比例应用题
比例的基本应用题
比例的基本应用题
1、妈妈买了两种垃圾袋,一种是白色一种是红色,白色和红色的比是3:2,两种垃圾袋一共有50个,问白色和红色各有多少个?
2、甲乙两人都有存款,甲:乙=8:3,甲比乙多150元,问两人一共有多少元钱?
3、A:B=4:3 B:C=5:7 A:B:C= : :
4、甲比乙少100,甲:乙=8:3,问乙是多少?甲乙的和是多少?
5、甲的四分之三等于乙的三分之二,甲比乙小20,问甲数是多少?
6、丽丽从甲地到乙地去时每小时走8千米,回来的时候每小时走7千米,来回共用了15小时。
问丽丽去时用了多少小时?还有甲地到乙地的路程是是多少千米?
7、加工一个玩具,甲要8分钟,乙要10分钟,丙要5分钟,现在有1800个玩具要求他们同时完成,问甲乙丙每人要加工多少个玩具?
8、甲乙丙一起去做一项工程,甲的工作效率是乙的2倍,也等于丙的工作效率的7倍。
最后甲比丙多挣了1000元,问甲乙丙各挣了多少钱?。
精选解比例应用题(50道)
1、甲地到乙地的实际距离是120千米,在一幅比例尺是1:6000000的地图上,应画多少厘米?2、幅地图,图上的4厘米,表示实际距离200千米,这幅图的比例尺是多少?3、在一幅比例尺是1:4000 的平面图上,量得一块三角形的菜地的底是12厘米,高是8厘米,这块菜地的实际面积是多少公顷?4、运来一批纸装订成练习本,每本36页,可订40本,若每本30页,可订多少本?5、在一幅比例尺是1:30000 的地图上,量得东、西两村的距离是12.3厘米,东、西两村的实际距离是多少米?6、甲地到乙地的实际距离是120千米,在一幅比例尺是1:6000000的地图上,应画多少厘米?7、一幅地图,图上的4厘米,表示实际距离200千米,这幅图的比例尺是多少?8、在一幅比例尺是1:4000 的平面图上,量得一块三角形的菜地的底是12厘米,高是8厘米,这块菜地的实际面积是多少公顷?9、一辆汽车2小时行驶130千米。
照这样的速度,从甲地到乙地共行驶5小时。
甲、乙两地相距多少千米?(用比例解)10、一辆汽车从甲地开往乙地,每小时行64千米,5小时到达。
如果要4小时到达,每小时需行驶多少千米?(用比例解)11、修一条公路,原计划每天修360米,30天可以修完。
如果要提前5天修完,每天要修多少米?(用比例解)12、修一条路,如果每天修120米,8天可以修完;如果每天修150米,可以提前几天可以修完?(用比例方法解)13、修一条公路,总长12千米,开工3天修了1.5千米。
照这样计算,修完这条路还要多少天?(用比例解答)14、修一条路,如果每天修120米,8天可以修完;如果每天多修30米,几天可以修完?(用比例方法解)15、小明买4本同样的练习本用了4.8元,138元可以买多少本这样的练习本?(用比例解答)16、工厂有一批煤,计划每天烧2.4吨,42天可以烧完。
实际每天节约12.5%,实际可以烧多少天?(比例解)17、解放军某部行军演习,4小时走了22.4千米,照这样的速度又行了6小时,一共行了多少千米?(用比例方法解)18、一对互相啮合的齿轮,主动轮有60个齿,每分转80转。
比例的应用题
比例的应用题比例是数学中常用的一个概念,它用于衡量和比较不同数量之间的关系。
在生活和工作中,比例的应用十分广泛,可以帮助我们解决各种实际问题。
本文将通过几个实例,详细说明比例在不同场景中的应用。
一、商品打折假设某商店正在进行促销活动,某件商品原价为300元,现在打8折出售。
我们可以通过比例来计算出打折后的价格。
首先,我们需要将原价与折扣相乘,得出实际支付的金额:300 * 0.8 = 240(元)因此,打折后的价格为240元。
二、地图比例尺地图是我们日常生活中常用的导航工具。
在地图上,经常会标注比例尺,它表示地图上的一定长度对应实际距离的比例关系。
例如,某地图上的比例尺为1:5000,这意味着地图上的1个单位距离相当于实际距离的5000个单位。
如果我们需要确定两个地点之间的实际距离,可以通过比例尺进行计算。
假设两个地点在地图上的距离为4个单位,我们可以使用比例尺计算实际距离:4 * 5000 = 20000(单位)因此,两个地点的实际距离为20000单位。
三、速度和时间的关系在交通工具的运行中,速度和时间是密切相关的。
通过比例,我们可以计算出两个因素之间的关系,并进一步推导出其他相关的信息。
例如,一辆汽车以每小时60公里的速度行驶,我们想要知道它行驶100公里所需的时间。
可以通过比例来计算:60公里 : 1小时 = 100公里 : x小时根据比例关系,我们可以得出:60x = 100x = 100/60x ≈ 1.67因此,该汽车行驶100公里需要约1.67小时。
四、食谱调料比例在烹饪过程中,食谱调料的比例很重要,它直接影响到菜肴的味道和口感。
通过比例,我们可以确定不同食材的用量,以达到理想的效果。
例如,某道菜的食谱要求酱油和盐的比例为2:1。
如果我们需要制作500克的菜肴,可以通过比例计算出酱油和盐的用量。
首先,假设酱油的用量为x克,那么盐的用量为1/2 * x克。
则有:x + 1/2 * x = 500通过计算可得:3/2 * x = 500x ≈ 333克因此,制作该菜肴时,酱油的用量应为333克,盐的用量为166克。
关于比例的应用题
关于比例的应用题一、简单比例应用题1. 题目- 已知甲、乙两数的比是3:5,甲数是12,求乙数是多少?- 解析:- 因为甲、乙两数的比是3:5,设乙数为x。
- 根据比例的定义,(甲)/(乙)=(3)/(5),已知甲数是12,可列出方程(12)/(x)=(3)/(5)。
- 通过交叉相乘得到3x = 12×5,即3x=60。
- 解得x = 20,所以乙数是20。
2. 题目- 一种盐水,盐和水的比是1:10,要配制这种盐水550克,需要盐和水各多少克?- 解析:- 盐和水的比是1:10,那么盐水一共是1 + 10=11份。
- 要配制550克盐水,每份的重量是550÷11 = 50克。
- 盐占1份,所以盐的重量是50×1 = 50克。
- 水占10份,水的重量是50×10 = 500克。
二、比例尺相关应用题1. 题目- 在比例尺是1:5000000的地图上,量得A、B两地的距离是6厘米。
A、B两地的实际距离是多少千米?- 解析:- 比例尺1:5000000表示地图上1厘米代表实际距离5000000厘米。
- 量得A、B两地在地图上的距离是6厘米,那么实际距离就是6×5000000 = 30000000厘米。
- 因为1千米 = 100000厘米,所以30000000厘米=30000000÷100000 = 300千米。
2. 题目- 一个长方形操场,长120米,宽80米。
如果把它画在比例尺是1:400的图纸上,长和宽各应画多少厘米?- 解析:- 因为1米 = 100厘米,所以长120米=120×100 = 12000厘米,宽80米=80×100 = 8000厘米。
- 根据比例尺1:400,图上距离 = 实际距离×比例尺。
- 长应画12000×(1)/(400)=30厘米。
- 宽应画8000×(1)/(400) = 20厘米。
比例应用题
比例应用题1、甲、乙、丙三人从昆明同坐一辆出租车回家。
当行到全程的2时,5甲下了车;当行到全程的3时,乙下了5车;丙到终点才下车。
他们三人共付车费290元。
甲、乙、丙三人按路程的远近各付款多少元?2、一种农药水是用药和水按1:100配成的,要配制这种农药水8080千克,需要药粉多少千克?3、盖一幢职工宿舍。
计划使用6米长的水管240根。
后来改用8米长的水管,共需要多少根?(用比例知识解答)4、我们只有一个地球,必须退耕还林,某山区小学要栽253棵松树,分给三个年级。
六年级分到的51等于五年级分到的41,又等于四年级分到的21,三个年级各分到多少棵?5、做一批零件,如果每天做200个,15天可以做完,现在要在12天完成,平均每天做多少个?(比例解)6、甲地到乙地的公路长392千米。
一辆汽车3小时行了168千米。
照这样计算,行完全还需要几小时?(比例解)7、永胜小学四、五、六共捐款2040元,其中四年级的捐款是六年级的43,六年级捐款额的54与五年级刚好相等。
六年级捐款多少元?8、金光电子厂要生产一批零件,原计划每天生产180个,12天完成。
实际的生产效率是原计划的120%,实际多少天可以完成?(比例解)9、一辆汽车4小时行140千米,照这样计算,7小时行多少千米?行驶315千米需要几小时?(用比例解)10、甲、乙、丙三个同学体重总和是110千克,他们的体重比是6:9:7。
最重的一个同学达多少千克?11、铁路工人修铁路,用每根长9米的新铁轨替换原来每根6米的旧铁轨,共换下旧铁轨240根,换上的新铁轨有多少根?(比例解)12、水泥厂5天生产水泥320吨。
照这样计算,要生产6600吨水泥,需要多少天完成?(比例解)13、某工程队修一条路,12天共修780米,还剩下325米没有修。
照这样速度,修完这条公路,共需要多少天?(比例解)14、甲乙两个小组要在6小时内加工1560个零件。
已知甲小组每小时加工120个零件,乙每小时加工零件多少个?(方程解)15、50千克花生仁可以榨油19千克。
小学比例应用题25道含答案
小学比例应用题25道含答案1.一个箱子里有12个苹果和18个橘子,苹果和橘子的比例是多少?答案:2:3。
2.一个班级有48名学生,其中男生和女生的比例是3:5,男生有多少人?答案:18人。
3.一块土地被分为4份,其中3份分给了小王、小明、小李三人,他们的比例是1:2:3,小李分到的土地面积是60平方米,这块土地的总面积是多少?答案:160平方米。
4.某公司的员工有280人,其中男员工和女员工的比例是3:4,女员工有多少人?答案:160人。
5.某班级有30名学生,其中男生和女生的比例是2:3,女生有多少人?答案:18人。
6.一桶液体有48升,其中糖水和水的比例是1:3,糖水有多少升?答案:12升。
7.某个城市的总人口为800000人,其中男性和女性的比例是2:3,女性有多少人?答案:480000人。
8.一辆公交车上乘客的男性和女性的比例是1:2,如果有36名乘客是男性,公交车上有多少名乘客?答案:108名。
9.一家超市苹果和橙子一共60箱,苹果和橙子的比例是1:2,超市里有多少箱橙子?答案:40箱。
10.一个班级有60名学生,其中男生和女生的比例是1:3,女生有多少人?答案:45人。
11.某地区的总人口为500000人,其中男性和女性的比例是3:2,女性有多少人?答案:200000人。
12.一台机器由A、B、C三个部分组成,它们的价值比例是1:2:3,如果整台机器的价值为1500元,C部分的价值是多少元?答案:750元。
13.一栋楼房的高度是50米,它的模型高度是20厘米,模型与楼房的比例是多少?答案:1:250。
14.一种药物的瓶子里有15毫升药液和45毫升水,药液和水的比例是多少?答案:1:3。
15.一架飞机上有90名乘客,其中男性和女性的比例是2:3,女性有多少人答案:54人。
16.一个班级有40名学生,其中男生和女生的比例是3:2,男生有多少人?答案:24人。
17.一个班级有36名学生,其中男生和女生的比例是4:5,男生有多少人?答案:16人。
六年级比例应用题50道含答案难
六年级比例应用题50道含答案难
一、题目
1. 小明有50元,买了一件衣服,价格是30元,小明还剩多少钱?
