复变函数5-2留数

合集下载

复变函数第五章留数

复变函数第五章留数
第五章 留数
§1 孤立奇点 §2 留数
1
§5.1 孤立奇点
一、孤立奇点定义
如果函数f z在z0不解析, 但在z0的某个去心邻域
0 z z0 内处处解析, 则称z0为f z的孤 立 奇 点.
例如
1 sin
1
, z0
=
0为奇点,
但不是孤立奇点.
z
z 1 n 1,2,为奇点, n , z 0,
]
sinz
cosz
zzk
sinz sinz
z
zk
1
tgzdz
C
2i 8 1 16i
31
例4 计算 z4 sin 1 dz, C为 z 1 2.
C
z
解 奇点:z 0, 奇点类型不清楚,

z4
sin 1 z
z4
1 z
1 3! z3
1 5! z5
1 7! z7
z3
z 3!
1 5! z
1 7! z3
Re
s
f
z,0
c1
1 120
C
z4
sin
1 z
dz
2i
Re
s
f
z,0
60
i
32
例5 计算
C
z z4 1
dz,C为 z
2,正向.
解 显然 z 1,i 都是 f z 的一级极点,
f z ( z z0 )m z ,
其中 z在z0解析,且 z0 0,m为正整数,

z

0
f
z
的m


点.
例如 对于 f z z(z 1)3,z0 0, z0 1分别是其一级

《复变函数》第5章

《复变函数》第5章

例: 对 f (z) z3 1.
f (1) 0, f (1) 3z 2 z 1 3 0
z 1 是 f (z)的一级零点.
2020/4/6
《复变函数》(第四版) 第五章
第7页
定理: z0 是 f (z)的m级极点
证:
f
(z)
(z
1 z0
)m
g
(z)
z0

f
1 的m级零点. (z)
f
复 变 函 数(第四版)
第五章 留 数
§1 孤立奇点 §2 留数 §3 留数在定积分计算上的应用 *§4 对数留数与辐角原理
2020/4/6
《复变函数》(第四版) 第五章
第1页
§1 孤立奇点
1. 定 义
如果函数 f (z)在 zo处不解析, 但在 zo的某 一去心邻域 0 < | z-zo |<δ处处解析, 则称zo 为函数 f (z)的孤立奇点. 例:z 0 为 f (z) sin 1 的孤立奇点 .
5
2020/4/6
《复变函数》(第四版) 第五章
第4页

z = 0 分别是 本性奇点.
sin z
z
,
sin z4
z
,
sin
1 z
的可去、3极、
(1) zo为 f(z)的可去奇点
相当于实函可去间断点
lim f (z)存在且有限
zz0
f (z)在zo点的某去心邻域内有界.
(2) zo为 f (z)的极点
例:
z
0

ez 1 z2
的一级极点.
z
1

(z 1)3 sin( z 1)
的二级零点.

《复变函数与积分变换》 留数—计算规则

《复变函数与积分变换》 留数—计算规则

三、在 ∞ 点的留数 定义 2.2 设 ∞ 是 f ( z ) 的孤立奇点 , 则 f ( z ) 在 R < z < +∞ 内解析 ,
C 是 R < z < +∞ 内一条简单闭
y C
O
§5.2 留 数 —— 在 ∞ 点的留数
R
x
定理 2.2 若 f ( z ) 在 C U {∞} 上有有限个奇点:z1 ,L , z n , ∞ , 则
1 P ( z ) , z = 0 是 f ( z ) 的 3 级极点 . z3 1
解二:把 f ( z ) 在 z = 0 点展成洛朗级数 :
z − sin z 1 = 6 z6 z = 1 3 1 5 1 7 z − z − 3! z + 5! z − 7! z + L
O
1 = − c1 . ∫ C f ( z ) dz, 则 Res f ( z ) , ∞ 2π i Ñ
× zn
f ( z ) ,∞ . = − 2π i Res
§5.2 留 数 —— 在 ∞ 点的留数
规则 IV Res [ f ( z ), ∞ ] = − Res f ( )
(5)
假设 z0 是 f ( z ) 的 k 级极点 , k < m ,
f ( z ) = c− k ( z − z0 )
−k
+ L + c−1 ( z − z0 ) + c0 + c1 ( z − z0 ) + L
−1 m− k
( z − z0 )
0
m
f ( z ) = c− k ( z − z0 )
§5.2 留 数 —— 计算规则

复变函数 留数和留数定理讲解

复变函数  留数和留数定理讲解

另解: f1(z) 在点 z0 0 的去心邻域 0 z 内的
Laurent级数为
e
z z5

1

1 z5
1

z
1 z4

1 2! z 3

z2 2! 1
3! z 2

z3 3!
1 4! z
z4 4! 1
5!
z5 5! z
6!
z6
,6!
,

Res[ f1(z), 0] 1 ; Res[ f1(z),1] 0 于是由留数定理得积分值为
I1 2i[1 0] 2i
20
(2)
I2

z 2
esin z dz z 2 (z 2 1)
解: f2 (z) esin z [z 2 (z 2 1)] 在圆 z 2 的内部有一
2 当z0为f(z)=g(z-z0) 的孤立奇点时,若 g 为偶
函数,则f(z)在点z0的留数为零.
3 若z0为f(z) 的一级极点,则有
Re
s
f
(
z),
z0


