糖类代谢
《医学生物化学》第4章糖代谢重点难点
《医学生物化学》第4章糖代谢重点难点《医学生物化学》第4章糖代谢-重点难点一、糖类的生理功用:①氧化供能:糖类是人体最主要的供能物质,占全部供能物质供能量的70%;与供能有关的糖类主要是葡萄糖和糖原,前者为运输和供能形式,后者为贮存形式。
②作为结构成分:糖类可与脂类形成糖脂,或与蛋白质形成糖蛋白,糖脂和糖蛋白均可参与构成生物膜、神经组织等。
③作为核酸类化合物的成分:核糖和脱氧核糖参与构成核苷酸,DNA,RNA等。
④转变为其他物质:糖类可经代谢而转变为脂肪或氨基酸等化合物。
二、糖的无氧酵解:糖的无氧酵解是指葡萄糖在无氧条件下分解生成乳酸并释放出能量的过程。
其全部反应过程在胞液中进行,代谢的终产物为乳酸,一分子葡萄糖经无氧酵解可净生成两分子ATP。
糖的无氧酵解代谢过程可分为四个阶段:1.活化(己糖磷酸酯的生成):葡萄糖经磷酸化和异构反应生成1,6-双磷酸果糖(FBP),即葡萄糖→6-磷酸葡萄糖→6-磷酸果糖→1,6-双磷酸果糖(F-1,6-BP)。
这一阶段需消耗两分子ATP,己糖激酶(肝中为葡萄糖激酶)和6-磷酸果糖激酶-1是关键酶。
2.裂解(磷酸丙糖的生成):一分子F-1,6-BP裂解为两分子3-磷酸甘油醛,包括两步反应:F-1,6-BP→磷酸二羟丙酮+3-磷酸甘油醛和磷酸二羟丙酮→3-磷酸甘油醛。
3.放能(丙酮酸的生成):3-磷酸甘油醛经脱氢、磷酸化、脱水及放能等反应生成丙酮酸,包括五步反应:3-磷酸甘油醛→1,3-二磷酸甘油酸→3-磷酸甘油酸→2-磷酸甘油酸→磷酸烯醇式丙酮酸→丙酮酸。
此阶段有两次底物水平磷酸化的放能反应,共可生成2×2=4分子ATP。
丙酮酸激酶为关键酶。
4.还原(乳酸的生成):利用丙酮酸接受酵解代谢过程中产生的NADH,使NADH重新氧化为NAD+。
即丙酮酸→乳酸。
三、糖无氧酵解的调节:主要是对三个关键酶,即己糖激酶(葡萄糖激酶)、6-磷酸果糖激酶-1、丙酮酸激酶进行调节。
生物化学第五章糖代谢
生物化学第五章糖代谢第五章糖代谢一、糖类的生理功用:①氧化供能:糖类是人体最主要的供能物质,占全部供能物质供能量的70%;与供能有关的糖类主要是葡萄糖和糖原,前者为运输和供能形式,后者为贮存形式。
②作为结构成分:糖类可与脂类形成糖脂,或与蛋白质形成糖蛋白,糖脂和糖蛋白均可参与构成生物膜、神经组织等。
③作为核酸类化合物的成分:核糖和脱氧核糖参与构成核苷酸,DNA,RNA等。
④转变为其他物质:糖类可经代谢而转变为脂肪或氨基酸等化合物。
二、糖的无氧酵解:糖的无氧酵解是指葡萄糖在无氧条件下分解生成乳酸并释放出能量的过程。
其全部反应过程在胞液中进行,代谢的终产物为乳酸,一分子葡萄糖经无氧酵解可净生成两分子ATP。
糖的无氧酵解代谢过程可分为四个阶段:1. 活化(己糖磷酸酯的生成):葡萄糖经磷酸化和异构反应生成1,6-双磷酸果糖(FBP),即葡萄糖→6-磷酸葡萄糖→6-磷酸果糖→1,6-双磷酸果糖(F-1,6-BP)。
这一阶段需消耗两分子ATP,己糖激酶(肝中为葡萄糖激酶)和6-磷酸果糖激酶-1是关键酶。
2. 裂解(磷酸丙糖的生成):一分子F-1,6-BP裂解为两分子3-磷酸甘油醛,包括两步反应:F-1,6-BP→磷酸二羟丙酮+ 3-磷酸甘油醛和磷酸二羟丙酮→3-磷酸甘油醛。
3. 放能(丙酮酸的生成):3-磷酸甘油醛经脱氢、磷酸化、脱水及放能等反应生成丙酮酸,包括五步反应:3-磷酸甘油醛→1,3-二磷酸甘油酸→3-磷酸甘油酸→2-磷酸甘油酸→磷酸烯醇式丙酮酸→丙酮酸。
此阶段有两次底物水平磷酸化的放能反应,共可生成2×2=4分子ATP。
丙酮酸激酶为关键酶。
4.还原(乳酸的生成):利用丙酮酸接受酵解代谢过程中产生的NADH,使NADH重新氧化为NAD+。
即丙酮酸→乳酸。
三、糖无氧酵解的调节:主要是对三个关键酶,即己糖激酶(葡萄糖激酶)、6-磷酸果糖激酶-1、丙酮酸激酶进行调节。
己糖激酶的变构抑制剂是G-6-P;肝中的葡萄糖激酶是调节肝细胞对葡萄糖吸收的主要因素,受长链脂酰CoA的反馈抑制;6-磷酸果糖激酶-1是调节糖酵解代谢途径流量的主要因素,受ATP和柠檬酸的变构抑制,AMP、ADP、1,6-双磷酸果糖和2,6-双磷酸果糖的变构激活;丙酮酸激酶受1,6-双磷酸果糖的变构激活,受ATP的变构抑制,肝中还受到丙氨酸的变构抑制。
生物化学第六章 糖类代谢
