三角函数的图象

合集下载

常见三角函数图像及其性质

常见三角函数图像及其性质

常见三角函数图像及其性质三角函数介绍正弦函数主词条:正弦函数格式:sin(θ)作用:在直角三角形中,将大小为θ(单位为弧度)的角对边长度比斜边长度的比值求出,函数值为上述比的比值,也是csc(θ)的倒数函数图像:波形曲线值域:[]1,1-余弦函数主词条:余弦函数格式:cos(θ)作用:在直角三角形中,将大小为(单位为弧度)的角邻边长度比斜边长度的比值求出,函数值为上述比的比值,也是sec(θ)的倒数函数图像:波形曲线值域:[]1,1-正切函数主词条:正切函数格式:tan(θ)作用:在直角三角形中,将大小为θ(单位为弧度)的角对边长度比邻边长度的比值求出,函数值为上述比的比值,也是cot(θ)的倒数。

函数图像:上图平面直角坐标系反映值域:()∞-∞,+余切函数主词条:余切函数格式:cot(θ)作用:在直角三角形中,将大小为θ(单位为弧度)的角邻边长度比对边长度的比值求出,函数值为上述比的比值,也是tan(θ)的倒数值域:()∞-∞,+正割函数主词条:正割函数格式:sec(θ)作用:在直角三角形中,将斜边长度比大小为θ(单位为弧度)的角邻边长度的比值求出,函数值为上述比的比值,也是cos(θ)的倒数函数图像:上图平面直角坐标系反映值域:(][)∞-1-,1∞,+余割函数主词条:余割函数格式:csc(θ)作用:在直角三角形中,将斜边长度比大小为θ(单位为弧度)的角对边长度的比值求出,函数值为上述比的比值,也是sin(θ)的倒数值域:(][)∞-1-∞,+,1。

三角函数公式、图像大全

三角函数公式、图像大全
奇偶性
arcsin(-x)=-arcsinx
arccos(-x)=π-arccosx
arctan(-x)=-arctanx
arccot(-x)=π-arccotx
周期性
都不是同期函数
恒等式
sin(arcsinx)=x(x∈[-1,1])arcsin(sinx)=x(x∈[- , ])
cos(arccosx)=x(x∈[-1,1]) arccos(cosx)=x(x∈[0,π])
倍角公式
tan2A =
Sin2A=2SinA•CosA
Cos2A = Cos2A-Sin2A=2Cos2A-1=1-2sin2A
三倍角公式
sin3A = 3sinA-4(sinA)3
cos3A = 4(cosA)3-3cosA
tan3a = tana·tan( +a)·tan( -a)
半角公式
sin( )=
tan(arctanx)=x(x∈R)arctan(tanx)=x(x∈(- , ))
cot(arccotx)=x(x∈R)
arccot(cotx)=x(x∈(0,π))
互余恒等式
arcsinx+arccosx= (x∈[-1,1])
arctanx+arccotx= (X∈R)
三角函数公式
两角和公式
sin(2kπ+α)= sinα
cos(2kπ+α)= cosα
tan(2kπ+α)= tanα
cot(2kπ+α)= cotα
公式二
设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:
sin(π+α)= -sinα
cos(π+α)= -cosα
tan(π+α)= tanα

三角函数公式图像大全

三角函数公式图像大全

初等函数的图形幂函数的图形指数函数的图形各三角函数值在各象限的符号sinα·cscα cosα·secα tanα·cotα三角函数的性质函数y=sinx y=cosx y=tanx y=cotx定义域R R {x|x∈R且x≠kπ+2π,k∈Z}{x|x∈R且x≠kπ,k∈Z}值域[-1,1]x=2kπ+2π时y max=1x=2kπ-2π时y min=-1[-1,1]x=2kπ时y max=1x=2kπ+π时y min=-1R无最大值无最小值R无最大值无最小值周期性周期为2π周期为2π周期为π周期为π奇偶性奇函数偶函数奇函数奇函数单调性在[2kπ-2π,2kπ+2π]上都是增函数;在[2kπ+2π,2kπ+32π]上都是减函数(k∈Z)在[2kπ-π,2kπ]上都是增函数;在[2kπ,2kπ+π]上都是减函数(k∈Z)在(kπ-2π,kπ+2π)内都是增函数(k∈Z)在(kπ,kπ+π)内都是减函数(k∈Z)反三角函数的图形反三角函数的性质名称反正弦函数反余弦函数反正切函数反余切函数定义y=sinx(x∈〔-2π,2π〕的反函数,叫做反正弦函数,记作x=arsinyy=cosx(x∈〔0,π〕)的反函数,叫做反余弦函数,记作x=arccosyy=tanx(x∈(-2π,2π)的反函数,叫做反正切函数,记作x=arctanyy=cotx(x∈(0,π))的反函数,叫做反余切函数,记作x=arccoty理解arcsinx表示属于[-2π,2π]且正弦值等于x的角arccosx表示属于[0,π],且余弦值等于x的角arctanx表示属于(-2π,2π),且正切值等于x的角arccotx表示属于(0,π)且余切值等于x的角性质定义域[-1,1][-1,1](-∞,+∞)(-∞,+∞)值域[-2π,2π][0,π](-2π,2π) (0,π)单调性在〔-1,1〕上是增函数在[-1,1]上是减函数在(-∞,+∞)上是增数在(-∞,+∞)上是减函数奇偶性arcsin(-x)=-arcsinxarccos(-x)=π-arccosxarctan(-x)=-arctanxarccot(-x)=π-arccotx周期性都不是同期函数恒等式sin(arcsinx)=x(x∈[-1,1])arcsin(sinx)=x(x∈[-2π,2π])cos(arccosx)=x(x∈[-1,1])arccos(cosx)=x(x∈[0,π])tan(arctanx)=x(x∈R)arctan(tanx)=x(x∈(-2π,2π))cot(arccotx)=x(x∈R)arccot(cotx)=x(x∈(0,π))互余恒等式arcsinx+arccosx=2π(x∈[-1,1]) arctanx+arccotx=2π(X∈R)三角函数公式两角和公式sin(A+B) = sinAcosB+cosAsinB sin(A-B) = sinAcosB-cosAsinB cos(A+B) = cosAcosB-sinAsinB cos(A-B) = cosAcosB+sinAsinBtan(A+B) =tanAtanB -1tanBtanA +tan(A-B) =tanAtanB 1tanBtanA +-cot(A+B) =cotA cotB 1-cotAcotB +cot(A-B) =cotAcotB 1cotAcotB -+倍角公式tan2A =Atan 12tanA2- Sin2A=2SinA•CosACos2A = Cos 2A-Sin 2A=2Cos 2A-1=1-2sin 2A三倍角公式sin3A = 3sinA-4(sinA)3 cos3A = 4(cosA)3-3cosAtan3a = tana ·tan(3π+a)·tan(3π-a)sin(2A )=2cos 1A -cos(2A)=2cos 1A +tan(2A)=A A cos 1cos 1+-cot(2A )=A A cos 1cos 1-+tan(2A )=A A sin cos 1-=AA cos 1sin + 和差化积sina+sinb=2sin2b a +cos 2ba - sina-sinb=2cos 2b a +sin 2ba -cosa+cosb = 2cos 2b a +cos 2ba -cosa-cosb = -2sin 2b a +sin 2ba -tana+tanb=ba b a cos cos )sin(+积化和差sinasinb = -21[cos(a+b)-cos(a-b)] cosacosb = 21[cos(a+b)+cos(a-b)]sinacosb = 21[sin(a+b)+sin(a-b)]cosasinb = 21[sin(a+b)-sin(a-b)]sin(-a) = -sina cos(-a) = cosasin(2π-a) = cosacos(2π-a) = sinasin(2π+a) = cosacos(2π+a) = -sinasin(π-a) = sina cos(π-a) = -cosa sin(π+a) = -sina cos(π+a) = -cosatgA=tanA =aacos sin万能公式sina=2)2(tan 12tan2aa + cosa=22)2(tan 1)2(tan 1aa+- tana=2)2(tan 12tan2aa -a•sina+b•cosa=)b (a 22+×sin(a+c) [其中tanc=a b ] a•sin(a)-b•cos(a) =)b (a 22+×cos(a-c) [其中tan(c)=b a ] 1+sin(a) =(sin 2a +cos 2a )2 1-sin(a) = (sin 2a -cos 2a )2其他非重点三角函数 csc(a) =asin 1 sec(a) =a cos 1 双曲函数sinh(a)=2e -e -aa cosh(a)=2e e -aa + tg h(a)=)cosh()sinh(a a 公式一设α为任意角,终边相同的角的同一三角函数的值相等:sin (2kπ+α)= sinαcos (2kπ+α)= cosαtan (2kπ+α)= tanαcot (2kπ+α)= cotα设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)= -sinαcos(π+α)= -cosαtan(π+α)= tanαcot(π+α)= cotα公式三任意角α与-α的三角函数值之间的关系:sin(-α)= -sinαcos(-α)= cosαtan(-α)= -tanαcot(-α)= -cotα公式四利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)= sinαcos(π-α)= -cosαtan(π-α)= -tanαcot(π-α)= -cotα公式五利用公式-和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)= -sinαcos(2π-α)= cosαtan(2π-α)= -tanαcot(2π-α)= -cotα2π±α及23π±α与α的三角函数值之间的关系: sin (2π+α)= cosα cos (2π+α)= -sinα tan (2π+α)= -cotα cot (2π+α)= -tanα sin (2π-α)= cosα cos (2π-α)= sinα tan (2π-α)= cotα cot (2π-α)= tanα sin (23π+α)= -cosα cos (23π+α)= sinα tan (23π+α)= -cotα cot (23π+α)= -tanα sin (23π-α)= -cosα cos (23π-α)= -sinα tan (23π-α)= cotα cot (23π-α)= tanα (以上k ∈Z)这个物理常用公式我费了半天的劲才输进来,希望对大家有用A•sin(ωt+θ)+ B•sin(ωt+φ) =)cos(222ϕθ⋅++AB B A ×sin )cos(2)Bsin in arcsin[(As t 22ϕθϕθω⋅++++AB B A三角函数公式证明(全部)公式表达式乘法与因式分解a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b)(a2+ab+b2) 三角不等式|a+b|≤|a|+|b||a-b|≤|a|+|b||a|≤b<=>-b≤a≤b|a-b|≥|a|-|b|-|a|≤a≤|a|一元二次方程的解-b+√(b2-4ac)/2a -b-b+√(b2-4ac)/2a根与系数的关系X1+X2=-b/aX1*X2=c/a注:韦达定理判别式b2-4a=0 注:方程有相等的两实根b2-4ac>0 注:方程有一个实根b2-4ac<0 注:方程有共轭复数根三角函数公式两角和公式sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosAcos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinBtan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB) ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)倍角公式tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctgacos2a=cos2a-sin2a=2cos2a-1=1-2sin2a半角公式sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))ctg(A/2)=√((1+cosA)/((1-cosA)) ctg(A/2)=-√((1+cosA)/((1-cosA))和差化积2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B)2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B)sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2) tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosBctgA+ctgBsin(A+B)/sinAsinB -ctgA+ctgBsin(A+B)/sinAsinB某些数列前n项和1+2+3+4+5+6+7+8+9+…+n=n(n+1)/21+3+5+7+9+11+13+15+…+(2n-1)=n22+4+6+8+10+12+14+…+(2n)=n(n+1)12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6 13+23+33+43+53+63+…n3=n2(n+1)2/41*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3 正弦定理a/sinA=b/sinB=c/sinC=2R注:其中R 表示三角形的外接圆半径余弦定理b2=a2+c2-2accosB注:角B是边a和边c的夹角正切定理[(a+b)/(a-b)]={[Tan(a+b)/2]/[Tan(a-b)/2]}圆的标准方程(x-a)2+(y-b)2=r2 注:(a,b)是圆心坐标圆的一般方程x2+y2+Dx+Ey+F=0 注:D2+E2-4F>0抛物线标准方程y2=2px y2=-2px x2=2py x2=-2py直棱柱侧面积S=c*h斜棱柱侧面积S=c'*h正棱锥侧面积S=1/2c*h'正棱台侧面积S=1/2(c+c')h'圆台侧面积S=1/2(c+c')l=pi(R+r)l球的表面积S=4pi*r2圆柱侧面积S=c*h=2pi*h圆锥侧面积S=1/2*c*l=pi*r*l弧长公式l=a*ra是圆心角的弧度数r >0扇形面积公式s=1/2*l*r锥体体积公式V=1/3*S*H圆锥体体积公式V=1/3*pi*r2h斜棱柱体积V=S'L注:其中,S'是直截面面积,L是侧棱长柱体体积公式V=s*h圆柱体V=pi*r2h-------------------------------------------------------------------------------------------- 三角函数积化和差和差化积公式记不住就自己推,用两角和差的正余弦:cos(A+B)=cosAcosB-sinAsinBcos(A-B)=cosAcosB+sinAsinB这两式相加或相减,可以得到2组积化和差:相加:cosAcosB=[cos(A+B)+cos(A-B)]/2相减:sinAsinB=-[cos(A+B)-cos(A-B)]/2sin(A+B)=sinAcosB+sinBcosAsin(A-B)=sinAcosB-sinBcosA这两式相加或相减,可以得到2组积化和差:相加:sinAcosB=[sin(A+B)+sin(A-B)]/2相减:sinBcosA=[sin(A+B)-sin(A-B)]/2这样一共4组积化和差,然后倒过来就是和差化积了不知道这样你可以记住伐,实在记不住考试的时候也可以临时推导一下正加正正在前正减正余在前余加余都是余余减余没有余还负正余正加余正正减余余余加正正余减还负.3.三角形中的一些结论:(不要求记忆)(1)anA+tanB+tanC=tanA·tanB·tanC(2)sinA+tsinB+sinC=4cos(A/2)cos(B/2)cos(C/2)(3)cosA+cosB+cosC=4sin(A/2)·sin(B/2)·sin(C/2)+1(4)sin2A+sin2B+sin2C=4sinA·sinB·sinC(5)cos2A+cos2B+cos2C=-4cosAcosBcosC-1 ...........................已知sinα=m sin(α+2β), |m|<1,求证tan(α+β)=(1+m)/(1-m)tanβ解:sinα=m sin(α+2β)sin(a+β-β)=msin(a+β+β)sin(a+β)cosβ-cos(a+β)sinβ=msin(a+β)cosβ+mcos(a+β)sinβ sin(a+β)cosβ(1-m)=cos(a+β)sinβ(m+1)tan(α+β)=(1+m)/(1-m)tanβ。

