北师大版七年级下册数学期末模拟试卷 C-名师推荐

合集下载

北师大版数学七年级下册期末考试试题含答案

北师大版数学七年级下册期末考试试题含答案

北师大版数学七年级下册期末考试试卷一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项符合题目要求)1.下列银行标志中,是轴对称图形的是()A. B. C. D.【答案】D2.下列运算正确的是()A.236x x x ⋅=B.824x x x ÷= C.()2224x x = D.()32626x x =【答案】C3.下列事件中,是必然事件的是()A.购买一张彩票,中奖B.明天一定是晴天C.经过有交通信号灯的路口,遇到红灯D.今天是星期三,明天是星期四【答案】D4.如图,AOB ∠是一个任意角,在边OA ,OB 上分别取OM ON =,移动角尺,使角尺两边相同的刻度分别与点M ,N 重合,过顶点O 与角尺顶点C 的射线OC 便是AOB ∠的平分线.这样的作法所运用的原理是三角形全等的判定,该判定方法是()A.SASB.SSSC.ASAD.AAS【答案】B5.某学习小组做“用频率估计概率”的实验时,统计了某一结果出现的频率,绘制了如下的表格,则符合这一结果的实验最有可能的是()实验次数10020030050080010002000频率0.3650.3280.3300.3340.3360.3320.333A.一副去掉大小王的普通扑克牌洗匀后,从中任抽一张牌的花色是红桃B.在“石头、剪刀、布”的游戏中,小明随机出的是“剪刀”C.抛一个质地均匀的正六面体骰子,向上的面点数是5D.抛一枚硬币,出现反面的概率【答案】B6.英国曼彻斯特大学的两位科学家因为成功地从石墨中分离出石墨烯,荣获了诺贝尔物理学奖.石墨烯是目前世上最薄却也是最坚硬的纳米材料,同时还是导电性最好的材料,其理论厚度仅0.00000034毫米,将数0.00000034用科学记数法表示为()A.93410-⨯B.83410-⨯C.83.410-⨯D.73.410-⨯【答案】D7.如图,点D ,E ,F 分别在ABC ∆的边BC ,AB ,AC 上,连接DE ,DF ,在下列给出的条件中,不能判定//AB DF 的是()A.2180A ∠+∠=︒B.1A∠=∠ C.14∠=∠ D.3A ∠=∠【答案】B8.如图,是一台自动测温仪记录的图象,它反映了我市冬季某天气温T 随时间t 变化而变化的关系,观察图象得到下列信息,其中错误的是()A.凌晨4时气温最低为-3℃B.14时气温最高为8℃C.从0时至14时,气温随时间增长而上升D.从14时至24时,气温随时间增长而下降【答案】C9.如图,在ABC ∆中,点D 在边AC 上,AB AC =,AD BD =,36A ∠=︒,则下列结论正确的是()A.BD 是ABC ∠的平分线B.BD 是AC 边上的中线C.BD 是AC 边上的高D.ABD ∆与BDC ∆的面积相等【答案】A10.在数学课上,老师让每个同学拿一张三角形纸片ABC ,AB AC =,设B C x ∠=∠=︒,要求同学们利用所学的三角形全等的判定方法,剪下两个全等的三角形.下面是四位同学的裁剪方法,如图,剪刀沿着箭头方向剪开,能得到两个全等三角形小纸片的有()A.1种B.2种C.3种D.4种【答案】C二、填空题(本大题共5小题,每小题3分,共15分)11.已知整式x 2+kx+9是完全平方式,则k=_____.【答案】±6.12.已知:a 2+a=4,则代数式a (2a+1)﹣(a+2)(a ﹣2)的值是_____.【答案】813.如图,在ABC 中,DM ,EN 分别是边AB 和AC 的垂直平分线,垂足分别是M ,N ,分别交BC 于点D ,E ,若40DAE ∠=︒,则BAC ∠的度数=_____.【答案】110︒14.某市出租车的收费标准如下:行驶路程在3千米以内,收费8元;行驶路程超过3千米时,超过3千米的按2.6元/千米收费(不满1千米,按1千米计算).小明乘坐出租车到距离14千米的少年宫,他所付的车费是______元.【答案】36.615.如图,ABC ∆的三条边相等,三个内角也相等,D 是AC 上的一点.连接BD ,以BD 为边在BD 上方作BDE ∆,使得BDE ∆的三条边相等,三个内角也相等,连接AE .若6AC =,2AD =,则ABE ∆与ABC ∆的面积之比为______.【答案】2:3三、解答题(本大题共8小题,共75分,解答应写出文字说明、证明过程或演算步骤)16.计算:(1)()()210.25216 3.14π--⨯-÷--;(2)()()22224x y x y y ⎡⎤+--÷⎣⎦.【答案】(1)0;(2)2x .17.先化简,再求值:()()()()243433423x y x y x x y y +---+-,其中12x =,13y =.【答案】246x xy +,2.18.如图,在ABC ∆中,A B ∠=∠,点D ,E 是边AB 上的点,//DG AC ,//EF BC ,DG 与EF 相交于点H .(1)HDE ∠与HED ∠是否相等?并说明理由.下面是王亮同学的解答过程,请你在“_____”上补全过程,在“()”内加注理由.解:HDE HED ∠=∠.理由如下:∵//DG AC ,(已知)∴①A =∠.(②)∵//EF BC ,(已知)∴HED ∠=③.又∵A B ∠=∠,(已知)∴④=⑤.(⑥).(2)如果90C ∠=︒,DG 与EF 有怎样的位置关系?并仿照(1)中的解答方法,说明理由.【答案】(1)①HDE ∠;②两直线平行,同位角相等;③B Ð;④HDE ∠;⑤HED ∠;(④⑤位置可互换)⑥等量代换.(2)DG EF ⊥,证明见解析.19.在一个不透明的袋子中装有3个红球和6个黄球,这些球除颜色外都相同,将袋子中的球充分摇匀后,随机摸出一球.(1)分别求出摸出的球是红球和黄球的概率.(2)为了使摸出两种球的概率相同,再放进去7个同样的红球或黄球,那么这7个球中红球和黄球的数量分别应是多少?【答案】(1)12,33;(2)5个和2个20.如图,方格纸中每个小正方形的边长均为1,四边形ABCD 的四个顶点都在小正方形的格点上(格点就是指网格中小正方形的顶点),点E 在BC 边上,且点E 在小正方形的格点上,连接AE .(1)在图中画出AEF ,使AEF 与AEB △关于直线AE 对称,点F 与点B 是对称点;(2)求AEF 与四边形ABCD 重叠部分的面积.【答案】(1)图见解析;(2)6.21.如图,//AD BC ,BE 平分ABC ∠.(1)尺规作图:作BAD ∠的平分线交BE 于点F ;(2)在(1)的条件下,ABF ∆按角分类时,它是什么三角形,请说明理由.【答案】(1)图见解析;(2)直角三角形,证明见解析.22.某公交车每月的支出费用为4000元,每月的乘车人数x (人)与每月的利润y (元)的变化关系如下表所示:(利润=收入费用-支出费用,每位乘客的公交票价是固定不变的):x (人)50010001500200025003000…y (元)3000-2000-1000-010002000…(1)在这个变化过程中,直接写出自变量和因变量;(2)观察表中数据可知,每月乘客量达到_____人以上时,该公交车才会盈利;(3)请你估计每月乘车人数为3500人时,每月的利润为______元;(4)根据表格直接写出y 与x 的表达式,并求出5月份乘客量需达多少人时,可获得5000元的利润.【答案】(1)每月的乘车人数x ,每月的利润y ;(2)2000;(3)3000;(4)24000y x =-,4500人.23.综合与实践问题情境:如图1,在ABC ∆中,AB AC =,90BAC ∠=︒,ABC BCA ∠=∠,点D 在直线BC 上运动,以AD 为边作ADE ∆,使得AD AE =,90DAE ∠=︒,ADE AED ∠=∠.连接CE .当点D 在BC 边上时,试判断线段CE ,CD 及BC 之间的数量关系.探究展示:勤奋小组发现,BC CE CD =+,并展示了如下论述过程:理由如下:∵在ABC ∆和ADE ∆中,AB AC =,AD AE =,90BAC DAE ∠=∠=︒.∴BAC DAC DAE DAC ∠-∠=∠-∠,即BAD CAE ∠=∠.在DAB ∆与EAC ∆中,,,,AB AC BAD CAE AD AE =⎧⎪∠=∠⎨⎪=⎩∴DAB EAC ∆≅∆(依据1).∴BD CE =(依据2)∵BC BD DC =+,∴BC CE CD =+.反思交流:(1)上述证明过程中的“依据1”,“依据2”分别是什么?(2)如图2,缜密小组在勤奋小组的基础上继续探究,当点D 在CB 延长线上时,线段CE ,CD 及BC 之间的数量关系是BC CD CE =-,且CE 与BD 的位置关系是CE BD ⊥;请判断缜密小组的说法是否正确,若正确,请说明理由;若不正确,请把你发现的结果写出并说明理由;(3)如图3,当点D 在边BC 的延长线上且其他条件不变时,(2)中BC ,CE ,CD 之间存在的关系是否成立?如不成立,请直接写出BC ,CE ,CD 之间存在的数量关系,并证明.=-,【答案】(1)依据1是SAS,依据2是全等三角形的对应边相等;(2)正确,证明见解析;(3)BC CE CD ⊥CE BC。

北师大版七年级下册数学期末考试试题及答案

北师大版七年级下册数学期末考试试题及答案

北师大版七年级下册数学期末考试试卷一、单选题1.下列运算中,结果正确的是()A .33a a a ÷=B .()224ab ab =C .2a a a ⋅=D .()235a a =2.以下是各种交通标志指示牌,其中不是轴对称图形的是()A .B .C .D .3.用科学记数法表示0.000000202是()A .60.20210-⨯B .72.0210⨯C .62.0210-⨯D .72.0210-⨯4.下列算式能用平方差公式计算的是()A .()()a b a b +--B .22()(2)a b a b +-C .(2)(2)x y x y +-D .()()a b c a b c -++-5.已知三角形的两边分别为4和10,则此三角形的第三边可能是()A .4B .5C .9D .146.下列事件中是确定事件的为()A .三角形的内角和是360°B .打开电视机正在播放动画片C .车辆随机经过一个路口,遇到绿灯D .掷一枚均匀的骰子,掷出的点数是奇数7.小红用如图所示的方法测量小河的宽度.她利用适当的工具,使AB ⊥BC ,BO =OC ,CD ⊥BC ,点A 、O 、D 在同一直线上,就能保证△ABO ≌△DCO ,从而可通过测量CD 的长度得知小河的宽度AB .在这个问题中,判断△ABO ≌△DCO 的最佳依据是()A .SASB .AASC .ASAD .SSS 8.下列说法正确的个数有()①内错角相等;②从直线外一点到这条直线的垂线段,叫做这点到直线的距离;③同一平面内,过一点有且只有一条直线与已知直线垂直;④等腰三角形的对称轴是角平分线所在直线;⑤一个角的补角一定是钝角;⑥三角形的中线、角平分线都在三角形的内部;⑦三角形三条高相交于一点;⑧若2ADE ∠=∠,则//AD CEA .2个B .3个C .4个D .5个9.已知某海水淡化厂淡水储备量为20吨时,刚开始以每小时10吨的淡化的速度加工生产淡水,2小时后,在继续原速度的生产的前提下,为供给市场以每小时15吨的速度运出淡水,则储备淡水量y (吨)与时间t (时)之间的大致图象为()A .B .C .D .10.如图,△ABC 中,∠ABC =45°,CD ⊥AB 于D ,BE 平分∠ABC ,且BE ⊥AC 于E ,与CD 相交于点F ,DH ⊥BC 于H ,交BE 于G ,下列结论:①BD =CD ;②AD+CF =BD ;③AE =BG ;④CE =12BF .其中正确的是()A .①②B .①②④C .①②③④D .①③二、填空题11.计算()332x x ÷的结果为__________.12.若某长方体底面积是60(2cm ),高为h(cm),则体积V(3cm )与h 的关系式为_____.13.如图,小明在以A ∠为顶角的等腰三角形ABC 中用圆规和直尺作图,作出过点A 的射线交BC 于点D ,然后又作出一条直线与AB 交于点E ,连接DE ,若ABC 的面积为4,则BED 的面积为________.14.某班共有6名学生干部,其中4名是男生,2名是女生,任意抽一名学生干部去参加一项活动,其中是女生的概率为_____.15.化简:(x+1)2+2(1-x)=_______________.16.如图,等边△ABC 的边长为1,AB 边上有一点P ,Q 为BC 延长线上的一点,且CQ =PA ,过点P 作PE ⊥AC 于点E ,过P 作PF ∥BQ 交AC 边于点F ,连接PQ 交AC 边于点D ,则DE 的长为_____.三、解答题17.计算:(1)(﹣3)2+(π﹣3.14)0×(﹣1)2019﹣(13)-2(2)2332935(2)a a a a a a ⋅⋅+--÷18.先化简,再求值:2()3(3)2(2)(2)x y x x y x y x y ---++-,其中17x =-,2y =.19.如图,在△ABC 中,∠C =90°,DB ⊥BC 于点B ,分别以点D 和点B 为圆心,以大于二分之一DB 的长为半径作弧,两弧相交于点E 和点F ,作直线EF ,延长AB 交EF 于点G ,连接DG ,下面是说明∠A =∠D 的说理过程,请把下面的说理过程补充完整:因为DB ⊥BC (已知)所以∠DBC =90°()因为∠C=90°(已知)所以∠DBC=∠C(等量代换)所以DB∥AC()所以∠A=(______________________________);由作图法可知:直线EF是线段DB的所以GD=GB所以∠1=()因为∠A=∠1(已知)所以∠A=∠D(___________).20.一个不透明的袋子里装有黑白两种颜色的球共50只,这些球除颜色外都相同.小明从袋子中随机摸一个球,记下颜色后放回,不断重复,并绘制了如图所示的统计图,根据统计图提供的信息解决下列问题:(1)摸到黑球的频率会接近____________(精确到0.1),估计摸一次球能摸到黑球的概率是_____________;袋中黑球的个数约为_________只;(2)若小明又将一些相同的黑球放进了这个不透明的袋子里,然后再次进行摸球试验,当重复大量试验后,发现黑球的频率稳定在0.6左右,则小明后来放进了____________个黑球.21.某商店实行有奖销售,印有1万张奖券,其中有10张一等奖,50张二等奖,500张三等奖,其余均无奖,任意抽取一张,(1)获得一等奖的概率有多大?(2)获奖的概率有多大?(3)如果使得获三等奖的概率为110,那么需要将多少无奖券改为三等奖券22.(1)如图,已知△ABC,∠C为直角,AC<BC,D为BC上一点,且到A,B两点的距离相等.①用直尺和圆规,作出点D的位置(不写作法,保留作图痕迹);②连结AD,若∠B=37°,求∠CAD的度数.(2)已知,在△ABC中,AB=AC,点D、E分别在AB、AC边上,且BD=CE,证明OB=OC.23.如图(1),AB=7cm,AC⊥AB,BD⊥AB垂足分别为A、B,AC=5cm.点P在线段AB上以2cm/s的速度由点A向点B运动,同时点Q在射线BD上运动.它们运动的时间为t(s)(当点P运动结束时,点Q运动随之结束).(1)AP=________cm,BP=__________cm(用含t的代数式表示)(2)若点Q的运动速度与点P的运动速度相等..,当t=1时,△ACP与△BPQ是否全等,并判断此时线段PC和线段PQ的位置关系,请分别说明理由;(3)如图(2),若“AC⊥AB,BD⊥AB”改为“∠CAB=∠DBA”,点Q的运动速度为xcm/s,其它条件不变......,当点P、Q运动到何处时有△ACP与△BPQ全等,求出相应的x的值.24.如图1,已知:AB∥CD,点E,F分别在AB,CD上,且OE⊥OF.(1)求证:∠1+∠2=90°;(2)如图2,分别在OE,CD上取点G,H,使FO平分∠CFG,EO平分∠AEH,求证:FG∥EH.25.为了了解某种车的耗油量,我们对这种车在高速公路上做了耗油实验,并把实验的数据记录下来,制成下表:汽车行驶时间x(h)0123…邮箱剩余油量y(L)100948882…(1)根据上表的数据,请写出y与x的之间的关系式:__________________________________;(2)如果汽车油箱中剩余油量为46L,则汽车行驶了多少小时?(3)如果该种汽车油箱只装了36L汽油,汽车以100km/h的速度在一条全长700公里的高速公路上均匀行驶,请问它在中途不加油的情况下能从高速公路起点开到高速公路终点吗?为什么?参考答案1.C【解析】根据同底数幂的除法、积的乘方、幂的乘方、同底数幂的乘法计算即可.【详解】A.331a a÷=,故本选项错误;B .()2222224ab a b a b ⨯==,故本选项错误;C .2a a a ⋅=,故本选项正确;D .()23326a a a ⨯==,故本选项错误.故选C .【点睛】此题考查的是幂的运算性质,掌握同底数幂的除法、积的乘方、幂的乘方、同底数幂的乘法是解决此题的关键.2.B【解析】根据轴对称图形的概念对各选项逐一进行分析判断即可得出答案.【详解】A 、是轴对称图形,故本选项不符合题意;B 、不是轴对称图形,故本选项符合题意;C 、是轴对称图形,故本选项不符合题意;D 、是轴对称图形,故本选项不符合题意.故选B .【点睛】本题考查了轴对称图形,掌握轴对称图形的概念:轴对称图形是图形两部分沿对称轴折叠后可重合的图形是解题的关键.3.D【解析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为10n a -⨯,与较大数的科学记数法不同的是其所使用的是负整数指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:70.000000202 2.0210-=⨯.故选:D .【点睛】本题考查了用科学记数法表示较小的数,解题的关键是是掌握一般形式为10n a -⨯,其中1||10a < ,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.4.D【解析】【分析】根据平方差公式进行的特点对每一选项进行分析即可.平方差公式:两个数的和与这两个数的差相乘,等于这两个数的平方差.【详解】解:A .该式子中两项均为相反项,不能用平方差公式计算,故本选项不符合题意.B .该式子中只有一个相同项,没有相反项,不能用平方差公式计算,故本选项不符合题意.C .该式子中既没有相同项,也没有相反项,不能用平方差公式计算,故本选项不符合题意.D .()()[()][()]a b c a b c a b c a b c -++-=--+-,既有相同项,也有相反项,能用平方差公式计算,故本选项符合题意.故选:D .【点睛】本题考查了平方差公式,运用平方差公式计算时,解题的关键要找相同项和相反项,其结果是相同项的平方减去相反项的平方.5.C【解析】【分析】根据三角形三边关系,两边之和大于第三边,两边之差小于第三边,故104104-<<+第三边,便可找到答案.【详解】解:根据题意,有:104104-<<+第三边即:614<<第三边综合选项,故本题选择C .【点睛】本题考查三边关系,关键在于掌握两边之和大于第三边,两边之差小于第三边是关键.6.A【解析】【分析】根据确定事件和随机事件的定义对各选项逐一分析即可.【详解】解:A 、三角形的内角和是360°是不可能事件,即确定事件,符合题意;B 、打开电视机正在播放动画片为不确定事件,即随机事件,故不符合题意;C 、车辆随机经过一个路口,遇到绿灯为不确定事件,即随机事件,故不符合题意;D 、掷一枚均匀的骰子,掷出的点数是奇数为不确定事件,即随机事件,故不符合题意;故选:A .【点睛】本题考查了确定事件和随机事件的定义,解决本题的关键是要明确事件分为确定事件和不确定事件(随机事件),确定事件又分为必然事件和不可能事件.7.C【解析】【分析】直接利用全等三角形的判定方法得出符合题意的答案.【详解】解:AB BC ⊥ ,CD BC ⊥,90ABO OCD ∴∠=∠=︒,在ABO ∆和DCO ∆中,ABO DCO BO CO BOA COD ∠=∠⎧⎪=⎨⎪∠=∠⎩,()ABO DCO ASA ∴∆≅∆,则证明ABO DCO ∆≅∆的依据的是ASA ,故选:C .【点睛】本题考查了全等三角形的判定,解题的关键是正确掌握全等三角形的判定方法.8.A【解析】【分析】根据平行线的性质对①进行判断;根据点到直线的距离的定义对②进行判断;根据垂直公理对③进行判断;根据等腰三角形的性质对④进行判断;利用特例对⑤进行判断;根据三角形中线、角平分线的定义对⑥进行判断;利用钝角三角形的高所在的直线相交于一点可对⑦进行判断;利用没有对应的图形可对⑧进行判断.【详解】解:两直线平行,内错角相等,所以①错误;从直线外一点到这条直线的垂线段的长度,叫做这点到直线的距离,所以②错误;同一平面内,过一点有且只有一条直线与已知直线垂直,所以③正确;等腰三角形的对称轴是顶角的平分线所在直线,所以④错误;一个角的补角不一定是钝角,如150︒的补角为30°,所以⑤错误;三角形的中线、角平分线都在三角形的内部,所以⑥正确;三角形三条高所在的直线相交于一点,所以⑦错误;若2ADE ∠=∠,则//AD CE ,没有图形,所以⑧错误.故选:A .【点睛】本题考查了对称的性质、轴对称图形、等腰三角形的性质、平行线的判定,解题的关键是掌握相关的概念,对称的性质:如果两个图形的对应点的连线被同一条直线垂直平分,那么这两个图形关于这条直线对称;轴对称图形的对称轴也是任何一对对应点所连线段的垂直平分线.9.D【解析】【分析】根据题意,可以写出各段对应的函数解析式,从而可以解答本题.【详解】解:由题意可得,当02x时,1020y x =+,当2x >时,201015(2)550y x x x =+--=-+,当0y =时,10x =,故选:D .【点睛】本题考查函数图象,解答本题的关键是明确题意,利用数形结合的思想解答.10.B【解析】【分析】由等腰直角三角形的性质可得BD CD =,利用ASA 判定DFB DAC ∆∆≌,可得DF AD =,BF AC =.则CD CF AD =+,即AD CF BD +=;再利用ASA 判定()Rt BEA Rt BEC ASA ≌,得出12CE AE AC ==,可得1122F AC CE B ==,连接CG .因为BCD ∆是等腰直角三角形,即BD CD =.又因为DH BC ⊥,那么DH 垂直平分BC .即BG CG =.在Rt CEG △中,CG 是斜边,CE 是直角边,所以CE CG <.即AE BG <.【详解】解:CD AB ⊥ ,45ABC ∠=︒,BCD ∴∆是等腰直角三角形.BD CD ∴=.故①正确;在Rt DFE △和Rt DAC V 中,90DBF BFD ∠=︒-∠,90DCA EFC ∠=︒-∠,且BFD EFC ∠=∠,DBF DCA ∴∠=∠,在DFB ∆和DAC ∆中,90DBF DAC BD CD BDF CDA ∠=∠⎧⎪=⎨⎪∠=∠=︒⎩,()DFB DAC ASA ∴∆≅∆,BF AC ∴=,DF AD =,CD CF DF =+ ,AD CF BD ∴+=;故②正确;BE 平分ABC ∠,ABE CBE ∴∠=∠.在Rt BEA V 和Rt BEC △中,90ABE CBE BE BE BEA BEC ∠=∠⎧⎪=⎨⎪∠=∠=︒⎩,()Rt BEA Rt BEC ASA ∴ ≌,12CE AE AC ∴==.又BF AC = ,1122CE AC BF ∴==;故④正确;连接CG .BCD ∆ 是等腰直角三角形,BD CD∴=又DH BC ⊥,DH ∴垂直平分BC ,BG CG ∴=,在Rt CEG △中,CG 是斜边,CE 是直角边,CE CG ∴<,CE AE = ,B AE G ∴<.故③错误.故选:B .【点睛】本题考查了全等三角形的判定和性质,等腰直角三角形的性质,解题的关键是熟练运用全等三角形的判定方法.11.2272x 或213.5x 【解析】【分析】先计算积的乘方,再进行单项式除以单项式的运算即可得到答案.【详解】()3322732=2722x x x x x ÷÷=,故答案为:2272x 或213.5x .【点睛】此题主要考查了积的乘方和单项式除以单项式,熟练掌握运算法则是解答此题的关键.12.60V h=【解析】【分析】根据长方体的体积=底面积⨯高得出60V h =即可.【详解】解:根据题意得:60V h =,故答案为:60V h =.【点睛】本题考查了函数关系式、长方体的体积,解题的关键是熟记长方体的体积公式.13.1【解析】【分析】根据三角形的中线平分三角形的面积解决问题即可.【详解】解:由作图可知,AD 平分BAC ∠,AB AC = ,BD DC ∴=,122ABD ABC S S ∆∆∴==,由作图可知,AE EB =,112BED ABD S S ∆∆∴==.故答案为:1.【点睛】本题考查作图-复杂作图,等腰三角形的性质的性质等知识,解题的关键是理解三角形的中线平分三角形的面积.14.13【解析】【详解】分析:根据概率公式用女生人数除以总人数即可得结论.详解:所有等可能结果共有6种,其中女生有2种,∴恰好是女生的概率为2163=.故答案为13.点睛:本题考查了概率公式:随机事件A 的概率P (A )=事件A 可能出现的结果数除以所有可能出现的结果数.15.x 2+3【解析】【详解】分析:先用完全平方公式和乘法分配律展开,然后合并同类项即可.详解:原式=x 2+2x+1+2-2x=x 2+3.故答案为x 2+3.点睛:本题考查了整式的混合运算.熟练掌握相关运算法则是解题的关键.16.12【解析】【分析】通过求证PFD ∆和QCD ∆全等,推出FD CD =,再通过证明APF ∆是等边三角形和PE AC ⊥,推出AE EF =,即可推出AE DC EF FD +=+,可得12ED AC =,即可推出ED 的长度.【详解】解://PF BQ ,Q FPD ∴∠=∠,等边ABC ∆,60APF B ∴∠=∠=︒,60AFP ACB ∠=∠=︒,APF ∴∆是等边三角形,AP PF ∴=,AP CQ = ,PF CQ ∴=,在PFD ∆和QCD ∆中,FPD Q PDF QDC PF CQ ∠=∠⎧⎪∠=∠⎨⎪=⎩,()PFD QCD AAS ∴∆≅∆,FD CD ∴=,PE AC ⊥ 于E ,APF ∆是等边三角形,AE EF ∴=,AE DC EF FD ∴+=+,12ED AC ∴=,1AC = ,12DE ∴=.故答案为:12.【点睛】本题考查了等边三角形的判定与性质、平行线的性质、全等三角形的判定与性质,解题的关键在于正确地作出辅助线,熟练运用相关的性质、定理,认真地进行计算.17.(1)1-;(2)68a 【解析】【分析】(1)根据有理数的乘方法则、零指数幂和负整数指数幂的运算法则计算即可;(2)根据单项式乘单项式的运算法则、单项式除以单项式的运算法则、积的乘方法则计算.【详解】解:(1)原式91(1)9=+⨯--919=--1=-;(2)原式66654a a a =+-68a =.【点睛】本题考查了实数的运算、整式的运算,解题的关键是掌握有理数的乘方法则、零指数幂和负整数指数幂的运算法则、单项式乘单项式的运算法则、单项式除以单项式的运算法则.18.277y xy -+,30-【解析】【分析】根据整式的运算法则即可化简求解.【详解】解:原式=222222392(4)x xy y x xy x y -+-++-=2222223928x xy y x xy x y -+-++-=277xy y -其中17x =-,2y =原式=217(2727⨯-⨯-⨯=-2-28=-30【点睛】此题主要考查整式的化简求值,解题的关键是熟知整式的乘法公式.19.垂线的定义,内错角相等两直线平行,1∠,两直线平行同位角相等,垂直平分线,D ∠,等边对等角,等量代换.【解析】【分析】利用垂线的定义,平行线的判定和性质,线段的垂直平分线的性质等知识求解即可.【详解】解:因为DB BC ⊥(已知),所以90DBC ∠=︒(垂线的定义).因为90C ∠=︒(已知),所以∠=∠DBC C (等量代换).所以//DB AC (内错角相等两直线平行).所以1A ∠=∠(两直线平行同位角相等).由作图法可知:直线EF 是线段DB 的垂直平分线,所以GD GB =.所以1D ∠=∠(等边对等角).因为1A ∠=∠(已知),所以A D∠=∠(等量代换).故答案为:垂线的定义,内错角相等两直线平行,1∠,两直线平行同位角相等,垂直平分线,D∠,等边对等角,等量代换.【点睛】本题考查作图-复杂作图,平行线的判定和性质,线段的垂直平分线的性质,等腰三角形的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.20.(1)0.4,0.4;20;(2)25【解析】【分析】(1)根据统计图找到摸到黑球的频率稳定到的常数即为摸到黑球的概率;用总数乘以摸到黑球的频率即可得到黑球的个数;(2)设向袋子中放入了x个黑球,根据摸到黑球最终稳定的频率即为概率的估计值,列出方程求解可得.【详解】(1)观察发现:随着实验次数的增加频率逐渐稳定到常数0.4附近,故摸到黑球的频率会接近0.4.袋中黑球的个数约为50×0.4=20(只).(2)设放入黑球x个,根据题意得:20 50xx+=+0.6,解得:x=25,经检验:x=25是原方程的根.故答案为:25.【点睛】本题考查了概率公式和频率估计概率,熟练掌握概率公式:概率等于所求情况数与总情况数之比是解答本题的关键.21.(1)11000;(2)7125;(3)500【解析】【分析】任取一张有1万种情况,其中抽到一等奖有10种情况,二等奖有50种情况,三等奖有500种情况,利用概率公式进行计算即可.【详解】解:(1)获一等奖的概率是101100001000=,(2)获奖的概率是1050500710000125++=,(3)设需要将x 无奖券改为三等奖券,则:50011000010x +=,解得:500x =.【点睛】本题考查了利用概率公式求概率,解题的关键是掌握如果一个事件有n 种可能,而且这些事件的可能性相同,其中事件A 出现m 种结果,那么事件A 的概率P (A )m n=,难度适中.22.(1)①见解析;②16︒;(2)见解析【解析】【分析】(1)①作线段AB 的垂直平分线交BC 于点D ,连接AD 即可.②求出DAB ∠,CAB ∠,可得结论.(2)证明()ABE ACD SAS ∆≅∆,推出ABE ACD ∠=∠,再证明OBC OCB ∠=∠,即可解决问题.【详解】解:(1)①如图,点D 即为所求.②MN 垂直平分线段AB ,DA DB ∴=,37DAB B ∴∠=∠=︒,90C ∠=︒ ,903753CAB ∴∠=︒-︒=︒,16CAD CAB DAB ∴∠=∠-∠=︒.(2)AB AC = ,BD CE =,AD AE ∴=,在ABE ∆和ACD ∆中,AB AC A A AE AD =⎧⎪∠=∠⎨⎪=⎩,()ABE ACD SAS ∴∆≅∆,ABE ACD ∴∠=∠,ABC ACB ∠=∠ ,OBC OCB ∴∠=∠,OB OC ∴=.【点睛】本题考查作图-复杂作图,全等三角形的判定和性质,线段的垂直平分线的性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.23.(1)2t ,72t -;(2)CAP PBQ ∆≅∆,PC PQ ⊥,理由见解析;(3)2()AP BQ cm ==,2x cm /s =;20/7x cm s =,P 在线段AB 中点,5()BQ cm =.【解析】【分析】(1)根据路程=时间⨯速度求解.(2)利用三角形全等的判定条件,判断两个三角形是否全等.(3)此处判断两个三角形全等用SAS ,需要分情况讨论对应边.【详解】解:(1)P 点运动速度为2/cm s ,运动()t s 走的路程为2()t cm ,AB 长度为7,(72)()BP t cm =-,故答案为2t ,72t -.(2)CAP PBQ ∆≅∆,PC PQ ⊥.证明: 点Q 的运动速度与点P 的运动速度相等,∴当1t =时,2()AP BQ cm ==,725()BP cm =-=,5()AC cm = ,90A B ∠=∠=︒,()CAP PBQ SAS ∴∆≅∆,ACP BPQ ∴∠=∠,90ACP CPA ∠+∠=︒ ,90BPQ CPA ∴∠+∠=︒,PC PQ∴⊥(3)CAB DBA ∠=∠,ACP ∆与BPQ ∆全等,需要满足下面条件之一:①AC PB =,AP BQ =,即5AC PB ==,752()AP BQ cm ==-=,2()AP t cm = ,()BQ xt cm =,2()AP BQ cm ∴==,2x cm /s =,②AC BQ =,AP PB =,即5AC BQ ==,7()2AP PB cm ==,72()2AP t cm ==,74t s ∴=,5()BQ xt cm == ,20/7x cm s ∴=,P 在线段AB 中点,5()BQ cm =.【点睛】本题考查了三角形全等的判定和性质和动点相结合,解题的关键是全等知识点熟练应用和动点的情况分析.24.(1)证明见解析(2)证明见解析【解析】【分析】(1)过点O作OM∥AB,根据平行线的性质得出∠1=∠EOM,求出OM∥CD,根据平行线的性质可求解;(2)根据平行线的性质得出∠AEH+∠CHE=180°,根据角平分线的性质和平行线的判定可求解.【详解】(1)方法一:过点O作OM∥AB,则∠1=∠EOM,∵AB∥CD,∴OM∥CD,∴∠2=∠FOM,∵OE⊥OF,∴∠EOF=90°,即∠EOM+∠FOM=90°,∴∠1+∠2=90°;方法二:过点F作FN∥OE交AB于N,则∠1=∠ANF,∠EOF+∠OFN=180°,∵OE⊥OF,∴∠EOF=90°,∴∠OFN=180°-∠EOF=90°,∵AB∥CD,∴∠ANF=∠NFD,∴∠1=∠NFD,∵∠1+∠OFN+∠NFD=180°,∴∠1+∠2=180°-∠OFN=90°;(2)∵AB∥CD,∴∠AEH+∠CHE=180°,∵FO平分∠CFG,EO平分∠AEH,∴∠CFG=2∠2,∠AEH=2∠1,∵∠1+∠2=90°,∴∠CFG+∠AEH=2∠1+2∠2=180°,∴∠CFG=∠CHE,∴FG∥EH.25.y=100-6x【解析】【详解】分析:(1)由表格可知,开始油箱中的油为100L,每行驶1小时,油量减少6L,据此可得t与Q的关系式;(2)求汽车油箱中剩余油量为46L,则汽车行驶了多少小时即是求当Q=46时,t的值;(3)先求出汽车以100km/h的速度在一条全长700公里的高速公路上匀速行驶需要的时间,乘以6求出用油量,再与36L比较大小即可判断.详解:(1)y=100-6x(2)令y=46,则46=100-6x,解得x=9.(3)700÷100=7h,7⨯6=42L,42>36,在中途不加油的情况下不能从高速公路起点开到高速公路终点.点睛:本题主要考查了一次函数的应用,由表格中数据求函数解析式可以根据等量关系列出或者利用待定系数法去求,理清汽车以100km/h的速度在一条全长700公里的高速公路上匀速行驶需要的时间7小时,是第三个问题的突破点.。