H
OH
HO
H
HO
H
H
OH
OH
CH2OH
HO H OH
H
H
OH H
OH OH
核糖(ribose) ——戊醛糖
O
H
OH
H
OH
H
OH
OH
HOH 2C
O OH
H H
HH
HO
OH
2. 寡糖 能水解生成2-20个分子单糖的糖,各单
糖之间借脱水缩合的糖苷键相连。
常见的几种二糖有
麦芽糖 (maltose) 葡萄糖 — 葡萄糖 还原糖
ATP ADP
G-6-P
F-6-P
ATP ADP
F-1,6-2P
ⅱ放能阶段
⑨2-磷酸甘油酸脱水生成磷酸烯醇式丙酮酸
烯醇化酶
磷酸二 3-磷酸 羟丙酮 甘油醛
NAD+
NADH+H+
1,3-二磷酸甘油酸
ADP ATP
3-磷酸甘油酸
2-磷酸甘油酸
磷酸烯醇式丙酮酸
ADP
ATP
丙酮酸
催化此反应的酶是烯醇化酶,它在结合底物前必 须先结合2价阳离子如Mg2+、Mn2+,形成复合物, 才能表现出活性。该酶的相对分子量为85000,氟 化物是该酶强烈的抑制剂,原因是氟与Mg2+和无 机磷酸结合形成一个复合物,取代了酶分子上 Mg2+的位置,从而使酶失活。
Glu
ATP ADP
G-6-P
F-6-P
ATP ADP
F-1,6-2P
ⅱ放能阶段
⑥3-磷酸甘油醛氧化成1,3-二磷酸甘油酸
生成1分子 NADH+H+
第四章 糖代谢
(二)糖原的磷酸解
在人和动物的肝脏中,糖原(又称动物淀粉)是葡萄糖非常有效的 贮藏形式,通过糖原分解直接补充血糖。糖原与支链淀粉相似,是 葡萄糖通过-1,4-糖苷键和-l,6-糖苷键构成,分支较支链淀粉 更多,如图所示。
糖原在细胞内的降解称为磷酸解。糖原磷酸化酶催化的反应是不需 要水而需要磷酸参与的磷酸解作用,从糖链的非还原性末端依次切下 葡萄糖残基,产物为1一磷酸葡萄糖和少一个葡萄糖残基的糖原。
-淀粉酶水解淀粉的-1,4-糖苷键。如底物是直链淀粉,则产物为葡 萄糖、麦芽糖。如果是支链淀粉,则水解产物除上述产物外,还含有麦 芽三糖和-糊精,所以又称该酶为液化酶或糊精酶。-1,6-糖苷酶又称 脱支酶,其作用是可以水解带分支的糊精中-1,6-糖苷键,生成-1,4糊精和麦芽糖的混合物。
-淀粉酶水解淀粉的-l,4-糖苷键,其水解的方式是水解淀粉的非还 原性末端残基,并依次切下两个葡萄糖单位,产物为麦芽糖。作用于支 链淀粉,除产生麦芽糖外还产生糊精。
丙酮酸激酶催化的反应是调节糖酵解过程 的另一重要反应步骤。丙酮酸激酶也是变 构酶。
(二) 丙酮酸的去路
①乳酸的生成 例如某些厌氧乳酸菌或肌肉由于剧烈运动而造成 暂时缺氧状态,或由于呼吸、循环系统机能障碍暂时供氧不足时, 丙酮酸接受甘油醛-3-磷酸脱氢酶形成的NADH上的H,在乳酸脱 氢酶的催化下还原为乳酸,这是糖酵解的最终产物。
(一) 糖酵解过程 糖酵解是通过一系列酶促反应将一分子葡萄糖转变为两分子丙酮
酸并伴有ATP生成的过程,共包括11个反应步骤,全部反应位于细 胞质中。
糖酵解是动物、植物以及微生物细胞中葡萄糖分解产生能量的共
同代谢途径。事实上,在所有的细胞中都存在糖酵解途径,对于某 些细胞,糖酵解是唯一生成ATP的途径。
糖类代谢
糖的分解代谢有不同的途径,同样,糖也可通过不同途径合成,并且各种途径都包括 一系列复杂的反应,本章主要介绍这两方面的内容。
(一)蔗糖的水解 蔗糖的水解由蔗糖酶催化,此酶也称转化酶(invertase),在植物体内广泛存在。蔗 糖水解后产生 1 分子葡萄糖和 1 分子果糖。
(二)麦芽糖的水解 麦芽糖酶催化 1 分子麦芽糖水解产生 2 分子α-D-葡萄糖。另外,植物中还存在α-葡 萄糖苷酶,此酶也可催化麦芽糖的水解,在含淀粉种子萌发时最丰富。
糖原(glycogen)是人和动物体内的储藏多糖。它的结构类似于淀粉,只是分支程度 更高,大约每 10 个α-1,4-糖苷键就有一个α-1,6-糖苷键。糖原大量存在于肌肉和肝脏中。 % 纤维素(cellulose)是植物组织中主要的多糖,也是生物圈中最丰富的有机化合物, 它占所有的有机碳一半以上。纤维素是由大约上千个葡萄糖通过β-1,4-糖苷键连接组成的 不分支的葡聚糖。
(三)乳糖的水解 乳糖的水解由乳糖酶催化,生成 1 分子半乳糖和 1 分子葡萄糖。
154
二、淀粉的酶促降解