三角函数图像-三角函数图像。

三角函数图像-三角函数图像。
信号处理
在信号处理中,三角函数图像可以用来进行频谱 分析和滤波。
测量技术
在测量技术中,三角函数图像可以用来进行角度、 距离等测量。
在数学分析中的应用
微积分
在微积分中,三角函数图像可以用来理解函数的极限、连续性、 可导性等概念。
复数分析
在复数分析中,三角函数图像可以用来理解复数的概念和性质。
线性代数
04
正切函数图像
正切函数的定义
总结词
正切函数是三角函数的一种,定义为直 角三角形中锐角的对边长度除以邻边长 度。
VS
详细描述
在直角坐标系中,以原点为顶点,x轴为 对边,y轴为邻边的单位圆上,正切函数 定义为直角三角形中锐角的对边长度除以 邻边长度。
正切函数的性质
总结词
正切函数具有周期性、奇偶性、单调性等性 质。
三角函数图像
目录
• 三角函数图像概述 • 正弦函数图像 • 余弦函数图像 • 正切三角函数图像概述
三角函数图像的定义
三角函数图像
三角函数图像是指将三角函数的值域映射到平面坐标 系上形成的图形。
常见的三角函数
常见的三角函数包括正弦函数、余弦函数、正切函数 等。
通过使用数学软件或绘图工具,可以绘制出余弦函数的图 像。
要点二
详细描述
绘制余弦函数的图像需要确定函数的定义域和值域,然后 选择适当的坐标系和单位。接下来,可以使用数学软件或 绘图工具,如MATLAB、Python的matplotlib库等,来绘 制余弦函数的图像。在绘制过程中,可以选择不同的参数 和颜色来展示函数的形状和变化趋势。最终得到的图像是 一个周期性的波形,具有对称性和有界性等特点。
01
02
03
手工绘制

