七年级数学上册3.2解一元一次方程(一)—合并同类项与移项(第1课时)课件(新版)新人教版

合集下载

人教部编版七年级数学上册32解一元一次方程合并同类项与移项全套优质课件

人教部编版七年级数学上册32解一元一次方程合并同类项与移项全套优质课件

解:设所求三个数分别是x,-3x,9x. 由三个数的和是-1701,得 x - 3x + 9x = -1701. 合并同类项,得 7x = -1701. 系数化为1,得 x = -243. 所以-3x = 729 , 9x= -2187.
答:这三个数是-243,729,-2187.
若设所求的三个数中,中间的一个数为x, 则它前面的一个数为 x ,它后面的一个数
(2)能够从实际问题中列出一元一次方程,进一步 体会方程模型思想的作用及应用价值.
推进新课 知识点1 合并同类项
约公元820年,中亚细亚数学家阿尔-花拉子 米写了一本代数书,重点论述怎样解方程.这本书 的拉丁文译本取名为《对消与还原》. “对消” 与“还原”是什么意思呢?
某校三年共购买计算机140台,去年购买 数量是前年的2倍,今年购买数量又是去年的2 倍.前年这个学校购买了多少台计算机? 方法一:
合并同类项,得 - 1 x=4. 2
系数化为1,得 x=-8.
例4 某制药厂制造一批药品,如用旧工艺, 则废水排量要比环保限制的最大量还多200 t;如 用新工艺,则废水排量比环保限制的最大量少 100 t. 新、旧工艺的废水排量之比为2∶5,两种 工艺的废水排量各是多少?
分析:因为新、旧工艺的废水排量之比为 2∶5,所以可设它们分别为2x t和5x t,再根据 它们与环保限制的最大量之间的关系列方程.
如何将此方程转化为x=a(a为常数)的形式? 把含有x的项合并同类项,得 7x=140.
x+2x+4x=140 合并同类项
7x=140 系数化为1
等式的性质2 理论依据?
x=20
回顾本题列方程的过程,可以发 现:“总量=各部分量的和”是一个 基本的相等关系.

人教版七年级数学上册一元一次方程《解一元一次方程(一)——合并同类项与移项(第1课时)》示范教学课件

人教版七年级数学上册一元一次方程《解一元一次方程(一)——合并同类项与移项(第1课时)》示范教学课件
x=20.
解方程的第一步:将方程同侧的含有未知数的项和常数项分别合并,使方程化为 mx=n(m≠0)的形式.
解方程的第二步:运用等式的性质 2 ,等号两边同时除以未知数项的系数,使方程变形为 x=a(常数)的形式.
答:前年这个学校购买了 20 台计算机.
上面解方程中“合并同类项”起了什么作用?
今年购买计算机 4x 台.
根据前年购买量+去年购买量+今年0.
则去年购买计算机 2x 台,
如何解方程:x+2x+4x=140.
问题
解:合并同类项,得
7x=140.
系数化为 1,得
解:(2)合并同类项,得
系数化为 1,得
x=-13.
6x=-78.
利用合并同类项解方程时要注意:
归纳
(1)只有同类项才能合并,非同类项不能合并. (2)合并同类项的法则:同类项的系数相加减,字母及字母的指数不变. (3)在系数化为 1时,特别注意系数是负数时,符号不要出错.
请你尝试用分析(2)中②③的设未知数的方法解决本题.
解方程
解一元一次方程(一)——合并同类项
合并同类项
系数化为 1
列方程
审题
设未知数
列方程
解一元一次方程(一)——
合并同类项与移项
(第1课时)
人教版七年级数学上册
1.等式的性质
等式的性质 1:如果 a=b,那么 a±c=b±c.
2.利用等式的性质解下列方程.
(1)x-5=6; (2) .
解:(1)两边加 5,得 x-5+5=6+5.于是,x=11.
问题
问题中涉及了哪些量?
前年购买量+去年购买量+今年购买量=三年总量
在列方程时,“总量=各部分量的和”是一个基本的相等关系.

2014版新人教版七年级上3.2解一元一次方程(一)——合并同类项与移项第1课时学案配套课件

2014版新人教版七年级上3.2解一元一次方程(一)——合并同类项与移项第1课时学案配套课件

知识点 1 用合并同类项解一元一次方程
【例1】解方程:(1)-3x+0.5x=10.
(2)3y-4y=-25-20.
【思路点拨】先合并同类项,然后系数化为1,求得方程的解.
【自主解答】(1)合并同类项得-2.5x=10, 系数化为1,得x=-4. (2)合并同类项得-y=-45, 系数化为1,得y=45.
【总结提升】解“总量等于各部分量的和”问题的四个步骤 1.设:弄清问题中的总量及各分量,适当设未知数 . 2.列:根据“总量等于各部分量的和”这一相等关系正确列出 方程. 3.解:解方程,求出未知数的值. 4.答:按问题要求作答.
题组一:用合并同类项解一元一次方程 1.下列合并同类项,结果正确的是( A.3a+3b=6ab C.2y+3y+y=5y B.3m-2m=1 D. ax 1.5ax 0
2.一个水池有甲、乙两个水龙头,单独开甲水龙头2小时可把 空池灌满;单独开乙水龙头3小时可把空池灌满,若同时开放 两个水龙头,灌满水池需( A. 6 小时
5
)
B. 5 小时
6
C.2小时
D.3小时
【解析】选A.设同时开放两个水龙头,灌满水池需x小时,则
1 1 6 x x 1, 所以x . 2 3 5
(打“√”或“×”) (1)-3x+7x的结果等于10x.( × ) (2)解方程2x+x=9时,合并同类项得,3x=9.( √ ) (3)解方程 x 4 得,x=2.( × ) (4)方程x-4x=15的解是x=-5.( √ ) (5)方程-x+6x=-2-8的解是x=-1.( × )
1 2
【总结提升】合并同类项解一元一次方程的实质 合并同类项是一种恒等变形,就是利用乘法分配律把含有 未知数的项结合在一起、把常数项结合在一起 ,最终化为“ax=b (a≠0)”,再根据等式的性质2,两边同除以a,把系数化为1,