2022-2023学年北师大数学七年级下册 期末测试卷(解析版)

2022-2023学年北师大数学七年级下册 期末测试卷(解析版)

2022-2023学年北师大数学七年级下册期末测试卷参考答案与试题解析一.选择题(共12小题)1.如图,在△ABC中,∠B=40°,∠A=∠C,AF=CD,AE=CF,则∠EFD等于()A.50°B.60°C.70°D.80°【考点】全等三角形的判定与性质;三角形内角和定理.【分析】由三角形内角和定理得出∠A=∠C=70°,证明△AEF≌△CFD(SAS),由全等三角形的性质得出∠AFE=∠CDF,则可得出答案.【解答】解:∵∠B=40°,∴∠A=∠C=(180°﹣40°)=70°,在△AEF和△CFD中,,∴△AEF≌△CFD(SAS),∴∠AFE=∠CDF,∵∠AFE+∠EFD+∠CFD=180°,∠C+∠CDF+∠CFD=180°,∴∠EFD=∠C=70°.故选:C.2.一个正方形的边长为acm,若它的边长增加5cm,则新正方形面积增加了()cm2.A.25B.10a C.25+5a D.25+10a【考点】完全平方公式的几何背景.【分析】完全平方公式(a+b)=a2+2ab+b2的应用.【解答】解:原正方形的面积=a2(cm2)新正方形的面积=(a+5)2=(a2+10a+25)cm2所以增加的面积=(10a+25)cm2.故本题选D.3.若一个三角形的三边长分别为2,6,a,则a的值可能是()A.3B.4C.6D.8【考点】三角形三边关系.【分析】根据三角形的三边关系列出不等式,即可求出a的取值范围.【解答】解:∵三角形的三边长分别为2,6,a,∴6﹣2<a<6+2,即4<a<8,故选:C.4.圆的对称轴有()A.0条B.1条C.2条D.无数条【考点】轴对称图形;轴对称的性质.【分析】直接利用如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,进而结合圆的性质得出答案.【解答】解:圆的对称轴有无数条.故选:D.5.下列事件中,是必然事件的是()A.今年冬季兴城的最低气温为40℃B.下午考试,小明会考满分C.乘坐公共汽车恰好有空座D.四边形的内角和是360°【考点】随机事件.【分析】根据事件发生的可能性大小判断即可.【解答】解:A、今年冬季兴城的最低气温为40℃,是不可能事件,不符合题意;B、下午考试,小明会考满分,是随机事件,不符合题意;C、乘坐公共汽车恰好有空座,是随机事件,不符合题意;D、四边形的内角和是360°,是必然事件,符合题意;故选:D.6.据报道,新型冠状病毒的直径约为0.0000001米,则该病毒的直径用科学记数法表示为()A.0.1×10﹣6米B.1×10﹣7米C.10×10﹣8米D.1×10﹣8米【考点】科学记数法—表示较小的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正整数;当原数的绝对值<1时,n是负整数.【解答】解:0.0000001=1×10﹣7.故选:B.7.如图,∠PQR=132°,SQ⊥QR,QT⊥PQ,则∠SQT=()A.48°B.32°C.24°D.66°【考点】垂线;余角和补角.【分析】利用垂直的概念,得出∠PQS=∠PQR°﹣90°,再利用互余的性质,得出∠SQT=∠PQT﹣∠PQS.【解答】解:∵,∠PQR=132°,QT⊥PQ,∴∠PQS=132°﹣90°=42°,又∵SQ⊥QR,∴∠PQT=90°,∴∠SQT=∠PQT﹣∠PQS,=90°﹣42°,=48°.故选:A.8.已知点A,B,C,D,E的位置如图所示,下列结论中正确的是()A.∠AOB=130°B.∠DOC与∠BOE互补C.∠AOB=∠DOE D.∠AOB与∠COD互余【考点】余角和补角.【分析】由题意得出∠AOB=50°,∠DOE=40°,∠DOC=50°,∠BOE=130°,得出∠DOC+∠BOE=180°即可.【解答】解:∵∠AOB=50°,∠DOE=40°,∴∠DOC=50°,∠BOE=130°,∴∠DOC+∠BOE=180°.故选:B.9.如图,已知矩形ABCD中,点E是BC的中点,点P从点B出发,沿B→D→A→B以1cm/s 的速度匀速运动到点B,到达点B后停止.图2是点P运动时,△PEC的面积y(cm2)随运动时间x(s)变化的关系图象,则图2中a,b的值为()A.a=3,b=12B.a=4,b=12C.a=3,b=14D.a=4,b=14【考点】动点问题的函数图象.【分析】从图2中5,9可得出BD=5,AD=9﹣5=4,根据勾股定理可求出AB的长,由此可得出b的值;根据点P在AD上运动时,面积不变,利用三角形面积公式可求出a.【解答】解:结合点P的运动,根据图2可知,BD=5,AD=9﹣5=4,∴BC=AD=4,∵点E是BC的中点,∴EC=2,在矩形ABCD中,∠A=90°,由勾股定理可知,AB=3,∴CD=AB=3;∴b=9+3=12;当点P运动到点D时,y=•EC•CD=×2×3=3.即a=3.故选:A.10.根据图中给定的条件,下列各图中可以判断∠1与∠2一定相等的是()A.①②B.①③C.①②③D.①②③④【考点】直角三角形的性质;对顶角、邻补角;平行线的性质.【分析】根据直角三角形的两锐角互余判断即可.【解答】解:如图①,∠1+∠3=90°,∠2+∠3=90°,则∠1=∠2;如图②,∠1=90°﹣∠3,∠2=90°﹣∠4,∠3=∠4,则∠1=∠2;图③和图④不能判断∠1与∠2一定相等,故选:A.11.如图,P是菱形ABCD的对角线AC上一动点,过P垂直于AC的直线交菱形ABCD的边于M、N两点,设AC=9,BD=1,AP=x.△AMN的面积为y,则y关于x的函数图象的大致形状是()A.B.C.D.【考点】动点问题的函数图象.【分析】△AMN的面积=AP×MN,通过题干已知条件,用x分别表示出AP、MN,根据所得的函数,利用其图象,可分两种情况解答:(1)0<x≤4.5;(2)4.5<x≤9;【解答】解:(1)当0<x≤4.5时,如图,在菱形ABCD中,AC=9,BD=1,AO=1,AC⊥BD,∵MN⊥AC,∴MN∥BD,∴△AMN∽△ABD,∴,即=,∴MN=x,∴y=AP×MN=x2(0<x≤4.5),∵>0,∴函数图象开口向上;(2)当4.5<x≤9,如图,同理证得,△CDB∽△CNM,,即:,∴MN=﹣x+1,∴y=AP×MN=x•(﹣x+1)=﹣x2+x,即:y=﹣x2+x;∵﹣,∴函数图象开口向下,综上,答案C的图象大致符合.故选:C.12.如图,在△ABC中,点D是边BC的中点,,△ABC的面积是4,则下列结论正确的是()A.S1=S2B.S1=2C.S2=0.5D.S1﹣S2=1【考点】三角形的面积.【分析】设AD与BE相交于点O,连接OC,过点A作AF⊥BE,垂足为F,过点C作CG⊥BE,交BE的延长线于点G,设△BOD的面积为x,根据点D是边BC的中点,可得△BOD的面积=△COD的面积=x,△ABD的面积=△ACD的面积,从而利用等式的性质可得△AOB的面积=△AOC的面积,再根据已知可得CE=AE,从而可得△AOE 的面积=3△COE的面积,进而可得AF=3CG,然后利用三角形的面积可得△AOB的面积=3△BOC的面积=6x,从而可得△AOC的面积6x,进而可得△AOE的面积=x,△COE的面积=x,最后求出S1=6x,S2=x,再根据△ABC的面积是4,可得2(x+6x)=4,从而求出x的值,进行计算逐一判断即可解答.【解答】解:设AD与BE相交于点O,连接OC,过点A作AF⊥BE,垂足为F,过点C 作CG⊥BE,交BE的延长线于点G,设△BOD的面积为x,∵点D是边BC的中点,∴△BOD的面积=△COD的面积=x,△ABD的面积=△ACD的面积,∴△AOD的面积﹣△BOD的面积=△ADC的面积﹣△COD的面积,∴△AOB的面积=△AOC的面积,∵,∴CE=AE,∴△AOE的面积=3△COE的面积,∴AF=3CG,∴△AOB的面积=3△BOC的面积=3•2x=6x,∴△AOC的面积=△AOB的面积=6x,∴△AOE的面积=△AOC的面积=x,△COE的面积=△AOC的面积=x,∴S1=△AOB的面积=6x,S2=△DOC的面积+△OEC的面积=x,∴S1≠S2,故A不符合题意;∵△ABC的面积是4,∴2△ABD的面积=4,∴2(△AOB的面积+△BOD的面积)=4,∴2(x+6x)=4,∴x=,∴S1=6x=,S2=x=,∴S1﹣S2=﹣=1,故B,C都不符合题意;D符合题意;故选:D.二.填空题(共6小题)13.如图,在边长为(m+4)的正方形纸片上剪出一个边长为m的小正方形后,将剩余部分剪拼成一个长方形(不重叠无缝隙),若这个矩形的一边长为4,则另一边长是(2m+4).【考点】平方差公式的几何背景.【分析】设另一边长为x,然后根据分割前后面积不变列方程求解.【解答】解:设另一边长为x,根据题意得:4x+m2=(m+4)2,解得:x=2m+4,则另一边长为(2m+4),故答案为:(2m+4).14.把一张长方形纸片ABCD沿EF折叠后ED与BC的交点为G,D、C分别在M、N的位置上,若∠EFG=65°,则∠2=130°.【考点】平行线的性质.【分析】由折叠的性质可得:∠DEF=∠GEF,根据平行线的性质:两直线平行,内错角相等可得:∠DEF=∠EFG,从而得到∠GEF,根据平角的定义即可求得∠1,再由平行线的性质求得∠2.【解答】解:∵AD∥BC,∠EFG=65°,∴∠DEF=∠EFG=65°(两直线平行,内错角相等),∠1+∠2=180°(两直线平行,同旁内角互补),由折叠的性质可得:∠GEF=∠DEF=65°,∴∠1=180°﹣∠GEF﹣∠DEF=180°﹣65°﹣65°=50°,∴∠2=180°﹣∠1=130°.故答案为:130°.15.已知一个梯形的面积为60,上底长是高的2倍,设高为x,下底为y,则y关于x的函数解析式为y=.【考点】函数关系式.【分析】根据梯形的面积可得,进一步可得y关于x的函数解析式.【解答】解:设高为x,∵上底长是高的2倍,∴上底长为2x,∵一个梯形的面积为60,∴,∴y=,故答案为:y=.16.如图,∠ACB=90°,AD⊥CE,BE⊥CE,垂足分别为D,E,添加一个条件,使△ACD ≌△CBE,添加的条件是BE=CD(答案不唯一).(写出一个即可)【考点】全等三角形的判定.【分析】此题是一道开放型的题目,答案不唯一,只要符合全等三角形的判定定理即可.【解答】解:添加的条件是BE=CD,判断两三角形全等的根据是SAS,理由是:∵AD⊥CE,BE⊥CE,∴∠ADC=∠CEB,∵∠ACB=90°,∴∠ACD+∠BCE=90°,∵∠CBE+∠BCE=90°,∴∠ACD=∠CBE,在△ABC和△DEF中,∴△ABC≌△DEF(ASA),故答案为:BE=CD(答案不唯一).17.如图,在△ABC中,AB=AC,AD⊥BC.若BD=6,则CD=6.【考点】等腰三角形的性质.【分析】由已知条件,根据等腰三角形“三线合一”的性质,可得CD=BD=6.【解答】解:∵AB=AC,∴∠ABD=∠ACD,∵AD⊥BC,∴∠ADC=∠ADB=90°,∴CD=BD=6.故答案为:6.18.如图,D、E、F分别为BC、AD、CE的中点.若S△ABC=8cm2,则S△DEF=1cm2.【考点】三角形的面积.【分析】根据三角形的中线把三角形分成两个面积相等的三角形解答即可.【解答】解:∵D、E、F分别为BC、AD、CE的中点,且S△ABC=8cm2,∴△ACD的面积=S△ABC=4cm2,△ACE的面积=△ACD的面积=2cm2,△AEF的面积=△ACE的面积=1cm2.故答案为:1cm2.三.解答题(共9小题)19.计算:(1)a4•(a2)3;(2)2a3b2c÷(a2b);(3)6a(ab﹣b)﹣(2ab+b)(a﹣1);(4)(a﹣2)2﹣(3a+2b)(3a﹣2b).【考点】整式的混合运算.【分析】(1)直接利用幂的乘方运算法则化简,再利用同底数幂的乘法运算法则计算得出答案;(2)直接利用整式的除法运算法则计算得出答案;(3)直接利用单项式乘单项式以及多项式乘多项式计算,进而得出答案;(4)直接利用完全平方公式以及平方差公式化简,进而合并同类项得出答案.【解答】解:(1)原式=a4•a6=a10;(2)原式=2×3a3b2c÷a2b=6abc;(3)原式=2a2b﹣6ab﹣(2a2b﹣2ab+ab﹣b)=2a2b﹣6ab﹣2a2b+ab+b=﹣5ab+b;(4)原式=a2﹣4a+4﹣(9a2﹣4b2)=a2﹣4a+4﹣9a2+4b2=﹣8a2﹣4a+4+4b2.20.如图,CE平分∠ACD,若∠1=30°,∠2=60°,求证:AB∥CD.【考点】平行线的判定.【分析】根据平行线的判定,依据角平分线的定义即可解决问题.【解答】证明:∵CE平分∠ACD,∠1=30°,∴∠ACD=2∠1=60°(角平分线定义),∵∠2=60°,(已知),∴∠2=∠ACD(等量代换),∴AB∥CD(同位角相等两直线平行).21.甲、乙两同学骑自行车从A地沿同一条路到B地,已知乙比甲先出发,他们离出发地的距离s(km)和骑行时间t(h)之间的函数关系如图所示.(1)乙比甲先出发0.5小时.(2)甲骑行的速度是每小时千米.(3)相遇后,甲的速度大于乙的速度(填“大于”、“小于”或“等于”).(4)甲比乙少用了1小时.【考点】函数的图象.【分析】根据函数图象的纵坐标,可得路程,根据函数图象的横坐标,可得时间,根据路程与时间的关系,可得答案.【解答】解:由题意可得:(1)乙比甲先出发0.5小时.故答案为:0.5;(2)甲骑行的速度为:=(千米/小时).故答案为:;(3)相遇后,甲的速度大于乙的速度(填“大于”、“小于”或“等于”).故答案为:大于;(4)甲比乙少用了1小时.22.如图,AD为△ABC的高,AE、BF为△ABC的角平分线,若∠CBF=30°,∠AFB=70°.(1)求∠DAE的度数;(2)若点M为线段BC上任意一点,当△BMF为直角三角形时,请直接写出∠CFM的度数.【考点】三角形内角和定理.【分析】(1)根据∠DAE=∠BAE﹣∠BAD,求出∠BAE,∠BAD即可;(2)分两种情形:当∠FMB=90°时,当∠BFM=90°时,分别求解即可.【解答】解:(1)∵BF为△ABC的角平分线.∠CBF=30°∴∠ABF=∠CBF=30°,∠ABC=2∠CBF=60°,∵AD为△ABC的高,∴∠ADB=90°,∴∠BAD=30°,在△ABF中,∠AFB=70°,∴∠BAF=80°,∠C=40°,∵AE为△ABC的角平分线,∴∠BAE=40°,∴∠DAE=∠BAE﹣∠BAD=10°;(2)当∠FMB=90°时,∠CFM=90°﹣40°=50°.当∠BFM=90°时,∠BMF=90°﹣30°=60°,∵∠BMF=∠C+∠CFM,∴∠CFM=60°﹣40°=20°.综上所述,∠CFM度数为50°或20°.23.如图,BE=CF,AC=DF,AC∥DF.求证:△ABC≌△DEF.【考点】全等三角形的判定.【分析】首先根据AD=BE可得AB=DE,再由AC∥DF可得∠A=∠FDE,然后利用SAS定理证明△ABC≌△DEF即可.【解答】证明:∵CF=BE,∴CF+EC=BE+CE,即BC=EF,∵AC∥DF,∴∠ACB=∠DFE,在△ACB和△DFE中,,∴△ABC≌△DEF(SAS).24.如图(1),AB=14cm,AC=10cm,AC⊥AB,BD⊥AB垂足分别为A、B,点P在线段AB上以2cm/s的速度由点A向点B运动,同时点Q在射线BD上运动.它们运动的时间为t(s)(当点P运动结束时,点Q运动随之结束).(1)若点Q的运动速度与点P的运动速度相等,当t=2时,△ACP与△BPQ是否全等,并判断此时线段PC和线段PQ的位置关系,请分别说明理由;(2)如图(2),若“AC⊥AB,BD⊥AB”改为“∠CAB=∠DBA”,点Q的运动速度为xcm/s,其它条件不变,当点P、Q运动到何处时有△ACP与△BPQ全等,求出相应的x 和t的值.【考点】全等三角形的判定.【分析】(1)利用AP=BQ=2,BP=AC,可根据“SAS”证明△ACP≌△BPQ;则∠C =∠BPQ,然后证明∠APC+∠BPQ=90°,从而得到PC⊥PQ;(2)讨论:若△ACP≌△BPQ,则AC=BP,AP=BQ,即5=7﹣2t,2t=xt;②若△ACP ≌△BQP,则AC=BQ,AP=BP,即5=xt,2t=7﹣2t,然后分别求出x即可.【解答】解:(1)△ACP≌△BPQ,PC⊥PQ.理由如下:∵AC⊥AB,BD⊥AB,∴∠A=∠B=90°,∵AP=BQ=2,∴BP=5,∴BP=AC,在△ACP和△BPQ中,∴△ACP≌△BPQ(SAS);∴∠C=∠BPQ,∵∠C+∠APC=90°,∴∠APC+∠BPQ=90°,∴∠CPQ=90°,∴PC⊥PQ;(2)①若△ACP≌△BPQ,则AC=BP,AP=BQ,可得:5=7﹣2t,2t=xt解得:x=2,t=1;②若△ACP≌△BQP,则AC=BQ,AP=BP,可得:5=xt,2t=7﹣2t解得:x=,t=.综上所述,当△ACP与△BPQ全等时x的值为2或.25.如图,已知BN平分∠ABC,P为BN.上的一点,PF⊥BC于F,P A=PC.(1)求证:∠PCB+∠BAP=180°;(2)线段BF、BC、AB之间有怎样的数量关系?请直接写出你探究的结论:2BF=AB+BC.【考点】全等三角形的判定与性质.【分析】(1)过点P作PD⊥BA于D,由角平分线的性质可得PD=PF,由“HL”可证Rt△ADP≌Rt△CFP,可得∠PCF AE=∠PCB,即可得结论;(2)证明△BPD≌△BPF(AAS),进而得出BD=BF,再根据边与边之间的关系即可得出2BF=AB+AC.【解答】(1)证明:作PD⊥AB于点D,∵BN平分∠ABC,PF⊥BC,∴PD=PF又∵P A=PC,∴Rt△ADP≌Rt△CFP(HL),∴∠DAP=∠FCP,∵∠PCB+∠FCP=180°,∴∠PCB+∠BAP=180°;(2)解:2BF=AB+BC,理由如下:∵∠DBP=∠FBP,BP=BP,∠BEP=∠BFP,∴△BPD≌△BPF(AAS),∴BD=BF,∴BD+BF=AB﹣AD+BC+CF=AB+BC,∴2BF=AB+BC,故答案为:2BF=AB+BC.26.如图,在△ABC中,AB的垂直平分线分别交AB、BC于点D、E,AC的垂直平分线分别交AC、BC于点F、G.(1)若BC=7,求△AEG的周长.(2)若∠BAC=110°,求∠EAG的度数.【考点】线段垂直平分线的性质.【分析】(1)根据线段垂直平分线的性质得到EA=EB,GA=GC,根据三角形的周长公式计算,得到答案;(2)根据三角形内角和定理得到∠B+∠C=70°,根据等腰三角形的性质得到∠EAB+∠GAC=∠B+∠C=70°,计算即可.【解答】解:(1)∵DE是AB的垂直平分线,GF是AC的垂直平分线,∴EA=EB,GA=GC,∴△AEG的周长=EA+EG+GA=EB+EG+GC=BC=7;(2)∵∠BAC=110°,∴∠B+∠C=180°﹣110°=70°,∵EA=EB,GA=GC,∴∠EAB=∠B,∠GAC=∠C,∴∠EAB+∠GAC=∠B+∠C=70°,∴∠EAG=110°﹣70°=40°.27.综合与探究【实践操作】在数学实践活动课上,“奋进”小组准备研究如下问题:如图,点A,O,B在同一条直线上,将一直角三角尺如图1放置,使直角顶点重合于点O,∠COD是直角,OE平分∠BOC.【问题发现】(1)若∠AOC=30°,则∠DOE的度数为15°;(2)将这一直角三角尺如图2放置,其他条件不变,探究∠AOC和∠DOE的度数之间的关系,写出你的结论,并说明理由;(3)将这一直角三角尺如图3放置,其他条件不变,请直接写出∠AOC和∠DOE的度数之间的关系.【考点】余角和补角;角平分线的定义.【分析】(1)根据角平分线的定义、余角和补角的定义、平角的定义,可以得出答案;(2)根据角平分线的定义、余角和补角的定义、平角的定义可以得出结论;(3)根据角平分线的定义、余角和补角的定义、平角的定义可以得出结论.【解答】解:(1)∵∠AOC=30°,∠AOC+∠BOC=180°,∴∠BOC=180°﹣∠AOC=180°﹣30°=150°,∵OE平分∠BOC,∴∠COE=∠BOC=×150°=75°,∵∠COD是直角,∴∠COD=90°,∴∠DOE=∠COD﹣∠COE=90°﹣75°=15°;故答案为:15°;(2)∠AOC=2∠DOE,理由如下:∵∠COD是直角,∴∠COD=90°.∴∠COE=90°﹣∠DOE.∵OE平分∠BOC,∴∠BOC=2∠COE.∴∠AOC=180°﹣∠BOC=180°﹣2∠COE=180°﹣2(90°﹣∠DOE)=180°﹣180°+2∠DOE=2∠DOE,即∠AOC=2∠DOE.(3)∠AOC=360°﹣2∠DOE,理由如下:∵OE平分∠BOC,∴∠BOC=2∠COE,又∵∠AOC=180°﹣∠BOC,∴∠AOC=180°﹣2∠COE,∵∠COD=90°,∴∠COE=∠DOE﹣∠COD=∠DOE﹣90°,∴2∠COE=2∠DOE﹣180°,∴∠AOC=180°﹣(2∠DOE﹣180°),∴∠AOC=360°﹣2∠DOE.。