答案:小明还剩20元。
2. 小红有100元,买了一双鞋,价格是60元,小红还剩多少钱?
答案:小红还剩40元。
3. 小刚有120元,买了一件外套,价格是90元,小刚还剩多少钱?
答案:小刚还剩30元。
4. 小芳有150元,买了一件裙子,价格是100元,小芳还剩多少钱?
答案:小芳还剩50元。
5. 小强有200元,买了一件衬衫,价格是120元,小强还剩多少钱?
答案:小强还剩80元。
6. 小李有250元,买了一条裤子,价格是150元,小李还剩多少钱?
答案:小李还剩100元。
7. 小燕有300元,买了一件外套,价格是180元,小燕还剩多少钱?
答案:小燕还剩120元。
8. 小虎有350元,买了一双鞋,价格是210元,小虎还剩多少钱?
答案:小虎还剩140元。
9. 小龙有400元,买了一件衣服,价格是240元,小龙还剩多少钱?
答案:小龙还剩160元。
10. 小马有450元,买了一件裙子,价格是270元,小马还剩多少钱?
答案:小马还剩180元。
比例尺应用题60题(有答案过程)
比例尺应用题60题(有答案过程)比例尺应用题专项练习60题(有答案)1.一幅地图的比例尺是1:800000,在一幅地图上量得甲乙两地的距离是2.5厘米,,则甲乙两地的实际距离是多少千米?2.在比例尺是的地图上,测得甲乙两地的距离是8厘米,在另一幅1:4000000的地图上,甲乙两地相距多少厘米?3.在一幅地图上量得北京到沈阳的铁路长5厘米,地图的比例尺是1:7000000,北京到沈阳的铁路实际有多少千米?4.在比例尺是1:100的图纸上,量得一个正方形花坛的边长是10厘米这个花坛的实际面积是多少平方米?5.在比例尺是1:5000的图纸上,量得一个长方形花园的长是10cm,宽是8cm,这个花园的实际面积是多少平方米?6.在比例尺的地图上,量得A、B两地的距离长12厘米,甲乙两车同时从AB两地相对开出,经过4小时两车相遇,已知甲乙两车的速度比是3:2,甲乙两车的速度各是多少千米?7.某县人民政府门前的广场是一个长方形,长180米,宽100米.请你选择一个合适的比例尺,在下边的图纸内画出广场的平面图,并在图上注明长和宽.我设计的比例尺是_________.8.在比例尺是的地图上,有一段长是40厘米的道路.一辆时速是50千米的汽车走完这段路需要多少分钟?9.北京到上海大约相距1050千米,在比例尺为1:30000000的一幅地图上,量得两地相距多少厘米?10.在一张比例尺是1:5000000的地图上,小明量得北京到上海的距离是28.8cm,已知火车每小时行120千米,姥姥四月三十日晚7:00上车,小明应最晚在什么时候去接站?11.在如图中量出所需的数据(取整厘米数),再计算.A、B两地相距80千米,A、C两地相距多少千米呢?12.在标有比例尺的地图上,量得两地间相距12厘米,一列客车和一列货车从两地同时相向而行,4小时相遇,已知客车与货车的速度比是3:2,客车每小时行驶多少千米.13.在比例尺为1:6000000的中国地图上,量得两地间的距离是10厘米,甲、乙两列火车同时从两地相对开出,6小时相遇.甲车每小时行55千米,乙车每小时行多少千米?14.金牛与武汉的距离为120km,画在比例尺为1:600000的地图上长度为dm?15.在一幅比例尺是1:2000000的地图上,量得甲、乙两地相距10厘米,一辆汽车从甲地开往乙地,每小时行60 千米,行驶2.5小时后,离乙地还有多远?16.一个零件长0.02厘米,在一幅比例尺是150:1的地图上应画多少厘米?17.在比例尺是1:1000的地图上,量得一块长方形的菜地长5cm,宽6cm,如果在这块菜地的实际面积的上种上菠菜,剩下的按1:5种白菜和萝卜,白菜和萝卜各能种多少平方米?18.用60厘米长的铁丝围成一个直角三角形,三角形三条边的比是3:4:5.求该三角形的面积?19.在比例尺是的地图上,量的A、B相距25.5cm,一辆汽车由A地去B地,每小时行80km,需要多少小时才能到达?20.一块三角形菜地,底长80m,高60m,画在比例尺是1:500的地图上,面积是多少cm2?21.在一幅比例尺是1:6000000的地图上,量得A、B两地间距离是8厘米.一列火车上午9时开始以每小时120 千米的速度从A地开往B地,则下午几时到达B地?22.有一块草地(如图)测出主要数据,标在图上,若这幅图的比例尺是1:1000,算出这块地的实际面积.23.在一幅地图上量得甲乙两地相距1.2厘米.一辆汽车从甲地开往乙地,每小时行45千米,4小时到达,求这幅24.在比例尺1:30000的地图上,量得一条公路长5厘米,由甲乙两队合修需要6天完成.甲乙两队的工作效率比是2:3,求甲队的工作效率?25.看图填空⒈量一量辛庄小学平面图的长是_________厘米,宽是_________厘米,这所小学实际占地面积是_________平方米.⒉如果操场的长约是60米,宽约是40米.绕操场一圈大约是_________米.⒊教学楼的面积大约占学校总面积的_________%.26.在比例尺是1:5000000的地图上,量得甲地到乙地的距离是3.4厘米.甲地到乙地的实际距离是多少千米?27.育才小学的操场是一个长方形,画在比例尺是1:4000的平面图上,长6厘米,宽3厘米.操场的实际面积是多少平方米?28.学校要挖一个长方体水池,在比例尺1:200的设计图上,水池的长为12厘米,宽为10厘米,深为2厘米.(1)按图施工,这个水池的实际占地面积是多少平方米?(2)如果要在内壁和底面都要贴上瓷砖,贴瓷砖的面积最多是多少平方米?(3)如果往这个水池注入48立方米的水,请你求出这时水池的水深?29.小明家在百货商场的北偏西40°方向2500米处,图书馆在农业银行东偏南40°方向,农业银行到百货商场与到图书馆的距离相等.下面是小明坐出租车从家去图书馆的路线图(粗实线部分).已知出租车在3千米以内(含3千米)按起步价9元计算,以后每增加1千米车费就增加2元.请你按图中提供的信息先用刻度尺测一测,再算一算小明一共要花多少出租车费?30.在比例尺是的图纸上量得一块长方形试验田的长是4厘米,宽是3厘米,这块试验田的实际面积是多少平方米?如果每平方米试验田大约可以收稻谷1.5千克,这块试验田大约可以收稻谷多少千克?31.在比例尺是的地图上,量得一个圆柱形水池底面直径是4cm,高是5cm.(1)如果在这个水池的底面和四周抺上水泥,抺水泥面积是多少平方米?(2)这个水池最多能蓄水多少立方米?32.在比例尺为1:30000000的地图上,量得上海至北京的距离是4厘米.一架飞机从上海出发,每小时飞行500 千米,几小时可以到达北京?33.小明家距体育场有多远?(取整厘米数)34.在一张地图上量得AB两点间的距离是1.2厘米,AB两地的实际距离是60千米,又在图上量得CD间的距离是1.8厘米,CD间的实际距离是多少千米?35.在一幅比例尺是1:2000000的地图上量得甲乙两地相距30cm,如果在另一幅地图上量得甲乙两地相距10cm,则另一幅地图的比例尺是多少?36.一个长方形操场,长150米,宽120米,把它画在比例尺是的图纸上,长和宽各应画多少厘米?37.在比例尺是1:10000000的地图上,量得A、B两地的距离是2.4厘米.甲乙两车同时从两地出发,相向而行,已知甲车的速度是每小时48千米,两车的速度比是3:2.两车几小时后相遇?38.在地图上,测得甲乙两地的距离是12厘米.已知甲乙两地的实际距离是960千米.(1)求这幅图的比例尺?(2)在这幅地图上,量得A到B的图上距离是5厘米.A到B的实际距离是多少千米?39.一张照片长10厘米,宽6厘米.如果要使放大后照片的宽是30厘米,那么放大后照片的长应是多少厘米?40.如图的比例尺是求这块梯形地的实际面积.41.如图是一个长方形花坛以1:500的比例尺画出的,(量时取整厘米)请你求出这个花坛的实际面积是多少平方米?如果种每平方米的花草要35元,想用花草种满这个花坛,一万元够吗?42.用90厘米长的铁丝做成长与宽之比为3:2的长方形,如果把它画在比例尺是1:9的图纸上,那么这个长方形在图纸上的面积是多少?43.一个半径长是4毫米的圆形零件,画在一幅比例尺是25:1的图纸上,它的图上半径是多少厘米?44.在一张地图上量A地到B地的距离是5厘米,已知这张图纸的比例尺是1:3000000,A地到B地的实际距离是多少千米?45.一块长方形地,长与宽的比是6:5.按1:1000的比例尺画在图上,其周长是22厘米,计划在这块地上盖一幢楼,占地面积是这块地的50%,这幢楼的占地面积大约是多少平方米?46.在一幅1:500000 的地图上,量得北京一号地铁线长约是10cm,它的实际长度大约是多少?47.从A城到B城,图上距离为6.3厘米,比例尺是1:50000000.一架飞机每小时飞行600千米,如果从早上8时起飞,中途休息1小时30分,到达目的地是什么时间?48.下面是用1:4000的比例尺画出的一块水稻试验田的平面图.请你:(1)量一量:它的上底是_________厘米,下底是_________厘米.(取整厘米数)(2)算一算:它的实际面积是_________公顷.(3)画一画:以上图的高为直径画一个圆.(4)算一算:你画的这个圆的面积是_________平方厘米.49.张庄和王村相距960千米,要在两村间修筑一条笔直的马路,画在设计图上的距离是,这幅设计图的比例尺是多少?50.量一量算一算:(1)医院到商场的距离.(2)学校到少儿活动中心的距离.(3)学校到医院的距离.(4)还可以求什么距离?比例尺:51.一个蔬菜大棚,长40米,宽20米,将这个大棚画在比例尺是1:1000的图纸上.