lim
zz0
(
z

z0
)
f
(
z)
4 若z0为f(z) 的m级极点,则对任意整数 n m有
Re s
f (z), z0
个二级极点 z 0和两个一级极点 z i ,
于是利用留数的计算规则 2 和 1得
Res[
f
2
(
z
),0]

lim
z 0
(
ze2sinz1)

lim

复变函数中的留数定理推广思路分析

复变函数中的留数定理推广思路分析

复变函数中的留数定理推广思路分析留数定理是复变函数理论中的重要定理之一,它为计算函数的积分提供了一种有效的方法。

在实际应用中,留数定理可以进一步推广和应用,本文将就复变函数中的留数定理推广思路进行分析。

一、留数定理回顾在开始讨论留数定理的推广之前,我们先回顾一下留数定理的基本原理。

留数定理是复分析中的一种重要工具,适用于具有孤立奇点的复函数的积分计算。

对于一个具有孤立奇点的函数,留数定理告诉我们,函数在该奇点处的留数等于该函数在围道内的积分值。

具体来说,如果$f(z)$在$z=a$处有一个一阶极点,那么留数$r$可以通过以下公式计算得出:$$r = \lim_{z \to a}(z-a)f(z)$$其中,$r$即为函数在$z=a$处的留数。

留数定理还可以推广到更复杂的情况,例如多阶极点或者奇点无穷多的情况。

二、留数定理的推广思路在实际问题中,我们经常遇到复变函数的积分计算,而复变函数可能并不具有一阶极点或者只有有限个奇点。

此时,我们需要将留数定理进行推广,以适应更广泛的情况。

1. 多阶极点的留数计算留数定理最初是针对一阶极点的情况进行推导的,但是在实际问题中,我们也会遇到多阶极点的情况。

对于一个$n$阶极点,我们可以使用以下公式推导其留数:$$r = \frac{1}{(n-1)!}\lim_{z \to a}\frac{d^{n-1}}{dz^{n-1}}((z-a)^nf(z))$$其中,$r$为函数在$z=a$处的留数。

通过这个推广,我们可以计算出多阶极点的留数值。

2. 奇点无穷多的情况除了多阶极点的情况,有些函数可能存在奇点无穷多的情况。

这时,我们需要找到一种合适的围道,以保证围道内奇点的贡献可以抵消掉围道外的贡献。

可以使用洛朗级数展开或者柯西主值积分的方法来处理奇点无穷多的情况。

对于洛朗级数展开方法,我们可以将函数在奇点处展开为负幂次项和正幂次项的和,然后通过计算正幂次项的积分来得到结果。

复变函数的留数定理与柯西公式

复变函数的留数定理与柯西公式

复变函数的留数定理与柯西公式复变函数是数学中一个重要的研究对象,它是指定义在复平面上的函数。

复变函数有很多特殊的性质和定理,其中留数定理和柯西公式是非常重要的两个定理。

在本文中,我们将详细介绍留数定理和柯西公式。

一、留数定理留数定理是关于复变函数在孤立奇点处的积分的定理。

设f(z)是函数在z0处的孤立奇点,那么函数f(z)在z0处的留数记作Res(f, z0)。

留数的计算可以通过洛朗展开公式来进行。

留数定理的表述如下:设f(z)是一个在复平面上减少了一条折线的闭曲线上都有定义的函数,除去闭曲线上的一个有限个奇点外,在每一孤立奇点z0处函数f(z)都有留数Res(f, z0)。

设γ是一个以奇点z0为中心的小圆环,那么函数f(z)在γ上的积分等于2πi乘以z0处的留数,即:∮γf(z)dz = 2πi Res(f, z0)留数定理的重要性在于它将复变函数的积分问题转化为留数的计算问题,从而简化了计算的过程。

利用留数定理,可以高效地求解很多积分,特别是当函数存在简单极点(即一阶极点)时。

二、柯西公式柯西公式是复变函数理论中的又一重要定理。

柯西公式的表述如下:设f(z)是一个在闭曲线C内连续,除去闭曲线C上的一个有限个奇点外,在C内部处处有导数的函数,那么对于闭曲线C内的每一个点z0,都有:f(z0) = 1/(2πi) ∮C f(z)/(z-z0)dz柯西公式可以理解为复变函数的积分和它在孤立奇点处的取值之间存在密切的关系。

具体地说,柯西公式表明,如果一个函数在某个区域内处处可导,在闭区域内部积分的结果等于在闭区域边界上积分的平均值。

柯西公式的应用非常广泛,它不仅可以用来计算复平面上的积分,还可以用于解析函数和傅里叶变换等。

三、留数定理和柯西公式的关系留数定理实际上是柯西公式的一个特殊情况。

当闭曲线C所围的区域内只有一个孤立奇点z0时,留数定理和柯西公式是等价的。

此时,柯西公式可以写为:f(z0) = 1/(2πi) ∮C f(z)/(z-z0)dz = Res(f, z0)也就是说,柯西公式表明了求取孤立奇点的留数可以通过对围绕该奇点的闭曲线求积分来实现。