解一元一次方程(一)-合并同类项与移项PPT课件__数学七年级上册PPT完美版(人教版)

解一元一次方程(一)-合并同类项与移项PPT课件__数学七年级上册PPT完美版(人教版)
解:(1) 列方程,得3x+2=2x-1. 移项,得3x- 2x=-1-2. 合并同类项,得x=-3.
3.利用方程解答下列问题: (1) x的3倍与2的和等于x的2倍与1的差,求x的值; (2) y与-3的积等于y与1的和,求y的值; (3) 已知整式-3x+2 与2x-1的值互为相反数,求x的值.
设这个班有x名学生. 每人分3本,共分出3x本,加上剩余的20本,这批书共 (3x+20)本. 每人分4本,共需要4x本,减去缺少的25本,这批书共 (4x-25) 本. 这批书的总数是一个定值,表示它的两个式子应相等, 根据这一相等关系列得方程3x+20=4x- 25. 这与前边方
程有何不同?
方程3x+20=4x-25的两边都有含x的项(3x与4x)和不含 字母的常数项(20与-25),怎样才能把它转化为x=a(a 为常数)的形式呢?
对于方程 x+2m=3,移项,得 x=3-2m. 知由识上点 可知解,一这元个一班次有方4程5名—学—生移. 项
合甲并赶同 羊类群项逐,草得茂,-x乙=-拽1. 一羊随其后, 如为果了每 使人方分程4的本右,边则没还有缺含25x本的. 项,等号两边同时减4x;
因为两个方程的解相同,所以 -m-9=3- 2m. 每知人识分 点3本解,一共元分一出次方3x程本—,—加移上项剩余的20本,这批书共(3x+20)本.
移项的依据 移项的依据是等式的性质1,移项的目的是将含有未知 数的项移到方程的一边,将常数项移到方程的另一边, 使方程更接近 x=a 的形式.
注意:1. 移项必须是由等号的一边移到另一边,而不 是在等号的同一边交换位置. 2. 方程中的各项均包括它们前面的符号,如x-2=1中, 方程左边的项有x,-2,移项时所移动的项一定要变号. 3.移项时,一般都习惯把含未知数的项移到等号左边, 把常数项移到等号右边.

数学七年级上人教广东同步课件第三章 3-2 解一元一次方程(一)——合并同类项与移项 第1课时

数学七年级上人教广东同步课件第三章  3-2 解一元一次方程(一)——合并同类项与移项 第1课时

易错点 系数化为 1 时符号错误或将分子与分母颠倒. 解方程: (1)x-32 x=1-3; (2)13 x-23 x=-5-6. 【解析】见全解全析
6.(2021·佛山期末)生产某种合金,需要甲、乙、丙三种原料,甲与乙之比是 4∶3,丙与乙之比为3∶2,若需要这种合金92千克,问:甲、乙、丙三种原料 是多少千克? 【解析】因为甲∶乙=4∶3=8∶6,丙∶乙=3∶2=9∶6, 所以甲∶乙∶丙=8∶6∶9. 设甲种原料需要8x千克,则乙种原料需要6x千克,丙种原料需要9x千克, 依题意得:8x+6x+9x=92,解得:x=4, 所以8x=32(千克),6x=24(千克),9x=36(千克). 答:甲种原料需要32千克,乙种原料需要24千克,丙种原料需要36千克.
3.2 解一元一次方程(一)——合并同类项与移项 第1课时
必备知识·基础练
【易错诊断】 (打“√”或“×”)
1.方程 4x-92 x=1-3 合并同类项,得12 x=-2.( × ) 2.方程-2.5y=53 系数化为 1,得 y=23 .( × ) 3.方程23 x=2 系数化为 1,得 x=43 .( × )
【对点达标】 知识点 1 利用合并同类项解简单的一元一次方程
1.下列合并正确的是( D )
A.由-3x+2x=1,得 x=1 B.由 x+2x+3x=9,得 5x=9 C.由-x+2x-3x=5,得-4x=5 D.由12 x+13 x-x=2,得-16 x=2
2.(2021·珠海质检)方程 10x+3x-4x=158 的解为( C )
8.某公司门口有一个长为900 cm的长方形电子显示屏,如图所示,公司的有 关活动都会在电子显示屏播出,由于各次活动的名称不同,字数也就不等,为 了制作及显示时方便美观,负责播出的员工对有关数据作出了如下规定:边空 宽∶字宽∶字距=3∶4∶1,请用列方程的方法解决下列问题:某次活动的字 数为17个,求字距是多少.

2020年七年级数学上册 第3章 一元一次方程 3.2 解一元一次方程(一)—合并同类项与移项 第1课时 合并同类

2020年七年级数学上册 第3章 一元一次方程 3.2 解一元一次方程(一)—合并同类项与移项 第1课时 合并同类

1.下列各方程合并同类项不正确的是( C )
A.由3x-2x=4,合并同类项,得x=4
B.由2x-3x=3,合并同类项,得-x=3
C.由5x-2x+3x=-10-2,合并同类项,得6x=-8.
D.由-7x+2x=5,合并同类项,得-5x=5
2.下列解为x=4方程是( B )
A.7x-3x=-4
B.x+x=5+3
7.若关于x的方程2mx-3m=3x+2的解是8,则m的值为( A )
A.2
B.8
C.-2
D.-8
8.关于x的方程3-x=2a与方程x+3x=28的解相同,则a的值为( B )
A.2
B.-2
C.5
D.-5
9. (长沙中考)中国古代数学著作《算法统宗》中有这样一段记载:“三百
七十八里关,初健步不为难,次日脚痛减一半,六朝才得到其关.”其大
C.x=-1+3
D.-2x=8
3.挖一条长1210m的水渠,由甲、乙两队从两头同时施工.甲队每天挖
130m,乙队每天挖90m,需几天才能挖好?设需用x天才能挖好,则所列方
程正确的是( A )
A.130x+90x=1210
B.130+90x=1210
C.130x+90=1210
D.(130-90)x=1210
除以a
,从而得到x=
b a
.
自我诊断1. 方程2x+x=-6的解是( D )
A.x=0
B.x=1
C.x=2
D.x=-2
利用总分关系列方程
总量=各部分量的 和 .
自我诊断2. 若三个连续奇数的和是15,则它们的积为( A )
A.105
B.15
C.35
D.75

