2014年云南教育中考数学全真模拟大寨中考数学试卷
2014中考数学模拟试题含答案(精选5套)
2014年中考数学模拟试卷(一)数 学(全卷满分120分,考试时间120分钟)注意事项:1. 本试卷分选择题和非选择题两部分. 在本试题卷上作答无效..........;2. 答题前,请认真阅读答题.......卷.上的注意事项......;3. 考试结束后,将本试卷和答题.......卷一并交回..... 一、选择题(本大题满分36分,每小题3分. 在下列各题的四个备选答案中,只有一个是正确的,请在答题卷上把你认为正确的答案的字母代号按要求用2B 铅笔涂黑) 1. 2 sin 60°的值等于 A. 1B.23C. 2D. 32. 下列的几何图形中,一定是轴对称图形的有A. 5个B. 4个C. 3个D. 2个3. 据2013年1月24日《桂林日报》报道,临桂县2012年财政收入突破18亿元,在广西各县中排名第二. 将18亿用科学记数法表示为A. 1.8×10B. 1.8×108C. 1.8×109D. 1.8×10104. 估计8-1的值在A. 0到1之间B. 1到2之间C. 2到3之间D. 3至4之间 5. 将下列图形绕其对角线的交点顺时针旋转90°,所得图形一定与原图形重合的是 A. 平行四边形 B. 矩形 C. 正方形 D. 菱形 6. 如图,由5个完全相同的小正方体组合成一个立体图形,它的左视图是7. 为调查某校1500名学生对新闻、体育、动画、娱乐、戏曲五类电视节目的喜爱情况,随机抽取部分学生进行调查,并结 合调查数据作出如图所示的扇形统计图. 根据统计图提供的 信息,可估算出该校喜爱体育节目的学生共有 A. 1200名 B. 450名C. 400名D. 300名8. 用配方法解一元二次方程x 2+ 4x – 5 = 0,此方程可变形为 A. (x + 2)2= 9 B. (x - 2)2 = 9C. (x + 2)2 = 1D. (x - 2)2=1圆弧 角 扇形 菱形 等腰梯形A. B. C. D.(第9题图)(第7题图)9. 如图,在△ABC 中,AD ,BE 是两条中线,则S △EDC ∶S △ABC = A. 1∶2B. 1∶4C. 1∶3D. 2∶310. 下列各因式分解正确的是A. x 2 + 2x-1=(x - 1)2B. - x 2+(-2)2=(x - 2)(x + 2) C. x 3- 4x = x (x + 2)(x - 2)D. (x + 1)2= x 2 + 2x + 111. 如图,AB 是⊙O 的直径,点E 为BC 的中点,AB = 4, ∠BED = 120°,则图中阴影部分的面积之和为 A. 3 B. 23 C.23 D. 112. 如图,△ABC 中,∠C = 90°,M 是AB 的中点,动点P 从点A出发,沿AC 方向匀速运动到终点C ,动点Q 从点C 出发,沿 CB 方向匀速运动到终点B. 已知P ,Q 两点同时出发,并同时 到达终点,连接MP ,MQ ,PQ . 在整个运动过程中,△MPQ 的面积大小变化情况是 A. 一直增大B. 一直减小C. 先减小后增大D. 先增大后减小二、填空题(本大题满分18分,每小题3分,请将答案填在答题卷上,在试卷上答题无效) 13. 计算:│-31│= . 14. 已知一次函数y = kx + 3的图象经过第一、二、四象限,则k 的取值范围是 . 15. 在10个外观相同的产品中,有2个不合格产品,现从中任意抽取1个进行检测,抽到合格产品的概率是 .16. 在临桂新区建设中,需要修一段全长2400m 的道路,为了尽量减少施工对县城交通所造成的影响,实际工作效率比原计划提高了20%,结果提前8天完成任务,求原计划每天修路的长度. 若设原计划每天修路x m ,则根据题意可得方程 . 17. 在平面直角坐标系中,规定把一个三角形先沿着x 轴翻折,再向右平移2个单位称为1次变换. 如图,已知等边三角形 ABC 的顶点B ,C 的坐标分别是(-1,-1),(-3,-1),把 △ABC 经过连续9次这样的变换得到△A ′B ′C ′,则点A 的对 应点A ′ 的坐标是 .18. 如图,已知等腰Rt △ABC 的直角边长为1,以Rt △ABC 的斜边AC 为直角边,画第二个等腰Rt △ACD ,再以Rt △ACD 的 斜边AD 为直角边,画第三个等腰Rt △ADE ……依此类推直 到第五个等腰Rt △AFG ,则由这五个等腰直角三角形所构成 的图形的面积为 . 三、解答题(本大题8题,共66分,解答需写出必要的步骤和过程. 请将答案写在答题卷上,在试卷上答题无效)(第11题图)(第12题图) (第17题图)(第18题图)19. (本小题满分8分,每题4分)(1)计算:4 cos45°-8+(π-3) +(-1)3;(2)化简:(1 - n m n+)÷22n m m -.20. (本小题满分6分)21. (本小题满分6分)如图,在△ABC 中,AB = AC ,∠ABC = 72°. (1)用直尺和圆规作∠ABC 的平分线BD 交AC 于点D (保留作图痕迹,不要求写作法);(2)在(1)中作出∠ABC 的平分线BD 后,求∠BDC 的度数.22. (本小题满分8分)在开展“学雷锋社会实践”活动中,某校为了解全校1200名学生参加活动的情况,随机调查了50名学生每人参加活动的次数,并根据数据绘成条形统计图如下:(1)求这50个样本数据的平均数、众数和中位数;(2)根据样本数据,估算该校1200名学生共参加了多少次活动. 23. (本小题满分8分)如图,山坡上有一棵树AB ,树底部B 点到山脚C 点的距离BC 为63米,山坡的坡角 为30°. 小宁在山脚的平地F 处测量这棵树的高,点 C 到测角仪EF 的水平距离CF = 1米,从E 处测得树 顶部A 的仰角为45°,树底部B 的仰角为20°,求树 AB 的高度.(参考数值:sin20°≈0.34,cos20°≈0.94,tan20°≈0.36)24. (本小题满分8分)如图,PA ,PB 分别与⊙O 相切于点A ,B ,点M 在PB 上,且OM ∥AP ,MN ⊥AP ,垂足为N. (1)求证:OM = AN ;(2)若⊙O 的半径R = 3,PA = 9,求OM 的长.3121--+x x ≤1, ……① 解不等式组:3(x - 1)<2 x + 1. ……②(第21题图)(第23题图)(第24题图)°25. (本小题满分10分)某中学计划购买A 型和B 型课桌凳共200套. 经招标,购买一套A 型课桌凳比购买一套B 型课桌凳少用40元,且购买4套A 型和5套B 型课桌凳共需1820元. (1)求购买一套A 型课桌凳和一套B 型课桌凳各需多少元?(2)学校根据实际情况,要求购买这两种课桌凳总费用不能超过40880元,并且购买A 型课桌凳的数量不能超过B 型课桌凳数量的32,求该校本次购买A 型和B 型课桌凳共有几种方案?哪种方案的总费用最低?26. (本小题满分12分)在平面直角坐标系中,现将一块等腰直角三角板ABC 放在第二象限,斜靠在两坐标轴上,点C 为(-1,0). 如图所示,B 点在抛物线y =21x 2 -21x – 2图象上,过点B 作BD ⊥x 轴,垂足为D ,且B 点横坐标为-3. (1)求证:△BDC ≌ △COA ;(2)求BC 所在直线的函数关系式;(3)抛物线的对称轴上是否存在点P ,使△ACP 是以AC 为直角边的直角三角形?若存在,求出 所有点P 的坐标;若不存在,请说明理由.2013年初三适应性检测参考答案与评分意见一、选择题题号 1 2 3 4 5 6 7 8 9 10 11 12 答案DACBCBDABCAC说明:第12题是一道几何开放题,学生可从几个特殊的点着手,计算几个特殊三角形面积从而降低难度,得出答案. 当点P ,Q 分别位于A 、C 两点时,S △MPQ =21S △ABC ;当点P 、Q 分别运动到AC ,BC 的中点时,此时,S △MPQ =21×21AC. 21BC =41S △ABC ;当点P 、Q 继续运动到点C ,B 时,S △MPQ =21S△ABC,故在整个运动变化中,△MPQ 的面积是先减小后增大,应选C.二、填空题 13.31; 14. k <0; 15. 54(若为108扣1分); 16. x2400-x %)201(2400 = 8;(第26题图)17. (16,1+3); 18. 15.5(或231). 三、解答题19. (1)解:原式 = 4×22-22+1-1……2分(每错1个扣1分,错2个以上不给分) = 0 …………………………………4分(2)解:原式 =(n m nm ++-nm n +)·m n m 22- …………2分= nm m +·m n m n m ))((-+ …………3分= m – n …………4分 20. 解:由①得3(1 + x )- 2(x -1)≤6, …………1分 化简得x ≤1. …………3分 由②得3x – 3 < 2x + 1, …………4分 化简得x <4. …………5分 ∴原不等式组的解是x ≤1. …………6分21. 解(1)如图所示(作图正确得3分)(2)∵BD 平分∠ABC ,∠ABC = 72°, ∴∠ABD =21∠ABC = 36°, …………4分 ∵AB = AC ,∴∠C =∠ABC = 72°, …………5分 ∴∠A= 36°,∴∠BDC =∠A+∠ABD = 36° + 36° = 72°. …………6分 22. 解:(1)观察条形统计图,可知这组样本数据的平均数是 _x =50551841737231⨯+⨯+⨯+⨯+⨯ =3.3, …………1分∴这组样本数据的平均数是3.3. …………2分∵在这组样本数据中,4出现了18次,出现的次数最多, ∴这组数据的众数是4. …………4分∵将这组样本数据按从小到大的顺序排列,其中处在中间的两个数都是3,有233+ = 3. ∴这组数据的中位数是3. ………………6分(2)∵这组数据的平均数是3.3,∴估计全校1200人参加活动次数的总体平均数是3.3,有3.3×1200 = 3900. ∴该校学生共参加活动约3960次. ………………8分23. 解:在Rt △BDC 中,∠BDC = 90°,BC = 63米,∠BCD = 30°, ∴DC = BC ·cos30° ……………………1分 = 63×23= 9, ……………………2分 ∴DF = DC + CF = 9 + 1 = 10,…………………3分 ∴GE = DF = 10. …………………4分 在Rt △BGE 中,∠BEG = 20°, ∴BG = CG ·tan20° …………………5分 =10×0.36=3.6, …………………6分 在Rt △AGE 中,∠AEG = 45°,∴AG = GE = 10, ……………………7分 ∴AB = AG – BG = 10 - 3.6 = 6.4.答:树AB 的高度约为6.4米. ……………8分24. 解(1)如图,连接OA ,则OA ⊥AP. ………………1分∵MN ⊥AP ,∴MN ∥OA. ………………2分 ∵OM ∥AP ,∴四边形ANMO 是矩形.∴OM = AN. ………………3分(2)连接OB ,则OB ⊥AP ,∵OA = MN ,OA = OB ,OM ∥BP , ∴OB = MN ,∠OMB =∠NPM.∴Rt △OBM ≌Rt △MNP. ………………5分 ∴OM = MP.设OM = x ,则NP = 9- x . ………………6分在Rt △MNP 中,有x 2 = 32+(9- x )2.∴x = 5. 即OM = 5 …………… 8分25. 解:(1)设A 型每套x 元,则B 型每套(x + 40)元. …………… 1分 ∴4x + 5(x + 40)=1820. ……………………………………… 2分∴x = 180,x + 40 = 220.即购买一套A 型课桌凳和一套B 型课桌凳各需180元、220元. ……………3分(2)设购买A 型课桌凳a 套,则购买B 型课桌凳(200 - a )套.a ≤32(200 - a ), ∴ …………… 4分 180 a + 220(200- a )≤40880.解得78≤a ≤80. …………… 5分∵a为整数,∴a = 78,79,80∴共有3种方案. ………………6分设购买课桌凳总费用为y元,则y = 180a + 220(200 - a)=-40a + 44000. …………… 7分∵-40<0,y随a的增大而减小,∴当a = 80时,总费用最低,此时200- a =120. …………9分即总费用最低的方案是:购买A型80套,购买B型120套. ………………10分2014年中考数学模拟试题(二)一、选择题1、数2-中最大的数是()A 、1- BC 、0D 、2 2、9的立方根是()A 、3±B 、3 C、 D3、已知一元二次方程2430x x -+=的两根1x 、2x ,则12x x +=()A 、4B 、3C 、-4D 、-3 4、如图是某几何题的三视图,下列判断正确的是() A 、几何体是圆柱体,高为2 B 、几何体是圆锥体,高为2 C 、几何体是圆柱体,半径为2 D 、几何体是圆柱体,半径为2 5、若a b >,则下列式子一定成立的是()A 、0a b +>B 、0a b ->C 、0ab >D 、0a b> 6、如图AB ∥DE ,∠ABC=20°,∠BCD=80°,则∠CDE=() A 、20° B 、80° C 、60° D 、100°7、已知AB 、CD 是⊙O 的直径,则四边形ACBD 是() A 、正方形 B 、矩形 C 、菱形 D 、等腰梯形 8、不等式组302x x +>⎧⎨-≥-⎩的整数解有()A 、0个B 、5个C 、6个D 、无数个 9、已知点1122(,),(,)A x y B x y 是反比例函数2y x=图像上的点,若120x x >>则一定成立的是()A 、120y y >>B 、120y y >>C 、120y y >>D 、210y y >>10、如图,⊙O 和⊙O ′相交于A 、B 两点,且OO ’=5,OA=3, O ’B =4,则AB=( ) A 、5 B 、2.4 C 、2.5 D 、4.8 二、填空题11、正五边形的外角和为 12、计算:3m m -÷=13、分解因式:2233x y -=14、如图,某飞机于空中A 处探测到目标C ,此时飞行高度AC=1200米,从飞机上看地面控制点B的俯角20α=︒,则飞机A 到控制点B 的距离约为 。