高等数学课件-复变函数与积分变换 第五章 留数 §5.2 用留数定理计算实积分

高等数学课件-复变函数与积分变换 第五章 留数 §5.2  用留数定理计算实积分
§5.2 用留数定理计算实积分
引言
在实际问题中,往往会遇到求一些实 积分的值,计算比较复杂。但是,如果把 它们化为复变函数的积分,运用留数定理 计算可能要简捷的多。
首先,被积函数必须要与某个解析函 数密切相关。
其次,定积分的积分域是区间,而用 留数来计算要牵涉到把问题化为沿闭曲线 的积分。
一、形如
积分限化为从 到 ,又显然 lim f z 0 z
于是积分属于上述类型,可由(2.4)式计算
f z 可写成
f z
1 z2 a2
2
z
ia
1
2
z
ia
2
易见,f z 在上半平面只有一个二级极点
z ia,计算 f zeipz在 z ia 点的留数
Re s f
z eipz ,ia
Re s
f
z eiz , 2i
lim z
z2i
2i
f
z eiz
zeiz
1
lim
z2i z 2i
z2 1
6e2
Re
s
f
z eiz ,i
lim z
zi
i
f
z eiz
lim
zeiz
1
zi z2 4 z i 6e
将所得留数代入(2.5)式得:
I
xsin x dx
(x2 4)(x2 1)
奇点?在实轴上是否无奇点?
c.等式 lim zf z 0 是否成立? z
(2)计算 f z在上半平面奇点处的留数,
然后代入上述公式就得结果。显然结果必然
是实数,如果是复数,说明计算有误。
例2.3计算积分
x2
I
x2 1 2 dx

大学数学复变函数的解析性与留数定理

大学数学复变函数的解析性与留数定理

大学数学复变函数的解析性与留数定理复变函数是数学中重要的概念之一,其在复平面上有着独特的性质与定理。

其中,解析性与留数定理是复变函数的核心内容。

本文将详细介绍大学数学中复变函数解析性与留数定理的概念、性质和应用。

一、解析性的概念与性质解析性是复变函数的最基本性质之一,它表示在定义域内处处可导。

具体定义如下:定义1:设函数f(z)=u(x,y)+iv(x,y)是定义在复平面上的函数,若f(z)在其定义域内任意一点z0都可导,则称f(z)在该区域是解析的。

接下来,我们来讨论解析性的性质。

性质1:解析函数是连续的。

即,若f(z)是解析函数,则f(z)在其定义域内连续。

性质2:解析函数的导数也是解析函数。

具体而言,若f(z)是解析函数,则f'(z)也是解析函数。

性质3:解析函数的实部与虚部分别满足实轴与虚轴上的某个柯西-黎曼方程组。

具体而言,设f(z)=u(x,y)+iv(x,y)是定义在某区域上的解析函数,则u(x,y)与v(x,y)分别满足以下柯西-黎曼方程组:∂u/∂x = ∂v/∂y∂u/∂y = -∂v/∂x二、留数定理的概念与应用留数定理是复变函数理论中的重要工具,它用于计算函数在奇点处的留数,并在复积分计算中发挥着重要的作用。

我们先来了解留数的概念。

定义2:设f(z)是定义在某区域上的解析函数,z0是f(z)的孤立奇点,若存在常数Res(f,z0),使得对于任意以z0为中心的圆内部的路径γ,有以下等式成立:∮(f(z)dz) = 2πiRes(f,z0)留数的计算方法有多种,其中最常用的方式是留数定理。

留数定理给出了计算函数在孤立奇点处留数的方法,具体表述如下:定理1(留数定理):设f(z)是定义在某区域上的解析函数,z0是f(z)的孤立奇点,若f(z)在z0处的展开式为:f(z) = Σ(a_n(z-z0)^n)则f(z)在z0处的留数为:Res(f,z0) = a_(-1)利用留数定理,我们可以解决一些重要的数学问题。

复变函数留数定理

复变函数留数定理

复变函数留数定理复变函数留数定理(Residue Theorem)是复分析中的重要概念,用于计算对应于奇异点(singular point)的留数(residue)。

留数定理提供了计算复变函数沿闭曲线的积分的一种有效方法,它与复分析中其他重要的定理和方法相辅相成,对于解决实际问题具有重要意义。

一、留数的定义设函数f(z)在点z=a附近解析且具有洛朗展开式f(z)=∑(n=-∞)^∞ a(n)(z-a)^n其中a(n)是复数,令C为以a为圆心的半径为R的圆周,且其方向与实轴正方向一致。

如果函数f(z)在圆盘界上的点(除去a点)上解析,则称a点是函数f(z)的奇异点。

奇异点主要有三种形式:可去奇点、极点和本性奇点。

对于函数f(z)一个奇异点a,定义留数Res[f(z), a]为Res[f(z), a] = a(-1)即留数等于洛朗展开式的一次项系数a(-1)。

二、留数的求解方法1. 求可去奇点的留数当a点是函数f(z)的可去奇点时,即a点是f(z)的解析点,那么留数等于0。

2. 求一阶极点的留数当a点是函数f(z)的一阶极点时,即a点是f(z)的奇异点且它的最低零次是-1次,要求a(-1)≠0。

此时留数可以通过以下方法求解:Res[f(z), a] = lim(z→a) (z-a)f(z)3. 求高阶极点的留数当a点是函数f(z)的高阶极点时,即a点是f(z)的奇异点且它的最低零次大于等于-1次。

此时留数可以通过以下公式计算:Res[f(z), a] = a(-1) = 1/(n-1)! * d^(n-1)/dz^(n-1) [(z-a)^n * f(z)]其中,n为a点的零次。

三、留数定理的表述留数定理的基本表述为:设函数f(z)在闭合曲线C的内部除有限个奇异点外是全纯的,则有积分公式成立:∮[C] f(z)dz = 2πi * ∑ Res[f(z), a]其中,[C]代表C内部的积分,∑代表对所有奇异点求和。