人教版七年级上册解一元一次方程——合并同类项与移项(第1课时)课件x

人教版七年级上册解一元一次方程——合并同类项与移项(第1课时)课件x
2
2 7 − 2.5 + 3 − 1.5 = −15 × 4 − 6 × 3
1
2
解:(1)合并同类项,得− = −2,系数化为1,得 = 4
(2)合并同类项,得6 = -78.系数化为1,得 = -13
教学新知
例2 有一列数,按一定规律排列成1,-3,9,-27,81,-243……
课堂练习
解:设原两位数十位上数为
则原两位数为10 + 2 = 12,新两位数为10 × 2 + = 21.
根据题意知21 − 12=36.合并同类项,得9 = 36.
系数化为1,得 = 4.12 × 4 = 48.
答:原两位数为48.
3.一条环形跑道长400米,甲练习骑自行车平均每分钟550米,乙练习
3.2 一元一次方程
3.2 解一元一次方程(一)
——合并同类项与移项(1)

2 4 = 140
课题引入
问题1:约公元820年,中亚细亚数学家阿尔一花拉子米
写了一本代数书,重点论述怎样解方程.这本书的拉丁文译本
取名为《对消与还原》.“对消”与“还原”是什么意思呢?
通过下面几节课的学习讨论,相信同学们一定能回答这个问题.
10
180吨
量为1800吨,那么1月份的产量为_________________.
6.某超市的收银员在记帐时发现现金少了153.9元,查帐后得知是一
笔支出款的小数点被看错了一位,则她查出这笔看错了的支出款实际
17.1
是_______元.
知识拓展
如图,将一列数按如图的方式排列成一个方阵,用一个长方形框
白皮块数目比为3:5,一个足球表面一共有32个皮块,黑色皮块和白色

人教版七年级上册数学作业课件 第三章 一元一次方程 第1课时 用合并同类项的方法解一元一次方程

人教版七年级上册数学作业课件 第三章 一元一次方程 第1课时 用合并同类项的方法解一元一次方程
3.2 解一元一次方程(一)——合 并同类项与移项
第1课时 用合并同类项的方法解 一元一次方程
知识点一 利用合并同类项解一元一次方程
1.对于方程 2y+3y-4y=1,合并同类项正确的是
(A)
A.y=1
B.-y=1
C.9y=1
D.-9y=1
2.方程-a-3a=8 的解为( A )
A.a=-2
B.a=2
如下,正确的是( A )
A.130x+90x=1 210 B.130+90x=1 210
C.130x+90=1 210
D.(130-90)x=1 210
7.若三个连续奇数的和是 15,则它们的积是( A )
A.105
B.15
C.35
D.75
8.(2021-2022·北京期中)学校合唱组的男同学人数是
女同学的1,女同学人数比男同学多 4
42
人.合唱组有
女同学和男同学各多少人?
解:设合唱组有女同学 x 人,则有男同学 14x 人. 根据题意得 x-14x=42,解得 x=56.所以14×56=14(人). 答:合唱组有女同学 56 人,男同学 14 人.
9.(教材 P91 习题 T7 变式)小红把 140 cm 长的铁丝分 成 2 段,分别做成两个正方形的数学模型.如果两个 正方形的边长比是 3∶4,那么这两个正方形的边长 分别是多少? 解:设这两个正方形的边长分别为 3x cm,4x cm, 则 4×3x+4×4x=140.解得 x=5. 所以 3x=15,4x=20. 答:这两个正方形的边长分别为 15 cm,20 cm.
C.a=-3
D.a=3
3.如果 x=m 是方程 12x-m=1 的解,那么 m 的值是

人教版七年级数学上册《解一元一次方程 合并同类项与移项》PPT课件

人教版七年级数学上册《解一元一次方程 合并同类项与移项》PPT课件
根据问题中的相等关系 (总量等于各部分量的和) 即:
前年购买量+去年购买量+今年购买量=140台
列得方程 x + 2x +4x = 140.
探究新知
温故知新
1.含有相同的_字__母__,并且相同字母的__指__数_也 相同的项,叫做同类项; 2.合并同类项时,把各同类项的_系__数__相加减, 字母和字母的指数_不__变__.
还有其他设未 知数的方法吗?
化系数为1,得 x=9.
x-1=8, x+1=10. 答:这三个数分别是8,9,10.
检验
探究新知
例3 足球表面是由若干个黑色五边形和白色六边形皮 块围成的,黑、白皮块数目的比为3:5,一个足球表面 一共有32个皮块,黑色皮块和白色皮块 各有多少个?
提示 本题中已知黑、白皮块数目比为3:5,可设黑色皮块有3x 个,则白色皮块有5x个,然后利用相等关系“黑色皮块数+白 色皮块数=32”列方程.
探究新知
解:设所求的三个数分别是 x, 3x,9x. 由三个数的和是-1701,得 x 3x 9x 1701. 合并同类项,得 7x 1701.
系数化为1,得 x 243.
所以
3x 729.
9x 2187.
答:这三个数是 -243,729,-2187.
探究新知
归纳总结 用方程解决实际问题的过程
x=60
(2) x 2 x 1 x 4 2 32. 32
解:合并同类项,得 1 x 1. 6
去绝对值,得 1 x 1. 6
系数化为1,得 x 6.
巩固练习 解下列方程: (1) 5x-2x = 9;
解:合并同类项,得 3x=9,
系数化为1,得 x=3.
(2)1 x 3 x 7.