2014年云南省中考数学试卷(含参考答案)
2014年云南省中考数学试卷一、选择题(本大题共8小题,每小题只有一个正确选项,每小题3分,满分24分)1.(3分)(2014年云南省)|﹣|=()A .﹣B.C.﹣7 D.72.(3分)(2014年云南省)下列运算正确的是()A.3x2+2x3=5x6B.50=0 C.2﹣3=D.(x3)2=x63.(3分)(2014年云南省)不等式组的解集是()A.x >B.﹣1≤x <C.x <D.x≥﹣14.(3分)(2014年云南省)某几何体的三视图如图所示,则这个几何体是()A.圆柱B.正方体C.球D.圆锥5.(3分)(2014年云南省)一元二次方程x2﹣x﹣2=0的解是()A.x1=1,x2=2 B.x1=1,x2=﹣2 C.x1=﹣1,x2=﹣2 D.x1=﹣1,x2=26.(3分)(2014年云南省)据统计,2013年我国用义务教育经费支持了13940000名农民工随迁子女在城市里接受义务教育,这个数字用科学计数法可表示为()A.1.394×107B.13.94×107C.1.394×106D.13.94×1057.(3分)(2014年云南省)已知扇形的圆心角为45°,半径长为12,则该扇形的弧长为()A.B.2πC.3πD.12π8.(3分)(2014年云南省)学校为了丰富学生课余活动开展了一次“爱我云南,唱我云南”的歌咏比赛,共有18名同学入围,他们的决赛成绩如下表:成绩(分)9.40 9.50 9.60 9.70 9.80 9.90人数 2 3 5 4 3 1则入围同学决赛成绩的中位数和众数分别是()A .9.70,9.60 B.9.60,9.60 C.9.60,9.70 D.9.65,9.60二、填空题(本大题共6个小题,每小题3分,满分18分)9.(3分)(2014年云南省)计算:﹣=.10.(3分)(2014年云南省)如图,直线a∥b,直线a,b被直线c所截,∠1=37°,则∠2=.11.(3分)(2014年云南省)写出一个图象经过一,三象限的正比例函数y=kx(k≠0)的解析式(关系式).12.(3分)(2014•云南省)抛物线y=x2﹣2x+3的顶点坐标是.13.(3分)(2014年云南省)如图,在等腰△ABC中,AB=AC,∠A=36°,BD⊥AC于点D,则∠CBD=.14.(3分)(2014年云南省)观察规律并填空(1﹣)=•=;(1﹣)(1﹣)=•••==(1﹣)(1﹣)(1﹣)=•••••=•=;(1﹣)(1﹣)(1﹣)(1﹣)=•••••••=•=;…(1﹣)(1﹣)(1﹣)(1﹣)…(1﹣)=.(用含n的代数式表示,n是正整数,且n≥2)三、解答题(本大题共9个小题,满分58分)15.(5分)(2014年云南省)化简求值:•(),其中x=.16.(5分)(2014年云南省)如图,在△ABC和△ABD中,AC与BD相交于点E,AD=BC,∠DAB=∠CBA ,求证:AC=BD.17.(6分)(2014年云南省)将油箱注满k升油后,轿车科行驶的总路程S(单位:千米)与平均耗油量a(单位:升/千米)之间是反比例函数关系S=(k是常数,k≠0).已知某轿车油箱注满油后,以平均耗油量为每千米耗油0.1升的速度行驶,可行驶700千米.(1)求该轿车可行驶的总路程S与平均耗油量a之间的函数解析式(关系式);(2)当平均耗油量为0.08升/千米时,该轿车可以行驶多少千米?18.(7分)(2014年云南省)为了解本校九年级学生期末数学考试情况,销量在九年级随机抽取了一部分学生的期末数学成绩为样本,分为A、B(89~80分)、C (79~60分)、D(59~0分)四个等级进行统计,并将统计结果绘制成如下统计图,请你根据统计图解答以下问题:(1)这次随机抽取的学生共有多少人?(2)请补全条形统计图;(3)这个学校九年级共有学生1200人,若分数为80分(含80分)以上为优秀,请估计这次九年级学生期末数学考试成绩为优秀的学生人数大约有多少?19.(7分)(2014年云南省)某市“艺术节”期间,小明、小亮都想去观看茶艺表演,但是只有一张茶艺表演门票,他们决定采用抽卡片的办法确定谁去.规则如下:将正面分别标有数字1、2、3、4的四张卡片(除数字外其余都相同)洗匀后,背面朝上放置在桌面上,随机抽出一张记下数字后放回;重新洗匀后背面朝上放置在桌面上,再随机抽出一张记下数字.如果两个数字之和为奇数,则小明去;如果两个数字之和为偶数,则小亮去.(1)请用列表或画树状图的方法表示抽出的两张卡片上的数字之和的所有可能出现的结果;(2)你认为这个规则公平吗?请说明理由.20.(6分)(2014年云南省)“母亲节”前夕,某商店根据市场调查,用3000元购进第一批盒装花,上市后很快售完,接着又用5000元购进第二批这种盒装花.已知第二批所购花的盒数是第一批所购花盒数的2倍,且每盒花的进价比第一批的进价少5元.求第一批盒装花每盒的进价是多少元?21.(6分)(2014年云南省)如图,小明在M处用高1米(DM=1米)的测角仪测得旗杆AB的顶端B的仰角为30°,再向旗杆方向前进10米到F处,又测得旗杆顶端B的仰角为60°,请求出旗杆AB 的高度(取≈1.73,结果保留整数)22.(7分)(2014年云南省)如图,在平行四边形ABCD中,∠C=60°,M、N分别是AD、BC的中点,BC=2CD.(1)求证:四边形MNCD是平行四边形;(2)求证:BD =MN.23.(9分)(2014年云南省)已知如图平面直角坐标系中,点O是坐标原点,矩形ABCD是顶点坐标分别为A (3,0)、B(3,4)、C(0,4).点D在y轴上,且点D的坐标为(0,﹣5),点P是直线AC上的一动点.(1)当点P运动到线段AC的中点时,求直线DP的解析式(关系式);(2)当点P沿直线AC移动时,过点D、P的直线与x轴交于点M.问在x轴的正半轴上是否存在使△DOM与△ABC相似的点M?若存在,请求出点M的坐标;若不存在,请说明理由;(3)当点P沿直线AC移动时,以点P为圆心、R(R>0)为半径长画圆.得到的圆称为动圆P.若设动圆P的半径长为,过点D作动圆P的两条切线与动圆P分别相切于点E、F.请探求在动圆P中是否存在面积最小的四边形DEPF?若存在,请求出最小面积S的值;若不存在,请说明理由.2014年云南省中考数学试卷参考答案与试题解析一、选择题(本大题共8小题,每小题只有一个正确选项,每小题3分,满分24分)1.(3分)考点:绝对值.分析:根据负数的绝对值是它的相反数,可得答案.解答:解:|﹣|=,故选:B.点评:本题考查了相反数,在一个数的前面加上负号就是这个数的相反数.2.(3分)考点:幂的乘方与积的乘方;合并同类项;零指数幂;负整数指数幂.分析:根据合并同类项,可判断A,根据非0的0次幂,可判断B,根据负整指数幂,可判断C,根据幂的乘方,可判断D.解答:解:A、系数相加字母部分不变,故A错误;B、非0的0次幂等于1,故B错误;C、2,故C错误;D、底数不变指数相乘,故D正确;故选:D.点评:本题考查了幂的乘方,幂的乘方底数不变指数相乘是解题关键.3.(3分)考点:解一元一次不等式组.分析:分别求出各不等式的解集,再求出其公共解集即可.解答:解:,由①得,x >,由②得,x≥﹣1,故此不等式组的解集为:x >.故选A.点评:本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.4.(3分)考点:由三视图判断几何体.分析:由主视图和左视图确定是柱体,锥体还是球体,再由俯视图确定具体形状.解答:解:根据主视图和左视图为三角形判断出是锥体,根据俯视图是圆形可判断出这个几何体应该是圆锥,故选D.点评:主视图和左视图的大致轮廓为三角形的几何体为锥体,俯视图为圆就是圆锥.5.(3分)考点:解一元二次方程-因式分解法。
2014云南省中考数学试题及标准答案(Word解析版)
cba 21左视图主视图D CBA2014云南省中考数学试题满分100分,考试时间:一. 选择题(每小题3分,共24分) 1. |71-|=( ). A. 71- B. 71C . 7-D . 72.下列运算正确的是( ).A.532523x x x =+ B.050= C.6123=- D.623)(x x = 3.不等式组⎩⎨⎧≥+-01012x x 的解集是( ).A.x >21 B.211 x ≤- C. x <21D.1-≥x 4.如图是某几何体的三视图,则这个几何体是( ).A. 圆柱B. 正方体C. 圆锥 D.球第4题图 第10题图 第13题图5.一元二次方程022=--x x 的解是( ).A.11=x ,22=xB. 11=x ,22-=xC. 11-=x ,22-=x D . 11-=x ,22=x6.据统计,2013年我国用义务教育经费支持了13940000名农民工随迁子女在城市接受义务教育,这个数字用科学记数法表示为( ).A.710394.1⨯ B .71094.13⨯ C .610394.1⨯ D.51094.13⨯ 7.已知扇形的圆心角为45°,半径长为12,则扇形的弧长为( ).A .43πB. π2C. π3 D .π12 8.学校为了丰富学生课余生活开展了一次“爱我云南,唱我云南”的歌咏比赛,共18名同学入围,他们的A. 9.70和9.60B. 9.60和9.60C. 9.60和9.70D. 9.65和9.60 二. 填空题(每小题3分,共18分) 9.计算:28-= .ED CB A10%D AB 25%C 50%10.如图,直线a ∥b ,直线a、b 被直线c 所截,∠1=37°,则∠2= . 11.写出一个图象经过第一、二象限的正比例函数)0(≠=k kx y 的解析式: . 12.抛物线322+-=x x y 的顶点坐标是 .13.如图,在等腰△ABC 中,AB=AC,∠A=36°,BD ⊥AC 于点D ,则∠CBD = . 14.(2014云南)观察规律并填空:(1-212)=12•32=34;(1-212)(1-213)=12•32•23•43=12•43=46=23; (1-212)(1-213)(1-214)=12•32•23•43•34•54=12•54=58;(1-212)(1-213)(1-214)(1-215)=12•32•23•43•34•54•45•65=12•65=610=35;… (1-212)(1-213)(1-214)(1-215)…(1-21n)= .(用含n 的代数式表示,n 是正整数,且n ≥2)三. 解答题(共58分)15.(5分)化简求值:)1(1222x x x x x x -•+--,其中51=x .16.(5分)如图,在△AB C和△ABD 中,A C与BD 相交于点E,A D=BC,∠DAB=∠CBA .求证:AC=B D.17.(6分)将油箱注满k 升油后,轿车可行驶的总路程S (单位:千米)与平均耗油量a (单位:升/千米)之间是反比例函数关系ak=S (k 是不等于0的常数).已知某轿车油箱注满油后,以平均耗油量为每千米耗油0.1升的速度行驶,可行驶700千米.(1)求该轿车可行驶的总路程S 与平均耗油量a 之间的函数解析式; (2)当平均耗油量为0.08升/千米时,该轿车可以行驶多少千米? 18.(7分)为了了解本校九年级学生期末数学考试情况,小亮在九年级随机抽取了一部分学生的期末数学成绩为样本,分为A (100分~90分)、B(89分~80分)、C(79分~60分)、D (59分~0分)四个等级进行统计,并将统计结果绘制成如下统计图.请你根据统计图解答以下问题: (1)这次随机抽取的学生共有多少人?(2)请补全条形统计图; (3)这个学校九年级共有1200名学生,若分数为80分(含80分)以上为优秀,请你估计这次九年级学生期末数学考试成绩为优秀的学生大约有多少人?。
2014年中考数学全真模拟试题含答案(精选2套)