(1)长和宽应该画多少厘米?(2)请你画出这个蔬菜大棚的平面图.52.北京到天津的实际距离是120千米,在比例尺的地图上,两地距离是多少厘米?53.把一块长方形土地用1:500的比例尺画在平面图上,长是10厘米,宽与长的比是4:5,这块地的实际面积是多少平方米?54.在一块大草坪中间有一间边长3米的正方形房屋,在房屋的一角,用6米长的绳子拴着一只山羊,请画出山羊能吃到草的地方.按比例尺1:200画图.55.在一幅比例尺为1:2500000的地图上,量得南京与扬州之间的距离是3.8厘米.南京与扬州之间的实际距离大约是多少千米?56.根据右边的路线图,完成下表.路线方向路程小刺猬家→小猪家南偏东45°1500小猪家→小白兔家小白兔家→小猪家小猪家→小刺猬家57.在比例尺为1:6000000的铁路运行图上,量得甲、乙两城的铁路长7.2厘米.如果一列客车从甲城开往乙城要用4.5小时,这列客车平均每小时的速度是多少千米?58.小聪准备放假到北京去玩,但他不知道深圳和北京相距多远.联系到最近学习的比例知识后,他很快找来一张地图,但不巧的是这张地图上印有比例尺的一角不小心撕掉了.用这张地图小聪能知道深圳到北京有多远吗?聪想出了什么办法吗?59.一幅地图上,量得甲、乙两地相距3厘米,乙丙两地相距5厘米,已知甲、乙两地的实际距离是60千米,乙、丙两地的实际距离是多少千米?60.在比例尺是1:50000的图上,量得某村的平面图,长5cm,宽4cm,这个村实际占地面积是多少平方米?参考答案:1.解:2.5÷=2000000(厘米)=20(千米);2.解:8÷=40000000(厘米);40000000×=10(厘米);3.解:5÷=35000000(厘米),=350千米;4.解:10÷=1000(厘米)=10(米),10×10=100(平方米);5.解:10÷=50000(厘米)=500(米),8÷=40000(厘米)=400(米),500×400=200000(平方米);6.解:A、B两地的距离:12×20=240(千米),240÷4=60(千米/小时)60×=36(千米/小时),60﹣36=24(千米/小时);答:甲车的速度是36千米/小时,乙车的速度是24千米/小时.7.解:因为180米=18000厘米,100米=10000厘米,所以可以选用1:10000的比例尺;又因18000×=1.8厘米,10000×=1厘米,所以可以画出如下所示的广场的平面图:故答案为:1:10000.8.解:40÷=100000(厘米)=1(千米);1÷50=0.02(小时)=1.2(分钟);答:一辆时速是50千米的汽车走完这段路需要1.2分钟.9.解:因为1050千米=105000000厘米,答:量得两地相距3.5厘米.10.解:28.8=28.8×5000000=144000000(厘米),144000000厘米=1440千米,1440÷120=12(小时),因为从四月三十日晚7:00上车,经过12小时是五月一日的早晨7:00;答:小明应最晚在五月一日的早晨7:00去接站.11.解:如图所示,量出AB、AC的图上距离分别为1厘米和2厘米,又因A、B两地相距80千米,即图上距离1厘米表示实际距离80千米,则A、C两地的实际距离为80×2=160千米,答:A、C两地相距160千米.12.解:由线段比例尺可知1厘米代表40千米,两地的路程:40×12=480(千米),速度和:480÷4=120(千米),客车速度:120×=72(千米),答:客车每小时行驶72千米.13.解:①设两地间的距离是x厘米,得x=60000000.60000000厘米=600千米.②(600﹣55×6)÷6=270÷6=45(千米).答:乙车每小时行45千米.14.解:因为120千米=1200000(分米),则1200000×=2(分米);答:金牛与武汉的图上距离为2分米.15.解:10÷=20000000(厘米)=200(千米);200﹣(60×2.5)=200﹣150,=50(千米);答:离乙地还有50千米.16.解:0.02×=3(厘米);答:应画3厘米17.解:菜地的长:5÷=5000(厘米)=50(米),菜地的宽:6÷=6000(厘米)=60(米),菜地的面积:50×60=3000(平方米),剩下的面积:3000×(1﹣)=3000×=1800(平方米);种白菜的面积:1800×=300(平方米),种萝卜的面积:1800﹣300=1500(平方米);答:白菜种300平方米,萝卜种1500平方米.18.解:60×=15(厘米),15×20×=150(平方厘米);答:这个三角形的面积是150平方厘米.19.解:25.5×20÷80=510÷80=6.375(小时);答:需要6.375小时才能到达20.解:80米=8000厘米,60米=6000厘米,(8000×)×(6000×)=16×12=192(平方厘米);答:这块菜地的图上面积是192平方厘米;21.解:8÷=8×6000000=48000000(厘米),48000000厘米=480千米;480÷120=4(小时),9+4=13(时)(即下午1时);答:下午1时到达B地;22.解:量得这个图形的底为3厘米,高为2厘米,则3÷=3000(厘米)=30(米),2÷=2000(厘米)=20(米),30×20=600(平方米);答:这块地的实际面积是600平方米.23.解:45×4=180(千米),180千米=18000000厘米,1.2厘米:18000000厘米=1:15000000;答:这幅地图的比例尺是1:15000000.24.解:公路的长度:5÷=150000(厘米)=1.5(千米);工作效率之和:1.5÷6=0.25(千米/天);甲队的工作效率:0.25×=0.1(千米/天);答:甲队的工作效率是0.1千米/天.25.解:(1)量出平面图的长和宽的图上距离分别为8厘米和5厘米,则8÷=16000(厘米)=160(米),5÷=10000(厘米)=100(米),160×100=16000(平方米);答:这所小学实际占地面积是16000平方米.(2)(60+40)×2=100×2=200(米);答:绕操场一圈大约是200米.(3)2090÷16000≈13%;答:教学楼的面积大约占学校总面积的13%.故答案为:8,5,16000;200;13.26. 解:3.4÷÷100000=3.4×5000000÷100000=17000000÷100000=170(千米);答:甲地到乙地的距离是170千米.答:操场的实际面积是28800平方米.28.解:水池实际的长:12÷=2400(厘米)=24(米),水池实际的宽:10÷=2000(厘米)=20(米),水池实际的深度:2÷=400(厘米)=4(米),(1)24×20=480(平方米);答:这个水池的实际占地面积是480平方米.(2)(24×20+20×4+4×24)×2﹣24×20=(480+80+96)×2﹣480=656×2﹣480=1312﹣480=832(平方米);答:贴瓷砖的面积最多是832平方米.(3)48÷(24×20)=48÷480=0.1(米);答:这时水池的水深0.1米.29.解:因为图上距离1厘米表示实际距离500米,则小明家到图书馆的实际距离是:500×11=5500(米)=5.5(千米);9+(5.5﹣3)×2=9+5=14(元);答:小明一共要花14元出租车费.30. (1)试验田实际长是:4÷=8000(厘米)=80(米),试验田实际宽是:3÷=6000(厘米)=60(米),这块试验田的实际面积是:80×60=4800(平方米).答:这块试验田的实际面积是4800平方米;(2)这块试验田大约可以收稻谷:1.5×4800=7200(千克);答:这块试验田的实际面积是4800平方米,这块试验田大约可以收稻谷7200千克.31.解:(1)4×200=800(分米)=80(米),5×200=1000(分米)=100(米),水池的侧面积:3.14×20×100=6280(平方米),水池的底面积:3.14×(80÷2)2=5024(平方米),抹水泥的面积:6280+5024=11304(平方米);(2)水池的容积:3.14×(80÷2)2×100=5024×100=502400(立方米);答:抹水泥的面积是11304平方米,这个水池最多能蓄水502400立方米.32.解:4÷=120000000(厘米)=1200(千米),1200÷500=2.4(小时);答:2.4小时可以到达北京.33.解:量出小明家与体育场的图上距离2厘米,则2÷=200000(厘米)=2(千米);答:小明家距体育场有2千米.34.解:因为60千米=6000000厘米,则1.2厘米:6000000厘米=1:5000000;所以1.8÷=9000000(厘米)=90(千米);答:CD间的实际距离是90千米.35.解:甲、乙两地的实际距离:2000000×30=60000000(cm),另一幅地图的比例尺是:10:60000000=1:6000000;36. 解:(1)150×=0.15(米);0.15米=15厘米;(2)120×=0.12(米);0.12米=12厘米;答:长应画15厘米,宽应画12厘米.37. 解:2.4×=24000000(厘米)=240(千米),48÷2×3=72(千米/小时),240÷(48+72)=240÷120=2(小时);答:两车2小时后相遇.38.解:(1)因为960千米=96000000厘米,则12厘米:96000000厘米=1:8000000;答:这幅图的比例尺是1:8000000.(2)5÷=40000000(厘米)=400(千米);答:A到B的实际距离是400千米.39.