三角函数公式、图像大全

三角函数公式、图像大全

三角函数公式、图像大全(总20页)-CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除初等函数的图形幂函数的图形指数函数的图形对数函数的图形三角函数的图形各三角函数值在各象限的符号sinα·cscα cosα·secα tanα·cotα三角函数的性质反三角函数的图形反三角函数的性质三角函数公式两角和公式sin(A+B) = sinAcosB+cosAsinB sin(A-B) = sinAcosB-cosAsinB cos(A+B) = cosAcosB-sinAsinB cos(A-B) = cosAcosB+sinAsinBtan(A+B) =tanAtanB -1tanBtanA +tan(A-B) =tanAtanB 1tanBtanA +-cot(A+B) =cotA cotB 1-cotAcotB +cot(A-B) =cotAcotB 1cotAcotB -+倍角公式tan2A =Atan 12tanA2- Sin2A=2SinA?CosACos2A = Cos 2A-Sin 2A=2Cos 2A-1=1-2sin 2A三倍角公式sin3A = 3sinA-4(sinA)3 cos3A = 4(cosA)3-3cosAtan3a = tana ·tan(3π+a)·tan(3π-a)半角公式sin(2A )=2cos 1A -cos(2A )=2cos 1A +tan(2A)=A A cos 1cos 1+-cot(2A )=A A cos 1cos 1-+tan(2A )=A A sin cos 1-=AA cos 1sin + 和差化积sina+sinb=2sin2b a +cos 2ba - sina-sinb=2cos 2b a +sin 2ba -cosa+cosb = 2cos 2b a +cos 2ba -cosa-cosb = -2sin 2b a +sin 2ba -tana+tanb=ba b a cos cos )sin(+积化和差sinasinb = -21[cos(a+b)-cos(a-b)]cosacosb = 21[cos(a+b)+cos(a-b)]sinacosb = 21[sin(a+b)+sin(a-b)]cosasinb = 21[sin(a+b)-sin(a-b)]sin(-a) = -sinacos(-a) = cosa sin(2π-a) = cosa cos(2π-a) = sina sin(2π+a) = cosa cos(2π+a) = -sinasin(π-a) = sinacos(π-a) = -cosasin(π+a) = -sinacos(π+a) = -cosa tgA=tanA =a acos sin万能公式 sina=2)2(tan 12tan 2aa+ cosa=22)2(tan 1)2(tan 1a a +- tana=2)2(tan 12tan 2a a-asina+bcosa=)b (a 22+×sin(a+c) [其中tanc=ab ] asin(a)-bcos(a) = )b (a 22+×cos(a-c) [其中tan(c)=ba ] 1+sin(a) =(sin 2a +cos 2a )2 1-sin(a) = (sin 2a -cos 2a )2其他非重点三角函数 csc(a) =asin 1 sec(a) =a cos 1 双曲函数 sinh(a)=2e -e -aa cosh(a)=2e e -aa + tg h(a)=)cosh()sinh(a a 公式一设α为任意角,终边相同的角的同一三角函数的值相等: sin (2kπ+α)= sinαcos (2kπ+α)= cosαtan (2kπ+α)= tanαcot (2kπ+α)= cotα设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)= -sinαcos(π+α)= -cosαtan(π+α)= tanαcot(π+α)= cotα公式三任意角α与 -α的三角函数值之间的关系:sin(-α)= -sinαcos(-α)= cosαtan(-α)= -tanαcot(-α)= -cotα公式四利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)= sinαcos(π-α)= -cosαtan(π-α)= -tanαcot(π-α)= -cotα公式五利用公式-和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)= -sinαcos(2π-α)= cosαtan(2π-α)= -tanαcot(2π-α)= -cotα2π±α及23π±α与α的三角函数值之间的关系: sin (2π+α)= cosα cos (2π+α)= -sinα tan (2π+α)= -cotα cot (2π+α)= -tanα sin (2π-α)= cosα cos (2π-α)= sinα tan (2π-α)= cotα cot (2π-α)= tanα sin (23π+α)= -cosα cos (23π+α)= sinα tan (23π+α)= -cotα cot (23π+α)= -tanα sin (23π-α)= -cosα cos (23π-α)= -sinα tan (23π-α)= cotα cot (23π-α)= tanα (以上k ∈Z)这个物理常用公式我费了半天的劲才输进来,希望对大家有用 Asin(ωt+θ)+ Bsin(ωt+φ) =)cos(222ϕθ⋅++AB B A ×sin )cos(2)Bsin in arcsin[(As t 22ϕθϕθω⋅++++AB B A三角函数公式证明(全部)公式表达式乘法与因式分解a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b)(a2+ab+b2) 三角不等式|a+b|≤|a|+|b||a-b|≤|a|+|b||a|≤b<=>-b≤a≤b|a-b|≥|a|-|b|-|a|≤a≤|a|一元二次方程的解-b+√(b2-4ac)/2a -b-b+√(b2-4ac)/2a根与系数的关系X1+X2=-b/aX1*X2=c/a注:韦达定理判别式 b2-4a=0 注:方程有相等的两实根b2-4ac>0 注:方程有一个实根b2-4ac<0 注:方程有共轭复数根三角函数公式两角和公式sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosAcos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinBtan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB) ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)倍角公式tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctgacos2a=cos2a-sin2a=2cos2a-1=1-2sin2a半角公式sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))ctg(A/2)=√((1+cosA)/((1-cosA)) ctg(A/2)=-√((1+cosA)/((1-cosA))和差化积2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B)2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B)sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2) tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosBctgA+ctgBsin(A+B)/sinAsinB -ctgA+ctgBsin(A+B)/sinAsinB某些数列前n项和1+2+3+4+5+6+7+8+9+…+n=n(n+1)/21+3+5+7+9+11+13+15+…+(2n-1)=n22+4+6+8+10+12+14+…+(2n)=n(n+1)12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6 13+23+33+43+53+63+…n3=n2(n+1)2/41*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3 正弦定理a/sinA=b/sinB=c/sinC=2R注:其中 R 表示三角形的外接圆半径余弦定理b2=a2+c2-2accosB注:角B是边a和边c的夹角正切定理[(a+b)/(a-b)]={[Tan(a+b)/2]/[Tan(a-b)/2]}圆的标准方程(x-a)2+(y-b)2=r2 注:(a,b)是圆心坐标圆的一般方程x2+y2+Dx+Ey+F=0 注:D2+E2-4F>0抛物线标准方程y2=2px y2=-2px x2=2py x2=-2py直棱柱侧面积S=c*h斜棱柱侧面积S=c'*h正棱锥侧面积S=1/2c*h'正棱台侧面积S=1/2(c+c')h'圆台侧面积S=1/2(c+c')l=pi(R+r)l球的表面积S=4pi*r2圆柱侧面积S=c*h=2pi*h圆锥侧面积S=1/2*c*l=pi*r*l弧长公式l=a*ra是圆心角的弧度数r >0扇形面积公式s=1/2*l*r锥体体积公式V=1/3*S*H圆锥体体积公式V=1/3*pi*r2h斜棱柱体积V=S'L注:其中,S'是直截面面积, L是侧棱长柱体体积公式V=s*h圆柱体V=pi*r2h--------------------------------------------------------------------------------------------三角函数积化和差和差化积公式记不住就自己推,用两角和差的正余弦:cos(A+B)=cosAcosB-sinAsinBcos(A-B)=cosAcosB+sinAsinB这两式相加或相减,可以得到2组积化和差:相加:cosAcosB=[cos(A+B)+cos(A-B)]/2相减:sinAsinB=-[cos(A+B)-cos(A-B)]/2sin(A+B)=sinAcosB+sinBcosAsin(A-B)=sinAcosB-sinBcosA这两式相加或相减,可以得到2组积化和差:相加:sinAcosB=[sin(A+B)+sin(A-B)]/2相减:sinBcosA=[sin(A+B)-sin(A-B)]/2这样一共4组积化和差,然后倒过来就是和差化积了不知道这样你可以记住伐,实在记不住考试的时候也可以临时推导一下正加正正在前正减正余在前余加余都是余余减余没有余还负正余正加余正正减余余余加正正余减还负.3.三角形中的一些结论:(不要求记忆)(1)anA+tanB+tanC=tanA·tanB·tanC(2)sinA+tsinB+sinC=4cos(A/2)cos(B/2)cos(C/2)(3)cosA+cosB+cosC=4sin(A/2)·sin(B/2)·sin(C/2)+1?(4)sin2A+sin2B+sin2C=4sinA·sinB·sinC?(5)cos2A+cos2B+cos2C=-4cosAcosBcosC-1 ...........................已知sinα=m sin(α+2β), |m|<1,求证tan(α+β)=(1+m)/(1-m)tanβ解:sinα=m sin(α+2β)sin(a+β-β)=msin(a+β+β)sin(a+β)cosβ-cos(a+β)sinβ=msin(a+β)cosβ+mcos(a+β)sinβsin(a+β)cosβ(1-m)=cos(a+β)sinβ(m+1)tan(α+β)=(1+m)/(1-m)tanβ21。

三角函数的图像及其变换

三角函数的图像及其变换

振幅变换
振幅变换
通过将三角函数中的系数乘以一 个常数,可以改变函数图像的形 状和大小。例如,将正弦函数 y=sin(x)变为y=2sin(x),图像的 高度变为原来的两倍。
总结词
振幅变换可以改变函数图像的大 小和形状,但不影响位置。
详细描述
振幅变换通常通过乘以一个常数来实 现。例如,对于正弦函数y=sin(x),乘 以2得到y=2sin(x),图像的高度变为 原来的两倍。同样地,对于余弦函数 y=cos(x),乘以2得到y=2cos(x),图 像的高度也变为原来的两倍。
与复数的联系
三角函数与复数之间有着密切的联系。例如,复数的三角形式就是由三角函数来表示的,这使得复数 的一些性质和运算可以通过三角函数来理解和实现。
此外,在复分析中,三角函数也起着重要的作用,如在求解某些复数域上的微分方程时,经常需要用 到三角函数。
谢谢
THANKS
应用
正切函数在解决实际问题和数学 问题中也有应用,例如在几何学 和三角学中的角度和长度计算。
02 三角函数的图像
CHAPTER
正弦函数的图像
01
正弦函数图像是周期函数,其基本周期为$2pi$,在$[0, 2pi]$ 区间内呈现波形。
02
正弦函数图像在$x$轴上的交点是$(frac{pi}{2} + kpi, 0)$,其
周期变换
总结词
详细描述
通过改变三角函数的周期,可以改变
函数图像的形状和位置。例如,将正 弦函数和余弦函数的周期从2π变为4π, 图像将变为原来的两倍长,但形状和
周期变换可以改变函数图像的长度, 但不影响形状和位置。
位置保持不变。
周期变换通常通过乘以一个常数来实现。例 如,将函数y=sin(x)变为y=sin(2x),周期 从2π变为π,图像长度减半。同样地,对于 余弦函数,将y=cos(x)变为y=cos(2x),周 期从2π变为π,图像长度也减半。