人教版七年级数学上册3解一元一次方程(一)——合并同类项与移项课件

人教版七年级数学上册3解一元一次方程(一)——合并同类项与移项课件

2
将解得的未知数的值代入原方程可以检验它是否是原方程的
解.
例题讲解
例1
解下列方程:
5
两边同× −2
1 2 − = 6 − 8.
2
1
− = −2.
解:合并同类项,得
2
1
= −2 ÷ − 2
系数化为 1,得
= −2 × −2
= 4.
例题讲解
例1
解下列方程:
2 7 − 2.5 + 3 − 1.5 = −15 × 4 − 6 × 3.
合并同类项要注意每项系数的符号,合并时要将各
项的系数进行相加.
例题讲解
小结2
系数化为 1 时,需要注意什么?
5
1 2 − = 6 − 8.
2
1
− = −2.
2
系数化为 1 时,特别注意是在方程两边同时除以未
知数的系数(或者乘以未知数系数的倒数).
例题讲解
例2
有一列数,按一定规律排列成 1,−3,9,−27,81, − 243, ⋯.
机?
分析
设今年这个学校购买 台计算机,


则去年购买 台,前年购买 台.
2
4

+ + = 140.
4 2
三年总量=前年+去年+今年
学习新知
问题
某校三年共购买计算机 140 台,去年购买数量是前年的 2 倍,今
年购买数量是去年的 2 倍,前年这个学校购买了多少台计算机?
分析
1.设前年这个学校购买了 台计算机;
其中某三个相邻数的和是−1701,这三个数各是多少?
分析
观察这列数,你发现什么规律?

(第1课时)用移项、合并同类项解一元一次方程课件初中数学湘教版七年级上册

(第1课时)用移项、合并同类项解一元一次方程课件初中数学湘教版七年级上册
1
2
右边=3- × −8 = 7,左边=右边.因此x=-8是原方程的解.
补充练习
1.下列方程变形中属于移项的是( C )
1
A.由2x=-1,得x=−
2
2.将方程5x+1=2x-3移项后,可得( B )
A.5x-2x=-3+1
B.5x-2x=-3-1

B.由 =2,得x=4
2
C.由5x+b=0,得5x=-b
2 345 + 12x = 5 129
12x = 5 129 – 2 345
从变形前后的两个方程可以看出,这种变形,就
是把方程中的某一项改变符号后,从方程的一边移到
另一边,我们把这种变形叫做移项.
必须牢记:移项要变号.
在解方程时,我们通过移项,把方程中含未知数的项移
到等号的一边,把不含未知数的项移到等号的另一边.

2 345+12x-2 345= 5 129-2 345,

12x=2 784.

方程②两边都除以12,得x=232 .
因此,热气球在后12h飞行的平均速度为232 km/h.
我们把求方程的解的过程叫做解方程.
在上面的问题中,我们根据等式性质1,在方程①两
边都减去2 345,相当于作了如下变形:
)
4.解下列方程:
(1)6x-3=9;
(2)5x-8=7x+2;
解:移项,得6x=3+9,
解:移项,得5x-7x=2+8,
合并同类项,得6x=12,
合并同类项,得-2x=10,
方程两边同除以6,得x=2.
方程两边同除以-2,得x=-5.
3
(3) = + 16.

人教版七年级上册数学3.2 解一元一次方程(一)——合并同类项与移项课件

人教版七年级上册数学3.2 解一元一次方程(一)——合并同类项与移项课件

分析: 设这个班有x名学生. 这批书共有(3x+20)本.
盈不足问题
这批书共有(4x-25)本.
表示同一个量的两个不同的式子相等.
(即:这批书的总数是一个定值)
3x+20=4x-25
请运用等式的性质解下列方程:
(1) 4x-15 = 9; 解:两边都加15,得
4x-15+15 = 9 +15 合并同类项,得
解得
x=33,
所以 x+3=36,x+6=39.
故这三张卡片上面的数分别是33,36,39.
亲爱的读者: 1、盛 生年 活不重 相来 信, 眼一泪日 ,难 眼再 泪晨 并。 不及 代时 表宜 软自 弱勉 。,20岁.7.月12不7.待12人.2。02。00290:.071.10297:0.112:4.250J2u0l-0290:0091:091:01:45Jul-2009:01 亲爱的读者: 2、千世里上之没行有,绝始望于的足处下境。,只20有20对年处7月境1绝2日望星的期人日。二〇二〇年七月十二日2020年7月12日星期日 春去春又回,新桃换旧符。在那桃花盛开的地方,在 3、少成年功易都学永老远难不成会,言一弃寸,光放阴弃不者可永轻远。不。会成09功:01。7.12.202009:017.12.202009:0109:01:457.12.202009:017.12.2020
这醉人芬芳的季节,愿你生活像春天一样阳光,心情像桃 76、人生生命贵太相过知短,暂何,用今金天与放钱弃。了明20天.7.不12一20定.7能.1得22到0.。7.192时。12分092时0年1分7月121-2J日ul星-20期7日.12二.2〇02二0〇年七月十二日 花一样美丽,感谢你的阅读。 87、勇放气眼通前往方天,堂只,要怯我懦们通继往续地,狱收。获的09季:01节0就9:0在1前:45方7.。122.02.072.102S2u0n.d7a.1y2, 2J0u.l7y.12,。22002200年7月12日星期日二〇二〇年七月十

人教版数学七年级上册3.2 解一元一次方程(一)——合并同类项与移项 课件(共17张PPT)

人教版数学七年级上册3.2 解一元一次方程(一)——合并同类项与移项  课件(共17张PPT)