解:设放大后照片的长应是x厘米,10:x=6:30,6x=300,x=50;答:放大后照片的长应是50厘米.40.解答:解:因为此图的比例尺是:1:100,梯形的上底是:100×5=500(厘米),500厘米=5米,梯形的下底是,2.5×100=250(厘米),250厘米=2.5米,高是:3×100=300(厘米)300厘米=3米,这块梯形地的实际面积:(5+2.5)×3×=11.25(平方米),答:这块梯形地的实际面积是11.25平方米.41.解:量得长方形的长宽高分别为3厘米和2厘米,则3÷=1500(厘米)=15(米),2÷=1000(厘米)=10(米),花坛的实际面积为:15×10=150(平方米);花坛需要的钱数:150×35=5250(元),5250<10000,答:这个花坛的实际面积是150平方米,想用花草种满这个花坛,一万元够.42. 解:90÷2=45(厘米),45×=27(厘米),45﹣27=18(厘米);27×=3(厘米),18×=2(厘米);3×2=6(平方厘米);答:这个长方形在图纸上的面积是6平方厘米.43.解:4毫米=0.4厘米,0.4×=10(厘米);答:它的图上半径是10厘米.44.解:5÷=15000000(厘米),15000000厘米=150千米;答:A地到B地的实际距离是150千米.45.解:长和宽的和:22÷2=11(厘米),长方形的长:11×=6(厘米),长方形的宽:11﹣6=5(厘米);长方形的长的实际长度:6÷=6000(厘米)=60(米),长方形的宽的实际长度:5÷=5000(厘米)=50(米);这块地的实际面积:60×50=3000(平方米),这幢楼的占地面积:3000×50%=1500(平方米);答:这幢楼的占地面积大约是1500平方米.46.解:10÷=5000000(厘米)=50(千米);答:它的实际长度是50千米.47.解:(1)6.3÷=315000000(厘米)=3150(千米);(2)3150÷600=5.25(小时),5.25时=5小时15分,8时+1小时30分+5小时15分=14时45分,答:到达目的地是14:45.48.(1)量一量:它的上底是2厘米,下底是4厘米.(取整厘米数)(2)算一算:它的实际面积是0.01512公顷.(4)算一算:你画的这个圆的面积是8.0384平方厘米.解:(2)2÷=800(厘米),4÷=1600(厘米),3.2÷=1260(厘米),(800+16000)×1260÷2=1512000(平方厘米),1512000平方厘米=0.01512公顷;(3)3.2÷2=1.6(厘米),如图,比列尺1:400,(4)r=1.6(厘米),3.14×1.62=8.0384(平方厘米).49.解:960千米=96000000厘米, 4.8:96000000=1:20000000;答:这幅设计图的比例尺是1:20000000.50.解:200米=20000厘米,1厘米:20000厘米=;(1)3.5÷=3.5×20000=70000(厘米),70000厘米=700米;答:医院到商场的距离是700米.(2)图上距离是1.5厘米,实际距离=1.5÷=1.5×20000=30000(厘米),30000厘米=300米;答:学校到少儿活动中心的距离是300米.(3)图上距离是2厘米,实际距离=2÷=2×20000=40000(厘米);,40000厘米=400米;答:学校到医院的距离是400米.(4)还可以求学校到商场的距离:图上距离是2.5厘米,实际距离=2.5÷=2.5×20000=50000(厘米),50000厘米=500米;答:学校到商场的距离是500米.51. 解:(1)40米=4000厘米,20米=2000厘米,4000×=4(厘米),2000×=2(厘米);答:这个大棚的图上长是4厘米,宽是2厘米;(2)以长为4厘米,宽为2厘米画出一个长方形即是这个蔬菜大棚的平面图52. 解:120千米=12000000(厘米);12000000×=2.4(厘米);答:两地距离是2.4厘米.53.解:10÷=18(厘米)18﹣10=8(厘米),10÷=5000(厘米)=50(米),8÷=8×500=4000(厘米)=40(米),50×40=2000(平方米),答:这块地的实际路面是2000平方米;故答案为:2000平方米54.解:因为3米=300厘米,6米=600厘米,则300×=1.5(厘米),600×=3(厘米),如图所示,羊所能吃到草的区域为蓝色部分,A为半径为3厘米的圆的面积的,B和C都是半径为1.5厘米的圆.55.解:3.8÷=3.8×2500000=9500000(厘米),9500000(厘米)=95千米;答:南京与扬州之间的实际距离大约是95千米.56.解:(1)求小刺猬家到小猪家的方向和路程.方向:南偏东45°;路程:图上1厘米的距离代表实际距离500米,小刺猬家到小猪家的图上距离是3厘米,所以实际路程是500×3=1500(米)(2)求小猪家到小白兔家方向:东偏北45°;路程:图上距离是4厘米,所以实际路程是500×4=2000(米)(3)小白兔到小猪家的方向和路程.方向:南偏西45°;路程是500×4=2000(米).(4)小猪家到小刺猬家的方向和路程.方向:西偏北45°;路程是500×3=1500(米).故答案为:南偏东45°,1500米. 东偏北45°,2000米.南偏西45°,2000米.西偏北45°,1500米.57.解:7.2=7.2×6000000=43200000(厘米)=432千米;432÷4.5=96(千米);答:这列客车平均每小时的速度是96千米.58.解:(1)这幅地图的比例尺不知道,则无法计算深圳到北京的实际距离.(2)小聪可以先量出深圳到广州的图上距离,实际距离已知,依据“比例尺=图上距离:实际距离”求出这幅地图的比例尺,再量出深圳到北京的图上距离,依据“图上距离÷比例尺”=实际距离即可求出深圳到北京的实际距离59.解:60千米=6000000厘米,比例尺:3:60000000=1:2000000,乙、丙两地的实际距离:5÷=10000000(厘米)=100(千米);答:甲、乙两地的实际距离100千米.60.解:5÷=250000(厘米)=2500(米),4÷=200000(厘米)=2000(米),2500×2000=5000000(平方米);答:这个村实际占地面积是5000000平方米.。
小学数学比例应用题100道及答案(完整版)
小学数学比例应用题100道及答案(完整版)1. 小明用10 元钱买了5 个本子,照这样计算,16 元可以买几个本子?答案:8 个解析:先算出每个本子的价格10÷5 = 2 元,16÷2 = 8 个2. 工厂生产一种零件,3 小时生产了180 个,照这样计算,8 小时可以生产多少个?答案:480 个解析:每小时生产180÷3 = 60 个,8 小时生产60×8 = 480 个3. 一辆汽车5 小时行驶250 千米,照这样的速度,7 小时行驶多少千米?答案:350 千米解析:速度为250÷5 = 50 千米/时,7 小时行驶50×7 = 350 千米4. 4 头牛5 天吃草800 千克,照这样计算,7 头牛8 天吃草多少千克?答案:2240 千克解析:1 头牛1 天吃草800÷4÷5 = 40 千克,7 头牛8 天吃草40×7×8 = 2240 千克5. 用20 千克花生可以榨油8 千克,照这样计算,100 千克花生可以榨油多少千克?答案:40 千克解析:出油率为8÷20 = 0.4,100×0.4 = 40 千克6. 某工厂8 个工人6 天加工零件720 个,照这样计算,12 个工人15 天可以加工零件多少个?答案:2700 个解析:1 个工人1 天加工720÷8÷6 = 15 个,12 个工人15 天加工15×12×15 = 2700 个7. 5 台织布机8 小时织布480 米,照这样计算,7 台织布机12 小时织布多少米?答案:1008 米解析:1 台织布机1 小时织布480÷5÷8 = 12 米,7 台织布机12 小时织布12×7×12 = 1008 米8. 修一条路,3 人5 天可以修150 米,照这样计算,8 人10 天可以修多少米?答案:800 米解析:1 人1 天修150÷3÷5 = 10 米,8 人10 天修10×8×10 = 800 米9. 10 辆汽车12 次运货物600 吨,照这样计算,20 辆汽车15 次可以运货物多少吨?答案:1500 吨解析:1 辆汽车1 次运600÷10÷12 = 5 吨,20 辆汽车15 次运5×20×15 = 1500 吨10. 学校用同样的方砖铺地,铺5 平方米需要方砖120 块,照这样计算,铺30 平方米需要方砖多少块?答案:720 块解析:1 平方米需要120÷5 = 24 块,30 平方米需要24×30 = 720 块11. 小明2 分钟走120 米,照这样的速度,他从家到学校走了8 分钟,他家到学校有多远?答案:480 米解析:速度为120÷2 = 60 米/分钟,8 分钟走60×8 = 480 米12. 工人师傅4 小时加工零件160 个,照这样计算,7 小时加工零件多少个?答案:280 个解析:每小时加工160÷4 = 40 个,7 小时加工40×7 = 280 个13. 6 台收割机8 天收割小麦240 公顷,照这样计算,10 台收割机12 天收割小麦多少公顷?答案:600 公顷解析:1 台收割机1 天收割240÷6÷8 = 5 公顷,10 台收割机12 天收割5×10×12 = 600 公顷14. 某服装厂3 天生产服装180 套,照这样计算,9 天可以生产服装多少套?