三角函数公式和图像大全

三角函数公式和图像大全

初等函数的图形幂函数的图形指数函数的图形各三角函数值在各象限的符号sinα·cscα cosα·secα tanα·cotα三角函数的性质函数y=sinx y=cosx y=tanx y=cotx定义域R R {x|x∈R且x≠kπ+2π,k∈Z}{x|x∈R且x≠kπ,k∈Z}值域[-1,1]x=2kπ+2π时y max=1x=2kπ-2π时y min=-1[-1,1]x=2kπ时y max=1x=2kπ+π时y min=-1R无最大值无最小值R无最大值无最小值周期性周期为2π周期为2π周期为π周期为π奇偶性奇函数偶函数奇函数奇函数单调性在[2kπ-2π,2kπ+2π]上都是增函数;在[2kπ+2π,2kπ+32π]上都是减函数(k∈Z)在[2kπ-π,2kπ]上都是增函数;在[2kπ,2kπ+π]上都是减函数(k∈Z)在(kπ-2π,kπ+2π)内都是增函数(k∈Z)在(kπ,kπ+π)内都是减函数(k∈Z)反三角函数的图形反三角函数的性质名称反正弦函数反余弦函数反正切函数反余切函数定义y=sinx(x∈〔-2π,2π〕的反函数,叫做反正弦函数,记作x=arsinyy=cosx(x∈〔0,π〕)的反函数,叫做反余弦函数,记作x=arccosyy=tanx(x∈(-2π,2π)的反函数,叫做反正切函数,记作x=arctanyy=cotx(x∈(0,π))的反函数,叫做反余切函数,记作x=arccoty理解arcsinx表示属于[-2π,2π]且正弦值等于x的角arccosx表示属于[0,π],且余弦值等于x的角arctanx表示属于(-2π,2π),且正切值等于x的角arccotx表示属于(0,π)且余切值等于x的角性质定义域[-1,1][-1,1](-∞,+∞)(-∞,+∞)值域[-2π,2π][0,π](-2π,2π) (0,π)单调性在〔-1,1〕上是增函数在[-1,1]上是减函数在(-∞,+∞)上是增数在(-∞,+∞)上是减函数奇偶性arcsin(-x)=-arcsinxarccos(-x)=π-arccosxarctan(-x)=-arctanxarccot(-x)=π-arccotx周期性都不是同期函数恒等式sin(arcsinx)=x(x∈[-1,1])arcsin(sinx)=x(x∈[-2π,2π])cos(arccosx)=x(x∈[-1,1])arccos(cosx)=x(x∈[0,π])tan(arctanx)=x(x∈R)arctan(tanx)=x(x∈(-2π,2π))cot(arccotx)=x(x∈R)arccot(cotx)=x(x∈(0,π))互余恒等式arcsinx+arccosx=2π(x∈[-1,1]) arctanx+arccotx=2π(X∈R)三角函数公式两角和公式sin(A+B) = sinAcosB+cosAsinB sin(A-B) = sinAcosB-cosAsinB cos(A+B) = cosAcosB-sinAsinB cos(A-B) = cosAcosB+sinAsinBtan(A+B) =tanAtanB -1tanBtanA +tan(A-B) =tanAtanB 1tanBtanA +-cot(A+B) =cotA cotB 1-cotAcotB +cot(A-B) =cotAcotB 1cotAcotB -+倍角公式tan2A =Atan 12tanA2-Sin2A=2SinA•CosACos2A = Cos 2A-Sin 2A=2Cos 2A-1=1-2sin 2A三倍角公式sin3A = 3sinA-4(sinA)3 cos3A = 4(cosA)3-3cosAtan3a = tana ·tan(3π+a)·tan(3π-a)sin(2A )=2cos 1A - cos(2A )=2cos 1A + tan(2A )=A A cos 1cos 1+- cot(2A )=AA cos 1cos 1-+ tan(2A )=A A sin cos 1-=AA cos 1sin + 和差化积sina+sinb=2sin2b a +cos 2ba - sina-sinb=2cos 2b a +sin 2ba -cosa+cosb = 2cos 2b a +cos 2ba -cosa-cosb = -2sin 2b a +sin 2ba -tana+tanb=ba b a cos cos )sin(+积化和差sinasinb = -21[cos(a+b)-cos(a-b)] cosacosb = 21[cos(a+b)+cos(a-b)]sinacosb = 21[sin(a+b)+sin(a-b)]cosasinb = 21[sin(a+b)-sin(a-b)]sin(-a) = -sina cos(-a) = cosasin(2π-a) = cosacos(2π-a) = sinasin(2π+a) = cosacos(2π+a) = -sinasin(π-a) = sina cos(π-a) = -cosa sin(π+a) = -sina cos(π+a) = -cosatgA=tanA =aacos sin万能公式sina=2)2(tan 12tan2aa + cosa=22)2(tan 1)2(tan 1aa+- tana=2)2(tan 12tan2aa -a•sina+b•cosa=)b (a 22+×sin(a+c) [其中tanc=a b ] a•sin(a)-b•cos(a) =)b (a 22+×cos(a-c) [其中tan(c)=b a ] 1+sin(a) =(sin 2a +cos 2a )2 1-sin(a) = (sin 2a -cos 2a )2其他非重点三角函数 csc(a) =asin 1 sec(a) =a cos 1 双曲函数 sinh(a)=2e -e -aa cosh(a)=2e e -aa + tg h(a)=)cosh()sinh(a a 公式一设α为任意角,终边相同的角的同一三角函数的值相等:sin (2kπ+α)= sinαcos (2kπ+α)= cosαtan (2kπ+α)= tanαcot (2kπ+α)= cotα设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)= -sinαcos(π+α)= -cosαtan(π+α)= tanαcot(π+α)= cotα公式三任意角α与-α的三角函数值之间的关系:sin(-α)= -sinαcos(-α)= cosαtan(-α)= -tanαcot(-α)= -cotα公式四利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)= sinαcos(π-α)= -cosαtan(π-α)= -tanαcot(π-α)= -cotα公式五利用公式-和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)= -sinαcos(2π-α)= cosαtan(2π-α)= -tanαcot(2π-α)= -cotα2π±α及23π±α与α的三角函数值之间的关系: sin (2π+α)= cosα cos (2π+α)= -sinα tan (2π+α)= -cotα cot (2π+α)= -tanα sin (2π-α)= cosα cos (2π-α)= sinα tan (2π-α)= cotα cot (2π-α)= tanα sin (23π+α)= -cosα cos (23π+α)= sinα tan (23π+α)= -cotα cot (23π+α)= -tanα sin (23π-α)= -cosα cos (23π-α)= -sinα tan (23π-α)= cotα cot (23π-α)= tanα (以上k ∈Z)这个物理常用公式我费了半天的劲才输进来,希望对大家有用 A•sin(ωt+θ)+ B•sin(ωt+φ) =)cos(222ϕθ⋅++AB B A ×sin )cos(2)Bsin in arcsin[(As t 22ϕθϕθω⋅++++AB B A三角函数公式证明(全部)公式表达式乘法与因式分解a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b)(a2+ab+b2) 三角不等式|a+b|≤|a|+|b||a-b|≤|a|+|b||a|≤b<=>-b≤a≤b|a-b|≥|a|-|b|-|a|≤a≤|a|一元二次方程的解-b+√(b2-4ac)/2a -b-b+√(b2-4ac)/2a根与系数的关系X1+X2=-b/aX1*X2=c/a注:韦达定理判别式b2-4a=0 注:方程有相等的两实根b2-4ac>0 注:方程有一个实根b2-4ac<0 注:方程有共轭复数根三角函数公式两角和公式sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosAcos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinBtan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB) ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)倍角公式tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctgacos2a=cos2a-sin2a=2cos2a-1=1-2sin2a半角公式sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))ctg(A/2)=√((1+cosA)/((1-cosA)) ctg(A/2)=-√((1+cosA)/((1-cosA))和差化积2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B)2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B)sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2) tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosBctgA+ctgBsin(A+B)/sinAsinB -ctgA+ctgBsin(A+B)/sinAsinB某些数列前n项和1+2+3+4+5+6+7+8+9+…+n=n(n+1)/21+3+5+7+9+11+13+15+…+(2n-1)=n22+4+6+8+10+12+14+…+(2n)=n(n+1)12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6 13+23+33+43+53+63+…n3=n2(n+1)2/41*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3 正弦定理a/sinA=b/sinB=c/sinC=2R注:其中R 表示三角形的外接圆半径余弦定理b2=a2+c2-2accosB注:角B是边a和边c的夹角正切定理[(a+b)/(a-b)]={[Tan(a+b)/2]/[Tan(a-b)/2]}圆的标准方程(x-a)2+(y-b)2=r2 注:(a,b)是圆心坐标圆的一般方程x2+y2+Dx+Ey+F=0 注:D2+E2-4F>0抛物线标准方程y2=2px y2=-2px x2=2py x2=-2py直棱柱侧面积S=c*h斜棱柱侧面积S=c'*h正棱锥侧面积S=1/2c*h'正棱台侧面积S=1/2(c+c')h'圆台侧面积S=1/2(c+c')l=pi(R+r)l球的表面积S=4pi*r2圆柱侧面积S=c*h=2pi*h圆锥侧面积S=1/2*c*l=pi*r*l弧长公式l=a*ra是圆心角的弧度数r >0扇形面积公式s=1/2*l*r锥体体积公式V=1/3*S*H圆锥体体积公式V=1/3*pi*r2h斜棱柱体积V=S'L注:其中,S'是直截面面积,L是侧棱长柱体体积公式V=s*h圆柱体V=pi*r2h。

三角函数的定义、图像和性质

三角函数的定义、图像和性质
0 3
极值点:函数 在其周期内取 得最大值和最 小值的点,即 最值点的横坐 标
0 4
诱导公式
三角函数的诱导 公式是三角函数 性质的重要组成 部分,它可以帮 助我们简化复杂 的三角函数计算。
添加标题
诱导公式包括正 弦、余弦和正切 的诱导公式,它 们可以通过三角 函数的周期性和 对称性推导出来。
添加标题
奇偶性
奇函数:满足f(-x)=-f(x) 的函数
偶函数:满足f(-x)=f(x) 的函数
奇偶性的判断方法:根据 定义来判断
奇偶性在三角函数中的应 用:判断函数的图像对称

最值和零点
最大值和最小 值:三角函数 在其周期内可 以达到的最大 和最小值
0 1
零点:函数值 为零的点,即 解方程的根
0 2
周期性:三角 函数图像呈现 周期性变化, 每个周期内存 在一个最大值 和一个最小值
利用诱导公式, 我们可以将任意 角的三角函数转 化为锐角或0到 360度之间的角的 三角函数,从而
简化计算。
添加标题
诱导公式在三角 函数的图像和性 质中有着广泛的 应用,可以帮助 我们更好地理解 三角函数的性质
和图像。
添加标题
THANK YOU
汇报人:XX
三角函数的定义、 图像和性质
汇报人:XX
目录
01 三 角 函 数 的 定 义 02 三 角 函 数 的 图 像 03 三 角 函 数 的 性 质
01
三角函数的定义
正弦函数
定义:正弦函数是三角函数的一种,定义为y=sinx,x∈R。 图像:正弦函数的图像是一个周期函数,形状类似于波浪。 性质:正弦函数具有一些重要的性质,如奇偶性、周期性、单调性等。