B
知识点二 合并同类项
把方程两边的____同__类__项______分别合并,从而把方程转化 为_____a_x_=__b_____的形式,然后再转化为x=c的形式(其中 a,b,c是常数).
2. 解方程-7x+4x=9的步骤: (1)__合__并__同__类__项__,__得__-__3_x_=__9_______; (2)__系__数__化__为__1_,__得__x_=__-__3_________.
【例3】解下列方程: (1)3x+2x+x=24; 解:合并同类项,得6x=24. 系数化为1,得x=4.
(2)-3x+6x=18. 解:合并同类项,得3x=18. 系数化为1,得x=6.
思路点拨:先合并同类 项,再将系数化为1即 可.
解:合并同类项,得-x=-3. 系数化为1,得x=3.
【例4】有一列数,按一定的规律排列成-2,4,-8,16 ,…,其中某三个相邻的数的和为-384,求这三个数各为 多少.
第三章Байду номын сангаас一元一次方程
第27课时 解一元一次方程(一)——合并同类项
目录
01 本课目标 02 课堂导练
本课目标
1. 运用合并同类项解形如 ax+bx+cx=p的方程. 2. 经历运用方程解决实际问题的过程,体会方程是刻画现 实世界的有效数学模型.
知识点一 未知数系数化为1
把形如ax=b的方程,利用等式的性质,两边同时 ____除__以__a______,从而把方程转化为x=c的形式(其中a,b ,c是常数).
谢谢
课堂导练
解:系数化为1,得x=2. 思路点拨:利用将未知数系数化为1的方法解答即可.
解:系数化为1,得x=-3.
D

