也可以分作两大部分内容:①化学组成部分,也称为静态生物化学,主要探讨构成生物体的分子类型、分子结构、化学性质及生物功能;②化学变化部分,讨论的是生物体内的化学分子之间如何进行转化,即研究生物体内的化学反应,以及这些反应发生的部位和反应机理,以及伴随这些反应所产生的能量变化。

简单讲——生物化学就研究生物体的化学组成和生命中的化学变化。

生命的本质倒底是什么?说起来很简单,但严格定义又困难。

二、生物化学的发展史生物化学的研究始于18世纪下半叶,但作为一门独立的学科是在20世纪初。

1629年荷兰人海尔蒙特进行了柳枝试验,100磅土,2磅重柳枝,只浇水,5年后土和柳枝共重169磅,土减少了二两,论文发表于1648年(死后2年)。

1775年拉瓦锡进行定量试验,证明呼吸过程和化学氧化是相同的。

并推测呼吸形成的CO2也是由于吸入了氧气,与体内的有机物结合并氧化为CO2,从而将呼吸氧化与燃烧联系在一起。

1783年拉瓦锡和拉普拉斯在法国科学院院报发表论文,提出动物热理论——呼吸相当于不发光的燃烧。

并测定了释放CO2和释热的关系。

现在一般把这一年称为生化开始年。

并把拉瓦锡称为生物化学之父。

但在这同一时期的开拓者还有普利斯特列和舍勒(Scheele),前者发现了光合现象;后者在1770年发现了洒石酸,之后又从膀胱结石中分离出尿酸,并对苹果酸、柠檬酸,甘油等进行了大量研究。

舍勒是瑞典人,学徒工出身,非常热爱化学,最后成为化学家。

进入十九世纪,科学发展大大加快,成就不断涌现,例如:1828年维勒(李比西的学生)人工合成了第一个有机物——尿素,证明有机物可以人造。

1838年施来登与施旺发表细胞学说。

(在1839年)细胞是有机体,整个动物和植物乃是细胞的集合体。

它们按照一定的规律排列在动植物体内。

这一学说把植物和动物统一起来。

*1842年李比西(德国人)在《有机化学在生理学与病理学上的应用》一书中首次提出新陈代谢一词。

*1860年巴斯德又对洒精发酵进行了研究——首次提出发酵是由酵母菌或细菌引起的,此研究为后来的糖代谢和呼吸作用研究奠定了基础。

1871年米切尔(Miescher霍佩的学生-瑞典人)发表文章分离出核素,即DNA。

当时年仅24岁,是首次从脓细胞中分离出脱氧核糖核蛋白。

实际分离在1868年完成,论文在1871年发表。

1877年德国生理学家——医生霍佩·赛勒,首次提出生物化学一词Biochemie,英文为Biochemistry。

并且首次提出蛋白质一词。

1897年Buchner用酵母无细胞提取液发酵成功,证明酶的存在。

许多人开始提取酶,但都未成功。

二十世纪初,在维生素、激素、酶的研究方面发展较快。

1902年艾贝尔(Abel美国人)在德国学习七年,1903年制成肾上腺素晶体;后来又在1926年制成胰岛素晶体。

1905年Knoop提出了脂肪酸的b-氧化作用。

同年Starling提出激素(Hormere)一词。

1907年霍克(池延登的学生,美国人)发表《实验生理化学》一书,实际上就是生物化学的前身。

这就标志着生物化学已经形成,已经从生理学中独立出来。

1911年波兰科学家Funk结晶出抗神经炎维生素,并命名为Vitamine,意为生命的胺,实际是复合维生素B。

1913年米利切斯和曼顿研究了酶的动力学提出了米曼方程。

同年Wilstatter和Stoll分离出了叶绿素。

1930年Northrop分离出胃蛋白酶,并证明是蛋白质。

1933年Krebs和Henselen发现尿素循环;同年Embdem和Meyerhof 初步完成了糖酵解途径的中间产物研究。

提出了糖酵解途径。

1937年Krebs提出了三羧酸循环的假说;同年Lohmann和Selitser 证明硫胺素是丙酮酸羧化酶辅基的组成成分;在此期间Kalcker 及Belitser各自对氧化磷酸化作用进行了定量研究。

1944年Avery,Maeleod和McCarty完成了肺炎球菌转化试验,证明DNA是遗传物质。

1948年Calvin和Bessen发现磷酸甘油酸是光合作用中CO2固定的最初产物,并用了十年时间完成了卡尔文循环的整个代谢途径研究。

同年Leloir等人发现了尿苷酸在碳水化合物代谢中的作用。

1953年Watson和Criek利用X–射线衍射分析了DNA结构,提出了DNA结构的双螺旋结构模型。

这一发现为生物的遗传研究奠定了分子基础。

通常把这一年确定为分子生物学的诞生年。

同年(1953年),Sanger和Trhompson完成了胰岛素A链及B链的氨基酸序列测定,二年后报道了胰岛素中二硫键位置。

1956年A.Kornberg发现了DNA聚合酶。

与此同年Ubarger发现了从苏氨酸合成异亮氨酸时终产物异亮氨酸能抑制合成链中的第一个酶,即发现了生物合成过程的反馈作用。

1958年S.B.Weiss和Hurwitz等人发现了DNA指导的RNA聚合酶;同在此年Crik提出分子遗传的中心法则;Meselson和Stahl用同位素标记方法证明了DNA的半保留复制假说。

1961年Jacob和Monod提出了操纵子学说,并指出了mRNA的功能;同年Weiss和Hurwitz从大肠杆菌中发现了DNA指导的RNA聚合酶;同年M.Nirenberg和H.Matthei发现了遗传密码(苯丙氨酸的)。