三角函数公式图像大全

三角函数公式图像大全

初等函数的图形幂函数的图形指数函数的图形各三角函数值在各象限的符号sinα·cscα cosα·secα tanα·cotα三角函数的性质反三角函数的图形反三角函数的性质三角函数公式两角和公式sin(A+B) = sinAcosB+cosAsinB sin (A —B ) = sinAcosB-cosAsinB cos (A+B) = cosAcosB —sinAsinB cos (A —B ) = cosAcosB+sinAsinBtan (A+B) =tanAtanB -1tanBtanA +tan(A-B) =tanAtanB 1tanBtanA +-cot(A+B ) =cotA cotB 1-cotAcotB +cot(A-B) =cotAcotB 1cotAcotB -+倍角公式tan2A =Atan 12tanA2- Sin2A=2SinA •CosACos2A = Cos 2A-Sin 2A=2Cos 2A —1=1-2sin 2A三倍角公式sin3A = 3sinA-4(sinA )3 cos3A = 4(cosA )3-3cosAtan3a = tana ·tan(3π+a )·tan(3π—a)半角公式sin(2A)=2cos 1A -cos(2A)=2cos 1A +tan (2A )=A A cos 1cos 1+-cot (2A )=A A cos 1cos 1-+tan (2A )=A A sin cos 1-=AA cos 1sin + 和差化积sina+sinb=2sin2b a +cos 2ba - sina —sinb=2cos 2b a +sin 2ba -cosa+cosb = 2cos 2b a +cos 2ba -cosa-cosb = —2sin 2b a +sin 2ba -tana+tanb=ba b a cos cos )sin(+积化和差sinasinb = —21[cos(a+b )—cos(a-b)] cosacosb = 21[cos (a+b)+cos (a-b)]sinacosb = 21[sin (a+b )+sin (a-b )]cosasinb = 21[sin(a+b )—sin(a-b )]诱导公式sin (—a ) = —sina cos (—a ) = cosasin (2π-a ) = cosacos (2π-a ) = sinasin(2π+a ) = cosa cos (2π+a) = -sinasin (π—a ) = sina cos(π-a ) = —cosa sin (π+a) = -sina cos(π+a) = —cosatgA=tanA =a acos sin万能公式sina=2)2(tan 12tan2aa + cosa=22)2(tan 1)2(tan 1aa+- tana=2)2(tan 12tan2aa - 其它公式a •sina+b •cosa=)b (a 22+×sin (a+c ) [其中tanc=ab ] a •sin (a )-b •cos (a) = )b (a 22+×cos (a-c) [其中tan (c )=ba ] 1+sin(a ) =(sin2a +cos 2a )2 1—sin(a ) = (sin 2a —cos 2a)2其他非重点三角函数csc (a) =asin 1sec (a ) =acos 1 双曲函数sinh (a )=2e -e -aa cosh(a )=2e e -aa tg h (a)=)cosh()sinh(a a 公式一设α为任意角,终边相同的角的同一三角函数的值相等:sin (2kπ+α)= sinαcos (2kπ+α)= cosαtan (2kπ+α)= tanαcot (2kπ+α)= cotα公式二设α为任意角,π+α的三角函数值与α的三角函数值之间的关系: sin (π+α)= -sinαcos (π+α)= -cosαtan (π+α)= tanαcot (π+α)= cotα公式三任意角α与 -α的三角函数值之间的关系:sin (-α)= —sinαcos(-α)= cosαtan (-α)= —tanαcot (—α)= -cotα公式四利用公式二和公式三可以得到π—α与α的三角函数值之间的关系: sin(π—α)= sinαcos (π-α)= —cosαtan (π-α)= —tanαcot(π-α)= -cotα公式五利用公式—和公式三可以得到2π-α与α的三角函数值之间的关系: sin (2π-α)= -sinαcos (2π-α)= cosαtan (2π—α)= —tanαcot (2π—α)= -cotα公式六2π±α及23π±α与α的三角函数值之间的关系: sin (2π+α)= cosα cos (2π+α)= -sinα tan(2π+α)= -cotα cot (2π+α)= -tanα sin (2π—α)= cosα cos(2π-α)= sinα tan (2π—α)= cotα cot (2π—α)= tanα sin (23π+α)= -cosα cos(23π+α)= sinα tan (23π+α)= -cotαcot (23π+α)= -tanα sin(23π—α)= -cosα cos (23π—α)= -sinα tan (23π-α)= cotα cot(23π-α)= tanα (以上k∈Z)这个物理常用公式我费了半天的劲才输进来,希望对大家有用A •sin(ωt+θ)+B •sin(ωt+φ) =)cos(222ϕθ⋅++AB B A ×sin )cos(2)Bsin in arcsin[(As t 22ϕθϕθω⋅++++AB B A三角函数公式证明(全部)公式表达式乘法与因式分解a2—b2=(a+b )(a —b ) a3+b3=(a+b)(a2—ab+b2) a3-b3=(a —b )(a2+ab+b2) 三角不等式|a+b|≤|a|+|b||a —b |≤|a|+|b ||a|≤b〈=>-b≤a≤b|a —b|≥|a|-|b |—|a|≤a≤|a|一元二次方程的解-b+√(b2—4ac)/2a —b —b+√(b2-4ac)/2a根与系数的关系X1+X2=—b/aX1*X2=c/a注:韦达定理判别式 b2—4a=0 注:方程有相等的两实根b2-4ac〉0 注:方程有一个实根b2—4ac<0 注:方程有共轭复数根三角函数公式两角和公式sin(A+B)=sinAcosB+cosAsinB sin(A—B)=sinAcosB-sinBcosAcos(A+B)=cosAcosB-sinAsinB cos(A—B)=cosAcosB+sinAsinBtan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A—B)=(tanA—tanB)/(1+tanAtanB)ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB—ctgA)倍角公式tan2A=2tanA/(1—tan2A) ctg2A=(ctg2A-1)/2ctgacos2a=cos2a—sin2a=2cos2a-1=1-2sin2a半角公式sin(A/2)=√((1—cosA)/2) sin(A/2)=—√((1—cosA)/2)cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)tan(A/2)=√((1—cosA)/((1+cosA)) tan(A/2)=-√((1—cosA)/((1+cosA)) ctg(A/2)=√((1+cosA)/((1-cosA)) ctg(A/2)=-√((1+cosA)/((1—cosA))和差化积2sinAcosB=sin(A+B)+sin(A—B) 2cosAsinB=sin(A+B)—sin(A—B)2cosAcosB=cos(A+B)—sin(A—B) -2sinAsinB=cos(A+B)-cos(A-B)sinA+sinB=2sin((A+B)/2)cos((A—B)/2 cosA+cosB=2cos((A+B)/2)sin ((A—B)/2)tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A—B)/cosAcosBctgA+ctgBsin(A+B)/sinAsinB -ctgA+ctgBsin(A+B)/sinAsinB某些数列前n项和1+2+3+4+5+6+7+8+9+…+n=n(n+1)/21+3+5+7+9+11+13+15+…+(2n—1)=n22+4+6+8+10+12+14+…+(2n)=n(n+1)12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/613+23+33+43+53+63+…n3=n2(n+1)2/41*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3正弦定理a/sinA=b/sinB=c/sinC=2R注: 其中 R 表示三角形的外接圆半径余弦定理b2=a2+c2—2accosB注:角B是边a和边c的夹角正切定理[(a+b)/(a—b)]={[Tan(a+b)/2]/[Tan(a-b)/2]}圆的标准方程(x-a)2+(y-b)2=r2 注:(a,b)是圆心坐标圆的一般方程x2+y2+Dx+Ey+F=0 注:D2+E2-4F>0抛物线标准方程y2=2px y2=-2px x2=2py x2=-2py直棱柱侧面积S=c*h斜棱柱侧面积S=c’*h正棱锥侧面积S=1/2c*h’正棱台侧面积S=1/2(c+c')h’圆台侧面积S=1/2(c+c’)l=pi(R+r)l球的表面积S=4pi*r2圆柱侧面积S=c*h=2pi*h圆锥侧面积S=1/2*c*l=pi*r*l弧长公式l=a*ra是圆心角的弧度数r 〉0扇形面积公式s=1/2*l*r锥体体积公式V=1/3*S*H圆锥体体积公式V=1/3*pi*r2h斜棱柱体积V=S’L注:其中,S'是直截面面积, L是侧棱长柱体体积公式V=s*h圆柱体V=pi*r2h—---———-—--———-—-------——--———--——--——-—-—-—-————————-----——---———-—-—-——--—-—---——--—--—---三角函数积化和差和差化积公式记不住就自己推,用两角和差的正余弦:cos(A+B)=cosAcosB—sinAsinBcos(A—B)=cosAcosB+sinAsinB这两式相加或相减,可以得到2组积化和差:相加:cosAcosB=[cos(A+B)+cos(A-B)]/2相减:sinAsinB=—[cos(A+B)—cos(A—B)]/2sin(A+B)=sinAcosB+sinBcosAsin(A—B)=sinAcosB—sinBcosA这两式相加或相减,可以得到2组积化和差:相加:sinAcosB=[sin(A+B)+sin(A—B)]/2相减:sinBcosA=[sin(A+B)-sin(A—B)]/2这样一共4组积化和差,然后倒过来就是和差化积了不知道这样你可以记住伐,实在记不住考试的时候也可以临时推导一下正加正正在前正减正余在前余加余都是余余减余没有余还负正余正加余正正减余余余加正正余减还负.3。