专题3.2 解一元一次方程(一)——合并同类项与移项

专题3.2 解一元一次方程(一)——合并同类项与移项

1.解一元一次方程(1)一般步骤:去分母、去括号、移项、合并同类项、___________,这是解一元一次方程的一般步骤,针对方程的特点,灵活应用,各种步骤都是为使方程逐渐向___________形式转化.(2)在解类似于“ax+bx=c”的方程时,将方程左边,按合并同类项的方法并为一项即___________.使方程逐渐转化为ax=b的最简形式,体现化归思想.2.移项:把等式一边的某项___________后移到另一边,叫做移项.3.合并同类项:把方程中含有的同类项合并,使方程变得简单,更接近于“x=a”的形式,合并时要牢记合并同类项的法则:同类项的系数___________,字母及字母的指数___________.(1)合并同类项的实质是系数的合并,字母及其指数都不变.(2)含不同未知数的项不能合并.(3)系数是负数时,合并时注意不能丢了负号.4.实际问题列方程的基本步骤:(1)设未知数;(2)找相等关系;(3)列方程.K知识参考答案:1.(1)系数化为1,x=a(2)(a+b)x=c 2.变号3.相加,不变K—重点(1)解一元一次方程——系数化为1;(2)解一元一次方程——合并同类项;(3)解一元一次方程——移项;(4)列方程解决实际问题.K—难点列方程解决实际问题.K —易错移项时要变号.一、解一元一次方程——合并同类项与移项1.解一元一次方程——合并同类项解方程中的合并同类项与整式加减中的合并同类项一样,要牢记合并同类项法则:合并同类项后,所得项的系数是合并前各同类项的系数的和,且字母连同它的指数不变. 2.解一元一次方程——移项移项必须是由等号的一边移到另一边,而不是在等号的同一边交换位置.方程中的项包括它前面的符号,移项时,一般都习惯把含未知数的项移到等号左边,把常数项移到等号右边. 3.解一元一次方程——系数化为1 将形如ax =b (a ≠0)的方程化为x =a b 的形式,也就是求出方程的解x =ab的过程,叫做系数化为1. 系数化为1的依据是等式的性质2,方程左右两边同时乘未知数系数的倒数. 【例1】方程2x –3=5解是 A .x =4 B .x =5C .x =3D .x =6【答案】A【解析】方程移项合并得:2x =8,解得x =4,故选A . 【名师点睛】1.合并同类项的实质是系数的合并,字母及指数都不变;2.系数合并时要连同前面的“±”号,如–3x +2x =5应变成(–3+2)x =5,即–x =5; 3.系数合并的实质是有理数的加法运算;4.移项时,所移的项一定要变号,而且必须是从方程的一边移到方程的另一边.二、列一元一次方程解决实际问题1.列一元一次方程解决实际问题的一般步骤:审题→找相等关系→设未知数→列方程→解方程→检验→写出答案 2.常见的两种基本相等关系 (1)总量=各部分量的和;(2)表示同一个量的两个不同的式子相等.【例2】《九章算术》是中国传统数学的重要著作,方程术是它的最高成就.其中记载:今有女子善织,日自倍,五日织五尺.问日织几何?译文:一位善于织布的妇女,每天织的布都是前一天的2倍,她5天共织了5尺布,问在这5天里她每天各织布多少尺?设她笫一天织布为x 尺,以下列出的方程正确的是 A .x +2x =5B .x +2x +4x +6x +8x =5C .x +2x +4x +8x +16x =5D .x +2x +4x +16x +32x =5【答案】C【解析】设她笫一天织布为x 尺,可得x +2x +4x +8x +16x =5,故选C . 【名师点睛】1.列一元一次方程解决实际问题的关键是审题,寻找相等关系;2.求出方程的解后要检验(检验的过程在草稿纸上进行),既要检验所求出的解是不是方程的解,又要检验所求出的解是否符合实际意义.1.方程315x -=的解是 A .x =3B .x =4C .x =2D .x =62.方程x –3=–6的解是 A .x =2B .x =–2C .x =3D .x =–33.方程231x -=的解是 A .0x =1B 2x =.C 1x =.D 2x =.4.如果2005200.520.05x -=-,那么x 等于 A .1814.55 B .1824.55 C .1774.45D .1784.455.下列通过移项变形,错误的是 A .由x +2=2x –7,得x –2x =–7–2B .由x +3=2–4x ,得x +4x =2–3C .由2x –3+x =2x –4,得2x –x –2x =–4+3D .由1–2x =3,得2x =1–36.若关于x 的方程ax –4=a 的解是x =3,则a 的值是 A .–2B .2C .–1D .17.已知关于x 的方程2x –3m –12=0的解是x =3,则m 的值为 A .–2B .2C .–6D .68.若a +3=0,则a 的值是 A .–3B .13-C .13 D .39.若代数式5x –7与4x +9的值相同,则x 的值为 A .2B .16C .2916D 9.10.若代数式x –7与–2x +2的值互为相反数,则x 的值为A .3B .–3C .5D .–511.方程2x –2=4的解是A .x =2B .x =3C .x =4D .x =512.方程2x –1=3的解是A .x =1B .x =2C .x =4D .x =813.方程x –1=2018的解为A .x = 2017B .x = 2019C .x =–2017D .x =–201914.方程2–5x =9的解是A .x =–57B .x =115C .x =57D .x =–7515.方程2x +1=3的解是A .x =−1B .x =1C .x =2D .x =−216.如果□×(–3)=1,则“□”内应填的实数是A .13B .3C .–3D .13-17.下列变形属于移项的是A .由540x -=,得450x -+=B .由21x =-,得12x =- C .由430x +=,得403x =-D .由554x x -=,得154x = 18.方程3x =15–2x 的解是A .x =3B .x =4C .x =5D .x =619.方程22x x -=-的解是A .1x =B .1x =-C .x =2D .0x =20.若代数式x –3的值为2,则x 等于A .1B .–1C .5D .–521.方程226x -+=的解为__________. 22.方程250x -=的解为__________.23.如果x =2是关于x 的方程x –a =3的解,则a =__________. 24.方程35x =-的解是___________.25.若(a –1)x |a |+3=–6是关于x 的一元一次方程,则a =___________;x =___________. 26.若关于x 的方程3x +4=0与方程3x +4k =18是同解方程,则k =___________. 27.将x =–32y –1代入4x –9y =8,可得到一元一次方程_______. 28.解方程:(1)–2x =6;(2)x –11=7;(3)x +13=5x +37;(4)3x –x =–13+1.29.有人问小明的生日是几号,小明说:“在日历表上,我的生日连同上、下、左、右5个日期之和是21.”小明撒谎了吗?为什么?30.已知A =2x 2+3xy –2x –1,B =–x 2+xy –1.若3A +6B 的值与x 的值无关,求y 的值.31.代数式2a -与12a -的值相等,则a 等于A .0B .1C .2D .332.若方程213x +=和203a x--=的解相同,则a 的值为 A .7B .5C .3D .033.关于x 的方程253x a +=的解与方程220x +=的解相同,则a 的值是A .1B .4C .15D .1-34.方程122x -=的解是 A .14x =-B .4x =-C .14x =D .4x =35.马强在计算“41+x ”时,误将“+”看成“–”,结果得12,则41+x 的值应为A .29B .53C .67D .7036.方程|x –3|=6的解是A .9B .±9C .3D .9或–337.对任意四个有理数a ,b ,c ,d 定义新运算:a b ad bc c d =-,已知24181x x -=,则x = A .–1B .2C .3D .438.a ※b 是新规定的这样一种运算法则:a ※b =a +2b ,例如3※(–2)=3+2×(–2)=–1.若(–2)※x =2+x ,则x 的值是 A .1B .5C .4D .239.某中学七年级学生参加一次公益活动,其中10%的同学去做保护环境的宣传,55%的同学去植树,剩下的70名同学去清扫公园内的垃圾,七年级共有多少名同学参加这次公益活动? 40.若新规定这样一种运算法则:a *b =a 2+2ab ,例如3*(–2)=32+2×3×(–2)=–3.(1)试求(–1)*2的值; (2)若3*x =2,求x 的值;(3)(–2)*(1+x )=–x +6,求x 的值.41.(2018·恩施)一商店在某一时间以每件120元的价格卖出两件衣服,其中一件盈利20%,另一件亏损20%,在这次买卖中,这家商店 A . 不盈不亏 B . 盈利20元C . 亏损10元D . 亏损30元42.(2018·武汉)将正整数1至2018按一定规律排列如下表:平移表中带阴影的方框,方框中三个数的和可能是 A . 2019B . 2018C . 2016D . 20133.【答案】D【解析】移项得:2x =3+1, 合并得:2x =4, 系数化为1得:x =2. 故选D . 4.【答案】B【解析】移项可得:20.05200.52005x -=-+-,合并同类项可得:1824.55x -=-, 系数化为1可得:1824.55x =. 故选B . 5.【答案】C6.【答案】B【解析】把x =3代入方程得:3a –4=a ,解得:a =2,故选B . 7.【答案】A【解析】把x =3代入2x –3m –12=0得6–3m –12=0,所以m =–2.故选A . 8.【答案】A【解析】a +3=0,移项得,a =–3.故选A . 9.【答案】B【解析】根据题意得:5x −7=4x +9,移项得:5x –4x =9+7, 合并同类项得:x =16,故选B . 10.【答案】D【解析】根据题意得:x –7−2x +2=0, 移项合并得:–x =5, 解得:x =−5, 故选D . 11.【答案】B【解析】方程移项得:2x =4+2, 合并得:2x =6, 解得:x =3, 故选B . 12.【答案】B【解析】移项得:2x=3+1,合并同类项得:2x=4,把x的系数化为1得:x=2.故选B.16.【答案】D【解析】设“□”内应填的实数是x,则–3x=1,解得,x=13 ,故选D.17.【答案】C【解析】选项A只是将方程左边的式子进行变形,并没有进行移项;选项B属于将方程的未知数系数化为1;选项C进行了移项;选项D为方程的左边进行合并同类项.故选C.18.【答案】A【解析】方程移项合并得:5x=15,解得:x =3. 故选A . 19.【答案】C【解析】移项得:x +x =2+2,合并同类项得:2x =4,解得:x =2.故选C .解得:1a =-, 故答案为:1-. 24.【答案】x =8【解析】移项可得:53x -=--, 合并同类项可得:8x -=-, 系数化为1可得:8x =. 故答案为: x =8.25.【答案】(1)–1;(2)92. 【解析】∵方程(a –1)x |a |+3=–6是关于x 的一元一次方程, 所以10 a -≠,1a =,解得1a =-, 所以原方程为:236x -+=-,解得:92x =. 故答案为:(1)–1;(2)92.26.【答案】11 227.【答案】5y+4=0【解析】将312x y=--代入498x y-=,得341982y y⎛⎫---=⎪⎝⎭,整理得:540y+=.故答案为:540y+=. 28.【解析】(1)–2x=6,x=–3;(2)x–11=7,x=7+11,x=18;(3)x+13=5x+37,x–5x=37–13,–4x=24,x=–6;(4)3x–x=–13+1,2x=23,x=13.29.【解析】小明撒谎了.理由如下.30.【解析】∵A =2x 2+3xy –2x –1,B =–x 2+xy –1,所以3A +6B =15xy –6x –9=(15y –6)x –9,要使3A +6B 的值与x 的值无关,则15y –6=0, 解得:y =25. 31.【答案】B【解析】根据题意得:a −2=1−2a ,移项合并得:3a =3,解得:a =1.故选B .32.【答案】A【解析】解第一个方程得:x =1,解第二个方程得:x =a −6,所以a −6=1,解得:a =7.故选A .33.【答案】A【解析】解方程220x +=,得1x =-,把1x =-代入253x a +=得253a -+=,解得 1.a =故选A .34.【答案】A 【解析】122x -=,14x =-.故选A . 35.【答案】D【解析】由题意可得:4112x -=,解得:29x =, 所以41412970x +=+=.故选D .36.【答案】D 【解析】∵36x -=,所以36x -=或36x -=-,解得:9x =或3x =-.故选D .37.【答案】C【解析】∵a b ad bc c d=-,所以2x +4x =18,即:x =3,故选C .40.【解析】(1)根据题中的新定义得:原式=1–4=–3;(2)已知等式利用题中的新定义化简得:9+6x =2, 解得:x =–76; (3)已知等式利用题中的新定义化简得:4–4–4x =–x +6, 移项合并得:3x =–6,解得:x =–2.41.【答案】C【解析】设两件衣服的进价分别为x 、y 元,根据题意得:120–x =20%x ,y –120=20%y ,解得:x =100,y =150,所以120+120–100–150=–10(元).故选:C .42.【答案】D。