2014年中考数学模拟试题(一)(本试卷分A卷(100分)、B卷(60分),满分160分,考试时间120分钟)A卷(共100分)一、选择题(本大题共12小题,每小题3分,共36分)1.下列四个实数中,绝对值最小的数是【】A.-5 B.2-C.1 D.42.一个几何体的三视图如图所示,那么这个几何体是【】A.B.C.D.3.某公司开发一个新的项目,总投入约11500000000元,11500000000元用科学记数法表示为【】A.1.15×1010B.0.115×1011C.1.15×1011D.1.15×1094.把不等式组x>1x23-⎧⎨+≤⎩的解集表示在数轴上,下列选项正确的是【】A.B.C.D.5.今年我市有近4万名考生参加中考,为了解这些考生的数学成绩,从中抽取1000名考生的数学成绩进行统计分析,以下说法正确的是【】A.这1000名考生是总体的一个样本B.近4万名考生是总体C.每位考生的数学成绩是个体D.1000名学生是样本容量6.把一块直尺与一块三角板如图放置,若∠1=40°,则∠2的度数为【】A .125°B .120°C .140°D .130°7.成渝路内江至成都段全长170千米,一辆小汽车和一辆客车同时从内江、成都两地相向开出,经过1小时10分钟相遇,小汽车比客车多行驶20千米.设小汽车和客车的平均速度为x 千米/小时和y 千米/小时,则下列方程组正确的是【 】A .x y 2077x y 17066+=⎧⎪⎨+=⎪⎩B .x y 2077x y 17066-=⎧⎪⎨+=⎪⎩C .x y 2077x y 17066+=⎧⎪⎨-=⎪⎩ D .77x y 1706677x y 2066⎧+=⎪⎪⎨⎪-=⎪⎩ 8.如图,在 ABCD 中,E 为CD 上一点,连接AE 、BD ,且AE 、BD 交于点F ,DEF ABF S S 425∆∆=::,则DE :EC=【 】A .2:5B .2:3C .3:5D .3:29.若抛物线2y x 2x c =-+与y 轴的交点为(0,﹣3),则下列说法不正确的是【 】 A .抛物线开口向上 B .抛物线的对称轴是x=1C .当x=1时,y 的最大值为﹣4D .抛物线与x 轴的交点为(-1,0),(3,0)10.同时抛掷A 、B 两个均匀的小立方体(每个面上分别标有数字1,2,3,4,5,6),设两立方体朝上的数字分别为x 、y ,并以此确定点P (x ,y ),那么点P 落在抛物线2y x 3x =-+上的概率为【 】A .118 B .112 C .19 D .1611.如图,反比例函数ky x=(x >0)的图象经过矩形OABC 对角线的交点M ,分别于AB 、BC 交于点D 、E ,若四边形ODBE 的面积为9,则k 的值为【 】A.1 B.2 C.3 D.412.如图,半圆O的直径AB=10cm,弦AC=6cm,AD平分∠BAC,则AD的长为【】A.45cm B.35cm C.55cm D.4cm二、填空题(每小题5分,共20分)13、分解因式:ab3﹣4ab=_________。
2014年中考数学全真模拟试题含答案
2014年中考数学模拟试题(本试卷分A 卷(100分)、B 卷(60分),满分160分,考试时间120分钟)A 卷(共100分)一、选择题(每小题3分,36分) 1、﹣6的相反数为( ) A :6 B :61C :-61D :-62、下列计算正确的是( )A :a 2+a 4=a 6B : 2a+3b=5abC :(a 2)3=a6D :a 6÷a 3=a 23、已知反比例函数的图象经过点(1,﹣2),则k 的值为( )A :2B : -21 C :1D :-2 4、下列图形中,既是轴对称图形又是中心对称图形的有( )A :4个B :3个C :2个D :1个 5、如图,a ∥b ,∠1=65°,∠2=140°,则∠3=( )A :100°B :105°C :110°D :115°6、一组数据4,3,6,9,6,5的中位数和众数分别是( )A :5和5.5B :5.5和6C :5和6D :6和67、函数的图象在( )A :第一象限B :第一、三象限C :第二象限D :第二、四象限 8、如图,AB 是⊙O 的直径,弦CD ⊥AB ,∠CDB=30°,CD=,则阴影部分图形的面积为( )A :4πB :2πC :πD :32π 9、甲车行驶30千米与乙车行驶40千米所用时间相同,已知乙车每小时比甲车多行驶15千 米,设甲车的速度为x 千米/小时,依据题意列方程正确的是( ) A :x 30=1540-x B :x 40=1530-x C :x30=1540+x D :x 40=1530+x 10、如图,在矩形ABCD 中,AB=10,BC=5,点E 、F 分别在AB 、CD 上,将矩形ABCD 沿EF 折叠,使点A 、D 分别落在矩形ABCD 外部的点A 1、D 1处,则阴影部分图形的周长为( )A :15B :20C :25D :3011、如图所示,△ABC 的顶点是正方形网格的格点,则sinA 的值为( ) A :21B :55C :1010D :55212、如图,正△ABC 的边长为3cm ,动点P 从点A 出发,以每秒1cm 的速度,沿A →B →C的方向运动,到达点C 时停止,设运动时间为x (秒),y=PC 2,则y 关于x 的函数的图象大致为( )A :B :C :D :二、填空题(本大题共4小题,每小题5分,共20分) 13.若m 2-n 2=6,且m -n=2,则m +n= ▲ . 14.函数2x 1y x 1+=-中自变量x 的取值范围是 ▲ . 15.一组数据3,4,6,8,x 的中位数是x ,且x 是满足不等式组x 305x>0-≥⎧⎨-⎩的整数,则这组数据的平均数是 ▲ .16.已知菱形ABCD 的两条对角线分别为6和8,M 、N 分别是边BC 、CD 的中点,P 是对角线BD 上一点,则PM+PN 的最小值= ▲ .三、解答题(本大题共5小题,共44分) 17.计算:()()1201302sin 60534015131π-⎛⎫+---+-+ ⎪-⎝⎭.18.已知,如图,△ABC 和△ECD 都是等腰直角三角形,∠ACD=∠DCE=90°,D 为AB 边上一点.求证:BD=AE .19.随着车辆的增加,交通违规的现象越来越严重,交警对某雷达测速区检测到的一组汽车的时速数据进行整理,得到其频数及频率如表(未完成):数据段 频数 频率 30~40 10 0.05 40~50 36 50~60 0.39 60~70 70~80 20 0.10 总计2001注:30~40为时速大于等于30千米而小于40千米,其他类同 (1)请你把表中的数据填写完整; (2)补全频数分布直方图;(3)如果汽车时速不低于60千米即为违章,则违章车辆共有多少辆?20.如图,某校综合实践活动小组的同学欲测量公园内一棵树DE 的高度,他们在这棵树的正前方一座楼亭前的台阶上A 点处测得树顶端D 的仰角为30°,朝着这棵树的方向走到台阶下的点C 处,测得树顶端D 的仰角为60°.已知A 点的高度AB 为3米,台阶AC 的坡度为13:(即AB :BC=13:),且B 、C 、E 三点在同一条直线上.请根据以上条件求出树DE 的高度(侧倾器的高度忽略不计).21.某地区为了进一步缓解交通拥堵问题,决定修建一条长为6千米的公路.如果平均每天的修建费y(万元)与修建天数x(天)之间在30≤x≤120,具有一次函数的关系,如下表所示.x 50 60 90 120y 40 38 32 26(1)求y关于x的函数解析式;(2)后来在修建的过程中计划发生改变,政府决定多修2千米,因此在没有增减建设力量的情况下,修完这条路比计划晚了15天,求原计划每天的修建费.B卷(共60分)四、填空题(本大题共4小题,每小题6分,共24分)22.在△ABC中,已知∠C=90°,7sinA sinB5+=,则sinA sinB-=▲.23.如图,正六边形硬纸片ABCDEF在桌面上由图1的起始位置沿直线l不滑行地翻滚一周后到图2位置,若正六边形的边长为2cm,则正六边形的中心O运动的路程为▲cm.24.如图,已知直线l:y3x=,过点M(2,0)作x轴的垂线交直线l于点N,过点N 作直线l的垂线交x轴于点M1;过点M1作x轴的垂线交直线l于N1,过点N1作直线l的垂线交x轴于点M2,…;按此作法继续下去,则点M10的坐标为▲.25.在平面直角坐标系xOy 中,以原点O 为圆心的圆过点A (13,0),直线y kx 3k 4=-+与⊙O 交于B 、C 两点,则弦BC 的长的最小值为 ▲ . 五、解答题(本大题共3小题,每小题12分,共36分)26.如图,AB 是半圆O 的直径,点P 在BA 的延长线上,PD 切⊙O 于点C ,BD ⊥PD ,垂足为D ,连接BC .(1)求证:BC 平分∠PDB ; (2)求证:BC 2=AB•BD ;(3)若PA=6,PC=62,求BD 的长.27.如图,在等边△ABC 中,AB=3,D 、E 分别是AB 、AC 上的点,且DE ∥BC ,将△ADE 沿DE 翻折,与梯形BCED 重叠的部分记作图形L . (1)求△ABC 的面积;(2)设AD=x ,图形L 的面积为y ,求y 关于x 的函数解析式;(3)已知图形L 的顶点均在⊙O 上,当图形L 的面积最大时,求⊙O 的面积.28.已知二次函数2y ax bx c =++(a >0)的图象与x 轴交于A (x 1,0)、B (x 2,0)(x 1<x 2)两点,与y 轴交于点C ,x 1,x 2是方程2x 4x 50+-=的两根.(1)若抛物线的顶点为D,求S△ABC:S△ACD的值;(2)若∠ADC=90°,求二次函数的解析式.2014年中考数学模拟试题答案一、A CDCBB ADCDBC13. 314.1x2≥-且x≠115. 516. 517. 解:原式=3317 5311222-+-⨯-+=。
2014中考数学模拟试卷(附详细答案)(3份)-1
2014年中考数学模拟试卷二(时间120分钟,满分120分)一、选择题(每小题3分,共36分)1.-12的绝对值是( )A .12B .-12C .2D .-2 2.今年体育学业考试增加了跳绳测试项目,下面是测试时记录员记录的一组(10名)同学的测试成绩(单位:个/分).176 180 184 180 170 176 172 164 186 180 该组数据的众数、中位数、平均数分别为( )A .180,180,178B .180,178,178C .180,178,176.8D .178,180,176.8 3.如图,在下列条件中,不能证明△ABD ≌△ACD 的是( )A .BD =DC ,AB =AC B .∠ADB =∠ADC ,BD =DC C .∠B =∠C ,∠BAD =∠CAD D .∠B =∠C ,BD =DC 4.不等式组⎩⎪⎨⎪⎧2x +12>12x -4,32x -12≤x的解集在数轴上表示正确的是( )5.顺次连接菱形各边中点所得的四边形一定是( )A .等腰梯形B .正方形C .平行四边形D .矩形6.计算:1÷1+m 1-m ·(m 2-1)的结果是( )A .-m 2-2m -1B .-m 2+2m -1C .m 2-2m -1D .m 2-17.抛物线y =(x +2)2-3可以由抛物线y =x 2平移得到,则下列平移过程正确的是( ) A .先向左平移2个单位,再向上平移3个单位 B .先向左平移2个单位,再向下平移3个单位 C .先向右平移2个单位,再向下平移3个单位 D .先向右平移2个单位,再向上平移3个单位8.如图,在平面直角坐标系中,正方形ABCO 的顶点A ,C 分别在y 轴、x 轴上,以AB 为弦的⊙M 与x 轴相切.若点A 的坐标为(0,8),则圆心M 的坐标为( )A .(-4,5)B .(-5,4)C .(5,-4)D .(4,-5)9.如图,所有正方形的中心均在坐标原点,且各边均与x 轴或y 轴平行.从内到外,它们的边长依次为2,4,6,8,…,顶点依次用A 1,A 2,A 3,A 4,…表示,则顶点A 55的坐标是( )A .(13,13)B .(-13,-13)C .(14,14)D .(-14,-14)10.已知一元二次方程x 2+bx -3=0的一根为-3,在二次函数y =x 2+bx -3的图象上有三点⎝ ⎛⎭⎪⎫-45,y 1,⎝ ⎛⎭⎪⎫-54,y 2,⎝ ⎛⎭⎪⎫16,y 3,y 1,y 2,y 3的大小关系是( ) A .y 1<y 2<y 3 B .y 2<y 1<y 3 C .y 3<y 1<y 2 D .y 1<y 3<y 211.有两个完全重合的矩形,将其中一个始终保持不动,另一个矩形绕其对称中心O 按逆时针方向进行旋转,每次均旋转45°,第1次旋转后得到图①,第2次旋转后得到图②,…,则第10次旋转后得到的图形与图①~④中相同的是( )A .图①B .图②C .图③D .图④ 12.