包头市青山区2018第二次模拟数学测试题 预测卷提升版(中等难度版

合集下载

内蒙古包头市2018年中考数学二模试卷

内蒙古包头市2018年中考数学二模试卷

内蒙古包头市2018年中考数学二模试卷一、(共12小题,每小题3分,满分36分,每小题只有一个正确选项,请将答题卡上对应题目的答案标号涂黑)1.计算:|﹣5+3|的结果是()A.﹣8 B.8 C.﹣2 D.22.下列运算结果正确的是()A.(2x3)2=4x6B.x2+x3=x5C.(﹣x)﹣1=D.x0=13.餐桌边的一蔬一饭,舌尖上的一饮一酌,实属来之不易,舌尖上的浪费让人触目惊心,据统计,中国每年浪费的食物总量折合粮食约500亿千克,这个数据用科学记数法表示为()A.5×109千克B.50×109千克C.5×1010千克D.0.5×1011千克4.下列说法正确的是()A.“购买1张彩票就中奖”是不可能事件B.“掷一次骰子,向上一面的点数是6”是随机事件C.了解我国青年人喜欢的电视节目应作全面调查D.甲、乙两组数据,若S甲2>S乙2,则乙组数据波动大5.不等式组的最大整数解为()A.1 B.2 C.3 D.46.一组按规律排列的式子:,,,,…第n个式子是()(用含n的式子表示,n为正整数)A.B.C. D.7.如图,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D.若AC=,BC=2,则sin ∠ACD的值为()A.B.C.D.8.已知等腰三角形的腰和底的长分别是一元二次方程x2﹣4x+3=0的根,则该三角形的周长可以是()A.5 B.7 C.5或7 D.109.如图,直径为10的⊙A经过点C(0,5)和点O(0,0),B是y轴右侧⊙A优弧上一点,则cos∠OBC的值为()A.B.C.D.10.已知关于x的分式方程+=1的解是非负数,则m的取值范围是()A.m>2 B.m≥2 C.m≥2且m≠3 D.m>2且m≠311.已知下列命题:①若a>b,则c﹣a<c﹣b;②若|a|=﹣a,则a<0;③对角线互相平分且相等的四边形是菱形;④直角三角形斜边上的中线等于斜边的一半.其中原命题与逆命题均为真命题的是()A.①③B.②④C.①④D.③④12.如图,二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列结论:①b2﹣4ac>0;②4a+c>2b;③(a+c)2>b2;④x(ax+b)≤a﹣b.其中正确的结论的个数是()A.三B.二C.一D.零二、填空题(共8小题,每小题3分,满分24分。

包头市青山区2018第二次模拟数学测试题 预测卷提升版(高难度版

包头市青山区2018第二次模拟数学测试题 预测卷提升版(高难度版

绝密★ 启用前2018 年初中升学考试调研试卷(二)数学(包头市青山区第二次模拟数学测试题预测卷提升版【高难度版】)注意事项:1.本试卷9 页,满分为120 分,考试时间为120 分钟。

2.答题前,考生务必先将自己的座位号、准考证号、姓名填写在试卷和答题卡的指定位置。

请认真核准条形码上的相关信息后,将条形码粘贴在答题卡的指定位置上。

3.答选择题时,必须使用2B 铅笔将答题卡上对应题目的答案标号涂黑,修改时用橡皮擦干净,再选涂其他答案。

4.答非选择题时,必须使用0.5 毫米的黑色字迹签字笔书写,作图题可先用铅笔绘出,确认后再用0.5 毫米的黑色字迹签字笔描清楚,要求字体工整、笔迹清晰。

严格按题号所示的答题区域作答,超出答题区域书写的答案无效;在试卷、草稿纸上答题无效。

5.保持答题卡清洁、完整。

严禁折叠、破损,严禁在答题卡上做任何标记,严禁使用涂改液、胶带纸、修正带。

考试结束后,将本试卷和答题卡一并交回。

一、选择题:本大题共有12 小题,每小题3 分,共36 分。

每小题只有一个正确选项,请将答题卡上对应题目的答案标号涂黑1.下列各数|﹣2|,﹣(﹣2)2,(﹣2)-1,(﹣2)3中,与64的算术平方根互为相反数的是()A. |﹣2|B. ﹣(﹣2)2D. (﹣2)3C.(﹣2)-12. 下列计算正确的()A. (x +2)2 =x2 +2B. (-4)2 x3 ⋅3 8x2 =8x5C. (-x-1 )4 =x4D. (- 3 +x)(- 3 -x) = 9 -x23.图是由几个小立方块所搭成的几何体的俯视图,小正方形中的数字表示在该位置小立方块的个数,则这个几何体的左视图为()4.在△ABC 中,∠C = 90°.若AB = 3,BC = 1,则sin 2 A + cos2 B =()15332A. 1B.32 16C. D.9 95.下列说法正确的是()A.一次数学测试后,某班50 名学生的成绩被分为5 组,第1~4 组的频数分别为12、10、15、8,则第5 组的频率是0.2B.若代数式1+x -1有意义,则实数x 的取值范围是x > 1C.已知一组数据6,8,10,x 的中位数与平均数相等,这样的x 有4 个D.已知点A(1-a,-5)和点B(2,4 + b)关于x 轴对称,则(a +b)0 =16.已知2 是关于x 的方程x2 - 2mx + 3m = 0 的一个根,并且这个方程的两个根恰好是等腰三角形ABC 的两条边长,则该等腰三角形底边上的中线为()A. 1B.C. 2D. 67.如图所示,在平行四边形ABCD 中,以点A 为圆心,AB 长为半径画弧交AD 于点F,再1分别以点B、F 为圆心,大于2BF 长为半径画弧,两弧交于一点P,连接AP 并延长交BC1于点E,连接EF.AE,BF 相交于点O,若线段BF 长是四边形ABEF 的周长4AE 的长为10 ,则CD 的长为(),若线段A. 5B. 10C. 5D. 58.如图,正方形ABCD 的边长为2,点E 在对角线BD 上,设∠BAE = α,且sin 2α=2,2若EF⊥AB,垂足为F,则△AFE 的面积是()x -122 2 2 2A. 2 -B. 2 - 2C.-1D. 1+229. 已知下列命题:① 相等的圆心角所对的弧相等;② 有一条对角线与一组邻边构成等腰三角形的平行四边形是菱形;③ 若m < 0 ,则 x < 0 ; x④ 若一元二次方程3x 2- 2k x - 1 = 0 有两个不相等的实数根,则 k ≥ 0 3其中原命题与逆命题均为真命题的个数是()A. 0 个B. 1 个C. 2 个D. 3 个⎧⎪2x - a ≥ 010.如图,如果不等式组⎨ 2的整数解仅为 1,2,3,假设所有适合这个不等式组 ⎪⎩ b - 3x > 0的整数解,a ,b 均对应平面直角坐标系上的点 M (a ,b ),则 M 点位于一次函数 y = -x +14的概率为()1 1 A.B.361 5 C.D.41211. 如下左图,在矩形 ABCD 中,AB = 6,BC = 8,O 为矩形 ABCD 的中心,以 D 为圆心,2 为半径作⊙D ,P 为⊙D 上的一个动点,连接 AP 、OP ,则△AOP 面积的最大值为( )34 A. 15B.548 C.D. 17512. 已知抛物线 y = ax2+ bx + c 在坐标系中的位置如上右图所示,它与 x 轴、y 轴的交点分别为 A 、B ,已知 B 点关于 x 轴的对称点为(0,-3),点 P 是其对称轴 x = 1 上的动点,现有2 ⎣ ⎦ 以下结论: ① abc < 0 ; ② 3a + c = 0 ;③ x = 3 是一元二次方程 ax 2+ bx + c = 0 的一个根; ④ 点 P 不能在反比例函数 y =a +b +c 的第一象限图象上x⑤ △PAB 周长的最小值是3 + 则正确结论的个数为()A. 2 个B. 3 个C. 4 个D. 5 个二、填空题:本大题共有 8 小题,每小题 3 分,共 24 分。

青山区二中2018-2019学年高二上学期第二次月考试卷数学(1)

青山区二中2018-2019学年高二上学期第二次月考试卷数学(1)

青山区二中2018-2019学年高二上学期第二次月考试卷数学 班级__________ 姓名__________ 分数__________一、选择题1. 设实数,则a 、b 、c 的大小关系为( )A .a <c <bB .c <b <aC .b <a <cD .a <b <c2. 已知实数x ,y 满足有不等式组,且z=2x+y 的最大值是最小值的2倍,则实数a 的值是( )A .2B .C .D .3. 若函数1,0,()(2),0,x x f x f x x +≥⎧=⎨+<⎩则(3)f -的值为( )A .5B .1-C .7-D .24. 设函数y=sin2x+cos2x 的最小正周期为T ,最大值为A ,则( )A .T=π,B .T=π,A=2C .T=2π,D .T=2π,A=25. 若函数f (x )=log a (2x 2+x )(a >0且a ≠1)在区间(0,)内恒有f (x )>0,则f (x )的单调递增区间为( )A .(﹣∞,)B .(﹣,+∞)C .(0,+∞)D .(﹣∞,﹣)6. 已知||=||=1,与夹角是90°,=2+3, =k ﹣4,与垂直,k 的值为( )A .﹣6B .6C .3D .﹣37. 设()f x 是偶函数,且在(0,)+∞上是增函数,又(5)0f =,则使()0f x >的的取值范围是( ) A .50x -<<或5x > B .5x <-或5x > C .55x -<< D .5x <-或05x <<8. 定义在R 上的奇函数f (x ),满足,且在(0,+∞)上单调递减,则xf (x )>0的解集为( )A .B .C .D .9. 在下面程序框图中,输入44N =,则输出的S 的值是( )A .251B .253C .255D .260【命题意图】本题考查阅读程序框图,理解程序框图的功能,本质是把正整数除以4后按余数分类.10.已知的终边过点()2,3,则7tan 4πθ⎛⎫+⎪⎝⎭等于( ) A .15- B .15C .-5D .511.定义新运算⊕:当a ≥b 时,a ⊕b=a ;当a <b 时,a ⊕b=b 2,则函数f (x )=(1⊕x )x ﹣(2⊕x ),x ∈[﹣2,2]的最大值等于( )A .﹣1B .1C .6D .1212.设全集U={1,2,3,4,5,6},设集合P={1,2,3,4},Q={3,4,5},则P ∩(∁U Q )=( ) A .{1,2,3,4,6} B .{1,2,3,4,5} C .{1,2,5}D .{1,2}二、填空题13.在中,角、、所对应的边分别为、、,若,则_________14.在棱长为1的正方体上,分别用过共顶点的三条棱中点的平面截该正方体,则截去8个三棱锥后,剩下的凸多面体的体积是 .15.在正方体ABCD ﹣A 1B 1C 1D 1中,异面直线A 1B 与AC 所成的角是 °.16.已知一个算法,其流程图如图,则输出结果是 .17.幂函数1222)33)(+-+-=m m x m m x f (在区间()+∞,0上是增函数,则=m .18.已知双曲线x 2﹣y 2=1,点F 1,F 2为其两个焦点,点P 为双曲线上一点,若PF 1⊥PF 2,则|PF 1|+|PF 2|的值为 . 三、解答题19.已知函数()x f x e x a =-+,21()x g x x a e=++,a R ∈. (1)求函数()f x 的单调区间;(2)若存在[]0,2x ∈,使得()()f x g x <成立,求的取值范围; (3)设1x ,2x 是函数()f x 的两个不同零点,求证:121x x e +<.20.已知函数f (x )=ax 2+bx+c ,满足f (1)=﹣,且3a >2c >2b . (1)求证:a >0时,的取值范围;(2)证明函数f (x )在区间(0,2)内至少有一个零点;(3)设x1,x2是函数f(x)的两个零点,求|x1﹣x2|的取值范围.21.如图所示的几何体中,EA⊥平面ABC,BD⊥平面ABC,AC=BC=BD=2AE=,M是AB的中点.(1)求证:CM⊥EM;(2)求MC与平面EAC所成的角.22.某小区在一次对20岁以上居民节能意识的问卷调查中,随机抽取了100份问卷进行统计,得到相关的数(2)据了解到,全小区节能意识强的人共有350人,估计这350人中,年龄大于50岁的有多少人?(3)按年龄分层抽样,从节能意识强的居民中抽5人,再从这5人中任取2人,求恰有1人年龄在20至50岁的概率.23.已知f(x)=|x﹣1|+|x+2|.(1)解不等式f(x)≥5;(2)若关于x的不等式f(x)>a2﹣2a对于任意的x∈R恒成立,求a的取值范围.24.已知曲线C的参数方程为(y为参数),过点A(2,1)作平行于θ=的直线l 与曲线C分别交于B,C两点(极坐标系的极点、极轴分别与直角坐标系的原点、x轴的正半轴重合).(Ⅰ)写出曲线C的普通方程;(Ⅱ)求B、C两点间的距离.青山区二中2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题1. 【答案】A【解析】解:∵,b=20.1>20=1,0<<0.90=1.∴a <c <b . 故选:A .2. 【答案】B【解析】解:由约束条件作出可行域如图,联立,得A (a ,a ),联立,得B (1,1),化目标函数z=2x+y 为y=﹣2x+z , 由图可知z max =2×1+1=3,z min =2a+a=3a ,由6a=3,得a=. 故选:B .【点评】本题考查了简单的线性规划考查了数形结合的解题思想方法,是中档题.3. 【答案】D111] 【解析】试题分析:()()()311112f f f -=-==+=. 考点:分段函数求值.4.【答案】B【解析】解:由三角函数的公式化简可得:=2()=2(sin2xcos+cos2xsin)=2sin(2x+),∴T==π,A=2故选:B5.【答案】D【解析】解:当x∈(0,)时,2x2+x∈(0,1),∴0<a<1,∵函数f(x)=log a(2x2+x)(a>0,a≠1)由f(x)=log a t和t=2x2+x复合而成,0<a<1时,f(x)=log a t在(0,+∞)上是减函数,所以只要求t=2x2+x>0的单调递减区间.t=2x2+x>0的单调递减区间为(﹣∞,﹣),∴f(x)的单调增区间为(﹣∞,﹣),故选:D.【点评】本题考查复合函数的单调区间问题,复合函数的单调区间复合“同增异减”原则,在解题中勿忘真数大于0条件.6.【答案】B【解析】解:∵=(2+3)(k﹣4)=2k+(3k﹣8)﹣12=0,又∵=0.∴2k﹣12=0,k=6.故选B【点评】用一组向量来表示一个向量,是以后解题过程中常见到的,向量的加减运算是用向量解决问题的基础,要学好运算,才能用向量解决立体几何问题,三角函数问题,好多问题都是以向量为载体的7.【答案】B考点:函数的奇偶性与单调性.【思路点晴】本题主要考查函数的单调性、函数的奇偶性,数形结合的数学思想方法.由于函数是偶函数,所以定义域关于原点对称,图象关于y 轴对称,单调性在y 轴两侧相反,即在0x >时单调递增,当0x <时,函数单调递减.结合(5)0f =和对称性,可知(5)0f ±=,再结合函数的单调性,结合图象就可以求得最后的解集.1 8. 【答案】B【解析】解:∵函数f (x )是奇函数,在(0,+∞)上单调递减,且f ()=0,∴f (﹣)=0,且在区间(﹣∞,0)上单调递减,∵当x <0,当﹣<x <0时,f (x )<0,此时xf (x )>0当x >0,当0<x <时,f (x )>0,此时xf (x )>0综上xf (x )>0的解集为故选B9. 【答案】B10.【答案】B 【解析】考点:三角恒等变换. 11.【答案】C【解析】解:由题意知当﹣2≤x≤1时,f(x)=x﹣2,当1<x≤2时,f(x)=x3﹣2,又∵f(x)=x﹣2,f(x)=x3﹣2在定义域上都为增函数,∴f(x)的最大值为f(2)=23﹣2=6.故选C.12.【答案】D【解析】解:∵U={1,2,3,4,5,6},Q={3,4,5},∴∁U Q={1,2,6},又P={1,2,3,4},∴P∩(C U Q)={1,2}故选D.二、填空题13.【答案】【解析】因为,所以,所以,所以答案:14.【答案】.【解析】解:在棱长为1的正方体上,分别用过共顶点的三条棱中点的平面截该正方体,则截去8个三棱锥,8个三棱锥的体积为:=.剩下的凸多面体的体积是1﹣=.故答案为:.【点评】本题考查几何体的体积的求法,转化思想的应用,考查空间想象能力计算能力.15.【答案】60°°.【解析】解:连结BC1、A1C1,∵在正方体ABCD﹣A1B1C1D1中,A1A平行且等于C1C,∴四边形AA1C1C为平行四边形,可得A1C1∥AC,因此∠BA1C1(或其补角)是异面直线A1B与AC所成的角,设正方体的棱长为a,则△AB1C中A1B=BC1=C1A1=a,1∴△A1B1C是等边三角形,可得∠BA1C1=60°,即异面直线A1B与AC所成的角等于60°.故答案为:60°.【点评】本题在正方体中求异面直线所成角和直线与平面所成角的大小,着重考查了正方体的性质、空间角的定义及其求法等知识,属于中档题.16.【答案】5.【解析】解:模拟执行程序框图,可得a=1,a=2不满足条件a2>4a+1,a=3不满足条件a2>4a+1,a=4不满足条件a2>4a+1,a=5满足条件a2>4a+1,退出循环,输出a的值为5.故答案为:5.【点评】本题主要考查了循环结构的程序框图,依次正确写出每次循环得到的a的值是解题的关键,属于基本知识的考查.17.【答案】【解析】【方法点睛】本题主要考查幂函数的定义与性质,属于中档题.幂函数定义与性质应用的三个关注点:(1)若幂函数()y x R αα=∈是偶函数,则α必为偶数.当α是分数时,一般将其先化为根式,再判断;(2)若幂函数()y x R αα=∈在()0,+∞上单调递增,则α0>,若在()0,+∞上单调递减,则0α<;(3)在比较幂值的大小时,必须结合幂值的特点,选择适当的函数,借助其单调性进行比较. 118.【答案】 .【解析】解:∵PF 1⊥PF 2,∴|PF 1|2+|PF 2|2=|F 1F 2|2. ∵双曲线方程为x 2﹣y 2=1,∴a 2=b 2=1,c 2=a 2+b 2=2,可得F 1F 2=2∴|PF 1|2+|PF 2|2=|F 1F 2|2=8又∵P 为双曲线x 2﹣y 2=1上一点, ∴|PF 1|﹣|PF 2|=±2a=±2,(|PF 1|﹣|PF 2|)2=4因此(|PF 1|+|PF 2|)2=2(|PF 1|2+|PF 2|2)﹣(|PF 1|﹣|PF 2|)2=12∴|PF 1|+|PF 2|的值为故答案为:【点评】本题根据已知双曲线上对两个焦点的张角为直角的两条焦半径,求它们长度的和,着重考查了双曲线的基本概念与简单性质,属于基础题.三、解答题19.【答案】(1)()f x 的单调递增区间为(0,)+∞,单调递减区间为(,0)-∞;(2)1a >或0a <;(3)证明见解析. 【解析】试题解析: (1)'()1xf x e =-.令'()0f x >,得0x >,则()f x 的单调递增区间为(0,)+∞;] 令'()0f x <,得0x <,则()f x 的单调递减区间为(,0)-∞. (2)记()()()F x f x g x =-,则21()2xxF x e x a a e =--+-,1'()2x xF x e e =+-.∵1220x x e e +-≥=,∴'()0F x ≥, ∴函数()F x 为(上的增函数, ∴当[]0,2x ∈时,()F x 的最小值为2(0)F a a =-.∵存在[]0,2x ∈,使得()()f x g x <成立,∴()F x 的最小值小于0,即20a a -<,解得1a >或0a <.1(3)由(1)知,0x =是函数()f x 的极小值点,也是最小值点,即最小值为(0)1f a =+, 则只有1a <-时,函数()f x 由两个零点,不妨设12x x <, 易知10x <,20x >,∴1222()()()()f x f x f x f x -=--2222()()xx e x a e x a -=-+-++2222x x e e x -=--,令()2x x h x e e x -=--(0x ≥),考点:导数与函数的单调性;转化与化归思想. 20.【答案】【解析】解:(1)∵f(1)=a+b+c=﹣,∴3a+2b+2c=0.又3a>2c>2b,故3a>0,2b<0,从而a>0,b<0,又2c=﹣3a﹣2b及3a>2c>2b知3a>﹣3a﹣2b>2b∵a>0,∴3>﹣3﹣>2,即﹣3<<﹣.(2)根据题意有f(0)=0,f(2)=4a+2b+c=(3a+2b+2c)+a﹣c=a﹣c.下面对c的正负情况进行讨论:①当c>0时,∵a>0,∴f(0)=c>0,f(1)=﹣<0所以函数f(x)在区间(0,1)内至少有一个零点;②当c≤0时,∵a>0,∴f(1)=﹣<0,f(2)=a﹣c>0所以函数f(x)在区间(1,2)内至少有一个零点;综合①②得函数f(x)在区间(0,2)内至少有一个零点;(3).∵x1,x2是函数f(x)的两个零点∴x1,x2是方程ax2+bx+c=0的两根.故x1+x2=﹣,x1x2===从而|x1﹣x2|===.∵﹣3<<﹣,∴|x1﹣x2|.【点评】本题考查了二次函数的性质,对于二次函数要注意数形结合的应用,注意抓住二次函数的开口方向,对称轴,以及判别式的考虑;同时考查了函数的零点与方程根的关系,函数的零点等价于对应方程的根,等价于函数的图象与x轴交点的横坐标,解题时要注意根据题意合理的选择转化.属于中档题.21.【答案】【解析】(1)证明:∵AC=BC=AB,∴△ABC为等腰直角三角形,∵M为AB的中点,∴AM=BM=CM,CM⊥AB,∵EA⊥平面ABC,∴EA⊥AC,设AM=BM=CM=1,则有AC=,AE=AC=,在Rt△AEC中,根据勾股定理得:EC==,在Rt△AEM中,根据勾股定理得:EM==,∴EM2+MC2=EC2,∴CM⊥EM;(2)解:过M作MN⊥AC,可得∠MCA为MC与平面EAC所成的角,则MC与平面EAC所成的角为45°.22.【答案】【解析】解(1)因为20至50岁的54人有9人节能意识强,大于50岁的46人有36人节能意识强,与相差较大,所以节能意识强弱与年龄有关(2)由数据可估计在节能意识强的人中,年龄大于50岁的概率约为∴年龄大于50岁的约有(人)(3)抽取节能意识强的5人中,年龄在20至50岁的(人),年龄大于50岁的5﹣1=4人,记这5人分别为a,B1,B2,B3,B4.从这5人中任取2人,共有10种不同取法:(a,B1),(a,B2),(a,B3),(a,B4),(B1,B2),(B1,B3),(B1,B4),(B2,B3),(B2,B4),(B3,B4),设A表示随机事件“这5人中任取2人,恰有1人年龄在20至50岁”,则A中的基本事件有4种:(a,B1),(a,B2),(a,B3),(a,B4)故所求概率为23.【答案】【解析】解:(1)不等式即|x﹣1|+|x+2|≥5,由于|x﹣1|+|x+2|表示数轴上的x对应点到﹣2和1对应点的距离之和,而﹣3和2对应点到﹣2和1对应点的距离之和正好等于5,故不等式的解集为(﹣∞,﹣3]∪[2,+∞).(2)若关于x的不等式f(x)>a2﹣2a对于任意的x∈R恒成立,故f(x)的最小值大于a2﹣2a.而由绝对值的意义可得f(x)的最小值为3,∴3>a2﹣2a,解得﹣1<a<3,故所求的a的取值范围为(﹣1,3).24.【答案】【解析】解:(Ⅰ)由曲线C的参数方程为(y为参数),消去参数t得,y2=4x.(Ⅱ)依题意,直线l的参数方程为(t为参数),代入抛物线方程得可得,∴,t1t2=14.∴|BC|=|t1﹣t2|===8.【点评】本题考查了参数方程化为普通方程、参数的意义、弦长公式,考查了计算能力,属于基础题.。