(一)淀粉的水解 能够催化淀粉α-1,4-糖苷键以及α-1,6-糖苷键水解的酶叫淀粉酶(amylase),主要包 括α-淀粉酶、β-淀粉酶以及 R-酶。 1. α-淀粉酶 α-淀粉酶又称α-1,4-葡聚糖水解酶。这是一种内切淀粉酶(endoamylase),可以水 解直链淀粉或糖原分子内部的任意α-1,4-糖苷键,但对距淀粉链非还原性末端第五个以后 的糖苷键的作用受到抑制。当底物是直链淀粉,水解产物为葡萄糖和麦芽糖、麦芽三糖以 及低聚糖的混合物;当底物是支链淀粉,则直链部分的α-1,4-糖苷键被水解,而α-1,6-糖 苷键不被水解,水解产物为葡萄糖和麦芽糖、麦芽三糖等寡聚糖类以及含有α-1,6-糖苷键 的短的分支部分极限糊精(α-极限糊精)的混合物。 2. β-淀粉酶 β-淀粉酶又称α-1,4-葡聚糖基-麦芽糖基水解酶。这是一种外切淀粉酶(exoamylase), 从淀粉分子外围的非还原性末端开始,每间隔一个糖苷键进行水解,生成产物为麦芽糖。 如果底物是直链淀粉,水解产物几乎都是麦芽糖;如果底物是支链淀粉,水解产物为麦芽 糖和多分支糊精(β-极限糊精)。 α-淀粉酶是需要与 Ca+结合而表现活性的金属酶,因此螯合剂 EDTA 等能抑制此酶。 β-淀粉酶是含巯基的酶,氧化巯基的试剂能抑制此酶。α-淀粉酶耐热不耐酸,在 pH3.3 时酶被破坏,而在 70℃下,保持 15min 该酶仍保持活性。β-淀粉酶则耐酸不耐热,在 pH3.3 时酶可保持活性,但在 70℃下 15min 酶被破坏。 要需说明的是:α-淀粉酶和β-淀粉酶中的α和β并不是指其作用的α-或β-糖苷键, 而只是表明对淀粉水解作用不同的两种酶,实际上,这两种酶都只作用于淀粉的α-1,4-糖 苷键,水解的终产物以麦芽糖为主(图 5-3)。
第八章糖类的化学结构及代谢
第一节 单 糖
一、单糖的结构 (一)链状结构和构型 1、葡萄糖(Glucose,G)的开链结构
CHO
△
H
OH
HO
H
H
OH
H
OH
CH2OH
○
D(+)-葡萄糖(醛糖)D-葡萄糖2
CH2OH
○
O
O
HO
H
H
OH
H
OH
CH2OH
○
D(-)-果糖(酮糖)D(-)-果糖(酮糖)
2 构型
D-型和L-型Glucose 什么是手性分子的构型?
蔗糖易结晶、易溶于水,难溶于乙醇,熔点 186℃,加热至200℃,则是褐色焦糖。
2.乳糖(Lactose)
1分子〆-D-葡萄糖和1 分子β-D-半乳糖缩合 而成。不易溶于水,甜度低,是还原糖,能成 脎,酵母不能发酵乳糖。
乳糖是乳汁中的主要糖分,牛奶含4%左右, 人奶含5%——7%。
3.麦芽糖(maltose) 由两分子〆-D-葡萄糖分子缩合而成。 易溶于水,属还原糖,易被酵母发酵。工业上通 过酶促水解淀粉大量生产麦芽糖。
糖原
糖原
3. 糖原的性质
• 与红色糊精相似,无还原性,不能与苯肼作用生成糖脎, 可溶于沸水及三氯乙酸,不溶于乙醇及其他有机溶剂。 (可用于动物肝脏中糖原提取)
4. 糖原的生理功能
• 能量储存
三、纤维素
1.分布
• 纤维素是自然界中分布最广、含量最多的一种 多糖。无论一年生或多年生植物,尤其是各种 木材都含布大量的纤维素。植物体内约有50% 的碳存在于纤维素的形式。
糖的概念
➢ 糖类物质是一类多羟基醛或多羟基酮类化合物或聚合物
糖的分布
糖类分解代谢的有氧氧化的阶段
糖类分解代谢的有氧氧化的阶段糖类分解代谢是指将食物中的碳水化合物(糖类)分解为能量的过程。
这个过程包括两个主要的阶段:有氧氧化和无氧发酵。
在本文中,我将重点讨论糖类分解代谢的有氧氧化阶段。
1. 糖类分解代谢的第一步是糖类的消化吸收。
当我们摄入食物中的糖类时,例如葡萄糖或果糖,它们首先在消化系统中被分解成单糖分子。
这些单糖分子被吸收到血液中,进入细胞内。
2. 在细胞内,糖类分解代谢的有氧氧化阶段开始。
这个阶段发生在细胞内的线粒体中,这是细胞内的能量生产中心。
有氧氧化是指在氧气存在的情况下,将糖类分子完全分解为二氧化碳和水,并释放出大量的能量。
3. 有氧氧化的第一步是糖酵解。
在这一步中,葡萄糖分子被分解为两个较小的分子,称为丙酮酸和丁二酸。
这个过程产生了少量的ATP(三磷酸腺苷),这是细胞内的能量分子。
4. 接下来,丙酮酸和丁二酸进入线粒体的某些反应中,被进一步分解为乙酰辅酶A。
这个过程称为丙酮酸循环和丁二酸循环。
在这些循环中,乙酰辅酶A进一步被氧化,产生更多的ATP分子和一些还原剂NADH和FADH2。