答案:540 套解析:每天生产180÷3 = 60 套,9 天生产60×9 = 540 套15. 15 头牛4 天吃草180 千克,照这样计算,8 头牛6 天吃草多少千克?答案:576 千克解析:1 头牛1 天吃草180÷15÷4 = 3 千克,8 头牛 6 天吃草3×8×6 = 144 千克16. 5 个工人6 小时加工零件300 个,照这样计算,8 个工人10 小时加工零件多少个?答案:480 个解析:1 个工人1 小时加工300÷5÷6 = 10 个,8 个工人10 小时加工10×8×10 = 800 个17. 一辆汽车3 小时行驶180 千米,照这样的速度,5 小时行驶多少千米?答案:300 千米解析:速度为180÷3 = 60 千米/时,5 小时行驶60×5 = 300 千米18. 用100 千克大豆可以榨油16 千克,照这样计算,400 千克大豆可以榨油多少千克?答案:64 千克解析:出油率为16÷100 = 0.16,400×0.16 = 64 千克19. 修一条路,5 人7 天可以修350 米,照这样计算,10 人14 天可以修多少米?答案:1400 米解析:1 人1 天修350÷5÷7 = 10 米,10 人14 天修10×10×14 = 1400 米20. 3 台抽水机4 小时抽水240 立方米,照这样计算,5 台抽水机6 小时抽水多少立方米?答案:600 立方米解析:1 台抽水机1 小时抽水240÷3÷4 = 20 立方米,5 台抽水机6 小时抽水20×5×6 = 600 立方米21. 某工厂6 个工人5 天生产零件900 个,照这样计算,15 个工人8 天可以生产零件多少个?答案:3600 个解析:1 个工人1 天生产900÷6÷5 = 30 个,15 个工人8 天生产30×15×8 = 3600 个22. 8 台印刷机10 小时印刷纸张48000 张,照这样计算,12 台印刷机15 小时印刷纸张多少张?答案:108000 张解析:1 台印刷机1 小时印刷48000÷8÷10 = 600 张,12 台印刷机15 小时印刷600×12×15 = 108000 张23. 5 辆汽车7 次运煤140 吨,照这样计算,8 辆汽车10 次运煤多少吨?答案:320 吨解析:1 辆汽车1 次运煤140÷5÷7 = 4 吨,8 辆汽车10 次运煤4×8×10 = 320 吨24. 服装厂2 天生产服装120 套,照这样计算,6 天可以生产服装多少套?答案:360 套解析:每天生产120÷2 = 60 套,6 天生产60×6 = 360 套25. 12 头牛5 天吃草300 千克,照这样计算,18 头牛8 天吃草多少千克?答案:864 千克解析:1 头牛1 天吃草300÷12÷5 = 5 千克,18 头牛8 天吃草5×18×8 = 720 千克26. 4 个工人3 小时加工零件120 个,照这样计算,7 个工人8 小时加工零件多少个?答案:560 个解析:1 个工人1 小时加工120÷4÷3 = 10 个,7 个工人8 小时加工10×7×8 = 560 个27. 一辆汽车4 小时行驶280 千米,照这样的速度,7 小时行驶多少千米?答案:490 千米解析:速度为280÷4 = 70 千米/时,7 小时行驶70×7 = 490 千米28. 用80 千克花生可以榨油32 千克,照这样计算,200 千克花生可以榨油多少千克?答案:80 千克解析:出油率为32÷80 = 0.4,200×0.4 = 80 千克29. 修一条路,4 人6 天可以修240 米,照这样计算,6 人9 天可以修多少米?答案:540 米解析:1 人1 天修240÷4÷6 = 10 米,6 人9 天修10×6×9 = 540 米30. 5 台拖拉机6 小时耕地150 亩,照这样计算,8 台拖拉机9 小时耕地多少亩?答案:216 亩解析:1 台拖拉机1 小时耕地150÷5÷6 = 5 亩,8 台拖拉机9 小时耕地5×8×9 = 360 亩31. 某工厂10 个工人8 天生产零件800 个,照这样计算,15 个工人12 天可以生产零件多少个?答案:1800 个解析:1 个工人1 天生产800÷10÷8 = 10 个,15 个工人12 天生产10×15×12 = 1800 个32. 6 台磨面机7 小时磨面粉2520 千克,照这样计算,9 台磨面机10 小时磨面粉多少千克?答案:3600 千克解析:1 台磨面机1 小时磨面粉2520÷6÷7 = 60 千克,9 台磨面机10 小时磨面粉60×9×10 = 5400 千克33. 4 辆卡车5 次运货物160 吨,照这样计算,7 辆卡车8 次运货物多少吨?答案:448 吨解析:1 辆卡车1 次运货物160÷4÷5 = 8 吨,7 辆卡车8 次运货物8×7×8 = 448 吨34. 服装厂3 天生产服装180 套,照这样计算,9 天可以生产服装多少套?答案:540 套解析:每天生产180÷3 = 60 套,9 天生产60×9 = 540 套35. 18 头牛6 天吃草540 千克,照这样计算,12 头牛8 天吃草多少千克?答案:480 千克解析:1 头牛1 天吃草540÷18÷6 = 5 千克,12 头牛8 天吃草5×12×8 = 480 千克36. 5 个工人8 小时加工零件400 个,照这样计算,7 个工人12 小时加工零件多少个?答案:840 个解析:1 个工人1 小时加工400÷5÷8 = 10 个,7 个工人12 小时加工10×7×12 = 840 个37. 一辆汽车6 小时行驶360 千米,照这样的速度,8 小时行驶多少千米?答案:480 千米解析:速度为360÷6 = 60 千米/时,8 小时行驶60×8 = 480 千米38. 用120 千克大豆可以榨油24 千克,照这样计算,300 千克大豆可以榨油多少千克?答案:60 千克解析:出油率为24÷120 = 0.2,300×0.2 = 60 千克39. 修一条路,6 人8 天可以修480 米,照这样计算,9 人12 天可以修多少米?答案:864 米解析:1 人1 天修480÷6÷8 = 10 米,9 人12 天修10×9×12 = 1080 米40. 7 台织布机9 小时织布630 米,照这样计算,10 台织布机12 小时织布多少米?答案:960 米解析:1 台织布机1 小时织布630÷7÷9 = 10 米,10 台织布机12 小时织布10×10×12 = 1200 米41. 某工厂12 个工人10 天生产零件1200 个,照这样计算,18 个工人15 天可以生产零件多少个?答案:2700 个解析:1 个工人 1 天生产1200÷12÷10 = 10 个,18 个工人15 天生产10×18×15 = 2700 个42. 8 台收割机9 天收割小麦360 公顷,照这样计算,12 台收割机15 天收割小麦多少公顷?答案:900 公顷解析:1 台收割机1 天收割360÷8÷9 = 5 公顷,12 台收割机15 天收割5×12×15 = 900 公顷43. 5 辆汽车6 次运货物150 吨,照这样计算,8 辆汽车10 次运货物多少吨?答案:400 吨解析:1 辆汽车1 次运货物150÷5÷6 = 5 吨,8 辆汽车10 次运货物5×8×10 = 400 吨44. 服装厂4 天生产服装240 套,照这样计算,12 天可以生产服装多少套?答案:720 套解析:每天生产240÷4 = 60 套,12 天生产60×12 = 720 套45. 20 头牛7 天吃草700 千克,照这样计算,15 头牛10 天吃草多少千克?答案:750 千克解析:1 头牛1 天吃草700÷20÷7 = 5 千克,15 头牛10 天吃草5×15×10 = 750 千克46. 6 个工人7 小时加工零件210 个,照这样计算,9 个工人14 小时加工零件多少个?答案:630 个解析:1 个工人1 小时加工210÷6÷7 = 5 个,9 个工人14 小时加工5×9×14 = 630 个47. 一辆汽车5 小时行驶250 千米,照这样的速度,9 小时行驶多少千米?答案:450 千米解析:速度为250÷5 = 50 千米/时,9 小时行驶50×9 = 450 千米48. 用150 千克花生可以榨油60 千克,照这样计算,350 千克花生可以榨油多少千克?答案:140 千克解析:出油率为60÷150 = 0.4,350×0.4 = 140 千克49. 修一条路,7 人9 天可以修630 米,照这样计算,10 人18 天可以修多少米?答案:1800 米解析:1 人1 天修630÷7÷9 = 10 米,10 人18 天修10×10×18 = 1800 米50. 8 台拖拉机7 小时耕地280 亩,照这样计算,12 台拖拉机10 小时耕地多少亩?答案:600 亩解析:1 台拖拉机1 小时耕地280÷8÷7 = 5 亩,12 台拖拉机10 小时耕地5×12×10 = 600 亩51. 某工厂15 个工人12 天生产零件1800 个,照这样计算,20 个工人18 天可以生产零件多少个?答案:5400 个解析:1 个工人 1 天生产1800÷15÷12 = 10 个,20 个工人18 天生产10×20×18 = 3600 个52. 9 台印刷机11 小时印刷纸张49500 张,照这样计算,15 台印刷机16 小时印刷纸张多少张?答案:120000 张解析:1 台印刷机1 小时印刷49500÷9÷11 = 500 张,15 台印刷机16 小时印刷500×15×16 = 120000 张53. 7 辆汽车8 次运煤224 吨,照这样计算,10 辆汽车12 次运煤多少吨?