青山区第二中学校2018-2019学年高二上学期第二次月考试卷数学

青山区第二中学校2018-2019学年高二上学期第二次月考试卷数学

青山区第二中学校2018-2019学年高二上学期第二次月考试卷数学班级__________ 姓名__________ 分数__________一、选择题1. 在△ABC中,,则这个三角形一定是( )A .等腰三角形B .直角三角形C .等腰直角三角D .等腰或直角三角形 2. 有下列四个命题:①“若a 2+b 2=0,则a ,b 全为0”的逆否命题; ②“全等三角形的面积相等”的否命题; ③“若“q ≤1”,则x 2+2x+q=0有实根”的逆否命题;④“矩形的对角线相等”的逆命题. 其中真命题为( )A .①②B .①③C .②③D .③④3. 命题“设a 、b 、c ∈R ,若ac 2>bc 2则a >b ”以及它的逆命题、否命题、逆否命题中,真命题的个数为( )A .0B .1C .2D .34. 复数满足2+2z 1-i =i z ,则z 等于( )A .1+iB .-1+iC .1-iD .-1-i5. 设复数z 满足(1﹣i )z=2i ,则z=( )A .﹣1+iB .﹣1﹣iC .1+iD .1﹣i6. 若函数2()48f x x kx =--在[5,8]上是单调函数,则k 的取值范围是( ) A .(][),4064,-∞+∞ B .[40,64] C .(],40-∞ D .[)64,+∞7. 如果点P 在平面区域220,210,20x y x y x y -+≥⎧⎪-+≤⎨⎪+-≤⎩上,点Q 在曲线22(2)1x y ++=上,那么||PQ 的最小值为( )A1 B1-C. 1 D1 8. 已知直线l 1:(3+m )x+4y=5﹣3m ,l 2:2x+(5+m )y=8平行,则实数m 的值为( )A .﹣7B .﹣1C .﹣1或﹣7D.9. 已知命题p :存在x 0>0,使2<1,则¬p 是( )A .对任意x >0,都有2x ≥1B .对任意x ≤0,都有2x <1C .存在x 0>0,使2≥1 D .存在x 0≤0,使2<110.如果执行如图所示的程序框图,那么输出的a=( )A .2B .C .﹣1D .以上都不正确11.已知抛物线24y x =的焦点为F ,(1,0)A -,点P 是抛物线上的动点,则当||||PF PA 的值最小时,PAF ∆的 面积为( )A.2B.2C.D. 4【命题意图】本题考查抛物线的概念与几何性质,考查学生逻辑推理能力和基本运算能力. 12.数列{a n }的首项a 1=1,a n+1=a n +2n ,则a 5=( ) A .B .20C .21D .31二、填空题13.一个圆柱和一个圆锥的母线相等,底面半径也相等,则侧面积之比是 . 14.已知△ABC 的面积为S ,三内角A ,B ,C 的对边分别为,,.若2224S a b c +=+, 则sin cos()4C B π-+取最大值时C = .15.【盐城中学2018届高三上第一次阶段性考试】函数f (x )=x ﹣lnx 的单调减区间为 . 16.某高中共有学生1000名,其中高一年级共有学生380人,高二年级男生有180人.如果在全 校学生中抽取1名学生,抽到高二年级女生的概率为19.0,先采用分层抽样(按年级分层)在全校抽取 100人,则应在高三年级中抽取的人数等于 .17.若直线y ﹣kx ﹣1=0(k ∈R )与椭圆恒有公共点,则m 的取值范围是 .18.若复数12,z z 在复平面内对应的点关于y 轴对称,且12i z =-,则复数1212||z z z +在复平面内对应的点在( )A .第一象限B .第二象限C .第三象限D .第四象限【命题意图】本题考查复数的几何意义、模与代数运算等基础知识,意在考查转化思想与计算能力.三、解答题19.在中,、、是 角、、所对的边,是该三角形的面积,且(1)求的大小; (2)若,,求的值。

2018内蒙古自治区包头市青山区中考第二次模拟考试数学试题

2018内蒙古自治区包头市青山区中考第二次模拟考试数学试题

绝密 ★ 启用前2018年 初 中 升 学 考 试 调 研 试 卷(二)数 学(2018内蒙古自治区包头市青山区第二次模拟考试)注意事项:1.答题前,考生先将自己的姓名、准考证号填写在答题纸的指定位置。

认真核准条形码上的姓名、准考证号,无误后粘贴在条形码框内。

2.考生必须直接在答题纸上作答,选择题答案必须使用2B 铅笔填涂;非选择题答案必须使用0.5毫米的黑色中性(签字)笔或碳素笔书写,字体工整、笔迹清楚。

3. 请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。

4.保持答题纸清洁,不要折叠、不要弄破。

一、选择题(共12小题,每小题3分,共36分)1.(2018包头青山区二模. 1)如图是某个几何体的展开图,该几何体是( )A .三棱柱B .圆锥C .四棱柱D .圆柱2.(2018包头青山区二模. 2)下列计算错误的是( )A. 2a a a =⋅B. a a a 32=+C. 523)(a a =D. 413a a a =÷-3.(2018包头青山区二模. 3)下列调查中,最适合采用全面调查(普查)方式的是( )A .对重庆市初中学生每天阅读时间的调查B .对端午节期间市场上粽子质量情况的调查C .对某批次手机的防水功能的调查D .对某校九年级3班学生肺活量情况的调查4.(2018包头青山区二模. 4)满足不等式组⎩⎨⎧>+≤-01012x x 的整数解是( ) A. -2 B. -1 C. 0 D. 15.(2018包头青山区二模. 5)如图是一次数学活动课制作的一个转盘,盘面被等分成四个扇形区域,并分别标有数字-1,0,1,2.若转动转盘两次,每次转盘停止后记录指针所指区域的数字(当指针恰好指在分界线上时,不记,重转),则记录的两个数字都是正数的概率为( ) A. 81 B. 61 C. 41 D. 216.(2018包头青山区二模. 6)将抛物线2x y =向左平移2个单位长度,再向下平移3个单位长度,得到的抛物线的函数表达式为( )A. 3)2(2-+=x yB. 3)2(2++=x yC. 3)2(2+-=x yD. 3)2(2--=x y 7.(2018包头青山区二模. 7)如果0122=-+a a ,那么代数式2)4(2-⋅-a a a a 的值是( ) A. -3 B. -1 C. 1 D. 38.(2018包头青山区二模. 8)如图,一艘海轮位于灯塔P 的南偏东45°方向,距离灯塔60n mile 的A 处,它沿正北方向航行一段时间后,到达位于灯塔P 的北偏东30°方向上的B 处,这时,B 处与灯塔P 的距离为( )A. n 360mileB. n 260mileC. n 330mileD. n 230mile9.(2018包头青山区二模. 9)如图,正六边形ABCDEF 内接于⊙O ,半径为4,则这个正六边形的边心距OM 和BC 的长分别为( )A .2,3π B .32,π C .3,32π D .32,34π 10.(2018包头青山区二模. 10)已知下列命题:① 若5=x ,则5=x ;② 若22b a ≠,则b a ≠;③ 直角三角形中斜边上的中线等于斜边的一半;④ 一组对边平行且对角线相等的四边形是矩形,其中原命题与逆命题均为真命题的个数为( )A. 1个B. 2个C. 3个D. 4个11.(2018包头青山区二模. 11)如图,在平行四边形ABCD 中,∠DAB 的平分线交CD 于点E ,交BC 的延长线于点G ,∠ABC 的平分线交CD 于点F ,交AD 的延长线于点H ,AG 与BH 交于点O ,连接BE ,下列结论错误的是( )A .BO = OHB .DF = CEC .DH = CGD .AB = AE12.(2018包头青山区二模. 12)如图,点P 是以O 为圆心,AB 为直径的半圆上的动点,AB = 2.设弦AP 的长为x ,△APO 的面积为y ,则下列图象中,能表示y 与x 的函数关系的图象大致是( )二、填空题(共8小题,每小题3分,共24分)13.(2018包头青山区二模. 13)如图,直线m ∥n ,△ABC 为等腰三角形,∠BAC = 90°,则∠1 = 度.14.(2018包头青山区二模. 14)为响应“书香鹿城”建设号召,在全校形成良好的人文阅读风尚,包头市某中学随机调查了部分学生平均每天的阅读时间,统计结果如图所示,则在本次调查中,阅读时间的中位数是 小时.15.(2018包头青山区二模. 15)如图,在△ABC 中,∠C = 90°,∠CAB = 50°,按以下步骤作图:① 以点A 为圆心,小于AC 长为半径画弧,分别交AB 、AC 于点E 、F ;② 分别以点E 、F 为圆心,大于21EF 长为半径画弧,两弧相交于点G ;③ 作射线AG ,交BC 边于点D .则∠ADC 的度数为 .16.(2018包头青山区二模. 16)已知一元二次方程01522=+-x x 的两根为m 、n ,则=+22n m .17.(2018包头青山区二模. 17)如图,四边形ABCD 是菱形,⊙O 经过点A 、C 、D ,与BC 相交于点E ,连接AC 、AE .若∠D = 78°,则∠EAC = °.18.(2018包头青山区二模. 18)如图,在Rt △ABC 中,∠A = 90°,AB = AC ,BC =12+,点M ,N 分别是边BC ,AB 上的动点,沿MN 所在的直线折叠∠B ,使点B 的对应点B′ 始终落在边AC 上,若△MB′C 为直角三角形,则BM 的长为 .19.(2018包头青山区二模. 19)如图,A ,B 是反比例函数xk y =图象上的两点,过点A 作AC ⊥y 轴,垂足为C ,AC 交OB 于点D .若D 为OB 的中点,△AOD 的面积为3,则k 的值为 .20.(2018包头青山区二模. 20)如图,在正方形ABCD 中,△BPC 是等边三角形,BP 、CP 的延长线分别交AD 于点E 、F ,连接BD 、DP ,BD 与CF 相交于点H ,给出下列结论: ① BE = 2AE ;② △DFP ∽ △BPH ; ③ △PFD ∽ △PDB ;④ PC PH DP ⋅=2 其中正确的是 (填序号)三、解答题(共6小题,共60分)21.(2018包头青山区二模. 21)十八届五中全会出台了全面实施一对夫妇可生育两个孩子的政策,这是党中央站在中华民族长远发展的战略高度作出的促进人口长期均衡发展的重大举措.二孩政策出台后,某家庭积极响应政府号召,准备生育两个小孩(生男生女机会均等,且与顺序有关).(1)该家庭生育两胎,假设每胎都生育一个小孩,求这两个小孩恰好是1男1女的概率;(2)该家庭生育两胎,假设第一胎生育一个小孩,且第二胎生育一对双胞胎,求这三个小孩中至少有1个女孩的概率.22.(2018包头青山区二模. 22)如图,若要在宽AD为20米的城南大道两边安装路灯,路灯的灯臂BC长2米,且与灯柱AB成120°角,路灯采用圆锥形灯罩,灯罩的轴线CO与灯臂BC垂直,当灯罩的轴线CO通过公路路面的中心线时照明效果最好,此时,路灯的灯柱AB高应该设计为多少米?(结果保留根号)23.(2018包头青山区二模. 23)小丁每天从某报社以每份0.5元买进报纸200份,然后以每份1元卖给读者,报纸卖不完,当天可退回报社,但报社只按每份0.2元退给小丁,如果小丁平均每天卖出报纸x份,纯收入为y元.(1)求y与x之间的函数关系式(要求写出自变量x的取值范围);(2)如果每月以30天计算,小丁每天至少要卖多少份报纸才能保证每月收入不低于2000元?24.(2018包头青山区二模. 24)如图,⊙O是△ABC的外接圆,FH是⊙O的切线,切点为F,FH∥BC,连接AF交BC于E,∠ABC的平分线BD交AF于D,连接BF.(1)证明:AF 平分∠BAC ;(2)证明:BF = FD ;(3)若EF = 4,DE = 3,求AD 的长.25.(2018包头青山区二模. 25)如图,在平面直角坐标系中,直线y = x + 4与x 轴、y 轴分别交于A 、B 两点,抛物线c bx x y ++-=2经过A 、B 两点,并与x 轴交于另一点C (点C 点A 的右侧),点P 是抛物线上一动点.(1)求抛物线的解析式及点C 的坐标;(2)若点P 在第二象限内,过点P 作PD ⊥x 轴于D ,交AB 于点E .当点P 运动到什么位置时,线段PE 最长?此时PE 等于多少?(3)如果平行于x 轴的动直线l 与抛物线交于点Q ,与直线AB 交于点N ,点M 为OA 的中点,那么是否存在这样的直线l ,使得△MON 是等腰三角形?若存在,请求出点Q 的坐标;若不存在,请说明理由.26.(2018包头青山区二模. 26)如图,已知矩形ABCD 中,AB = 4,AD = m ,动点P 从点D 出发,在边DA 上以每秒1个单位的速度向点A 运动,连接CP ,作点D 关于直线PC 的对称点E ,设点P 的运动时间为t (s ).(1)若m = 6,求当P,E,B三点在同一直线上时对应的t的值.(2)已知m满足:在动点P从点D到点A的整个运动过程中,有且只有一个时刻t,使点E到直线BC的距离等于3,求所有这样的m的取值范围.。

青山区第二中学校2018-2019学年高二上学期数学期末模拟试卷含解析

青山区第二中学校2018-2019学年高二上学期数学期末模拟试卷含解析

青山区第二中学校2018-2019学年高二上学期数学期末模拟试卷含解析 班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 常用以下方法求函数y=[f (x )]g (x )的导数:先两边同取以e 为底的对数(e ≈2.71828…,为自然对数的底数)得lny=g (x )lnf (x ),再两边同时求导,得•y ′=g ′(x )lnf (x )+g (x )•[lnf (x )]′,即y ′=[f (x )]g (x){g ′(x )lnf (x )+g (x )•[lnf (x )]′}.运用此方法可以求函数h (x )=x x (x >0)的导函数.据此可以判断下列各函数值中最小的是( )A .h ()B .h ()C .h ()D .h ()2. 在下列区间中,函数f (x )=()x ﹣x 的零点所在的区间为( ) A .(0,1) B .(1,2) C .(2,3 )D .(3,4)3. 已知f (x )在R 上是奇函数,且f (x+4)=f (x ),当x ∈(0,2)时,f (x )=2x 2,则f (7)=( ) A .﹣2 B .2 C .﹣98 D .984. 两座灯塔A 和B 与海洋观察站C 的距离都等于a km ,灯塔A 在观察站C 的北偏东20°,灯塔B 在观察站C 的南偏东40°,则灯塔A 与灯塔B 的距离为( )A .akmB .akm C .2akm D .akm5. 已知命题:()(0xp f x a a =>且1)a ≠是单调增函数;命题5:(,)44q x ππ∀∈,sin cos x x >.则下列命题为真命题的是( )A .p q ∧B .p q ∨⌝ C. p q ⌝∧⌝ D .p q ⌝∧ 6. 下列图象中,不能作为函数y=f (x )的图象的是( )A.B.C.D.7.已知函数f(x)=lnx+2x﹣6,则它的零点所在的区间为()A.(0,1) B.(1,2) C.(2,3) D.(3,4)8.若P是以F1,F2为焦点的椭圆=1(a>b>0)上的一点,且=0,tan∠PF1F2=,则此椭圆的离心率为()A.B.C.D.9.已知x,y满足时,z=x﹣y的最大值为()A.4 B.﹣4 C.0 D.210.下列命题的说法错误的是()A.若复合命题p∧q为假命题,则p,q都是假命题B.“x=1”是“x2﹣3x+2=0”的充分不必要条件C.对于命题p:∀x∈R,x2+x+1>0 则¬p:∃x∈R,x2+x+1≤0D.命题“若x2﹣3x+2=0,则x=1”的逆否命题为:“若x≠1,则x2﹣3x+2≠0”11.函数y=的图象大致是()A .B .C .D .12.下列函数中,为奇函数的是( ) A .y=x+1 B .y=x 2 C .y=2x D .y=x|x|二、填空题13.直线20x y t +-=与抛物线216y x =交于A ,B 两点,且与x 轴负半轴相交,若O 为坐标原点,则OAB ∆面积的最大值为 .【命题意图】本题考查抛物线的几何性质,直线与抛物线的位置关系等基础知识,意在考查分析问题以及解决问题的能力.14.已知椭圆中心在原点,一个焦点为F (﹣2,0),且长轴长是短轴长的2倍,则该椭圆的标准方程是 .15.设α为锐角,若sin (α﹣)=,则cos2α= .16.已知函数f (x )的定义域为[﹣1,5],部分对应值如下表,f (x )的导函数y=f ′(x )的图象如图示.①函数f (x )的极大值点为0,4; ②函数f (x )在[0,2]上是减函数;③如果当x ∈[﹣1,t]时,f (x )的最大值是2,那么t 的最大值为4; ④当1<a <2时,函数y=f (x )﹣a 有4个零点;⑤函数y=f (x )﹣a 的零点个数可能为0、1、2、3、4个. 其中正确命题的序号是 .17.有三个房间需要粉刷,粉刷方案要求:每个房间只用一种颜色的涂料,且三个房间的颜色各不相同.三个房间的粉刷面积和三种颜色的涂料费用如下表:那么在所有不同的粉刷方案中,最低的涂料总费用是 _______元.18.如图,在平行四边形ABCD 中,点E 在边CD 上,若在平行四边形ABCD 内部随机取一个点Q ,则点Q 取自△ABE 内部的概率是 .三、解答题19.(本小题满分12分)已知12,F F 分别是椭圆C :22221(0)x y a b a b+=>>的两个焦点,(1,2P 是椭圆上1122|,||PF F F PF 成等差数列.(1)求椭圆C 的标准方程;、(2)已知动直线l 过点F ,且与椭圆C 交于A B 、两点,试问x 轴上是否存在定点Q ,使得716QA QB ⋅=-恒成立?若存在,求出点Q 的坐标;若不存在,请说明理由.20.设函数f (x )=e mx +x 2﹣mx .(1)证明:f (x )在(﹣∞,0)单调递减,在(0,+∞)单调递增; (2)若对于任意x 1,x 2∈,都有|f (x 1)﹣f (x 2)|≤e ﹣1,求m 的取值范围.21.函数f(x)是R上的奇函数,且当x>0时,函数的解析式为f(x)=﹣1.(1)用定义证明f(x)在(0,+∞)上是减函数;(2)求函数f(x)的解析式.22.已知数列{a n}的前n项和为S n,a1=3,且2S n=a n+1+2n.(1)求a2;(2)求数列{a n}的通项公式a n;(3)令b n=(2n﹣1)(a n﹣1),求数列{b n}的前n项和T n.23.设函数f(x)=x2e x.(1)求f(x)的单调区间;(2)若当x∈[﹣2,2]时,不等式f(x)>m恒成立,求实数m的取值范围.24.(本小题满分10分)如图⊙O经过△ABC的点B,C与AB交于E,与AC交于F,且AE=AF. (1)求证EF∥BC;(2)过E作⊙O的切线交AC于D,若∠B=60°,EB=EF=2,求ED的长.青山区第二中学校2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)一、选择题1.【答案】B【解析】解:(h(x))′=x x[x′lnx+x(lnx)′]=x x(lnx+1),令h(x)′>0,解得:x>,令h(x)′<0,解得:0<x<,∴h(x)在(0,)递减,在(,+∞)递增,∴h()最小,故选:B.【点评】本题考查函数的导数的应用,极值的求法,基本知识的考查.2.【答案】A【解析】解:函数f(x)=()x﹣x,可得f(0)=1>0,f(1)=﹣<0.f(2)=﹣<0,函数的零点在(0,1).故选:A.3.【答案】A【解析】解:因为f(x+4)=f(x),故函数的周期是4所以f(7)=f(3)=f(﹣1),又f(x)在R上是奇函数,所以f(﹣1)=﹣f(1)=﹣2×12=﹣2,故选A.【点评】本题考查函数的奇偶性与周期性.4.【答案】D【解析】解:根据题意,△ABC中,∠ACB=180°﹣20°﹣40°=120°,∵AC=BC=akm,∴由余弦定理,得cos120°=,解之得AB=akm,即灯塔A与灯塔B的距离为akm,故选:D.【点评】本题给出实际应用问题,求海洋上灯塔A与灯塔B的距离.着重考查了三角形内角和定理和运用余弦定理解三角形等知识,属于基础题.5.【答案】D【解析】考点:1、指数函数与三角函数的性质;2、真值表的应用.6.【答案】B【解析】解:根据函数的定义可知,对应定义域内的任意变量x只能有唯一的y与x对应,选项B中,当x >0时,有两个不同的y和x对应,所以不满足y值的唯一性.所以B不能作为函数图象.故选B.【点评】本题主要考查函数图象的识别,利用函数的定义是解决本题的关键,注意函数的三个条件:非空数集,定义域内x的任意性,x对应y值的唯一性.7.【答案】C【解析】解:易知函数f(x)=lnx+2x﹣6,在定义域R+上单调递增.因为当x→0时,f(x)→﹣∞;f(1)=﹣4<0;f(2)=ln2﹣2<0;f(3)=ln3>0;f(4)=ln4+2>0.可见f(2)•f(3)<0,故函数在(2,3)上有且只有一个零点.故选C.8.【答案】A【解析】解:∵∴,即△PF1F2是P为直角顶点的直角三角形.∵Rt△PF1F2中,,∴=,设PF2=t,则PF1=2t∴=2c,又∵根据椭圆的定义,得2a=PF1+PF2=3t∴此椭圆的离心率为e====故选A【点评】本题给出椭圆的一个焦点三角形为直角三角形,根据一个内角的正切值,求椭圆的离心率,着重考查了椭圆的基本概念和简单几何性质,属于基础题.9.【答案】A【解析】解:由约束条件作出可行域如图,联立,得A(6,2),化目标函数z=x﹣y为y=x﹣z,由图可知,当直线y=x﹣z过点A时,直线在y轴上的截距最小,z有最大值为4.故选:A.【点评】本题考查简单的线性规划,考查了数形结合的解题思想方法,是中档题.10.【答案】A【解析】解:A.复合命题p∧q为假命题,则p,q至少有一个命题为假命题,因此不正确;B.由x2﹣3x+2=0,解得x=1,2,因此“x=1”是“x2﹣3x+2=0”的充分不必要条件,正确;C.对于命题p:∀x∈R,x2+x+1>0 则¬p:∃x∈R,x2+x+1≤0,正确;D.命题“若x2﹣3x+2=0,则x=1”的逆否命题为:“若x≠1,则x2﹣3x+2≠0”,正确.故选:A.11.【答案】A【解析】解:∵函数∴函数的零点呈周期性出现,且法自变量趋向于正无穷大时,函数值在x轴上下震荡,幅度越来越小,而当自变量趋向于负无穷大时,函数值在x轴上下震荡,幅度越来越大,A选项符合题意;B选项振幅变化规律与函数的性质相悖,不正确;C选项是一个偶函数的图象,而已知的函数不是一个偶函数故不正确;D选项最高点离开原点的距离的变化趋势不符合题意,故不对.综上,A选项符合题意故选A12.【答案】D【解析】解:由于y=x+1为非奇非偶函数,故排除A;由于y=x2为偶函数,故排除B;由于y=2x为非奇非偶函数,故排除C;由于y=x|x|是奇函数,满足条件,故选:D.【点评】本题主要考查函数的奇偶性的判断,属于基础题.二、填空题13.【解析】14.【答案】.【解析】解:已知∴∴为所求;故答案为:【点评】本题主要考查椭圆的标准方程.属基础题.15.【答案】﹣.【解析】解:∵α为锐角,若sin(α﹣)=,∴cos(α﹣)=,∴sin=[sin(α﹣)+cos(α﹣)]=,∴cos2α=1﹣2sin2α=﹣.故答案为:﹣.【点评】本题主要考查了同角三角函数关系式,二倍角的余弦函数公式的应用,属于基础题.16.【答案】①②⑤.【解析】解:由导数图象可知,当﹣1<x<0或2<x<4时,f'(x)>0,函数单调递增,当0<x<2或4<x <5,f'(x)<0,函数单调递减,当x=0和x=4,函数取得极大值f(0)=2,f(4)=2,当x=2时,函数取得极小值f(2),所以①正确;②正确;因为在当x=0和x=4,函数取得极大值f(0)=2,f(4)=2,要使当x∈[﹣1,t]函数f(x)的最大值是4,当2≤t≤5,所以t的最大值为5,所以③不正确;由f(x)=a知,因为极小值f(2)未知,所以无法判断函数y=f(x)﹣a有几个零点,所以④不正确,根据函数的单调性和极值,做出函数的图象如图,(线段只代表单调性),根据题意函数的极小值不确定,分f(2)<1或1≤f(2)<2两种情况,由图象知,函数y=f(x)和y=a的交点个数有0,1,2,3,4等不同情形,所以⑤正确,综上正确的命题序号为①②⑤.故答案为:①②⑤.【点评】本题考查导数知识的运用,考查导函数与原函数图象之间的关系,正确运用导函数图象是关键.17.【答案】1464【解析】【知识点】函数模型及其应用【试题解析】显然,面积大的房间用费用低的涂料,所以房间A用涂料1,房间B用涂料3,房间C用涂料2,即最低的涂料总费用是元。