5. 最后,乙酰辅酶A进入线粒体的呼吸链。
在呼吸链中,乙酰辅酶A中的氢原子被转移到氧分子上,生成水。
这个过程被称为氧化磷酸化,因为它产生了大量的ATP。
同时,通过呼吸链过程,还原剂NADH和FADH2被氧化为NAD+和FAD,以便再次用于糖类分解代谢。
总结起来,糖类分解代谢的有氧氧化阶段是一个复杂的过程,它将食物中的糖类分子逐步分解为二氧化碳和水,并在这个过程中释放出大量的能量。
这个过程涉及到多个反应和酶的参与,通过产生ATP和还原剂NADH和FADH2来提供细胞所需的能量。
上述解释的字数不足500字,以下是补充的内容:糖类分解代谢的有氧氧化阶段是细胞内能量的主要来源之一。
通过将糖类分子完全氧化为二氧化碳和水,有氧氧化过程产生了大量的ATP,这是细胞所需的能量分子。
此外,还原剂NADH和FADH2在有氧氧化过程中起到重要的作用,它们在呼吸链中被氧化为NAD+和FAD,以便再次参与糖类分解代谢。
高中生物 第四章 糖类代谢
P 果糖-6-P
P 果糖-6-P
P
P
果糖-1,6-2P
P
P
果糖-1,6-2P
P 磷酸二羟丙酮
3-磷酸甘油醛 P
Pi
P 3-磷酸甘油醛
P
P 1,3-二磷酸甘油酸
P
P 1,3-二磷酸甘油酸
P 3-磷酸甘油酸
P 3-磷酸甘油酸
P 2-磷酸甘油酸
P 2-磷酸甘油酸
P
磷酸烯醇式丙酮酸 (PEP)
P
大部分步骤可以逆糖酵解途 径进行,但有三步不可逆反应,需 绕道而行。
糖的异生作用
(四 )丙酮酸的去路
•乳酸发酵
在无氧条 件下,葡萄糖 分解为乳酸, 并释放出少量 能量的过程。
在无氧 条件下,葡 萄糖分解为 乙醇,并释 放少量能量 的过程
•乙醇发酵
四、三羧酸循环
三羧酸循环在线粒体中 进行,在糖酵解中形成的丙酮 酸先进入线粒体中,在有氧的 条件下被分解。
HO-C-COOH H C-COOH H2C-COOH
CO -COOH CH -COOH CH2-COOH
CO -COOH CO2 CO -COOH
CH -COOH
CH2
CH2-COOH
CH2-COOH
CO -COOH
CH2 CH2-COOH
CO2
Pi
H2O
H2C-COOH HO-C-COOH
五 种因 辅子 助
TPP 硫辛酸 CoA-SH FAD NAD
(二) 三羧酸 循环的反应历程
H2C-COOH HO-C-COOH
H2C-COOH
H2C-COOH HO-C-COOH
H2C-COOH
HC-COOH C-COOH
糖类代谢
酸软骨素。
直链淀粉:由葡萄糖通过α-1,4 糖苷键连接,可形成 长而紧密的螺旋管,遇碘呈蓝色。
支链淀粉:由葡萄糖通过α-1,4 糖苷键形成主链,再 通过α-1,6 糖苷键形成支链,遇碘呈紫色。
支链淀粉
糖原
区别:已糖(六碳糖为单糖)、六糖(6个单糖分子)
蔗糖:α-D-葡萄糖-(1→2)-β-D-果糖
无半缩醛羟基 为非还原糖
麦芽糖:α-D-葡萄糖- (1→4)-D-葡萄糖 乳糖:β-D-半乳糖-(1→4)-D-葡萄糖
含半缩醛羟基 为还原糖
3、多糖( polysaccharides)
根据水解物是否为同一单糖或单糖衍生物:
(二)ATP计量:共产生10个ATP。
原核生物: 真核生物:
-1-1 + 2×2.5 + 2×(1+1)+ 2×2.5 + 2×(2.5+2.5+1+1.5+2.5)= 32 -1-1 + 2×1.5 + 2×(1+1)+ 2×2.5 + 2×(2.5+2.5+1+1.5+2.5 )= 30
(三)草酰乙酸回补反应
①能源:1g葡萄糖在体内完全氧化可释放16.7kJ
能量;正常情况机体所需总能量的50~70%由糖 类供给。
②结构成分:纤维素、半纤维素和果胶是植物细
胞壁的主要成份;肽聚糖为细菌细胞壁的结构多 糖;昆虫和甲壳类的外骨骼则由壳多糖构成。
③提供碳骨架:一些糖类的中间代谢产物是合成
第7章糖类分解代谢
7.4 糖无氧分解(糖酵解)
机体的生存需要能量,机体内主要提供 能量的物质是ATP。
ATP的形成主要通过两条途径: 一条是由葡萄糖彻底氧化为CO2和水,从 中释放出大量的自由能形成大量的ATP。 另外一条是在没有氧分子参加的条件下, 即无氧条件下,由葡萄糖降解为丙酮酸,并 在此过程中产生2分子ATP。
脱支酶 磷酸化酶 G—1—P
例 肝糖元的分解
α葡萄糖1,4糖苷键
+ 7H3PO4
α葡萄糖1,6糖苷键
糖原核心