为三连体核苷酸。

1965中国首次人工全合成了牛胰岛素。

从七十年代后,生物化学的发展主要集中在分子生物学方面。

关于中国的生物化学发展,也做一简略回顾。

【思考题】1.生物化学的研究对象是什么?2.生物化学的研究从什么时候开始,进入二十世纪生物化学的发展有什么特点?主要参考书1.王镜岩等生物化学第三版高教出版社2.罗继盛等生物化学简明教程第三版高教出版社3.沈仁权顾其敏主编基础生物化学第二版高教出版社4.王希成编著生物化学清华大学出版社5.周爱儒主编生物化学第五版人民卫生出版社6.宁正祥赵谋明编著食品生物化学华南理工大学出版社生物化学习题集1.生物化学习题解析陈钧辉等编南京大学出版社1986年8月第一版科学出版社 2001年9月第二版2.生物化学习题集张来群谢丽涛主编科学出版社 1998年10月第二版【教学内容与学时】第1讲:糖类/单糖 1学时(上接序论1学时)【教学目的和要求】了解单糖的一般性质、化学结构、生物功能。

【教学重点与难点】单糖的结构特点。

第一章糖类糖类是指含有多羟基的醛类或酮类化合物,及其产生的缩聚物或衍生物(水解后产生多羟基醛或酮)。

糖类也称为碳水化合物,因大多数单糖的元素比为C:H:O为1:2:1。

有时写成Cn(H2O)n,所以称为碳水化合物。

但个别单糖并不遵循这一比例。

例如:鼠李糖为C6H12O5;岩藻糖为C6H12O5;脱氧核糖为C5H10O4等等,这样就不符合碳水化合物的通式。

第一节单糖一、糖类概述1.糖的分类按照功能基团可把糖分为醛糖和酮糖。

按照有无其他非糖成分又可分为单成分糖和复合糖。

单成分糖习惯上分为单糖、寡糖和多糖三类。

(1)单糖单糖只含有一个羰基,不能再水解为更简单的糖。

取简单的单糖是甘油醛和二羟丙酮。

最常见的单糖是葡萄糖和果糖。

含有醛基的叫醛糖,如甘油醛、葡萄糖等;含的酮基的叫酮糖,如二羟丙酮、果糖等。

单糖又根据C原子数分为三、四、五、六、七碳糖,习惯也称为丙、丁、戊、己、庚糖。

例如六碳糖就称为己糖。

(2)寡糖也叫低聚糖。

天然的寡糖一般由2~6个单糖聚合成。

自然界中较多的是二糖和三糖,最常见的二糖是蔗糖和乳糖。

(3)多糖是由多个单糖通过糖苷键聚合成的高分子化合物。

单糖数随机而不固定,所以多糖没有固定的分子量和确定的物理常数。

如果多糖分子由同一种单糖聚合成,称为称同聚多糖或均一多糖,如淀粉、纤维素等;如多糖分子中有两种或多种单糖或其他非糖物质,称为杂聚多糖或简称杂多糖,如肽聚糖、果胶、透明质酸、海藻酸等。

2.糖类的生物学作用糖类的生物学作用主要有以下几方面:能量物质;结构物质;信息及生理活性物质。

(1)糖是生物能量的主要来源糖是人类的主要食物,人体能够代谢的糖类主要是葡萄糖和淀粉,撮入体内经胃酸分解为葡萄糖,经血液运输到各个细胞及组织微生物和低等动物除可以利用葡糖外,也能利用其它糖类,例如真菌可分解纤维素。

(2)糖是细胞及组织的重要结构成分如核酸中的核糖,细胞膜的糖蛋白、糖脂;结缔组织的透明质酸、硫酸软骨素等;低等生物的胞壁酸、几丁质等;植物细胞壁的主要成分是纤维素和半纤维素及果胶等多糖组成。

(3)作为生理活性物质例如肝素具有抗凝血作用。

(4)作为生物信息载体糖类有多种异构体,结构变化丰富,再与蛋白结合形成糖蛋白,作为分子间识别及细胞间识别的重要信息物质。

例如人体的免疫反应,植物花粉和柱头的识别等。

二、单糖的分子结构1.单糖的链式结构所有单糖均可以链式结构存在。

(1)分子构型的概念构型是指一个分子中各原子或基团在空间的固定排列,使分子呈现特有的立体结构。

构型发生转变时,共价键要发生断裂和重新形成。

构型与构象不同,构象是由于单键旋转使分子中基团之间位置发生相对变化,构象可随时变化,但不发生共价键断裂。

构造异构是分子中原子连接的次序不同,而构型异构是分子中原子连接的次序相同,但在空间排列方式不同。

构型异构和构象异构又都叫立体异构。

(2)单糖的立体异构表示法①D–L型表示法以甘油醛作参照物,按Fischer投影式表示:把命名时编号最小的碳原子放在上面,基本碳链的碳原子放在下边,手性碳放在中间,上下的碳原子指向纸平面的背面,中心碳原子左右的基团指向纸平面的前面。

根据分子手性碳上羟基位置排列确定构型:OH在左侧为L型;OH 在右侧为D型。

这是人为规定的。

D型甘油醛和L型甘油醛是对映体,或叫旋光异构体(光学异构体),也就是通常所讲的立体异构体。

而甘油醛和二羟丙酮之间就是同分异构体,或者称构造异构体(结构异构体),属官能团异构。

其他单糖的构型都以甘油醛作参照。

②R–S型表示法这种表示法不用参照物,比较准确但麻烦。

按手性碳上四个基团大小排列顺序,最小的基团远离眼睛,余下三个基团排在眼前,由大小到小顺序排列为顺时针方向的为R构型;反时针方向的为S构型。

相关文档
最新文档