复变函数第五章留数学习方法指导

复变函数第五章留数学习方法指导

第五章 留数留数(Residue )理论是复积分理论和复级数理论相结合的产物,它既是复积分问题的延续,又是复级数应用的一种体现,它对复变函数论本身以及实际应用都有着重要的作用.例如,它能给复积分的计算提供一种有效的方法,能为解析函数的零点和极点的分布状况的研究提供一种有效的工具.另外,它还能为数学分析中一些复杂实积分的计算提供有效地帮助.本章,我们首先引进孤立奇点处留数的定义,利用洛朗展式建立留数计算的一般方法——洛朗展式法,以及各类孤立奇点处留数计算的更细致的方法.在此基础上,再建立反映复变函数沿封闭曲线积分与留数之间密切关系的留数定理,从而有效地解决“大范围”积分计算的问题.其次,介绍留数定理的两个方面的应用.一方面建立利用留数定理计算数学分析中某些定积分和反常积分的计算方法,另一方面建立讨论区域内解析函数的零点和极点分布状况的有效方法,即幅角原理与儒歇定理.一.学习的基本要求1.掌握函数在其孤立奇点处的留数的概念以及函数在孤立奇点处的留数计算的一般方法,即洛朗展式法.注意函数在有限孤立奇点处的留数和孤立奇点∞处的留数在定义方面的差异以及罗郎展式法方面的差异.并能熟练地运用洛朗展式法求函数在其孤立奇点处的留数. 2.熟练掌握函数在各类有限孤立奇点处的留数的具体计算方法以及孤立奇点∞处留数的的两种具体计算方法:洛朗展式法:1Res ()z f z β-=∞=-,其中1β-为()f z 在∞处的洛朗展式中1z 的系数.化为有限点处的留数:2011Res ()Res()z z f z f z z=∞==-. 3.了解有限可去奇点处的留数与可去奇点∞处的留数的差异,理解为什么函数在可去奇点∞处的留数一般不一定为零?4.掌握留数定理以及含∞的留数定理(即留数定理的推广),并能熟练地运用它们计算函数沿封闭曲线的积分.能用留数定理导出第3章中的柯西定理和柯西积分公式,从而正确地认识为什么留数定理可以看成柯西定理和柯西公式的统一.5.了解利用留数计算实积分的基本思想或基本原理:通过适当方法将实积分转化为适当复变函数沿封闭曲线的积分.熟悉将实积分转化为适当复变函数沿适当封闭曲线的积分的两种途径:途径一:通过适当变量替换. 途径二:作适当补充路径.6.熟悉补充积分路径计算积分时,常用的如下三个引理:引理0 设函数()f z 在角形闭区域上连续,且lim ()z z Dz f z A →∞∈⋅=,记 0{,}R z z z R z D Γ=-=∈,R Γ的方向是逆时针,则21lim()d ()RR f z z i A θθΓ→+∞=-⎰.[提示]利用积分的估值性,并注意到0lim()()z z Dz z f z A →∞∈-=,2101d ()Rz i z z θθΓ=--⎰以及00210()()()()()d ()d d RRR z z f z A z z f z Af z z i A z z z z RθθΓΓΓ------=≤-⎰⎰⎰.引理1 设函数()f z 在闭区域:D 1020arg()z z θθπ≤≤-≤≤,00r z z ≤-<+∞上连续,记0{,}R z z z R z D Γ=-=∈,0m >,R Γ的方向是逆时针,若lim ()0z z Df z →∞∈=,则lim()d 0Rimz R f z e z Γ→+∞=⎰.[提示]利用积分的估值性,并注意到其中用到了约当不等式:当02πθ≤≤时,2sin θθθπ≤≤.引理2 设函数()f z 在圆环形闭区域:D 1020arg()2z z θθπ≤≤-≤≤,000z z r ≤-≤上连续,记0{,}r z z z r z D Γ=-=∈,r Γ的方向是逆时针,且00lim()()z z z Dz z f z A →∈-=,则210lim ()d ()rr f z z i A θθ+Γ→=-⎰.[提示]利用积分的估值性,并注意到2101d ()rz i z z θθΓ=--⎰,以及 00210()()()()()d ()d d rrrz z f z A z z f z Af z z i A z z z z rθθΓΓΓ------=≤-⎰⎰⎰.7.熟练掌握以下几种类型的实积分利用留数来计算的方法① 形如20(cos ,sin )d R πθθθ⎰或(cos ,sin )d R ππθθθ-⎰的积分,其中(cos ,sin )R θθ是三角有理函数,且分母函数在[0,2]π或[,]ππ-上恒不为零. 特别,当(cos ,sin )R θθ是偶函数时,还可考虑积分(cos ,sin )d R πθθθ⎰.注意:● 当被积函数是2cos θ或2sin θ的有理函数时,可先用公式21cos (1cos 2)2θθ=+或21sin (1cos 2)2θθ=-降次,再计算.● 当被积函数是(cos ,sin )cos R m θθθ⋅或(cos ,sin )sin R m θθθ⋅时,可利用欧拉公式将积分先化为 再计算.② 形如()d R x x +∞-∞⎰的反常积分,其中()R x 为实有理函数.特别,当()R x 是偶函数时,还可考虑积分()d R x x +∞⎰.注意:此类型的积分的柯西主值(P .V.值)用留数来计算时,可分两种情况补充积分路径● 当()R x 的分母在上恒不为零时,可用以原点为心半径充分大的上半圆周作为补充路径.● 当()R x 的分母在上仅有一阶零点时,可用以原点为心充分大的正数R 为半径的上半圆周和以()R x 在上的一阶零点为心充分小的正数ε为半径的上半圆周作为补充路径.③ 形如()d imxR x e x +∞-∞⋅⎰或()cos d R x mx x +∞-∞⋅⎰或()sin d R x mx x +∞-∞⋅⎰的反常积分,其中()R x 为实有理函数,0m >.特别,当()R x 是偶函数时,还可考虑积分0()cos d R x mx x +∞⋅⎰;当()R x 是奇函数时,也可考虑积分()sin d R x mx x +∞⋅⎰.注意:此类型的积分的柯西主值(P .V.值)用留数来计算时,可分两种情况补充积分路径● 当()R x 的分母在上恒不为零时,可用以原点为心半径充分大的上半圆周作为补充路径.● 当()R x 的分母在上仅有一阶零点时,可用以原点为心充分大的正数R 为半径的上半圆周和以()R x 在上的一阶零点为心充分小的正数ε为半径的上半圆周作为补充路径.④ 被积函数含有因子ln x ,x α注意:此类型的积分的柯西主值(P .V.值)用留数来计算时,常选择相应多值函数的支割线的两沿以及单独围绕各支点的适当圆周作为补充积分路径. 8.理解对数留数1()d 2()C f z z i f z π'⎰的几何意义,掌握对数留数的计算公式.并掌握下面的一个结论:若0z 是函数()f z 的m 阶零点或m 阶极点,则0z 必为()()f z f z '的一阶极点,且当0z 是函数()f z 的m 阶零点时,0()Res()z z f z m f z ='=; 当0z 是函数()f z 的m 阶极点时,0()Res()z z f z m f z ='=-. 9.正确理解幅角原理与儒歇定理的条件和结论,并能熟练地运用幅角原理和儒歇定理来讨论区域内函数的零点和极点的分布情况或者方程根的分布情况.10.附:孤立奇点处留数的常用计算方法;合理使用留数定理计算复积分的技巧;补充积分路径利用留数计算实积分的基本思路;用儒歇定理讨论解析函数在有界区域内零点的个数的思路.●孤立奇点处留数的常用计算方法我们仅对函数的孤立奇点才定义留数,对有限孤立奇点处的留数的计算归纳起来,主要有下面的三种常用方法,① 洛朗展式法,即若()f z 在其孤立奇点a 的去心邻域0z a R <-<内的罗郎展式为 则1Res ()z af z c -==,其中1c -是罗郎展式中1z a-这一项的系数。