北师大版七年级第二学期期末数学模拟试题及答案(含解析精选5套)

北师大版七年级第二学期期末数学模拟试题及答案(含解析精选5套)

北师大版七年级下学期期末数学模拟试题一、选择题(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案,其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框涂黑。

1.计算52a a •的结果是A.3aB.10aC.3-aD.7a 2.下列世界博览会会徽图案中是轴对称图形的是A B C D 3.下列计算正确的是A.1055a a a =+B.()2263a a = C.67a a a =÷ D.()523a a =B.(3a )2=6a 2C.a 7÷a =a 6D.(a 3)2=a 3 4.下列事件为必然事件的是A.任意买一张电影票,座位号是奇数B.打开电视机,CCTY 第一套节目正在播放新闻联播C.从一个只装有红色小球的不透明袋中,任意摸出一球是红球D.经过某一有交通信号灯的路口,恰好遇到绿灯5.生物学家发现种病毒的长度约为0.0000043米,利用科学记数法表示为 A.6103.4⨯米 B.5103.4-⨯米 C.6103.4-⨯米 D.71043⨯米6.一个缺角的三角形ABC 残片如图所示,量得∠A =45°,∠B =60°,则这个三角形残缺前的∠C 的度数为第6题 第8题A.75°B.65°C.55°D.45°7.某市对一道路进行拓宽改造工程队在工作了一段时间后,因雨被迫停工几天,随后工程队加快了施工进度,按时完成了拓宽改造任务.下面能反映该工程尚未改造的道路y (米)与时间x (天)的关系的大致图象是A B C D8.如图,长方形纸片ABCD 的边长AB =32,AD =2,将长方形纸片沿EF 折叠,使点A 与点C 重合,如果∠BCE =30°,则∠DFE 的大小是A.120°B.110°C.115°D.105°9.将图甲中阴影部分的小长方形变换到图乙位置,根据甲、乙两个图形的面积关系可以得到一个关于b a 、的恒等式为A.()2222b ab a b a +-=- B.()()22b a b a b a -=-+C.()2222b ab a b a ++=+ D.()ab a b a a -=-210.如图,下列条件中一定能判断AB ∥CD 的是第10题 第11题 第12题A.∠2=∠3B.∠3=∠4C.∠4=∠5D.∠1=∠2 11.如图,AB //DE ,AC //DF ,AC =DF ,下列条件中不能判断△ABC ≌△DEF 的是 A.AB =DE B.EF =BC C.∠B =∠E D.EF ∥BC12.如图,AD 为∠CAF 的角平分线,BD =CD ,∠DBC =∠DCB ,∠DCA =∠ABD ,过D 作DE ⊥AC 于E ,DF ⊥AB 交BA 的延长线于F ,则下列结论:①△CDE ≌△BDF ;②CE =AB +AE ;③∠BDC =∠BAC ;④∠DAF =∠CB D.其中正确的结论有 A.4个 B.3个 C.2个 D.1个二、填空题(本大题6个小题,每小题4分,共24分)请将每小题的答案直接填在答题卡中对应的横线上13.比较大小:5____72(填“>”、“<”或“=”)14.一只小狗跳来跳去,然后随意落在如图所示的某一方格中(每个方格除颜色外完全相同),则小狗停留在黑色方格中的概率是_________.第14题 第17题 第18题15.已知等腰三角形的两边长是3cm 和6cm ,则这个三角形的周长是_____cm . 16.若64142+-mx x 是一个完全平方式,则实数m 的值应为________. 17.如图,△ABE 和△ACD 是△ABC 分别以AB 、AC 为对称轴翻折180°形成的,若∠1:∠2:∠3=29:4:3,则∠α的度数为_______.18.如图,Rt △ABC 中,∠BAC =90°,AB =AC =2,BC =22.点D 从B 点开始运动到C 点结束(点D 和B 、C 均不重合),DE 交AC 于E ,∠ADE =45°,当△ADE 是等腰三角形时,AE 的长度为______.三、解答题(本大题2个小题,每小题8分,共16分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形,请将解答过程书写在答题卡中对应的位置上 19.如图,点B 、F 、C 、E 在同一条直线上,FB =CE ,AC //DF , AC =DF . 求证:AB =DE .20.如图某商场为了吸引顾客,设立了一个可以自由转动的转盘,并规定:每购买500元商品,就能获得一次转动转盘的机会,如果转盘停止后,指针上对准500、20、100、50、10的区域,顾客就可以分别获得500元、200元、100元、50元、10元的购物券一张。

北师大版数学七年级下册期末考试模拟试题

北师大版数学七年级下册期末考试模拟试题

北师大版数学七年级下册期末考试模拟试题(一)一、选择题(12×3=36分) 1、下列运算中,正确的是( )A.22(3)6a a = B. 623a a a ÷= C. 336()a a = D. 325a a a ⋅=2、下列图形不是轴对称图形的是( )A.B. C.D. 3、已知2(3)(2)x x x bx c +-=++,那么b 、c 的值分别是( )A .1b =,6c =-B .1b =,6c =C .5b =,6c =-D .5b =,6c = 4、如图1,由AB//DC ,能推出正确的结论是( )A .∠3=∠4B .∠1=∠2C .∠A=∠CD .AD//BC 5、如图2,往地板中随意一颗石头,石头落在黑色区域的概率为( )A .12B .516C .38D .346、对于四舍五入得到的近似数43.2010⨯,下列说法正确的是( )A .有3个有效数字,精确到百分位B .有5个有效数字,精确到个位C .有3个有效数字,精确到百位D .有2个有效数字,精确到百分位 7、已知△ABC 的三个内角满足:22A B C ∠=∠=∠,则△ABC 的形状是( )A .直角三角形B .钝角三角形C .锐角三角形D .不能确定8、佳佳星期六下午在商场购物时,通过镜子看到她背后墙上一面普通时钟的时针与分针的位置如图3所示.这时实际时间是( )A .3:20B .3:40C .4:20D .8:209、如图4,AB=8,AC=7,PB 、PC 分别平分∠B 、∠C ,DE ∥BC .则△ADE 的周长是( )A .15B .20C .25D .3010、洗衣机洗衣经历了注水(此前机内无水)、洗涤、脱水(包括排水)三个连续的过程.下列图中可以近似地刻画出洗衣机在这段时间内的水量变化情况的是( )CCA .B .C . D.11、以下不一定能判定两个三角形全等的条件是( )A .两角及它们的夹边对应相等B .两角及其中一角的对边对应相等C .两边及它们的夹角对应相等D .两边及其中一边的对角对应相等 12、如图5所示的是线段AB 关于直线l 对称的图形,那么:①AB A B ''= ; ②直线l 垂直平分BB ';③BB AA ''∥ ;④AB 延长线与A B ''的延长线的交点在直线l 上。

最新北师大版七年级下册数学期末模拟试卷以及答案

最新北师大版七年级下册数学期末模拟试卷以及答案

七年级第二学期数学期末测试试卷一、选择题。

1、下列标志中,可以看作是轴对称图形的是()A B C D2、济南春夏之季鲜花烂漫,空气中弥漫着各种花粉,有一种花粉的直径是0.000063米,将0.000063用科学记数法表示应为()A. 6.3X 10_4B. 0.63X 10_4C. 6.3X 10 -5D. 63X 10 一53、如图,直线c与直线a,b相交,且a// b,Z 1 = 60°,则/2的度数()A. 30°B. 60°C. 80°4、下列计算正确的是( )A. a5+ a2= a7B. 2a2- a2= 2C. a3• a2= a8D. (a9)3= a95、如图,一扇窗户打开后,用窗钩AB可将其固定,这里所运用的几何原理是( )A. 三角形的稳定性B. 两点之间钱段最短C两点确定一条直线D. 垂线段最短7如图所示,货车匀速通过的隧道长大于货车长时,货车从进入隧道至离开隧8以下各组线段为边不能组成直角三角形的是( )A. 3,4,5B. 6, 8,10C. 5, 12,13D. 8, 15,20道的时间x与货车在隧道内的长度y之间的关系用图象描述大致是8 —枚质地均匀的正方体骰子,其六个面上分别刻有1,2,3,4,5,6六个数字,投 掷这个骰子一次,得到的点数与 3, 4作为等腰三角形三边的长,能构成等腰三 角形的概率是()22 3 3 6 下列说法正确的是()A. 同位角相等B. 两条直线被第三条直线所截,内错角相等C 对顶角相等D.两条平行直线被第三条直线所裁,同旁内角相等10、如图,在边长为a 的正方形中,剪去一个边长为 b 的小正方形(a >b ,如 图I ),将余下的部分剪开后拼成一个梯形(如图 2),根据两个图形阴影部分 面积的关系,可以得到一个关于 a , b 的恒等式为()A. (a — b)2 = a 2— 2ab + b 2A、 B、 C 、DA BCDB. (a + b)2 = a 2 + 2ab + b 2C. a 2-b 2 = (a + b)(a — b)D. a(a + b) = a 2+ ab11、如图,在△ MBC 中,AB = 4, AC = 6,/ ABC 和/ACB 的平分线交于 O 点, 过点O 作BC 的平行线交 AB 于M 点,交AC 于N 点,则△ AMN 的周长为A. 7B. 8C. 9D. 1012、如图所示,下列各三角形中的三个数之间均具有相同的规律,根据此规律, 最后一个三角形中y 与n 之间的关系是()A 、 y = 2n + 1B 、 y = 2n +n bC、y= 2n+1+ nD、y= 2n+ n+ 1二、填空题。

北师大版七年级下册期末数学模拟试题及答案(含解析精选5套)

北师大版七年级下册期末数学模拟试题及答案(含解析精选5套)