磷酸化酶(别构酶)
ATP抑制-AMP激活
7 G-1-P +
糖原核心
1 G-1-P
转移酶 糖原核心
去分枝酶 + H3PO4
糖原核心
G-1-P
磷酸化酶+ H3PO4
去单糖降解
三、细胞壁多糖的酶促降 解
3、糖类的生物学作用
(1)作为生物体内的主要能源物质(最先
动用)
植物体内的淀粉,动物体内的肝糖元、肌 糖元。(能源贮存)
(2)作为生物体内的结构成分
植物细胞壁中的纤维素、半纤维素、果胶 物质等;细菌细胞壁中的肽聚糖;昆虫外骨骼 中的壳多糖。
(3)在生物体 内转变为其他物 质
作为中间代 谢物为合成其他生 物分子提供碳骨架。
直链淀粉 支链淀粉
麦芽糖 麦芽糖+β-极限糊精
β-极限糊精是指β-淀粉酶作用到离分支点23个葡萄糖基为止的剩余部分。
两种淀粉酶降解的终产物主要是麦芽糖
两种淀粉酶性质的比较
α-淀粉酶
-淀粉酶
• 不耐酸,pH3时失 • 耐酸,pH3时仍
活
保持活性
• 耐高温,70C时15• 不耐高温, 分钟仍保持活性 70C15分钟失活
生物化学第六章糖类代谢
一、单糖
单糖只含有一个羰基,不能再水解为更简单 的糖。最简单的单糖是甘油醛和二羟丙酮。
D-甘油醛
二羟丙酮
含有醛基的单糖叫醛糖,如甘油醛、葡萄糖、 核糖等;
含有酮基的单糖叫酮糖,如二羟丙酮、果糖、 核酮糖等。
单糖又根据C原子数分为三、四、五、六、 七碳糖,习惯也称为丙、丁、戊、己、庚糖。 例如三碳糖也称为丙糖,六碳糖称为己糖。
图6-4 乳糖的结构
三、多糖
(一)多糖的特征
多糖是由多个单糖通过糖苷键聚合成的高分 子聚合物。单糖数目随机而不固定,所以多 糖没有固定的分子质量和确定的物理常数。 多糖是自然界存在量最大的一类有机物质。 也是人类重要的食物来源和工业原料。
多糖一般难溶于水或根本不溶于水,也不 能形成晶体,没有甜味,旋光性不明显, 化学性质比较稳定,除了在一定条件下发 生降解反应外,很难发生氧化、还原、成 苷、成酯等反应,尤其是构成动植物骨架 的多糖如纤维素、几丁质等,化学性质更 为稳定。
麦芽糖是由两分子α–D葡萄糖缩合组成,为α (14)糖苷键连接。麦芽糖保留了半缩 醛羟基,属于还原糖(图6-3)。
生物体内麦芽糖含量极少,几乎测不到(包 括动物和植物),但并非不存在。植物种 子在萌发时贮藏的淀粉水解,麦芽糖含量 略有增多,然后迅速由麦芽糖酶水解为葡 萄糖。
图6-3 麦芽糖的结构
另一种是五肽,一般是五聚甘氨酸,将两条 多糖链上的四肽侧链之间以五肽桥连接 (图6-10)。革兰氏阳性菌与革兰氏阴性 菌的肽聚糖交联方式略有不同。
溶菌酶可作用于肽聚糖的多糖链,使多糖链 断裂导致菌体吸水膨胀破裂而杀死细菌。 青霉素类抗生素可抑制肽聚糖短肽之间的 交联,无法合成完整的细胞壁而发挥抑菌 作用。
(二)麦芽糖的降解
第四章 糖类代谢
第四章糖类代谢一名词解释糖异生/ 糖酵解途径/ 磷酸戊糖途径/ UDPG(1)糖异生:非糖物质(如丙酮酸乳酸甘油生糖氨基酸等)转变为葡萄糖和糖原的过程。
(2)糖酵解途径:糖酵解途径指糖原或葡萄糖分子分解至生成丙酮酸的阶段,此反应过程一般在无氧条件下进行,又称为无氧分解。
(3)磷酸戊糖途径:磷酸戊糖途径指机体某些组织(如肝、脂肪组织等)以6-磷酸葡萄糖为起始物在6-磷酸葡萄糖脱氢酶催化下形成6-磷酸葡萄糖酸进而代谢生成磷酸戊糖为中间代谢物的过程,又称为磷酸已糖旁路。
磷酸戊糖途径在细胞质中进行。
全部反应分为氧化阶段和非氧化阶段。
(4)UDPG:尿苷二磷酸葡萄糖,是糖原合成酶的糖基供体。
二填空题1.合成糖原的前体分子是UDPG,糖原分解的产物是1-磷酸葡萄糖。
2.1分子葡萄糖转化为2分子乳酸净生成2分子ATP;2分子乳酸异生为葡萄糖要消耗6分子ATP。
3.糖酵解过程中有3个不可逆的酶促反应,这些酶是己糖激酶、磷酸果糖激酶和丙酮酸激酶。
4.糖酵解抑制剂碘乙酸主要作用于3-磷酸甘油醛脱氢酶。
5.调节三羧酸循环最主要的酶是柠檬酸合酶、异柠檬酸脱氢酶、α-酮戊二酸脱氢酶复合体。
6.三碳糖、六碳糖与七碳糖之间相互转变的糖代谢途径是磷酸戊糖途径。
7 磷酸戊糖途径可分为2阶段,分别称为氧化反应阶段和非氧化阶段,其中两种脱氢酶是葡萄糖-6-磷酸脱氢酶和6-磷酸葡萄糖酸脱氢酶,它们的辅酶是NADP。
8.丙酮酸激酶是糖酵解途径的关键酶;丙酮酸羧化酶是糖异生途径的关键酶。