复变函数-留数定理资料

复变函数-留数定理资料

当 m 1时
z Re s[ f ( z ),1] lim( z 1) f ( z ) lim 1 z 1 z 1 z 2
当m 2时
( m 1) 1 m Re s[ f ( z ),1] lim( z 1) f ( z ) ( m 1)! z 1


z 例 求 dz | z| 3 ( z 1)( z 2)
z 解 :由于 f ( z ) 在圆周 | z | 3内部有一个一级 ( z 1)( z 2) 极点 z 1, 和一个一级极点z 2
ze z 例 求 Re s[ 2 ,1] z 1
解: 显然,z 1是f ( z )的一级极点,
ze z e ze z 所以 Re s[ f ( z ),1] lim ( z 1) 2 lim z 1 z 1 z 1 z 1 2
或者:取P ( z ) ze z , Q( z ) z 2 1
所以 而

C
f ( z )dz 2iRe s[ f ( z ),1] Re s[ f ( z ), 1]
ze z e Re s[ f ( z ),1] lim ( z 1) 2 z 1 z 1 2
ze z e1 Re s[ f ( z ), 1] lim( z 1) 2 z 1 z 1 2 于是得到 e e 1 ze z C z 2 1 dz 2i 2 2 2i ch 1
P (1) e Re s[ f ( z ),1] Q(1) 2
1 例 求 Re s[ 2 , i] 3 ( z 1)
解: 由于 f ( z )
1 ( z i )3 ( z i )3
所以z i是f ( z )的三级极点。

复变函数中的留数定理

复变函数中的留数定理

复变函数中的留数定理
复变函数是指既定义在复数域上又取复数值的函数。

复变函数具有许多特殊的性质和定理,其中留数定理是其中一个重要的定理。

本文将介绍复变函数中的留数定理以及其应用。

一、留数的定义和计算方法
在复变函数中,留数(residue)是指当函数在某个点存在奇点时,即函数在该点不解析的情况下,奇点点内仍然具有一定的数值。

留数的计算方法可以通过洛朗级数展开或者柯西积分公式来实现。

对于一个圆心在奇点上的积分路径,留数的计算公式可以表示为:Res[f;z_0] = (1 / (2πi)) ∮ f(z)dz
二、留数定理的表述
留数定理是指当一个函数在一个环形区域上解析且没有奇点时,该函数的积分沿该闭合曲线的环形轮廓,等于沿环形区域内部孤立奇点的留数之和。