三角函数公式、图像大全

三角函数公式、图像大全

初等函数的图形幂函数的图形指数函数的图形各三角函数值在各象限的符号sinα·cscαcosα·secαtanα·cotα三角函数的性质函数y=sinx y=cosx y=tanx y=cotx{x|x∈R 且{x|x∈R 且定义域R R x≠kπ+2Z},k∈x≠kπ∈,kZ }值域[-1,1][-1,1]x=2kπ+y =1maxx=2k -π2时x=2k π时2y max =1时y min =-1x=2k π+π时y min =-1R无最大值无最小值R无最大值无最小值周期性周期为2π周期为2π周期为π周期为π奇偶性奇函数偶函数奇函数奇函数在[2kπ-2 ,2k π+2]在[2kπ-π,2kπ]上都是增在(k π-2,在(k π,kπ+π)内都是减函单调性上都是增函数;在[2kπ+22,2k π+3π]函数;在[2kπ,2kπ+π]上都是减函数(k ∈Z)kπ+)内都是2增函数(k∈Z)数(k ∈Z) 上都是减函数(k∈Z)反三角函数的图形反三角函数的性质名称反正弦函数反余弦函数反正切函数反余切函数y=sinx(x ∈〔- ,〕的反2 2函数,叫做反正y=cosx(x ∈〔0, π〕)的反函数,叫做反余弦函数,记作y=tanx(x ∈(- ,2)的反函数,叫2y=cotx(x ∈(0, π的))反函数,叫做反余切函数,记作定义弦函数,记作x=arccosy x=arccoty做反正切函数,记作x=arctany x=arsinyarcsinx 表示属于arccosx 表示arctanx 表示属于arccotx 表示属[-, ]2 2 属于[0,π],且余弦值等于(-2,2),且正切于(0,π)且余切值等于x 的角且正弦值等于x 值等于x 的角x 的角理解的角定义域[-1,1][-1,1](-∞,+∞)(-∞,+∞)值域[- ][0,π](-,,) (0,π)2 2 2 2性在〔-1,1〕上是在[-1,1]上在(-∞,+∞)上是增在(-∞,+∞)上单调性质增函数是减函数数是减函数奇偶性a rcsin(-x)=-arcsinxarccos(-x)= π-arccosxarctan(-x)=-arctanxarccot(- x)= π-arccotx周期性都不是同期函数sin(arcsinx)=x(x cos(arccosx)= tan(arctanx)=x(x cot(arccotx)=x∈[-1,x(x∈[-1,1]) (x∈R)∈恒等式1])arcsin(sinx)])=x(x∈[- ,2 2 a rccos(cosx)=x(x∈[0, π])R)arctan(tanx)=x(x∈(-, ))2 2a rccot(cotx)=x(x∈(0, π))互余恒等式arcsinx+arccosx= (x∈[-1,1]) arctanx+arccotx= (X∈R)2 2三角函数公式两角和公式sin(A+B) = sinAcosB+cosAsinB sin(A-B) = sinAcosB-cosAsinB cos(A+B) = cosAcosB-sinAsinB cos(A-B) = cosAcosB+sinAsinBtan(A+B) = tanA tanB1- tanAtanBtan(A-B) = tanA tanB1 tanAtanBcot(A+B) = cotAcotB-1 cotB cotAcot(A-B) = cotAcotBcotB cotA1 倍角公式tan2A =1 2tanA tan2ASin2A=2SinA?CosACos2A = Cos2A-Sin2A=2Cos2A-1=1-2sin2A 三倍角公式3sin3A = 3sinA-4(sinA)cos3A = 4(cosA)3-3cosAtan3a = tana·tan( +a)·tan( -a)3 3半角公式sin( A2 )=1 cos A2cos( A2 )= 1 cos A2tan( A2 )= 11coscosAAcot( A2 )= 11coscosAAtan( A2 )= 1 cossin AA=1sinAcosA和差化积a b a b sina+sinb=2sin cos2 2a sina-sinb=2cosb a bsin2 2 acosa+cosb = 2cosb a bcos2 2a cosa-cosb = -2sinb a bsin2 2sin(cos tana+tanb=aab)cos b积化和差sinasinb = - 12[cos(a+b)-cos(a-b)]cosacosb = 12[cos(a+b)+cos(a-b)]sinacosb = 12[sin(a+b)+sin(a-b)]1 2 [sin(a+b)-sin(a-b)]cosasinb =sin(-a) = -sina cos(-a) = cosasin( -a) = cosa2cos( -a) = sina2sin( +a) = cosa2cos( +a) = -sina2sin( -πa) = sina cos( π-a) = -cosa sin( π+a)-s=ina cos( π+a)-=cosatgA=tanA = sincos a a万能公式sina=a 2 tan2a1 (tan22)1 (tan1 cosa=(tan a2a2 ) 22 )tana=2 tan1 (tan a2 a22 )a?sina+bc?osa= (a 2 b 2 ) ×sin(a+c) [其中tanc= ba]a?sin(a-) b?cos(a) = (a 2 b 2 ) ×cos(a-c) [其中tan(c)= ab]1+sin(a) =(sin a2 +cos a22)1-sin(a) = (sin a2a2 -cos2)其他非重点三角函数1csc(a) =sina1sec(a) =cosa双曲函数sinh(a)=ae -2-aeaecosh(a)= 2-a etg h(a)= sinh( cosh(a)a)公式一设α为任意角,终边相同的角的同一三角函数的值相等:sin(2kπ+α)= sin αcos(2kπ+α)= cos αtan(2kπ+α)= tan αcot(2kπ+α)= cot α设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)= - s in αcos(π+α)= - cosαtan(π+α)= tan αcot(π+α)= cot α公式三任意角α与-α的三角函数值之间的关系:sin(-α)= -sin αcos(-α)= cos αtan(-α)= -tan αcot(-α)= -cot α公式四利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)= sin αcos(π-α)= - cosαtan(π-α)= - t an αcot(π-α)= - c ot α公式五利用公式-和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)= -sin αcos(2π-α)= cos αtan(2π-α)= -tan αcot(2π-α)= -cot α2 ±α及3 2±α与 α的三角函数值之间的关系:+α)= cos αsin (2cos ( +α)= - s in α2tan ( +α)= - c ot α2cot ( +α)= - t an α2sin ( -α)= cos α2cos ( -α)= sin α2tan ( -α)= cot α2cot ( -α)= tan α 2 sin (3 2+α)= - cos αcos ( 3 2+α)= sinαtan ( 3 2 +α)= - c ot α cot ( 3 2+α)= - t an αsin (3 2 -α)= -cos α cos (3 2-α)= - s in αtan ( 3 2 -α)= cot αcot (3 2-α)= tan α(以上 k ∈Z)这个物理常用公式我费了半天的劲才输进来,希望对大家有用22A?sin( ωt+ θ)+ B?sin( ωt+A φ) =2cos() ×BABsin tarcsin[(As 2 A 2B 2 in AB Bsin cos( ))三角函数公式证明(全部)公式表达式乘法与因式分解a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b)(a2+ab+b2) 三角不等式|a+b| ≤|a|+|b||a-b| ≤|a|+|b||a| ≤ b <-=b>≤a≤ b|a-b| ≥-|a|b||-|a| ≤a≤|a|一元二次方程的解- b+√(b2-4ac)/2a -b-b+√(b2-4ac)/2a根与系数的关系X1+X2=-b/aX1*X2=c/a注:韦达定理判别式b2-4a=0 注:方程有相等的两实根b2-4ac>0 注:方程有一个实根b2-4ac<0 注:方程有共轭复数根三角函数公式两角和公式sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosAcos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinBtan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB) ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)倍角公式tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctgacos2a=cos2a-sin2a=2cos2a-1=1-2sin2a半角公式sin(A/2)= √-(c(1osA)/2) sin(A/2)=- √((1-cosA)/2)cos(A/2)= √((1+cosA)/2) cos(A/2-)√= ((1+cosA)/2)tan(A/2)= √-(c(1osA)/((1+cosA)) tan(A/2)=- √((1-cosA)/((1+cosA))ctg(A/2)= √((1+cosA)/-(c(1osA)) ctg(A/2)=- √((1+cosA)/((1-cosA))和差化积2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B)2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B)sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2) tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosBctgA+ctgBsin(A+B)/sinAsinB -ctgA+ctgBsin(A+B)/sinAsinB某些数列前n 项和1+2+3+4+5+6+7+8+9+⋯+n=n(n+1)/21+3+5+7+9+11+13+15+⋯+(2n-1)=n22+4+6+8+10+12+14+⋯+(2n)=n(n+1)12+22+32+42+52+62+72+82+⋯+n2=n(n+1)(2n+1)/6 13+23+33+43+53+63+⋯n3=n2(n+1)2/41*2+2*3+3*4+4*5+5*6+6*7+ ⋯+n(n+1)=n(n+1)(n+2)/3 正弦定理a/sinA=b/sinB=c/sinC=2R注:其中R 表示三角形的外接圆半径余弦定理b2=a2+c2-2accosB注:角 B 是边c的夹角a和边正切定理[(a+b)/(a-b)]={[Tan(a+b)/2]/[Tan(a-b)/2]}圆的标准方程(x-a)2+(y-b)2=r2 注:(a,b)是圆心坐标圆的一般方程x2+y2+Dx+Ey+F=0 注:D2+E2-4F>0抛物线标准方程y2=2px y2=-2px x2=2py x2=-2pyWORD格式直棱柱侧面积S=c*h斜棱柱侧面积S=c'*h正棱锥侧面积S=1/2c*h'正棱台侧面积S=1/2(c+c')h'圆台侧面积S=1/2(c+c')l=pi(R+r)l球的表面积S=4pi*r2圆柱侧面积S=c*h=2pi*h圆锥侧面积S=1/2*c*l=pi*r*l弧长公式l=a*ra是圆心角的弧度数r >0WORD格式扇形面积公式s=1/2*l*r锥体体积公式V=1/3*S*H圆锥体体积公式V=1/3*pi*r2h斜棱柱体积V=S'L注:其中,S'是直截面面积,L 是侧棱长柱体体积公式V=s*h圆柱体V=pi*r2hWORD格式-------------------------------------------------------------------------------------------- 三角函数积化和差和差化积公式记不住就自己推,用两角和差的正余弦:cos(A+B)=cosAcosB-sinAsinBcos(A-B)=cosAcosB+sinAsinB这两式相加或相减,可以得到 2 组积化和差:相加:cosAcosB=[cos(A+B)+cos(A-B)]/2相减:sinAsinB=-[cos(A+B)-cos(A-B)]/2sin(A+B)=sinAcosB+sinBcosAsin(A-B)=sinAcosB-sinBcosA这两式相加或相减,可以得到 2 组积化和差:相加:sinAcosB=[sin(A+B)+sin(A-B)]/2相减:sinBcosA=[sin(A+B)-sin(A-B)]/2这样一共 4 组积化和差,然后倒过来就是和差化积了不知道这样你可以记住伐,实在记不住考试的时候也可以临时推导一下正加正正在前正减正余在前余加余都是余余减余没有余还负正余正加余正正减余余余加正正余减还负WORD格式.3.三角形中的一些结论:(不要求记忆)(1)anA+tanB+tanC=tanA ta·nB·tanC(2)sinA+tsinB+sinC=4cos(A/2)cos(B/2)cos(C/2)(3)cosA+cosB+cosC=4sin(A/2) sin(·B/2) si·n(C/2)+1(4)sin2A+sin2B+sin2C=4sinA sin·B s·inC(5)cos2A+cos2B+cos2C=-4cosAcosBcosC-1 ...........................已知sin α=m sin( α+2β), |m求|<证1, tan( α+β)=(1+m)-/(m1)tanβ解:sin α=m sin( α+2β)sin(a+ -ββ)=msin(a+ β+β)sin(a+ β)co- s c oβs(a+ β)sin β=msin(a+ β)cos β+mcos(a+β)sin βsin(a+ β)cos-βm)(=1cos(a+ β)sin β(m+1)tan( α+β)=(1+m-)/m(1)tan β专业分享。