内蒙古包头市2018届高三学业水平测试与评估二数学理试题 含解析

内蒙古包头市2018届高三学业水平测试与评估二数学理试题 含解析

2018年包头市高中毕业年级学业水平测试与评估(二)理科数学一、选择题(本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知集合{}{}2|280,3,1,1,3,5A x x x B =-->=--,则AB =( )A .{}1,1,3-B .{}3,1,1--C .{}3,5-D .{}3,5 【答案】C 【解析】试题分析:因为{}{}{}2|280|4-2,3,1,1,3,5A x x x x x x B =-->=><=--或,所以A B ={}3,5-,故选C.考点:1、集合的表示;2、集合的交集.2.若复数()()312z bi i =++-是纯虚数()b R ∈,则z =( )A .1B .2C .3D .4 【答案】D考点:1、复数的运算;2、复数的模及纯虚数的概念.3.设,,D E F 分别为ABC ∆三边,,BC CA AB 的中点,则EB FC +=( ) A .BC B .AD C .12BC D .12AD 【答案】B【解析】试题分析:因为,,D E F 分别为ABC ∆三边,,BC CA AB 的中点,所以由向量运算的三角形法则及平行四边形法则可知EB FC +=()111222AB AC AC AB AB AC AD ⎛⎫⎛⎫-+-=+= ⎪ ⎪⎝⎭⎝⎭,故选B.考点:1、向量运算的三角形法则;2、向量运算的平行四边形法则. 4.已知,,a b c 分别为ABC ∆内角,,A B C 的对边,2sin 2sin sin B A C =,且1,cos 4a c B >=,则 ac=( ) A .2 B .12C .3D .13【答案】A考点:1、正弦定理的应用;2、余弦定理的应用.5.对某两名高三学生在连续9次数学测试中的成绩(单位:分)进行统计得到如下折线图.下面关于这两位同学的数学成绩的分析中,正确的共有( )个.①甲同学的成绩折线图具有较好的对称性,与正态曲线相近,故而平均成绩为130分;②根据甲同学成绩折线图提供的数据进行统计,估计该同学平均成绩在区间[]110,120内;③乙同学的数学成绩与考试次号具有比较明显的线性相关性,且为正相关; ④乙同学在这连续九次测验中的最高分与最低分的差超过40分A .1B .2C .3D .4 【答案】C 【解析】试题分析:①甲同学的成绩折线图具有较好的对称性,最高130分,平均成绩为低于130分,①错误;②根据甲同学成绩折线图提供的数据进行统计,估计该同学平均成绩在区间[]110,120内,②正确;③乙同学的数学成绩与考试次号具有比较明显的线性相关性,且为正相关,③正确;④乙同学在这连续九次测验中的最高分大于130分与最低分低于90 分,最高分与最低分的差超过40分,故④正确.故选C. 考点:1、折线图的应用;2、线性相关及平均数和极差.6.某几何体的三视图如图所示(单位:cm ),则这个几何体的体积为( )A .316cm B .320cm C .324cm D .330cm 【答案】C考点:1、几何体的三视图;2、棱柱的体积公式.7.执行如图所示的程序框图,如果输入的0.02t =,则输出的n =( )A .6B .7C .8D .9【答案】A 【解析】试题分析:因为第一次执行循环体后,11,,124S m n ===;第二次执行循环体后,11,,248S m n ===;...,第六次执行循环体后,11,,664128S m n ===;满足退出循环的条件,故输出的6n =,故选A. 考点:1、程序框图;2、循环结构.【方法点睛】本题主要考查程序框图的循环结构流程图,属于中档题. 解决程序框图问题时一定注意以下几点:(1)不要混淆处理框和输入框;(2)注意区分程序框图是条件分支结构还是循环结构;(3)注意区分当型循环结构和直到型循环结构;(4)处理循环结构的问题时一定要正确控制循环次数;(5)要注意各个框的顺序;(6)在给出程序框图求解输出结果的试题中只要按照程序框图规定的运算方法逐次计算,直到达到输出条件即可.8.已知函数()3134f x x ax =-+,若x 轴为曲线()y f x =的切线,则a 的值为( ) A .12 B .12- C .34-D .14【答案】D考点:导数的几何意义及函数的图象和性质9.实数,x y 满足10230260x y x y x y -+≥⎧⎪+-≥⎨⎪+-≤⎩,若32x y m -≤恒成立,则实数m 的取值范围是( )A .[)9,+∞B .1,3⎡⎫-+∞⎪⎢⎣⎭C .5,3⎡⎫-+∞⎪⎢⎣⎭D .1,93⎡⎫-⎪⎢⎣⎭【答案】A 【解析】试题分析:因为实数,x y 满足10230260x y x y x y -+≥⎧⎪+-≥⎨⎪+-≤⎩,画出可行域如图,由图可知,当经过点 ()3,0时,32x y -有最大值9,所以m 9≥,故选A.考点:1、线性规划的应用;2、不等式恒成立问题.10.已知双曲线()222210,0x y a b a b-=>>的两条渐近线均和圆22:650C x y x +-+=相切,且双曲线的右焦点为圆C 的圆心,则该双曲线的方程为( )A .22154x y -= B .22145x y -= C .22136x y -= D .22163x y -= 【答案】A考点:1、待定系数法求双曲线的方程;2、圆的方程、双曲线的渐近线及点到直线的距离公式.11. 在正三棱锥S ABC -中,M N 、分别是棱SC BC 、的中点,且MN AM ⊥,若侧棱SA =则此正三棱锥S ABC -的外接球的体积是( )A .12πB .32πC .36πD .48π 【答案】C 【解析】试题分析:因为M N 、分别是棱SC BC 、的中点, 所以MNSB ,又MN AM ⊥,所以SB MN ⊥,因为S ABC -是正三棱锥,所以SB AC ⊥,所以SB ⊥面SAC ,,SB SA SB SC ⊥⊥,由正三棱锥的性质得,SA SB ⊥,因此S ABC -是棱长为体的一角,其外接球也即是正方体的外接球,(((2222436R =++=,3R =,34363V R ππ==,故选C.考点:1、线面垂直的判定和性质;2、外接球的体积.【方法点睛】本题主要考查线面垂直的判定和性质及三棱锥外接球体积的求法,属于难题.要求外接球的表面积和体积,关键是求出球的半径,求外接球半径的常见方法有:①若三条棱两垂直则用22224R a b c =++(,,a b c 为三棱的长);②若SA ⊥面ABC (SA a =),则22244R r a =+(r 为ABC ∆外接圆半径);③可以转化为长方体的外接球;④特殊几何体可以直接找出球心和半径.12.设函数()f x '是函数()f x ()x R ∈的导函数,()()()02,x f f x f x e '=->,则使得()2x x f x xe e >+成立的x 的取值范围是( )A .()0,+∞B .()1,+∞C .()0,1D .(),-∞+∞ 【答案】A考点:1、利用导数研究抽象函数的单调性;2、函数的求导法则及构造函数解不等式. 【方法点睛】本题主要考察抽象函数的单调性以及函数的求导法则及构造函数解不等式,属于难题.求解这类问题一定要耐心读题、读懂题,通过对问题的条件和结论进行类比、联想、抽象、概括,准确构造出符合题意的函数是解题的关键;解这类不等式的关键点也是难点就是构造合适的函数,构造函数时往往从两方面着手:①根据导函数的“形状”变换不等式“形状”以构造恰当的函数;②若是选择题,可根据选项的共性归纳构造合适的函数.第Ⅱ卷(非选择题共90分)二、填空题(本大题共4小题,每题5分,满分20分.)13.()()3411x y ++的展开式中22x y 的系数是___________.【答案】18 【解析】试题分析:()()3411x y ++的展开式中22x y 的系数是22343618C C =⨯=,故答案为18.考点:二项展开式定理的应用.14.函数()()sin 0,0,2f x A x A πωϕωϕ⎛⎫=+>>< ⎪⎝⎭的部分图象如图所示,则此函数的解析式为()f x =___________.【答案】2sin 24x π⎛⎫+⎪⎝⎭考点:三角函数的图象和性质.15.一条斜率为1的直线l 与曲线1:x C y e =和曲线22:4C y x =分别相切于不同的两点,则这两点间的距离等于__________.【解析】试题分析:因为xy e = ,所以'1,0xy e x ===,1y =,切点为()0,1,24y x =,y =12'1,1,2y xx y -==== ,切点()1,2考点:1、利用导数求切点坐标;2、两点间距离公式.【方法点睛】本题主要考查利用导数求切点坐标、两点间距离公式,属于难题. 应用导数的几何意义求切点处切线的斜率,主要体现在以下几个方面:(1)已知切点()()00,A x f x 求斜率k ,即求该点处的导数()0k f x '=;(2)己知斜率k 求切点()()11,,A x f x 即解方程()1f x k '=;(3)已知切线过某点()()11,M x f x (不是切点) 求切点, 设出切点()()00,,A x f x 利用()()()10010f x f x k f x x x -'==-求解.16.已知椭圆E 的中心为原点,()3,0F 是E 的焦点,过F 的直线l 与E 相交于,A B 两点,且AB中点为()2,1-,则E 的离心率e =__________.【答案】2考点:1、椭圆与直线的位置关系;2、椭圆的离心率及“点差法”的应用.【方法点睛】本题主要考查椭圆与直线的位置关系、椭圆的离心率及“点差法”的应用,属于难题.对于有弦关中点问题常用“ 点差法”,其解题步骤为:①设点(即设出弦的两端点坐标);②代入(即代入圆锥曲线方程);③作差(即两式相减,再用平方差公式分解因式);④整理(即转化为斜率与中点坐标的关系式),然后求解.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(本小题满分12分)已知数列{}n a 的前n 项和为n S ,112,0,2n n n n a a a a pS +=≠=+,其中p 为常数. (1)证明:2n n a a p +-=;(2)是否存在p ,使得{}n a 为等差数列?并说明理由.【答案】(1)证明见解析;(2)存在2p =,使得数列{}n a 为等差数列. 【解析】试题分析:(1)11212,2n n n n n n a a pS a a pS ++++=+=+两式相减,即可化为2n n a a p +-=;(2)由题设11212,2a a a pS ==+,可得21a p =+.由(1)知,22a p =+,令2122a a a =+,解得2p =,故22n n a a +-=,再证{}21n a -、 {}2n a 为等差数列,进而{}n a 为等差数列. 试题解析:(1)由题设,11212,2n n n n n n a a pS a a pS ++++=+=+, 两式相减得:()121n n n n a a a pa +++-=, 由于10n a +≠,所以n 2n a a p +-= .考点:1、等差数列的定义;2、公式1(2)n n n a S S n -=-≥的应用. 18.(本小题满分12分)如图1,已知矩形ABCD 中,2,AB AD ==E F 、分别是,AD BC 的中点,对角线BD 与EF 交于O 点,沿EF 将矩形ABFE 折起,使平面ABFE 与平面EFCD 所成角为60°,在图2中:(1)求证:BO DO ⊥;(2)求平面DOB 与平面BFC 所成角的余弦值. 【答案】(1)证明见解析;(2试题解析:(1)由题设知,OD ===OB ==OB ==连接BD ,在Rt BCD ∆中,BD ==所以2226OD OB BD +==,由勾股定理的逆定理可知OD OB ⊥.(2)以F 为坐标原点,FC FE 、分别为y 轴,z 轴的正方向,建立如图所示的空间直角坐标系F xyz -,根据题设可知,()()()0,0,1,,2,0,0,022O B D F ⎛⎫⎪ ⎪⎝⎭,所以()()62,,1,0,2,1,0,0,122OB OD FO ⎛⎫=-== ⎪ ⎪⎝⎭,设平面OBD 的法向量为(),,n x y z =,则00n ODn OB ⎧=⎨=⎩,即00x y xx +-=⎨⎪+=⎩,令y =2x x ==,所以可取()6,n =,另外FO 为平面FBC 的法向量.所以3cos ,3FO n n FO FO n==,所以平面DOB 为平面BFC考点:1、勾股定理的应用;2、空间向量夹角余弦公式.19.(本小题满分12分)下表是某班(共30人)在一次考试中的数学成绩和物理成绩(单位是:分)将数学成绩分为两个层次:数学Ⅰ(大于等于80分)与数学Ⅱ(低于80分),物理也分为两个层次:物理Ⅰ(大于等于59分)与物理Ⅱ(低于59分).(1)根据这次考试的成绩完成右边22⨯列联表,并运用独立性检验的知识进行探究,可否有95%的把握认为“数学成绩与物理成绩有关”?(2)从该班这次考试成绩中任取两名同学的成绩,记ξ为数学与物理成绩都达到Ⅰ层次的人数,求ξ的分布列与数学期望.可能用到的公式和参考数据:2K 统计量:()()()()()()22a b c d ad bc K a b c d a c b d +++-=++++, 独立性检验临界表(部分)【答案】(1)有95%的把握认为“数学成绩与物理成绩有关”;(2)分布列见解析,116435E ξ=. 【解析】试题分析:(1),由公式得()230415011604.61 3.841151542613K ⨯-⨯==≈>⨯⨯⨯即可得结论;(2)先由排列组合知识算出各随机变量的概率,再根据期望公式求得. 试题解析:(1)由题得如下22⨯列联表假设数学成绩与物理成绩无关,由公式得()230415011604.61 3.841151542613K ⨯-⨯==≈>⨯⨯⨯,根据所给参数可知数学成绩与物理成绩无关的概率小于5%, 故而有95%的把握认为“数学成绩与物理成绩有关”.考点:1、独立性检验的应用;2、随机变量的分布列与期望. 20.(本小题满分12分)已知抛物线()2:20C x py p =>的焦点为F ,直线4x =与x 轴的交点为H ,与C 的交点为Q ,且32QF HQ =. (1)求C 的方程;(2)过F 的直线l 与C 相交于A B 、且与C 相切的直线12,l l 相交于点R ,求RAB S ∆的最小值.【答案】(1)2x =;(2)8.试题解析:(1)设()04,Q y ,代入22x py =,得08y p=, 所以088,222p p HQ QF y p ==+=+, 由题意可知,83822p p p+=⨯,解得p = 所以C的方程为2x =.(2)设()()1122,,,,:A x y B x y l y kx =+由2y kx x ⎧=⎪⎨=⎪⎩y,得80x 2--=,所以1212,8x x x x +==-,由2y x =,得y x '=,所以()2111111:448l y x x x y x =-+=-,()2222:l y x x x y =-+=,由1l 和2l的方程解得:1212,y 2x x x x x +==== 所以点R的坐标为(,,设(,R 到l 的距离为d,则d ==又)2121AB x k =-=+,所以)()322211418122RABS AB d k k ∆==⨯+⨯=+, 故当0k =时,RAB S ∆取得最小值8.考点:1、待定系数法求抛物线方程及韦达定理、弦长公式;2、及点到直线距离公式解析几何的最值问题.【方法点晴】本题主要考查待定系数法求抛物线方程、韦达定理和弦长公式解析几何的最值问题,属于难题. 解决圆锥曲线中的最值问题一般有两种方法:一是几何意义,特别是用圆锥曲线的定义和平面几何的有关结论来解决,非常巧妙;二是将圆锥曲线中最值问题转化为函数问题,然后根据函数的特征选用参数法、配方法、判别式法、三角函数有界法、函数单调法以及均值不等式法求最值.本题(2)就是用的这种思路,利用单调性法求AB 最大值的.21.(本小题满分12分)已知函数()()()22ln ,2ln ,ln20.693xf x m x xg x e m x m R =-=-∈=.(1)讨论()f x 的单调性;(2)若()f x 的最大值M ,()g x 存在最小值N ,且M N ≥,求证:2em >. 【答案】(1)当0m ≤时,()f x 在()0,+∞上单调递减,当0m >时,()f x 在(单调递增,()f x 在)+∞单调递减;(2)证明见解析.【解析】试题分析:(1)先求()222m x f x x-'=,讨论0m ≤和0m >两种情况,分别令()0,f x '<得减区间,()0,f x '>得增区间;( 2)由(1)可知ln M fm m m ==-,且()0002ln x N g x e m x ==-,(0x 为()2xu x xe m =-的极值点),由题设M N ≥,即002ln ln x m x m m m e--≥,将002x x e m =代入上式,得01x >,则0022x x e em => .(2)由题设有()2x xe mg x x-'=,若0m ≤,()()0,g x g x '>在其定义域()0,+∞上单调递增,无最小值,由(1)可知此时()f x 无最大值,故而0m >令()()2,0x x x u x xe m u x e xe '=-=+>,又()()()2020,2210m u m u m m e =-<=->,故唯一存在()00,2x m ∈,使得()00u x =,即002x x e m =,列表如下由(1)可知ln M fm m m ==-,且()002ln x N g x em x ==-,由题设M N ≥,即002ln ln x m x m m m e--≥,将002x x e m =代入上式有0000000000ln 2ln 2222x x x x x x e x e x e x e e x ⎛⎫-≥- ⎪⎝⎭, 化简得()200003ln ln 2110222x x x x +-+-≥. 构造函数()()23ln ln 211222x xh x x x =+-+-, ()()()31ln 1ln 2122h x x x '=++-+, 易知()h x '为单调递增函数,又()()()31111ln 214ln 20222h '=+-+=->,而当()90,h 5ln 208x x '>=-<,则唯一存在()0,1t ∈,使得()0h t '=,则当()()()0,,0,x t h x h x '∈<递减,当(),x t ∈+∞,()0h x '>,()h x 递增. 又()11ln 2102h =--<, 故()0h x ≥只会在(),t +∞有解,而()()23ln22ln2112ln20h =+-+-=>,故(*)的解为01x >,则0022x x e em =>. 考点:1、利用导数研究函数的单调性及最值;2、利用导数证明不等式.【方法点晴】本题主要考查的是利用导数研究函数的单调性、利用导数研究函数的最值、利用导数证明不等式,属于难题.利用导数研究函数()f x 的单调性进一步求函数最值的步骤:①确定函数()f x 的定义域;②对()f x 求导;③令()0f x '>,解不等式得x 的范围就是递增区间;令()0f x '<,解不等式得x 的范围就是递减区间;④根据单调性求函数()f x 的极值及最值(若只有一个极值点则极值即是最值,闭区间上还要注意比较端点处函数值的大小).请考生在第22、23、24三题中任选一题作答,如果多做,则按所做的第一题记分.解答时请写清题号.22.(本小题满分10分)选修4-1:几何证明选讲如图,,A B 是圆O 上两点,延长AB 至点C ,满足22AB BC ==,过C 作直线CD 与圆O 相切于点D ,ADB ∠的平分线交AB 于点E .(1)证明:CD CE =; (2)求ADBD的值.【答案】(1)证明见解析;(2)ADBD=试题解析:(1)由题可知,CDB DAB EDA EDB ∠=∠∠=∠, 又,CED DAE EDA EDC EDB BDC ∠=∠+∠∠=∠+∠, 故CED EDC ∠=∠,故CD CE =.(2)因为CD 与CA 分别为圆O 的切线和割线, 所以23CD CB CA ==,得CD =.又因为直线CD 与圆O 相切于点D ,则CDB DAC ∠=∠, 则CDB CAD ∆∆,则3BD CD AD AC ==,故AD BD = 考点:1、相似三角形的性质;2、切割线定理的应用. 23.(本小题满分10分)选修4-4:坐标系与参数方程已知曲线1C的参数方程为11x ty t⎧=+⎪⎨=⎪⎩(t 为参数).以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线2C 的极坐标方程为1ρ=. (1)把1C 的参数方程化为极坐标方程;(2)求1C 与2C 交点的极坐标(0,02ρθπ≥≤<). 【答案】(1)22cos 2sin 10ρρθρθ---=;(2)371,,1,44ππ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭.(2)2C 的普通方程为221x y +=,由222222101x y x y x y ⎧+---=⎨+=⎩,解得2x y ⎧=-⎪⎪⎨⎪=⎪⎩或2x y ⎧=⎪⎪⎨⎪=⎪⎩ 所以1C 与2C 交点的极坐标分别为371,,1,44ππ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭. 考点:1、参数方程化为普通方程;2、直角坐标方程化为极坐标方程.24.(本小题满分10分)选修4-5:不等式选讲(1)设0a b ≥>,证明:22223232a b a b ab +≥+;(2)已知1,1a b <<,证明:1ab a b ->-.【答案】(1)证明见解析;(2)证明见解析.试题解析:证明:(1)()()()()()()()()()()()33222232222223232332232322a b a b ab a a b b ab a a b b b a a b a b a b a a b a b +-+=-+-=-+-=--⎡⎤=-+-+⎣⎦因为0a b ≥>,所以0,0a b a b -≥+>,所以()()()220a b a a b a b ⎡⎤-+-+≥⎣⎦,所以33223232a b a b ab +≥+.(2)要证明1ab a b ->-,只需证()()221ab a b ->-,展开得22221a b a b +>+,只需证()()222110b a b -+->, 只需证()()22110b a -->, 因为1,1a b <<,所以()()22110b a -->成立, 所以1ab a b ->-成立.考点:1、比较法证明不等式;2、分析法证明不等式.。