数学表述如下:
∮ f(z)dz = 2πi ∑Res[f;z_i]
三、留数定理的应用
1. 计算积分:留数定理是计算复变函数的积分的重要工具。

通过计算函数在奇点处的留数,可以将积分转化为留数之和的形式,从而简化计算过程。

2. 求解无穷级数:通过留数定理,可以将一个函数展开为洛朗级数,从而求解一些复杂的无穷级数。

3. 解析函数的奇点:留数定理可以帮助我们分析函数在复平面上的
奇点,并研究奇点的类型和性质。

总结:
复变函数中的留数定理是一个重要的工具,可以在计算积分、求解
无穷级数和分析奇点等方面发挥关键作用。

留数定理的应用不仅仅局
限于数学领域,而且在物理学、工程学和经济学等学科中也具有重要
的意义。

通过掌握留数定理的原理和计算方法,我们可以更好地理解
和应用复变函数的知识。

复变函数第五章2留数的一般理论

复变函数第五章2留数的一般理论

2020/6/3
1 !z idz
1 4 e12
定理5.5(留数定理) 设D是复平面上一个有界闭区域,
若函 f(z)数 在区 D内 域除有限个 z1,z2,孤 ,zn立 外 处 奇处 点解
且它D 在的边C界上也解析n ,则
f(z)d z2iRefs(z)[,zk].
C
k1
证明:分别z围 1,z2, 绕 ,zn构造小c1的 ,c2,圆 ,cn 周
z0是 f(z)的一阶 zi极 是 f(z)的 点二 ,阶
Re f(zs )0 [,]lifm (z)z z 0
lim
z0
eiz (z2 1)2
1
Rfe(z)si],[1lid m {f(z)(z i)2}
1 !z idz
d
eiz
lim { zi dz z(z
i)2}
3 4e
类似地,Rfe (z)s ,i] [1lim d{f(z)(z i)2 }
z0
f(z)在z0的去心 0邻 z域 上的罗朗级数
1
(fn( z0)zn11z)e(zzn 0n1z!1(11z)zn)e 1z(z zz 2 (n 0zz3 n ) (n) 01 ( n 1!1 z( 1z)2 1 n!)z 1 2 3 1 !z 1 3 )
z1的系数 c1
1 2!
解:ez在z 0的去心邻域内的罗 数朗 为级 :
1
ez
1 (1)n
n0 n! z
ce1 zd zc {n 0n 1 !(1 z)n}d zc { 11 z2 !1 z2 }d z
2i
2020/6/3
2
二.留数定义
(一般情 计形 算) 积 cf(z分 )d, z 其 c为 中 z0去心邻

复变函数中的留数定理及其推导

复变函数中的留数定理及其推导

复变函数中的留数定理及其推导复变函数中的留数定理是一种非常重要的数学工具,它可以帮助我们求解一些非常复杂的积分问题。

在本文中,我们将深入探讨留数定理的本质及其具体推导方法。

一、留数定理的基本概念留数定理是由法国数学家留数(Cauchy)于19世纪初发现的。

它是一种重要的数学工具用于计算复平面上的奇异积分。

在这里,我们先来了解一下什么是“奇异点”。

奇异点是指函数在该点没有定义或不连续的点,如可以取无穷大的点、极点和孤立奇点等。

我们以一个简单的例子来说明:$I=\int_{C}\frac{1}{z-1}dz$其中,C为包围点z=1的任意一条简单闭合曲线。

当C逆时针绕点z=1一周时,积分的值趋近于无穷大,而当C顺时针绕点z=1一周时,积分的值趋近于负无穷大。

由此可见,积分$I$的值与曲线C的方向有关,这意味着函数$\frac{1}{z-1}$在点z=1处存在奇异性。

点z=1称为函数$\frac{1}{z-1}$的极点。

对于复系数函数$f(z)$,其在点z0处的留数(Residue)可表示为:$Res[f(z),z0]=\frac{1}{2\pi i}\int_{C}\frac{f(z)}{z-z0}dz$其中,C为包围点z0的任意一条简单闭合曲线,而留数的定义正是以上积分的结果。

二、留数定理的述现在我们来到了本文的重点:留数定理。

若$\Omega$是以平面上一条简单闭曲线为界的区域,则对于任意在$\Omega$上除点z1,z2,... ,zk外解析的函数$f(z)$,有:$\int_{C}f(z)dz=2\pi i\sum_{k=1}^{n}Res[f(z),zk]$其中,C是一条位于$\Omega$内的任意简单闭曲线,zk是$\Omega$内的孤立奇点(即除极点、可去奇点外的奇异点)。

这就是留数定理的本质。

简单来说,留数定理告诉我们:如果一个复变函数在某些点处存在奇异性,则通过沿着包围这些点的任意简单闭曲线进行积分,积分结果正比于这些奇点处的留数之和。

复变函数留数和留数定理

复变函数留数和留数定理

THANKS
感谢观看
理论支撑
复变函数留数和留数定理是数学领域 中非常重要的概念,它们在复分析、 积分方程、特殊函数等领域有着广泛 的应用。留数定理是解决复积分问题 的重要工具,它可以用来计算复平面 上的曲线积分,解决物理和工程领域 中的许多问题。
留数的计算方法包括直接法、参数法 和级数展开法等。其中,直接法是最 常用的方法,通过将函数在奇点附近 进行泰勒展开,然后利用展开式计算 留数。参数法和级数展开法则适用于 某些特殊情况,如函数具有特定的对 称性或周期性等。
2πi f(z0),其中z0是该开域内的点。
应用范围
02 柯西积分公式适用于解析函数,即在其定义域内可微
的函数。
特殊情况
03
当z0是奇点时,柯西积分公式不适用。
积分定理和路径的选取
积分定理
如果f(z)在包含z0的开
域内解析,则对于该开
域内的任何两个点z1和
z2,有∫f(z)dz
=
∫f(z)dz + f(z2)(z1-
留数定理是复分析中的核心定理之一 ,它建立了奇点、积分和留数之间的 联系。通过留数定理,我们可以将复 杂的积分问题转化为相对简单的留数 计算问题,从而简化计算过程。此外 ,留数定理还可以用来研究函数的奇 点性质和函数在无穷远点的行为等。
对未来研究和应用的展望
深入研究留数定理
应用领域的拓展
尽管我们已经对留数定理有了较为深 入的了解,但仍有许多未解决的问题 和需要进一步研究的方向。例如,对 于具有更复杂奇点的函数,如何更准 确地计算留数?如何利用留数定理解 决更广泛的积分问题?这些都是值得 探讨的问题。
02
复变函数基础知识
复数及其运算
复数