9.TCA循环中有两次脱羧反应,分别是由异柠檬酸脱氢酶和α-酮戊二酸脱氢酶复合体催化。
10.TCA循环中发生底物水平磷酸化的化合物是琥珀酰CoA。
催化琥珀酸形成延胡索酸的酶是___琥珀酸脱氢酶,此酶的辅因子是FAD。
11在糖酵解中提供高能磷酸基团,使ADP磷酸化成A TP的高能化合物是1,3-二磷酸甘油酸和磷酸烯醇式丙酮酸12.参与丙酮酸氧化脱羧反应的辅酶为TPP,硫辛酸,FAD,NAD和CoA。
糖代谢知识点总结图
糖代谢知识点总结图一、糖的吸收和转运1. 糖的消化吸收:糖类主要通过小肠粘膜上皱不整的绒毛处的吸收上皮细胞,通过主动运输、被动扩散、依赖能活转移等方式被吸收。
2. 糖的转运:糖在肠道吸收后进入血管系统,在体内通过各种糖转运蛋白进入细胞内,参与能量代谢和结构物质的合成。
二、糖的利用和合成1. 糖的利用:糖类在体内主要参与葡萄糖代谢途径,包括糖的磷酸化、糖酵解、糖异生等途径。
磷酸化途径是糖类进入细胞之后的首要代谢途径,通过磷酸化反应将葡萄糖转化为葡萄糖-6-磷酸。
糖酵解途径是葡萄糖分解为丙酮酸,生成差异合酶酸后进入三羧酸循环产生ATP。
糖异生是指通过某些组织的特异合成途径,例如肝脏和肾脏可以合成葡萄糖以满足机体组织的需要。
2. 糖的合成:糖类合成主要包括糖异生途径和异生糖合成途径,通过这些途径可以合成各种不同类型的糖类物质,如多糖、寡糖和核苷酸糖。
三、糖的代谢调节1. 体内糖代谢平衡:机体通过血糖浓度调节、胰岛素和胰高血糖素的分泌调节以及神经内分泌调节等方式维持体内糖代谢的平衡状态,确保机体内糖代谢处于一个相对稳定的状态。
2. 糖代谢失调:血糖浓度异常、胰岛素分泌或功能异常、肝脏糖异生功能障碍等因素可能导致糖代谢失调,引起糖尿病、胰岛素抵抗等疾病。
四、糖代谢与疾病1. 糖尿病:糖尿病是一种以高血糖为主要特征的代谢性疾病,分为Ⅰ型和Ⅱ型糖尿病。
Ⅰ型糖尿病主要由于胰岛素分泌不足引起,Ⅱ型糖尿病主要由于胰岛素抵抗和胰岛素分泌减少引起。
2. 低血糖症:低血糖症是指血糖浓度过低的疾病,主要原因是胰岛素过多或者酮体生成不足引起的。
五、糖代谢与健康1. 膳食糖的选择:合理的膳食结构和糖的摄入量对于机体健康非常重要,过多摄入糖类可能导致肥胖、糖尿病等代谢性疾病。
2. 运动与糖代谢:适量的运动可以促进糖代谢途径,提高机体对葡萄糖的利用率,对于预防糖尿病和其他代谢性疾病具有积极意义。
总结:糖代谢是机体内糖类物质在生物体内进行化学反应和能量转换的过程。
第六章代谢总论 第七章 糖类代谢
第六章代谢总论第七章糖类代谢一、名词解释:1、新陈代谢2、能量代谢3、、自由能4、高能化合物5、糖酵解6、糖酵解途径(EMP)7、糖的有氧氧化8、三羧酸循环(TCA)9、磷酸戊糖途径10、糖的异生作用二、填空题1、糖类的生理功能主要有、和。
2、糖酵解途径是在_________中进行,该途径是将转变为,同时生成________和_______的一系列酶促反应。
3、1分子葡萄糖转化为2分子乳酸净生成______________分子ATP4、糖酵解过程中有3步不可逆的酶促反应,催化这三步不可逆反应的酶是__________、____________ 和_____________。
5、三羧酸循环是从草酰乙酸和结合成开始,经过一系列的、,又返回草酰乙酸的过程。
6、调节三羧酸循环最主要的酶是____________、、______________。
7、2分子乳酸异生为葡萄糖要消耗_________ATP。
8、丙酮酸还原为乳酸,反应中的NADH来自于________的氧化。
9、在磷酸戊糖途径中,7-磷酸景天庚酮糖与________________在转醛醇酶作用下,生成4-磷酸赤藓糖和。
10、磷酸戊糖途径可分为______阶段,分别称为和,其中两种脱氢酶是和,它们的辅酶是。
11、酶催化与ATP反应生成1,6-二磷酸果糖,其逆反应是由酶催化的。
12、动物体内糖的运输形式是_________,糖的贮存形式是_________。
13、一次三羧酸循环共有次脱氢反应和次底物磷酸化反应。
14、组成丙酮酸脱H酶系的三种酶分别是、和,五种辅酶分别是、、、和。
15、TCA循环中有两次脱羧反应,分别是由和催化。
16、催化糖酵解途径中消耗ATP的反应的酶是和。
17、乳酸脱氢酶在体内有5种同工酶,其中肌肉中的乳酸脱氢酶为型,对__________ 亲和力特别高,主要催化反应。