青山区二中2018-2019学年高二上学期数学期末模拟试卷含解析

青山区二中2018-2019学年高二上学期数学期末模拟试卷含解析

青山区二中2018-2019学年高二上学期数学期末模拟试卷含解析 班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 以过椭圆+=1(a >b >0)的右焦点的弦为直径的圆与其右准线的位置关系是( )A .相交B .相切C .相离D .不能确定2. 若关于的不等式2043x ax x +>++的解集为31x -<<-或2x >,则的取值为( ) A . B .12 C .12- D .2-3. 已知正方体ABCD ﹣A 1B 1C 1D 1中,点E 为上底面A 1C 1的中心,若+,则x 、y 的值分别为( )A .x=1,y=1B .x=1,y=C .x=,y=D .x=,y=14. 下列正方体或四面体中,P 、Q 、R 、S 分别是所在棱的中点,这四个点不共面的一个图形是 ( )5. 设、是两个非零向量,则“(+)2=||2+||2”是“⊥”的( ) A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分又不必要条件6. 如图,空间四边形OABC 中,,,,点M 在OA 上,且,点N 为BC 中点,则等于( )A.B. C.D.7.设F为双曲线22221(0,0)x ya ba b-=>>的右焦点,若OF的垂直平分线与渐近线在第一象限内的交点到另一条渐近线的距离为1||2OF,则双曲线的离心率为()A.B.3C.D.3【命题意图】本题考查双曲线方程与几何性质,意在考查逻辑思维能力、运算求解能力、方程思想.8.如图是某工厂对一批新产品长度(单位:mm)检测结果的频率分布直方图.估计这批产品的中位数为()A.20 B.25 C.22.5 D.22.759.某个几何体的三视图如图所示,该几何体的表面积为92+14π,则该几何体的体积为()A.80+20πB.40+20πC.60+10πD.80+10π10.已知向量=(1,2),=(m,1),如果向量与平行,则m的值为()A .B .C .2D .﹣211.设f (x )=asin (πx+α)+bcos (πx+β)+4,其中a ,b ,α,β均为非零的常数,f (1988)=3,则f (2008)的值为( )A .1B .3C .5D .不确定12.二项式(x 2﹣)6的展开式中不含x 3项的系数之和为( ) A .20 B .24C .30D .36二、填空题13.函数y=lgx 的定义域为 .14.如图,长方体ABCD ﹣A 1B 1C 1D 1中,AA 1=AB=2,AD=1,点E 、F 、G 分别是DD 1、AB 、CC 1的中点,则异面直线A 1E 与GF 所成的角的余弦值是 .15.甲、乙两个箱子里各装有2个红球和1个白球,现从两个箱子中随机各取一个球,则至少有一 个红球的概率为 .16.若“x <a ”是“x 2﹣2x ﹣3≥0”的充分不必要条件,则a 的取值范围为 .17.已知数列{a n }的前n 项和为S n ,a 1=1,2a n+1=a n ,若对于任意n ∈N *,当t ∈[﹣1,1]时,不等式x 2+tx+1>S n 恒成立,则实数x 的取值范围为 .18.已知函数32()39f x x ax x =++-,3x =-是函数()f x 的一个极值点,则实数a = .三、解答题19.如图,在四棱柱ABCD ﹣A 1B 1C 1D 1中,底面ABCD 是矩形,且AD=2CD=2,AA 1=2,∠A 1AD=.若O为AD 的中点,且CD ⊥A 1O (Ⅰ)求证:A 1O ⊥平面ABCD ;(Ⅱ)线段BC 上是否存在一点P ,使得二面角D ﹣A 1A ﹣P 为?若存在,求出BP 的长;不存在,说明理由.20.已知椭圆E:=1(a>b>0)的焦距为2,且该椭圆经过点.(Ⅰ)求椭圆E的方程;(Ⅱ)经过点P(﹣2,0)分别作斜率为k1,k2的两条直线,两直线分别与椭圆E交于M,N两点,当直线MN与y轴垂直时,求k1k2的值.21.某校为选拔参加“央视猜灯谜大赛”的队员,在校内组织猜灯谜竞赛.规定:第一阶段知识测试成绩不小于160分的学生进入第二阶段比赛.现有200名学生参加知识测试,并将所有测试成绩绘制成如下所示的频率分布直方图.(Ⅰ)估算这200名学生测试成绩的中位数,并求进入第二阶段比赛的学生人数;(Ⅱ)将进入第二阶段的学生分成若干队进行比赛.现甲、乙两队在比赛中均已获得120分,进入最后抢答阶段.抢答规则:抢到的队每次需猜3条谜语,猜对1条得20分,猜错1条扣20分.根据经验,甲队猜对每条谜语的概率均为,乙队猜对前两条的概率均为,猜对第3条的概率为.若这两队抢到答题的机会均等,您做为场外观众想支持这两队中的优胜队,会把支持票投给哪队?22.设函数f (x )=ax 2+bx+c (a ≠0)为奇函数,其图象在点(1,f (1))处的切线与直线x ﹣6y ﹣7=0垂直,导函数f ′(x )的最小值为﹣12. (1)求a ,b ,c 的值;(2)求函数f (x )的单调递增区间,并求函数f (x )在[﹣1,3]上的最大值和最小值.23.2()sin 22f x x x =+. (1)求函数()f x 的单调递减区间;(2)在ABC ∆中,角,,A B C 的对边分别为,,a b c ,若()12A f =,ABC ∆的面积为.24.已知椭圆C :=1(a >2)上一点P 到它的两个焦点F 1(左),F 2 (右)的距离的和是6.(1)求椭圆C 的离心率的值;(2)若PF 2⊥x 轴,且p 在y 轴上的射影为点Q ,求点Q 的坐标.青山区二中2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)一、选择题1. 【答案】C【解析】解:设过右焦点F 的弦为AB ,右准线为l ,A 、B 在l 上的射影分别为C 、D连接AC 、BD ,设AB 的中点为M ,作MN ⊥l 于N根据圆锥曲线的统一定义,可得==e ,可得∴|AF|+|BF|<|AC|+|BD|,即|AB|<|AC|+|BD|,∵以AB 为直径的圆半径为r=|AB|,|MN|=(|AC|+|BD|) ∴圆M 到l 的距离|MN|>r ,可得直线l 与以AB 为直径的圆相离故选:C【点评】本题给出椭圆的右焦点F ,求以经过F 的弦AB 为直径的圆与右准线的位置关系,着重考查了椭圆的简单几何性质、圆锥曲线的统一定义和直线与圆的位置关系等知识,属于中档题.2. 【答案】D 【解析】试题分析:由题意得,根据不等式与方程的关系可知,不等式解集的端点就是对应的方程的根,可得方程2043x ax x +=++,解得3,1,x x x a =-=-=-,其对应的根分别为3,1,2x x x =-=-=,所以2a =-,故选D.考点:不等式与方程的关系. 3. 【答案】C【解析】解:如图,++().故选C .4.【答案】D【解析】考点:平面的基本公理与推论.5.【答案】C【解析】解:设a、b是两个非零向量,“(a+b)2=|a|2+|b|2”⇒(a+b)2=|a|2+|b|2+2ab=|a|2+|b|2⇒a•b=0,即a⊥b;a⊥b⇒a•b=0即(a+b)2=|a|2+|b|2所以“(a+b)2=|a|2+|b|2”是“a⊥b”的充要条件.故选C.6.【答案】B【解析】解:===;又,,,∴.故选B.【点评】本题考查了向量加法的几何意义,是基础题.7.【答案】B【解析】8.【答案】C【解析】解:根据频率分布直方图,得;∵0.02×5+0.04×5=0.3<0.5,0.3+0.08×5=0.7>0.5;∴中位数应在20~25内,设中位数为x,则0.3+(x﹣20)×0.08=0.5,解得x=22.5;∴这批产品的中位数是22.5.故选:C.【点评】本题考查了利用频率分布直方图求数据的中位数的应用问题,是基础题目.9.【答案】【解析】解析:选D.该几何体是在一个长方体的上面放置了半个圆柱.依题意得(2r×2r+12)×2+5×2r×2+5×2r+πr×5=92+14π,2πr即(8+π)r2+(30+5π)r-(92+14π)=0,即(r-2)[(8+π)r+46+7π]=0,∴r=2,∴该几何体的体积为(4×4+12)×5=80+10π.2π×210.【答案】B【解析】解:向量,向量与平行,可得2m=﹣1.解得m=﹣.故选:B.11.【答案】B【解析】解:∵f(1988)=asin(1988π+α)+bcos(1998π+β)+4=asinα+bcosβ+4=3,∴asinα+bcosβ=﹣1,故f(2008)=asin(2008π+α)+bcos(2008π+β)+4=asinα+bcosβ+4=﹣1+4=3,故选:B.【点评】本题主要考查利用诱导公式进行化简求值,属于中档题.12.【答案】A【解析】解:二项式的展开式的通项公式为T r+1=•(﹣1)r•x12﹣3r,令12﹣3r=3,求得r=3,故展开式中含x3项的系数为•(﹣1)3=﹣20,而所有系数和为0,不含x3项的系数之和为20,故选:A.【点评】本题主要考查二项式定理的应用,二项式系数的性质,二项式展开式的通项公式,求展开式中某项的系数,属于中档题.二、填空题13.【答案】{x|x>0}.【解析】解:对数函数y=lgx的定义域为:{x|x>0}.故答案为:{x|x>0}.【点评】本题考查基本函数的定义域的求法.14.【答案】0【解析】【分析】以D为原点,DA为x轴,DC为y轴,DD1为z轴,建立空间直角坐标系,利用向量法能求出异面直线A1E与GF所成的角的余弦值.【解答】解:以D为原点,DA为x轴,DC为y轴,DD1为z轴,建立空间直角坐标系,∵AA1=AB=2,AD=1,点E、F、G分别是DD1、AB、CC1的中点,∴A1(1,0,2),E(0,0,1),G(0,2,1),F(1,1,0),=(﹣1,0,﹣1),=(1,﹣1,﹣1),=﹣1+0+1=0,∴A1E⊥GF,∴异面直线A1E与GF所成的角的余弦值为0.故答案为:0.15.【答案】98 【解析】【易错点睛】古典概型的两种破题方法:(1)树状图是进行列举的一种常用方法,适合于有顺序的问题及较复杂问题中基本事件数的探求.另外在确定基本事件时,),(y x 可以看成是有序的,如()1,2与()2,1不同;有时也可以看成是无序的,如)1,2)(2,1(相同.(2)含有“至多”、“至少”等类型的概率问题,从正面突破比较困难或者比较繁琐时,考虑其反面,即对立事件,应用)(1)(A P A P -=求解较好. 16.【答案】 a ≤﹣1 .【解析】解:由x 2﹣2x ﹣3≥0得x ≥3或x ≤﹣1,若“x <a ”是“x 2﹣2x ﹣3≥0”的充分不必要条件,则a ≤﹣1, 故答案为:a ≤﹣1.【点评】本题主要考查充分条件和必要条件的应用,根据条件求出不等式的等价是解决本题的关键.17.【答案】 (﹣∞,]∪[,+∞) .【解析】解:数列{a n}的前n项和为S n,a1=1,2a n+1=a n,∴数列{a n}是以1为首项,以为公比的等比数列,S n==2﹣()n﹣1,对于任意n∈N*,当t∈[﹣1,1]时,不等式x2+tx+1>S n恒成立,∴x2+tx+1≥2,x2+tx﹣1≥0,令f(t)=tx+x2﹣1,∴,解得:x≥或x≤,∴实数x的取值范围(﹣∞,]∪[,+∞).18.【答案】5【解析】试题分析:'2'=++∴-=∴=.f x x ax f a()323,(3)0,5考点:导数与极值.三、解答题19.【答案】【解析】满分(13分).(Ⅰ)证明:∵∠A1AD=,且AA1=2,AO=1,∴A1O==,…(2分)∴+AD2=AA12,∴A1O⊥AD.…(3分)又A1O⊥CD,且CD∩AD=D,∴A1O⊥平面ABCD.…(5分)(Ⅱ)解:过O作Ox∥AB,以O为原点,建立空间直角坐标系O﹣xyz(如图),则A(0,﹣1,0),A(0,0,),…(6分)1设P(1,m,0)m∈[﹣1,1],平面A1AP的法向量为=(x,y,z),∵=,=(1,m+1,0),且取z=1,得=.…(8分)又A1O⊥平面ABCD,A1O⊂平面A1ADD1∴平面A1ADD1⊥平面ABCD.又CD⊥AD,且平面A1ADD1∩平面ABCD=AD,∴CD⊥平面A1ADD1.不妨设平面A1ADD1的法向量为=(1,0,0).…(10分)由题意得==,…(12分)解得m=1或m=﹣3(舍去).∴当BP的长为2时,二面角D﹣A1A﹣P的值为.…(13分)【点评】本小题主要考查直线与平面的位置关系,二面角的大小等基础知识,考查空间想象能力、推理论证能力和运算求解能力,考查函数与方程思想、化归与转化思想、数形结合思想.20.【答案】【解析】解:(Ⅰ)由题意得,2c=2,=1;解得,a2=4,b2=1;故椭圆E的方程为+y2=1;(Ⅱ)由题意知,当k1=0时,M点的纵坐标为0,直线MN与y轴垂直,则点N的纵坐标为0,故k2=k1=0,这与k2≠k1矛盾.当k1≠0时,直线PM:y=k1(x+2);由得,(+4)y2﹣=0;解得,y M=;∴M(,),同理N(,),由直线MN与y轴垂直,则=;∴(k2﹣k1)(4k2k1﹣1)=0,∴k2k1=.【点评】本题考查了椭圆方程的求法及椭圆与直线的位置关系的判断与应用,属于中档题.21.【答案】【解析】解:(Ⅰ)设测试成绩的中位数为x,由频率分布直方图得,(0.0015+0.019)×20+(x﹣140)×0.025=0.5,解得:x=143.6.∴测试成绩中位数为143.6.进入第二阶段的学生人数为200×(0.003+0.0015)×20=18人.(Ⅱ)设最后抢答阶段甲、乙两队猜对灯谜的条数分别为ξ、η,则ξ~B(3,),∴E(ξ)=.∴最后抢答阶段甲队得分的期望为[]×20=30,∵P(η=0)=,P(η=1)=,P (η=2)=,P (η=3)=,∴E η=.∴最后抢答阶段乙队得分的期望为[]×20=24.∴120+30>120+24, ∴支持票投给甲队.【点评】本小题主要考查概率、概率与统计等基础知识,考查推理论证能力、数据处理能力、运算求解能力及应用意识,考查或然与必然的思想,属中档题.22.【答案】【解析】解:(1)∵f (x )为奇函数,∴f (﹣x )=﹣f (x ),即﹣ax 3﹣bx+c=﹣ax 3﹣bx ﹣c ,∴c=0. ∵f ′(x )=3ax 2+b 的最小值为﹣12,∴b=﹣12.又直线x ﹣6y ﹣7=0的斜率为,则f ′(1)=3a+b=﹣6,得a=2, ∴a=2,b=﹣12,c=0;(2)由(1)知f (x )=2x 3﹣12x ,∴f ′(x )=6x 2﹣12=6(x+)(x ﹣),) ,∵f (﹣1)=10,f ()=﹣8,f (3)=18,∴f (x )在[﹣1,3]上的最大值是f (3)=18,最小值是f ()=﹣8.23.【答案】(1)5,36k k ππππ⎡⎤++⎢⎥⎣⎦(k ∈Z );(2)【解析】试题分析:(1)根据3222262k x k πππππ+≤-≤+可求得函数()f x 的单调递减区间;(2)由12A f ⎛⎫= ⎪⎝⎭可得3A π=,再由三角形面积公式可得12bc =,根据余弦定理及基本不等式可得的最小值. 1试题解析:(1)111()cos 22sin(2)2262f x x x x π=-=-+, 令3222262k x k πππππ+≤-≤+,解得536k x k ππππ+≤≤+,k Z ∈,∴()f x 的单调递减区间为5[,]36k k ππππ++(k Z ∈).考点:1、正弦函数的图象和性质;2、余弦定理、基本不等式等知识的综合运用. 24.【答案】【解析】解:(1)根据椭圆的定义得2a=6,a=3;∴c=;∴;即椭圆的离心率是;(2);∴x=带入椭圆方程得,y=;所以Q (0,).。

青山区第二高级中学2018-2019学年高二上学期第二次月考试卷数学(1)

青山区第二高级中学2018-2019学年高二上学期第二次月考试卷数学(1)

青山区第二高级中学2018-2019学年高二上学期第二次月考试卷数学班级__________ 姓名__________ 分数__________一、选择题1. 已知a >0,实数x ,y 满足:,若z=2x+y 的最小值为1,则a=( )A .2B .1C .D .2. 若复数满足71i i z+=(为虚数单位),则复数的虚部为( ) A .1 B .1- C . D .i -3. 已知向量=(2,﹣3,5)与向量=(3,λ,)平行,则λ=( )A .B .C .﹣D .﹣4. 过抛物线y 2=4x 焦点的直线交抛物线于A ,B 两点,若|AB|=10,则AB 的中点到y 轴的距离等于( ) A .1 B .2 C .3 D .4 5. 已知圆C :x 2+y 2﹣2x=1,直线l :y=k (x ﹣1)+1,则l 与C 的位置关系是( ) A .一定相离 B .一定相切C .相交且一定不过圆心D .相交且可能过圆心 6. i 是虚数单位,计算i+i 2+i 3=( ) A .﹣1B .1C .﹣iD .i7. 对于任意两个正整数m ,n ,定义某种运算“※”如下:当m ,n 都为正偶数或正奇数时,m ※n=m+n ;当m ,n 中一个为正偶数,另一个为正奇数时,m ※n=mn .则在此定义下,集合M={(a ,b )|a ※b=12,a ∈N *,b ∈N *}中的元素个数是( ) A .10个 B .15个 C .16个 D .18个8. 如图,正六边形ABCDEF 中,AB=2,则(﹣)•(+)=( )A .﹣6B .﹣2C .2D .69. 函数f (x )的图象向右平移1个单位长度,所得图象与曲线y=e x 关于y 轴对称,则f (x )=( ) A .e x+1 B .e x ﹣1 C .e ﹣x+1 D .e ﹣x ﹣110.已知函数y=x 3+ax 2+(a+6)x ﹣1有极大值和极小值,则a 的取值范围是( )A .﹣1<a <2B .﹣3<a <6C .a <﹣3或a >6D .a <﹣1或a >211.函数f (x )=x 2﹣x ﹣2,x ∈[﹣5,5],在定义域内任取一点x 0,使f (x 0)≤0的概率是( ) A .B .C .D .12.已知命题p ;对任意x ∈R ,2x 2﹣2x+1≤0;命题q :存在x ∈R ,sinx+cosx=,则下列判断:①p 且q是真命题;②p 或q 是真命题;③q 是假命题;④¬p 是真命题,其中正确的是( )A .①④B .②③C .③④D .②④二、填空题13.【2017-2018学年度第一学期如皋市高三年级第一次联考】已知函数()ln 4f x x x =+-的零点在区间()1k k +,内,则正整数k 的值为________.14.复数z=(i 虚数单位)在复平面上对应的点到原点的距离为 .15.抛物线的准线与双曲线的两条渐近线所围成的三角形面积为__________16.设双曲线﹣=1,F 1,F 2是其两个焦点,点M 在双曲线上.若∠F 1MF 2=90°,则△F 1MF 2的面积是 .17.已知椭圆中心在原点,一个焦点为F (﹣2,0),且长轴长是短轴长的2倍,则该椭圆的标准方程是 .18.设是空间中给定的个不同的点,则使成立的点的个数有_________个.三、解答题19.某城市100户居民的月平均用电量(单位:度),以[)160,180,[)180,200,[)200,220,[)220,240,[)240,260,[)260,280,[]280,300分组的频率分布直方图如图.(1)求直方图中的值;(2)求月平均用电量的众数和中位数.1111]20.设0<||≤2,函数f(x)=cos2x﹣||sinx﹣||的最大值为0,最小值为﹣4,且与的夹角为45°,求|+|.21.已知p:x∈A={x|x2﹣2x﹣3≤0,x∈R},q:x∈B={x|x2﹣2mx+m2﹣4≤0,x∈R,m∈R}(1)若A∩B=[0,3],求实数m的值;(2)若p是¬q的充分条件,求实数m的取值范围.22.在直接坐标系中,直线的方程为,曲线的参数方程为(为参数)。