三角函数实用图像

三角函数实用图像
三角、反三角函数图像
六个三角函数值在每个象限的符号:
sinα·cscα 三角函数的图像和性质:
cosα·secα
tanα·cotα
y=sinx
-4 -7 -3 2 -5 2 -2 -3 - 2 -
y
2
1 o -1 y
2
3 2 2 5 2 3
7 2 4
x
y=cosx
arccotx 反正切函数 y=tanx(x∈(-
)的反函数,叫 2
做反正切函数, 记作 x=arctany arctanx 表示属于
, 2
反余切函数 y=cotx(x∈(0,π)) 的反函数,叫做 反余切函数,记 作 x=arccoty
理解
[- , ] 2 2
定义域 值域
(0, π)且余切值等 (- , ), 且正切值 于 x 的角 2 2 等于 x 的角 (-∞,+∞) (-∞,+∞) (0,π) 在(-∞,+∞)上是 减函数 arccot(-x)=π-arc cotx cot(arccotx)=x(x ∈R) arccot(cotx)=x(x ∈(0,π))
tan(arctanx)=x(x∈ R)arctan(tanx)=x (x∈(-
恒等式
, ]) 2 2
, )) 2 2
互余恒等式
arcsinx+arccosx=
(x∈[-1,1]) 2
arctanx+arccotx=
(X∈R) 2
2 / 3
反三角函数其他公式
arcsin(-x)=-arcsinx ; arccos(-x)=π-arccosx ; arctan(-x)=-arctanx ; arccot(-x)=π-arccotx ; arcsinx+arccosx=π/2=arctanx+arccotx; sin(arcsinx)=cos(arccosx)=tan(arctanx)=cot(arccotx)=x ; 当 x∈[-π/2, π/2] 有 arcsin(sinx)=x ; x∈[0,π], arccos(cosx)=x ; x∈(-π/2, π/2), arctan(tanx)=x ; x∈(0, π), arccot(cotx)=x ;

三角函数公式及其图像

三角函数公式及其图像

tanα-tanβtan(α-β)=——————1+tanα ·tanβ1-tan2(α/2)半角的正弦、余弦和正切公式三角函数的降幂公式二倍角的正弦、余弦和正切公式三倍角的正弦、余弦和正切公式sin2α=2sinαcosαcos2α=cos2α-sin2α=2cos2α-1=1-2sin2α2tanαtan2α=—————1-tan2αsin3α=3sinα-4sin3αcos3α=4cos3α-3cosα3tanα-tan3αtan3α=——————1-3tan2α化asinα ±bcosα为一个角的一个三角函数的形式(辅助角的三角函数的公式)初等函数1、基本初等函数及图形基本初等函数为以下五类函数:(1) 幂函数μxy=,μ是常数;1.当u为正整数时,函数的定义域为区间),(+∞-∞∈x,他们的图形都经过原点,并当u>1时在原点处与X轴相切。

且u为奇数时,图形关于原点对称;u为偶数时图形关于Y轴对称;2.当u为负整数时。

函数的定义域为除去x=0的所有实数。

3.当u为正有理数m/n时,n为偶数时函数的定义域为(0, +∞),n为奇数时函数的定义域为(-∞+∞)。

函数的图形均经过原点和(1 ,1).如果m>n图形于x轴相切,如果m<n,图形于y轴相切,且m为偶数时,还跟y轴对称;m,n均为奇数时,跟原点对称.4.当u为负有理数时,n为偶数时,函数的定义域为大于零的一切实数;n为奇数时,定义域为去除x=0以外的一切实数.(2) 指数函数 xa y = (a 是常数且01a a >≠,),),(+∞-∞∈x ;(3) 对数函数x y a log =(a是常数且01a a >≠,),(0,)x ∈+∞;(4) 三角函数正弦函数 x y sin =,),(+∞-∞∈x ,]1,1[-∈y ,1. 当a>1时函数为单调增,当a<1时函数为单调减.2. 不论x 为何值,y 总是正的,图形在x 轴上方.3. 当x=0时,y=1,所以他的图形通过(0,1)点.1. 他的图形为于y 轴的右方.并通过点(1,0)2. 当a>1时在区间(0,1),y 的值为负.图形位于x 的下方,在区间(1, +∞),y 值为正,图形位于x 轴上方.在定义域是单调增函数.a<1在实用中很少用到/余弦函数 x y cos =,),(+∞-∞∈x ,]1,1[-∈y ,正切函数 x y tan =,2ππ+≠k x ,k Z ∈,),(+∞-∞∈y ,余切函数 x y cot =,πk x ≠,k Z ∈,),(+∞-∞∈y ;(5) 反三角函数反正弦函数 x y arcsin =, ]1,1[-∈x ,]2,2[ππ-∈y ,反余弦函数 x y arccos =,]1,1[-∈x ,],0[π∈y ,反正切函数 x y arctan =,),(+∞-∞∈x ,)2,2(ππ-∈y ,反余切函数 x y cot arc =,),(+∞-∞∈x ,),0(π∈y .。

三角函数的图象PPT

三角函数的图象PPT
交流电
交流电的电压和电流是时间的三角函数,用于产生和 传输电力。
波动
在声学、电磁学等领域,波的传播和变化可以用三角 函数来描述。
在工程中的应用
机械振动
在机械工程中,三角函数用于模 拟和分析各种振动现象,如桥梁 振动、汽车悬挂系统等。
控制系统
在航空、航天、化工等领域,控 制系统中的信号处理和反馈控制 算法常常用到三角函数。
信号处理
在通信、雷达、声呐等领域,信 号的调制和解调常常涉及到三角 函数的应用。
在数学其他分支中的应用
微积分
01
在微积分中,三角函数用于求解微分方程、积分方程等数学问
题。
线性代数
02
在矩阵运算和特征值求解中,三角函数也经常被用到。
复数分析
03
在复数分析中,三角函数用于表示复数的三角形式,以及处理
与之相关的数学问题。
三角函数的周期性
周期性定义
三角函数的周期性是指函数值按照一 定的规律重复出现的现象。对于正弦 和余弦函数,其周期为360度或2π弧 度。
周期计算
对于正弦和余弦函数,其周期T=2π; 对于正切函数,其周期T=π。
三角函数的奇偶性
奇偶性定义
三角函数的奇偶性是指函数值在原点两侧是否对称的现象。奇函数在对称轴两侧的值互为相反数,偶函数在对称 轴两侧的值相等。
横向伸缩变换
总结词
在x轴方向上伸缩函数的图像。
详细描述
对于函数y=sin(x),若图像在x轴方向上压缩为原来的k倍,则新的函数为y=sin(kx); 若图像在x轴方向上拉伸为原来的k倍,则新的函数为y=sin(kx)。
纵向伸缩变换
总结词
在y轴方向上伸缩函数的图像。
详细描述