18、在糖酵解中提供高能磷酸基团,使ADP磷酸化成ATP的高能化合物是_______________ 和________________。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、知识结构
糖类代谢
脂类代谢
人和动物体内三大营养的代谢蛋白质代谢
三大营养物质代谢的关系
三大营养物质代谢与人体健康
二、教学目标
(一)知识教学
1.糖类代谢(C:理解)。
2.脂类、蛋白质代谢(B:识记)。
3.三大营养物质代谢的关系(A:知道)。
4.三大营养物质代谢与人类健康的关系(A:知道)。
(二)能力训练
1.学生阅读教材,培养理解、归纳、自学能力。
2.学习物质消化、吸收、代谢过程,物质代谢之间的联系,培养分析、判断、综合能力。
三、重点、难点、疑点及解决办法
1.重点:糖类、蛋白质代谢过程。
2.难点:糖类、脂类、蛋白质的代谢及三大营养物质代谢的关系,物质间相互转化的复杂变化,学生由于化学知识不够丰富,有一定难度。
3.疑点:肝糖元、肌糖元在糖代谢中重要作用。
4.解决办法
(1)学生阅读教材、分析图表,师生共同解决问题。
(2)通过课堂训练巩固对知识的理解。
四、课时安排
3课时
五、教学方法
学生阅读、分析讨论,教师充分利用学生所学化学知识去理解三大营养物质代谢过程中各种物质代谢之间的联系。
六、教具准备
糖类、蛋白质代谢过程表解图和表解。
七、学生活动
1.阅读课文,找出动物和人物质代谢的特点。
2.回忆初中所学“体内物质运输”、“消化和吸收”等章节内容。
3.阅读,自学课文归纳糖类代谢、蛋白质代谢过程特点,并要求边看书,边画表解表示三大营养物质代谢过程。
4.认真学习教师对三大营养物质代谢过程的归纳、总结。
并完成教师精选的课堂训练题,加以巩固课堂教学。
八、教学程序
第一课时
(一)明确目标
1.知识学习
(1)知道动物和人物质代谢特征是直接从外界获取现成的有机物。
(2)以糖类、脂类物质消化、吸收知识为前提引出本节重点知识糖类、脂类代谢。
(3)掌握糖类、脂类物质代谢中物质变化及其各物质间相互转化关系。
(4)肝脏在代谢中重要地位。
2.能力训练
(1)通过回忆,复习旧知识来学习新知识,达到温故知新效果,使学生学会理顺知识脉络和学会整理知识体系的方法。
(2)通过糖类、脂类代谢过程中物质变化及各物质间相互转化关系,训练学生分析、理解、综合解决问题的能力。
(二)重点、难点的学习及目标完成过程
俗话说:“民以食为天”。
这句话想必同学们都很耳热,它的生物学意义是什么(同学看书、作答)?
教师指出:人和动物在代谢过程中,不能像绿色植物那样,直接把外界环境中的无机物转化成自身的有机物,而是必须直接或间接地以绿色植物为食物,来获取现成的有机物。
所以我们必须每天几次进食,才能维持各项生命活动的正常进行,故民以食为天,说明了食物的重要性。
问:我们每天摄取食物中包括糖类、脂类、蛋白质三大营养物质,经过消化、吸收进入人体后会发生怎样变化(同学们看书,理解并回忆物质消化、吸收过程)?
教师指出:第一章学习中我们已经知道糖类分为单糖、二糖、多糖三类,而食物中的糖类绝大部分是淀粉,此外,还有少量的蔗糖、乳糖等。
因食物中淀粉不溶于水,且分子量又比较大,所以它不能通过细胞的膜被直接吸收,一定要经过消化分解成葡萄糖,才能被小肠柱状上皮细胞通过主动运输方式吸收直接进入血液并随血液循环进行以下几种变化。
—、糖类代谢
1.一部分葡萄糖随血液运往全身各处后,最终在细胞中氧化分解,生成二氧化碳和水,同时释放能量,供生命活动需要(让学生回忆该过程主要在什么细胞器内完成?)。
教师归纳:线粒体为动力工厂,糖类是细胞生命活动的主要能源。
2.血液中葡萄糖(称为血糖)除了上述变化被利用外,多余部分可被肝脏、骨胳肌等组织器官合成糖元储存备用(肝糖元)与供能用(肌糖元)。
可见糖元是一种可被迅速利用的贮能形式。
当大量食物经消化,其中葡萄糖被陆续吸收进入血液后,血糖的含量会显著增加,这时在“神经--体液”的调节下,肝脏把一部分葡萄糖转变成糖元,暂时储存起来,使血糖维持在正常水平(80~120mg/dL);
当血糖含量由于消耗而逐渐减少,肝脏中的糖元又转变成葡萄糖陆续释放到血液中,使血糖含量仍维持在80~120mg/dL范围内。
问:血糖合成糖元有何意义?肝脏在这一过程中所起作用(学生相互讨论、启发)?