如图,将一张正方形纸片剪成四个小正方形,得到4个小正方形,称为第一次操作;然后,将其中的一个正方形再剪成四个小正方形,共得到7个小正方形,称为第二次操作;再将其中的一个正方形剪成四个小正方形,共得到10个小正方形,称为第三次操作;……,根据以上操作,若要得到2 011个小正方形,则需要操作的次数是( )A .669B .670C .671D .672 二、填空题(每小题4分,共20分)13.若x =2是关于x 的方程x 2-x -a 2+5=0的一个根,则a 的值为__________. 14.如图,l ∥m ,矩形ABCD 的顶点B 在直线m 上,则∠α=__________度.15.对于任意不相等的两个实数a ,b ,定义运算*如下:a *b =a +ba -b,如32*==8*12=___________. 16.如图,在Rt △ABC 中,∠C =90°,AM 是BC 边上的中线,sin∠CAM =35,则tan B的值为__________.17.Rt△ABC 中,∠BAC =90°,AB =AC =2.以AC 为一边,在△ABC 外部作等腰直角△ACD ,则线段BD 的长为__________.三、解答题(共64分)18.(5分)已知:2x 2+6x -4=0,求代数式3-x 2x 2-4x ÷⎝ ⎛⎭⎪⎫5x -2-x -2的值. 19.(6分)我们约定,若一个三角形(记为△A 1)是由另一个三角形(记为△A )通过一次平移,或绕其任一边的中点旋转180°得到的,则称△A 1是由△A 复制的.以下的操作中每一个三角形只可以复制一次,复制过程可以一直进行下去.如图1,由△A 复制出△A 1,又由△A 1复制出△A 2,再由△A 2复制出△A 3,形成了一个大三角形,记作△B .以下各题中的复制均是由△A 开始的,通过复制形成的多边形中的任意相邻两个小三角形(指与△A 全等的三角形)之间既无缝隙也无重叠.(1)图1中标出的是一种可能的复制结果,小明发现△A ∽△B ,其相似比为__________.在图1的基础上继续复制下去得到△C ,若△C 的一条边上恰有11个小三角形(指有一条边在该边上的小三角形),则△C 中含有__________个小三角形;(2)若△A是正三角形,你认为通过复制能形成的正多边形是__________;(3)请你用两次旋转和一次平移复制形成一个四边形,在图2的方框内画出草图,并仿照图1作出标记.图1 图220.(7分)远洋电器城中,某品牌电视有A,B,C,D四种不同型号供顾客选择,它们每台的价格(单位:元)依次分别是2 500,4 000,6 000,10 000.为做好下阶段的销售工作,商场调查了一周内这四种不同型号电视的销售情况,并根据销售情况,将所得的数据制成统计图,现已知该品牌一周内四种型号电视共售出240台,每台的销售利润占其价格的百分比如下表:型号 A B C D利润10% 12% 15% 20%请根据以上信息,解答下列问题:(1)请补全统计图;(2)通过计算,说明商场这一周内该品牌哪种型号的电视总销售利润最大;(3)谈谈你的建议.21.(7分)七年级五班学生在课外活动时进行乒乓球练习,体育委员根据场地情况,将同学们分为三人一组,每组用一个球台.甲、乙、丙三位同学用“手心、手背”游戏(游戏时,“手心向上”简称手心;“手背向上”简称手背)来决定哪两个人先打球.游戏规则是:每人每次同时随机伸出一只手,出手心或手背.若出现“两同一异”(即两手心、一手背或两手背、一手心)的情况,则同出手心或手背的两个人先打球,另一人做裁判;否则继续进行,直到出现“两同一异”为止.(1)请你列出甲、乙、丙三位同学运用“手心、手背”游戏,出手一次出现的所有等可能情况(用A表示手心,用B表示手背);(2)求甲、乙、丙三位同学运用“手心、手背”游戏,出手一次出现“两同一异”的概率.22.(8分)某中学为落实市教育局提出的“全员育人,创办特色学校”的会议精神,决心打造“书香校园”,计划用不超过1 900本科技类书籍和1 620本人文类书籍,组建中、小型两类图书角共30个.已知组建一个中型图书角需科技类书籍80本,人文类书籍50本;组建一个小型图书角需科技类书籍30本,人文类书籍60本.(1)符合题意的组建方案有几种?请你帮学校设计出来.(2)若组建一个中型图书角的费用是860元,组建一个小型图书角的费用是570元,试说明(1)中哪种方案费用最低,最低费用是多少元?23.(9分)如图,在△ABC中,∠A=90°,∠B=60°,AB=3,点D从点A以每秒1个单位长度的速度向点B运动(点D不与B重合),过点D作DE∥BC交AC于点E.以DE为直径作⊙O,并在⊙O内作内接矩形ADFE,设点D的运动时间为t秒.(1)用含t的代数式表示△DEF的面积S;(2)当t为何值时,⊙O与直线BC相切?24.(10分)如图,在矩形纸片ABCD中,AB=6,BC=8.把△BCD沿对角线BD折叠,使点C落在C′处,BC′交AD于点G;E,F分别是C′D和BD上的点,线段EF交AD于点H,把△FDE沿EF折叠,使点D落在D′处,点D′恰好与点A重合.(1)求证:△ABG≌△C′DG;(2)求tan∠ABG的值;(3)求EF的长.25.(12分)在平面直角坐标系xOy中,二次函数y=mx2+(m-3)x-3(m>0)的图象与x 轴交于A,B两点(点A在点B左侧),与y轴交于点C.(1)求点A的坐标;(2)当∠ABC=45°时,求m的值;(3)已知一次函数y=kx+b,点P(n,0)是x轴上的一个动点.在(2)的条件下,过点P 作垂直于x轴的直线交这个一次函数的图象于点M,交二次函数y=mx2+(m-3)x-3(m>0)的图象于点N.若只有当-2<n<2时,点M位于点N的上方,求这个一次函数的解析式.参考答案一、1.A2.176,180,因此中位数是176+1802=178;平均数为164+170+172+176×2+180×3+184+18610=176.8.3.D4.A 解不等式2x +12>12x -4,得x >-3;解不等式32x -12≤x ,得x ≤1,∴不等式组的解集为-3<x ≤1.故选A.5.D6.B 1÷1+m 1-m ·(m 2-1)=1-m 1+m·(m +1)(m -1)=-m 2+2m -1.7.B y =(x +2)2-3的顶点为(-2,-3),抛物线y =x 2的顶点为(0,0),所以平移的过程是先向左平移2个单位,再向下平移3个单位.8.A 设⊙M 与x 轴的切点为F ,连接FM ,并延长交AB 于E ,连接AM .∵⊙M 与x 轴相切,∴MF ⊥x 轴,ME ⊥AB .∵A 的坐标为(0,8),∴OA =AB =OC =BC =EF =8.∴AE =BE =4.设MF =AM =x ,∴ME =8-x .在Rt △AME 中,AE 2+ME 2=AM 2,即42+(8-x )2=x 2,解得x =5.即MF =5,∴M 的坐标为(-4,5),故选A.9.C ∵55÷4=1334,∴点应在第一象限,且坐标为(14,14).10.A 把x =-3代入方程,得9-3b -3=0,b =2,二次函数y =x 2+2x -3的对称轴为x =-1, ∵⎪⎪⎪⎪⎪⎪-45--=15,⎪⎪⎪⎪⎪⎪-54--=14, ⎪⎪⎪⎪⎪⎪16--=76,15<14<76,∴y 1<y 2<y 3. 11.B 12.B二、13.±7 把x =2代入方程,得22-2-a 2+5=0,解得a =±7.14.25 15.-5216.23设MC 为3x ,则AM 为5x ,∴AC 为4x .∴tan B =AC BC =AC 2MC =4x 6x =23.17.4或25或10 首先要结合题意,画出相应的图形.因为以AC 为一边在△ABC 外部作等腰Rt △ACD ,则AC 可以是直角边,也可以是斜边,所以有三种情况.如图(1),BD =4;如图(2),BD =22+42=25;如图(3),∠ADC =90°,BC =22,CD =2,BD =22+22=10.图(1) 图(2) 图(3)三、18.解:原式=-x -32x 2-4x ÷⎝ ⎛⎭⎪⎫5x -2-x +21=-x -32x 2-4x ÷⎝ ⎛⎭⎪⎫-x 2+9x -2=12x 2+6x. 当2x 2+6x -4=0时,2x 2+6x =4,原式=14.19.解:(1)1:2 121 (2)正三角形或正六边形 (3)如图.20.解:(1)补全统计图如右.(2)10%×2 500×50=12 500,12%×4 000×100=48 000,15%×6 000×70=63 000,20%×10 000×20=40 000,∴商场在这一周内该品牌C 型号的电视总销售利润最大.(3)从进货角度、宣传角度等方面答对即可.21.解:(1)共有8种等可能情况:AAA ,AAB ,ABA ,ABB ,BAA ,BAB ,BBA ,BBB. (2)由(1)知共有8种等可能情况,其中出现“两同一异”的情况有6种.∴P (两同一异)=68=34. 22.解:(1)设组建中型图书角x 个,则组建小型图书角为(30-x )个.由题意,得⎩⎪⎨⎪⎧80x +-x ,50x +-x ,解这个不等式组,得18≤x ≤20.由于x 只能取整数,∴x 的取值是18,19,20.当x =18时,30-x =12;当x =19时,30-x =11;当x =20时,30-x =10.故有三种组建方案.方案一:中型图书角18个,小型图书角12个;方案二:中型图书角19个,小型图书角11个;方案三:中型图书角20个,小型图书角10个.(2)方案一的费用是860×18+570×12=22 320(元); 方案二的费用是860×19+570×11=22 610(元); 方案三的费用是860×20+570×10=22 900(元). 故方案一的费用最低,最低费用是22 320元. 23.解:(1)∵DE ∥BC ,∴∠ADE =∠B =60°.在△ADE 中,∵∠A =90°,∴tan ∠ADE =AE AD= 3.∵AD =1×t =t ,∴AE =3t .又∵四边形ADFE 是矩形,∴S △DEF =S △ADE =12AD ×AE =12×t ×3t =32t 2(0<t <3).∴S =32t 2(0<t <3).(2)如图,过点O 作OG ⊥BC 于点G ,过点D 作DH ⊥BC 于点H ,∵DE ∥BC ,∴OG =DH ,∠DHB =90°.在△DBH 中,sin B =DH BD.∵∠B =60°,BD =AB -AD ,AD =t ,AB =3,∴DH =32(3-t ),∴OG =32(3-t ). 当OG =12DE 时,⊙O 与BC 相切,在△ADE 中,∵∠A =90°,∠ADE =60°,∴cos ∠ADE =AD DE =12.∵AD =t ,∴DE =2AD =2t .∴2t =32(3-t )×2.∴t =63-9<3. ∴当t =63-9时,⊙O 与直线BC 相切. 24.(1)证明:∵四边形ABCD 为矩形, ∴∠C =∠BAD =90°,AB =CD ,由图形的折叠性质,得CD =C ′D ,∠C =∠C ′=90°, ∴∠BAD =∠C ′,AB =C ′D .又∵∠AGB =∠C ′GD ,∴△ABG ≌△C ′DG .(2)解:设AG 为x .∵△ABG ≌△C ′DG ,AD =8,AG =x , ∴BG =DG =AD -AG =8-x .在Rt △ABG 中,有BG 2=AG 2+AB 2,∵AB =6,∴(8-x )2=x 2+62,解得x =74.∴tan ∠ABG=AG AB =724. (3)由图形的折叠性质,得∠EHD =90°,DH =AH =4, ∴AB ∥EF ,∴△DHF ∽△DAB , ∴HF AB =DH AD ,即HF 6=12,∴HF =3. 又∵△ABG ≌△C ′DG ,∴∠ABG =∠HDE ,∴tan ∠ABG =tan ∠HDE =EH HD ,即724=EH4,∴EH =76,∴EF =EH +HF =76+3=256.25.解:(1)∵点A ,B 是二次函数y =mx 2+(m -3)x -3(m >0)的图象与x 轴的交点,∴令y =0,得mx 2+(m -3)x -3=0.图①解得x 1=-1,x 2=3m.又∵点A 在点B 左侧且m >0, ∴点A 的坐标为(-1,0).(2)由(1)可知点B 的坐标为⎝ ⎛⎭⎪⎫3m ,0,∵二次函数的图象与y 轴交于点C ,∴点C 的坐标为(0,-3).∵∠ABC =45°(如图①), ∴3m=3.∴m =1.(3)由(2)得,二次函数解析式为y =x 2-2x -3.依题意并结合图象可知,一次函数的图象与二次函数的图象交点的横坐标分别为-2和2,由此可得交点坐标为(-2,5)和(2,-3).将交点坐标分别代入一次函数解析式y =kx +b 中,得⎩⎪⎨⎪⎧-2k +b =5,2k +b =-3,解得⎩⎪⎨⎪⎧k =-2,b =1.故一次函数的解析式为y =-2x +1.。
2014中考数学模拟试卷(附详细答案)(3份)