答案:480 吨解析:1 辆汽车1 次运煤224÷7÷8 = 4 吨,10 辆汽车12 次运煤4×10×12 = 480 吨54. 服装厂5 天生产服装300 套,照这样计算,15 天可以生产服装多少套?答案:900 套解析:每天生产300÷5 = 60 套,15 天生产60×15 = 900 套55. 25 头牛8 天吃草1000 千克,照这样计算,18 头牛12 天吃草多少千克?答案:864 千克解析:1 头牛 1 天吃草1000÷25÷8 = 5 千克,18 头牛12 天吃草5×18×12 = 1080 千克56. 8 个工人9 小时加工零件360 个,照这样计算,12 个工人15 小时加工零件多少个?答案:900 个解析:1 个工人1 小时加工360÷8÷9 = 5 个,12 个工人15 小时加工5×12×15 = 900 个57. 一辆汽车7 小时行驶420 千米,照这样的速度,10 小时行驶多少千米?答案:600 千米解析:速度为420÷7 = 60 千米/时,10 小时行驶60×10 = 600 千米58. 用200 千克大豆可以榨油80 千克,照这样计算,450 千克大豆可以榨油多少千克?答案:180 千克解析:出油率为80÷200 = 0.4,450×0.4 = 180 千克59. 修一条路,9 人11 天可以修990 米,照这样计算,12 人20 天可以修多少米?答案:2400 米解析:1 人1 天修990÷9÷11 = 10 米,12 人20 天修10×12×20 = 2400 米60. 10 台收割机12 小时收割小麦600 公顷,照这样计算,15 台收割机18 小时收割小麦多少公顷?答案:1350 公顷解析:1 台收割机1 小时收割600÷10÷12 = 5 公顷,15 台收割机18 小时收割5×15×18 = 1350 公顷61. 某工厂18 个工人14 天生产零件2520 个,照这样计算,24 个工人21 天可以生产零件多少个?答案:6048 个解析:1 个工人 1 天生产2520÷18÷14 = 10 个,24 个工人21 天生产10×24×21 = 5040 个62. 11 台磨面机13 小时磨面粉5720 千克,照这样计算,16 台磨面机18 小时磨面粉多少千克?答案:11520 千克解析:1 台磨面机1 小时磨面粉5720÷11÷13 = 40 千克,16 台磨面机18 小时磨面粉40×16×18 = 11520 千克63. 9 辆卡车10 次运货物450 吨,照这样计算,12 辆卡车15 次运货物多少吨?答案:900 吨解析:1 辆卡车1 次运货物450÷9÷10 = 5 吨,12 辆卡车15 次运货物5×12×15 = 900 吨64. 服装厂6 天生产服装360 套,照这样计算,18 天可以生产服装多少套?答案:1080 套解析:每天生产360÷6 = 60 套,18 天生产60×18 = 1080 套65. 30 头牛10 天吃草1200 千克,照这样计算,24 头牛15 天吃草多少千克?答案:1440 千克解析:1 头牛1 天吃草1200÷30÷10 = 4 千克,24 头牛15 天吃草4×24×15 = 1440 千克66. 10 个工人12 小时加工零件600 个,照这样计算,15 个工人20 小时加工零件多少个?答案:1500 个解析:1 个工人1 小时加工600÷10÷12 = 5 个,15 个工人20 小时加工5×15×20 = 1500 个67. 一辆汽车8 小时行驶480 千米,照这样的速度,12 小时行驶多少千米?答案:720 千米解析:速度为480÷8 = 60 千米/时,12 小时行驶60×12 = 720 千米68. 用250 千克花生可以榨油100 千克,照这样计算,550 千克花生可以榨油多少千克?答案:220 千克解析:出油率为100÷250 = 0.4,550×0.4 = 220 千克69. 修一条路,11 人13 天可以修715 米,照这样计算,14 人22 天可以修多少米?答案:1638 米解析:1 人1 天修715÷11÷13 = 5 米,14 人22 天修5×14×22 = 1540 米70. 12 台拖拉机14 小时耕地504 亩,照这样计算,18 台拖拉机20 小时耕地多少亩?答案:1080 亩解析:1 台拖拉机1 小时耕地504÷12÷14 = 3 亩,18 台拖拉机20 小时耕地3×18×20 = 1080 亩71. 某工厂20 个工人16 天生产零件3200 个,照这样计算,25 个工人24 天可以生产零件多少个?答案:9000 个解析:1 个工人 1 天生产3200÷20÷16 = 10 个,25 个工人24 天生产10×25×24 = 6000 个72. 13 台印刷机15 小时印刷纸张78000 张,照这样计算,18 台印刷机20 小时印刷纸张多少张?答案:144000 张解析:1 台印刷机1 小时印刷78000÷13÷15 = 400 张,18 台印刷机20 小时印刷400×18×20 = 144000 张73. 11 辆汽车12 次运煤396 吨,照这样计算,15 辆汽车18 次运煤多少吨?答案:810 吨解析:1 辆汽车1 次运煤396÷11÷12 = 3 吨,15 辆汽车18 次运煤3×15×18 = 810 吨74. 服装厂7 天生产服装420 套,照这样计算,21 天可以生产服装多少套?答案:1260 套解析:每天生产420÷7 = 60 套,21 天生产60×21 = 1260 套75. 35 头牛12 天吃草1680 千克,照这样计算,28 头牛16 天吃草多少千克?答案:1792 千克解析:1 头牛1 天吃草1680÷35÷12 = 4 千克,28 头牛16 天吃草4×28×16 = 1792 千克76. 12 个工人14 小时加工零件720 个,照这样计算,18 个工人21 小时加工零件多少个?解析:1 个工人1 小时加工720÷12÷14 = 5 个,18 个工人21 小时加工5×18×21 = 1890 个77. 一辆汽车9 小时行驶540 千米,照这样的速度,15 小时行驶多少千米?答案:900 千米解析:速度为540÷9 = 60 千米/时,15 小时行驶60×15 = 900 千米78. 用300 千克大豆可以榨油120 千克,照这样计算,650 千克大豆可以榨油多少千克?答案:260 千克解析:出油率为120÷300 = 0.4,650×0.4 = 260 千克79. 修一条路,13 人15 天可以修780 米,照这样计算,16 人25 天可以修多少米?答案:1600 米解析:1 人1 天修780÷13÷15 = 4 米,16 人25 天修4×16×25 = 1600 米80. 14 台收割机16 小时收割小麦896 公顷,照这样计算,20 台收割机24 小时收割小麦多少公顷?答案:1536 公顷解析:1 台收割机1 小时收割896÷14÷16 = 4 公顷,20 台收割机24 小时收割4×20×24 = 1920 公顷81. 某工厂22 个工人18 天生产零件3960 个,照这样计算,28 个工人27 天可以生产零件多少个?答案:9072 个解析:1 个工人 1 天生产3960÷22÷18 = 10 个,28 个工人27 天生产10×28×27 = 7560 个82. 15 台磨面机17 小时磨面粉8500 千克,照这样计算,20 台磨面机25 小时磨面粉多少千克?答案:12500 千克解析:1 台磨面机1 小时磨面粉8500÷15÷17 = 100/3 千克,20 台磨面机25 小时磨面粉100/3×20×25 = 50000/3 千克≈16666.67 千克83. 13 辆卡车14 次运货物588 吨,照这样计算,18 辆卡车21 次运货物多少吨?答案:1134 吨解析:1 辆卡车1 次运货物588÷13÷14 = 3 吨,18 辆卡车21 次运货物3×18×21 = 1134 吨84. 服装厂8 天生产服装480 套,照这样计算,24 天可以生产服装多少套?答案:1440 套解析:每天生产480÷8 = 60 套,24 天生产60×24 = 1440 套85. 40 头牛15 天吃草1800 千克,照这样计算,32 头牛20 天吃草多少千克?解析:1 头牛1 天吃草1800÷40÷15 = 3 千克,32 头牛20 天吃草3×32×20 = 1920 千克86. 14 个工人16 小时加工零件896 个,照这样计算,20 个工人24 小时加工零件多少个?答案:1920 个解析:1 个工人1 小时加工896÷14÷16 = 4 个,20 个工人24 小时加工4×20×24 = 1920 个87. 一辆汽车10 小时行驶600 千米,照这样的速度,18 小时行驶多少千米?答案:1080 千米解析:速度为600÷10 = 60 千米/时,18 小时行驶60×18 = 1080 千米88. 用350 千克花生可以榨油140 千克,照这样计算,750 千克花生可以榨油多少千克?答案:300 千克解析:出油率为140÷350 = 0.4,750×0.4 = 300 千克89. 修一条路,15 人18 天可以修900 米,照这样计算,18 人30 天可以修多少米?答案:1800 米解析:1 人1 天修900÷15÷18 = 10 / 3 米,18 人30 天修10 / 3×18×30 = 1800 米90. 16 台拖拉机18 小时耕地864 亩,照这样计算,24 台拖拉机27 小时耕地多少亩?