北师大版七年级下学期期末数学模拟试题说明:本试卷共4页,满分120分,考试时间100分钟. 注意事项:1. 所有解答全部写(涂)在答题卡相应的位置上,不能答在试卷上.2. 用铅笔进行画线、绘图时,要求痕迹清晰.一、选择题(每小题3分,共30分)1. 下列是轴对称图形的是()A. B. C. D.2. 人体内的淋巴细胞直径约是0.0000051米,将0.0000051用科学记数法表示为()A. 0.51×10-5B. 0.51×105C. 5.1×10-6D. 0.51×1063. 下列运算正确的是()A. m2•m3=m5B.2()mn=mn2 C. 32()m=m9 D.m6 ÷m2=m34. 气象台预报“明天下雨的概率是85%”.对此信息,下列说法正确的是()A. 明天将有85% 的地区下雨B. 明天将有85% 的时间下雨C. 明天下雨的可能性比较大D. 明天肯定下雨5. 要使x2+mx+4=(x+2)2成立,那么m的值是()A. 4B. -4C. 2D. -26. 如图是小希同学跳远时沙坑的示意图,测量成绩时先用皮尺从后脚印的点A处垂直拉至起跳线l 的点B处,然后记录AB的长度,这样做的理由是()A. 两点之间,线段最短B. 过两点有且只有一条直线C. 垂线段最短D. 过一点可以作无数条直线7. 如图,把一块三角板的直角顶点放在直尺的一边上.如果∠2=58º,那么∠1 的大小是()A. 58ºB. 48ºC. 42ºD. 32º8. 已知等腰△ABC中,∠A=40º,则的大小为()A. 40ºB. 70ºC. 100ºD. 40º或70º9. 将常温中的温度计插入一杯的热水中,温度计的度数与时间的关系可用下列图象近似刻画的是()第6题图第7题图AC BFEDA. B. C. D.10. 如图,AD是△ABC的角平分线,点E是AB边上一点,AE=AC,EF∥BC,交AC于点F.下列结论正确的是()①∠ADE=∠ADC;②△CDE是等腰三角形;③CE平分∠DEF;④AD垂直平分CE;⑤AD=CE.A. ①②⑤B. ①②③④C. ②④⑤D. ①③④⑤二、填空题(每小题4分,共24分)11. 计算:()3222-⨯=.12. 计算:(25)(3)a a+-=.13. 如图,把两根钢条AA'、BB'的中点连在一起,可以做成一个测量内槽宽的工具(卡钳).若测得A B''=8厘米,则工件内槽AB宽为厘米.第13题图第16题图14.已知2019m n+=,20182019m n-=,则22m n-的值为.15. 下表是某种数学报纸的销售份数x(份)与价钱y(元)的统计表,观察下表:份数x(份) 1 2 3 4价钱y(元)0.5 1.0 1.5 2.0则买48份这种报纸应付元.16. 如图,已知AD是等腰△ABC底边BC上的中线,BC=,AD=,点E、F是AD的三等分点,则阴影部分的面积为.三、解答题(一)(每小题6分,共18分)17. 计算:()011||220182π----第10题图18. 计算:4234102(3)a a a a a a --⋅⋅-÷19. 先化简,再求值:22(2)()()72x y x y x y y y ⎡⎤--+--÷⎣⎦,其中1,22x y ==-四、解答题(二)(每小题7分,共21分) 20. 如图,已知AC ∥BD.(1)作BAC ∠的平分线,交BD 于点M (尺规作图,保留作图痕迹,不用写作法);(2)在(1)的条件下,试说明BAM AMB ∠=∠.21. 一个不透明的盒子里装有 30 个除颜色外其它均相同的球,其中红球有 个,白球有 3 个,其它均为黄球.现小李从盒子里随机摸出一个球,若是红球,则小李获胜;小李把摸出的球放回盒子里摇匀,由小马随机摸出一个球,若为黄球,则小马获胜. (1)当 m =4时,求小李摸到红球的概率是多少? (2)当 m 为何值时,游戏对双方是公平的?第20题图22. 如图,已知BC是△ABD的角平分线,BC=DC,∠A=∠E=30°,∠D=50°.(1)写出AB=DE的理由;(2)求∠BCE的度数.第22题图五、解答题(三)(每小题9分,共27分)23. 某公司技术人员用“沿直线AB折叠检验塑胶带两条边缘线a、b是否互相平行”.(1)如图1,测得∠1=∠2,可判定a∥b吗?请说明理由;(2)如图2,测得∠1=∠2,且∠3=∠4,可判定a∥b吗?请说明理由;(3)如图3,若要使a∥b,则∠1 与∠2 应该满足什么关系式?请说明理由.图1N24. 我们在小学已经学过了“对边分别平行的四边形叫做平行四边 形”.如图1,平行四边形MNPQ 的一边作左右平移,图 2反映它的边NP 的长度l (cm)随时间t (s)变化而变化的情况. 请解答下列问题:(1)在这个变化过程中,自变量是______,因变量是_______;(2)观察图2,PQ 向左平移前,边 NP 的长度是____________cm ,请你根据图象呈现的规律写出0至5秒间l 与t 的关系式;(3)填写下表,并根据表中呈现的规律写出8至14秒间l 与t 的关系式.(1)如图1,在直线l 上找一点C ,使得线段AC+DC 最小(请通过画图指出点C 的位置); (2)如图2,在直线l 上取两点B 、E ,恰好能使△ABC 和△DCE 均为等边三角形.M 、N 分别是线段AC 、BC 上的动点,连结DN 交AC 于点G ,连结EM 交CD 于点F .① 当点M 、N 分别是AC 、BC 的中点时,判断线段EM 与DN 的数量关系,并说明理由;图2PQ 边的运动时间/s 8 9 10 11 12 13 14 NP 的长度/cm18151263②如图3,若点M、N分别从点A和B开始沿AC和BC以相同的速度向点C匀速运动,当M、N与点C重合时运动停止,判断在运动过程中线段GF与直线l的位置关系,并说明理由.北师大版七年级下学期期末数学模拟试题一、精挑细选,火眼金睛(每小题3分,共30分)1.如图,一扇窗户打开后,用窗钩AB可将其固定,这里所运用的几何原理是()A.三角形的稳定性B.两点之间线段最短C.N点确定一条直线D.垂线段最短【分析】根据三角形的稳定性即可解决问题.【解答】解:根据三角形的稳定性可固定窗户.故选:A.【点评】本题考查了三角形的稳定性,熟练掌握三角形的稳定性是解题的关键.2.下列运算正确的是()A.a2•a3=a6B.(﹣a2)3=﹣a6C.(ab)2=ab2D.a6÷a3=a2【分析】根据同底数相乘,底数不变指数相加;积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘;同底数幂相除,底数不变指数相减,对各选项计算后利用排除法求解.【解答】解:A、应为a2•a3=a5,故本选项错误;B、(-a2)3=-a6,正确;C、应为(ab)2=a2b2,故本选项错误;D、应为a6÷a3=a3,故本选项错误.故选:B.【点评】本题考查同底数幂的乘法,积的乘方,同底数幂的除法,熟练掌握运算性质是解题的关键.3.如图,已知直线AB∥CD,∠C=125°,∠A=45°,那么∠E的大小为()A.70°B.80°C.90°D.100°【专题】计算题.【分析】根据两直线平行,同旁内角互补,求得∠EFA=55°,再利用三角形内角和定理即可求得∠E的度数.【解答】解:∵AB∥CD,∠C=125°,∴∠EFB=125°,∴∠EFA=180-125=55°,∵∠A=45°,∴∠E=180°-∠A-∠EFA=180°-45°-55°=80°.故选:B.【点评】本题应用的知识点为:两直线平行,同旁内角互补;三角形内角和定理.4.下列数据不能确定物体位置的是()A.5楼6号B.北偏东30°C.大学路19号D.东经118°,北纬36°【分析】确定一个物体的位置,要用一个有序数对,即用两个数据.找到一个数据的选项即为所求.【解答】解:A、5楼6号,是有序数对,能确定物体的位置,故本选项不合题意;B、北偏东30°,不是有序数对,能确定物体的位置,故本选项符合题意;C、大学路19号,“大学路”相当于一个数据,是有序数对,能确定物体的位置,故本选项不合题意;D、东经118°北纬36°,是有序数对,能确定物体的位置,故本选项不合题意.故选:B.【点评】本题考查了坐标确定点的位置,要明确,一个有序数对才能确定一个点的位置.5.把代数式ax2﹣4ax+4a分解因式,下列结果中正确的是()A.a(x﹣2)2B.a(x+2)2 C.a(x﹣4)2D.a(x+2)(x﹣2)【专题】因式分解.【分析】先提取公因式a,再利用完全平方公式分解即可.【解答】解:ax2-4ax+4a,=a(x2-4x+4),=a(x-2)2.故选:A.【点评】本题先提取公因式,再利用完全平方公式分解,分解因式时一定要分解彻底.6.下列语句中,不正确的个数是()①直径是弦;②弧是半圆;③长度相等的弧是等弧;④经过圆内一定点可以作无数条直径.A.1个B.2个C.3个D.4个【分析】根据弦、弧、等弧的定义即可求解.【解答】①根据直径的概念,知直径是特殊的弦,故正确;②根据弧的概念,知半圆是弧,但弧不一定是半圆,故错误;③根据等弧的概念:在同圆或等圆中,能够互相重合的弧是等弧.长度相等的两条弧不一定能够重合,故错误;④如果该定点和圆心不重合,根据两点确定一条直线,则只能作一条直径,故错误.故选:C.【点评】理解圆中的一些概念:弦、直径、弧、半圆、等弧.7.计算20172﹣2016×2018的结果是()A.2 B.﹣2 C.﹣1 D.1【专题】计算题;整式.【分析】原式变形后,利用平方差公式计算即可求出值.【解答】解:原式=20172-(2017-1)×(2017+•1)=20172-20172+1=1,故选:D.【点评】此题考查了平方差公式,熟练掌握平方差公式是解本题的关键.8.如图,∠x的两条边被一直线所截,用含α和β的式子表示∠x为()A.α﹣βB.β﹣αC.180°﹣α+βD.180°﹣α﹣β【分析】根据β为角x和α的对顶角所在的三角形的外角,再根据三角形一个外角等于和它不相邻的两个内角的和解答.【解答】解:如图,∵α=∠1,∴β=x+∠1整理得:x=β-α.故选:B.【点评】本题主要利用三角形外角的性质求解,需要熟练掌握并灵活运用.9.点P在第二象限,且到x轴的距离为5,到y轴的距离为3,则点P的坐标是()A.(﹣5,3)B.(3,﹣5)C.(﹣3,5)D.(5,﹣3)【分析】根据第二象限内点的横坐标是负数,纵坐标是正数,点到x轴的距离等于纵坐标的长度,到y轴的距离等于横坐标的长度求解即可.【解答】解:∵点P在第二象限,且到x轴的距离为5,到y轴的距离为3,∴点P的横坐标为-3,纵坐标为5,∴点P的坐标是(-3,5).故选:C.【点评】本题考查了点的坐标,熟记点到x轴的距离等于纵坐标的长度,到y轴的距离等于横坐标的长度是解题的关键.10.若(x+1)(x﹣1)(x2+1)(x4+1)=x n﹣1,则n等于()A.16 B.8 C.6 D.4【专题】计算题.【分析】根据平方差公式计算(x+1)(x-1)=x2-1,(x2-1)(x2+1)=x4-1,(x4-1)(x4+1)=x8-1,即可得到答案.【解答】解:(x+1)(x-1)=x2-1,(x2-1)(x2+1)=x4-1,(x4-1)(x4+1)=x8-1=x n-1,即n=8,故选:B.【点评】本题考查平方差公式,正确掌握平方差公式是解题的关键.二、认真填写,试一试自己的身手(每小题3分,共24分)11.已知∠1=4°18′,∠2=4.4°,则∠1∠2.(填“大于、小于或等于)专题】线段、角、相交线与平行线.【分析】依据度分秒的换算,即可得到∠2=4.4°=4°24′,进而得出∠1与∠2的大小关系.【解答】解:∵∠1=4°18′,∠2=4.4°=4°24′,∴∠1<∠2,故答案为:小于.【点评】本题主要考查了角的大小比较,注意角的度数越大,角越大.12.如果(x+y﹣3)2+(x﹣y+5)2=0,则x2﹣y2=.【分析】根据非负数的性质求出x+y,x-y,然后根据平方差公式进行计算即可得解.【解答】解:根据题意得,x+y-3=0,x-y+5=0,解得x+y=3,x-y=-5,所以,x2-y2=(x+y)(x-y)=3×(-5)=-15.故答案为:-15.【点评】本题考查了平方差公式,非负数的性质,几个非负数的和为0时,这几个非负数都为0.13.若4x2+kxy+9y2是一个完全平方式,则k的值为.【专题】计算题;整式.【分析】利用完全平方公式的结构特征判断即可求出k的值.【解答】解:∵4x2+kxy+9y2是一个完全平方式,∴k=±12,故答案为:±12【点评】此题考查了完全平方式,熟练掌握完全平方公式是解本题的关键.14.一个正多边形的每个外角都是36°,这个正多边形的边数是.【分析】多边形的外角和等于360°,因为所给多边形的每个外角均相等,故又可表示成36°n,列方程可求解.【解答】解:设所求正n边形边数为n,则36°n=360°,解得n=10.故正多边形的边数是10.【点评】本题考查根据多边形的外角和求多边形的边数,解答时要会根据公式进行正确运算、变形和数据处理.15.若(a﹣1)2+|b﹣2|=0,则以a、b为边长的等腰三角形的周长为.【专题】分类讨论.【分析】先根据非负数的性质列式求出a、b再分情况讨论求解即可.【解答】解:根据题意得,a-1=0,b-2=0,解得a=1,b=2,①若a=1是腰长,则底边为2,三角形的三边分别为1、1、2,∵1+1=2,∴不能组成三角形,②若a=2是腰长,则底边为1,三角形的三边分别为2、2、1,能组成三角形,周长=2+2+1=5.故答案为:5.【点评】本题考查了等腰三角形的性质,非负数的性质,以及三角形的三边关系,难点在于要讨论求解.16.如图,已知棋子“车”的坐标为(﹣2,﹣1),棋子“马”的坐标为(1,﹣1),则棋子“炮”的坐标为.【分析】先根据棋子“车”的坐标画出直角坐标系,然后写出棋子“炮”的坐标.【解答】解:如图,棋子“炮”的坐标为(3,-2).故答案为:(3,-2).【点评】本题考查了坐标确定位置:平面坐标系中的点与有序实数对一一对应;记住平面内特殊位置的点的坐标特征.17.一个多边形除一个内角外,其余各内角之和是2570°,则这个内角是度.【专题】常规题型;多边形与平行四边形.【分析】设出相应的边数和未知的那个内角度数,利用内角和公式列出相应等式,根据边数为整数求解即可.【解答】解:设这个内角度数为x°,边数为n,则(n-2)×180-x=2570,180•n=2930+x,∵n为正整数,0°<x<180°,∴n=17,∴这个内角度数为180°×(17-2)-2570°=130°.故答案为:130.【点评】本题主要考查多边形内角和公式的灵活运用,解题的关键是找到相应度数的等量关系.注意多边形的一个内角一定大于0°,并且小于180度.18.如图所示,∠1=60°,则∠A+∠B+∠C+∠D+∠E+∠F的度数为.【专题】计算题.【分析】根据三角形内角和定理得到∠B与∠C的和,然后在五星中求得∠1与另外四个角的和,加在一起即可.【解答】解:由三角形外角的性质得:∠3=∠A+∠E,∠2=∠F+∠D,∵∠1+∠2+∠3=180°,∠1=60°,∴∠2+∠3=120°,即:∠A+∠E+∠F+∠D=120°,∵∠B+∠C=120°,∴∠A+∠B+∠C+∠D+∠E+∠F=240°.故答案为:240°.【点评】本题考查了三角形的外角和三角形的内角和的相关知识,解决本题的关键是将题目中的六个角分成两部分来分别求出来,然后在加在一起三、认真解答,一定要细心哟!(本题8个小题,满分66分,要写出必要的计算推理、解答过程)19.(8分)分解因式:(1)﹣2x4+32x2(2)3ax2﹣6axy+3ay2【专题】常规题型.【分析】(1)直接提取公因式-2x2,进而利用平方差公式分解因式即可;(2)直接提取公因式3a,进而利用完全平方公式分解因式即可.【解答】解:(1)-2x4+32x2=-2x2(x2-16)=-2x2(x+4)(x-4);(2)3ax2-6axy+3ay2=3a(x2-2xy+y2)=3a(x-y)2.【点评】此题主要考查了提取公因式法以及公式法分解因式,正确运用公式是解题关键.20.(8分)先化简,再求值(2x+3)(2x﹣3)﹣4x(x﹣1)+(x﹣2)2,其中x=﹣【专题】计算题;整式.【分析】利用平方差公式、单项式乘多项式及完全平方公式去括号,再合并同类项化简后,再将x的值代入计算可得.【点评】本题主要考查整式的混合运算-化简21.(8分)如图所示,在△ABC中:(1)画出BC边上的高AD和中线AE.(2)若∠B=30°,∠ACB=130°,求∠BAD和∠CAD的度数.【专题】作图题.【分析】(1)延长BC,作AD⊥BC于D;作BC的中点E,连接AE即可;(2)可根据三角形的内角和定理求∠BAC=20°,由外角性质求∠CAD=40°,那可得∠BAD=60°.【解答】解:(1)如图:(2)∵∠B=30°,∠ACB=130°,∴∠BAC=180°-30°-130°=20°,∵∠ACB=∠D+∠CAD,AD⊥BC,∴∠CAD=130°-90°=40°,∴∠BAD=20°+40°=60°.【点评】此题是计算与作图相结合的探索.考查学生运用作图工具的能力,以及运用直角三角形、三角形内角和外角等基础知识解决问题的能力.22.(8分)食品安全是老百姓关注的话题,在食品中添加过量的添加剂对人体有害,但适量的添加剂对人体无害且有利于食品的储存和运输.某饮料加工厂生产的A、B两种饮料均需加入同种添加剂,A饮料每瓶需加该添加剂2克,B饮料每瓶需加该添加剂3克,已知270克该添加剂恰好生产了A、B两种饮料共100瓶,问A、B两种饮料各生产了多少瓶?【专题】工程问题.【分析】本题需先根据题意设出未知数,再根据题目中的等量关系列出方程组,求出结果即可.【解答】解:设A饮料生产了x瓶,B饮料生产了y瓶,由题意得:答:A饮料生产了30瓶,B饮料生产了70瓶.【点评】本题主要考查了二元一次方程组的应用,在解题时要能根据题意得出等量关系,列出方程组是本题的关键.23.(8分)如图,点O是△ABC内的任意一点.求证:∠BOC=∠A+∠ABO+∠ACO.【专题】三角形.【分析】连接AO并延长,交BC于点D,由三角形外角的性质可知∠BOD=∠BAD+∠ABO,∠COD=∠CAD+∠ACO,再把两式相加即可得出结论.【解答】证明:连接AO并延长,交BC于点D,∵∠BOD是△AOB的外角,∠COD是△AOC的外角,∴∠BOD=∠BAD+∠ABO①,∠COD=∠CAD+∠ACO②,①+②得,∠BOC=(∠BAD+∠CAD)+∠ABO+∠ACO,即∠BOC=∠BAC+∠ABO+∠ACO.【点评】本题考查的是三角形外角的性质,熟知三角形的一个外角等于和它不相邻的两个内角的和是解答此题的关键.24.(8分)如图,CD是⊙O的直径,∠EOD=84°,AE交⊙O于点B,且AB=OB,求∠A的度数.【专题】几何图形.【分析】由AB=BO,则∠BOC=∠A,于是∠EBO=2∠A,而OB=OE,得∠E=∠EBO=2∠A,由∠EOD=∠E+∠A=3∠A,根据∠EOD=84°,即可得到∠A的度数.【解答】解:∵AB=BO,∴∠BOC=∠A,∴∠EBO=∠BOC+∠A=2∠A,而OB=OE,得∠E=∠EBO=2∠A,∴∠EOD=∠E+∠A=3∠A,而∠EOD=84°,∴3∠A=84°,∴∠A=28°.【点评】本题考查了圆心角、弧、弦的关系,关键是根据三角形内角和定理和三角形外角的性质解答.25.(8分)如图,在平面直角坐标系中,四边形ABCD各顶点的坐标分别是A(0,0),B(7,0),C(9,5),D(2,7).(1)在坐标系中,画出此四边形;(2)求此四边形的面积.【分析】(1)补充成网格平面直角坐标系,然后确定出点B、C、D的位置,再与点A 顺次连接即可;(2)利用四边形所在的矩形的面积减去四周三个小直角三角形的面积,列式计算即可得解.【解答】解:(1)四边形ABCD如图所示;【点评】本题考查了坐标与图形性质,三角形的面积,补充成网格平面直角坐标系更容易确定点的位置.26.(10分)已知直线AB∥CD,点E,F分别在直线AB和CD上.(1)如图1,点O在直线AB与CD的内部,试猜想∠BEO,∠EOF,∠DFO之间的关系,并说明理由.(2)若点O在直线AB与CD的外部,如图2,(1)中的结论还成立吗?若不成立,∠BEO,∠EOF,∠DFO之间又有怎么样的关系?并说明理由.【分析】(1)过O作OG∥AB,由平行线的性质可得到∠EOF=∠BEO+∠DFO;(2)设OF交AB于点H,由平行线的性质结合外角的性质可得到∠DFO=∠BEO+∠EOF.【解答】解:(1)∠EOF=∠BEO+∠DFO,理由如下:如图1,过O作OG∥AB,∵AB∥CD,∴OG∥CD,∴∠BEO=∠EOG,∠DFO=∠FOG,∴∠EOF=∠EOG+∠FOG=∠BEO+∠DFO;(2)不成立,此时∠DFO=∠BEO+∠EOF,理由如下:如图2,设OF交AB于点H,∵AB∥CD,∴∠DFO=∠BHO,又∵∠BHO=∠BEO+∠EOF,∴∠DFO=∠BEO+∠EOF.【点评】本题主要考查平行线的性质,掌握平行线的性质和判定是解题的关键,即①两直线平行⇔同位角相等,②两直线平行⇔内错角相等,③两直线平行⇔同旁内角互补,④a∥b,b∥c⇒a∥c.北师大版七年级下学期期末数学模拟试题一、选择题(在每小题给出的四个选项中,只有一项符合题目要求,.每个小题3分,共30分)1.下列运算正确的是()A.a3+a2=a5B.a3﹣a2=a C.a3•a2=a5D.(a3)2=a5【分析】根据合并同类项法则、同底数幂的乘法法则、积的乘方法则计算,判断即可.【解答】解:a3和a2不是同类项,不能合并,A错误;a3和a2不是同类项,不能合并,B错误;a3•a2=a5,C正确;(a3)2=a6,D错误,故选:C.【点评】本题考查的是合并同类项、同底数幂的乘法、积的乘方,掌握相关的运算法则是解题的关键.2.已知等腰三角形的一个角是100°,则它的顶角是()A.40°B.60°C.80°D.100°【分析】等腰三角形一内角为100°,没说明是顶角还是底角,所以要分两种情况讨论求解.【解答】解:(1)当100°角为顶角时,其顶角为100°;(2)当100°为底角时,100°×2>180°,不能构成三角形.故它的顶角是100°.故选:D.【点评】本题考查了等腰三角形的性质及三角形的内角和定理;涉及到等腰三角形的角的计算,若没有明确哪个是底角哪个是顶角时,要分情况进行讨论.3.如图,计划把河水l引到水池A中,先作AB⊥l,垂足为B,然后沿AB开渠,能使所开的渠道最短,这样设计的依据是()A.两点之间线段最短B.垂线段最短C.过一点只能作一条直线D.平面内,过一点有且只有一条直线与已知直线垂直【专题】线段、角、相交线与平行线.【分析】根据垂线段最短,可得答案.【解答】解:计划把河水l引到水池A中,先作AB⊥l,垂足为B,然后沿AB开渠,能使所开的渠道最短,这样设计的依据是垂线段最短,故选:B.【点评】本题考查了垂线段的性质,利用了垂线段的性质.4.如果(x﹣2)(x+3)=x2+px+q,那么p、q的值为()A.p=5,q=6 B.p=1,q=﹣6 C.p=1,q=6 D.p=5,q=﹣6【专题】计算题.【分析】已知等式左边利用多项式乘以多项式法则计算,利用多项式相等的条件求出p 与q的值即可.【解答】解:∵(x-2)(x+3)=x2+x-6=x2+px+q,∴p=1,q=-6,故选:B.【点评】此题考查了多项式乘多项式,熟练掌握运算法则是解本题的关键.5.下列四个图形中,不能推出∠2与∠1相等的是()A.B.C.D.【分析】根据平行线的性质以及对顶角相等的性质进行判断.【解答】解:A、∵∠1和∠2互为对顶角,∴∠1=∠2,故本选项错误;B、∵a∥b,∴∠1+∠2=180°(两直线平行,同旁内角互补),不能判断∠1=∠2,故本选项正确;C、∵a∥b,∴∠1=∠2(两直线平行,内错角相等),故本选项错误;D、如图,∵a∥b,∴∠1=∠3(两直线平行,同位角相等),∵∠2=∠3(对顶角相等),∴∠1=∠2,故本选项错误;故选:B.【点评】本题考查了平行线的性质,解答本题的关键是掌握平行线的性质:两直线平行,同位角相等,内错角相等,同旁内角互补.6.下列多项式乘法中可以用平方差公式计算的是()A.(﹣a+b)(a﹣b)B.(x+2)(2+x)C.(+y)(y﹣)D.(x﹣2)(x+1)【专题】常规题型.【分析】根据平方差公式即可求出答案.【解答】解:(A)原式=-(a-b)(a-b)=-(a-b)2,故A不能用平方差公式;(B)原式=(x+2)2,故B不能用平方差公式;(D)原式=x2-x+1,故D不能用平方差公式;故选:C.【点评】本题考查平方差公式,解题的关键是熟练运用平方差公式,本题属于基础题型.7.上周周末放学,小华的妈妈来学校门口接他回家,小华离开教室后不远便发现把文具盒遗忘在了教室里,于是以相同的速度折返回去拿,到了教室后碰到班主任,并与班主任交流了一下周末计划才离开,为了不让妈妈久等,小华快步跑到学校门口,则小华离学校门口的距离y与时间t之间的函数关系的大致图象是()A.B.C.D.【分析】根据题意出教室,离门口近,返回教室离门口远,在教室内距离不变,速快跑距离变化快,可得答案.【解答】解:根据题意得,函数图象是距离先变短,再变长,在教室内没变化,最后迅速变短,B符合题意;故选:B.【点评】本题考查了函数图象,根据距离的变化描述函数是解题关键.8.如图,已知∠ABC=∠BA D.下列条件中,不能作为判定△ABC≌△BAD的条件的是()A.∠C=∠D B.∠BAC=∠ABD C.B C=AD D.A C=BD【专题】几何图形.【分析】已有条件∠ABC=∠BAD再有公共边AB=AB,然后结合所给选项分别进行分析即可.【解答】解:A、添加∠C=∠D时,可利用AAS判定△ABC≌△BAD,故此选项不符合题意;B、添加∠BAC=∠ABD,根据ASA判定△ABC≌△BAD,故此选项不符合题意;C、添加AB=DC,根据SAS能判定△ABC≌△BAD,故此选项不符合题意;D、添加AC=DB,不能判定△ABC≌△BAD,故此选项符合题意;故选:D.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.9.计算(x﹣2)x=1,则x的值是()A.3 B.1 C.0 D.3或0【专题】常规题型.【分析】直接利用零指数幂的性质以及有理数的乘方运算法则化简得出答案.【解答】解:∵(x-2)x=1,当x-2=1时,得x=3,原式可以化简为:13=1,当次数x=0时,原式可化简为(-2)0=1,当底数为-1时,次数为1,得幂为-1,故舍去.故选:D.【点评】此题主要考查了零指数幂的性质和有理数的乘方运算,正确掌握运算法则是解题关键.10.某同学在研究传统文化“抖空竹”时有一个发现:他把它抽象成数学问题,如图所示:已知AB∥CD,∠BAE=87°,∠DCE=121°,则∠E的度数是()A.28°B.34°C.46°D.56°【专题】线段、角、相交线与平行线.【分析】延长DC交AE于F,依据AB∥CD,∠BAE=87°,可得∠CFE=87°,再根据三角形外角性质,即可得到∠E=∠DCE-∠CFE.【解答】解:如图,延长DC交AE于F,∵AB∥CD,∠BAE=87°,∴∠CFE=87°,又∵∠DCE=121°,∴∠E=∠DCE-∠CFE=121°-87°=34°,故选:B.【点评】本题主要考查了平行线的性质,解决问题的关键是掌握:两直线平行,同位角相等.二、填空题(每题3分,共15分)11.如图,要使AD∥BF,则需要添加的条件是(写一个即可)【专题】线段、角、相交线与平行线.【分析】依据同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行,即可得到添加的条件.【解答】解:当∠A=∠EBC(或∠D=∠DCF或∠A+∠ABC=180°或∠D+∠BCD=180°)时,AD∥BF,故答案为:∠A=∠EBC(答案不唯一).【点评】本题主要考查了平行线的判定,解题时注意:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行.12.某水库的水位在5小时内持续上涨,初始的水位高度为4米,水位以每小时0.2米的速度匀速上涨,则水库的水位y(米)与上涨时间x(小时)(0≤x≤5)之间的函数表达式为.【专题】函数及其图象.【分析】根据高度等于速度乘以时间列出关系式解答即可.【解答】解:根据题意可得:y=4+0.2x(0≤x≤5),故答案为:y=4+0.2x.【点评】此题考查函数关系式,关键是根据题中水位以每小时0.2米的速度匀速上升列出关系式.13.两组邻边分别相等的四边形叫做“筝形”,如图,四边形ABCD是一个筝形,其中AD=CD,AB=CB,晓明同学在探究筝形的性质时,得到如下结论:①△ABD≌△CBD;②AO=CO═AC;③AC⊥BD;其中,正确的结论有个.【专题】三角形.【分析】先证明△ABD与△CBD全等,再证明△AOD与△COD全等即可判断.【解答】解:在△ABD与△CBD中,∴AC⊥DB,故②③正确.故答案是:3.【点评】此题考查全等三角形的判定和性质,关键是根据SSS证明△ABD与△CBD全等和利用SAS证明△AOD与△COD全等.14.在一个不透明的盒子中装有8个白球,若干个黄球,它们除颜色不同外,其余均相同.若从中随机摸出一个球,它是白球的概率为,则黄球的个数为.【分析】根据白球个数除以小球总数进而得出得到白球的概率,进而得出答案.【解答】解:∵在一个不透明的盒子中装有8个白球,设黄球有x个,根据题意得出:解得:x=4.故答案为:4.【点评】此题主要考查了概率公式的应用,熟练利用概率公式是解题关键.15.如图,△ABC中,AB的垂直平分线交BC于点D,AC的垂直平分线交BC于点E,若∠DAE=28°,则∠BAC=°.【专题】三角形.【分析】想办法求出∠B+∠C的度数即可解决问题;【解答】解:∵AB的垂直平分线交BC于点D,AC的垂直平分线交BC于点E,∴DA=DB,EA=EC,∴∠B=∠DAB,∠C=∠EACM∵∠B+∠C+∠BAC=180°,∠DAE=28°,∴2∠B+2∠C+∠DAE=180°,∴∠B+∠C=76°,∴∠BAC=180°-76°=104°.故答案为104.【点评】本题考查线段的垂直平分线的性质、三角形的内角和定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.三、解答题(共75分)16.(16分)(1)计算:﹣20+4﹣1×()﹣2(2)2016×2018﹣20172(3)(a+3)(a﹣1)﹣a(a﹣2)(4)[(a+2b)2﹣(a+2b)(a﹣2b)]÷4b【专题】常规题型.。