2014年中考数学模拟试卷三(时间120分钟,满分120分)一、选择题(每小题3分,共36分)1.从不同方向看一只茶壶,你认为是俯视图的是()2.下列等式一定成立的是( )A .a 2+a 3=a 5B .(a +b )2=a 2+b 2C .(2ab 2)3=6a 3b 6D .(x -a )(x -b )=x 2-(a +b )x +ab 3.下列图形中,既是轴对称图形,又是中心对称图形的是()4.如果不等式组⎩⎪⎨⎪⎧ x +9<5x -1,x >m +1①②的解集是x >2,则m 的取值范围是( ) A .m <1 B .m ≥1 C .m ≤1 D .m >15.已知三角形的两边长是方程x 2-5x +6=0的两个根,则该三角形的周长L 的取值范围是( )A .1<L <5B .2<L <6C .5<L <9D .6<L <106.反比例函数y =2x的两个点为(x 1,y 1),(x 2,y 2),且x 1>x 2,则下式关系成立的是( )A .y 1>y 2B .y 1<y 2C .y 1=y 2D .不能确定7.在△ABC 中,AB >AC ,点D ,E 分别是边AB ,AC 的中点,点F 在BC 边上,连接DE ,DF ,EF .则添加下列哪一个条件后,仍无法判定△BFD 与△EDF 全等的是( )A .EF ∥AB B .BF =CFC .∠A =∠DFED .∠B =∠DEF8.经过某十字路口的汽车,它可能继续直行,也可能向左或向右转.若这三种可能性大小相同,则两辆汽车经过该十字路口全部继续直行的概率为( )A .13B .23C .19D .129.函数y =ax +1与y =ax 2+bx +1(a ≠0)的图象可能是()10.某剧场为希望工程义演的文艺表演有60元和100元两种票价,某团体需购买140张,其中票价为100元的票数不少于票价为60元的票数的两倍,则购买这两种票最少共需要( )A .12 120元B .12 140元C .12 160元D .12 200元11.如图,直角三角板ABC 的斜边AB =12 cm ,∠A =30°,将三角板ABC 绕C 顺时针旋转90°至三角板A ′B ′C ′的位置后,再沿CB 方向向左平移,使点B ′落在原三角板ABC 的斜边AB 上,则三角板A ′B ′C ′平移的距离为( )A.6 cm B.4 cmC.(6-23)cm D.(43-6)cm12.如图,△ABC中,∠ACB=90°,AC>BC,分别以△ABC的边AB,BC,CA为一边向△ABC外作正方形ABDE,BCMN,CAFG,连接EF,GM,ND,设△AEF,△BND,△CGM的面积分别为S1,S2,S3,则下列结论正确的是( )A.S1=S2=S3 B.S1=S2<S3C.S1=S3<S2 D.S2=S3<S1二、填空题(每小题4分,共20分)13.因式分解:x3-9x=__________.14.如图,AB为⊙O的直径,点C,D在⊙O上.若∠AOD=30°,则∠BCD的度数是__________.(第14题图)15.甲、乙两盏路灯底部间的距离是30米,一天晚上,当小华走到距路灯乙底部5米处时,发现自己的身影顶部正好接触路灯乙的底部.已知小华的身高为1.5米,那么路灯甲的高为__________米(如图).(第15题图)16.如图,在△ABC中,AB=BC,将△ABC绕点B顺时针旋转α度,得到△A1BC1,A1B 交AC于点E,A1C1分别交AC,BC于点D,F,下列结论:①∠CDF=α,②A1E=CF,③DF=FC,④AD=CE,⑤A1F=CE.(第16题图)其中正确的是__________(写出正确结论的序号). 17.如图①,将一个量角器与一张等腰直角三角形(△ABC )纸片放置成轴对称图形,∠ACB =90°,CD ⊥AB ,垂足为D ,半圆(量角器)的圆心与点D 重合,测得CE =5 cm ,将量角器沿DC 方向平移 2 cm ,半圆(量角器)恰与△ABC 的边AC ,BC 相切,如图②,则AB 的长为__________cm.(精确到0.1 cm)图① 图②三、解答题(共64分)18.(6分)计算:12-⎝ ⎛⎭⎪⎫-12-1-tan 60°+3-8+|3-2|.19.(7分)如下数表是由从1开始的连续自然数组成,观察规律并完成各题的解答.(1)表中第8行的最后一个数是__________,它是自然数__________的平方,第8行共有__________个数;(2)用含n 的代数式表示:第n 行的第一个数是__________,最后一个数是__________,第n 行共有__________个数;(3)求第n 行各数之和.20.(7分)为了鼓励城区居民节约用水,某市规定用水收费标准如下:每户每月的用水量不超过20度时(1度=1米3),水费为a元/度;超过20度时,不超过部分仍为a元/度,超过部分为b元/度.已知某用户4月份用水15度,交水费22.5元,5月份用水30度,交水费50元.(1)求a,b的值;(2)若估计该用户6月份的水费支出不少于60元,但不超过90元,求该用户6月份的用水量x的取值范围.21.(7分)据媒体报道:某市4月份空气质量优良,高居全国榜首,青春中学九年级课外兴趣小组据此提出了“今年究竟能有多少天空气质量达到优良”的问题,他们根据国家环保总局所公布的空气质量级别表(见表1)以及市环保监测站提供的资料,从中随机抽取了今年1~4月份中30天空气综合污染指数,统计数据如下:空气污染指数0~50 51~100101~150151~200201~250251~300大于300空气质量级别Ⅰ级(优)Ⅱ级(良)Ⅲ1(轻微污染)Ⅲ2(轻度污染)Ⅳ1(中度污染)Ⅳ2(中度重污染)Ⅴ(重度污染)30,32,40,42,45,45,77,83,85,87,90,113,127,153,167,38,45,48,53,57,64,66,77,92,98,130,184,201,235,243.请根据空气质量级别表和抽查的空气综合污染指数,解答以下问题:(1)30(2)(3)请根据抽样数据,估计该市今年(按360天计算)空气质量是优良(包括Ⅰ、Ⅱ级)的天数.22.(8分)如图,在△ABC 中,AB =AC ,以AB 为直径的⊙O 分别交AC ,BC 于点D ,E ,点F 在AC 的延长线上,且∠CBF =12∠CA B .(1)求证:直线BF 是⊙O 的切线;(2)若AB =5,sin∠CBF =55,求BC 和BF 的长.23.(9分)如图1,小红家的阳台上放置了一个晒衣架.如图2是晒衣架的侧面示意图,立杆AB ,CD 相交于点O ,B ,D 两点立于地面,经测量:AB =CD =136 cm ,OA =OC =51 cm ,OE =OF =34 cm ,现将晒衣架完全稳固张开,此时扣链EF 成一条线段,EF =32 cm.图1 图2(1)求证:AC ∥BD ;(2)求扣链EF 与立杆AB 的夹角∠OEF 的度数(精确到0.1°,可使用科学计算器); (3)小红的连衣裙穿在衣架后的总长度达到122 cm ,问挂在晒衣架后是否会拖落到地面?请通过计算说明理由.24.(10分)如图,在平面直角坐标系中,已知A,B,C三点的坐标分别为A(-2,0),B(6,0),C(0,3).(1)求经过A,B,C三点的抛物线的解析式;(2)过C点作CD平行于x轴交抛物线于点D,写出D点的坐标,并求AD,BC的交点E 的坐标;(3)若抛物线的顶点为P,连接PC,PD,判断四边形CEDP的形状,并说明理由.25.(10分)已知:在如图1所示的锐角△ABC中,CH⊥AB于点H,点B关于直线CH的对称点为D,AC边上一点E满足∠EDA=∠A,直线DE交直线CH于点F.图1(1)求证:BF∥AC;(2)若AC边的中点为M,求证:DF=2EM;(3)当AB=BC时(如图2),在未添加辅助线和其他字母的条件下,找出图2中所有与BE 相等的线段,并证明你的结论.图2参考答案一、1.A 俯视图是从上面看到的平面图形,也是在水平投影面上的正投影.易判断选A.2.D 3.B4.C 由①得x >2,由②得x >m +1. ∵其解集是x >2,∴m +1≤2,∴m ≤1. 5.D 6.D7.C DE 是△ABC 的中位线,DE ∥BC ,所以∠EDF =∠BFD .又DF =FD ,所以两三角形已具备了一边一角对应相等的条件.添加A 中条件EF ∥AB ,可利用ASA 证全等;添加B 中条件BF =CF ,可利用SAS 证全等;添加C 中条件,不能证明全等;添加D 中条件∠B =∠DEF ,可利用AAS 证明全等.8.C9.C 当a >0时,直线从左向右是上升的,抛物线开口向上,B ,D 是错的;函数y =ax +1与y =ax 2+bx +1(a ≠0)的图象必过(0,1),A 是错的,所以C 是正确的,故选C.10.C11.C 如图,三角板A ′B ′C ′平移的距离为B ′B ″.∵AB =12 cm ,∠A =30°,∴BC =B ″C ″=6 cm ,利用三角函数可求出BC ″=2 3 cm ,所以B ′B ″=(6-23)cm.12.A 如下图,由全等可证EQ =BC =BN =CM ,AC =DG =FA =CG ,∴S 1=12FA ·EQ ,S 2=12BN ·DG ,S 3=12MC ·CG ,∴S 1=S 2=S 3.二、13.x (x -3)(x +3) x 3-9x =x (x 2-9)=x (x -3)(x +3).14.105° ∵∠AOD =30°,∴DAB 的度数为210°,∠BCD =105°.15.9 设路灯高为x 米,由相似得1.5x =530,解得x =9,所以路灯甲的高为9米.16.①②⑤ 17.24.5三、18.解:原式=23+2-3-2+2-3=2.19.解:(1)64 8 15 (2)(n -1)2+1 n 22n -1(3)方法一:第2行各数之和等于3×3;第3行各数之和等于5×7;第4行各数之和等于7×13;类似地,第n 行各数之和等于(2n -1)(n 2-n +1)=2n 3-3n 2+3n -1.方法二:第n 行各数分别为(n -1)2+1,(n -1)2+2,(n -1)2+3,…,(n -1)2+2n -1,共有2n -1个数,它们的和等于(2n -1)(n 2-n +1)=2n 3-3n 2+3n -1. 20.解:(1)a =22.5÷15=1.5;b =(50-20×1.5)÷(30-20)=2;(2)根据题意,得60≤20×1.5+2(x -20)≤90,35≤x ≤50. 所以该用户6月份的用水量x 的取值范围是35≤x ≤50. 21.解:(1)30 (2)中位数是80(3)∵360×9+1230=252,∴空气质量优良(包括Ⅰ、Ⅱ级)的天数是252天. 22.(1)证明:如图,连接AE .∵AB 是⊙O 的直径,∴∠AEB =90°.∴∠1+∠2=90°.∵AB =AC ,∴∠1=12∠CAB .∵∠CBF =12∠CAB ,∴∠1=∠CBF .∴∠CBF +∠2=90°,即∠ABF =90°.∵AB 是⊙O 的直径,∴直线BF 是⊙O 的切线. (2)解:如图,过点C 作CG ⊥AB 于点G ,∵sin ∠CBF =55,∠1=∠CBF ,∴sin ∠1=55.∵∠AEB =90°,AB =5,∴BE =AB ·sin∠1= 5.∵AB =AC ,∠AEB =90°,∴BC =2BE =2 5.在Rt △ABE 中,由勾股定理得AE =AB 2-BE 2=25,∴sin ∠2=255,cos ∠2=55.在Rt △CBG 中,可求得GC =4,GB =2,∴AG =3. ∵GC ∥BF ,∴△AGC ∽△ABF . ∴GC BF =AG AB .∴BF =GC ·AB AG =203. 故BC 和BF 的长分别为25,203.23.(1)证法一:∵AB ,CD 相交于点O ,∴∠AOC =∠BOD .∵OA =OC ,∴∠OAC =∠OCA =12(180°-∠AOC ).同理可证:∠OBD =∠ODB =12(180°-∠BOD ),∴∠OAC =∠OBD ,∴AC ∥BD .证法二:∵AB =CD =136 cm ,OA =OC =51 cm ,∴OB =OD =85 cm ,∴OA OB =OC OD =35.又∵∠AOC =∠BOD ,∴△AOC ∽△BOD ,∴∠OAC =∠OBD .∴AC ∥BD .(2)解:在△OEF 中,OE =OF =34 cm ,EF =32 cm , 作OM ⊥EF 于点M ,则EM =16 cm ,∴cos ∠OEF =EM OE =1634=817≈0.471,用科学计算器求得∠OEF ≈61.9°.(3)解法一:小红的连衣裙会拖落到地面.在Rt △OEM 中,OM =OE 2-EM 2=342-162=30(cm); 过点A 作AH ⊥BD 于点H ,同(1)可证:EF ∥BD , ∴∠ABH =∠OEM ,则Rt △OEM ∽Rt △ABH , ∴OE AB =OM AH ,AH =OM ·AB OE =30×13634=120(cm). ∴小红的连衣裙挂在衣架后总长度122 cm >晒衣架高度AH =120 cm.解法二:小红的连衣裙会拖落到地面.同(1)可证:EF ∥BD ,∴∠ABD =∠OEF =61.9°.过点A 作AH ⊥BD 于点H ,在Rt △ABH 中,sin ∠ABD =AHAB,AH =AB ×sin∠ABD =136×sin 61.9°=136×0.882≈120.0 cm.