2024年沪科版七年级数学上册 3.2 一元一次方程及其解法 课时1(课件)

2024年沪科版七年级数学上册 3.2 一元一次方程及其解法  课时1(课件)

随堂练习
【教材P100 练习 第3题】
3.解下列方程: (1)5x+21=7-2x;
11 (2)2x- 2=- 2 x+2;
(3)0.5(m+8)-0.6(2m-7)=1.9;(4)3(2y+1)=2(1+y)+3(y+3).
(1)解:移项,得5x+2x = 7-21. 合并同类项,得7x = -14. 两边同除以7,得x = -2.
定义:只含有一个未知数(元),未知数的次数是1,且等式两 边都是整式的方程叫作一元一次方程.
新知探究 知识点1 一元一次方程
练一练
下列式子中,是一元一次方程的是__③__⑥___(填序号).
① 1+4=2+3;② 1 x + y=1;③ x =3;④ x2-2x-1=0;

2
2 =3;⑥ 6+5y=2y-3.
解下列方程:
(1)8x=4x+1; 解:移项,得8x-4x = 1.
合并同类项,得 4x = 1.
两边同除以4,得
x
=
1 .
4
(2)2-3x = 5x+10. 解:移项,得-3x-5x = 10-2. 合并同类项,得-8x = 8. 两边同除以-8,得x = -1.
注意:①方程的各项包括它前面的符号; ②移项时,不管是把某一项从左边移到右边还是从右 边移到左边,都要变号.
随堂练习
3.解下列方程: (1)5x+21=7-2x;
(2)2x- 1 =- 1 x+2; 22
(3)0.5(m+8)-0.6(2m-7)=1.9;(4)3(2y+1)=2(1+y)+3(y+3).

七年级数学人教版(上册)3.2解一元一次方程——合并同类项与移项-课件

七年级数学人教版(上册)3.2解一元一次方程——合并同类项与移项-课件
3、系数化为1的理论依据是等式的性质2
约公元820年,中亚细亚数 学家阿尔-花拉子米写了一本代 数书, 重点论述怎样解方程, 这本书的拉丁文译本取名为 《对消与还原》. “对消” 其实就是指合并同类项.同学 们,你们想知道“还原”指的 是什么吗?让我们一起期待明 天的数学课吧!
阿尔—花拉子米 (约780——约850)
1、 x+2x+4x=140
解:合并同类项, 得
7x=140
系数化为1,得 x=20
2、学会找等量关系列一元一次方程, 正确地使用合并同类项的方法解方程。
提出问题
问题:我校三年共购买计算机140台,去年购
买数量是前年的2倍,今年购买的数量又是去
年的2倍.前年我校购买了多少台计算机? x
方法二:设去年购买计算机x台,则前年购买计算机__2_
讨论:
(1)题目中有哪些已知量和未知量?
(2)你能找到哪些相等关系?
(3)怎么设未知数?怎样列方程?
分析:设前年这个学校购买了计算机x台,则去年购买计算机 _2___x_台,今年购买计算机__4_x__台,
根据问题中的相等关系: 前年购买量+去年购买量+今年购买量=140台
列得方程 x + 2x +4x = 140
2 x 台,今年购买计算机____台
还有不同的设
x +x+2x=140 2
法吗?
可以列怎样的
方程? x
方法三:设今年购买计算机x台 ,x 则去年购买计算机__2_
台,前年购买计算机___4_台
x + x +x=140 42
例1 解下列方程:
(1) 2x- 5 x=6-8 2
(2)
1、解下列方程:
3.2 解一元一次方程(一)——合并同类项 与移项
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