青山区第二高级中学2018-2019学年高二上学期第二次月考试卷数学

青山区第二高级中学2018-2019学年高二上学期第二次月考试卷数学

青山区第二高级中学2018-2019学年高二上学期第二次月考试卷数学班级__________ 姓名__________ 分数__________一、选择题1. 平面α与平面β平行的条件可以是( )A .α内有无穷多条直线与β平行B .直线a ∥α,a ∥βC .直线a ⊂α,直线b ⊂β,且a ∥β,b ∥αD .α内的任何直线都与β平行2. 数列{a n }满足a 1=3,a n ﹣a n •a n+1=1,A n 表示{a n }前n 项之积,则A 2016的值为( )A .﹣B .C .﹣1D .13. 若函数()y f x =的定义域是[]1,2016,则函数()()1g x f x =+的定义域是( )A .(]0,2016 B .[]0,2015 C .(]1,2016 D .[]1,20174. 把函数y=cos (2x+φ)(|φ|<)的图象向左平移个单位,得到函数y=f (x )的图象关于直线x=对称,则φ的值为( )A .﹣B .﹣C .D .5. 已知某几何体的三视图的侧视图是一个正三角形,如图所示,则该几何体的体积等于( )A .123B .163C .203D .323 6. 已知集合A={0,m ,m 2﹣3m+2},且2∈A ,则实数m 为( )A .2B .3C .0或3D .0,2,3均可7. 如图,△ABC 所在平面上的点P n (n ∈N *)均满足△P n AB 与△P n AC 的面积比为3;1, =﹣(2x n +1)(其中,{x n }是首项为1的正项数列),则x 5等于( )A .65B .63C .33D .318. 集合A={1,2,3},集合B={﹣1,1,3},集合S=A ∩B ,则集合S 的子集有( ) A .2个 B .3 个 C .4 个 D .8个9. 函数 y=x 2﹣4x+1,x ∈[2,5]的值域是( )A .[1,6]B .[﹣3,1]C .[﹣3,6]D .[﹣3,+∞)10.已知函数f (x )=log 2(x 2+1)的值域为{0,1,2},则满足这样条件的函数的个数为( )A .8B .5C .9D .2711.将n 2个正整数1、2、3、…、n 2(n ≥2)任意排成n 行n 列的数表.对于某一个数表,计算某行或某列中的任意两个数a 、b (a >b )的比值,称这些比值中的最小值为这个数表的“特征值”.当n=2时,数表的所有可能的“特征值”的最大值为( )A .B .C .2D .312.已知函数()e sin xf x x =,其中x ∈R ,e 2.71828=为自然对数的底数.当[0,]2x π∈时,函数()y f x =的图象不在直线y kx =的下方,则实数k 的取值范围( )A .(,1)-∞B .(,1]-∞C .2(,e )π-∞ D .2(,e ]π-∞【命题意图】本题考查函数图象与性质、利用导数研究函数的单调性、零点存在性定理,意在考查逻辑思维能力、等价转化能力、运算求解能力,以及构造思想、分类讨论思想的应用.二、填空题13.已知一个算法,其流程图如图,则输出结果是 .14.曲线y=x+e x 在点A (0,1)处的切线方程是 .15.设O 为坐标原点,抛物线C :y 2=2px (p >0)的准线为l ,焦点为F ,过F 斜率为的直线与抛物线C相交于A ,B 两点,直线AO 与l 相交于D ,若|AF|>|BF|,则= .16.已知定义在R 上的奇函数()f x 满足(4)()f x f x +=,且(0,2)x ∈时2()1f x x =+,则(7)f 的值为 ▲ .17.函数f (x )=(x >3)的最小值为 .18.直线2x+3y+6=0与坐标轴所围成的三角形的面积为 .三、解答题19.(本小题满分10分)选修4-4:坐标系与参数方程.在直角坐标系中,曲线C 1:⎩⎪⎨⎪⎧x =1+3cos αy =2+3sin α(α为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,C 2的极坐标方程为ρ=2sin (θ+π4).(1)求C 1,C 2的普通方程;(2)若直线C 3的极坐标方程为θ=3π4(ρ∈R ),设C 3与C 1交于点M ,N ,P 是C 2上一点,求△PMN 的面积.20.已知圆C :(x ﹣1)2+y 2=9内有一点P (2,2),过点P 作直线l 交圆C 于A ,B 两点. (1)当l 经过圆心C 时,求直线l 的方程;(2)当弦AB 被点P 平分时,求直线l 的方程.21.已知数列{a n}满足a1=﹣1,a n+1=(n∈N*).(Ⅰ)证明:数列{+}是等比数列;(Ⅱ)令b n=,数列{b n}的前n项和为S n.①证明:b n+1+b n+2+…+b2n<②证明:当n≥2时,S n2>2(++…+)22.设数列{a n}是等差数列,数列{b n}的前n项和S n满足S n=(b n﹣1)且a2=b1,a5=b2(Ⅰ)求数列{a n}和{b n}的通项公式;(Ⅱ)设c n=a n•b n,设T n为{c n}的前n项和,求T n.23.如图,在长方体ABCD﹣A1B1C1D1中,AD=AA1=1,AB=2,点E在棱AB上移动.(1)证明:BC1∥平面ACD1.(2)当时,求三棱锥E﹣ACD1的体积.24.(本题满分12分)已知数列}{n a 的前n 项和为n S ,且332-=n n a S ,(+∈N n ). (1)求数列}{n a 的通项公式; (2)记nn a n b 14+=,n T 是数列}{n b 的前n 项和,求n T . 【命题意图】本题考查利用递推关系求通项公式、用错位相减法求数列的前n 项和.重点突出对运算及化归能力的考查,属于中档难度.青山区第二高级中学2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题1.【答案】D【解析】解:当α内有无穷多条直线与β平行时,a与β可能平行,也可能相交,故不选A.当直线a∥α,a∥β时,a与β可能平行,也可能相交,故不选B.当直线a⊂α,直线b⊂β,且a∥β时,直线a 和直线b可能平行,也可能是异面直线,故不选C.当α内的任何直线都与β平行时,由两个平面平行的定义可得,这两个平面平行,故选D.【点评】本题考查两个平面平行的判定和性质得应用,注意考虑特殊情况.2.【答案】D【解析】解:∵a1=3,a n﹣a n•a n+1=1,∴,得,,a4=3,…∴数列{a n}是以3为周期的周期数列,且a1a2a3=﹣1,∵2016=3×672,∴A2016 =(﹣1)672=1.故选:D.3.【答案】B【解析】4.【答案】B【解析】解:把函数y=cos(2x+φ)(|φ|<)的图象向左平移个单位,得到函数y=f(x)=cos[2(x+)+φ]=cos(2x+φ+)的图象关于直线x=对称,则2×+φ+=kπ,求得φ=kπ﹣,k∈Z,故φ=﹣,故选:B.5.【答案】C【解析】考点:三视图.6.【答案】B【解析】解:∵A={0,m,m2﹣3m+2},且2∈A,∴m=2或m2﹣3m+2=2,解得m=2或m=0或m=3.当m=0时,集合A={0,0,2}不成立.当m=2时,集合A={0,0,2}不成立.当m=3时,集合A={0,3,2}成立.故m=3.故选:B.【点评】本题主要考查集合元素和集合之间的关系的应用,注意求解之后要进行验证.7.【答案】D【解析】解:由=﹣(2x n+1),得+(2x n+1)=,设,以线段P n A、P n D作出图形如图,则,∴,∴,∵,∴,则,即x n+1=2x n+1,∴x n+1+1=2(x n+1),则{x n+1}构成以2为首项,以2为公比的等比数列,∴x5+1=2•24=32,则x5=31.故选:D.【点评】本题考查了平面向量的三角形法则,考查了数学转化思想方法,训练了利用构造法构造等比数列,考查了计算能力,属难题.8.【答案】C【解析】解:∵集合A={1,2,3},集合B={﹣1,1,3},∴集合S=A∩B={1,3},则集合S的子集有22=4个,故选:C.【点评】本题主要考查集合的基本运算和集合子集个数的求解,要求熟练掌握集合的交并补运算,比较基础.9.【答案】C【解析】解:y=x2﹣4x+1=(x﹣2)2﹣3∴当x=2时,函数取最小值﹣3当x=5时,函数取最大值6 ∴函数 y=x 2﹣4x+1,x ∈[2,5]的值域是[﹣3,6]故选C【点评】本题考查了二次函数最值的求法,即配方法,解题时要分清函数开口方向,辨别对称轴与区间的位置关系,仔细作答10.【答案】C【解析】解:令log 2(x 2+1)=0,得x=0, 令log 2(x 2+1)=1,得x 2+1=2,x=±1, 令log2(x 2+1)=2,得x 2+1=4,x=.则满足值域为{0,1,2}的定义域有:{0,﹣1,﹣ },{0,﹣1, },{0,1,﹣},{0,1, },{0,﹣1,1,﹣},{0,﹣1,1,},{0,﹣1,﹣,},{0,1,﹣,},{0,﹣1,1,﹣,}.则满足这样条件的函数的个数为9.故选:C .【点评】本题考查了对数的运算性质,考查了学生对函数概念的理解,是中档题.11.【答案】B【解析】解:当n=2时,这4个数分别为1、2、3、4,排成了两行两列的数表,当1、2同行或同列时,这个数表的“特征值”为;当1、3同行或同列时,这个数表的特征值分别为或;当1、4同行或同列时,这个数表的“特征值”为或,故这些可能的“特征值”的最大值为.故选:B .【点评】题考查类比推理和归纳推理,属基础题.12.【答案】B【解析】由题意设()()e sin xg x f x kx x kx =-=-,且()0g x ≥在[0,]2x π∈时恒成立,而'()e (sin cos )x g x x x k =+-.令()e (sin cos )x h x x x =+,则'()2e c o s 0xh x x =≥,所以()h x 在[0,]2π上递增,所以21()h x e π≤≤.当1k ≤时,'()0g x ≥,()g x 在[0,]2π上递增,()(0)0g x g ≥=,符合题意;当2e k π≥时,'()0g x ≤,()g x 在[0,]2π上递减,()(0)0g x g ≤=,与题意不合;当21e k π<<时,()g x '为一个递增函数,而'(0)10g k =-<,2'()e 02g k ππ=->,由零点存在性定理,必存在一个零点0x ,使得0'()0g x =,当0[0,)x x ∈时,'()0g x ≤,从而()g x 在0[0,)x x ∈上单调递减,从而()(0)0g x g ≤=,与题意不合,综上所述:k 的取值范围为(,1]-∞,故选B .二、填空题13.【答案】 5 .【解析】解:模拟执行程序框图,可得 a=1,a=2不满足条件a 2>4a+1,a=3不满足条件a 2>4a+1,a=4不满足条件a 2>4a+1,a=5满足条件a 2>4a+1,退出循环,输出a 的值为5.故答案为:5.【点评】本题主要考查了循环结构的程序框图,依次正确写出每次循环得到的a 的值是解题的关键,属于基本知识的考查.14.【答案】 2x ﹣y+1=0 .【解析】解:由题意得,y ′=(x+e x )′=1+e x,∴点A (0,1)处的切线斜率k=1+e 0=2,则点A (0,1)处的切线方程是y ﹣1=2x ,即2x ﹣y+1=0,故答案为:2x ﹣y+1=0.【点评】本题考查导数的几何意义,以及利用点斜式方程求切线方程,注意最后要用一般式方程来表示,属于基础题.15.【答案】 .【解析】解:∵O 为坐标原点,抛物线C :y 2=2px (p >0)的准线为l ,焦点为F ,过F 斜率为的直线与抛物线C 相交于A ,B 两点,直线AO 与l 相交于D ,∴直线AB 的方程为y=(x ﹣),l 的方程为x=﹣,联立,解得A (﹣,P ),B (,﹣)∴直线OA 的方程为:y=,联立,解得D (﹣,﹣)∴|BD|==,∵|OF|=,∴ ==.故答案为:.【点评】本题考查两条件线段的比值的求法,是中档题,解题时要认真审题,要熟练掌握抛物线的简单性质.16.【答案】2- 【解析】1111]试题分析:(4)()T 4f x f x +=⇒=,所以(7)(1)(1) 2.f f f =-=-=- 考点:利用函数性质求值17.【答案】 12 .【解析】解:因为x >3,所以f (x )>0由题意知:=﹣令t=∈(0,),h (t )==t ﹣3t 2因为 h (t )=t ﹣3t 2的对称轴x=,开口朝上知函数h (t )在(0,)上单调递增,(,)单调递减;故h (t )∈(0,]由h (t )=⇒f (x )=≥12故答案为:1218.【答案】 3 .【解析】解:把x=0代入2x+3y+6=0可得y=﹣2,把y=0代入2x+3y+6=0可得x=﹣3,∴直线与坐标轴的交点为(0,﹣2)和(﹣3,0),故三角形的面积S=×2×3=3,故答案为:3.【点评】本题考查直线的一般式方程和三角形的面积公式,属基础题.三、解答题19.【答案】【解析】解:(1)由C 1:⎩⎪⎨⎪⎧x =1+3cos αy =2+3sin α(α为参数)得(x -1)2+(y -2)2=9(cos 2α+sin 2α)=9. 即C 1的普通方程为(x -1)2+(y -2)2=9, 由C 2:ρ=2sin (θ+π4)得ρ(sin θ+cos θ)=2, 即x +y -2=0,即C 2的普通方程为x +y -2=0.(2)由C 1:(x -1)2+(y -2)2=9得 x 2+y 2-2x -4y -4=0,其极坐标方程为ρ2-2ρcos θ-4ρsin θ-4=0, 将θ=3π4代入上式得ρ2-2ρ-4=0, ρ1+ρ2=2,ρ1ρ2=-4,∴|MN |=|ρ1-ρ2|=(ρ1+ρ2)2-4ρ1ρ2=3 2.C 3:θ=34π(ρ∈R )的直角坐标方程为x +y =0,∴C 2与C 3是两平行直线,其距离d =22= 2.∴△PMN 的面积为S =12|MN |×d =12×32×2=3.即△PMN 的面积为3. 20.【答案】【解析】【分析】(1)求出圆的圆心,代入直线方程,求出直线的斜率,即可求直线l 的方程; (2)当弦AB 被点P 平分时,求出直线的斜率,即可写出直线l 的方程;【解答】解:(1)已知圆C :(x ﹣1)2+y 2=9的圆心为C (1,0),因为直线l 过点P ,C ,所以直线l 的斜率为2,所以直线l 的方程为y=2(x ﹣1),即2x ﹣y ﹣2=0. (2)当弦AB 被点P 平分时,l ⊥PC ,直线l 的方程为,即x+2y ﹣6=0.21.【答案】【解析】(Ⅰ)证明:∵数列{a n }满足a 1=﹣1,a n+1=(n ∈N *),∴na n =3(n+1)a n +4n+6,两边同除n (n+1)得,,即,也即,又a 1=﹣1,∴,∴数列{+}是等比数列是以1为首项,3为公比的等比数列.(Ⅱ)(ⅰ)证明:由(Ⅰ)得, =3n ﹣1,∴,∴,原不等式即为:<,先用数学归纳法证明不等式:当n≥2时,,证明过程如下:当n=2时,左边==<,不等式成立假设n=k时,不等式成立,即<,则n=k+1时,左边=<+=<,∴当n=k+1时,不等式也成立.因此,当n≥2时,,当n≥2时,<,∴当n≥2时,,又当n=1时,左边=,不等式成立故b n+1+b n+2+…+b2n<.(ⅱ)证明:由(i)得,S n=1+,当n≥2,=(1+)2﹣(1+)2==2﹣,,…=2•,将上面式子累加得,﹣,又<=1﹣=1﹣,∴,即>2(),∴当n≥2时,S n2>2(++…+).【点评】本题考查等比数列的证明,考查不等式的证明,解题时要认真审题,注意构造法、累加法、裂项求和法、数学归纳法、放缩法的合理运用,综合性强,难度大,对数学思维能力的要求较高.22.【答案】【解析】解:(Ⅰ)∵数列{b n}的前n项和S n满足S n=(b n﹣1),∴b1=S1=,解得b1=3.当n≥2时,b n=S n﹣S n﹣1=,化为b n=3b n﹣1.∴数列{b n}为等比数列,∴.∵a2=b1=3,a5=b2=9.设等差数列{a n}的公差为d.∴,解得d=2,a1=1.∴a n=2n﹣1.综上可得:a n=2n﹣1,.(Ⅱ)c n=a n•b n=(2n﹣1)•3n.∴T n=3+3×32+5×33+…+(2n﹣3)•3n﹣1+(2n﹣1)•3n,3T n=32+3×33+…+(2n﹣3)•3n+(2n﹣1)•3n+1.∴﹣2T n=3+2×32+2×33+…+2×3n﹣(2n﹣1)•3n+1=﹣(2n﹣1)•3n+1﹣3=(2﹣2n)•3n+1﹣6.∴.【点评】本题考查了等差数列与等比数列的通项公式、“错位相减法”和等比数列的前n 项和公式,考查了推理能力与计算能力,属于中档题.23.【答案】【解析】(1)证明:∵AB ∥C 1D 1,AB=C 1D 1,∴四边形ABC 1D 1是平行四边形,∴BC 1∥AD 1,又∵AD 1⊂平面ACD 1,BC 1⊄平面ACD 1, ∴BC 1∥平面ACD 1.(2)解:S △ACE =AEAD==.∴V=V===.【点评】本题考查了线面平行的判定,长方体的结构特征,棱锥的体积计算,属于中档题.24.【答案】【解析】(1)当1=n 时,323321111=⇒=-=a a a S ;………………1分 当2≥n 时,332,33211-=-=--n n n n a S a S ,∴当2≥n 时,n n n n n a a a S S 2)(32211=-=---,整理得13-=n n a a .………………3分 ∴数列}{n a 是以3为首项,公比为3的等比数列. ∴数列}{n a 的通项公式为n n a 3=.………………5分。

青山区第二中学校2018-2019学年高二上学期第二次月考试卷数学

青山区第二中学校2018-2019学年高二上学期第二次月考试卷数学

青山区第二中学校2018-2019学年高二上学期第二次月考试卷数学班级__________ 姓名__________ 分数__________一、选择题1. 设函数()''y f x =是()'y f x =的导数.某同学经过探究发现,任意一个三次函数()()320f x ax bx cx d a =+++≠都有对称中心()()00,x f x ,其中0x 满足()0''0f x =.已知函数()3211533212f x x x x =-+-,则1232016...2017201720172017f f f f ⎛⎫⎛⎫⎛⎫⎛⎫++++= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭( ) A .2013 B .2014 C .2015 D .20161111] 2. 奇函数f (x )在区间[3,6]上是增函数,在区间[3,6]上的最大值为8,最小值为﹣1,则f (6)+f (﹣3)的值为( ) A .10B .﹣10C .9D .153. 在空间中,下列命题正确的是( ) A .如果直线m ∥平面α,直线n ⊂α内,那么m ∥nB .如果平面α内的两条直线都平行于平面β,那么平面α∥平面βC .如果平面α外的一条直线m 垂直于平面α内的两条相交直线,那么m ⊥αD .如果平面α⊥平面β,任取直线m ⊂α,那么必有m ⊥β4. 定义新运算⊕:当a ≥b 时,a ⊕b=a ;当a <b 时,a ⊕b=b 2,则函数f (x )=(1⊕x )x ﹣(2⊕x ),x ∈[﹣2,2]的最大值等于( )A .﹣1B .1C .6D .125. 已知函数f (x )=xe x ﹣mx+m ,若f (x )<0的解集为(a ,b ),其中b <0;不等式在(a ,b )中有且只有一个整数解,则实数m 的取值范围是( ) A .B .C .D .6. 过点(0,﹣2)的直线l 与圆x 2+y 2=1有公共点,则直线l 的倾斜角的取值范围是( )A .B .C .D .7. 集合{}5,4,3,2,1,0=S ,A 是S 的一个子集,当A x ∈时,若有A x A x ∉+∉-11且,则称x 为A 的一个“孤立元素”.集合B 是S 的一个子集, B 中含4个元素且B 中无“孤立元素”,这样的集合B 共有个 A.4 B. 5 C.6 D.78. 已知点A (﹣2,0),点M (x ,y )为平面区域上的一个动点,则|AM|的最小值是( )A.5 B.3 C.2D.9.一个几何体的三视图如图所示,且其侧视图是一个等边三角形,则这个几何体的体积为()A. B.(4+π)C. D.10.已知点A(0,1),B(﹣2,3)C(﹣1,2),D(1,5),则向量在方向上的投影为()A.B.﹣C. D.﹣则几何体的体积为()34意在考查学生空间想象能力和计算能2x y=+的最大值为()C.12 D.1513.若函数f (x )=﹣m 在x=1处取得极值,则实数m 的值是 .14.已知tan β=,tan (α﹣β)=,其中α,β均为锐角,则α= .15.若“x <a ”是“x 2﹣2x ﹣3≥0”的充分不必要条件,则a 的取值范围为 .16.如图,在长方体ABCD ﹣A 1B 1C 1D 1中,AB=AD=3cm ,AA 1=2cm ,则四棱锥A ﹣BB 1D 1D 的体积为cm 3.17.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知sinAsinB+sinBsinC+cos2B=1.若C=,则= .18.若直线:012=--ay x 与直线2l :02=+y x 垂直,则=a .三、解答题19.在直角坐标系xOy 中,以O 为极点,x 正半轴为极轴建立极坐标系,曲线C 的极坐标方程为ρcos ()=1,M ,N 分别为C 与x 轴,y 轴的交点.(1)写出C 的直角坐标方程,并求M ,N 的极坐标; (2)设MN 的中点为P ,求直线OP 的极坐标方程.20.(本小题满分10分)选修4-1:几何证明选讲.如图,AB 是⊙O 的直径,AC 是⊙O 的切线,BC 交⊙O 于E ,过E 的切线与AC 交于D .(1)求证:CD =DA ;(2)若CE =1,AB =2,求DE 的长.21.一块边长为10cm的正方形铁片按如图所示的阴影部分裁下,然后用余下的四个全等的等腰三角形加工成一个正四棱锥形容器,试建立容器的容积V与x的函数关系式,并求出函数的定义域.225(Ⅱ)若同一次考试成绩之差的绝对值不超过5分,则称该次考试两人“水平相当”.由上述5次摸底考试成绩统计,任意抽查两次摸底考试,求恰有一次摸底考试两人“水平相当”的概率.23.已知函数f(x)=|x﹣10|+|x﹣20|,且满足f(x)<10a+10(a∈R)的解集不是空集.(Ⅰ)求实数a的取值集合A(Ⅱ)若b∈A,a≠b,求证a a b b>a b b a.24.如图,边长为2的等边△PCD所在的平面垂直于矩形ABCD所在的平面,BC=,M为BC的中点.(Ⅰ)证明:AM⊥PM;(Ⅱ)求点D到平面AMP的距离.青山区第二中学校2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题1. 【答案】D 【解析】1120142201520161...2201720172017201720172017f f f f f f ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=++++++⎢⎥ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦()12201620162=⨯⨯=,故选D. 1 考点:1、转化与划归思想及导数的运算;2、函数对称的性质及求和问题.【方法点睛】本题通过 “三次函数()()320f x ax bx cx d a =+++≠都有对称中心()()00,x f x ”这一探索性结论考查转化与划归思想及导数的运算、函数对称的性质及求和问题,属于难题.遇到探索性结论问题,应耐心读题,分析新结论的特点,弄清新结论的性质,按新结论的要求,“照章办事”,逐条分析、验证、运算,使问题得以解决.本题的解答就是根据新结论性质求出()311533212f x x x x =-+-的对称中心后再利用对称性和的.第Ⅱ卷(非选择题共90分)2. 【答案】C【解析】解:由于f (x )在[3,6]上为增函数,f (x )的最大值为f (6)=8,f (x )的最小值为f (3)=﹣1,f (x )为奇函数,故f (﹣3)=﹣f (3)=1,∴f (6)+f (﹣3)=8+1=9. 故选:C .3. 【答案】 C【解析】解:对于A ,直线m ∥平面α,直线n ⊂α内,则m 与n 可能平行,可能异面,故不正确;对于B ,如果平面α内的两条相交直线都平行于平面β,那么平面α∥平面β,故不正确;对于C,根据线面垂直的判定定理可得正确;对于D,如果平面α⊥平面β,任取直线m⊂α,那么可能m⊥β,也可能m和β斜交,;故选:C.【点评】本题主要考查命题的真假判断与应用,考查了空间中直线与平面之间的位置关系、平面与平面之间的位置关系,同时考查了推理能力,属于中档题.4.【答案】C【解析】解:由题意知当﹣2≤x≤1时,f(x)=x﹣2,当1<x≤2时,f(x)=x3﹣2,又∵f(x)=x﹣2,f(x)=x3﹣2在定义域上都为增函数,∴f(x)的最大值为f(2)=23﹣2=6.故选C.5.【答案】C【解析】解:设g(x)=xe x,y=mx﹣m,由题设原不等式有唯一整数解,即g(x)=xe x在直线y=mx﹣m下方,g′(x)=(x+1)e x,g(x)在(﹣∞,﹣1)递减,在(﹣1,+∞)递增,故g(x)min=g(﹣1)=﹣,y=mx﹣m恒过定点P(1,0),结合函数图象得K PA≤m<K PB,即≤m<,,故选:C.【点评】本题考查了求函数的最值问题,考查数形结合思想,是一道中档题.6.【答案】A【解析】解:若直线斜率不存在,此时x=0与圆有交点,直线斜率存在,设为k,则过P的直线方程为y=kx﹣2,即kx ﹣y ﹣2=0,若过点(0,﹣2)的直线l 与圆x 2+y 2=1有公共点,则圆心到直线的距离d ≤1,即≤1,即k 2﹣3≥0, 解得k ≤﹣或k ≥,即≤α≤且α≠,综上所述,≤α≤,故选:A .7. 【答案】C 【解析】试题分析:根据题中“孤立元素”定义可知,若集合B 中不含孤立元素,则必须没有三个连续的自然数存在,所有B 的可能情况为:{}0,1,3,4,{}0,1,3,5,{}0,1,4,5,{}0,2,3,5,{}0,2,4,5,{}1,2,4,5共6个。

青山区第四中学校2018-2019学年高二上学期第二次月考试卷数学(1)

青山区第四中学校2018-2019学年高二上学期第二次月考试卷数学(1)