∴小红的连衣裙挂在衣架后总长度122 cm >晒衣架高度AH =120 cm.24.解:(1)由于抛物线经过点C (0,3),可设抛物线的解析式为y =ax 2+bx +3(a ≠0),则⎩⎪⎨⎪⎧4a -2b +3=0,36a +6b +3=0.解得⎩⎪⎨⎪⎧a =-14,b =1,故抛物线的解析式为y =-14x 2+x +3.(2)点D 的坐标为(4,3),直线AD 的解析式为y =12x +1,直线BC 的解析式为y =-12x+3,由⎩⎪⎨⎪⎧y =12x +1,y =-12x +3,得交点E 的坐标为(2,2).(3)四边形CEDP 为菱形.理由:连接PE 交CD 于F ,如图.∵P 点的坐标为(2,4),又∵E (2,2),C (0,3),D (4,3),∴PC =DE =5,PD =CE = 5.∴PC =DE =PD =CE .故四边形CEDP 是菱形.25.(1)证明:如图1.图1∵点B 关于直线CH 的对称点为D ,CH ⊥AB 于点H ,直线DE 交直线CH 于点F ,∴BF =DF ,DH =BH .∴∠1=∠2.又∵∠EDA =∠A ,∠EDA =∠1,∴∠A =∠2.∴BF ∥AC .(2)证明:取FD 的中点N ,连接HM ,HN .图2∵H 是BD 的中点,N 是FD 的中点,∴HN ∥BF .由(1)得BF ∥AC ,∴HN ∥AC ,即HN ∥EM .∵在Rt △ACH 中,∠AHC =90°,AC 边的中点为M ,∴HM =12AC =AM .∴∠A =∠3.∴∠EDA =∠3.∴NE ∥HM . ∴四边形ENHM 是平行四边形.∴HN =EM .∵在Rt △DFH 中,∠DHF =90°,DF 的中点为N ,∴HN =12DF ,即DF =2HN .∴DF =2EM . (3)解:当AB =BC 时,在未添加辅助线和其他字母的条件下,原题图2中所有与BE 相等的线段是EF 和CE .图3证明:连接CD.(如图3)∵点B关于直线CH的对称点为D,CH⊥AB于点H,∴BC=CD,∠ABC=∠5.∵AB=BC,∴∠ABC=180°-2∠A,AB=CD.①∵∠EDA=∠A,∴∠6=180°-2∠A,AE=DE.②∴∠ABC=∠6=∠5.∵∠BDE是△ADE的外角,∴∠BDE=∠A+∠6.∵∠BDE=∠4+∠5,∴∠A=∠4.③由①,②,③得△ABE≌△DCE.∴BE=CE.由(1)中BF=DF得∠CFE=∠BFC.由(1)中所得BF∥AC可得∠BFC=∠ECF.∴∠CFE=∠ECF.∴EF=CE.∴BE=EF.∴BE=EF=CE.。
2014年云南中考数学试卷(解析版)
(第4题)2014年云南省中考数学试卷一、选择题(本大题共8小题,每小题只有一个正确选项,每小题3分,满分24分) 1.(3分)(2014年云南省)|﹣|=( ) A .﹣B .C . ﹣7D . 72.(3分)(2014年云南省)下列运算正确的是( ) A . 3x 2+2x 3=5x 6B . 50=0C . 2﹣3=D . (x 3)2=x 63.(3分)(2014年云南省)不等式组的解集是( ) A . x >B . ﹣1≤x <C . x <D . x ≥﹣14.(3分)(2014年云南省)某几何体的三视图如图所示,则这个几何体是( ) A .圆柱 B .正方体 C .球 D .圆锥5.(3分)(2014年云南省)一元二次方程x 2﹣x ﹣2=0的解是( ) A . x 1=1,x 2=2B .x 1=1,x 2=﹣2C .x 1=﹣1,x 2=﹣2D .x 1=﹣1,x 2=26.(3分)(2014年云南省)据统计,2013年我国用义务教育经费支持了13940000名农民工随迁子女在城市里接受义务教育,这个数字用科学计数法可表示为( ) A . 1。
394×107 B . 13。
94×107C . 1。
394×106D . 13.94×1057.(3分)(2014年云南省)已知扇形的圆心角为45°,半径长为12,则该扇形的弧长为( ) A .B . 2πC . 3πD . 12π8.(3分)(2014年云南省)学校为了丰富学生课余活动开展了一次“爱我云南,唱我云南"的歌咏比赛,共有18名同学入围,他们的决赛成绩如下表: 成绩(分) 9。
409.50 9。
60 9.70 9.809.90人数2 3543 1则入围同学决赛成绩的中位数和众数分别是( ) A . 9。
70,9.60B . 9。
60,9.60C . 9.60,9.70D . 9。
云南省中考数学试题包括答案
2014 云南省中考数学试题满分 100 分,考试时间:一.选择题(每题 3 分,共 24 分)1. | 1| =().7A. 1B. 1C. 7D.77 72. 以下运算正确的选项是().A. 3x2 2x3 5x 5B. 50 0C. 2 31D. (x3 )2 x 663. 不等式组2x1的解集是().x 1 0A. x>1B. 1 x 1C. x <1D. x 12 2 24. 如图是某几何体的三视图,则这个几何体是().A. 圆柱B. 正方体C. 圆锥D. 球A第 4 题图第 10 题图 D 第13题图B C5. 一元二次方程x2 x 2 0的解是().A. x1 1, x2 2 B. x1 1, x2 2C. x1 1, x2 2D. x1 1, x2 26.据统计,2013 年我国用义务教育经费支持了 13940000 名农民工随迁子女在城市接受义务教育,这个数字用科学记数法表示为().A. 1.394 107B. 13.94 107C. 1.394 10 6D.1057. 已知扇形的圆心角为 45°,半径长为 12,则扇形的弧长为().A.3 B.2C.3D. 1248. 学校为了丰富学生课余生活张开了一次“爱我云南,唱我云南”的歌唱比赛,共18 名同学入围,他们的决赛成绩以下表:成绩(分)人数2 3 5 4 3 1则入围同学决赛成绩的中位数和众数分别是().和和和和二. 填空题(每题3 分,共 18 分)9. 计算: 82 =.10. 如图,直线 a ∥b ,直线 a 、b 被直线 c 所截,∠ 1= 37°,则∠ 2=.11. 写出一个图象经过第一、 二象限的正比率函数 y kx(k 0) 的剖析式:.12. 抛物线 yx 2 2x 3的极点坐标是 .13. 如图,在等腰△ ABC 中,AB = AC ,∠ A =36°,BD ⊥AC 于点 D ,则∠ CBD = .14.(2014 云南) 察 律并填空:(1 - 12 ) = 1 ? 3 = 3;2 2 2 4(1 - 12)(1 - 12 ) = 1 ? 3 ? 2 ? 4 = 1 ? 4 =4= 2;2322 332363(1 - 12)(1 - 12 )(1 -12) = 1 ? 3 ? 2 ? 4 ? 3 ? 5 = 1 ? 5 =5;2 342 233 44248(1 -12)(1 -12)(1 - 12 )(1 -12) = 1 ? 3 ? 2 ? 4 ? 3 ? 5 ? 4 ? 6 = 1 ? 6 = 6 = 3;2 3 45223 3445525105⋯(1 -12)(1 -12)(1 - 12 )(1 -12) ⋯(1 - 12 ) =.(用含 n 的代数式表示, n 是2 3 45n正整数,且 n ≥2)三. 解答 (共 58 分)15. (5 分)化 求 :2 x 2x ? (x1) ,其中 x 1 . x2x 1 x516.(5 分)如 ,在△ ABC 和△ ABD 中,AC 与 BD 订交于点 E ,AD =BC ,∠DAB =∠CBA .求: AC =BD .17. (6 分)将油箱注 k 升油后, 可行 的 行程 S ( 位:千米)与平均耗油量 a ( 位:升 / 千米)之 是反比率函数关系Sk( k 是不等于 0的常数).已知某a油箱注 油后,以平均耗油量 每千米耗油0.1 升的速度行 ,可行700 千米.(1)求 可行 的 行程S 与平均耗油量 a 之 的函数剖析式;(2)当平均耗油量 0.08 升/ 千米 , 可以行 多少千米?18.(7 分)为了认识本校九年级学生期末数学考试情况,小亮在九年级随机抽取了一部分学生的期末数学成绩为样本,分为A(100 分~ 90 分)、B(89 分~ 80 分)、C(79 分~ 60 分)、D(59 分~ 0 分)四个等级进行统计,并将统计结果绘制成以下统计图.请你依照统计图解答以下问题:(1)此次随机抽取的学生共有多人?(2)请补全条形统计图;人数 / 人少20201510 C 50%645B 25% A0 DB C D 等级10%A(3)这个学校九年级共有 1200 名学生,若分数为 80 分(含 80 分)以上为优秀,请你估计此次九年级学生期末数学考试成绩为优秀的学生大体有多少人?19.(7 分)某市“艺术节”期间,小明、小亮都想去观看茶艺表演,但是只有一张茶艺表演门票,他们决定采用抽卡片的方法确定谁去.规则以下:将正面分别标有数字 1、2、3、4 的四张卡片(除数字外其余都相同)洗匀后,反面向上放置在桌面上,随机抽出一张记下数字后放回;重新洗匀后反面向上放置在桌面上,再随机抽出一张记下数字.若是两个数字之和为奇数,则小明去;若是两个数字之和为偶数,则小亮去.(1)请用列表或画树状图的方法表示抽出的两张卡片上的数字之和的所有可能出现的结果;(2)你认为这个规则公正吗?请说明原由.20. (6 分)“母亲节”前夕,某商店依照市场检查,用3000 元购进第一批盒装花,上市后很快售完,接着又用5000 元购进第二批这种盒装花.已知第二批所购花的盒数是第一批所购花盒数的2 倍,且每盒花的进价比第一批的进价少 5 元.求第一批盒装花每盒的进价是多少元?21. ( 6 分)如图,小明在 M 处用高为 1 米(DM =1 米)的测B角仪测得旗杆 AB 的顶端 B 的仰角为 30°,再向旗杆方向前进 10米到E 60° C30°F 处,又测得旗杆的顶端D的高B 的仰角为 60°,央求出旗杆 ABAFM度.(取 3 ≈ ,结果保留整数.)22. (7 分)如图,在平行四边形 ABCD 中,∠ C =60°,M 、N 分AMD别为 AD 、BC 的中点, BC =2CDBCN(1)求证:四边形 MNCD 是平行四边形;(2)求证: BD = 3 MN .23.(9 分)(2014 云南)在平面直角坐标系中,点 O 为坐标原点,矩形 ABCO 的极点分别为 A (3,0)、B (3,4)、C ( 0,4),点 D 在 y 轴上,且点 D 的坐标为(0,- 5),点 P 是直线 AC 上的一个动点.( 1)当点 P 运动到线段 AC 的中点时,求直线 DP 的剖析式;( 2)当点 P 沿直线 AC 搬动时,过点 D 、P 的直线与 x 轴交于点 M .问:在 x 轴的正半轴上,可否存在使△ DOM 与△ ABC 相似的点 M ?若存在,央求出点 M 的坐标;若不存在,请说明原由.( 3)当点 P 沿直线 AC 搬动时,以点 P 为圆心、 R (R >0)为半径长画圆,获取的圆称为动⊙ P .若设动⊙ P 的半径长为 1AC ,过点 D 作动⊙ P 的两条切线与动⊙ P2分别相切于点 E 、F .请研究在动⊙ P 中,可否存在面积最小的四边形 DEPF ?若存在,央求出最小面积S 的值;若不存在,请说明原由.2014 云南省中考数学试卷一、选择题(本大题共 8 小题,每题只有一个正确选项,每题3分,满分24分)1.(3 分)(2014 年云南省)| ﹣ | =()A.﹣B.C.﹣7 D.7考点:绝对值.版权所有剖析:依照负数的绝对值是它的相反数,可得答案.解答:解: | ﹣ | =,应选: B.议论:此题观察了相反数,在一个数的前面加上负号就是这个数的相反数.2.(3 分)(2014 年云南省)以下运算正确的选项是()A. 3 x2+2x3=5x6 B. 5 0=0C.2﹣3=D.(x3)2=x6考点:幂的乘方与积的乘方;合并同类项;零指数幂;负整数指数幂.版权所有剖析:依照合并同类项,可判断A,依照非0的0次幂,可判断 B,依照负整指数幂,可判断 C,依照幂的乘方,可判断D.解答:解: A、系数相加字母部分不变,故A错误;B、非0的0次幂等于1,故 B 错误;C、2,故C错误;D、底数不变指数相乘,故D正确;应选: D.议论:此题观察了幂的乘方,幂的乘方底数不变指数相乘是解题要点.3.(3 分)(2014 年云南省)不等式组的解集是()A.x>B.﹣1≤x<C.x<D.x≥﹣1考点:解一元一次不等式组.版权所有剖析:分别求出各不等式的解集,再求出其公共解集即可.解答:解:,由①得,x>,由②得,x≥﹣1,故此不等式组的解集为:x>.应选 A.议论:此题观察的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的要点.4.(3 分)(2014 年云南省)某几何体的三视图以以下列图,则这个几何体是()A.圆柱B.正方体C.球 D.圆锥考点:由三视图判断几何体.版权所有剖析:由主视图和左视图确定是柱体,锥体还是球体,再由俯视图确定详尽形状.