例2 有一数列,按一定的规律排列成1, -3,9,-27,81,-243,......,其中 某三个相邻数的和是-1071,这三个数各 是多少? 【分析】 从符号和绝对值两方面观察, 可发现这列数的排列规律是: 后面的数是它前面的数与-3的乘积.如果 三个相邻数中的第1个记为x,则后两个 数分别是-x,9x.
项,再用等式的性质解出x 的值.
6 x 140 (4)解方程:把含有 x 的项合并,得____.
x 20 (5)系数化为1,得______.
知 识 点 一
注意:本题蕴含着一个基本的等量关系, 即总量=各部分量的和. 思考:上面解方程中“合并同类项” 起了什么作用?
合并同类项的作用:
合并同类项起到了“化简”的作用 ,即把含有未知数的项合并,从而 把方程转化为ax=b,使其更接近x=a 的形式(其中a,b是常数) .
1、方程4x-2x=6的解是(C ) A 、5 B、-2 C 、3 D 、4 2、方程8x-5x=10的解是( C )
A 、3
B 、2
C、 3
10
D、 10
3
3、解方程: (1)9 x 5 x 8
(2 ) 4 x 6 x x 15
(1)解:合并同类项,得 (2)解:合并同类项,得
认真阅读课本的内容,完成下面练习,并 体验知识点的形成过程.
知 识 点 一
1.约公元820年,中亚细亚 数学家阿尔—花拉子米写了 一本代数书,重点论述怎样 解方程.这本书的拉丁译本 为《对消与还原》.“对消 ”与“还原”是什么意思呢 ?
知 识 点 一
2.问题1 某校三年共购买计算机140 台,去年购买数量是前年的2倍,今年 购买的数量又是去年的2倍,前年这个 学校购买多少台计算机?
解:设所求三个数分别是 x , 3 x , 9 x
知 识 点 二
由三个数的和是-1701,得
x+(-3x)+9x=-1701
合并同类项,得 系数化为1,得
7x=-1701 x=-243
所以
-3x=729 9x=-2178
答:这三个数是-243,729,-2178.
1.列方程解决实际问题的一般过程: (1)设未知数; 找等量关系(找等量关系是关键,也是难点, (2) 注意抓住基本等量关系:总量=各部分量的和); (3) 列方程 ; (4)解方程; (5 ) 答 . 2.合并同类项解一元一次方程通过合并同类项把 方程化为_______ ax b (a≠0,a、b是常数)的形式. 从而简化方程. 3.学习反思:
4x 8
3 x 15
系数化为1,得
x 2
系数化为1,得
x 5
4、洗衣机厂今年计划生产洗衣机25500 台,其中I型、Ⅱ型、Ⅲ型三种洗衣机的 数量比为1:2:14,这三种洗衣机计划各 生产多少台?
解:设I型洗衣机有 x 台,则Ⅱ型洗衣机有 2 x 台、 Ⅲ型洗衣机有 14 x 台. x 2 x 14 x 25500
3.2 解一元一次方程(第一课时)
Hale Waihona Puke 1、根据等式的性质填空: x 12 (1)如果 x 7 5 , 则 x =______; x 2 (2)如果3 x 6 ,则 x =________.
2、合并同类项: 6x ; (1) x 2 x 3 x = ___ (2) 3 x 7 x = ____. 4x
人生的价值,并不是用时间,而
是用深度去衡量的。
——列夫· 托尔斯泰
x 13
知 识 点 二
练一练 解方程(填空): x (1) 5 x 2 x 9 (2)
(3) 3 x 0 . 5 x 10
2

3x 2
7
(4)7 x 4 . 5 x 2 . 5 3 5
3x x 9 =___ =3 ___
解:(1)合并同类项,得 系数化为1,得
17 x 25500
2 x 3000
x 1500 14 x 21000
答: 这三种洗衣机计划分别生产1500台,3000台,21000台.
知 识 点 二
练一练 某工厂的产值连续增长,去年是前年的 1.5倍,今年是去年的2倍,这三年的总 产值为550万元,前年的产值是多少?
解:设前年的产值是x万元,则去年的产值是 1.5x万元,今年的产值是2x万元. 列方程 x+1.5x+2x=550 合并同类项,得 4.5x=550 系数化为1,得 x≈122 答:前年的产值是约是122万元.
【分析】回顾列方程解决实际问题的一般过程:
x (1)设未知数:设前年购买计算机__ 2x 台,那么去年购买计算机______ 台,今 4x 年购买计算机______ 台.
(2)找等量关系:前年购买量+去年购买 知 量+今年购买量= 140 ________台.
识 点 (3)列方程:______________. x 2 x 4 x 140 一 要解这个方程,可以先把方程左边合并同类
例1
(1)2 x -
解下列方程:
5 2 x = 6- 8
知 识 点 二
(2)7 x- 2 .5 x+ 3 x- 1 .5 x= - 1 5 4- 6 3 .
x 2 解:(1)合并同类项,得_________. 2 系数化为1,得__________. x 4 1
(2)合并同类项,得_________. 6 x 78 系数化为1,得_________.
2x = 7 (2)合并同类项,得 ___ x =3 .5 系数化为1,得 ___. 10 (3)合并同类项,得 2 . 5 x =____ x = 4 系数化为1,得 ___. 2 .5 (4)合并同类项,得 2 . 5 x =____ x = 1 系数化为1,得. ___.
知 识 点 二
相关文档
最新文档