最新北师大新版七年级下学期数学期末考试试卷(精品期末试卷含数学参考答案)

最新北师大新版七年级下学期数学期末考试试卷(精品期末试卷含数学参考答案)

2024—2025学年最新北师大新版七年级下学期数学期末考试试卷考生注意:本试卷共三道大题,25道小题,满分120分,时量120分钟一、选择题(每题只有一个正确选项,每小题3分,满分30分)1、纳米是一种长度单位,它用来表示微小的长度,1纳米为十亿分之一米,即10﹣9米.甲型H1N1流感病毒的直径大约83纳米左右,“83纳米”用科学记数法表示为()A.8.3×10﹣8米B.8.3×10﹣9米C.83×10﹣9米D.0.83×10﹣11米2、下列运算正确的是()A.a4+a3=a7B.(a﹣1)2=a2﹣1C.(a3b)2=a3b2D.a(2a+1)=2a2+a3、下列说法正确的是()A.10张票中有1张奖票,10人去摸,先摸的人摸到奖票的概率较大B.从1,2,3,4,5中随机抽取一个数,取得偶数的可能性较大C.小强一次掷出3颗质地均匀的骰子,3颗全是6点朝上是随机事件D.抛一枚质地均匀的硬币,正面朝上的概率为,连续抛此硬币2次必有1次正面朝上4、等腰三角形的两边长分别为4cm和9cm,则这个三角形的周长为()A.22cm B.17cm或13cmC.13cm D.17cm或22cm5、如图,在三角形ABC中,∠C=90°,AC=5,点P是边BC上的动点,则AP的长不可能是()A.4.8B.5C.6D.76、根据下列条件能画出唯一确定的△ABC的是()A.AB=4,BC=3,∠A=30°B.AB=3,BC=4,AC=8C.∠A=60°,∠B=45°,AB=4D.∠A=50°,∠B=60°,∠C=70°7、如图,AB∥DC,BC∥DE,∠B=145°,则∠D的度数为()A.25°B.35°C.45°D.55°8、七巧板是我国古代的一项发明,被誉为“东方魔板”,19世纪传到国外被称为“唐图”,它是由五块等腰直角三角形,一块正方形和一块平行四边形共七块板组成.如图,在七巧板铺成的正方形地板上,一个小球自由滚动,则小球停留在阴影部分的概率为()A.B.C.D.9、如果(x 2﹣px +1)(x 2+6x ﹣7)的展开式中不含x 2项,那么p 的值是( )A .1B .﹣1C .2D .﹣210、如图1,矩形ABCD 中,BD 为其对角线,一动点P 从D 出发,沿着D →B →C 的路径行进,过点P 作PQ ⊥CD ,垂足为Q .设点P 的运动路程为x ,PQ ﹣DQ 为y ,y 与x 的函数图象如图2,则AD 的长为( )A .B .C .D .二、填空题(每小题3分,满分18分)11、计算(﹣0.25)2024×(﹣4)2025的结果是 .12、若(x ﹣1)(x ﹣2)=x 2+mx +n ,则n m 的值为 .13、若x ﹣2y =2,则10x ÷100y = .14、如图,在锐角三角形ABC 中,AD 是边BC 上的高,在BA ,BC 上分别截取线段BE ,BF ,使BE =BF ;分别以点E ,F 为圆心,大于EF 的长为半径画弧,在∠ABC 内,两弧交于点P ,作射线BP ,交AD 于点M ,过点M 作MN ⊥AB 于点N .若MN =2,AD =4MD ,则AM = ,15、如图,△ABC 中,AB =AC =4,P 是BC 上任意一点,过P 作PD ⊥AC 于D ,PE ⊥AB 于E ,若S △ABC =12,则PE +PD = .16、如图,点C ,D 分别是边∠AOB 两边OA 、OB 上的定点,∠AOB =20°,OC =OD =4.点E ,F 分别是边OB ,OA 上的动点,则CE +EF +FD 的最小值是 .第5题图 第7题图 第8题图 第16题图第15题图 第14题图2024—2025学年最新北师大新版七年级下学期数学期末考试试卷考生注意:本试卷共三道大题,25道小题,满分120分,时量120分钟姓名:____________ 学号:_____________座位号:___________一、选择题题号12345678910答案二、填空题11、_______ 12、______13、_______ 14、______15、_______ 16、______三、解答题(17、18、19题每题6分,20、21每题8分,22、23每题9分,24、25每题10分,共计72分,解答题要有必要的文字说明)17、计算:;18、先化简,再求值:[(2a+b)2﹣(2a+b)(2a﹣b)]÷2b,其中a=2,b=﹣1.19、如图,点D、E分别是等边三角形ABC边BC、AC上的点,且BD=CE,BE与AD交于点F.求证:AD=BE.20、如图,EF∥CD,GD∥CA,∠1=140°.(1)求∠2的度数;(2)若DG平分∠CDB,求∠A的度数.21、如图,在△ABC中,∠ACB=90°,CD⊥AB于点D,BE平分∠ABC交AC于点E,交CD于点F,过点E作EG∥CD,交AB于点G,连接CG.(1)求证:∠A+∠AEG=90°(2)求证:EC=EG;(3)若CG=4,BE=5,求四边形BCEG的面积.22、如图,长方形ABCD中,点P沿着四边按B→C→D→A方向运动,开始以每秒m个单位匀速运动,a秒后变为每秒2个单位匀速运动,b秒后恢复原速匀速运动.在运动过程中,△ABP的面积S与运动时间t的函数关系如图所示.(1)求长方形的长和宽;(2)求m、a、b的值;(3)当P点运动到BC中点时,有一动点Q从点C出发,以每秒1个单位的速度沿C→D→A运动,当一个点到达终点,另一个点也停止运动,设点Q运动的时间为x秒,△BPQ的面积为y,求y与x之间的关系式.23、如图①,点A、点B分别在直线EF和直线MN上,EF∥MN,∠ABN=45°,射线AC从射线AF的位置开始,绕点A以每秒2°的速度顺时针旋转,同时射线BD从射线BM的位置开始,绕点B以每秒6°的速度顺时针旋转,射线BD 旋转到BN的位置时,两者停止运动.设旋转时间为t秒.(1)∠BAF=°;(2)在转动过程中,当射线AC与射线BD所在直线的夹角为80°,求出t 的值.(3)在转动过程中,若射线AC与射线BD交于点H,过点H作HK⊥BD交直线AF于点K,的值是否会发生改变?如果不变,请求出这个定值;如果改变,请说明理由.24、对于任意有理数a、b、c、d,定义一种新运算:.(1)=;(2)对于有理数x、y,若是一个完全平方式,则k;(3)对于有理数x、y,若x+y=10,xy=22.①求的值;②将长方形ABCD和长方形CEFG按照如图方式进行放置,其中点B、C、G在同一条直线上,点E在边CD上,连接BD、BF.若AD=x,AB=nx,FG =y,EF=ny,图中阴影部分的面积为45,求n的值.25、△ABC中,∠ACB=90°,AC=BC,点D是BC边上的一个动点,连接AD 并延长,过点B作BF⊥AD延长线于点F.(1)如图1,若AD平分∠BAC,AD=6,求BF的值;(2)如图2,M是FB延长线上一点,连接AM,当AD平分∠MAC时,试探究AC、CD、AM之间的数量关系并说明理由;(3)如图3,连接CF,①求证:∠AFC=45°;②S△BCF =,S△ACF=21,求AF的值.2024—2025学年最新北师大新版七年级下学期数学期末考试试卷考生注意:本试卷共三道大题,25道小题,满分120分,时量120分钟姓名:____________ 学号:_____________座位号:___________11、﹣412、13、100 14、6 15、6 16、4三、解答题(17、18、19题每题6分,20、21每题8分,22、23每题9分,24、25每题10分,共计72分,解答题要有必要的文字说明)17、918、2a+b,3.19、略20、(1)40°(2)40°21、(1)证明略(2)证明略(3)1022、(1)长为8,宽为4(2)a=4,b=11,m=1(3)y=.23、(1)135(2)20或25(3)不变,=.24、(1)﹣4;(2)2或﹣2;(3)①56;②2.25、(1)3;(2)AM=AC+CD,理由略(3)①∠AFC=45°;②AF的值为12.。

北师大版七年级下册数学期末考试试题附答案

北师大版七年级下册数学期末考试试题附答案

北师大版七年级下册数学期末考试试卷一、单选题1.下列手机软件图标中,是轴对称图形的是()A .B .C .D .2.下列说法错误的是()A .必然发生的事件发生的概率为1B .不可能发生的事件发生的概率为0C .随机事件发生的概率介于0和1之间D .不确定事件发生的概率为03.下列长度的各组线段为边能组成一个三角形的是()A .9,9,1B .4,5,1C .4,10,6D .2,3,64.如图,','AB A B A A '=∠=∠,若'''ABC A B C ∆≅,则还需添加的一个条件有()A .1种B .2种C .3种D .4种5.冰柜里有四种饮料:2瓶可乐、3瓶咖啡、4瓶桔子水、6瓶汽水,其中可乐和咖啡是含有咖啡因的饮料,那么从冰柜里随机取一瓶饮料,该饮料含有咖啡因的概率是()A .13B .23C .12D .346.某电视台栏目的一位记者乘汽车赴360km 外的农村采访,全程的前一部分为高速公路,后一部分为乡村公路.若汽车在高速公路和乡村公路上分别以某一速度匀速行驶,汽车行驶的路程y (单位:km )与时间x (单位:h )之间的关系如图所示,则下列结论正确的是()A .汽车在高速公路上的行驶速度为100km/hB .乡村公路总长为90kmC .汽车在乡村公路上的行驶速度为60km/hD .该记者在出发后4.5h 到达采访地7.已知3a x =,5b x =,则2a b x +=()A .50B .45C .11D .658.如图,将一块含有30°角的直角三角板的两个顶点放在矩形直尺的一组对边上,如果245∠=︒,那么1∠的度数为()A .45︒B .35︒C .25︒D .15︒9.观察图形并判断照此规律从左到右第四个图形是()A .B .C .D .10.如图所示,在ABC ∆中,AQ PQ =,PR PS =,RAP SAP ∠=∠,PR AB ⊥于点R ,PS AC ⊥于点S ,则下列三个结论:①AS AR =;②//QP AR ;③BPR QPS ≌△△中()A .全部正确B .仅①和②正确C .仅①和正确D .仅①和③正确二、填空题11.如图,是小鹏自己创作的正方形飞镖盘,并在盒内画了两个小正方形,则小鹏在投掷飞镖时,飞镖扎在阴影部分的概率_______12.已知一个角等于它的余角的一半,则这个角的度数是________.13.如图所示的图象反映的过程是:小明从家去书店看一会儿书,又去学校取封信后马上回家,其中横轴表示时间,纵轴表示小明离家的距离,则小明从学校回家的平均速度为______km/h ;14.若a 2+ma+9是完全平方式,则m=______________________.15.如图,ABC 中AB AC =,AB 的垂直平分线MN 交AC 于点D .若10AC BC cm +=,则DBC △的周长为__________cm .16.如图,AD 是ABC 的边BC 上的中线,点E 在AD 上,2AE DE =,若ABE △的面积是4,则ABC 的面积是__________.三、解答题17.先化简,再求值:()()22232a b ab b b a b --÷--.其中4a =-,13b =-18.在班上组织的“元旦迎新晚会”中,小丽和小芳都想当节目主持人,但现在只有一个名额.小芳想出了一个用游戏来选人的办法,她将一个转盘(均质的)平均分成6份,如图所示.游戏规定:随意转动转盘,若指针指到偶数,则小丽去;反之,则小芳去.你认为这个游戏公平吗,为什么,如果不公平,请你修改转盘中的数字,使这个游戏变得公平.19.已知:如图,点A、F、C、D在同一直线上,点B和点E分别在直线AD的两侧,且=.∠=∠,AF DCAB DE=,A DBC EF.求证://20.如图,方格子的边长为1,△ABC的顶点在格点上.(1)画出△ABC关于直线l对称的△A1B1C1;(2)求△ABC的面积.21.某机动车出发前油箱内有油42L,行驶若干小时后,途中在加油站加油若干升.油箱中余油量Q(L)与行驶时间t(h)之间的函数关系如图所示,根据图回答问题:(1)机动车行驶5h 后加油,途中加油升:(2)根据图形计算,机动车在加油前的行驶中每小时耗油多少升?(3)如果加油站距目的地还有400km ,车速为60/km h ,要到达目的地,油箱中的油是否够用?请说明理由.22.如图,△ABC 中,AB =AC ,∠A =36°,AC 的垂直平分线交AB 于E ,D 为垂足,连接EC .(1)求∠ECD 的度数;(2)若CE =5,求BC 长.23.已知a b 、满足()222810a b a b +-+--=.(1)求ab 的值;(2)先化简,再求值:()()()()21212a b a b a b a b -+---+-.24.将正面分别标有数字1、2、3的三张卡片洗匀后,背面朝上放在桌面上请完成下列各题(1)随机抽取1张,求抽到卡片数字是奇数的概率;(2)随机抽取一张作为十位上的数字(不放回),再抽取一张作为个位上的数字,能组成哪些两位数?(3)在(2)的条件下,试求组成的两位数是偶数的概率.25.如图,△ABC、△ADC、△AMN均为等边三角形,AM>AB,AM与DC交于点E,AN与BC交于点F.(1)试说明:△ABF≌△ACE;(2)猜测△AEF的形状,并说明你的结论;(3)请直接指出当F点在BC何处时,AC⊥EF.参考答案1.C【分析】根据轴对称图形的概念求解.【详解】A、不是轴对称图形,故错误;B、不是轴对称图形,故错误;C、是轴对称图形,故正确;D、不是轴对称图形,故错误.故选C.【点睛】本题考查了轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.2.D【分析】必然事件就是一定发生的事件,概率是1;不可能发生的事件就是一定不发生的事件,概率是0;随机事件是可能发生也可能不发生的事件,概率介于0和1之间;不确定事件就是随机事件.【详解】解:A 、必然发生的事件发生的概率为1,正确;B 、不可能发生的事件发生的概率为0,正确;C 、随机事件发生的概率介于0和1之间,正确;D 、不确定事件就是随机事件,因而概率介于0和1之间.故D 错误;故选:D .【点睛】必然事件发生的概率为1,即P (必然事件)=1;不可能事件发生的概率为0,即P (不可能事件)=0;如果A 为不确定事件,那么0<P (A )<1.3.A 【解析】【详解】解:A 、9+1>9,能够组成三角形;B 、1+4=5,不能组成三角形;C 、4+6=10,不能组成三角形;D 、2+3<6,不能组成三角形.故选A .【点睛】解题的关键是了解三角形的三边关系:两边之和大于第三边,两边之差小于第三边.4.D 【解析】【分析】利用全等三角形的判定方法进行分析即可得解.【详解】解:∵','AB A B A A '=∠=∠∴①若添加边等即AC A C ''=,则满足SAS 定理,可以证得'''ABC A B C ∆≅②若添加角等即B B '∠=∠,则满足ASA 定理,可以证得'''ABC A B C ∆≅③若添加角等即C C '∠=∠,则满足AAS 定理,可以证得'''ABC A B C ∆≅④若添加边等即BC B C ''=,过点B 、B '分别作BD AC ⊥、B D A C ''''⊥,垂足分别是点D 、D ¢,如图:∵在ABD △和A B D '''△中90''ADB A D B A A AB A B ∠=∠=︒⎧⎪∠=∠⎨⎪='''⎩'∴()ABD A B D AAS ''' ≌∴BD B D ''=∴在Rt BCD 和Rt B C D ''' 中BC B C BD B D ''''=⎧⎨=⎩∴()Rt BCD Rt B C D HL ''' ≌∴C C '∠=∠∴在ABC 和A B C '''V 中''C C A A AB A B ∠='∠⎧⎪∠=∠⎨⎪=⎩'∴()ABC A B C AAS ''' ≌.∴综上所述,还需添加的一个条件有4种可能.故选:D 【点睛】本题考查了全等三角形的判定方法,熟练掌握判定方法是解题的关键.5.A 【解析】【分析】先求出饮料的总瓶数及含咖啡因的饮料的瓶数,再利用概率公式解答即可.【详解】解:2瓶可乐、3瓶咖啡、4瓶桔子水、6瓶汽水一共15瓶,2瓶可乐、3瓶咖啡共5瓶含有咖啡因,所以从冰柜里随机取一瓶饮料,该饮料含有咖啡因的概率是51153=.故选A .【点睛】本题考查概率,解题的关键是熟练掌握概率公式.6.C 【解析】【分析】根据函数的图象和已知条件对每一项分别进行分析,即可得出正确答案.【详解】A 、汽车在高速公路上的行驶速度为180÷2=90(km/h ),故本选项错误;B 、乡村公路总长为360-180=180(km ),故本选项错误;C 、汽车在乡村公路上的行驶速度为(270-180)÷(3.5-2)=60(km/h ),故本选项正确;D 、由C 可得到记者在乡村公路上行驶时间为180÷60=3h ,加上高速公路行驶2h ,得到记者在5h 后达到采访地,故本选项错误.故选C 【点睛】本题主要考查函数与图象,解题关键在于读懂题意.7.B 【解析】【分析】根据同底数幂的乘法的逆用以及幂的乘方的逆用即可解答.【详解】解:∵3a x =,5b x =,∴()22223545a b a b a bx x x x x+=⋅=⋅=⨯=,故选:B .【点睛】本题考查了同底数幂的乘法的逆用以及幂的乘方的逆用,解题的关键是熟练掌握运算法则.8.D 【解析】【分析】如图,利用平行线的性质可得到∠2=∠3,再由直角三角形的性质可求得∠1.【详解】解:如图,由题意可知BD ∥CE ,∴∠3=∠2=45°,∵∠A =30°,∠ACB =90°,∴∠ABC =60°,∴∠1=60°−∠3=15°,故选:D .【点睛】本题主要考查平行线的性质,掌握平行线的性质是解题的关键,即①两直线平行⇔同位角相等,②两直线平行⇔内错角相等,③两直线平行⇔同旁内角互补.9.D 【解析】【详解】观察图形可知:单独涂黑的角顺时针旋转,只有D 符合.故选:D.10.B 【解析】【分析】只要证明Rt △APR ≌Rt △APS (HL ),推出AR =AS ,即可判断①;由∠PAQ =∠APQ ,推出∠BAP =∠APQ ,以及 AQ PQ =,可得QP ∥AB ,即可判断②.根据在BPR △与QPS △中,只有∠BRP=∠QSP ,以及PR PS =,即可判断③.解:∵PR AB ⊥于点R ,PS AC ⊥于点S∴在Rt △APR 和Rt △APS 中,PS =PR ,AP =AP∴Rt △APR ≌Rt △APS (HL ),∴AR =AS ,①正确;∵AQ =PQ ,∴∠PAQ =∠APQ ,∵RAP SAP ∠=∠,∴∠RAP =∠APQ ,∴QP ∥AB ,②正确,在BPR △与QPS △中,只有∠BRP=∠QSP ,以及PR PS =,∴不能判断BPR QPS ≌△△,故③错误;故选:B .【点睛】本题利用了全等三角形的判定和性质,等边对等角,平行线的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题.11.14【解析】【分析】先求出阴影部分的面积占整个大正方形面积的14,再根据概率公式即可得出答案.【详解】解:∵阴影部分的面积占总面积的14,∴飞镖落在阴影部分的概率为14;故答案为14【点睛】本题主要考查了概率公式,解题的关键是正确利用图像转化.12.30°【分析】设这个角为α,根据余角的定义列出方程,然后求解即可.【详解】解:设这个角为α,根据题意得,α=12(90°-α),解得α=30°.故答案为30°.【点睛】本题考查了余角的定义,熟记互余的两个角的和等于90°列出方程是解题的关键.13.6【解析】【分析】本题考查了函数的图象,正确理解函数图象横纵坐标表示的意义.由图象可以看出,小明家离学校有6千米,小明用(3﹣2)小时走回家,根据速度=路程÷时间即可求出小明从学校回家的平均速度.【详解】解:小明从学校回家的平均速度为:6÷1=6千米/时.故答案为6.14.6±【解析】【详解】∵“形如222a ab b ±+的式子叫完全平方式”,而“222)2(a ab b a b ±+=±”,∴若29a ma ++是完全平方式,则2229(3)69a ma a a a ++=±=±+,∴6m =±.15.10【解析】【分析】根据线段垂直平分线性质知,DA =DB .△DBC 的周长=BC +BD +DC =BC +DA +DC =【详解】解:∵MN垂直平分AB,∴DA=DB.∴△DBC的周长=BC+BD+DC=BC+DA+DC=BC+AC=10cm,故答案为:10.【点睛】本题主要考查了线段垂直平分线上的点到线段两端点的距离相等的性质,解题的关键是熟悉线段垂直平分线的性质.16.12【解析】【分析】根据△ABD与△ABE是同高的两个三角形,求出△ABD的面积;再根据三角形的中线平分三角形的面积即可.【详解】解:∵AE=2DE,∴AD=3DE,∵△ABD与△ABE是同高的两个三角形,:S△ABD=AE:AD=2DE:3DE=2:3.∴S△ABE又∵△ABE的面积是4,=6.∴S△ABD∵AD是△ABC的边BC上的中线,=S△ABD=6,∴S△ADC=S△ADC+S△ABD=6+6=12.∴S△ABC故答案为:12.【点睛】本题考查了三角形的面积.中线能把三角形的面积平分,利用这个结论就可以求出三角形△ABC的面积.17.22b -,29-【解析】【分析】根据整式的加减乘除运算法则以及完全平方公式即可化简,再将4a =-,13b =-代入化简后的式子即可解答.【详解】解:原式=222222a ab b a ab b ---+-=22b -当4a =-,13b =-时,221222()39b -=-⨯-=-.【点睛】本题考查了整式乘除的混合运算,以及完全平方公式,解题的关键是熟练掌握运算法则.18.此游戏不公平,理由见解析;将转盘中的奇数任改一个为偶数即可.【解析】【分析】根据所有出现的可能,分别计算每个人能赢的概率,即可解答.【详解】解:2163P == 小丽4263P ==小芳又1233≠ ∴此游戏不公平修改如下:将转盘中的奇数任改一个为偶数即可.19.见解析【解析】【分析】求出AC =DF ,证明△ABC ≌△DEF (SAS )即可得到∠BCA=∠EFD ,从而证明//BC EF .【详解】证明:∵AF =DC ,∴AF +FC =DC +FC ,∴AC =DF ,在△ABC 和△DEF 中,AB DE A D AC DF ⎧⎪∠∠⎨⎪⎩===,∴△ABC ≌△DEF (SAS ).∴∠BCA=∠EFD ,∴//BC EF【点睛】本题考查了全等三角形的判定以及性质,能正确运用全等三角形的判定定理进行推理是解此题的关键,注意:全等三角形的判定定理有SAS ,ASA ,AAS ,SSS ,直角三角形全等还有HL 定理.20.(1)见解析(2)5【解析】【分析】(1)分别找出A 、B 、C 三点关于直线l 的对称点,再顺次连接即可;(2)利用长方形的面积减去周围多余三角形的面积即可得到△ABC 的面积.【详解】解:(1)△A 1B 1C 1如图所示:(2)△ABC 的面积=3×4−12×2×4−12×1×3−12×1×3=5.【点睛】此题主要考查了作图--轴对称变换以及三角形面积的求法,关键是找出对称点的位置以及利用割补法求面积.21.(1)24;(2)每小时耗油量为6L;(3)油箱中的油不够用,理由见解析【解析】【分析】(1)图象上x=5时,对应着两个点,油量一多一少,可知此时加油多少;(2)因为x=0时,Q=42,x=5时,Q=12,所以出发前油箱内余油量42L,行驶5h后余油量为12L,共用去30L,因此每小时耗油量为6L;(3)由图象知,加油后还可行驶6小时,即可行驶60×6千米,然后同400千米做比较,即可求出答案.【详解】解:(1)由图可得,机动车行驶5小时后加油为36−12=24;故答案为:24;(2)∵出发前油箱内余油量42L,行驶5h后余油量为12L,共用去30L,因此每小时耗油量为6L,(3)由图可知,加油后可行驶6h,故加油后行驶60×6=360km,∵400>360,∴油箱中的油不够用.【点睛】此题考查函数图象的实际应用,解答本题的关键是仔细观察图象,寻找题目中所给的信息,进而解决问题,难度一般.22.(1)∠ECD=36°;(2)BC长是5.【解析】【分析】(1)根据线段垂直平分线上的点到线段两端点的距离相等可得AE=CE,然后根据等边对等角可得∠ECD=∠A;(2)根据等腰三角形性质和三角形内角和定理求出∠B=∠ACB=72°,由外角和定理求出∠BEC=∠A+∠ECD=72°,继而得∠BEC=∠B,推出BC=CE即可.【详解】解:(1)∵DE垂直平分AC,∴CE=AE,∴∠ECD=∠A=36°;(2)∵AB=AC,∠A=36°,∴∠B=∠ACB=72°,∴∠BEC=∠A+∠ECD=72°,∴∠BEC=∠B,∴BC=EC=5.【点睛】本题考查了线段垂直平分线定理,等腰三角形的性质,三角形的内角和定理的应用,注意:线段垂直平分线上的点到线段两个端点的距离相等.23.(1)7ab2=;(2)3(a2+b2)-5ab-1,112.【解析】【分析】(1)根据绝对值和偶次方的非负性求出a2+b2=8,a-b=1,再根据完全平方公式进行求出ab;(2)先算乘法,再合并同类项,最后整体代入求出即可.【详解】解:(1)∵|a2+b2-8|+(a-b-1)2=0,∴a2+b2-8=0,a-b-1=0,∴a2+b2=8,a-b=1,∴(a-b)2=1,∴a2+b2-2ab=1,∴8-2ab=1,7ab2∴=;(2)(2a-b+1)(2a-b-1)-(a+2b)(a-b)=(2a-b)2-12-(a2-ab+2ab-2b2)=4a2-4ab+b2-1-a2+ab-2ab+2b2=3a2+3b2-5ab-1=3(a2+b2)-5ab-1,当a2+b2=8,当7ab2=时,原式711 385122 =⨯-⨯-=.【点睛】本题考查了绝对值,偶次方,乘法公式的应用,也考查了整式的混合运算和求值的应用,能正确运用整式的运算法则进行计算和化简是解此题的关键.24.(1)随机抽取1张,抽到卡片数字是奇数的概率为23;(2)所以两位数有:12、13、21、23、31、32;(3)组成的两位数是偶数的概率为26=13.【解析】【分析】(1)直接利用概率公式计算即可(2)画出树状图直接找出符合情况即可(3)利用第二问的树状图利用概率公式计算即可【详解】(1)随机抽取1张,抽到卡片数字是奇数的概率为2 3;(2)画树状图得:所以两位数有:12、13、21、23、31、32;(3)因为在所得6种等可能结果中,组成的两位数是偶数的有2种,∴组成的两位数是偶数的概率为26=13.【点睛】本题考查概率的计算以及用树状图法计算概率,掌握树状图法是本题关键25.(1)证明见解析;(2)△AEF为等边三角形,证明见解析;(3)当点F为BC中点时,AC⊥EF.【解析】【详解】分析:(1)由已知条件易得AB=AC,∠B=∠BAC=∠MAN=∠ACD=60°,进而可得∠BAF=∠CAE,由此即可证得△ACE≌△ABF;(2)由(1)中所得△ACE≌△ABF可得AE=AF,结合∠MAN=60°即可得到△AEF是等边三角形;(3)当点F为BC中点时,根据“等腰三角形的三线合一”可得∠CAF=∠BAF=30°,结合∠EAF=60°可得∠CAE=∠CAF=30°,结合AE=AF即可得到此时AC⊥EF.详解:(1)∵△ABC、△ADC均为等边三角形,∴AB=AC,∠B=∠BAC=∠DAC=∠ACD=60°∴∠BAC-∠FAC=∠MAN-∠FAC,即∠BAF=∠CAE,∴△ACE≌△ABF(AAS);(2)△AEF为等边三角形,∵△ACE≌△ABF,∴AE=AF,∵△AMN为等边三角形,∴∠MAN=60°,∴△AEF为等边三角形;(3)当点F为BC中点时,AC⊥EF,理由如下:∵点F是BC的中点,△ABC是等边三角形,∴AF平分∠BAC,∠BAC=60°,∴∠FAC=30°,又∵△AEF是等边三角形,∴∠EAF=60°,∴∠EAC=∠AEF-∠FAC=30°,∴此时,AC平分∠EAF,又∵△AEF是等边三角形,∴AC⊥EF.点睛:这是一道综合考查“全等三角形的判定与性质”和“等边三角形的判定与性质”的几何题,熟知“全等三角形的判定方法与性质和等边三角形的判定方法与性质”是解答本题的关键.。