青山区第四中学校2018-2019学年高二上学期第二次月考试卷数学班级__________姓名__________ 分数__________一、选择题1. 是平面内不共线的两向量,已知,,若三点共线,则的值是12,e e 12AB e ke =- 123CD e e =-,,A B D ( )A .1B .2C .-1D .-22. 下列满足“∀x ∈R ,f (x )+f (﹣x )=0且f ′(x )≤0”的函数是( )A .f (x )=﹣xe |x|B .f (x )=x+sinxC .f (x )=D .f (x )=x 2|x|3. 已知,其中i 为虚数单位,则a+b=()A .﹣1B .1C .2D .34. 已知,则方程的根的个数是( )22(0)()|log |(0)x x f x x x ⎧≤=⎨>⎩[()]2f f x = A .3个B .4个C .5个D .6个5. 设全集U={1,2,3,4,5},集合A={2,3,4},B={2,5},则B ∪(∁U A )=( )A .{5}B .{1,2,5}C .{1,2,3,4,5}D .∅6.已知,若圆:,圆:2->a 1O 01582222=---++a ay x y x 2O 恒有公共点,则的取值范围为( ).04422222=--+-++a a ay ax y x a A . B . C . D .),3[]1,2(+∞-- ),3()1,35(+∞-- ),3[]1,35[+∞-- ),3()1,2(+∞-- 7. 设向量,满足:||=3,||=4, =0.以,,﹣的模为边长构成三角形,则它的边与半径为1的圆的公共点个数最多为( )A .3B .4C .5D .68. 如图,半圆的直径AB=6,O 为圆心,C 为半圆上不同于A 、B 的任意一点,若P 为半径OC 上的动点,则的最小值为()A .B .9C .D .﹣99. △ABC 的内角A 、B 、C 的对边分别为a 、b 、c .已知a=,c=2,cosA=,则b=( )A .B .C .2D .310.已知集合A={x|x 是平行四边形},B={x|x 是矩形},C={x|x 是正方形},D={x|x 是菱形},则( )A .A ⊆B B .C ⊆B C .D ⊆C D .A ⊆D11.在二项式(x 3﹣)n (n ∈N *)的展开式中,常数项为28,则n 的值为( )A .12B .8C .6D .412.如果一个几何体的三视图如图所示,主视图与左视图是边长为2的正三角形、俯视图轮廓为正方形,(单位:cm ),则此几何体的表面积是()A .8cm 2B . cm 2C .12 cm 2D . cm 2二、填空题13.已知双曲线的标准方程为,则该双曲线的焦点坐标为, 渐近线方程为 .14.(sinx+1)dx 的值为 .15.自圆:外一点引该圆的一条切线,切点为,切线的长度等于点到C 22(3)(4)4x y -++=(,)P x y Q P 原点的长,则的最小值为( )O PQ A .B .3C .4D .13102110【命题意图】本题考查直线与圆的位置关系、点到直线的距离,意在考查逻辑思维能力、转化能力、运算求解能力、数形结合的思想.16.数据﹣2,﹣1,0,1,2的方差是 .17.已知函数的一条对称轴方程为,则函数的最大值为21()sin cos sin 2f x a x x x =-+6x π=()f x ___________.【命题意图】本题考查三角变换、三角函数的对称性与最值,意在考查逻辑思维能力、运算求解能力、转化思想与方程思想.精选高中模拟试卷18.与圆22:240C x y x y +-+=外切于原点,且半径为25的圆的标准方程为三、解答题19.本小题满分12分某商店计划每天购进某商品若干件,商店每销售1件该商品可获利50元.若供大于求,剩余商品全部退回,但每件商品亏损10元;若供不应求,则从外部调剂,此时每件调剂商品可获利30元.Ⅰ若商店一天购进该商品10件,求当天的利润y 单位:元关于当天需求量n 单位:件,n ∈N 的函数解析式;Ⅱ商店记录了50天该商品的日需求量单位:件,整理得下表:日需求量n 89101112频数91115105①假设该店在这50天内每天购进10件该商品,求这50天的日利润单位:元的平均数;②若该店一天购进10件该商品,以50天记录的各需求量的频率作为各需求量发生的概率,求当天的利润在区间内的概率.[400,550]20.已知数列{a n }满足a 1=,a n+1=a n +,数列{b n }满足b n =(Ⅰ)证明:b n ∈(0,1)(Ⅱ)证明:=(Ⅲ)证明:对任意正整数n 有a n.0,1n =()s n n=+⋅1n n +3?>输出s21.(本题10分)解关于的不等式2(1)10ax a x -++>.22.如图,在四棱锥P ﹣ABCD 中,底面ABCD 为等腰梯形,AD ∥BC ,PA=AB=BC=CD=2,PD=2,PA ⊥PD ,Q 为PD 的中点.(Ⅰ)证明:CQ ∥平面PAB ;(Ⅱ)若平面PAD ⊥底面ABCD ,求直线PD 与平面AQC 所成角的正弦值.23.已知复数z=.(1)求z 的共轭复数;(2)若az+b=1﹣i ,求实数a ,b 的值.24.(本题满分14分)已知两点与是直角坐标平面内两定点,过曲线上一点作)1,0(-P )1,0(Q C ),(y x M y轴的垂线,垂足为,点满足,且.N E ME =0=⋅(1)求曲线的方程;C (2)设直线与曲线交于两点,坐标原点到直线的距离为,求面积的最大值.l C B A ,O l 23AOB ∆【命题意图】本题考查向量的基本运算、轨迹的求法、直线与椭圆的位置关系,本题知识交汇性强,最值的求解有一定技巧性,同时还要注意特殊情形时三角形的面积.总之该题综合性强,难度大.青山区第四中学校2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题1.【答案】B【解析】考点:向量共线定理.2.【答案】A【解析】解:满足“∀x∈R,f(x)+f(﹣x)=0,且f′(x)≤0”的函数为奇函数,且在R上为减函数,A中函数f(x)=﹣xe|x|,满足f(﹣x)=﹣f(x),即函数为奇函数,且f′(x)=≤0恒成立,故在R上为减函数,B中函数f(x)=x+sinx,满足f(﹣x)=﹣f(x),即函数为奇函数,但f′(x)=1+cosx≥0,在R上是增函数,C中函数f(x)=,满足f(﹣x)=f(x),故函数为偶函数;D中函数f(x)=x2|x|,满足f(﹣x)=f(x),故函数为偶函数,故选:A.3.【答案】B【解析】解:由得a+2i=bi﹣1,所以由复数相等的意义知a=﹣1,b=2,所以a+b=1另解:由得﹣ai+2=b+i(a,b∈R),则﹣a=1,b=2,a+b=1.故选B.【点评】本题考查复数相等的意义、复数的基本运算,是基础题.4.【答案】C【解析】由,设f (A )=2,则f (x )=A,则,则A=4或A=,作出f (x )的图像,由[()]2f f x =2log 2x =14数型结合,当A=时3个根,A=4时有两个交点,所以的根的个数是5个。

青山区第二中学2018-2019学年高二上学期数学期末模拟试卷含解析

青山区第二中学2018-2019学年高二上学期数学期末模拟试卷含解析

青山区第二中学2018-2019学年高二上学期数学期末模拟试卷含解析班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 已知点P (x ,y )的坐标满足条件,(k 为常数),若z=3x+y 的最大值为8,则k 的值为()A .B .C .﹣6D .62. 某个几何体的三视图如图所示,其中正(主)视图中的圆弧是半径为2的半圆,则该几何体的表面积为()A .B .C .D .π1492+π1482+π2492+π2482+【命题意图】本题考查三视图的还原以及特殊几何体的面积度量.重点考查空间想象能力及对基本面积公式的运用,难度中等.3. 在下面程序框图中,输入,则输出的的值是( )44N =S A .B .C .D .251253255260【命题意图】本题考查阅读程序框图,理解程序框图的功能,本质是把正整数除以4后按余数分类.4.设x,y满足约束条件,则目标函数z=ax+by(a>0,b>0)的最大值为12,则+的最小值为()A.B.C.6D.55.已知全集U={0,1,2,3,4},集合M={2,3,4},N={0,1,4},则集合{0,1}可以表示为()A.M∪N B.(∁U M)∩N C.M∩(∁U N)D.(∁U M)∩(∁U N)6. 设奇函数f (x )在(0,+∞)上为增函数,且f (1)=0,则不等式<0的解集为( )A .(﹣1,0)∪(1,+∞)B .(﹣∞,﹣1)∪(0,1)C .(﹣∞,﹣1)∪(1,+∞)D .(﹣1,0)∪(0,1)7. 某校新校区建设在市二环路主干道旁,因安全需要,挖掘建设了一条人行地下通道,地下通道设计三视图中的主(正)视力(其中上部分曲线近似为抛物)和侧(左)视图如图(单位:m ),则该工程需挖掘的总土方数为()A .560m 3B .540m 3C .520m 3D .500m 38. 为调查某地区老人是否需要志愿者提供帮助,用简单随机抽样方法从该地区调查了500位老年人,结果如由算得2()()()()()n ad bc K a b c d a c b d -=++++22500(4027030160)9.96720030070430K ⨯⨯-⨯==⨯⨯⨯附表:参照附表,则下列结论正确的是( )3.841 6.635 10.828k 2() 0.050 0.010 0.001P K k ≥①有以上的把握认为“该地区的老年人是否需要志愿者提供帮助与性别无关”; 99%②有以上的把握认为“该地区的老年人是否需要志愿者提供帮助与性别有关”;99%③采用系统抽样方法比采用简单随机抽样方法更好;④采用分层抽样方法比采用简单随机抽样方法更好;A .①③B .①④C .②③D .②④9. 已知球的半径和圆柱体的底面半径都为1且体积相同,则圆柱的高为()A .1B .C .2D .410.如果执行如图所示的程序框图,那么输出的a=()A .2B .C .﹣1D .以上都不正确11.在△ABC 中,AB 边上的中线CO=2,若动点P 满足=(sin 2θ)+(cos 2θ)(θ∈R ),则(+)•的最小值是()A .1B .﹣1C .﹣2D .012.在△ABC 中,角A ,B ,C 所对的边分别是a ,b ,c ,若﹣+1=0,则角B 的度数是( )A .60°B .120°C .150°D .60°或120°二、填空题13.若在圆C :x 2+(y ﹣a )2=4上有且仅有两个点到原点O 距离为1,则实数a 的取值范围是 . 14.在中,,,为的中点,,则的长为_________.ABC ∆90C ∠=2BC =M BC 1sin 3BAM ∠=AC 15.已知圆的方程为,过点的直线与圆交于两点,若使C 22230x y y +--=()1,2P -C ,A B AB最小则直线的方程是 .16.【徐州市第三中学2017~2018学年度高三第一学期月考】函数的单调增区间是__________.()3f x x x =-+17.对任意实数x ,不等式ax 2﹣2ax ﹣4<0恒成立,则实数a 的取值范围是 .18.已知函数,,则 ,的值域21,0()1,0x x f x x x ⎧-≤=⎨->⎩()21x g x =-((2))f g =[()]f g x 为.【命题意图】本题考查分段函数的函数值与值域等基础知识,意在考查分类讨论的数学思想与运算求解能力.三、解答题19.某校举办学生综合素质大赛,对该校学生进行综合素质测试,学校对测试成绩(10分制)大于或等于7.5的学生颁发荣誉证书,现从A 和B 两班中各随机抽5名学生进行抽查,其成绩记录如下:A777.599.5B6x8.58.5y由于表格被污损,数据x,y看不清,统计人员只记得x<y,且A和B两班被抽查的5名学生成绩的平均值相等,方差也相等.(Ⅰ)若从B班被抽查的5名学生中任抽取2名学生,求被抽取2学生成绩都颁发了荣誉证书的概率;(Ⅱ)从被抽查的10名任取3名,X表示抽取的学生中获得荣誉证书的人数,求X的期望.20.(本小题满分12分)中央电视台电视公开课《开讲了》需要现场观众,先邀请甲、乙、丙、丁四所大学的40名学生参加,各大学邀请的学生如下表所示:大学甲乙丙丁人数812812从这40名学生中按分层抽样的方式抽取10名学生在第一排发言席就座.(1)求各大学抽取的人数;(2)从(1)中抽取的乙大学和丁大学的学生中随机选出2名学生发言,求这2名学生来自同一所大学的概率.21.如图,在平面直角坐标系xOy中,已知曲线C由圆弧C1和圆弧C2相接而成,两相接点M,N均在直线x=5上,圆弧C1的圆心是坐标原点O,半径为13;圆弧C2过点A(29,0).(1)求圆弧C2的方程;(2)曲线C上是否存在点P,满足?若存在,指出有几个这样的点;若不存在,请说明理由. 22.已知函数f(x)是定义在R上的奇函数,当x≥0时,.若,f(x-1)≤f(x),则实数a的取值范围为A[]B[]C[]D[]23.2016年1月1日起全国统一实施全面两孩政策.为了解适龄民众对放开生育二胎政策的态度,某市选取70后和80后作为调查对象,随机调查了100位,得到数据如表:生二胎不生二胎合计70后30154580后451055合计7525100(Ⅰ)以这100个人的样本数据估计该市的总体数据,且以频率估计概率,若从该市70后公民中随机抽取3位,记其中生二胎的人数为X ,求随机变量X 的分布列和数学期望;(Ⅱ)根据调查数据,是否有90%以上的把握认为“生二胎与年龄有关”,并说明理由.参考数据:P (K 2>k )0.150.100.050.0250.0100.005k 2.0722.7063.8415.0246.6357.879(参考公式:,其中n=a+b+c+d )24.(本题满分15分)若数列满足:(为常数, ),则称为调和数列,已知数列为调和数{}n x 111n nd x x +-=d *n N ∈{}n x {}n a 列,且,.11a =123451111115a a a a a ++++=(1)求数列的通项;{}n a n a (2)数列的前项和为,是否存在正整数,使得?若存在,求出的取值集合;若不存2{}nna n n S n 2015n S ≥n 在,请说明理由.【命题意图】本题考查数列的通项公式以及数列求和基础知识,意在考查运算求解能力.青山区第二中学2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)一、选择题1.【答案】B【解析】解:画出x,y满足的可行域如下图:z=3x+y的最大值为8,由,解得y=0,x=,(,0)代入2x+y+k=0,∴k=﹣,故选B.【点评】如果约束条件中含有参数,可以先画出不含参数的几个不等式对应的平面区域,分析取得最优解是哪两条直线的交点,然后得到一个含有参数的方程(组),代入另一条直线方程,消去x,y后,即可求出参数的值.2.【答案】A3.【答案】B4.【答案】B【解析】解:不等式组表示的平面区域如图所示阴影部分,当直线ax+by=z(a>0,b>0)过直线x﹣y+2=0与直线3x﹣y﹣6=0的交点(4,6)时,目标函数z=ax+by(a>0,b>0)取得最大12,即4a+6b=12,即2a+3b=6,而=()=+()≥=,当且仅当a=b=,取最小值.故选B.5.【答案】B【解析】解:全集U={0,1,2,3,4},集合M={2,3,4},N={0,1,4},∴∁U M={0,1},∴N∩(∁U M)={0,1},故选:B.【点评】本题主要考查集合的子交并补运算,属于基础题.6.【答案】D【解析】解:由奇函数f(x)可知,即x与f(x)异号,而f(1)=0,则f(﹣1)=﹣f(1)=0,又f(x)在(0,+∞)上为增函数,则奇函数f(x)在(﹣∞,0)上也为增函数,当0<x<1时,f(x)<f(1)=0,得<0,满足;当x >1时,f (x )>f (1)=0,得>0,不满足,舍去;当﹣1<x <0时,f (x )>f (﹣1)=0,得<0,满足;当x <﹣1时,f (x )<f (﹣1)=0,得>0,不满足,舍去;所以x 的取值范围是﹣1<x <0或0<x <1.故选D .7. 【答案】A 【解析】解:以顶部抛物线顶点为坐标原点,抛物线的对称轴为y 轴建立直角坐标系,易得抛物线过点(3,﹣1),其方程为y=﹣,那么正(主)视图上部分抛物线与矩形围成的部分面积S 1==2=4,下部分矩形面积S 2=24,故挖掘的总土方数为V=(S 1+S 2)h=28×20=560m 3.故选:A .【点评】本题是对抛物线方程在实际生活中应用的考查,考查学生的计算能力,属于中档题.8. 【答案】D【解析】解析:本题考查独立性检验与统计抽样调查方法.由于,所以有99%的把握认为该地区的老年人是否需要帮助与性别有关,②正确;该地区老年9.967 6.635 人是否需要帮助与性别有关,并且从样本数据能看出该地区男性老年人与女性老年人中需要帮助的比例有明显差异,因此在调查时,先确定该地区老年人中男、女的比例,再把老年人分成男、女两层并采用分层抽样方法比采用简单随机抽样方法更好,④正确,选D .9. 【答案】B【解析】解:设圆柱的高为h ,则V 圆柱=π×12×h=h ,V 球==,∴h=.故选:B .10.【答案】 B【解析】解:模拟执行程序,可得a=2,n=1执行循环体,a=,n=3满足条件n≤2016,执行循环体,a=﹣1,n=5满足条件n≤2016,执行循环体,a=2,n=7满足条件n≤2016,执行循环体,a=,n=9…由于2015=3×671+2,可得:n=2015,满足条件n≤2016,执行循环体,a=,n=2017不满足条件n≤2016,退出循环,输出a的值为.故选:B.11.【答案】C【解析】解:∵=(sin2θ)+(cos2θ)(θ∈R),且sin2θ+cos2θ=1,∴=(1﹣cos2θ)+(cos2θ)=+cos2θ•(﹣),即﹣=cos2θ•(﹣),可得=cos2θ•,又∵cos2θ∈[0,1],∴P在线段OC上,由于AB边上的中线CO=2,因此(+)•=2•,设||=t,t∈[0,2],可得(+)•=﹣2t(2﹣t)=2t2﹣4t=2(t﹣1)2﹣2,∴当t=1时,(+)•的最小值等于﹣2.故选C.【点评】本题着重考查了向量的数量积公式及其运算性质、三角函数的图象与性质、三角恒等变换公式和二次函数的性质等知识,属于中档题.12.【答案】A【解析】解:根据正弦定理有:=,代入已知等式得:﹣+1=0,即﹣1=,整理得:2sinAcosB﹣cosBsinC=sinBcosC,即2sinAcosB=sinBcosC+cosBsinC=sin(B+C),又∵A+B+C=180°,∴sin(B+C)=sinA,可得2sinAcosB=sinA,∵sinA≠0,∴2cosB=1,即cosB=,则B=60°.故选:A.【点评】此题考查了同角三角函数基本关系的运用,熟练掌握基本关系是解本题的关键.二、填空题13.【答案】 ﹣3<a<﹣1或1<a<3 .【解析】解:根据题意知:圆x2+(y﹣a)2=4和以原点为圆心,1为半径的圆x2+y2=1相交,两圆圆心距d=|a|,∴2﹣1<|a|<2+1,∴﹣3<a<﹣1或1<a<3.故答案为:﹣3<a<﹣1或1<a<3.【点评】本题体现了转化的数学思想,解题的关键在于将问题转化为:圆x2+(y﹣a)2=4和以原点为圆心,1为半径的圆x2+y2=1相交,属中档题.14.【解析】考点:1、正弦定理及勾股定理;2诱导公式及直角三角形的性质.【方法点睛】本题主要考查正弦定理及勾股定理、诱导公式及直角三角形的性质,属于难题,高考三角函数的考查主要以三角恒等变形,三角函数的图象和性质,利用正弦定理、余弦定理解三角形为主,难度中等,因此只要掌握基本的解题方法与技巧即可, 对于三角函数与解三角形相结合的题目,要注意通过正余弦定理以及面积公式实现边角互化,求出相关的边和角的大小,有时也要考虑特殊三角形的特殊性质(如正三角形,直角三角形等).15.【答案】30x y -+=【解析】试题分析:由圆的方程为,表示圆心在,半径为的圆,点到圆心的距C 22230x y y +--=(0,1)C ()1,2P -,小于圆的半径,所以点在圆内,所以当时,最小,此时()1,2P -AB CP ⊥AB ,由点斜式方程可得,直线的方程为,即.11,1CP k k =-=21y x -=+30x y-+=考点:直线与圆的位置关系的应用.16.【答案】(【解析】 ,所以增区间是()2310f x x x ⎛=-+>⇒∈⎝'⎛ ⎝17.【答案】 (﹣4,0] .【解析】解:当a=0时,不等式等价为﹣4<0,满足条件;当a ≠0时,要使不等式ax 2﹣2ax ﹣4<0恒成立,则满足,即,∴解得﹣4<a <0,综上:a 的取值范围是(﹣4,0].故答案为:(﹣4,0].【点评】本题主要考查不等式恒成立问题,注意要对二次项系数进行讨论.18.【答案】,.2[1,)-+∞【解析】三、解答题19.【答案】【解析】解:(Ⅰ)∵(7+7+7.5+9+9.5)=8,=(6+x+8.5+8.5+y ),∵,∴x+y=17,①∵,=,∵,得(x ﹣8)2+(y ﹣8)2=1,②由①②解得或,∵x <y ,∴x=8,y=9,记“2名学生都颁发了荣誉证书”为事件C ,则事件C 包含个基本事件,共有个基本事件,∴P (C )=,即2名学生颁发了荣誉证书的概率为.(Ⅱ)由题意知X 所有可能的取值为0,1,2,3,P (X=0)==,P (X=1)==,P (X=2)==,P (X=3)==,EX==.【点评】本题考查概率的求法,考查离散型随机变量的方差的求法,是中档题,解题时要认真审题,注意平均值和方差的计算和应用.20.【答案】(1)甲,乙,丙,丁;(2).25P =【解析】试题分析:(1)从这名学生中按照分层抽样的方式抽取名学生,则各大学人数分别为甲,乙,丙,丁;4010(2)利用列举出从参加问卷调查的名学生中随机抽取两名学生的方法共有种,这来自同一所大学的取4015法共有种,再利用古典慨型的概率计算公式即可得出.试题解析:(1)从这40名学生中按照分层抽样的方式抽取10名学生,则各大学人数分别为甲2,乙3,丙2,丁3.(2)设乙中3人为,丁中3人为,从这6名学生中随机选出2名学生发言的结果为123,,a a a 123,,b b b ,,,,,,,,,,12{,}a a 13{,}a a 11{,}a b 12{,}a b 13{,}a b 32{,}a a 12{,}b a 22{,}b a 32{,}b a 31{,}a b ,,,,,共15种,32{,}a b 33{,}a b 12{,}b b 13{,}b b 23{,}b b 这2名同学来自同一所大学的结果共6种,所以所求概率为.62155P ==考点:1、分层抽样方法的应用;2、古典概型概率公式.21.【答案】【解析】解:(1)圆弧 C 1所在圆的方程为 x 2+y 2=169,令x=5,解得M (5,12),N (5,﹣12)…2分则直线AM 的中垂线方程为 y ﹣6=2(x ﹣17),令y=0,得圆弧 C 2所在圆的圆心为 (14,0),又圆弧C 2 所在圆的半径为29﹣14=15,所以圆弧C2的方程为(x﹣14)2+y2=225(5≤x≤29)…5分(2)假设存在这样的点P(x,y),则由PA=PO,得x2+y2+2x﹣29=0 …8分由,解得x=﹣70 (舍去)9分由,解得x=0(舍去),综上知,这样的点P不存在…10分【点评】本题以圆为载体,考查圆的方程,考查曲线的交点,同时考查距离公式的运用,综合性强. 22.【答案】B【解析】当x≥0时,f(x)=,由f(x)=x﹣3a2,x>2a2,得f(x)>﹣a2;当a2<x<2a2时,f(x)=﹣a2;由f(x)=﹣x,0≤x≤a2,得f(x)≥﹣a2。

青山区第二中学2018-2019学年高二上学期第二次月考试卷数学(1)

青山区第二中学2018-2019学年高二上学期第二次月考试卷数学(1)