复变函数的留数定理与辐角原理

复变函数的留数定理与辐角原理

复变函数的留数定理与辐角原理复变函数是指定义在复平面上的函数,它可以分为解析函数和非解析函数两类。

而留数定理(Residue theorem)和辐角原理(Arg principle)是复变函数理论中重要的两个定理,它们在解析函数的研究和应用中具有重要的作用。

一、复变函数的留数定理留数定理是由法国数学家庞加莱(Henri Poincaré)在19世纪末提出的,它给出了计算复变函数沿封闭曲线的积分的方法。

留数定理的核心思想是:对于在圆盘上解析的函数,它的积分仅与它在圆盘内的奇点(亦即解析函数的不可导点)有关。

设f(z)是圆盘D内的解析函数,z_0是D内的孤立奇点,那么f(z)在z_0处的留数(residue)可以通过下式计算得到:Res(f, z_0) = (1/2πi) ∮f(z)dz其中,∮表示沿着封闭曲线的积分。

这个公式可以方便地计算复杂数学问题中的积分,特别是在计算围道积分时非常有用。

二、复变函数的辐角原理辐角原理是由奥地利数学家黎曼(Bernhard Riemann)在19世纪中提出的,它描述了复变函数在解析域内辐角变化的性质。

辐角原理的核心思想是:如果在解析域内有一个点z_0,使得f(z_0) = 0,则f(z)在z_0附近的辐角将增加或减少2π的整数倍。

具体而言,对于在解析域Ω内解析的函数f(z),假设z_0是f(z)的零点,那么f(z)在z_0附近的辐角变化等于z从z_0沿着封闭曲线C绕行一周的辐角变化:Δα = Arg(f(z)) = (1/2π) Δθ其中,Δα表示辐角的变化量,Δθ表示z从z_0沿着C绕行一周所对应的角度变化量。

迄今为止,辐角原理在解析函数的研究和应用领域起到了重要作用。

它为复变函数的数学分析提供了有力的工具和方法。

综上所述,复变函数的留数定理和辐角原理是复变函数理论中的两个重要定理。

留数定理利用留数的概念,提供了计算复变函数沿封闭曲线积分的方法;辐角原理研究解析函数的辐角特性,描述了函数在零点附近的辐角变化规律。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1 1 f ( z )dz f ( z )dz 0. 2i C 1 2i C
k 1
[证毕]
13
说明:
由定理得
Res[ f ( z ), zk ] Res[ f ( z ), ],
k 1
n

C
Res[ f ( z ), zk ] f ( z )dz 2i k 1
P(z) Res[ f ( z ), z0 ] lim ( z z0 ) f ( z ) lim z z0 z z0 Q ( z ) Q ( z0 ) z z0 P ( z0 ) . Q ( z 0 )
11
所以 z0 为 f ( z ) 的一级极点,
三、在无穷远点的留数
1
3
5
20
说明: 1. 在实际计算中应灵活运用计算规则. 如 z0 为 m 级极点,当 m 较大而导数又难以计算时, 可直接展开洛朗级数求 c1 来计算留数 .
2. 在应用规则2时, 为了计算方便一般不要将m 取得比实际的级数高. 但有时把m取得比实际的
级数高反而使计算方便. 如上例取 m 6 :
1 z0 为 Q( z ) 的一级极点.
10
因此
1 1 ( z ), Q ( z ) z z0 1 f (z) P ( z ) ( z ) . z z0 在 z0 解析且 P ( z0 ) ( z0 ) 0.
其中 ( z ) 在 z0 解析且 ( z0 ) 0,
分析
P (0) P (0) P (0) 0 , P (0) 0 .
z 0 是 z sin z 的三级零点
所以 z 0 是 f ( z )的三级极点,由规则3得
1 d 3 z sin z Res[ f ( z ),0] lim 2 z . 6 ( 3 1)! z 0 dz z
4
二、利用留数求积分
1.留数定理 函数 f ( z ) 在区域 D内除有限个孤 立奇点 z1 , z2 ,, zn 外处处解析, C 是 D内包围诸奇
点的一条正向简单闭曲线, 那末
C n
Res[ f ( z ), zk ]. f ( z )dz 2i k 1
说明: 1. f ( z )在C上及C内部处处解析; 2. 留数定理将沿封闭曲线C积分转化为求 被积函数在C内各孤立奇点处的留数.
如果 P ( z0 ) 0 , Q( z0 ) 0 , Q( z0 ) 0 , 那末 z0 为
P ( z0 ) f ( z ) 的一级极点, 且有 Res[ f ( z ), z0 ] . Q ( z 0 )