北师大版初一七年级第二学期下学期期末考试模拟卷(附详细答案)

北师大版初一七年级第二学期下学期期末考试模拟卷(附详细答案)

北师大版七年级第二学期期末考试模拟卷初一年级 数学考试考试时间:90分钟 试卷满分:100分姓名: 分数:一.选择题(每小题3分,共36分)1.在以下永洁环保、绿色食品、节能、绿色环保四个标志中,是轴对称图形是( )A B C D 2.下列计算正确的是( )A.2223a a a += B. 326a a a ⋅= C. ()239aa = D. ()3411a a a a -÷=≠3.如图,从边长为(a+1)cm 的正方形纸片中剪去一个边长为(a ﹣1)cm 的正方形(a >1),剩余部分沿虚线又剪拼成一个矩形(不重叠无缝隙),则该矩形的面积是( )A.22cm B. 22acm C. 24acm D. ()221a cm -4.化简:()()2211a a +--=( )A.2B.4C.4aD.222a + 5.如图,AE ∥BD ,∠1=120°,∠2=40°,则∠C 的度数是( )A.10°B.20°C.30°D.40°6.一个正方形和两个等边三角形的位置如图所示,若∠3=50°,则∠1+∠2=( )A.90°B.100°C.130°D.180° 7.下列说法正确的是( )A. 常量是指永远不变的量B. 具体的数一定是常量C. 字母一定表示变量 D .球的体积公式343V r π=中,变量是π,r 8.用固定速度往如图所示形状的杯子里注水,则表示杯子里水面的高度和注水时间的关系的大致图象是( )A B C D9.下列说法正确的是( )A .“明天降雨的概率是80%”表示明天有80%的时间都在降雨 B. “抛一枚硬币正面朝上的概率为”表示每抛2次就有一次正面朝上 C. “彩票中奖的概率为1%”表示买100张彩票肯定会中奖D .“抛一枚正方体骰子,朝上的点数为2的概率为”表示随着抛掷次数的增加,“抛出朝上的点数为2”这一事件发生的频率稳定在附近10.小明不慎将一块三角形的玻璃碎成如图所示的四块(图中所标1、2、3、4),你认为将其中的哪一块带去,就能配一块与原来大小一样的三角形玻璃?应该带( )去. A.第1块 B.第2块 C.第3块 D.第4块11.如图,已知∠1=∠2,AC=AD ,增加下列条件:①AB=AE ;②BC=ED ;③∠C=∠D ;④∠B=∠E .其中能使△ABC ≌△AED 的条件有( ) A.4个 B.3个 C.2个 D.1个12.有下列命题:①两条直线被第三条直线所截,同位角相等;②两点之间,线段最短;③相等的角是对顶角;④两个锐角的和是锐角;⑤同角或等角的补角相等.正确命题的个数是( )二.填空题(每小题3分,共12分) 13.计算:()3242aa ⋅=_________.14.在一个过程中,固定不变的量称为 ,可以取不同的值的量称为 . 15.若26x x m -+是完全平方式,则m =.16.如图,AD ∥EG ∥BC ,AC ∥EF ,则图中与∠1相等的角(不含∠1)有 个;若∠1=50°,则∠AHG =度. 三.解答题(共7小题,共52分) 17.(6分)计算)2247π-+-+.B18.(6分)先化简,再求值:()()2212213a a +-++,其中a =19.(7分)如图所示,O 是直线AB 上一点,∠AOC=∠BOC ,OC 是∠AOD 的平分线.(1)求∠COD 的度数.(2)判断OD 与AB 的位置关系,并说出理由.20.(7分)已知:如图,点B ,E ,C ,F 在同一直线上,AB=DE ,∠B=∠DEF ,BE=CF .求证:AC=DF .21.(8分)父亲告诉小明:“距离地面越高,温度越低,”并给小明出示了下面的表格.根据上表,父亲还给小明出了下面几个问题,你和小明一起回答. (1)上表反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?(2)如果用h 表示距离地面的高度,用t 表示温度,那么随着h 的变化,t 是怎么变化的? (3)你能猜出距离地面6千米的高空温度是多少吗?22.(8分)某中学对全校学生60秒跳绳的次数进行了统计,全校平均次数是100次.某班体育委员统计了全班50名学生60秒跳绳的成绩,列出的频数分布直方图如下(每个分组包括左端点,不包括右端点):求:(1)该班60秒跳绳的平均次数至少是多少?是否超过全校平均次数?(2)该班一个学生说:“我的跳绳成绩在我班是中位数”,请你给出该生跳绳成绩的所在范围;(3)从该班中任选一人,其跳绳次数达到或超过校平均次数的概率是多少?23.(10分)如图,在△ABC中,∠BAC=90°,AB=AC=6,D为BC的中点.(1)若E、F分别是AB、AC上的点,且AE=CF,求证:△AED≌△CFD;(2)当点F、E分别从C、A两点同时出发,以每秒1个单位长度的速度沿CA、AB运动,到点A、B时停止;设△DEF的面积为y,F点运动的时间为x,求y与x的函数关系式;(3)在(2)的条件下,点F、E分别沿CA、AB的延长线继续运动,求此时y与x的函数关系式.模拟卷一参考答案与试题解析一.选择题(共12小题)1.B2.D3.C4.C5.B6.B7.B9.D10.B11.B二.填空题(共4小题)13.8a10.14.在一个过程中,固定不变的量称为常量,可以取不同的值的量称为变量.15.m=9.16.5个;∠AHG=130度.三.解答题(共7小题)17.018.10.(19.AOC=∠AOC=∠∴20.21.22.秒跳绳的平均次数至少是:=100.823.;.7。

【北师大版】七年级数学下期末模拟试卷(含答案)(1)

【北师大版】七年级数学下期末模拟试卷(含答案)(1)

一、选择题1.若关于x 的不等式组21x x a <⎧⎨>-⎩无解,则a 的取值范围是( ) A .3a ≤- B .3a <-C .3a >D .3a ≥ 2.不等式()31x -≤5x -的正整数解有( )A .1个B .2个C .3个D .4个3.如图,长方形ABCD 被分割成3个正方形和2个长方形后仍是中心对称图形,设长方形ABCD 的周长为l ,若图中3个正方形和2个长方形的周长之和为94l ,则标号为①正方形的边长为( )A .112lB .116lC .516lD .118l 4.若方程x-y=3与下面方程中的一个组成的方程组的解为41x y =⎧⎨=⎩,则这个方程可以( ) A .3x-4y=16 B .1254x y += C .1382x y -+= D .2(x-y)=6y 5.若方程6kx ﹣2y=8有一组解32x y =-⎧⎨=⎩,则k 的值等于(( ) A .23- B .23 C .16- D .166.若关于x y ,的二元一次方程组232320x y k x y k+=⎧⎨-=⎩的解也是二元一次方程236x y +=的解,则k 的值为( )A .34-B .34C .43D .43- 7.某种商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折销售,但要保证利润率不低于5%,则至多可打( )A .6折B .7折C .8折D .9折8.在平面直角坐标系中,与点P 关于原点对称的点Q 为()1,3-,则点P 的坐标是( ) A .()1,3 B .()1,3-- C .()1,3- D .()1,3-9.已知点P 到x 轴的距离为2,到y 轴的距离为3,且点P 在x 轴的上方,则点P 的坐标为( )A .(2,3)B .(3,2)C .(2,3)或(-2,3)D .(3,2)或(-3,2)10.实数a ,b 在数轴上的位置如图所示,那么化简33a b a b ++-+的结果为( )A .2a -B .22b a -C .0D .2b 11.下列命题中是真命题的是( ) A .如果0a b +<那么0ab < B .内错角相等C .三角形的内角和等于180︒D .相等的角是对顶角12.下列是一元一次不等式的是( ) A .21x > B .22x y -<-C .23<D .29x < 二、填空题13.先阅读短文,回答后面所给出的问题:对于三个数a 、b 、c 中,我们给出符号来表示其中最大(小)的数,规定{}min ,,a b c 表示这三个数中最小的数,{}max ,,a b c 表示这三个数中最大的数.例如:{}min 1,2,31-=-,{}max 1,2,33-=;{}(1)min 1,2,1(1)a a a a ≤-⎧-=⎨->-⎩,若{}{}min 4,4,4max 2,1,2x x x x +-=+,则x 的值为_______.14.“百鸡问题”译文:公鸡每只值五文钱,母鸡每只值三文钱,小鸡每三只值一文钱,现在用一百文钱买一百只鸡,问这一百只鸡中,公鸡、母鸡、小鸡各有多少只?__________________________;(至少写出2种结果)15.130+-++=x y y ,则x y -=________.16.在平面直角坐标系中,点()3,2P -到y 轴的距离为__________.17.已知点()3,2P -,//MP x 轴,6MP =,则点M 的坐标为______.18.计算:(1)(1)|2|3-⨯-+ (2)2111(3)162⎛⎫-+---⨯ ⎪⎝⎭19.如图,直线AB ,CD 相交于点O ,OA 平分∠EOC ,∠EOD=120°,则∠BOD=__________°.20.已知点N 的坐标为()8a a -,,则点N 一定不在第____象限三、解答题21.解下列不等式组:(1)3(1)51124x xx x-<+⎧⎨-≥-⎩(2)3(2)4 211 52xxx x--≥⎧⎪-+⎨>⎪⎩22.解方程组与不等式组.(1)解方程组244523x yx y-=-⎧⎨-=-⎩.(2)解不等式组4(1)710853x xxx+≤+⎧⎪-⎨-<⎪⎩.23.在解方程组85ax ybx cy+=-⎧⎨-=⎩时,小聪正确的解得31xy=⎧⎨=⎩,小虎因看错a而解得71xy=⎧⎨=-⎩,若两人的计算过程均没错误,求a,b,c的值.24.已知点()32,24A a a+-,试分别根据下列条件,求出a的值并写出点A的坐标.(1)点A在x轴上;(2)点A与点8'4,3A⎛⎫--⎪⎝⎭关于y轴对称;(3)经过点()32,24A a a+-,()3,4B的直线,与x轴平行;(4)点A到两坐标轴的距离相等.25.对于结论:当a+b=0时,a3+b3=0也成立.若将a看成a3的立方根,b看成是b3的立方根,由此得出这样的结论:“如果两数的立方根互为相反数,那么这两数也互为相反数”.(1)试举一个例子来判断上述结论的猜测是否成立?(2)若332x-与35x+的值互为相反数,求12x-的值.26.如图,AD平分BAC∠,点E,F分别在边BC,AB上,且BFE DAC∠=∠,延长EF,CA交于点G,求证:G AFG∠=∠.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】利用不等式组取解集的方法:大大小小找不到即可得到a的范围.【详解】∵关于x的不等式组21xx a<⎧⎨>-⎩无解,∴a-1≥2,∴a≥3.故选:D.【点睛】考查了一元一次不等式组:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,利用数轴可以直观地表示不等式组的解集.解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.2.B解析:B【分析】直接利用一元一次不等式的解法分析得出答案.【详解】解:3(x-1)≤5-x3x-3≤5-x,则4x≤8,解得:x≤2,故不等式3(x-1)≤5-x的正整数解有:1,2共2个.故选:B.【点睛】本题主要考查了一元一次不等式的整数解,正确解不等式是解题的关键.3.B解析:B【分析】设两个大正方形边长为x,小正方形的边长为y,由图可知周长和列方程和方程组,解答即可.【详解】解:长方形ABCD被分成3个正方形和2个长方形后仍是中心对称图形,∴两个大正方形相同、2个长方形相同.设小正方形边长为x ,大正方形的边长为y ,∴小长方形的边长分别为()y x -、()x y +,大长方形边长为()2y z -、()2y x +.长方形周长l =,即:()()222y x y x l -++⎤⎣⎦=⎡, 8y l ∴=,18y l ∴=. 3个正方形和2个长方形的周长和为94l , ()()9244224y x x y y x l ∴⨯++⨯⨯+⎤⎣⎦=⎡+-,91644y x l ∴+=, 116x l ∴=. ∴标号为①的正方形的边长116l . 故选:B .【点睛】此题主要考查了二元一次方程组的应用,关键是正确理解题意,要明确中心对称的性质,找出题目中的等量关系,列出方程组.注意各个正方形的边长之间的数量关系. 4.D解析:D【分析】将解代入每个方程,使若方程两边相等则该组解是该方程的解,即为所求的方程.【详解】将41x y =⎧⎨=⎩依次代入,得 A 、12-4≠16,故该项不符合题意;B 、1+2≠5,故该项不符合题意;C 、-2+3≠8,故该项不符合题意;D 、6=6,故该项符合题意;故选:D.【点睛】此题考查二元一次方程的解:使方程两边相等的未知数的值叫做方程的解,正确计算是解题的关键.5.A解析:A根据方程的解满足方程,课的关于k 的方程,根据解方程,可得答案.【详解】解:由题意,得6×(-3)k-2×2=8,解得k=-23, 故选A .【点睛】 本题考查了二元一次方程,利用方程的解满足方程得出关于的k 方程是解题关键. 6.B解析:B【分析】首先解关于x 的方程组,求得x ,y 的值,然后代入方程2x +3y =6,即可得到一个关于k 的方程,从而求解.【详解】解232320x y k x y k +=⎧⎨-=⎩得72x k y k =⎧⎨=-⎩, 由题意知2×7k +3×(−2k )=6,解得k =34. 故选:B【点睛】此题考查了解二元一次方程组,二元一次方程组的解,能使方程组中每个方程的左右两边相等的未知数的值即是方程组的解.解题的关键是要知道两个方程组之间解的关系. 7.B解析:B【详解】设可打x 折,则有1200×10x -800≥800×5%, 解得x≥7.即最多打7折.故选B .【点睛】本题考查的是一元一次不等式的应用,解此类题目时注意利润和折数,计算折数时注意要除以10.解答本题的关键是读懂题意,求出打折之后的利润,根据利润率不低于5%,列不等式求解. 8.D解析:D在平面直角坐标系中,关于原点对称的两点的横坐标和纵坐标均互为相反数即可求得.【详解】∵与点P 关于原点对称的点Q 为()1,3-,∴点P 的坐标是:()1,3-.故选D .【点睛】本题考查平面直角坐标系中点的对称性,掌握关于原点对称的两点的横坐标和纵坐标均互为相反数是解题关键.9.D解析:D【分析】先判断出点P 在第一或第二象限,再根据点到x 轴的距离等于纵坐标的绝对值,到y 轴的距离等于横坐标的绝对值求解.【详解】解:∵点P 在x 轴上方,∴点P 在第一或第二象限,∵点P 到x 轴的距离为2,到y 轴的距离为3,∴点P 的横坐标为3或-3,纵坐标为2,∴点P 的坐标为(-3,2)或(3,2).故选D .【点睛】本题考查点的坐标,熟记点到x 轴的距离等于纵坐标的绝对值,到y 轴的距离等于横坐标的绝对值是解题的关键.10.A解析:A【分析】先根据数轴上点的坐标特点确定a ,b 的符号,再去绝对值符号和开立方根,化简即可.【详解】由图可知:0a b <<, 且a b >,∴0a b +<,0a ->,原式()()a b a b =-++-+a b a b =---+2a =-.故选:A .【点睛】考查了数轴,解答此题时可以发现借助数轴用几何方法化简含有绝对值的式子,比较有关数的大小有直观、简捷,举重若轻的优势.11.C解析:C【分析】利用反例对A 进行判断;根据平行线的性质对B 进行判断;根据三角形内角和定理对C 进行判断;根据对顶角定义对D 进行判断.【详解】解:A 、当a=-2,b=-1时,则a+b<0,ab>0,所以A 选项错误;B 、两直线平行,内错角相等,所以B 选项错误,是假命题;C 、三角形的内角和等于180°,所以C 选项为真命题;D 、对顶角既有大小关系,又有位置关系,相等的角是对顶角的说法错误,所以D 选项错误,是假命题;【点睛】本题考查命题与定理:命题写成“如果…,那么…”的形式,这时,“如果”后面接的部分是题设,“那么”后面解的部分是结论.命题的“真”“假”是就命题的内容而言.任何一个命题非真即假.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.12.A解析:A【分析】根据一元一次不等式的定义对各选项进行逐一分析即可.【详解】解:A 、21x >中含有一个未知数,并且未知数的最高次数等于1,是一元一次不等式,故本选项正确;B 、22x y -<-中含有两个未知数,故本选项错误;C 、23<中不含有未知数,故本选项错误;D 、29x <中含有一个未知数,但未知数的最高次数等于1,不是一元一次不等式,故本选项错误.故选:A .【点睛】本题考查的是一元一次不等式的定义,即含有一个未知数,未知数的最高次数是1的不等式,叫做一元一次不等式.二、填空题13.或【分析】根据新定义法则分x 或x+4或x ﹣4最小2或x+1或2x 最大几种情况分别列出一元一次不等式组和一元一次方程进行解答即可【详解】(1)当最小时则即无解此情况不成立(2)当最小时则即解得此时:即解析:43或2- 【分析】 根据新定义法则,分x 或x+4或x ﹣4最小、2或x+1或2x 最大几种情况,分别列出一元一次不等式组和一元一次方程进行解答即可.【详解】(1)当4最小时,则4444x x +>⎧⎨->⎩,即00x x >⎧⎨<⎩, x 无解,此情况不成立.(2)当4x +最小时,则4444x x x ≥+⎧⎨-≥+⎩,即00x x ≤⎧⎨≤⎩, ∴解得0x ≤,此时:12x +<,22x <,{}max 2,1,22x x ∴+=,42x ∴+=,即2x =-.(3)当4x -最小时,则4444x x x >-⎧⎨+>-⎩,即00x x >⎧⎨>⎩, ∴解得0x >,此时无法判断,{}max 2,1,2x x +的值,则分情况讨论如下:①当2最大时:2122x x ≥+⎧⎨≥⎩,即11x x ≤⎧⎨≤⎩, 01x ∴<≤,此时:42x -=,2x =(舍去).②当2x 最大时:2221x x x >⎧⎨>+⎩,即11x x >⎧⎨>⎩, 1x ∴>,此时有:42x x -=,43x =. ③当1x +最大时,1212x x x +>⎧⎨+>⎩,即11x x >⎧⎨<⎩,无解,此情况不成立. 综上所述:43x =或2x =-. 【点睛】本题考查新定义下解一元一次不等式组和一元一次方程的能力,由已知等式找到x 的分界点以及准确分类讨论是解答的关键.14.02575或41878或81181或12484【分析】设公鸡有x 只母鸡有y 只则小鸡有(100−x−y )只由题意得到5x +3y +=100求出符合题意的方程的解即可【详解】设公鸡有x 只母鸡有y 只则小鸡有解析:0,25,75或4,18,78或8,11,81,或12,4,84.【分析】设公鸡有x 只,母鸡有y 只,则小鸡有(100−x−y )只,由题意得到5x +3y +1003x y -- =100,求出符合题意的方程的解即可.【详解】设公鸡有x 只,母鸡有y 只,则小鸡有(100−x−y )只,根据题意得: 5x +3y +1003x y -- =100, 化简得:y =25−74x , 当x =0时,y =25,100−x−y =75;当x =4时,y =18,100−x−y =78;当x =8时,y =11,100−x−y =81;当x =12时,y =4,100−x−y =84;当x =16时,y =−3,舍去.故答案为:0,25,75或4,18,78或8,11,81,或12,4,84.【点睛】本题考查了二元一次方程组的应用以及二元一次方程的应用,解题的关键是:(1)①由购买鸡的只数找出购买小鸡的只数;②找准等量关系,正确列出二元一次方程;(2)找准等量关系,正确列出二元一次方程组;(3)结合x 、y 均为整数求出二元一次方程的解.15.7【分析】由绝对值的性质可以得到关于xy 的二元一次方程解方程求得xy 的值后即可算出x-y 的值【详解】解:由题意得:解之得:故答案为7【点睛】本题考查绝对值的应用理解绝对值为非负数的性质是解题关键解析:7【分析】由绝对值的性质可以得到关于x 、y 的二元一次方程,解方程求得x 、y 的值后即可算出x-y的值.【详解】解:由题意得:1030x yy+-=⎧⎨+=⎩,解之得:43xy=⎧⎨=-⎩,()437x y∴-=--=,故答案为7.【点睛】本题考查绝对值的应用,理解绝对值为非负数的性质是解题关键.16.3【分析】根据点到y轴的距离等于横坐标的绝对值解答【详解】到y轴的距离是横坐标的绝对值即故答案为:3【点睛】本题考查了点的坐标熟记点到y 轴的距离等于横坐标的绝对值是解题的关键解析:3【分析】根据点到y轴的距离等于横坐标的绝对值解答.【详解】()3,2P-到y轴的距离是横坐标的绝对值,即33-=.故答案为:3.【点睛】本题考查了点的坐标,熟记点到y轴的距离等于横坐标的绝对值是解题的关键.17.(9﹣2)或(﹣3﹣2)【分析】根据平行线的性质可得点M的纵坐标与点P的纵坐标相同是﹣2再根据MP=6即可求出点M的坐标【详解】解:∵点P(3−2)MP//x轴∴点M的横坐标与点P的横坐标相同是﹣2解析:(9,﹣2)或 (﹣3,﹣2)【分析】根据平行线的性质可得点M的纵坐标与点P的纵坐标相同,是﹣2,再根据MP=6,即可求出点M的坐标.【详解】解:∵点P(3,−2), MP//x轴,∴点M的横坐标与点P的横坐标相同,是﹣2,又∵MP=6,∴点M的横坐标为为3+6=9,或3−6=−3,∴点M的坐标为 (9,﹣2)或 (﹣3,﹣2).故答案为:(9,﹣2)或 (﹣3,﹣2).【点睛】本题考查了点坐标的问题,掌握平行线的性质、点坐标的性质是解题的关键.18.(1)1;(2)【分析】(1)先计算绝对值再计算乘法最后计算加法;(2)先同时计算乘方减法化简算术平方根再计算乘法最后计算加减法【详解】(1)==-2+3=1;(2)===【点睛】此题考查有理数的混解析:(1)1;(2)1112.【分析】(1)先计算绝对值,再计算乘法,最后计算加法;(2)先同时计算乘方、减法、化简算术平方根,再计算乘法,最后计算加减法.【详解】(1)(1)|2|3-⨯-+=(1)23-⨯+=-2+3=1;(2)2111(3)2⎛⎫-+--- ⎪⎝⎭=11(3)42-+--⨯ =1122-+ =1112. 【点睛】此题考查有理数的混合运算,掌握绝对值的化简,乘方法则,求数的算术平方根,有理数的加减法计算法则,乘除法计算法则是解题的关键.19.30°【分析】先利用补角的定义求出∠EOC=60°再根据角平分线的性质计算【详解】解:∵∠EOD=120°∴∠EOC=60°(邻补角定义)∵OA 平分∠EOC ∴∠AOC=∠EOC=30°(角平分线定义解析:30°【分析】先利用补角的定义求出∠EOC=60°,再根据角平分线的性质计算.【详解】解:∵∠EOD=120°,∴∠EOC=60°(邻补角定义).∵OA 平分∠EOC ,∴∠AOC=12∠EOC=30°(角平分线定义), ∴∠BOD=30°(对顶角相等).故答案为:30.【点睛】本题考查由角平分线的定义,结合补角的性质,易求该角的度数.20.二【分析】根据四个象限的符合特点列出相应的不等式组即可得出结果【详解】解:由题意得解这四组不等式组可知无解因此点N 横坐标为负纵坐标为正不能同时成立即点N 一定不在第二象限故答案为:二【点睛】本题考查平解析:二【分析】根据四个象限的符合特点,列出相应的不等式组,即可得出结果.【详解】解:由题意得,080a a >⎧⎨->⎩,080a a >⎧⎨-<⎩,080a a <⎧⎨->⎩,080a a <⎧⎨-<⎩, 解这四组不等式组可知080a a <⎧⎨->⎩无解, 因此点N 横坐标为负,纵坐标为正,不能同时成立,即点N 一定不在第二象限. 故答案为:二【点睛】本题考查平面直角坐标系中各象限内点的坐标的符合,把符合问题转化为解不等式是解题关键.三、解答题21.(1)-2<x≤3;(2)x <-7.【分析】分别求出不等式组中每一个不等式的解集,后根据解集确定口诀确定不等式组的解集即可.【详解】(1)由3(1)51124x x x x -<+⎧⎨-≥-⎩①②, 不等式①的解集为x >-2,不等式②的解集为x≤3,∴原不等式组的解集为-2<x≤3;(2)由3(2)421152x x x x --≥⎧⎪⎨-+>⎪⎩①②,不等式①的解集为x≤1,不等式②的解集为x <-7,∴原不等式组的解集为x <-7.【点睛】本题考查了一元一次不等式组的解集,熟练解一元一次不等式是解题的关键.22.(1)125x y ⎧=⎪⎨⎪=⎩;(2)722x -≤< 【分析】(1)利用加减消元法求解可得;(2)分别求出各不等式的解集,再求出其公共解集.【详解】(1)244523x y x y -=-⎧⎨-=-⎩①②. ①5⨯得:10520x y -=-,③③-②得:63x =, ∴12x =, 将12x =代入①得:14y -=-, ∴5y =,∴方程组的解为125x y ⎧=⎪⎨⎪=⎩;(2)4(1)710853x x x x +≤+⎧⎪⎨--<⎪⎩①②, 由①得:44710x x +≤+,解得:2x ≥-,由②得:3(5)8x x -<-, 解得:72x <, ∴不等式组的解集为722x -≤<. 【点睛】 本题考查了解二元一次方程组与一元一次不等式组,熟知同大取大;同小取小;大小小大中间找;大大小小找不到的原则是解答此题的关键.23.a=-3,b=1,c=-2【分析】将31x y =⎧⎨=⎩代入85ax y bx cy +=-⎧⎨-=⎩求得335a b c =-⎧⎨-=⎩,将71x y =⎧⎨=-⎩代入bx-cy=5中,求得7b+c=5,再解方程组7535b c b c +=⎧⎨-=⎩求得12b c =⎧⎨=-⎩即可. 【详解】将31x y =⎧⎨=⎩代入85ax y bx cy +=-⎧⎨-=⎩,得335a b c =-⎧⎨-=⎩,将71x y =⎧⎨=-⎩代入bx-cy=5中,得7b+c=5, 解方程组7535b c b c +=⎧⎨-=⎩,解得12b c =⎧⎨=-⎩, ∴a=-3,b=1,c=-2.【点睛】此题考查解二元一次方程组,正确理解题意,将解代入正确的方程进行计算是解题的关键.24.(1)2a =,A 点的坐标是()8,0;(2)23a =,A 点的坐标是84,3⎛⎫- ⎪⎝⎭;(3)4a =,A 点的坐标是()14,4;(4)当点A 在一,三象限夹角平分线上时,6a =-,A 点的坐标是()16,16--,当点A 在二,四象限夹角平分线上时, 25a =,A 点的坐标是1616,55⎛⎫- ⎪⎝⎭. 【分析】(1)根据x 轴上的点的纵坐标等于零,可得方程,解方程可得答案;(2)根据关于y 轴对称点的性质,横坐标互为相反数、纵坐标相同,可得方程,解方程可得答案;(3)根据平行于x 轴直线上的点纵坐标相等,可得方程,解方程可得答案;(4)根据点A 到两坐标轴的距离相等,可得关于a 的方程,解方程可得答案.【详解】解:(1)点A 在x 轴上,则240,a -=解得a =2,323228a +=⨯+=,故A 点的坐标是()8,0.(2)根据题意得,324a +=, 解得2.3a = A 点的坐标是84,.3⎛⎫- ⎪⎝⎭(3)因为AB ∥x 轴,所以244,a -=解得a =4,3214.a +=A 点的坐标是()14,4.(4)当点A 在一,三象限夹角平分线上时,有3224,a a +=-解得6a =-3216.a +=-A 点的坐标是()16,16.--当点A 在二,四象限夹角平分线上时,有32240,a a ++-= 解得25a = 16325a +=, A 点的坐标是1616,.55⎛⎫-⎪⎝⎭ 【点睛】本题考查了点的坐标,x 轴上的点的纵坐标等于零;y 轴上的点的横坐标等于零;关于y 轴对称点的性质,横坐标互为相反数、纵坐标相同;平行于x 轴直线上的点纵坐标相等.25.(1)见解析;(2)13-=-【分析】(10=,则2与﹣2互为相反数进行说明.(2)利用(1)的结论,列出方程(3﹣2x )+(x +5)=0,从而解出x 的值,代入可得出答案.【详解】解:(10=,则2与﹣2互为相反数;(2)由已知,得(3﹣2x )+(x +5)=0,解得x =8,∴1=1=1﹣4=﹣3.【点睛】本题考查立方根的知识,难度一般,注意一个数的立方根有一个,它和这个数正负一致,本题的结论同学们可以记住,以后可直接运用.26.证明见解析.【分析】先根据角平分线的定义可得∠=∠DAB DAC ,从而可得BFE DAB ∠=∠,再根据平行线的判定与性质可得G DAC ∠=∠,从而可得G BFE ∠=∠,然后根据对顶角相等可得BFE AFG ∠=∠,最后根据等量代换即可得证.【详解】 AD 平分BAC ∠,DAB DAC ∴∠=∠,BFE DAC ∠=∠,BFE DAB ∴∠=∠,//AD EG ∴,G DAC ∴∠=∠,∠=∠,又BFE DAC∴∠=∠,G BFE∠=∠,由对顶角相等得:BFE AFGG F∴∠=∠.A G【点睛】本题考查了角平分线的定义、对顶角相等、平行线的判定与性质等知识点,熟练掌握平行线的判定与性质是解题关键.。