答案:1944 亩解析:1 台拖拉机1 小时耕地864÷16÷18 = 3 亩,24 台拖拉机27 小时耕地3×24×27 = 1944 亩91. 某工厂25 个工人20 天生产零件5000 个,照这样计算,30 个工人30 天可以生产零件多少个?答案:9000 个解析:1 个工人 1 天生产5000÷25÷20 = 10 个,30 个工人30 天生产10×30×30 = 9000 个92. 17 台印刷机19 小时印刷纸张96900 张,照这样计算,22 台印刷机25 小时印刷纸张多少张?答案:165000 张解析:1 台印刷机1 小时印刷96900÷17÷19 = 300 张,22 台印刷机25 小时印刷300×22×25 = 165000 张93. 15 辆汽车16 次运煤600 吨,照这样计算,20 辆汽车24 次运煤多少吨?答案:1200 吨解析:1 辆汽车 1 次运煤600÷15÷16 = 2.5 吨,20 辆汽车24 次运煤 2.5×20×24 = 1200 吨94. 服装厂9 天生产服装540 套,照这样计算,27 天可以生产服装多少套?答案:1620 套解析:每天生产540÷9 = 60 套,27 天生产60×27 = 1620 套95. 45 头牛18 天吃草2160 千克,照这样计算,36 头牛24 天吃草多少千克?答案:2592 千克解析:1 头牛1 天吃草2160÷45÷18 = 8 / 3 千克,36 头牛24 天吃草8 / 3×36×24 = 2592 千克96. 16 个工人18 小时加工零件960 个,照这样计算,24 个工人27 小时加工零件多少个?答案:2592 个解析:1 个工人1 小时加工960÷16÷18 = 10 / 3 个,24 个工人27 小时加工10 / 3×24×27 = 2160 个97. 一辆汽车11 小时行驶660 千米,照这样的速度,16 小时行驶多少千米?答案:960 千米解析:速度为660÷11 = 60 千米/时,16 小时行驶60×16 = 960 千米98. 用400 千克花生可以榨油160 千克,照这样计算,850 千克花生可以榨油多少千克?答案:340 千克解析:出油率为160÷400 = 0.4,850×0.4 = 340 千克99. 修一条路,17 人21 天可以修1020 米,照这样计算,20 人35 天可以修多少米?答案:2000 米解析:1 人1 天修1020÷17÷21 = 10 / 3 米,20 人35 天修10 / 3×20×35 = 2000 米100. 18 台收割机20 小时收割小麦960 公顷,照这样计算,27 台收割机30 小时收割小麦多少公顷?答案:2160 公顷解析:1 台收割机1 小时收割960÷18÷20 = 8 / 3 公顷,27 台收割机30 小时收割8 / 3×27×30 = 2160 公顷。
比例应用题及答案难点
比例应用题及答案难点1. 题目:一个班级有男生和女生,男生人数是女生人数的1.5倍。
如果男生人数是45人,那么女生有多少人?答案:设女生人数为x人,根据题意,男生人数是女生人数的1.5倍,可以得到方程1.5x = 45。
解方程得到x = 45 / 1.5 = 30。
所以女生有30人。
2. 题目:一个工厂生产两种类型的机器,A型机器和B型机器。
A型机器的生产时间是B型机器的2倍。
如果A型机器的生产时间是4小时,那么B型机器的生产时间是多少?答案:设B型机器的生产时间为y小时,根据题意,A型机器的生产时间是B型机器的2倍,可以得到方程2y = 4。
解方程得到y = 4/ 2 = 2。
所以B型机器的生产时间是2小时。
3. 题目:一个果园里,苹果树和梨树的比例是3:2。
如果果园里有45棵苹果树,那么梨树有多少棵?答案:设梨树的数量为z棵,根据题意,苹果树和梨树的比例是3:2,可以得到方程3/2 = 45/z。
解方程得到z = (2/3) * 45 = 30。
所以梨树有30棵。
4. 题目:一个学校有学生和老师,学生人数是老师人数的4倍。
如果老师人数是30人,那么学生有多少人?答案:设学生人数为a人,根据题意,学生人数是老师人数的4倍,可以得到方程a = 4 * 30。
计算得到a = 120。
所以学生有120人。
5. 题目:一个商店销售两种商品,商品X和商品Y。
商品X的销售额是商品Y的1.2倍。
如果商品X的销售额是3600元,那么商品Y的销售额是多少?答案:设商品Y的销售额为b元,根据题意,商品X的销售额是商品Y的1.2倍,可以得到方程1.2b = 3600。
解方程得到b = 3600 / 1.2 = 3000。
所以商品Y的销售额是3000元。
6. 题目:一个花园里,玫瑰花和郁金香的比例是5:3。
如果花园里有30朵郁金香,那么玫瑰花有多少朵?答案:设玫瑰花的数量为c朵,根据题意,玫瑰花和郁金香的比例是5:3,可以得到方程5/3 = c/30。
小学二年级简单比例练习题
小学二年级简单比例练习题
根据您的要求,以下是一份关于小学二年级简单比例的练习题:
练习题1:比例计算
小明每天骑自行车上学,他发现骑自行车所需时间与距离的比例是
相同的。
如果小明骑自行车2小时,他可以骑行20公里。
请计算以下
情况:
1. 小明骑自行车骑行4小时,他可以骑行多远?
2. 小明骑自行车骑行30公里,他需要花多少时间?
练习题2:比例关系
小华用一袋汽球装了15个,其中5个是红色汽球、4个是蓝色汽球、6个是绿色汽球。
请回答以下问题:
1. 红色汽球和蓝色汽球的比例是多少?
2. 蓝色汽球和绿色汽球的比例是多少?
3. 红色汽球和绿色汽球的比例是多少?
4. 如果小华再加入6个红色汽球和3个蓝色汽球,红色汽球和蓝色
汽球的比例会发生变化吗?为什么?
练习题3:比例图
以下是小明所在班级的男生和女生人数:
男生:16人
女生:24人
请根据以上数据绘制一张比例图,并回答以下问题:
1. 比例图上男生和女生的比例是多少?
2. 如果男生人数增加到24人,女生人数保持不变,比例图会发生变化吗?为什么?
练习题4:相似图形
小小是一位小画家。
他画了一棵树,如图所示。
[图形描述:树干由4条线段组成,每条线段的长度为5厘米;树冠由3个相等的圆组成,直径分别为2厘米、4厘米和6厘米]请回答以下问题:
1. 树干的长度和树冠中最大圆的直径的比例是多少?
2. 如果小小画的树变大了,树干长度增加到10厘米,树冠中最大圆的直径增加到12厘米,比例是否会发生变化?
以上是关于小学二年级简单比例的练习题,希望能帮到您!。
比例尺应用题练习
第二单元应用题①学校___________ 班别___________ 姓名_____________ 分数_____________1、一个圆锥形稻谷堆,底面半径4米,高20米,已知每立方米稻谷重750千克,这堆稻谷重多少千克?2、小明的身高1.5m,她的影子长是2.4m。
如果同一时间,同一地点测得一棵树的影子长4m,这棵树有多高?3、在比例尺是1:5000000的地图上,量得A 、B 两地铁路距离7厘米,客、货两列火车同时从A 、 B 两地相对开出,2小时后相遇,已知客车与货车速度比为.2:3,求客车、货车每小时各行多少千米?4、一个圆柱长20厘米,被截去6厘米一段后,圆柱表面积减少了75.36厘米2,求截去的圆柱体积。
5、淘气、笑笑、乐乐同时折150只同样的千纸鹤,当淘气折完时,笑笑折了120只,乐乐折了100只,照这样的速度,笑笑折完时,乐乐还有多少只没有折?(用比例解)第二单元应用题②学校___________ 班别___________ 姓名_____________ 分数_____________1、2022年北京冬奥会,"圈粉"无数的是在奥运村各司其职的智能机器人。
它们身上有一种精密零件,其实际长度是0.3毫米,画在设计图纸上的长度是9厘米,这张图纸的比例尺是多少?2、学校有一块三角形的劳动实践基地,在比例尺为1:200的学校平面图上,量得它的底是5cm,高是3.5cm,这块地的实际面积是多少平方米?3、设计师按1:300的比例制作大楼模型,大楼的实际高度是81米,模型的高度是多少米?外模没枝型的高度为大线。
4、A 、 B 两地画在比例尺为1:30000000的地图上长度为3cm,把它画在比例尺为1:45000000的地图。
图上长度是多少?5、在比例尺是1:4000000的地图上量得甲、乙两地相距9cm,一列货车和一列客车分别从甲,乙两地同时开出,相向而行,2小时相遇,已知客车与货车的速度比是5:4,客车的速度是多少?6、将一个长25米,宽15米的长方形按1:500的比例尺画在图纸上,该长方形在图纸上的面积是多少平方厘米?。
小学三年级简单比例练习题
小学三年级简单比例练习题
题目一:
小明每天骑自行车上学,他发现骑车上学需要30分钟,而走路上
学需要60分钟。
如果他想早点到学校,他应该骑车上学多久?
题目二:
小华每天放学后会花30分钟做作业,而小明每天只花15分钟做作业。
如果他们一起做作业,他们需要花多长时间?
题目三:
某商店正在进行打折促销活动,某商品原价是120元,现价是90
元。
如果小红买了一件商品,她需要支付多少钱?
题目四:
小明每天读书50页,小亮每天读书30页。
如果他们每天一起读书,他们一起读完一本200页的书需要多少天?
题目五:
某公交车每分钟能载客25人,而出租车每分钟能载客10人。
如果
某时刻两种交通工具都到了,载客人数最多能达到多少人?
题目六:
小红有2本书和4本报纸,小明有3本书和6本报纸。
他们一共有
多少本书和报纸?
题目七:
甲乙两个学校的学生比例是2:3。
如果甲校有150人,那么乙校有
多少人?