青山区第二中学2018-2019学年高二上学期第二次月考试卷数学 班级__________ 姓名__________ 分数__________一、选择题1. 以下四个命题中,真命题的是( ) A .(0,)x π∃∈,sin tan x x =B .“对任意的x R ∈,210x x ++>”的否定是“存在0x R ∈,20010x x ++<C .R θ∀∈,函数()sin(2)f x x θ=+都不是偶函数D .ABC ∆中,“sin sin cos cos A B A B +=+”是“2C π=”的充要条件【命题意图】本题考查量词、充要条件等基础知识,意在考查逻辑推理能力.2. 函数f (x )=Asin (ωx+φ)(A >0,ω>0,)的部分图象如图所示,则函数y=f (x )对应的解析式为( )A .B .C .D .3. 把“二进制”数101101(2)化为“八进制”数是( ) A .40(8) B .45(8)C .50(8)D .55(8)4. 若复数2b ii++的实部与虚部相等,则实数b 等于( ) (A ) 3 ( B ) 1 (C )13 (D ) 12- 5. 已知直线 a 平面α,直线b ⊆平面α,则( )A .a bB .与异面C .与相交D .与无公共点6. 已知点P (1,﹣),则它的极坐标是( )A .B .C .D .7. 已知抛物线24y x =的焦点为F ,(1,0)A -,点P 是抛物线上的动点,则当||||PF PA 的值最小时,PAF ∆的 面积为( )A.2B.2C.D. 4【命题意图】本题考查抛物线的概念与几何性质,考查学生逻辑推理能力和基本运算能力.8. 若复数z 满足=i ,其中i 为虚数单位,则z=( )A .1﹣iB .1+iC .﹣1﹣iD .﹣1+i9. 设a=lge ,b=(lge )2,c=lg,则( )A .a >b >cB .c >a >bC .a >c >bD .c >b >a10.若圆226260x y x y +--+=上有且仅有三个点到直线10(ax y a -+=是实数)的距离为, 则a =( )A . 1±B . 2±C .2±D .3± 11.设集合{}|||2A x R x =∈≤,{}|10B x Z x =∈-≥,则A B =( )A.{}|12x x <≤B.{}|21x x -≤≤C. {}2,1,1,2--D. {}1,2【命题意图】本题考查集合的概念,集合的运算等基础知识,属送分题.12.某市重点中学奥数培训班共有14人,分为两个小组,在一次阶段考试中两个小组成绩的茎叶图如图所示,其中甲组学生成绩的平均数是88,乙组学生成绩的中位数是89,则m n +的值是( )A .10B .11C .12D .13【命题意图】本题考查样本平均数、中位数、茎叶图等基础知识,意在考查识图能力和计算能力.二、填空题13.给出下列四个命题:①函数f (x )=1﹣2sin 2的最小正周期为2π; ②“x 2﹣4x ﹣5=0”的一个必要不充分条件是“x=5”;③命题p :∃x ∈R ,tanx=1;命题q :∀x ∈R ,x 2﹣x+1>0,则命题“p ∧(¬q )”是假命题; ④函数f (x )=x 3﹣3x 2+1在点(1,f (1))处的切线方程为3x+y ﹣2=0. 其中正确命题的序号是 .14.命题“∀x ∈R ,x 2﹣2x ﹣1>0”的否定形式是 .15.等比数列{a n }的公比q=﹣,a 6=1,则S 6= .16.设函数,若用表示不超过实数m 的最大整数,则函数的值域为 .17.【泰州中学2018届高三10月月考】设函数()()21xf x ex ax a =--+,其中1a <,若存在唯一的整数0x ,使得()00f x <,则a 的取值范围是18.已知x 、y 之间的一组数据如下:x 0 1 23 y 8 2 64则线性回归方程所表示的直线必经过点 .三、解答题19.【常熟中学2018届高三10月阶段性抽测(一)】如图,某公司的LOGO 图案是多边形ABEFMN ,其设计创意如下:在长4cm 、宽1c m 的长方形ABCD 中,将四边形DFEC 沿直线EF 翻折到MFEN (点F 是线段AD 上异于D 的一点、点E 是线段BC 上的一点),使得点N 落在线段AD 上. (1)当点N 与点A 重合时,求NMF ∆面积;(2)经观察测量,发现当2NF MF -最小时,LOGO 最美观,试求此时LOGO 图案的面积.20.已知等边三角形PAB 的边长为2,四边形ABCD 为矩形,AD=4,平面PAB ⊥平面ABCD ,E ,F ,G 分别是线段AB ,CD ,PD 上的点.(1)如图1,若G 为线段PD 的中点,BE=DF=,证明:PB ∥平面EFG ;(2)如图2,若E ,F 分别是线段AB ,CD 的中点,DG=2GP ,试问:矩形ABCD 内(包括边界)能否找到点H ,使之同时满足下面两个条件,并说明理由.①点H到点F的距离与点H到直线AB的距离之差大于4;②GH⊥PD.21.某中学为了普及法律知识,举行了一次法律知识竞赛活动.下面的茎叶图记录了男生、女生各10名学生在该次竞赛活动中的成绩(单位:分).已知男、女生成绩的平均值相同.(1)求的值;(2)从成绩高于86分的学生中任意抽取3名学生,求恰有2名学生是女生的概率.22.设数列{a n}的前n项和为S n,a1=1,S n=na n﹣n(n﹣1).(1)求证:数列{a n}为等差数列,并分别求出a n的表达式;(2)设数列的前n项和为P n,求证:P n<;(3)设C n=,T n=C1+C2+…+C n,试比较T n与的大小.23.已知函数f(x)=2cosx(sinx+cosx)﹣1(Ⅰ)求f(x)在区间[0,]上的最大值;(Ⅱ)在△ABC中,内角A,B,C的对边分别为a,b,c,且f(B)=1,a+c=2,求b的取值范围.24.甲、乙两人参加普法知识竞赛,共有5道不同的题目,其中选择题3道,判断题2道,甲、乙两人各抽一道(不重复).(1)甲抽到选择题,乙抽到判断题的概率是多少?(2)甲、乙二人中至少有一人抽到选择题的概率是多少?青山区第二中学2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题1.【答案】D2.【答案】A【解析】解:由函数的图象可得A=1,=•=﹣,解得ω=2,再把点(,1)代入函数的解析式可得sin(2×+φ)=1,结合,可得φ=,故有,故选:A.3.【答案】D【解析】解:∵101101(2)=1×25+0+1×23+1×22+0+1×20=45(10).再利用“除8取余法”可得:45(10)=55(8).故答案选D.4.【答案】C【解析】b +i 2+i =(b +i)(2-i)(2+i)(2-i)=2b +15+2-b 5i ,因为实部与虚部相等,所以2b +1=2-b ,即b =13.故选C.5. 【答案】D 【解析】试题分析:因为直线 a 平面α,直线b ⊆平面α,所以//a b 或与异面,故选D. 考点:平面的基本性质及推论. 6. 【答案】C【解析】解:∵点P的直角坐标为,∴ρ==2.再由1=ρcos θ,﹣=ρsin θ,可得,结合所给的选项,可取θ=﹣,即点P 的极坐标为 (2,),故选 C .【点评】本题主要考查把点的直角坐标化为极坐标的方法,属于基础题.7. 【答案】B【解析】设2(,)4y P y,则21||||y PF PA +=.又设214y t +=,则244y t =-,1t …,所以||||2PF PA ==,当且仅当2t =,即2y =±时,等号成立,此时点(1,2)P ±,PAF ∆的面积为1||||22222AF y ⋅=⨯⨯=,故选B.8. 【答案】A【解析】解: =i,则=i (1﹣i )=1+i ,可得z=1﹣i . 故选:A .9. 【答案】C【解析】解:∵1<e <3<,∴0<lge <1,∴lge>lge >(lge )2.∴a >c >b . 故选:C .【点评】本题主要考查对数的单调性.即底数大于1时单调递增,底数大于0小于1时单调递减.10.【答案】B 【解析】试题分析:由圆226260x y x y +--+=,可得22(3)(1)4x y -+-=,所以圆心坐标为(3,1),半径为2r =,要使得圆上有且仅有三个点到直线10(ax y a -+=是实数)的距离为,则圆心到直线的距离等于12r,即1=,解得4a =±,故选B. 1 考点:直线与圆的位置关系.【方法点晴】本题主要考查了直线与圆的位置关系,其中解答中涉及到圆的标准方程、圆心坐标和圆的半径、点到直线的距离公式等知识点的综合考查,着重考查了学生分析问题和解答问题的能力,以及推理与运算能力和转化的思想方法,本题的解答中,把圆上有且仅有三个点到直线的距离为,转化为圆心到直线的距离等于12r 是解答的关键.11.【答案】D【解析】由绝对值的定义及||2x ≤,得22x -≤≤,则{}|22A x x =-≤≤,所以{}1,2A B =,故选D.12.【答案】C【解析】由题意,得甲组中78888486929095887m +++++++=,解得3m =.乙组中888992<<,所以9n =,所以12m n +=,故选C .二、填空题13.【答案】 ①③④ .【解析】解:①∵,∴T=2π,故①正确;②当x=5时,有x 2﹣4x ﹣5=0,但当x 2﹣4x ﹣5=0时,不能推出x 一定等于5,故“x=5”是“x 2﹣4x ﹣5=0”成立的充分不必要条件,故②错误; ③易知命题p为真,因为>0,故命题q 为真,所以p ∧(¬q )为假命题,故③正确;④∵f′(x)=3x2﹣6x,∴f′(1)=﹣3,∴在点(1,f(1))的切线方程为y﹣(﹣1)=﹣3(x﹣1),即3x+y ﹣2=0,故④正确.综上,正确的命题为①③④.故答案为①③④.14.【答案】.【解析】解:因为全称命题的否定是特称命题所以,命题“∀x∈R,x2﹣2x﹣1>0”的否定形式是:.故答案为:.15.【答案】﹣21.【解析】解:∵等比数列{a n}的公比q=﹣,a6=1,∴a1(﹣)5=1,解得a1=﹣32,∴S6==﹣21故答案为:﹣2116.【答案】{0,1}.【解析】解:=[﹣]+[+]=[﹣]+[+],∵0<<1,∴﹣<﹣<,<+<,①当0<<时,0<﹣<,<+<1,故y=0;②当=时,﹣=0,+=1,故y=1;③<<1时,﹣<﹣<0,1<+<,故y=﹣1+1=0;故函数的值域为{0,1}.故答案为:{0,1}.【点评】本题考查了学生的化简运算能力及分类讨论的思想应用.17.【答案】【解析】试题分析:设,由题设可知存在唯一的整数0x ,使得在直线的下方.因为,故当时,,函数单调递减;当时,,函数单调递增;故,而当时,,故当且,解之得,应填答案3,12e ⎡⎫⎪⎢⎣⎭. 考点:函数的图象和性质及导数知识的综合运用.【易错点晴】本题以函数存在唯一的整数零点0x ,使得()00f x <为背景,设置了一道求函数解析式中的参数的取值范围问题,目的是考查函数的图象和性质及导数在研究函数的单调性最值等有关知识的综合运用.同时也综合考查学生运用所学知识去分析问题解决问题的能力.求解时先运用等价转化得到数学思想将问题等价转化为存在唯一的整数0x ,使得在直线的下方.然后再借助导数的知识求出函数的最小值,依据题设建立不等式组求出解之得.18.【答案】(,5) .【解析】解:∵,=5 ∴线性回归方程y=a+bx 所表示的直线必经过点(1.5,5)故选C【点评】解决线性回归直线的方程,利用最小二乘法求出直线的截距和斜率,注意由公式判断出回归直线一定过样本中心点.三、解答题19.【答案】(1)215cm 16;(2)243-. 【解析】试题分析:(1)设MF x =4x =,则158x =, 据此可得NMF ∆的面积是2115151cm 2816⨯⨯=;试题解析:(1)设MF x =,则FD MF x ==,NF =∵4NF MF +=,4x =,解之得158x =, ∴NMF ∆的面积是2115151cm 2816⨯⨯=; (2)设NEC θ∠=,则2NEF θ∠=,NEB FNE πθ∠=∠=-,∴()22MNF πππθθ∠=--=-,∴112MNNF cos MNFsin cos πθθ===∠⎛⎫- ⎪⎝⎭, MF FD MN tan MNF ==⋅∠=2cos tan sin πθθθ⎛⎫-=- ⎪⎝⎭,∴22cos NF MF sin θθ+-=.∵14NF FD <+≤,∴114cos sin θθ-<≤,即142tan θ<≤,∴42πθα<≤(4tan α=且,32ππα⎛⎫∈ ⎪⎝⎭), ∴22πθα<≤(4tan α=且,32ππα⎛⎫∈ ⎪⎝⎭), 设()2cos f sin θθθ+=,则()212cos f sin θθθ--=',令()0f θ'=得23πθ=, 列表得∴当23πθ=时,2NF MF -取到最小值, 此时,NEF CEF NEB ∠=∠=∠3FNE NFE NFM π=∠=∠=∠=,6MNF π∠=,在Rt MNF ∆中,1MN =,MF =,NF =,在正NFE ∆中,3NF EF NE ===,在梯形ANEB 中,1AB =,4AN =4BE =,∴MNF EFN ABEFMN ABEN S S S S ∆∆=++=六边形梯形144142⎛⨯⨯= ⎝⎭.答:当2NF MF -最小时,LOGO 图案面积为24. 点睛:求实际问题中的最大值或最小值时,一般是先设自变量、因变量,建立函数关系式,并确定其定义域,利用求函数的最值的方法求解,注意结果应与实际情况相结合.用导数求解实际问题中的最大(小)值时,如果函数在开区间内只有一个极值点,那么依据实际意义,该极值点也就是最值点. 20.【答案】【解析】(1)证明:依题意,E ,F 分别为线段BA 、DC 的三等分点,取CF的中点为K,连结PK,BK,则GF为△DPK的中位线,∴PK∥GF,∵PK⊄平面EFG,∴PK∥平面EFG,∴四边形EBKF为平行四边形,∴BK∥EF,∵BK⊄平面EFG,∴BK∥平面EFG,∵PK∩BK=K,∴平面EFG∥平面PKB,又∵PB⊂平面PKB,∴PB∥平面EFG.(2)解:连结PE,则PE⊥AB,∵平面PAB⊥平面ABCD,平面PAB∩平面ABCD=AB,PE⊂平面PAB,PE⊥平面ABCD,分别以EB,EF,EP为x轴,y轴,z轴,建立空间直角坐标系,∴P(0,0,),D(﹣1,4,0),=(﹣1,4,﹣),∵P(0,0,),D(﹣1,4,0),=(﹣1,4,﹣),∵==(﹣,,﹣),∴G(﹣,,),设点H(x,y,0),且﹣1≤x≤1,0≤y≤4,依题意得:,∴x2>16y,(﹣1≤x≤1),(i)又=(x+,y﹣,﹣),∵GH⊥PD,∴,∴﹣x﹣+4y﹣,即y=,(ii)把(ii)代入(i),得:3x2﹣12x﹣44>0,解得x>2+或x<2﹣,∵满足条件的点H必在矩形ABCD内,则有﹣1≤x≤1,∴矩形ABCD内不能找到点H,使之同时满足①点H到点F的距离与点H到直线AB的距离之差大于4,②GH⊥PD.【点评】本题考查空间直线与平面的位置关系、空间向量的运算等基础知识,考查运算求解能力和推理论证能力、空间想象能力,考查数形结合、转化与化归等数学思想方法及创新意识.21.【答案】(1) 7a =;(2) 310P =. 【解析】试题分析: (1)由平均值相等很容易求得的值;(2)成绩高于86分的学生共五人,写出基本事件共10个,可得恰有两名为女生的基本事件的个数,则其比值为所求.其中恰有2名学生是女生的结果是(96,93,87),(96,91,87),(96,90,87)共3种情况. 所以从成绩高于86分的学生中抽取了3名学生恰有2名是女生的概率310P =.1 考点:平均数;古典概型.【易错点睛】古典概型的两种破题方法:(1)树状图是进行列举的一种常用方法,适合于有顺序的问题及较复杂问题中基本事件数的探求.另外在确定基本事件时,),(y x 可以看成是有序的,如()1,2与()2,1不同;有时也可以看成是无序的,如)1,2)(2,1(相同.(2)含有“至多”、“至少”等类型的概率问题,从正面突破比较困难或者比较繁琐时,考虑其反面,即对立事件,应用)(1)(A P A P -=求解较好. 22.【答案】【解析】解:(1)证明:∵S n =na n ﹣n (n ﹣1) ∴S n+1=(n+1)a n+1﹣(n+1)n … ∴a n+1=S n+1﹣S n =(n+1)a n+1﹣na n ﹣2n … ∴na n+1﹣na n ﹣2n=0 ∴a n+1﹣a n =2,∴{a n }是以首项为a 1=1,公差为2的等差数列 … 由等差数列的通项公式可知:a n =1+(n ﹣1)×2=2n ﹣1, 数列{a n }通项公式a n =2n ﹣1;…(2)证明:由(1)可得,…=…(3)∴,=,两式相减得…=,=,=,=,∴…∴…∵n∈N*,∴2n>1,∴,∴…23.【答案】【解析】(本题满分为12分)解:(Ⅰ)f(x)=2cosx(sinx+cosx)﹣1=2sinxcosx+2cos2x﹣1=sin2x+2×﹣1=sin2x+cos2x=sin(2x+),∵x∈[0,],∴2x+∈[,],∴当2x+=,即x=时,f(x)min=…6分(Ⅱ)由(Ⅰ)可知f(B)=sin(+)=1,∴sin(+)=,∴+=,∴B=,由正弦定理可得:b==∈[1,2)…12分【点评】本题主要考查了三角函数恒等变换的应用,正弦函数的图象和性质,正弦定理在解三角形中的综合应用,考查了计算能力和转化思想,属于中档题.24.【答案】【解析】(本小题满分12分)解:(1)甲、乙两人从5道题中不重复各抽一道,共有5×4=20种抽法记“甲抽到选择题,乙抽到判断题”为事件A,则事件A含有的基本事件数为3×2=6…(4分)∴,∴甲抽到选择题,乙抽到判断题的概率是…(6分)(2)记“甲、乙二人中至少有一人抽到选择题”为事件B,其对立事件为“甲、乙二人都抽到判断题”,记为事件C,则事件C含有的基本事件数为2×1=2…(8分)∴,∴,…(11分)∴甲、乙二人中至少有一人抽到选择题的概率是.…(12分)【点评】本题考查概率的求法,是基础题,解题时要认真审题,注意等可能事件、对立事件概率计算公式的合理运用.。