2022-2023学年度第二学期北师大版七年级数学期末复习测试题 (含答案)

2022-2023学年度第二学期北师大版七年级数学期末复习测试题 (含答案)

2022-2023学年度第二学期北师版七年级数学期末复习测试题一、选择题(本大题共12个小题,每小题4分,共48分)1. 下列冬奥元素中是轴对称图形的是()A. B. C. D.2.全球可被人类利用的淡水总量约占地球上总水量的0.00003,因此珍惜水,保护水是每个公民的责任.其中数字0.00003用科学记数法表示为()A.3×10-5B.3×10-4C.0.3×10-5D.0.3×10-43.下列计算正确的是()A.B.C.D.4.一个均匀的小球在如图所示的水平地板上自由滚动,并随机停在某块方砖上,若每一块方砖除颜色外完全相同,那么小球最终停留在黑砖上的概率是()A. B. C. D. 15.下列事件为必然事件的是()A.打开电视,正在播放新闻B.买一张电影票,座位号是奇数号C.任意画一个三角形,其内角和是180°D.掷一枚质地均匀的硬币,正面朝上6.如图,直线AD∥BC,若∠1=40°,∠BAC=80°,则∠2的度数为()7.如图,按以下方法作一个角的平分线:(1)以O为圆心,适当长为半径画弧,分别交OA、OB于点M、N.(2)分别以点M、N为圆心,大于MN的长为半径画弧,两弧在∠AOB的内部相交于点C.(3)画射线OC,射线OC即为所求.这种作图方法的依据是()A.AAS B.SAS C.SSS D.ASA8.如图,把两根钢条AB,CD的中点连在一起,可以做成一个测量工件内槽宽的工具(卡钳)只要量得AC的长度,就可知工件的内径BD是否符合标准,这是利用的什么数学原理呢?()A.SSS B.SAS C.ASA D.AAS9.如图,是的中线,是的中线,是的中线,若,则等于()A.16B.14C.12D.1010.如图,在△ABC中,∠C=90°,以A为圆心,任意长为半径画弧,分别交AC,AB于点M,N,再分别以M,N为圆心,大于MN长为半径西弧,两弧交于点O,作射线AO,交BC于点E.已知CE=3,AB=10,则△ABE的面积是()A.B...计算:的结果等于.若多项式是完全平方式,则如图,在中,,,尺规作图作出的垂直平分线与交于点则的度数为写出y与x的关系式________.18.如图,两个正方形边长分别为a、b,如果a2+b2=300,ab=12,则阴影部分的面积为______.三、解答题(本大题共8个体,共78分.解答应写出文字说明,证明过程或演算步骤.)19计算:(1)3xy•(﹣2x3y)2÷(﹣6x5y3);(2)(m+2)(m﹣2)﹣(m﹣1)2(3)化简求值:(2x+1)2﹣4(x﹣1)(x+1),其中x=.20.如图,ABC的顶点A、B、C都在小正方形的顶点上,利用网格线按下列要求画图.(1)画A 1B1C1,使它与ABC关于直线l成轴对称;(2)求ABC的面积;(3)在直线l上找一点P,使点P到点A、B的距离之和最短(不需计算,在图上直接标记出点P的位置).21如图,,,,求的度数.解:∵,∴ ∵,∴(∴ ∴ (∵,∴ AB CD )求证:ABF≌DCE2022-2023学年度第二学期北师版七年级数学期末复习测试题及答案一、选择题(本大题共12个小题,每小题4分,共48分)1. 下列冬奥元素中是轴对称图形的是()A. B. C. D.【答案】D2.全球可被人类利用的淡水总量约占地球上总水量的0.00003,因此珍惜水,保护水是每个公民的责任.其中数字0.00003用科学记数法表示为()A.3×10-5B.3×10-4C.0.3×10-5D.0.3×10-4【答案】A3.下列计算正确的是( )A.B.C.D.【答案】C3.一个均匀的小球在如图所示的水平地板上自由滚动,并随机停在某块方砖上,每一块方砖除颜色外完全相同,那么小球最终停留在黑砖上的概率是()A. B. C. D. 1【答案】A5.下列事件为必然事件的是()A.打开电视,正在播放新闻B.买一张电影票,座位号是奇数号C.任意画一个三角形,其内角和是180°D.掷一枚质地均匀的硬币,正面朝上【答案】C6.如图,直线AD∥BC,若∠1=40°,∠BAC=80°,则∠2的度数为()A.70°B.60°C.50°D.40°【答案】B8.如图,按以下方法作一个角的平分线:、(1)以O为圆心,适当长为半径画弧,分别交OA、OB于点M、N.(2)分别以点M、N为圆心,大于MN的长为半径画弧,两弧在∠AOB的内部相交于点C.(3)画射线OC,射线OC即为所求.这种作图方法的依据是()A.AAS B.SAS C.SSS D.ASA【答案】C8.如图,把两根钢条AB,CD的中点连在一起,可以做成一个测量工件内槽宽的工具(卡钳)只要量得AC的长度,就可知工件的内径BD是否符合标准,这是利用的什么数学原理呢?()A.SSS B.SAS C.ASA D.AAS【答案】B9.如图,是的中线,是的中线,是的中线,若,则等于()A.16B.14C.12D.10【答案】A9.如图,在△ABC中,∠C=90°,以A为圆心,任意长为半径画弧,分别交AC,AB于点M,N,分别以M,N为圆心,大于MN长为半径西弧,两弧交于点O,作射线AO,交BC于点E.已知CE=3,AB=10,则△ABE的面积是()A.8B.15C.24D.30【答案】B11如图,在△ABC中,AB、AC的垂直平分线分别交BC于点E、F,若∠BAC=114°,则∠EAF为()A.40°B.44°C.48°D.52°A.B...计算:的结果等于.若多项式是完全平方式,则如图,在中,,,尺规作图作出的垂直平分线与交于点则的度数为写出y与x的关系式________.【答案】y=12+0.5x18.如图,两个正方形边长分别为a、b,如果a2+b2=300,ab=12,则阴影部分的面积为______.【答案】144三、解答题(本大题共8个体,共78分.解答应写出文字说明,证明过程或演算步骤.)19计算:(1)3xy•(﹣2x3y)2÷(﹣6x5y3);(2)(m+2)(m﹣2)﹣(m﹣1)2(3)化简求值:(2x+1)2﹣4(x﹣1)(x+1),其中x=.解:(1)原式=3xy•4x6y2÷(﹣6x5y3)=12x7y3÷(﹣6x5y3)=﹣2x2;(2)原式=m2﹣4﹣(m2﹣2m+1)=m2﹣4﹣m2+2m﹣1=2m﹣5;(3)原式=4x2+4x+1﹣4(x2﹣1)=4x2+4x+1﹣4x2+4=4x+5;当x=时,原式=4×+5=6.20.如图,ABC的顶点A、B、C都在小正方形的顶点上,利用网格线按下列要求画图.(1)画A 1B1C1,使它与ABC关于直线l成轴对称;(2)求ABC的面积;(3)在直线l上找一点P,使点P到点A、B的距离之和最短(不需计算,在图上直接标记出点P的位置).)如图,A)ABC﹣×4×2﹣×2×1﹣×2×3如图,,,,求的度数.解:∵,∴ ( )又∵,∴(∴ ∴ (∵,∴ ∵,∴(两直线平行,同位角相等.∵,∴(等量代换)∴(内错角相等,两直线平行)∴(两直线平行,同旁内角互补)∵,∴.故答案为:;两直线平行,同位角相等;等量代换;;内错角相等,两直线平行;;两直线平行,同旁内角互补;.AB CD)求证:ABF≌DCEAB CD在ABF与DCE,∴ABF≌DCE)知,ABF≌DCE的概率是=,故答案为:;所以三条线段能构成三角形的概率是=,故答案为:.(1)求∠DAF的度数.(2)若BC的长为50,求△DAF的周长.解:(1)∵∠ABC=20°,∠ACB=65°,∴∠BAC=180°-∠ABC-∠ACB=95°.∵DE,FG分别为AB,AC的垂直平分线,∴DA=DB,FA=FC,∴∠DAB=∠ABC=20°,∠FAC=∠ACB=65°,∴∠DAF=∠BAC-∠DAB-∠FAC=10°.(2)由(1)可知DA=DB,FA=FC,∴△DAF的周长=DA+DF+FA=DB+DF+FC=BC=50.25.一辆大客车和一辆小轿车同时从甲地出发去乙地,匀速而行,大客车到达乙地后停止,小轿车到达乙地后停留4小时,再按照原速从乙地出发返回甲地,小轿车返回甲地后停止,已知两车距甲地的路程s千米与所用的时间t小时的关系如图所示,请结合图象解答下列问题:(1)在上述变化过程中,自变量是________;因变量是________;(2)小轿车的速度是________km/h,大客车的速度是________ km/h;(3)两车出发多少小时后两车相遇,两车相遇时,距离甲地的路程是多少?解:(1)自变量是时间t;因变量是路程s;500÷=30∴∠ACB﹣∠DCF=∠DCE﹣∠DCF,∴∠ACD=∠BCE,在△CDA和△CEB中,,∴△CDA≌△CEB(SAS),∴AD=BE;②∵△CDA≌△CEB,∴∠CEB=∠CDA=180°﹣∠CDE=120°,∵∠CED=60°,∴∠AEB=∠CEB﹣∠CED=120°﹣60°=60°;(2)①∵AC=BC,CD=CE,∠ACB=∠DCE=90°,∴△ACB和△DCE均为等腰直角三角形,∴∠CDE=45°=∠CED,∴∠ACB﹣∠DCB=∠DCE﹣∠DCB,即∠ACD=∠BCE,∴∠ADC=180°﹣∠CDE=135°,在△ACD和△BCE中,,∴△ACD≌△BCE(SAS),∴∠ADC=∠BEC=135°,∴∠AEB=∠BEC﹣∠CED=90°,故填:90°;②∵△ACD≌△BCE,BE=2,∴BE=AD=2,∵∠CAF=∠BAF=22.5°,∠CDE=45°=∠CAD+∠ACD,∴∠ACD=∠CAD=22.5°,∴AD=CD=2,∵∠DCF=90°﹣∠ACD=67.5°,∠AFC=∠ABC+∠BAF=67.5°,∴∠DCF=∠AFC,∴DC=DF=2,∴AF=AD+DF=4,。

北师大版七年级数学下册期末模拟检测试题(含答案)

北师大版七年级数学下册期末模拟检测试题(含答案)

七年级数学下册期末模拟检测试题姓名:__________ 班级:__________考号:__________一、单选题(共10题;共30分)1.若∠A与∠B互为余角,则∠A+∠B=()A. 180°B. 120°C. 90°D. 60°2.以下四个图案均是由树叶组成的,其中最接近轴对称图形的是()A. B. C. D.3.在△AOC中,OB交AC于点D,量角器的摆放如图所示,则∠CDO的度数为()A. 90°B. 95°C. 100°D. 120°4.如图,在△ABC中,∠C=90°,BD平分∠ABC,交AC于点D;若DC=3,AB=8则△ABD的面积是( )A. 8B. 12C. 16D. 245.在如图,已知∠1=∠2,∠3=∠4,求证:AC∥DF,BC∥EF.证明过程如下:∵∠1=∠2(已知),∴AC∥DF(A.同位角相等,两直线平行),∴∠3=∠5(B.内错角相等,两直线平行).又∵∠3=∠4(已知)∴∠5=∠4(C.等量代换),∴BC∥EF(D.内错角相等,两直线平行).上述过程中判定依据错误的是()A. AB. BC. CD. D6.将含30°角的三角板ABC如图放置,使其三个顶点分别落在三条平行直线上,其中∠ACB=90°,当∠1=60°时,图中等于30°的角的个数是()A. 6个B. 5个C. 4个D. 3个7.袋子中装有4个黑球2个白球,这些球除了颜色外都相同,从袋子种随机摸出一个球,则摸到黑球的概率是()A. B. C. D.8.等腰三角形的一条边长为,另一边长为,则它的周长为()A. B.或 C. D.9.如图,已知∠BAC=∠DAE=90°,AB=AD,下列条件能使△ABC≌△ADE的是()A. ∠E=∠CB. AE=ACC. BC=DED. ABC三个答案都是10.有一游泳池注满水,现按一定速度将水排尽,然后进行清洗,再按相同速度注满清水,使用一段时间后,又按相同的速度将水排尽,则游泳池的存水量为h(米)随时间t(小时)变化的大致图象是()A. B. C. D.二、填空题(共8题;共8分)11.若4x=2,4y=3,则4x+y=________。

北师大版七年级下册数学期末模拟试卷 C(优选)

北师大版七年级下册数学期末模拟试卷 C(优选)

第2题图n m ba70°70°110°第3题图C B A 2112第六题图DCB A北师大版七年级下册数学期末模拟试卷 C一、填空题(把你认为正确的答案填入横线上,每小题3分,共30分)1、计算)1)(1(+-x x = 。

2、如图,互相平行的直线是 。

3、如图,把△ABC 的一角折叠,若∠1+∠2 =120°,则∠A = 。

4、如图,转动的转盘停止转动后,指针指向黑色区域的概率是 。

5、汽车司机在观后镜中看到后面一辆汽车的车牌号为 ,则这辆车的实际牌照是 。

6、如图,∠1 =∠2 ,若△ABC ≌△DCB ,则添加的条件可以是 。

7、将一个正△的纸片剪成4个全等的小正△,再将其中的一个按同样的方法剪成4个更小的正△,…则n。

8、已知412+-kx x 是一个完全平方式,那么k 的值为 。

9、近似数25.08万精确到 位,有 位有效数字,用科学计数法表示为 。

10、两边都平行的两个角,其中一个角的度数是另一个角的3倍少20°,这两个角的度数分别是 。

二、选择题(把你认为正确的答案的序号填入刮号内,每小题3分,共24分)11、下列各式计算正确的是 ( )A . a 2+ a 2=a 4B. 211aa a =÷-C. 226)3(x x = D. 222)(y x y x +=+12、在“妙手推推推”游戏中,主持人出示了一个9位数 ,让参加者猜商品价格,被猜的价格是一个4位数,也就是这个9位数从左到右连在一起的某4个数字,如果参与者不知道商品的价格,从这些连在一起的所有4位数中,猜中任猜一个,他猜中该商品的价格的概率是 ( )876954521第1页 共4页DCBA DC B A F EDCBAEDCBA A.91B. 61 C. 51 D. 31 13、一列火车由甲市驶往相距600㎞的乙市,火车的速度是200㎞/时,火车离乙市的距离s (单位:㎞)随行驶时间t (单位:小时) 变化的关系用图表示正确的是 ( )14、如左图,是把一张长方形的纸片沿长边中点的连线对折两次后得到的图形,再沿虚线裁剪,展开后的图形是 ( )15、教室的面积约为60m ²,它的百万分之一相当于 ( )A. 小拇指指甲盖的大小B. 数学书封面的大小C. 课桌面的大小D. 手掌心的大小16、如右图,AB ∥CD , ∠BED=110°,BF 平分∠ABE,DF 平分∠CDE,则∠BFD= ( ) A. 110° B. 115° C.125° D. 130° 17、平面上4条直线两两相交,交点的个数是 ( )A. 1个或4个B. 3个或4个C. 1个、4个或6个D. 1个、3个、4个或6个 18、如图,点E 是BC 的中点,AB ⊥BC , DC ⊥BC ,AE 平分∠BAD ,下列结论: ① ∠A E D =90° ② ∠A D E = ∠ C D E ③ D E = B E ④ AD =AB +CD , 四个结论中成立的是 ( ) A. ① ② ④ B. ① ② ③ C. ② ③ ④ D. ① ③ ④第2页 共4页乙甲BA OEDCBA三、解答题(共66分)19、计算(每小题4分,共12分) (1)201220112)23()32()31(-⨯--- (2)的值求22,10,3b a ab b a +==-(3)〔225)2)(()2(y y x y x y x -+--+〕÷()2y20、(6分) 某地区现有果树24000棵, 计划今后每年栽果树3000棵。