解答:解:依照主视图和左视图为三角形判断出是锥体,依照俯视图是圆形可判断出这个几何体应该是圆锥,应选D.议论:主视图和左视图的大体轮廓为三角形的几何体为锥体,俯视图为圆就是圆锥.5.(3 分)(2014 年云南省)一元二次方程x2﹣x﹣2=0的解是()A.x=1,x=2 B.x =1,x =﹣2 C.x =﹣1 2 1 2 11,x2=﹣ 2 D.x1=﹣1,x2=2考点:解一元二次方程-因式分解法.版权所有剖析:直接利用十字相乘法分解因式,进而得出方程的根解答:解: x2﹣x﹣2=0(x﹣2)(x+1)=0,解得: x1=﹣1,x2=2.应选: D.议论:此题主要观察了十字相乘法分解因式解方程,正确分解因式是解题要点.6.(3 分)(2014 年云南省)据统计, 2013 年我国用义务教育经费支持了13940000 名农民工随迁子女在城市里接受义务教育,这个数字用科学计数法可表示为()A. 1.394 ×107 B.13.94 ×107C. 1.394 ×106D.13.94 ×105考点:科学记数法—表示较大的数.版权所有剖析:科学记数法的表示形式为a×10n的形式,其中1≤| a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点搬动了多少位,n 的绝对值与小数点搬动的位数相同.当原数绝对值> 1 时,n是正数;当原数的绝对值< 1 时,n是负数.解答:解: 13 940 000 =1.394 ×107,应选: A.议论:此题观察科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中 1≤|a| <10,n为整数,表示时要点要正确确定 a 的值以及 n 的值.7.(3 分)(2014 年云南省)已知扇形的圆心角为45°,半径长为 12,则该扇形的弧长为()A.B.2πC. 3πD.12π考点:弧长的计算.版权所有剖析:依照弧长公式 l =,代入相应数值进行计算即可.解答:解:依照弧长公式: l ==3π,应选: C.议论:此题主要观察了弧长计算,要点是掌握弧长公式l =.8.(3 分)(2014 年云南省)学校为了丰富学生课余活动张开了一次“爱我云南,唱我云南”的歌唱比赛,共有18 名同学入围,他们的决赛成绩以下表:成绩(分)人数23543 1则入围同学决赛成绩的中位数和众数分别是()A. 9.70 ,9.60 B.9.60 ,C. 9.60 ,9.70 D.9.65 ,考点:众数;中位数.版权所有剖析:依照中位数和众数的看法求解.解答:解:∵共有 18 名同学,则中位数为第9 名和第 10 名同学成绩的平均分,即中位数为:=,众数为: 9.60 .应选 B.议论:此题观察了中位数和众数的看法,一组数据中出现次数最多的数据叫做众数;将一组数据依照从小到大(或从大到小)的序次排列,若是数据的个数是奇数,则处于中间地址的数就是这组数据的中位数;若是这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.二、填空题(本大题共 6 个小题,每题 3 分,满分 18 分)9.(3 分)(2014 年云南省)计算:﹣=.考点:二次根式的加减法.版权所有剖析:运用二次根式的加减法运算的序次,先将二次根式化成最简二次根式,再合并同类二次根式即可.解答:解:原式= 2﹣=.故答案为:.议论:合并同类二次根式本质是把同类二次根式的系数相加,而根指数与被开方数都不变.10.(3 分)(2014 年云南省)如图,直线a∥b,直线a,b被直线c所截,∠1=37°,则∠ 2=143°.考点:平行线的性质.版权所有剖析:依照对顶角相等可得∠ 3=∠ 1,再依照两直线平行,同旁内角互补列式计算即可得解.解答:解:∠ 3=∠ 1=37°(对顶角相等),∵a∥b,∴∠ 2=180°﹣∠ 3=180°﹣ 37°= 143°.故答案为: 143°.议论:此题观察了平行线的性质,对顶角相等的性质,熟记性质并正确识图是解题的要点.11.(3 分)(2014 年云南省)写出一个图象经过一,三象限的正比率函数y=kx (k≠0)的剖析式(关系式)y=2x.考点:正比率函数的性质.版权所有专题:开放型.剖析:依照正比率函数 y=kx 的图象经过一,三象限,可得k>0,写一个切合条件的数即可.解答:解:∵正比率函数y=kx 的图象经过一,三象限,∴k>0,取k=2可得函数关系式 y=2x.故答案为: y=2x.议论:此题主要观察了正比率函数的性质,要点是掌握正比率函数图象的性质:它是经过原点的一条直线.当 k>0时,图象经过一、三象限, y 随 x 的增大而增大;当k<0时,图象经过二、四象限, y 随 x 的增大而减小.12.(3 分)(2014?天津)抛物线y=x2﹣2x+3 的极点坐标是(1,2).考点:二次函数的性质.版权所有专题:计算题.剖析:已知抛物线的剖析式是一般式,用配方法转变成极点式,依照极点式的坐标特点,直接写出极点坐标.解答:解:∵ y=x2﹣2x+3=x2﹣2x+1﹣1+3=( x﹣1)2+2,∴抛物线 y=x2﹣2x+3的极点坐标是(1,2).议论:此题观察了二次函数的性质,二次函数 y=a(x﹣h)2+k 的极点坐标为(h,k),对称轴为 x=h,此题还观察了配方法求极点式.13.(3 分)(2014 年云南省)如图,在等腰△ABC中,AB=AC,∠A=36°,BD⊥AC于点 D,则∠ CBD=18° .考点:等腰三角形的性质.版权所有剖析:依照已知可求得两底角的度数,再依照三角形内角和定理不难求得∠DBC的度数.解答:解:∵ AB=AC,∠ A=36°,∴∠ ABC=∠ ACB=72°.∵B D⊥AC于点 D,∴∠ CBD=90°﹣72°=18°.故答案为: 18°.议论:此题主要观察等腰三角形的性质,解答此题的要点是会综合运用等腰三角形的性质和三角形的内角和定理进行答题,此题难度一般.14.(3 分)(2014 年云南省)察律并填空(1)=?=;(1)(1)=? ? ?==(1)(1)(1)=? ? ? ? ?=?=;(1)(1)(1)(1)=? ? ? ? ? ? ?=?=;⋯(1)(1)(1)(1)⋯(1)=.(用含n的代数式表示, n 是正整数,且 n≥2)考点:律型:数字的化.菁网版所有剖析:由前面算式可以看出:算式的左利用平方差公式因式分解,中的数字互倒数,乘1,只剩下两端的( 1)和(1+)相乘得出果.解答:解:(1)(1)(1)(1)⋯(1)=? ? ? ? ? ? ⋯=.故答案:.点:此考算式的运算律,找出数字之的系,得出运算律,解决.三、解答(本大共9 个小,分60 分)15.(5 分)(2014 年云南省)化简求值:?(),其中x=.考点:分式的化简求值.版权所有专题:计算题.剖析:原式括号中两项通分并利用同分母分式的减法法规计算,约分获取最简结果,将 x 的值代入计算即可求出值.解答:解:原式=?=x+1,当 x=时,原式=.议论:此题观察了分式的化简求值,熟练掌握运算法规是解此题的要点.16.(5 分)(2014 年云南省)如图,在△ABC和△ABD中,AC与BD订交于点E,AD=B C,∠ DAB=∠ CBA,求证: AC=BD.考点:全等三角形的判断与性质.版权所有专题:证明题.剖析:依照“ SAS”可证明△ ADB≌△ BAC,由全等三角形的性质即可证明AC =BD.解答:证明:在△ ADB和△ BAC中,,∴△ ADB≌△ BAC(SAS),∴A C=BD.议论:此题观察了全等三角形的判断和性质,全等三角形的判断是结合全等三角形的性质证明线段和角相等的重要工具.在判断三角形全等时,要点是选择合适的判断条件.17.(6 分)(2014 年云南省)将油箱注满k升油后,轿车科行驶的总行程S(单位:千米)与平均耗油量a(单位:升/千米)之间是反比率函数关系S=(k 是常数,k≠0).已知某轿车油箱注满油后,以平均耗油量为每千米耗油0.1 升的速度行驶,可行驶 700 千米.(1)求该轿车可行驶的总行程S与平均耗油量a之间的函数剖析式(关系式);(2)当平均耗油量为 0.08 升/ 千米时,该轿车可以行驶多少千米?考点:反比率函数的应用.版权所有剖析:(1)将a=0.1 ,s=700 代入到函数的关系S=中即可求得 k 的值,进而确定剖析式;(2)将a=0.08 代入求得的函数的剖析式即可求得s 的值.解答:解:(1)由题意得:a=0.1 ,s=700,代入反比率函数关系S=中,解得: k=sa=70,所以函数关系式为: s=;(2)将a=0.08 代入s=得:s===875 千米,故该轿车可以行驶多875 米;议论:此题观察了反比率函数的应用,解题的要点是从实诘责题中抽象出反比率函数模型.18.(9 分)(2014 年云南省)为认识本校九年级学生期末数学考试情况,销量在九年级随机抽取了一部分学生的期末数学成绩为样本,分为 A、B(89~80分)、C(79~60分)、D(59~0分)四个等级进行统计,并将统计结果绘制成以下统计图,请你依照统计图解答以下问题:(1)此次随机抽取的学生共有多少人?(2)请补全条形统计图;(3)这个学校九年级共有学生 1200 人,若分数为 80 分(含 80 分)以上为优秀,请估计此次九年级学生期末数学考试成绩为优秀的学生人数大体有多少?考点:条形统计图;用样本估计整体;扇形统计图.版权所有剖析:(1)抽查人数可由C等所占的比率为 50%,依照总数=某等人数÷比率来计算;(2)可由总数减去A、C、D的人数求得B等的人数,再补全条形统计图;(3)用样本估计整体.用总人数 1200 乘以样本中测试成绩等级在 80 分(含 80 分)以上的学生所占百分比即可.解答:解:(1)20÷50%= 40(人),答:此次随机抽取的学生共有40 人;(2)B等级人数: 40﹣ 5﹣20﹣4=11(人)条形统计图以下:(3)1200××100%=480(人),此次九年级学生期末数学考试成绩为优秀的学生人数大体有480 人.议论:此题观察的是条形统计图和扇形统计图的综合运用,读懂统计图,从不一样样的统计图中获取必要的信息是解决问题的要点.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反响部分占整体的百分比大小.19.(7 分)(2014 年云南省)某市“艺术节”期间,小明、小亮都想去观看茶艺表演,但是只有一张茶艺表演门票,他们决定采用抽卡片的方法确定谁去.规则以下:将正面分别标有数字 1、2、3、4 的四张卡片(除数字外其余都相同)洗匀后,反面向上放置在桌面上,随机抽出一张记下数字后放回;重新洗匀后反面向上放置在桌面上,再随机抽出一张记下数字.若是两个数字之和为奇数,则小明去;若是两个数字之和为偶数,则小亮去.(1)请用列表或画树状图的方法表示抽出的两张卡片上的数字之和的所有可能出现的结果;(2)你认为这个规则公正吗?请说明原由.考点:游戏公正性;列表法与树状图法.版权所有剖析:(1)用列表法将所有等可能的结果一一列举出来即可;(2)求得两人获胜的概率,若相等则公正,否则不公正.解答:解:(1)依照题意列表得:1 2 3 41 2 3 4 52 3 4 5 63 4 5 6 74 5 6 7 8(2)由列表得:共 16 种情况,其中奇数有 8 种,偶数有 8 种,∴和为偶数和和为奇数的概率均为,∴这个游戏公正.议论:此题观察了游戏公正性及列表与列树形图的知识,难度不大,是经常出现的一个知识点.20.(6 分)(2014 年云南省)“母亲节”前夕,某商店依照市场检查,用3000 元购进第一批盒装花,上市后很快售完,接着又用 5000 元购进第二批这种盒装花.已知第二批所购花的盒数是第一批所购花盒数的 2 倍,且每盒花的进价比第一批的进价少 5 元.求第一批盒装花每盒的进价是多少元?考点:分式方程的应用.版权所有剖析:设第一批盒装花的进价是x 元/盒,则第一批进的数量是:,第二批进的数量是:,再依照等量关系:第二批进的数量=第一批进的数量×2可得方程.解答:解:设第一批盒装花的进价是x 元/盒,则2×=,解得 x=30经检验, x=30是原方程的根.答:第一批盒装花每盒的进价是30 元.议论:此题观察了分式方程的应用.注意,分式方程需要验根,这是易错的地方.21.(6 分)(2014 年云南省)如图,小明在M处用高1 米(DM=1 米)的测角仪测得旗杆 AB的顶端 B 的仰角为30°,再向旗杆方向前进10米到 F 处,又测得旗杆顶端 B 的仰角为60°,央求出旗杆 AB的高度(取≈,结果保留整数)考点:解直角三角形的应用-仰角俯角问题.版权所有剖析:第一剖析图形,依照题意构造直角三角形.此题涉及多个直角三角形,应利用其公共边构造三角关系,进而可求出答案.解答:解:∵∠ BDE=30°,∠ BCE=60°,∴∠ CBD=60°﹣∠ BDE=30°=∠ BDE,∴B C=CD=10米,在 Rt△BCE中, sin 60°=,即=,∴B E=5,AB=BE+AE=5+1≈10 米.答:旗杆 AB的高度大体是10米.议论:主要观察解直角三角形的应用,此题要修业生借助仰角关系构造直角三角形,并结合图形利用三角函数解直角三角形.22.