教师指出:肝脏是储存糖元的器官之一,存于肝脏的糖元称为肝糖元。
糖元的合成不但有利于能量储存,而且还可以调节血糖平衡、稳定。
血糖含量的稳定与肝脏合成糖元而不分解糖元的功能密切相关。
肌糖元则是储存在肌肉中的能源物质,供给肌肉活动所需能量。
需要说明的是,肌糖元不能像肝糖元一样直接分解成葡萄糖释放入血,而是要先分解生成乳酸,乳酸被运输到肝脏,在肝脏转变成肝糖元或葡萄糖,以补充血糖域被组织利用。
3.除了上述变化外,如果还有多余葡葡糖,这部分葡萄糖可以转变成脂肪和某些氨基酸(非必需氨基酸)等。
葡萄糖在人和动物体内变化,可归纳如下:
二、脂类代谢
1.食物中脂类包括脂肪(甘油三酯)、少量的磷脂(脑磷脂,卵磷脂)、胆固醇。
2.脂类代谢过程
脂肪与糖一样也必须消化,以甘油、脂肪酸的形式被肠壁通过扩散渗透方式吸收,大部分再合成脂肪(此时已转变成人或者动物体内脂肪)。
随血液运输到全身各器官,参与以下代谢: (1)在动物和人体内再度合成的脂肪,在皮下结缔组织、腹腔大网膜、肠系膜等处储存起来(以脂肪组织形式存在)。
(2)也可在肝脏、肌肉等处再度分解成甘油、脂肪酸,然后直接氧化分解成CO2和H2O,释放大量能量,或者转变成糖元。
脂肪在人和动物体内变化情况,如下表:
(三)课堂训练
1.肝脏、骨骼肌合成糖元有什么不同(让学生思考后,自由回答)?
教师归纳如下:肝合成的糖元叫肝糖元,骨骼肌合成的糖元叫肌糖元。
肝糖元可以分解成葡萄糖进入血液中,随血液循环运输到全身各处,供各组织细胞利用。
因此,肝糖元是作为能量的暂时储备。
肌糖元则是作为能源物质,为肌肉活动提供能量。
2.肝脏在代谢中所起作用
血中的C6H12O6(血糖浓度80~120mg/dL) 肝糖元。
肝脏在糖代谢过程中起什么作用表述如下:
肝脏可以把多余的葡萄糖转变成肝糖元暂时储存起来。
肝脏能维持血糖浓度的相对稳定,那就是营养物质吸收进人血液后随血液首先进入肝脏,血糖浓度高于80~120mg/dL时,肝脏把葡葡糖合成肝糖元,暂时储存起来;由于体力、脑力劳动等生命活动消耗而使血糖浓度低于80~120mg/dL时,肝脏又把储存的肝糖元转化成葡萄糖,释放到血液中,以供各种组织需要。
这样,通过肝脏的作用,血糖浓度就可维持在80~120mg/dL左右。
(四)布置作业
1.课文P73一、二、三。
2.图为人体内糖代谢示意图,请分析填写下列空白。
(1)A过程主要发生在消化道的中。
(2)B过程发生在人体细胞的中,E过程在人体的中进行。
(3)人体在饥饿状态时,胰岛素的分泌量将会;当血糖浓度经常超过160mg/dL,则发生C过程的可能是发生病变的结果。
(4)若人体甲状腺激素分泌过量,会使图中所示的过程加速。
3.下列四组中,对血糖的稳定起作用的一组( )
A.胰岛、肝脏、肾小管
B.胰岛、唾液腺、垂体
C.胰岛、门静脉、肝脏
D.胰岛、消化腺、肝脏
参考答案:1.(略) 2.(1)小肠(2)细胞质基质和线粒体/肝脏
(3)减少/胰岛(4)B 3.A。
(五)板书设计
板书设计
3.6 人和动物体内三大营养物质的代谢
糖类、脂类代谢
一、糖类代谢
1.葡萄搪氧化分解,产生CO2+H2O,同时释教出大量能量。
(主要能源物质)
2.葡萄糖合成肝糖元、肌糖元储存。
肝糖无(在一定条件下)分解为葡萄糖释放入血从而维持血糖正常水平。
(储存)
3.葡萄糖转变成脂肪或某些氨基酸。
(转变)二、脂类代谢
1.以脂肪形式储存在皮下结缔组织、肠系肪膜、大网膜处。
(储能物质)
2.再分解为甘油+ 脂肪酸被氧化分解成CO2+H2O,释放能量。
(脂肪也是能源物质)
3.甘油、脂肪酸转变为糖元等物质。
(转变后储存能量)。