北师大版七年级下册数学期末测试卷(名师推荐)

北师大版七年级下册数学期末测试卷(名师推荐)

北师大版七年级下册数学期末测试卷一、单选题(共15题,共计45分)1、下列各式中,能用平方差公式计算的是()A. B. C.D.2、在平面直角坐标系中,A(1,3),B(2,4),C(3,5),D(4,6)其中不与E(2,-3)在同一个函数图像上的一个点是()A.点AB.点BC.点CD.点D3、下列计算正确的()A. B.C. D.4、如图,在△ABC中,AB=AC,∠A=42°,DE垂直平分AC,则∠BCD的度数为()A.23°B.25°C.27°D.29°5、如图所示,AB∥CD,AC平分∠BAE,且DE⊥DC,设∠ACD=α,∠AED=β,则下列选项一定正确的是( )A.α+β=180°B.β=4αC.2α+β=180°D.β-2α=90°6、下列计算结果正确的是()A. B. C. D.7、弹簧挂上物体后会伸长,测得一弹簧的长度y (cm)与所挂的物体的质量x(kg)之间有下面的关系:x/kg 0 1 2 3 4 5y/cm 10 10.5 11 11.5 12 12.5下列说法不正确的是()A.x与y都是变量,且x是自变量,y是因变量B.弹簧不挂重物时的长度为0 cmC.物体质量每增加1 kg,弹簧长度y增加0.5 cmD.所挂物体质量为7 kg时,弹簧长度为13.5 cm8、如果(a+b)2﹣(a﹣b)2=4,则一定成立的是()A.a是b的相反数B.a是﹣b的相反数C.a是b的倒数D.a 是﹣b的倒数9、下列运算正确的是()A.a 2•a 3=a 6B.(x 2)3=x 6C.m 6÷m 2=m 3D.6a﹣4a=210、下列运算正确的是()A.(a 3)2=a 6B.a 2•a=a 2C.a+a=a 2D.a 6÷a 3=a 211、如图,△DAC和△EBC均是等边三角形,AE、BD分别与CD、CE交于点M、N,有如下结论:①△ACE≌△DCB;② CM=CN;③ AC=DN.其中,正确结论的个数是()A.3个B.2个C.1个D.0个12、已知P=,Q=,那么P,Q的大小关系是()A. P>QB.P=QC.P<QD.无法比较13、如果△ABC的三个顶点A,B,C所对的边分别为a,b,c,那么下列条件中,不能判断△ABC是直角三角形的是()A.∠ A=25°,∠ B=65°B.∠ A:∠ B:∠ C=2:3:5C. a:b:c=::D. a=6,b=10,c=1214、如图,AB是⊙O的直径,C,D是⊙O上点,且OC∥BD,AD分别与BC,OC 相交于点E,F,则下列结论:①AD⊥BD;②CB平分∠ABD;③∠AOC=∠AEC;④AF=DF;⑤BD=2OF.其中正确的结论有()A.2个B.3个C.4个D.5个15、如图,点P是∠AOB的边OA上一点,PC⊥OB于点C,PD∥OB,∠OPC=35°,则∠APD的度数是( )A.60°B.55°C.45°D.35°二、填空题(共10题,共计30分)16、在一个不透明的盒子中装有n个小球,它们只有颜色上的区别,其中有2个红球,每次摸球前先将盒中的球摇匀,随机摸出一个球记下颜色后再放回盒中,通过大量重复试验后发现,摸到红球的频率稳定于0.2,那么可以推算出n 大约是________.17、计算:________.18、如果要使多项式9x2+1加上一个单项式后能成为一个完全平方式,那么加上的单项式可以是________ (填上一个你认为正确的即可)19、若三角形的三个内角满足∠B﹣∠A﹣∠C=40°,则∠B=________.20、若长方形的一边长等于,另一边比它小,则这个长方形的周长等于________.21、如图的四边形均为矩形或正方形,根据图形的面积,写出一个正确的等式:________.22、如图,矩形ABCD中,AB=3,BC=4,,点E是BC边上一点,连接AE,把∠B 沿AE折叠,使点B落在点处,当△CE为直角三角形时,BE的长为________23、一种病菌的直径为0.0000036m,用科学记数法表示为________ m.24、已知:如图,Rt△ABC中,∠C=90°,沿过点B的一条直线BE折叠△ABC,使点C恰好落在AB边的中点D处,则∠A=________度.25、一个箱子装有除颜色外都相同的2个白球,2个黄球,1个红球.现添加同种型号的1个球,使得从中随机抽取1个球,这三种颜色的球被抽到的概率都是,那么添加的球是________.三、解答题(共5题,共计25分)26、计算:27、如图,在△ABC中,AB=AC,AD⊥BC于点D,将△ADC绕点A顺时针旋转,使AC与AB重合,点D落在点E处,AE的延长线交CB的延长线于点M,EB的延长线交AD的延长线于点N.求证:AM=AN.28、如图,点B,F,C,E在一条直线上,FB=CE,AB∥ED,AC∥FD。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第2题图nm ba70°70°110°第3题图CB A2112第六题图DCB A 北师大版七年级下册数学期末模拟试卷 C一、填空题(把你认为正确的答案填入横线上,每小题3分,共30分)1、计算)1)(1(+-x x = 。

2、如图,互相平行的直线是 。

3、如图,把△ABC 的一角折叠,若∠1+∠2 =120°,则∠A = 。

4、如图,转动的转盘停止转动后,指针指向黑色区域的概率是 。

5、汽车司机在观后镜中看到后面一辆汽车的车牌号为 ,则这辆车的实际牌照是 。

6、如图,∠1 =∠2 ,若△ABC ≌△DCB ,则添加的条件可以是 。

7、将一个正△的纸片剪成4个全等的小正△,再将其中的一个按同样的方法剪成4个更小的正△,…如此下去,结果如下表:则=na 。

8、已知412+-kx x 是一个完全平方式,那么k 的值为 。

9、近似数25.08万精确到 位,有 位有效数字,用科学计数法表示为 。

10、两边都平行的两个角,其中一个角的度数是另一个角的3倍少20°,这两个角的度数分别是 。

二、选择题(把你认为正确的答案的序号填入刮号内,每小题3分,共24分)11、下列各式计算正确的是 ( )A . a 2+ a 2=a 4B. 211a a a =÷- C. 226)3(x x = D. 222)(y x y x +=+12、在“妙手推推推”游戏中,主持人出示了一个9位数 ,让参加者猜商品价格,被猜的价格是一个4位数,也就是这个9位数从左到右连在一起的某4个数字,如果参与者不知道商品的价格,从这些连在一起的所有4位数中,猜中任猜一个,他猜中该商品的价格的概率是 ( )876954521第1页 共4页DCBADC B A FED C BA EDCBA A. 91B. 61 C. 51 D. 3113、一列火车由甲市驶往相距600㎞的乙市,火车的速度是200㎞/时,火车离乙市的距离s (单位:㎞)随行驶时间t (单位:小时) 变化的关系用图表示正确的是 ( )14、如左图,是把一张长方形的纸片沿长边中点的连线对折两次后得到的图形,再沿虚线裁剪,展开后的图形是 ( )15、教室的面积约为60m ²,它的百万分之一相当于 ( )A. 小拇指指甲盖的大小B. 数学书封面的大小C. 课桌面的大小D. 手掌心的大小16、如右图,AB ∥CD , ∠BED=110°,BF 平分∠ABE,DF 平分∠CDE,则∠BFD= ( ) A. 110° B. 115° C.125° D. 130° 17、平面上4条直线两两相交,交点的个数是 ( ) A. 1个或4个 B. 3个或4个C. 1个、4个或6个D. 1个、3个、4个或6个 18、如图,点E 是BC 的中点,AB ⊥BC , DC ⊥BC ,AE 平分∠BAD ,下列结论: ① ∠A E D =90° ② ∠A D E = ∠ C D E ③ D E = B E ④ AD =AB +CD ,四个结论中成立的是 ( ) A. ① ② ④ B. ① ② ③ C. ② ③ ④ D. ① ③ ④第2页 共4页乙甲B A OEDC B A三、解答题(共66分)19、计算(每小题4分,共12分) (1)201220112)23()32()31(-⨯--- (2)的值求22,10,3b a ab b a +==-(3)〔225)2)(()2(y y x y x y x -+--+〕÷()2y20、(6分) 某地区现有果树24000棵,计划今后每年栽果树3000棵。

(1)试用含年数x (年)的式子 表示果树总棵数y (棵);(2)预计到第5年该地区有多少 棵果树? 21、(8分)小河的同旁有甲、乙两个村庄(左图),现计划在河岸AB 上建一个水泵站,向两村供水,用以解决村民生活用水问题。

(1) 如果要求水泵站到甲、乙两村庄的距离相等,水泵站M 应建在河岸AB 上的何处?(2)如果要求建造水泵站使用建材最省,水泵站M 又应建在河岸AB 上的何处?22、(8分)超市举行有奖促销活动:凡一次性购物满300元者即可获得一次摇奖机会。

摇奖机是一个圆形转盘,被分成16等分,摇中红、黄、蓝色区域,分获一、二、三获奖,奖金依次为60、50、 40元。

一次性购物满300元者,如果不摇奖可返还现金15元。

(1)摇奖一次,获一等奖的概率是多少?(2)老李一次性购物满了300元,他是参与摇奖划算还是领15元现金划算,请你帮他算算。

23、(8分)如图,已知△ABC 中,AB = AC,点D 、E 分别在AB 、AC 上,且BD = CE,如何说明OB=OC 呢?解:∵AB=AC ∴∠A B C =∠A C B ( )又∵BD = CE ( ) BC = CB ( )∴△BCD ≌△CBE ( )∴∠( ) = ∠( ) ∴OB = OC ( )。

----无---------------效--------------------第3页 共4页/时24、.(10分)(2012·南宁中考)如图所示,∠BAC=∠ABD=90°,AC=BD ,点O 是AD ,BC 的交点,点E 是AB 的中点.(1)图中有哪几对全等三角形,请写出来; (2)试判断OE 和AB 的位置关系,并给予证明.25、(8分)星期天,玲玲骑自行车到郊外游玩,她离家的距离与时间的关系如图所示,请根据图像回答下列问题。

(1)玲玲到达离家最远的地方是什么时间?离家多远? (2)她何时开始第一次休息?休息了多长时间?(3)她骑车速度最快是在什么时候?车速多少? (4)玲玲全程骑车的平均速度是多少?26、(10分)把两个含有45°角的直角三角板如图放置,点D 在AC 上连接AE 、BD ,试判断AE与BD 的关系,并说明理由。

第4页 共4页北师大版七年级下册数学期末模拟试卷 C一、二、三、19、 7.5 , 29,y x 2123+ 20、x y 300024000+=,390005==y x 时,21、如图:22、P 一等奖=161,60×161+50×81+40×41=20 20﹥15 ∴选择摇奖。

23、等边对等角 、 已知 、 SAS 、 ∠ DCB 、 等角对等边。

24、图略 ,(1)农村居民纯收入不断增加,特别是进入2000年后增幅更大;(2)2005年农村人均纯收入达3865元;(3)2005年农村人均纯收入是1990年的5倍多;(供参考)25、(1)12点,30千米 (2)10:30 , 30 分钟 (3)13~15点,15千米/小时(4)10千米/小时26、延长BD 交AE 于F ,证△BCD ≌△ACE ,可得BD=AE ,BD ⊥AE .期末综合检测第一~六章(90分钟 100分)一、选择题(每小题3分,共24分)1.如图所示,BC∥DE,∠1=108°,∠AED=75°,则∠A的大小是( )(A)60°(B)33°(C)30°(D)23°2.下列运算正确的是( )(A)3a-(2a-b)=a-b(B)(a3b2-2a2b)÷ab=a2b-2(C)(a+2b)(a-2b)=a2-2b2(D)(-12a2b)3=-18a6b33.(2012·武汉中考)从标号分别为1,2,3,4,5的5张卡片中,随机抽取1张.下列事件中,必然事件是( )(A)标号小于6(B)标号大于6(C)标号是奇数(D)标号是34.如图,△ABC的高AD,BE相交于点O,则∠C与∠BOD的关系是( )(A)相等(B)互余(C)互补(D)不互余、不互补也不相等5.(2012·绵阳中考)图(1)是一个长为2m,宽为2n(m>n)的长方形,用剪刀沿图中虚线(对称轴)剪开,把它分成四块形状和大小都一样的小长方形,然后按图(2)那样拼成一个正方形,则中间空的部分的面积是( )(A)2mn (B)(m+n)2(C)(m-n)2(D)m2-n26.根据生物学研究结果,青春期男女生身高增长速度呈现如图规律,由图可以判断,下列说法错误的是( )(A)男生在13岁时身高增长速度最快(B)女生在10岁以后身高增长速度放慢(C)11岁时男女生身高增长速度基本相同(D)女生身高增长的速度总比男生慢7.如图,AB∥CD,CE∥BF,A,E,F,D在一条直线上,BC与AD交于点O且OE=OF,则图中有全等三角形的对数为( )(A)2 (B)3 (C)4 (D)58.(2012·大庆中考)如图所示,将一个圆盘四等分,并把四个区域分别标上Ⅰ、Ⅱ、Ⅲ、Ⅳ,只有区域Ⅰ为感应区域,中心角为60°的扇形AOB绕点O转动,在其半径OA 上装有带指示灯的感应装置,当扇形AOB 与区域Ⅰ有重叠(O 点除外)的部分时,指示灯会发光,否则不发光,当扇形AOB 任意转动时,指示灯发光的概率为( )(A)16 (B)14(C)512(D)712二、填空题(每小题4分,共24分)9.如图,直线a ,b 被直线c 所截(即直线c 与直线a ,b 都相交),且a ∥b ,若∠1=118°,则∠2的度数=____度.10.(2012·泰州中考)若代数式x 2+3x+2可以表示为(x-1)2+a(x-1)+b 的形式,则a+b 的值是____.11.(2012·厦门中考)在分别写有整数1到10的10张卡片中,随机抽取1张卡片,则该卡片的数字恰好是奇数的概率是____.12.某市出租车价格是这样规定的:不超过2千米,付车费5元,超过的部分按每千米1.6元收费,已知李老师乘出租车行驶了x(x >2)千米,付车费y 元,则所付车费y 元与出租车行驶的路程x 千米之间的函数关系为________________.13.(2012·嘉兴中考)在直角△ABC 中,∠C=90°,AD 平分∠BAC 交BC 于点D ,若CD=4,则点D 到斜边AB 的距离为____.14.(2012·三明中考)如图,在△ABC 中,D 是BC 边上的中点,∠BDE=∠CDF ,请你添加一个条件,使DE=DF 成立.你添加的条件是__________________.(不再添加辅助线和字母)三、解答题(共52分)15.(10分)(2012·贵阳中考)先化简,再求值:.2b2+(a+b)(a-b)-(a-b)2,其中a=-3,b=1216.(10分)(2012·南宁中考)如图所示,∠BAC=∠ABD=90°,AC=BD,点O 是AD,BC的交点,点E是AB的中点.(1)图中有哪几对全等三角形,请写出来;(2)试判断OE和AB的位置关系,并给予证明.17.(10分)(2012·吉林中考)在如图所示的三个函数图象中,有两个函数图象能近似地刻画如下a,b两个情境:情境a:小芳离开家不久,发现把作业本忘在家里,于是返回了家里找到了作业本再去学校;情境b:小芳从家出发,走了一段路程后,为了赶时间,以更快的速度前进.(1)情境a,b所对应的函数图象分别是____、____(填写序号);(2)请你为剩下的函数图象写出一个适合的情境.18.(10分)(2012·乐山中考)如图,在10×10的正方形网格中,每个小正方形的边长都为1,网格中有一个格点△ABC(即三角形的顶点都在格点上).(1)在图中作出△ABC关于直线l对称的△A1B1C1.(要求:A与A1,B与B1,C与C1相对应)(2)在(1)问的结果下,连接BB1,CC1,求四边形BB1C1C的面积.19.(12分)甲、乙两人玩“锤子、石头、剪子、布”游戏,他们在不透明的袋子中放入形状、大小均相同的15张卡片,其中写有“锤子”“石头”“剪子”“布”的卡片张数分别为2,3,4,6.两人各随机摸出一张卡片(先摸者不放回)来比胜负,并约定:“锤子”胜“石头”和“剪子”,“石头”胜“剪子”,“剪子”胜“布”,“布”胜“锤子”和“石头”,同种卡片不分胜负.(1)若甲先摸,则他摸出“石头”的概率是多少?(2)若甲先摸出了“石头”,则乙获胜的概率是多少?(3)若甲先摸,则他先摸出哪种卡片获胜的可能性最大?答案解析1.【解析】选B.因为BC∥DE,所以∠EDB=∠1=108°.又因为∠EDB=∠A+∠AED,所以∠A=∠EDB-∠AED=108°-75°=33°.2.【解析】选D.A,3a-(2a-b)=a+b,故选项错误; B,(a3b2-2a2b)÷ab=a2b-2a,故选项错误;C,(a+2b)·(a-2b)=a2-4b2,故选项错误;故D正确.3.【解析】选A.A是一定发生的事件,是必然事件,故选项正确;B是不可能发生的事件,故选项错误;C是不确定事件,故选项错误;D是不确定事件,故选项错误.4.【解析】选A.因为△ABC 的高为AD ,BE ,所以∠C+∠OAE=90°,∠OAE+∠AOE=90°,所以∠C=∠AOE ,因为∠AOE=∠BOD(对顶角相等),所以∠C=∠BOD.故选A.5.【解析】选C.由题意可得,正方形的边长为(m+n),故正方形的面积为(m+n)2,又因为原矩形的面积为4mn,所以中间空的部分的面积=(m+n)2-4mn=(m-n)2.故选C.6.【解析】选D.由图可知男生在13岁时身高增长速度最快,故A 选项正确;女生在10岁以后身高增长速度放慢,故B 选项正确;11岁时男女生身高增长速度基本相同,故C 选项正确;女生身高增长的速度不是总比男生慢,有时快,故D 选项错误.7.【解析】选B.①因为CE ∥BF ,所以∠OEC=∠OFB ,又OE=OF ,∠COE=∠BOF ,所以△OCE ≌△OBF ,所以OC=OB ,CE=BF ;②因为AB ∥CD ,所以∠ABO=∠DCO ,∠COD=∠AOB ,因为OC=OB ,故△AOB ≌△DOC ,所以AB=CD ;③因为AB ∥CD ,CE ∥BF ,所以∠ABF=∠ECD ,又因为CE=BF ,AB=CD ,所以△CDE ≌△BAF.8.【解析】选D.如图,因为当扇形AOB 落在区域Ⅰ时,指示灯会发光; 当扇形AOB 落在区域Ⅱ的∠FOC(∠FOC=60°)内部时,指示灯会发光; 当扇形AOB 落在区域Ⅳ的∠DOE(∠DOE=60°)内部时,指示灯会发光.所以指示灯发光的概率为:609060736012++=. 9.【解析】因为a ∥b ,所以∠1=∠3=118°,因为∠3与∠2互为邻补角,所以∠2=62°.答案:6210.【解析】因为x2+3x+2=(x-1)2+a(x-1)+b=x2+(a-2)x+(b-a+1).所以a-2=3, b-a+1=2,所以a=5,b=6,所以a+b=5+6=11.答案:1111.【解析】因为有整数1到10的10张卡片,所以随机抽取1张卡片,共有10种等可能的结果.因为该卡片的数字恰好是奇数的有5种情况,所以该卡片的数字恰好是奇数的概率是51.102答案:1212.【解析】由题意得,李老师乘出租车行驶了x(x>2)千米,故可得:y=5+(x-2)×1.6=1.6x+1.8.答案:y=1.6x+1.813.【解析】如图,过D点作DE⊥AB于点E,则DE即为所求,因为∠C=90°,AD平分∠BAC交BC于点D,所以CD=DE(角的平分线上的点到角的两边的距离相等),因为CD=4,所以DE=4.答案:414.【解析】答案不惟一,如AB=AC或∠B=∠C或∠BED=∠CFD或∠AED=∠AFD等;理由是:①因为AB=AC,所以∠B=∠C,根据ASA证出△BED≌△CFD,即可得出DE=DF;②由∠B=∠C,∠BDE=∠CDF,BD=DC,根据ASA证出△BED≌△CFD,即可得出DE=DF;③由∠BED=∠CFD,∠BDE=∠CDF,BD=DC,根据AAS证出△BED≌△CFD,即可得出DE=DF;④因为∠AED=∠AFD,∠AED=∠B+∠BDE,∠AFD=∠C+∠CDF,又因为∠BDE=∠CDF,所以∠B=∠C,即由∠B=∠C,∠BDE=∠CDF,BD=DC,根据ASA证出△BED≌△CFD,即可得出DE=DF.答案:答案不惟一,如AB=AC或∠B=∠C或∠BED=∠CFD或∠AED=∠AFD等15.【解析】原式=2b 2+a 2-b 2-(a 2+b 2-2ab)=2b 2+a 2-b 2-a 2-b 2+2ab=2ab ,当a=-3,b=12时,原式=2×(-3)×12=-3.16.【解析】(1)△ABC ≌△BAD ,△AOE ≌△BOE ,△AOC ≌△BOD ;(2)OE ⊥AB.理由如下:因为在Rt △ABC 和Rt △BAD 中,AC BD BAC ABD AB BA =⎧⎪∠=∠⎨⎪=⎩,,, 所以△ABC ≌△BAD ,所以∠DAB=∠CBA ,所以OA=OB ,因为点E 是AB 的中点,所以OE ⊥AB.17.【解析】(1)因为情境a :小芳离开家不久,即离家一段路程,此时①②③都符合,发现把作业本忘在家里,于是返回了家里找到了作业本,即又返回家,离家的距离是0,此时②③都符合,又去学校,即离家越来越远,此时只有③符合,所以只有③符合情境a ;因为情境b :小芳从家出发,走了一段路程后,为了赶时间,以更快的速度前进,即离家越来越远,且没有停留,所以只有①符合.答案:③ ①(2)图象②是小芳离开家不久,休息了一会儿,又走回了家.18.【解析】(1)如图,△A 1B 1C 1是△ABC 关于直线l 的对称图形.(2)由图得四边形BB 1C 1C 是等腰梯形,BB 1=4,CC 1=2,高是4.所以11BB C C S 四边形=12(BB 1+CC 1)×4, =12×(4+2)×4=12.19.【解析】(1)若甲先摸,共有15张卡片可供选择,其中写有“石头”的卡片共3张,故甲摸出“石头”的概率为31155=. (2)若甲先摸且摸出“石头”,则可供乙选择的卡片还有14张,其中乙只有摸出卡片“锤子”或“布”才能获胜,这样的卡片共有8张,故乙获胜的概率为84147=. (3)若甲先摸,则“锤子”“石头”“剪子”“布”四种卡片都有可能被摸出. 若甲先摸出“锤子”,则甲获胜(即乙摸出“石头”或“剪子”)的概率为71142=; 若甲先摸出“石头”,则甲获胜(即乙摸出“剪子”)的概率为42147=; 若甲先摸出“剪子”,则甲获胜(即乙摸出“布”)的概率为63147=; 若甲先摸出“布”,则甲获胜(即乙摸出“锤子”或“石头”)的概率为514. 故甲先摸出“锤子”获胜的可能性最大.。

相关文档
最新文档