因为 Q( z0 ) 0 , Q( z0 ) 0 所以z0 为 Q( z ) 的一级零点,
第二节


一、留数的引入
二、利用留数求积分
三、在无穷远点的留数
四、典型例题
五、小结与思考
一、留数的引入
设 z 0 为 f ( z ) 的一个孤立奇点;
.z
z0 的某去心邻域 0 z z0 R
0
C
邻域内包含 z0 的任一条正向简单闭曲线
f ( z ) 在 0 z z0 R 内的洛朗级数:
在 0 z 内将 f ( z ) 展成洛朗级数:
ez 1 1 z2 z3 z4 z5 z6 5 1 z 1 5 2! 3! 4! 5! 6! z z
1 1 1 1 1 z 4 , 3 2 z 2! z 3! z 4! z 5! 6! 1 1 所以 Res[ f ( z ),0] c1 . 4! 24
8
两边求 m 1 阶导数,
d m 1 m 得 m 1 [( z z0 ) f ( z )] dz
( m 1)! c1 +(含有 z z0 正幂的项)
d m 1 m lim m 1 [( z z0 ) f ( z )] ( m 1)!c1 , z z0 dz
22
ez 例4 计算积分 2 dz , C为正向圆周: z 2. z( z 1) C
解 z 0 为一级极点,
z 1为二级极点,
z
e Res[ f ( z ),0] lim z 2 dz z 0 z ( z 1)
1 d n1 n e z ez lim n1 z n 所以 Res n ,0 z 0 dz ( n 1 )! z z
1 . ( n 1)!
18
P ( z ) z sin z 例2 求 f ( z ) 在 z 0 的留数. 6 Q( z ) z
2
计算较麻烦.
19

如果利用洛朗展开式求 c1 较方便:
z sin z 1 z3 z5 6 z z 6 3! 5! z z
z z 6( ), 3! 5! z
1 z sin z Res ,0 c1 . 6 5! z
zz0
7
•规则2 如果 z0 为 f ( z ) 的 m 级极点, 那末
1 d Res[ f ( z ), z0 ] lim m 1 [( z z0 )m f ( z )]. ( m 1)! z z0 dz

m 1
f ( z ) c m ( z z0 )
m
c 2 ( z z0 )
2iRes[ f ( z ), ].
n
(留数定理)
计算积分
C
f ( z )dz
计算无穷远点的留数.
优点: 使计算积分进一步得到简化. (避免了计算诸有限点处的留数)
14
3.在无穷远点处留数的计算 •规则4
1 1 Res[ f ( z ), ] Res f 2 ,0 z z
i i
1 2π 1 i f i i d . 0 2π i re re
16பைடு நூலகம்
1 2π 2π i 0
1 i f i i 2 dre i re ( re )
1 2π i

1

1 1 f 2 d
说明:
定理二和规则4提供了计算函数沿闭曲线
积分的又一种方法:
C

1 1 f ( z )dz 2iRes f 2 ,0 z z
此法在很多情况下此法更为简单.
15

现取正向简单闭曲线C为半径足够大的 1 z . 令z , 正向圆周 :

1 并设 z e , re , 那末 , , r 1 于是有 Res[ f ( z ), ] f ( z )dz 2i C 1 2π i i f ( e ) ie d 2π i 0
12
2.定理二 如果函数 f ( z ) 在扩充复平面内只有有限个
孤立奇点, 那末 f ( z )在所有各奇点 (包括 点) 的留数的总和必等于零.


.
.z1 . zk z2 . .
n
. C (绕原点的并将zk包含在 . 内部的正向简单闭曲线) 由留数定义有:
Res[ f ( z ), ] Res[ f ( z ), zk ]
f ( z ) 的本性奇点, 则需将 f ( z ) 展开 (2) 如果z 为 0
成洛朗级数求 c1 .
(3) 如果z 0 为 f ( z ) 的极点, 则有如下计算规则
•规则1 如果 z 0 为 f ( z )的一级极点, 那末
Res[ f ( z ), z0 ] lim( z z0 ) f ( z ).
(
1

为正向 ) .
在 内除 0
1

外无其他奇点 .
1 1 Res f 2 ,0 . z z
[证毕]
17
四、典型例题
ez 例1 求 f ( z ) n 在 z 0 的留数. z

因为 z 0 是 f ( z )的 n阶极点,
5

C
如图
C1 C2 Cn
f ( z )dz f ( z )dz f ( z )dz f ( z )dz
zn .
z2 z1 . .
C

两边同时除以 2i ,得
D
1 1 1 f ( z )dz f ( z )dz f ( z )dz 2i C1 2i C2 2i Cn
在 z0 的某个去心邻域 0 z z0 R 内包含 z0 的
任意一条简单闭曲线 C 的积分 f ( z )dz 的值除
C
以 2i 后所得的数称为 f ( z ) 在 z0 的留数.
记作 Res[ f ( z ), z0 ]. (即 f ( z ) 在 z0 为中心的圆环
域内的洛朗级数中负幂项c1 ( z z0 )1 的系数.)
1 1 d 5 6 z sin z . Res f ( z ),0 lim 5 z 6 5! (6 1)! z 0 dz z
21
ez 1 例3 求 f ( z ) 5 在 z 0 的留数. z

z 0 是 f ( z ) 的四级极点.
f ( z ) cn ( z z0 ) n c1 ( z z0 ) 1 c0
c1 ( z z0 ) cn ( z z0 )
n
2
积分 f ( z )dz
C
c n ( z z0 ) dz c1 ( z z0 ) dz
相关文档
最新文档