(7 分)(2014 年云南省)如图,在平行四边形A BCD中,∠ C=60°, M、N分别是AD、BC的中点, BC=2CD.(1)求证:四边形MNCD是平行四边形;(2)求证:BD=MN.考点:平行四边形的判断与性质.专题:证明题.剖析:(1)依照平行四边形的性质,可得AD与 BC的关系,依照 MD与 NC的关系,可得证明结论;(2)依照依照等边三角形的判断与性质,可得∠DNC的度数,依照三角形外角的性质,可得∠ DBC的度数,依照正切函数,可得答案.解答:证明:(1)∵ABCD是平行四边形,∴A D=BC,AD∥BC,∵M、N分别是 AD、BC的中点,∴M D=NC,MD∥NC,∴M NCD是平行四边形;(2)如图:连接ND,∵MNCD是平行四边形,∴MN=DC.∵N是 BC的中点,∴BN=CN,∵BC=2CD,∠ C=60°,∴△NVD是等边三角形.∴ND=NC,∠ DNC=60°.∵∠DNC是△ BND的外角,∴∠NBD+∠NDB=∠ DNC,∵D N=NC=NB,∴∠ DBN=∠ BDN=∠DNC=30°,∴∠ BDC=90°.∵tan,∴DB=DC=MN.议论:此题观察了平行四边形的判断与性质,利用了一组对边平行且相等的四边形是平行四边形,等边三角形的判断与性质,正切函数.23.(9 分)(2014 年云南省)已知如图平面直角坐标系中,点O是坐标原点,矩形ABCD是极点坐标分别为 A(3,0)、B(3,4)、C(0,4).点 D在 y 轴上,且点D的坐标为( 0,﹣ 5),点P是直线AC上的一动点.(1)当点P运动到线段AC的中点时,求直线DP的剖析式(关系式);(2)当点P沿直线AC搬动时,过点D、P的直线与x轴交于点M.问在x轴的正半轴上可否存在使△ DOM与△ ABC相似的点 M?若存在,央求出点 M的坐标;若不存在,请说明原由;(3)当点P沿直线AC搬动时,以点P为圆心、R(R>0)为半径长画圆.获取的圆称为动⊙ P.若设动⊙P的半径长为,过点D作动⊙P的两条切线与动⊙P 分别相切于点E、F.请研究在动⊙P中可否存在面积最小的四边形DEPF?若存在,央求出最小面积S的值;若不存在,请说明原由.考点:圆的综合题;待定系数法求一次函数剖析式;垂线段最短;勾股定理;切线长定理;相似三角形的判断与性质.版权所有专题:综合题;存在型;分类议论.剖析:(1)只需先求出AC中点 P 的坐标,今后用待定系数法即可求出直线DP 的剖析式.(2)由于△DOM与△ABC相似,对应关系不确定,可分两种情况进行议论,利用三角形相似求出 OM的长,即可求出点 M的坐标.(3)易证 S PED =S PFD .进而有 S2 2 2四边形 DEPF =2S PED = DE .由∠ DEP =90°得 DE =DP ﹣PE△△△2DP ⊥AC 时, DP 最短,此=DP ﹣ .依照“点到直线之间,垂线段最短”可得:当时 DE 也最短,对应的四边形 DEPF 的面积最小.借助于三角形相似, 即可求出 DP ⊥AC时 DP 的值,即可求出四边形 DEPF 面积的最小值.解答:解:(1)过点 P 作 PH ∥OA ,交 OC 于点 H ,如图 1 所示.∵ P H ∥OA ,∴△ CHP ∽△ COA .∴ = = .∵点 P 是 AC 中点,∴ C P = CA .∴ H P = OA ,CH = CO .∵A (3,0)、C (0,4),∴ O A =3,OC =4.∴ H P = ,CH =2.∴ O H =2.∵ PH ∥OA ,∠ COA =90°, ∴∠ CHP =∠ COA =90°.∴点 P 的坐标为( ,2).设直线 DP的剖析式为 y=kx+b,∵D(0,﹣5),P(,2)在直线 DP上,∴∴∴直线 DP的剖析式为 y=x﹣5.(2)①若△DOM∽△ABC,图 2(1)所示,∵△ DOM∽△ ABC,∴=.∵点 B坐标为(3,4),点 D的坐标为(0.﹣5),∴B C=3,AB=4,OD=5.∴=.∴O M=.∵点 M在 x 轴的正半轴上,∴点 M的坐标为(,0)②若△ DOM∽△ CBA,如图2(2)所示,∵△ DOM∽△ CBA,∴=.∵B C=3,AB=4,OD=5,∴=.∴OM=.∵点 M在 x 轴的正半轴上,∴点 M的坐标为(,0).综上所述:若△ DOM与△ CBA相似,则点 M的坐标为(,0)或(,0).(3)∵OA=3,OC=4,∠AOC=90°,∴A C=5.∴P E=PF= AC=.∵DE、DF都与⊙ P相切,∴D E=DF,∠ DEP=∠ DFP=90°.∴S△PED=S△PFD.∴S四边形DEPF=2S△PED=2× PE?DE=PE?DE= DE.∵∠ DEP=90°,222 2∴DE=DP﹣PE.= DP﹣.依照“点到直线之间,垂线段最短”可得:当 DP ⊥AC 时, DP 最短,此时 DE 取到最小值,四边形 DEPF 的面积最小.∵ D P ⊥AC ,∴∠ DPC =90°. ∴∠ AOC =∠DPC .∵∠ OCA =∠ PCD ,∠ AOC =∠ DPC ,∴△ AOC ∽△ DPC .∴ = .∵ A O =3,AC =5,DC =4﹣(﹣ 5)= 9,∴ = .∴ D P = .22=( 2=.∴DE =DP ﹣ ) ﹣∴DE =,∴S 四边形 DEPF= DE =.∴四边形 DEPF 面积的最小值为.议论: 此题观察了相似三角形的判断与性质、用待定系数法求直线的剖析式、切线长定理、勾股定理、垂线段最短等知识,观察了分类议论的思想.将求DE的最小云南省中考数学试题包含答案值转变成求 DP的最小值是解决第 3 小题的要点.其余,要注意“△DOM与△ ABC相似”与“△ DOM∽△ ABC“之间的差异.2014 云南省中考数学试题满分: 100 分,考试时间: 120 分钟.2020-2-8。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
云南教育2014中考数学全真模拟大寨中考数学试卷
一.仔细选一选,只有一个是正确(本题有10个小题,每小题3分,共30分)
1.Cos30°的倒数是 ( ). A .
2
3 B .21 C .2 D
2.在⊙O 中,半径为6,圆心O 在坐标原点上,点P 的坐标为(4,5),则点P 与⊙O 的位置关系是( ). A .点P 在⊙O 内 B .点P 在⊙O 上 C .点P 在⊙O 外 D .不能确定
3.下列各组中的四条线段是成比例线段的是 ( ) A .4cm 、1cm 、2cm 、1cm B .1cm 、2cm 、3cm 、4cm C .25cm 、35cm 、45cm 、55cm D .1cm 、2cm 、20cm 、40cm
4.盒子里放有三张分别写有整式x+y,x-y ,2的卡片,从中随机抽取两张,把两张卡片上的整式分别做为
分子和分母 ,组成的代数式是分式的概率是 ( ) A .
13
B .
23
C .
29
D .
56
5. 一个圆锥的侧面展开图形是半径为8cm ,圆心角为120°的扇形,则此圆锥的底面半径为( )
A .3
8cm B .316
cm C .3cm D .34cm
6.若α=400
,则α的正切值h 的范围是( )
A.
21<h <2
2 B.33<h <2
3 C.1<h <3 D.33<h < 7.抛物线2
22y x x =-+-经过平移得到2
y x =-,平移方法是 ( ) A .向右平移1个单位,再向下平移1个单位B .向右平移1个单位,再向上平移1个单位 C .向左平移1个单位,再向下平移1个单位D .向左平移1个单位,再向上平移1个单位 8.数学课外兴趣小组的同学们要测量被池塘相隔的两棵树A 、B 的距离,他们设计了如图所示的测量方案:从树A 沿着垂直于AB 的方向走到E,再从E 沿着垂直于AE 的方向走到F,C 为AE 上一点,其中3位同学分别测得三组数据:(1) AC,∠ACB (2) AD, ∠F (3) CD,∠ACB,∠ADB 其中能根据所测数据求得A 、B 两树距离的有 ( ) A .0组 B .一组 C .二组 D .三组
9.如图延长Rt △ABC 斜边AB 到D 点,使BD =AB ,连结CD ,若tan ∠BCD =3
1
,则tanA =( ) A.
3 B.1 C.1 D.2 第8题图 第4题图
C
D
B
A
第9题图
第10题图
10. 已知二次函数)0(2≠++=a c bx ax y 的图象如图所示,有下列5个结论:
① 0>abc ;② c a b +<;③ 024>++c b a ;④ b c 32<;⑤ )(b am m b a +>+,(1≠m 的实数)其中正确的结论有( )
A. 2个
B. 3个
C. 4个
D. 5个
二. 认真填一填(本题有6个小题,每小题4分,共24分)
要注意认真看清楚题目的要求和要填写的内容,尽量完整地填写答案. 11
.函数y x
=
的自变量x 的取值范围是 . 12.⊙O 的直径为10 cm,弦AB 的弦心距为3cm,则以弦AB 为一边的⊙O 内接矩形的周长为 cm. 13.四个全等的直角三角形围成一个大正方形,中间空出的部分是一个小正方形,这样就组成了一个
“赵爽弦图”(如图).如果小正方形面积为49,大正方形面积为169,直角三角形中较小的锐角为θ,那么sin θ的值 .
(第13题图) (第14题图) (第15题图)
14.如图,在矩形ABCD 中,
65
=BC AB ,点E 在BC 上, 点F 在CD 上,且EC =61BC ,FC =5
3
CD ,
FG ⊥AE 于G ,则AG :GE= 。
15.如图,直线AB 、CD 相交于点O,∠AOC=30°, ⊙P 的半径为1cm,且OP=4cm,如果⊙P 以1cm/s 的 速度沿由A 向B 的方向移动,那么 秒
后⊙P 与直线CD 相切.
16.如图,E(2,3),F (3,2)在正方形OABC 的
边上,⊙D 分别切OE ,OF 于E ,F ,则⊙D 的半径为 。
(第16题图) 三. 全面答一答(本题有8个小题,共66分)
解答应写出文字说明、证明过程或推演步骤.如果觉得有的题目有点难,那么把自己能写出的解答写出一部分也可以.
17.(本小题满分6分)
如图,在大圆中有一小圆O ,作直线l ,使其将两圆的面积均二等分. (要求:尺规作图,保留作图痕迹).
G
F
E D C
B
A
18.(本小题满分8分)
小颖和小红两位同学在学习“概率”时,做投掷骰子实验,他们共做了60次实验,实验的结果如下:
(1)计算“3点朝上”的频率和“5点朝上”的频率.
(2)小颖说:“根据实验,一次实验中出现3点朝上的概率最大”;小红说:“如果投掷600次,那么出现6点朝上的次数正好是100次.”小颖和小红的说法正确吗?为什么? (3)小颖和小红各投掷一枚骰子,用列表或画树状图的方法求出两枚骰子朝上的点数之和为7的概率.
19.(本小题满分8分)
“未爱广场”旗杆AB 旁边有一个半圆的时钟模型,如图,时钟的9点和3点的刻度线刚好和地面重合,半圆的半径2米,旗杆的底端A 到钟面9点刻度C 的距离为5米,一天小明观察到阳光下旗杆顶端B 的影子刚好投到时钟的11点的刻度上,同时测得一米长的标杆的影长1.6米,求旗杆AB 的高度?
20.(本小题满分10分)
如图,AB 是半圆O 的直径,过点O 作弦AD 的垂线垂足为F,交圆于点E ,交AC 于点C ,使
BED C ∠=∠.
(1)判断直线AC 与圆O 的位置关系,并证明你的结论;
(2)若8AC =,
4
cos 5
BED ∠=,求AD 的长.
21. (本小题满分10分)
由山脚下的一点A 测得山顶D 的仰角是45°,从A 沿倾斜角为20°的山坡前进1000米到B ,再 次测得山顶D 的仰角为60°,求山高CD.(结果保留三个有效数字)
(参考数据:sin20°=0.342,cos20°=0.940,tan20°=0.364,732.13=)
C
A O
B
E D F
22. (本小题满分12分)
在△ABC 中,D 为AB 边上一点,过点D 作DE ∥BC 交AC 于点E ,以DE 为折线,将△ADE 翻折,设所得的△A’DE 与梯形DBCE 重叠部分的面积为y.
(1)如图(甲),若∠C=90°,AB=10,BC=6,
3
1
=AB AD ,则y 的值为 ; (2)如图(乙),若AB=AC=10,BC=12,D 为AB 中点,则y 的值为 ; (3)若∠B=30°,AB=10,BC=12,设AD=x.
①求y 与x 的函数解析式;②y 是否有最大值,若有,求出y 的最大值;若没有,请说明理由.
图(甲) 图(乙) 备用图
23.(本小题满分12分)
如图,已知平行四边形ABCD 的顶点A 的坐标是(016),,AB 平行于x 轴,B C D ,,三点在
抛物线2
425
y x =
上,DC 交y 轴于N 点,一条直线OE 与
E 点的横坐标为a ,四边形ADFE 的面积为135
2
. (1)求出B D ,两点的坐标;
(2)求a 的值;
(3)作ADN △的内切圆⊙P ,切点分别为 M K H ,,,求tan PFM ∠的值.。