青山区第二中学2018-2019学年高二上学期第二次月考试卷数学

青山区第二中学2018-2019学年高二上学期第二次月考试卷数学

青山区第二中学2018-2019学年高二上学期第二次月考试卷数学 班级__________ 姓名__________ 分数__________一、选择题1. 已知函数x x x f 2sin )(-=,且)2(),31(log ),23(ln 3.02f c f b f a ===,则( )A .c a b >>B .a c b >>C .a b c >>D .b a c >>【命题意图】本题考查导数在单调性上的应用、指数值和对数值比较大小等基础知识,意在考查基本运算能力. 2. 已知a ∈R ,复数z=(a ﹣2i )(1+i )(i 为虚数单位)在复平面内对应的点为M ,则“a=0”是“点M 在第四象限”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件3. 12,e e 是平面内不共线的两向量,已知12AB e ke =-,123CD e e =-,若,,A B D 三点共线,则的值是( )A .1B .2C .-1D .-24. 执行如图所示的程序框图,如果输入的t =10,则输出的i =( )A .4B .5C .6D .75. 下列说法正确的是( ) A .类比推理是由特殊到一般的推理 B .演绎推理是特殊到一般的推理 C .归纳推理是个别到一般的推理 D .合情推理可以作为证明的步骤6. 下列函数中哪个与函数y=x 相等( )A .y=()2B .y=C .y=D .y=7. 函数y=a x+2(a >0且a ≠1)图象一定过点( )A .(0,1)B .(0,3)C .(1,0)D .(3,0)8. 抛物线y=﹣x 2上的点到直线4x+3y ﹣8=0距离的最小值是( )A .B .C .D .39. 已知函数()e sin x f x x =,其中x ∈R ,e 2.71828=为自然对数的底数.当[0,]2x π∈时,函数()y f x =的图象不在直线y kx =的下方,则实数k 的取值范围( )A .(,1)-∞B .(,1]-∞C .2(,e )π-∞ D .2(,e ]π-∞【命题意图】本题考查函数图象与性质、利用导数研究函数的单调性、零点存在性定理,意在考查逻辑思维能力、等价转化能力、运算求解能力,以及构造思想、分类讨论思想的应用.10.已知一组函数f n (x )=sin n x+cos n x ,x ∈[0,],n ∈N *,则下列说法正确的个数是( )①∀n ∈N *,f n (x )≤恒成立②若f n (x )为常数函数,则n=2③f 4(x )在[0,]上单调递减,在[,]上单调递增.A .0B .1C .2D .311.若l 、m 、n 是互不相同的空间直线,α、β是不重合的平面,则下列结论正确的是( ) A .α∥β,l ⊂α,n ⊂β⇒l ∥n B .α∥β,l ⊂α⇒l ⊥β C .l ⊥n ,m ⊥n ⇒l ∥m D .l ⊥α,l ∥β⇒α⊥β12.函数f (x )=1﹣xlnx 的零点所在区间是( )A .(0,)B .(,1)C .(1,2)D .(2,3)二、填空题13.定义在[1,+∞)上的函数f (x )满足:(1)f (2x )=2f (x );(2)当2≤x ≤4时,f (x )=1﹣|x ﹣3|,则集合S={x|f (x )=f (34)}中的最小元素是 .14.设f(x)是定义在R上且周期为2的函数,在区间[﹣1,1]上,f(x)=其中a,b∈R.若=,则a+3b的值为.15.设m是实数,若x∈R时,不等式|x﹣m|﹣|x﹣1|≤1恒成立,则m的取值范围是.16.对于映射f:A→B,若A中的不同元素有不同的象,且B中的每一个元素都有原象,则称f:A→B为一一映射,若存在对应关系Φ,使A到B成为一一映射,则称A到B具有相同的势,给出下列命题:①A是奇数集,B是偶数集,则A和B具有相同的势;②A是平面直角坐标系内所有点形成的集合,B是复数集,则A和B不具有相同的势;③若区间A=(﹣1,1),B=R,则A和B具有相同的势.其中正确命题的序号是.17.将边长为1的正三角形薄片,沿一条平行于底边的直线剪成两块,其中一块是梯形,记,则S的最小值是.18.如图,在正方体ABCD﹣A1B1C1D1中,P为BD1的中点,则△PAC在该正方体各个面上的射影可能是.三、解答题19.如图,ABCD是边长为3的正方形,DE⊥平面ABCD,AF∥DE,DE=3AF,BE与平面ABCD所成角为60°.(Ⅰ)求证:AC⊥平面BDE;(Ⅱ)求二面角F﹣BE﹣D的余弦值;(Ⅲ)设点M是线段BD上一个动点,试确定点M的位置,使得AM∥平面BEF,并证明你的结论.20.请你设计一个包装盒,如图所示,ABCD是边长为60cm的正方形硬纸片,切去阴影部分所示的四个全等的等腰直角三角形,再沿虚线折起,使得A,B,C,D四个点重合于图中的点P,正好形成一个正四棱柱形状的包装盒,E、F在AB上,是被切去的等腰直角三角形斜边的两个端点,设AE=FB=x(cm).(1)若广告商要求包装盒侧面积S(cm2)最大,试问x应取何值?(2)若广告商要求包装盒容积V(cm3)最大,试问x应取何值?并求出此时包装盒的高与底面边长的比值.21.(本小题满分10分)选修4-5:不等式选讲已知函数|1||2|)(+--=x x x f ,x x g -=)(. (1)解不等式)()(x g x f >;(2)对任意的实数,不等式)()(22)(R m m x g x x f ∈+≤-恒成立,求实数m 的最小值.111]22.在直角坐标系xOy 中,曲线C 1的参数方程为C 1:为参数),曲线C 2:=1.(Ⅰ)在以O 为极点,x 轴的正半轴为极轴的极坐标系中,求C 1,C 2的极坐标方程;(Ⅱ)射线θ=(ρ≥0)与C 1的异于极点的交点为A ,与C 2的交点为B ,求|AB|.23.已知数列{a n }满足a 1=﹣1,a n+1=(n ∈N *).(Ⅰ)证明:数列{+}是等比数列;(Ⅱ)令b n =,数列{b n }的前n 项和为S n .①证明:b n+1+b n+2+…+b 2n <②证明:当n ≥2时,S n 2>2(++…+)24.设F是抛物线G:x2=4y的焦点.(1)过点P(0,﹣4)作抛物线G的切线,求切线方程;(2)设A,B为抛物线上异于原点的两点,且满足FA⊥FB,延长AF,BF分别交抛物线G于点C,D,求四边形ABCD面积的最小值.青山区第二中学2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题1.【答案】D2.【答案】A【解析】解:若a=0,则z=﹣2i(1+i)=2﹣2i,点M在第四象限,是充分条件,若点M在第四象限,则z=(a+2)+(a﹣2)i,推出﹣2<a<2,推不出a=0,不是必要条件;故选:A.【点评】本题考查了充分必要条件,考查了复数问题,是一道基础题.3.【答案】B【解析】考点:向量共线定理.4.【答案】【解析】解析:选B.程序运行次序为第一次t=5,i=2;第二次t=16,i=3;第三次t=8,i=4;第四次t=4,i=5,故输出的i=5.5.【答案】C【解析】解:因为归纳推理是由部分到整体的推理;类比推理是由特殊到特殊的推理;演绎推理是由一般到特殊的推理;合情推理的结论不一定正确,不可以作为证明的步骤,故选C.【点评】本题考查合情推理与演绎推理,考查学生分析解决问题的能力,属于基础题.6.【答案】B【解析】解:A.函数的定义域为{x|x≥0},两个函数的定义域不同.B.函数的定义域为R,两个函数的定义域和对应关系相同,是同一函数.C.函数的定义域为R,y=|x|,对应关系不一致.D.函数的定义域为{x|x≠0},两个函数的定义域不同.故选B.【点评】本题主要考查判断两个函数是否为同一函数,判断的标准是判断函数的定义域和对应关系是否一致,否则不是同一函数.7.【答案】B【解析】解:由于函数y=a x (a>0且a≠1)图象一定过点(0,1),故函数y=a x+2(a>0且a≠1)图象一定过点(0,3),故选B.【点评】本题主要考查指数函数的单调性和特殊点,属于基础题.8.【答案】A【解析】解:由,得3x2﹣4x+8=0.△=(﹣4)2﹣4×3×8=﹣80<0.所以直线4x+3y﹣8=0与抛物线y=﹣x2无交点.设与直线4x+3y﹣8=0平行的直线为4x+3y+m=0联立,得3x2﹣4x﹣m=0.由△=(﹣4)2﹣4×3(﹣m)=16+12m=0,得m=﹣.所以与直线4x+3y﹣8=0平行且与抛物线y=﹣x2相切的直线方程为4x+3y﹣=0.所以抛物线y=﹣x2上的一点到直线4x+3y﹣8=0的距离的最小值是=.故选:A.【点评】本题考查了直线与圆锥曲线的关系,考查了数学转化思想方法,训练了两条平行线间的距离公式,是中档题.9. 【答案】B【解析】由题意设()()e sin xg x f x kx x kx =-=-,且()0g x ≥在[0,]2x π∈时恒成立,而'()e (sin cos )x g x x x k =+-.令()e (sin cos )x h x x x =+,则'()2e c o s 0xh x x =≥,所以()h x 在[0,]2π上递增,所以21()h x e π≤≤.当1k ≤时,'()0g x ≥,()g x 在[0,]2π上递增,()(0)0g x g ≥=,符合题意;当2e k π≥时,'()0g x ≤,()g x 在[0,]2π上递减,()(0)0g x g ≤=,与题意不合;当21e k π<<时,()g x '为一个递增函数,而'(0)10g k =-<,2'()e 02g k ππ=->,由零点存在性定理,必存在一个零点0x ,使得0'()0g x =,当0[0,)x x ∈时,'()0g x ≤,从而()g x 在0[0,)x x ∈上单调递减,从而()(0)0g x g ≤=,与题意不合,综上所述:k 的取值范围为(,1]-∞,故选B .10.【答案】 D【解析】解:①∵x ∈[0,],∴fn (x )=sin n x+cos n x ≤sinx+cosx=≤,因此正确;②当n=1时,f 1(x )=sinx+cosx ,不是常数函数;当n=2时,f 2(x )=sin 2x+cos 2x=1为常数函数,当n ≠2时,令sin 2x=t ∈[0,1],则f n (x )=+=g (t ),g ′(t )=﹣=,当t ∈时,g ′(t )<0,函数g (t )单调递减;当t ∈时,g ′(t )>0,函数g (t )单调递增加,因此函数f n (x )不是常数函数,因此②正确.③f 4(x )=sin 4x+cos 4x=(sin 2x+cos 2x )2﹣2sin 2xcos 2x=1﹣==+,当x ∈[0,],4x ∈[0,π],因此f 4(x )在[0,]上单调递减,当x ∈[,],4x ∈[π,2π],因此f 4(x )在[,]上单调递增,因此正确. 综上可得:①②③都正确. 故选:D .【点评】本题考查了三角函数的图象与性质、倍角公式、平方公式、两角和差的正弦公式,考查了推理能力与计算能力,属于中档题.11.【答案】D【解析】解:对于A,α∥β,l⊂α,n⊂β,l,n平行或异面,所以错误;对于B,α∥β,l⊂α,l 与β可能相交可能平行,所以错误;对于C,l⊥n,m⊥n,在空间,l与m还可能异面或相交,所以错误.故选D.12.【答案】C【解析】解:∵f(1)=1>0,f(2)=1﹣2ln2=ln<0,∴函数f(x)=1﹣xlnx的零点所在区间是(1,2).故选:C.【点评】本题主要考查函数零点区间的判断,判断的主要方法是利用根的存在性定理,判断函数在给定区间端点处的符号是否相反.二、填空题13.【答案】6【解析】解:根据题意,得;∵f(2x)=2f(x),∴f(34)=2f(17)=4f()=8f()=16f();又∵当2≤x≤4时,f(x)=1﹣|x﹣3|,∴f()=1﹣|﹣3|=,∴f(2x)=16×=2;当2≤x≤4时,f(x)=1﹣|x﹣3|≤1,不存在;当4≤x≤8时,f(x)=2f()=2[1﹣|﹣3|]=2,解得x=6;故答案为:6.【点评】本题考查了根据函数的解析式求函数值以及根据函数值求对应自变量的最小值的应用问题,是基础题目.14.【答案】﹣10.【解析】解:∵f(x)是定义在R上且周期为2的函数,f(x)=,∴f()=f(﹣)=1﹣a,f()=;又=,∴1﹣a=①又f(﹣1)=f(1),∴2a+b=0,②由①②解得a=2,b=﹣4;∴a+3b=﹣10.故答案为:﹣10.15.【答案】[0,2].【解析】解:∵|x﹣m|﹣|x﹣1|≤|(x﹣m)﹣(x﹣1)|=|m﹣1|,故由不等式|x﹣m|﹣|x﹣1|≤1恒成立,可得|m﹣1|≤1,∴﹣1≤m﹣1≤1,求得0≤m≤2,故答案为:[0,2].【点评】本题主要考查绝对值三角不等式,绝对值不等式的解法,函数的恒成立问题,体现了转化的数学思想,属于基础题.16.【答案】①③.【解析】解:根据一一映射的定义,集合A={奇数}→B={偶数},不妨给出对应法则加1.则A→B是一一映射,故①正确;对②设Z点的坐标(a,b),则Z点对应复数a+bi,a、b∈R,复合一一映射的定义,故②不正确;对③,给出对应法则y=tan x,对于A,B两集合可形成f:A→B的一一映射,则A、B具有相同的势;∴③正确.故选:①③【点评】本题借助考查命题的真假判断,考查一一映射的定义,属于基础题型,考查考生对新定义题的理解与应用能力.17.【答案】.【解析】解:设剪成的小正三角形的边长为x,则:S==,(0<x<1)令3﹣x=t,t∈(2,3),∴S===,当且仅当t=即t=2时等号成立;故答案为:.18.【答案】①④.【解析】解:由所给的正方体知,△PAC在该正方体上下面上的射影是①,△PAC在该正方体左右面上的射影是④,△PAC在该正方体前后面上的射影是④故答案为:①④三、解答题19.【答案】【解析】【分析】(I)由已知中DE⊥平面ABCD,ABCD是边长为3的正方形,我们可得DE⊥AC,AC⊥BD,结合线面垂直的判定定理可得AC⊥平面BDE;(Ⅱ)以D为坐标原点,DA,DC,DE方向为x,y,z轴正方向,建立空间直角坐标系,分别求出平面BEF 和平面BDE的法向量,代入向量夹角公式,即可求出二面角F﹣BE﹣D的余弦值;(Ⅲ)由已知中M是线段BD上一个动点,设M(t,t,0).根据AM∥平面BEF,则直线AM的方向向量与平面BEF法向量垂直,数量积为0,构造关于t的方程,解方程,即可确定M点的位置.【解答】证明:(Ⅰ)因为DE⊥平面ABCD,所以DE⊥AC.因为ABCD是正方形,所以AC⊥BD,从而AC⊥平面BDE.…(4分)解:(Ⅱ)因为DA,DC,DE两两垂直,所以建立空间直角坐标系D﹣xyz如图所示.因为BE与平面ABCD所成角为600,即∠DBE=60°,所以.由AD=3,可知,.则A(3,0,0),,,B(3,3,0),C(0,3,0),所以,.设平面BEF的法向量为=(x,y,z),则,即.令,则=.因为AC⊥平面BDE,所以为平面BDE的法向量,.所以cos.因为二面角为锐角,所以二面角F﹣BE﹣D的余弦值为.…(8分)(Ⅲ)点M是线段BD上一个动点,设M(t,t,0).则.因为AM∥平面BEF,所以=0,即4(t﹣3)+2t=0,解得t=2.此时,点M坐标为(2,2,0),即当时,AM∥平面BEF.…(12分)20.【答案】【解析】解:设包装盒的高为h(cm),底面边长为a(cm),则a=x,h=(30﹣x),0<x<30.(1)S=4ah=8x(30﹣x)=﹣8(x﹣15)2+1800,∴当x=15时,S 取最大值.(2)V=a 2h=2(﹣x 3+30x 2),V ′=6x (20﹣x ),由V ′=0得x=20,当x ∈(0,20)时,V ′>0;当x ∈(20,30)时,V ′<0;∴当x=20时,包装盒容积V (cm 3)最大,此时,.即此时包装盒的高与底面边长的比值是.21.【答案】(1)13|{<<-x x 或}3>x ;(2). 【解析】试题解析:(1)由题意不等式)()(x g x f >可化为|1||2|+>+-x x x , 当1-<x 时,)1()2(+->+--x x x ,解得3->x ,即13-<<-x ; 当21≤≤-x 时,1)2(+>+--x x x ,解得1<x ,即11<≤-x ; 当2>x 时,12+>+-x x x ,解得3>x ,即3>x (4分) 综上所述,不等式)()(x g x f >的解集为13|{<<-x x 或}3>x . (5分)(2)由不等式m x g x x f +≤-)(22)(可得m x x ++≤-|1||2|, 分离参数m ,得|1||2|+--≥x x m ,∴max |)1||2(|+--≥x x m∵3|)1(2||1||2|=+--≤+--x x x x ,∴3≥m ,故实数m 的最小值是. (10分) 考点:绝对值三角不等式;绝对值不等式的解法.1 22.【答案】【解析】解:(Ⅰ)曲线为参数)可化为普通方程:(x ﹣1)2+y 2=1,由可得曲线C 1的极坐标方程为ρ=2cos θ,曲线C 2的极坐标方程为ρ2(1+sin 2θ)=2.(Ⅱ)射线与曲线C1的交点A的极径为,射线与曲线C2的交点B的极径满足,解得,所以.23.【答案】【解析】(Ⅰ)证明:∵数列{a n}满足a1=﹣1,a n+1=(n∈N*),∴na n=3(n+1)a n+4n+6,两边同除n(n+1)得,,即,也即,又a1=﹣1,∴,∴数列{+}是等比数列是以1为首项,3为公比的等比数列.(Ⅱ)(ⅰ)证明:由(Ⅰ)得,=3n﹣1,∴,∴,原不等式即为:<,先用数学归纳法证明不等式:当n≥2时,,证明过程如下:当n=2时,左边==<,不等式成立假设n=k时,不等式成立,即<,则n=k+1时,左边=<+=<,∴当n=k+1时,不等式也成立.因此,当n≥2时,,当n≥2时,<,∴当n≥2时,,又当n=1时,左边=,不等式成立故b n+1+b n+2+…+b2n<.(ⅱ)证明:由(i)得,S n=1+,当n≥2,=(1+)2﹣(1+)2==2﹣,,…=2•,将上面式子累加得,﹣,又<=1﹣=1﹣,∴,即>2(),∴当n≥2时,S n2>2(++…+).【点评】本题考查等比数列的证明,考查不等式的证明,解题时要认真审题,注意构造法、累加法、裂项求和法、数学归纳法、放缩法的合理运用,综合性强,难度大,对数学思维能力的要求较高.24.【答案】【解析】解:(1)设切点.由,知抛物线在Q点处的切线斜率为,故所求切线方程为.即y=x0x﹣x02.因为点P(0,﹣4)在切线上.所以,,解得x0=±4.所求切线方程为y=±2x﹣4.(2)设A(x1,y1),C(x2,y2).由题意知,直线AC的斜率k存在,由对称性,不妨设k>0.因直线AC过焦点F(0,1),所以直线AC的方程为y=kx+1.点A,C的坐标满足方程组,得x2﹣4kx﹣4=0,由根与系数的关系知,|AC|==4(1+k2),因为AC⊥BD,所以BD的斜率为﹣,从而BD的方程为y=﹣x+1.同理可求得|BD|=4(1+),S ABCD=|AC||BD|==8(2+k2+)≥32.当k=1时,等号成立.所以,四边形ABCD面积的最小值为32.【点评】本题考查抛物线的方程和运用,考查直线和抛物线相切的条件,以及直线方程和抛物线的方程联立,运用韦达定理和弦长公式,考查基本不等式的运用,属于中档题.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(-2) ⨯(-3) 5-绝密★ 启用前2018 年初中升学考试调研试卷(二)数学(包头市青山区第二次模拟数学测试题预测卷【中等难度版】)注意事项:1.本试卷9 页,满分为120 分,考试时间为120 分钟。

2.答题前,考生务必先将自己的座位号、准考证号、姓名填写在试卷和答题卡的指定位置。

请认真核准条形码上的相关信息后,将条形码粘贴在答题卡的指定位置上。

3.答选择题时,必须使用2B 铅笔将答题卡上对应题目的答案标号涂黑,修改时用橡皮擦干净,再选涂其他答案。

4.答非选择题时,必须使用0.5 毫米的黑色字迹签字笔书写,作图题可先用铅笔绘出,确认后再用0.5 毫米的黑色字迹签字笔描清楚,要求字体工整、笔迹清晰。

严格按题号所示的答题区域作答,超出答题区域书写的答案无效;在试卷、草稿纸上答题无效。

5.保持答题卡清洁、完整。

严禁折叠、破损,严禁在答题卡上做任何标记,严禁使用涂改液、胶带纸、修正带。

考试结束后,将本试卷和答题卡一并交回。

一、选择题:本大题共有12 小题,每小题3 分,共36 分。

每小题只有一个正确选项,请将答题卡上对应题目的答案标号涂黑1.【2018 原创】已知a +-5=1,则a-1 =()3A.-232 3 3B. C. D.3 2 22.【2018 原创】下列计算正确的是()A. =B. 4x2 y - 5xy2 =-x2 yC. (a - 2b)2 =a2 - 4b2D. ( 3mn2 )2 = 3m2 n43.如图,水平的讲台上放置的圆柱体笔筒和正方体粉笔盒,其左视图是()A. B. C. D.4.【2018 原创】下列说法正确的是()A.在一个仅装着白球和黑球的袋中摸球,摸不出红球是随机事件B.Rt△ABC 中,∠C 为直角,AC = 5,BC = 12,则sin B =13 5C.如果一组数据1,2,x,5,6 的众数为6,则这组数据的中位数为52 3D 对包头市民知晓“礼让行人”交通规则情况的调查适合使用全面调查(普查)5. 如图,五一旅游黄金周期间,某景区规定 A 和 B 为入口,C ,D ,E 为出口,小红随机选一个入口进入景区,游玩后任选一个出口离开,则她选择从 A 入口进入、从 C ,D 出口离开的概率是()A .1 B . 12 3 C .1 D . 2636. 如图,在△ABC 中,∠C = 90°,∠CAB = 50°,按以下步骤作图:① 以点 A 为圆心,小于 AC 长为半径画弧,分别交 AB 、AC 于点 E 、F ; 1② 分别以点 E 、F 为圆心,大于 2EF 长为半径画弧,两弧相交于点 G ;③ 作射线 AG ,交 BC 边于点 D . 则∠ADC 的度数为( )A .40°B .55°C .65°D .75°7. 对于任意的实数 m ,一元二次方程3x2- x = m 的根的情况是()A. 有两个相等的实数根B. 对于不同的实数 m ,方程根的情况也不相同C. 有两个不相等的实数根D .无实数根8. 如图,△ABC 中,BC = 8,AD 是中线,将△ADC 沿 AD 折叠至△ADC ′,发现 CD 与折痕的夹角是 60°,则点 B 到 C ′的距离是( )A .4B . 4C . 4D .39. 【2018 原创】现有以下命题:① 若 a > b ,则 1 < 1a b② 相等的圆心角所对的弧相等12 -a③若a < 2 ,则(a - 2) =-④ 两组对角分别相等的四边形是平行四边形其中原命题和逆命题均为真命题的个数是()A. 0 个B. 1 个C. 2 个D. 3 个10.如图,正六边形ABCDEF 内接于⊙O,AB = 2,则图中阴影部分的面积为()πA.πB.2πC.2D.4π11.二次函数y=ax2+bx+c(a≠0)的大致图象如图所示(1<x=h<2,0<x A<1).下列结论:①2a + b>0;②abc<0;③若OC = 2OA,则2b-ac = 4;④3a-c<0.其中正确的个数是()A.个B.2 个C.3 个D.4 个12.如图,在矩形ABCD 中,AB = 3,BC = 2,点F 是BC 的中点,点E 是边AB 上一点,且BE = 2,连结DE,EF,并以DE,EF 为边作平行四边形EFGD,连结BG,分别交EF 和DC 于点M,N,则BM 和NG 的数量关系是()2 -a18=3A. BM =45C. BM =64NG B. BM = NG56NG D. BM = NG7二、填空题:本大题共有8 小题,每小题3 分,共24 分。

请把答案填在答题卡对应的横线上。

13.在十九大报告的网络传播过程中,大数据显示,监测时间内涉及民生话题的报道量约为85 万篇,将数字85 万用科学记数法表示为14. 计算:38 ⨯( +32 )=15.计算:(x -y +2 y2x +y) ÷x2 +y2(x +y)216.如下左图,⊙C 过原点,且与两坐标轴分别交于点A、B,A 点的坐标为(0,6),M 是第三象限内劣弧O B上一点,若优弧OAB的度数是240°,则tan∠BAO=17.如上右图,在平面直角坐标系中,点A 在x 轴的正半轴上,点B 的坐标为(0,4),将△ABO 绕点 B 逆时针旋转60°后得到△A'BO',若函数y =k(x>0)的图象经过点O',则xk 的值为18.将函数y = 2x + b(b 为常数)的图象位于x 轴下方的部分沿x 轴翻折至其上方后,所得的折线是函数y =-|2x + b|(b 为常数)的图象(如下左图).若该图象在直线y = 2 下方的点的横坐标x 满足0<x<3,则b 的取值范围为3 19. 如上右图,在菱形 ABCD 中,∠A = 60°,AD = 8,F 是 AB 的中点,过点 F 作 FE ⊥AD , 垂足为 E ,将△AEF 沿点 A 到点 B 的方向平移,遇到△A′E′F′.设 P ,P′分别是 EF ,E′F′的中点,当点 A′与点 B 重合时,四边形 PP′CD 的面积为20. 如图,在矩形 ABCD 中,M 是 AD 的中点,点 E 是线段 AB 上一动点,连接 EM 并延长交 CD 的延长线于点 F ,过 M 作 MG ⊥EF 交 BC 于 G ,现有以下结论:① AE = DF ;② AM · MG = AB · EM ;③ 当 AD = 2AB 时,△EGF 是等腰直角三角形;④ 当△EGF 为等边三角形时,AD = AB ;请填写你认为正确的结论序号三、解答题:本大题共有 6 小题,共 60 分。

请将必要的文字说明、计算过程或推理过程写在答题卡的对应位置。

21. 某销售公司年终进行业绩考核,人事部门把考核结果按照 A ,B ,C ,D 四个等级,绘制成两个不完整的统计图,如图 1,图 2.(1) 参加考试的人数是,扇形统计图中 D 部分所对应的圆心角的度数是 ,请把条形统计图补充完整;(2) 若公司领导计划从考核人员中选一人交流考核意见,求所选人员考核为 A 等级的概率;(3) 为推动公司进一步发展,公司决定计划两年内考核 A 等级的人数达到 30人,求平均每年的增长率.=22【. 12 2018 深度改编】已知:如图,在 Rt △ABC 中,∠ACB = 90°,BC = 3,, tan ∠ ABC2点 D 是 AC 的中点.(1) 求 tan ∠CAB 和线段 BD 的长;(2) 点 E 在边 AB 上,且点 C 位于 BE 的垂直平分线上,连接 DE ,求四边形 BCDE 的面积23. 【2018 深度改编】为了节省材料,某水产养殖户利用水库的岸堤(岸堤足够长)为一边,用总长为 80 米的围网在水库中围成了如图所示的①②③三块矩形区域,而且这三块矩形区域的面积相等.设 BC 的长度为 x 米,矩形区域 ABCD 的面积为 y 米 2. (1)求证:AE = 2BE ;(2) 求 y 与 x 之间的函数关系式,并写出自变量 x 的取值范围,同时求出 y 的最大值;(3) 若该水产养殖户计划购买甲、乙两种鱼苗共 700 尾,甲种鱼苗每尾 3 元,乙种鱼苗每尾 5 元,相关资料表明:甲、乙两种鱼苗的成活率分别为 85%和 90%,若要使这批鱼苗的总成活率不低于 88%,则甲种鱼苗至多购买多少尾?24.如图,在△ABC 中,AC = BC,∠ACB = 90°,⊙O(圆心O 在△ABC 内部)经过B、C 两点,交AB 于点E,过点E 作⊙O 的切线交AC 于点F.延长CO 交AB 于点G,作ED∥AC 交CG 于点D(1)求证:四边形CDEF 是平行四边形;(2)若BC = 3,tan∠DEF = 2,求BG 的值.(3)在(2)的条件下,设CF = x,请直接写出x 与⊙O 半径r 的关系(【拔高附加题】(3)* 在(2)的条件下,求⊙O 的半径和四边形EFCG 的面积)425.已知△ABC 中,∠ACB = 90°,BC = 8,tan A =,点D 由A 出发沿AC 向点C 匀速运3动,同时点E 由B 出发沿BA 向点A 匀速运动,它们的速度相同,点F 在AB 上,FE = 4cm,且点F 在点E 的下方,当点D 到达点C 时,点E,F 也停止运动,连接DF,设AD = x (0 ≤x ≤ 6 ).解答下列问题:(1)如图1,当x 为何值时,△ADF 为直角三角形;(2)如图2,把△ADF 沿AB 翻折,使点D 落在D′点.① 当x 为何值时,四边形ADFD′ 为菱形?并求出菱形的面积;② 如图3,连接D′E,设D′E 为y,请求出y 关于x 的函数关系式;③ 如图4,分别取D′F,D′E 的中点M,N,在整个运动过程中,试确定线段MN 扫过的区域的形状,并求其面积(直接写出答案).26.已知抛物线y =ax2 +bx +c(a ≠ 0)过原点O 和B(-4,4),且对称轴为直线x =-3 .2(1)请在答题卡上画出抛物线草图,并求抛物线的函数表达式;(2)D 是直线OB 下方抛物线上的一动点,连接OD,BD,在点D 运动过程中,当△OBD 面积最大时,求点D 的坐标和△OBD 的最大面积;(3)若点P 为平面内一点,点N 在抛物线上,且∠NBO =∠ABO,则在(2)的条件下,直接写出满足△POD ∽ △NOB 的点P 坐标.。

相关文档
最新文档