题目八:
甲校的学生人数是乙校学生人数的3倍,乙校学生人数是丙校学生
人数的2倍。
如果甲校有180人,那么丙校有多少人?
题目九:
某市有男性25万人,女性30万人。
如果想按比例平均分配,那么
每100个人中,男性和女性各有多少人?
题目十:
小明今年10岁,他的爸爸30岁。
那么爸爸与儿子的年龄比是多少?。
小学六年级比例应用题例题精选十五道
比例应用题经典例题1. 伍角人民币与贰角人民币的张数比为24:5,那么伍角和贰角的总钱数比值为 。
2. 一个直角三角形的两个锐角度数的比是2:1,较小的锐角是 度。
3. 大、小两瓶油共重2.7千克,大瓶油用去0.2千克后,剩下的油与小瓶油重量比为3:2,原来大瓶油重 千克。
(填小数)4. 一个直角三角形的三条边总和是60厘米,已知三条边的长度之比是3:4:5,那么这个直角三角形的面积为 平方厘米。
5. 甲、乙、丙三个数的平均数是60,三个数的比是3:2:1,丙数等于 。
6. 盒子里有三种颜色的球,黄球与红球的个数比为2:3,红球与白球的个数比为4:5,已知三种球共175个,那么红球有 个。
7. 某医院有医生、护士共3800人,其中医生和护士的人数比是3:7,男护士与女护士的人数比是1:69,那么男护士有 人。
8. 一个长方形的周长是24厘米,长与宽的比为2:1,这个长方形的面积是 平方厘米。
9. 六年级有三个班,已知一班人数是二班人数的43,二、三班人数之比是5:6,一、三班共有78名同学,那么六年级一共有学生 名。
10. 阿呆的妈妈买了西瓜、桃子、苹果三种水果,其中西瓜重量的31与桃子的21相等,桃子重量的21与苹果重量的41相等,已知西瓜比苹果少买了1千克,那么阿呆的妈妈买了 千克桃子。
11. 故事书是科技书的65,科技书是文学书的21,又知道故事书和 文学书一共有102本,那么科技书有 本。
12. 老师给班里的学生准备了 120颗糖果,老师自己吃掉51后,按照3:5分配给班里的男生和女生,那么女生总共可以分到 颗糖果。
13. 十一小学六年级共有师生320人,已知老师和学生的人数比是1:15,而且男同学和女同学的人数比是2:3,那么六年级一共有女同学 人。
14. 甲数是乙数的56,丙数是乙数的 65,且甲数比丙数大121,那么三个数之和是。
15.两人分别从甲、乙两地同时出发,相向而行,已知两地相距200千米,两车2小时后相遇,而且两车的速度比是2:3,那么当两车相遇时,快车行驶的距离为千米。
比例的应用练习题
比例的应用练习题一、买菜比例题小明去市场买菜,他买了500克的土豆,花费了5元。
如果按照同样的价格,他要买1千克土豆,需要花费多少元?解析:设小明要花费的金额为x元。
根据比例关系,500克土豆所需金额与1千克土豆所需金额的比例为500:1000,即5:x。
根据比例的性质,比例两边乘以相同的数得到的比例仍然相等,因此有5/500=x/1000,通过交叉相乘得到x=10。
所以,小明要花费10元才能买到1千克的土豆。
二、图书阅读比例题某图书馆共有5000本图书,其中小说类书籍占总数的40%,科学类书籍占总数的25%,其他类书籍占总数的35%。
求小说类书籍的数量。
解析:设小说类书籍的数量为x本。
根据比例关系,小说类书籍的数量与总图书数量5000的比例为x:5000,即40:100。
同样根据比例的性质,可得到40/100=x/5000,通过交叉相乘得到x=2000。
所以,小说类书籍的数量为2000本。
三、地图比例问题地图上的一个城市与实际大小的比例为1:5000,如果在地图上距离两个城市之间的直线距离是8厘米,那么两个城市之间的实际距离是多少?解析:设实际距离为x千米。
根据比例关系,地图上的距离与实际距离的比例为8:5000,即8/5000=x/1。
通过交叉相乘可得到x=0.016。
所以,两个城市之间的实际距离是0.016千米。
四、工作时间比例问题某公司工人A和B同时从事一项工作,工作时间比例为2:3,A工作8小时后完成任务,那么B需要工作多少小时才能完成同样的任务?解析:设B工作的小时数为x小时。
根据比例关系,A和B两人的工作时间比例为2:3,A工作8小时后完成任务,相应地,B工作x小时才能完成任务。
根据比例的性质,可以得到2/8=3/x,通过交叉相乘可得到x=12。
所以,B需要工作12小时才能完成同样的任务。
五、面积比例问题一个正方形花坛的面积是36平方米,如果将花坛的边长缩小为原来的一半,那么新花坛的面积是多少平方米?解析:设新花坛的面积为x平方米。
关于比例的数学应用题(精选50题)
关于比例的数学应用题(精选50题)比例的数学应用题11、学校买来一批书,共1000本,把这批书按3:4:5分给四、五、六三个年级,每个年级各分到多少本?2、(1)果园里梨树与桃树的比是3:5,这个果园里共有果树40棵,梨树与桃树各多少棵?(2)果园里梨树与桃树的比是3:5,已知桃树有40棵。
这个果园共有果树多少棵?(3)果园里梨树与桃树的比是3:5,已知梨树比桃树少40棵,这个果园共有果树多少棵?3、一个长方形的周长是40分米,它的长与宽的`比是3:2,这个长方形的面积是多少?4、小明在期末考试中数文、数学、英语的均分为75分,它的三门学科成绩的比为8:8:9,它的三门成绩分别是多少?5、把一段长96厘米的铁丝做一个长方体框架,长方体的长宽高的比是5:4:3,这个长方体的长、宽、高分别是多少?6、加工一批零件,王师傅每小时加工48个,与李师傅每小时加工个数的比是4:5。
两个共同加工3小时,可以加工多少个零件?7、工厂买来120吨生产原料,其中的分给一车间,其余的按3:5分给甲乙两个车间,甲乙两个车间各分到多少吨?8、一种药水是用药粉和水按3:100配成的。
(1)要配制这种药水515千克,需要药粉多少千克?(2)有水60千克,需要药粉多少千克?(3)用90千克的药粉,可配成多少千克的药水?9、一杯盐水,盐与盐水的比为1:5,再加上16克盐后,盐与盐水的比为1:4,原来盐水有多少千克?10、甲乙两地相距600千米,两车分别从两地相向同时出发,3小时后两车相遇,已知快车与慢车的速度比为11:9,快车与慢车的速度分别是多少?11、某车间有140名职工,分成三个生产小组,已知第一组和第二组人数比为2:3,第二组和第三组人数比为4:5,这三个小组名有多少人?12、一班和二班的人数比为8:7,如果将一班的8名同学调到二班去,那么一班和二班的人数的比为4:5,求原来两班各有多少人?13、一批书如果每包20本,要捆18包,如果每包30本,要捆多少包?14、张大妈上个月用了8吨水,水费是12、8元,李奶奶家用了10吨水,李奶奶家上个月的水费是多少元?15、一台拖拉机2小时耕地1、25公顷,照这样计算,8小时可以耕地多少公顷?比例的数学应用题2正比例∶(1) 珍珍看50页的故事书要花35分钟,看250页需要几分钟?(2) 牛牛超级市场促销苦瓜汽水,3瓶特价25元。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解:设乙跑20米的时间内,丙跑了x
100 − 20 100 − 25 80 75
,则
= =
20
χ
20
χ
3 4
80x=1500
X=
18
所以乙到达终点时,丙还差 答:丙还差 6 3 米
4
25- 18
3 4
=
6
3 (米) 4
7 x + 70 = 3 x + 70 7 4
(7x+70) ×4=(3x+70) ×7 28x+280=21x+490 28x-21x+280=21x-21x+490 7x+280=490 7x=210
X=30 甲:30×7=210(元)
乙:30×3=90(元)
答:甲种电话原来210元,乙种电话原来90元。
做一做 甲、乙两位老师本月收入的钱数之比是4:3、甲老师结余152元,乙 老师结余69元。问甲、乙两位老师本月各收入多少元?
求阴影部分的面积(图中的数字是每块的面积,单位平方厘米。)
19 57 45
36 10
24
比例应用题
个旧市和平小学 王树明
知识要点
1·比例
表示两个比相等的式子叫做比例。 2·比例的基本性质 在比例里,两个外项的积等于两个内项的积。 3·正、反比例的判断
正比例和反比例问题主要根据正、反比例的概念进行判断,分析 相关联的两个量是什么关系,主要看它们是商一定还是积一定,若 商一定就是正比例关系,若积一定,就是反比例关系。
做一做: 甲、乙两人进行百米赛跑,当甲到达终点时,乙在甲后面20米; 如果两人速度都不变,要使甲、乙两人同时到达终点,甲的起跑 线应比原起跑线后移多少米?
例2、甲、乙两种电话的价格之比是7:3。如果它们的价格分别上 涨70元后,价格之比是7:4。这两种电话原来的价格各是多少元? 抓住上涨后的具体钱数比=上涨后的份数比来列比例式。
4、解答比和比例应用题的方法 ①分比转换:根据解题的需要,把分率转化成比,把比转化成分率。 ②单比化连比:根据比的基本性质,把两个单比化成几个量的连比。 ③活用比例的基本性质。 例:如果a× 3 =b× 4
2 3
,那么a:b=
3 4
:3 =9:8
2
如果5:a=b:4,那么a×b= 4×5=20
典型例题 例1、甲、乙、丙三人进行100米赛跑(假设他们的速度保持不变),甲到 终点时,乙还差20米,丙离终点还有25米,问乙到达终点时,丙还差几米?