三角函数公式图像大全

三角函数公式图像大全

初等函数的图形幂函数的图形指数函数的图形各三角函数值在各象限的符号sinα·cscα cosα·secα tanα·cotα三角函数的性质反三角函数的图形反三角函数的性质三角函数公式两角和公式sin(A+B) = sinAcosB+cosAsinB sin(A-B) = sinAcosB-cosAsinB cos(A+B) = cosAcosB-sinAsinB cos(A-B) = cosAcosB+sinAsinBtan(A+B) =tanAtanB -1tanB tanA + tan(A-B) =tanAtanB 1tanBtanA +-cot(A+B) =cotA cotB 1-cotAcotB + cot(A-B) =cotAcotB 1cotAcotB -+倍角公式tan2A =A tan 12tanA2-Sin2A=2SinA•CosA Cos2A = Cos 2A-Sin 2A=2Cos 2A-1=1-2sin 2A三倍角公式sin3A = 3sinA-4(sinA)3 cos3A = 4(cosA)3-3cosAtan3a = tana ·tan(3π+a)·tan(3π-a)半角公式sin(2A )=2cos 1A - cos(2A )=2cos 1A + tan(2A )=A A cos 1cos 1+- cot(2A )=AA cos 1cos 1-+ tan(2A )=A A sin cos 1-=AA cos 1sin +和差化积sina+sinb=2sin2b a +cos 2ba - sina-sinb=2cos 2b a +sin 2ba -cosa+cosb = 2cos 2b a +cos 2ba -cosa-cosb = -2sin 2b a +sin 2ba -tana+tanb=ba b a cos cos )sin(+积化和差sinasinb = -21[cos(a+b)-cos(a-b)] cosacosb = 21[cos(a+b)+cos(a-b)]sinacosb = 21[sin(a+b)+sin(a-b)]cosasinb = 21[sin(a+b)-sin(a-b)]诱导公式sin(-a) = -sina cos(-a) = cosa sin(2π-a) = cosa cos(2π-a) = sina sin(2π+a) = cosa cos(2π+a) = -sina sin(π-a) = sina cos(π-a) = -cosasin(π+a) = -sina cos(π+a) = -cosa tgA=tanA =aacos sin万能公式sina=2)2(tan 12tan2a a + cosa=22)2(tan 1)2(tan 1a a +- tana=2)2(tan 12tan2aa-其它公式a•sina+b•cosa=)b (a 22+×sin(a+c) [其中tanc=ab ] a•sin(a)-b•cos(a) = )b (a 22+×cos(a-c) [其中tan(c)=ba ] 1+sin(a) =(sin2a +cos 2a )2 1-sin(a) = (sin 2a -cos 2a)2其他非重点三角函数csc(a) =asin 1 sec(a) =a cos 1双曲函数sinh(a)=2e -e -a a cosh(a)=2e e -a a + tg h(a)=)cosh()sinh(a a公式一设α为任意角,终边相同的角的同一三角函数的值相等:sin (2kπ+α)= sinα cos (2kπ+α)= cosα tan (2kπ+α)= tanα cot (2kπ+α)= cotα公式二设α为任意角,π+α的三角函数值与α的三角函数值之间的关系: sin (π+α)= -sinα cos (π+α)= -cosα tan (π+α)= tanα cot (π+α)= cotα公式三任意角α与 -α的三角函数值之间的关系:sin (-α)= -sinα cos (-α)= cosα tan (-α)= -tanα cot (-α)= -cotα公式四利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin (π-α)= sinα cos (π-α)= -cosα tan (π-α)= -tanα cot (π-α)= -cotα公式五利用公式-和公式三可以得到2π-α与α的三角函数值之间的关系:sin (2π-α)= -sinα cos (2π-α)= cosα tan (2π-α)= -tanα cot (2π-α)= -cotα公式六2π±α及23π±α与α的三角函数值之间的关系: sin (2π+α)= cosα cos (2π+α)= -sinα tan (2π+α)= -cotα cot (2π+α)= -tanα sin (2π-α)= cosα cos (2π-α)= sinα tan (2π-α)= cotα cot (2π-α)= tanα sin (23π+α)= -cosα cos (23π+α)= sinα tan (23π+α)= -cotα cot (23π+α)= -tanα sin (23π-α)= -cosα cos (23π-α)= -sinα tan (23π-α)= cotα cot (23π-α)= tanα (以上k∈Z)这个物理常用公式我费了半天的劲才输进来,希望对大家有用 A•sin(ωt+θ)+ B•sin(ωt+φ) =)cos(222ϕθ⋅++AB B A ×sin )cos(2)Bsin in arcsin[(As t 22ϕθϕθω⋅++++AB B A三角函数公式证明(全部)公式表达式乘法与因式分解a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b)(a2+ab+b2)三角不等式|a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b<=>-b≤a≤b|a-b|≥|a|-|b| -|a|≤a≤|a|一元二次方程的解-b+√(b2-4ac)/2a -b-b+√(b2-4ac)/2a根与系数的关系X1+X2=-b/a X1*X2=c/a 注:韦达定理判别式 b2-4a=0 注:方程有相等的两实根b2-4ac>0 注:方程有一个实根 b2-4ac<0 注:方程有共轭复数根三角函数公式两角和公式sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosAcos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinBtan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB) ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctgacos2a=cos2a-sin2a=2cos2a-1=1-2sin2a半角公式sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA)) ctg(A/2)=√((1+cosA)/((1-cosA)) ctg(A/2)=-√((1+cosA)/((1-cosA)) 和差化积2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B)2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B)sinA+sinB=2sin((A+B)/2)cos((A-B)/2cosA+cosB=2cos((A+B)/2)sin((A-B)/2)tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosBctgA+ctgBsin(A+B)/sinAsinB -ctgA+ctgBsin(A+B)/sinAsinB某些数列前n项和1+2+3+4+5+6+7+8+9+…+n=n(n+1)/21+3+5+7+9+11+13+15+…+(2n-1)=n22+4+6+8+10+12+14+…+(2n)=n(n+1)12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/613+23+33+43+53+63+…n3=n2(n+1)2/41*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3a/sinA=b/sinB=c/sinC=2R 注:其中 R 表示三角形的外接圆半径余弦定理b2=a2+c2-2accosB 注:角B是边a和边c的夹角正切定理[(a+b)/(a-b)]={[Tan(a+b)/2]/[Tan(a-b)/2]}圆的标准方程(x-a)2+(y-b)2=r2 注:(a,b)是圆心坐标圆的一般方程x2+y2+Dx+Ey+F=0 注:D2+E2-4F>0抛物线标准方程y2=2px y2=-2px x2=2py x2=-2py直棱柱侧面积S=c*h斜棱柱侧面积S=c'*h 正棱锥侧面积S=1/2c*h'正棱台侧面积S=1/2(c+c')h' 圆台侧面积S=1/2(c+c')l=pi(R+r)l球的表面积S=4pi*r2圆柱侧面积S=c*h=2pi*h 圆锥侧面积S=1/2*c*l=pi*r*l弧长公式l=a*r a是圆心角的弧度数r >0扇形面积公式s=1/2*l*r 锥体体积公式V=1/3*S*H圆锥体体积公式V=1/3*pi*r2h斜棱柱体积V=S'L 注:其中,S'是直截面面积, L是侧棱长柱体体积公式V=s*h 圆柱体 V=pi*r2h--------------------------------------------------------------------------------------------三角函数积化和差和差化积公式记不住就自己推,用两角和差的正余弦:cos(A+B)=cosAcosB-sinAsinBcos(A-B)=cosAcosB+sinAsinB这两式相加或相减,可以得到2组积化和差:相加:cosAcosB=[cos(A+B)+cos(A-B)]/2相减:sinAsinB=-[cos(A+B)-cos(A-B)]/2sin(A+B)=sinAcosB+sinBcosAsin(A-B)=sinAcosB-sinBcosA这两式相加或相减,可以得到2组积化和差:相加:sinAcosB=[sin(A+B)+sin(A-B)]/2相减:sinBcosA=[sin(A+B)-sin(A-B)]/2这样一共4组积化和差,然后倒过来就是和差化积了不知道这样你可以记住伐,实在记不住考试的时候也可以临时推导一下正加正正在前正减正余在前余加余都是余余减余没有余还负正余正加余正正减余余余加正正余减还负3.三角形中的一些结论:(不要求记忆)(1)anA+tanB+tanC=tanA·tanB·tanC(2)sinA+tsinB+sinC=4cos(A/2)cos(B/2)cos(C/2)(3)cosA+cosB+cosC=4sin(A/2)·sin(B/2)·sin(C/2)+1(4)sin2A+sin2B+sin2C=4sinA·sinB·sinC(5)cos2A+cos2B+cos2C=-4cosAcosBcosC-1 ...........................已知sinα=m sin(α+2β), |m|<1,求证tan(α+β)=(1+m)/(1-m)tanβ解:sinα=m sin(α+2β)sin(a+β-β)=msin(a+β+β)sin(a+β)cosβ-cos(a+β)sinβ=msin(a+β)cosβ+mcos(a+β)sinβsin(a+β)cosβ(1-m)=cos(a+β)sinβ(m+1) tan(α+β)=(1+m)/(1-m)tanβ。

三角函数公式及图像

三角函数公式及图像

三角函数公式及图像幂函数的图形各三角函数值在各象限的符号sinα·cscα cosα·secαtanα·cotα三角函数的性质函数y=sinx y=cosx y=tanx y=cotx定义域R R {x|x∈R且x≠kπ+2π,k∈Z}{x|x∈R且x≠kπ,k∈Z}值域[-1,1]x=2kπ+2π时y max=1x=2kπ-2π时y min=-1[-1,1]x=2kπ时y max=1x=2kπ+π时y min=-1R无最大值无最小值R无最大值无最小值周期性周期为2π周期为2π周期为π周期为π奇偶性奇函数偶函数奇函数奇函数单调性在[2kπ-2π,2kπ+2π]上都是增函数;在[2kπ+2π,2kπ+32π]上都是减函数(k∈Z)在[2kπ-π,2kπ]上都是增函数;在[2kπ,2kπ+π]上都是减函数(k∈Z)在(kπ-2π,kπ+2π)内都是增函数(k∈Z)在(kπ,kπ+π)内都是减函数(k∈Z)反三角函数的图形反三角函数的性质名称反正弦函数反余弦函数反正切函数反余切函数定义y=sinx(x∈〔-2π,2π〕的反函数,叫做反正弦函数,记作x=arsinyy=cosx(x∈〔0,π〕)的反函数,叫做反余弦函数,记作x=arccosyy=tanx(x∈(-2π,2π)的反函数,叫做反正切函数,记作x=arctanyy=cotx(x∈(0,π))的反函数,叫做反余切函数,记作x=arccoty理解arcsinx表示属于[-2π,2π]且正弦值等于x的角arccosx表示属于[0,π],且余弦值等于x的角arctanx表示属于(-2π,2π),且正切值等于x的角arccotx表示属于(0,π)且余切值等于x的角性质定义域[-1,1][-1,1](-∞,+∞)(-∞,+∞)值域[-2π,2π][0,π](-2π,2π) (0,π)单调性在〔-1,1〕上是增函数在[-1,1]上是减函数在(-∞,+∞)上是增数在(-∞,+∞)上是减函数奇偶性arcsin(-x)=-arcsinxarccos(-x)=π-arccosxarctan(-x)=-arctanxarccot(-x)=π-arccotx周期性都不是同期函数恒等式sin(arcsinx)=x(x∈[-1,1])arcsin(sinx)=x(x∈[-2π,2π])cos(arccosx)=x(x∈[-1,1])arccos(cosx)=x(x∈[0,π])tan(arctanx)=x(x∈R)arctan(tanx)=x(x∈(-2π,2π))cot(arccotx)=x(x∈R)arccot(cotx)=x(x∈(0,π))互余恒等式arcsinx+arccosx=2π(x∈[-1,1]) arctanx+arccotx=2π(X∈R)三角函数公式积化和差sinasinb = -21[cos(a+b)-cos(a-b)] cosacosb =21[cos(a+b)+cos(a-b)] sinacosb = 21[sin(a+b)+sin(a-b)] cosasinb =21[sin(a+b)-sin(a-b)] 万能公式 sina=2)2(tan 12tan2a a+cosa=22)2(tan 1)2(tan 1a a +- tana=2)2(tan 12tan2aa- 其它公式 a•sina+b•cosa=)b (a 22+×sin(a+c) [其中tanc=ab ] a•sin(a)-b•cos(a) = )b (a 22+×cos(a-c) [其中tan(c)=ba]1+sin(a) =(sin 2a +cos 2a)21-sin(a) = (sin 2a -cos 2a)2其他非重点三角函数csc(a) =asin 1 sec(a) =a cos 1公式一设α为任意角,终边相同的角的同一三角函数的值相等: sin (2kπ+α)= sinα cos (2kπ+α)= cosα tan (2kπ+α)= tanα cot (2kπ+α)= cotα公式二设α为任意角,π+α的三角函数值与α的三角函数值之间的关系: sin (π+α)= -sinα cos (π+α)= -cosα tan (π+α)= tanα cot (π+α)= cotα公式三任意角α与 -α的三角函数值之间的关系: sin (-α)= -sinα cos (-α)= cosα tan (-α)= -tanα cot (-α)= -cotα公式四利用公式二和公式三可以得到π-α与α的三角函数值之间的关系: sin (π-α)= sinα cos (π-α)= -cosα tan (π-α)= -tanα cot (π-α)= -cotα公式五利用公式-和公式三可以得到2π-α与α的三角函数值之间的关系: sin (2π-α)= -sin α cos (2π-α)= cosα tan (2π-α)= -tanα cot (2π-α)= -cotα公式六2π±α及23π±α与α的三角函数值之间的关系: sin (2π+α)= cosα cos (2π+α)= -sinαtan (2π+α)= -cotα cot (2π+α)= -tanαsin (2π-α)= cosα cos (2π-α)= sinαtan (2π-α)= cotα cot (2π-α)= tanαsin (23π+α)= -cosα cos (23π+α)= sinαtan (23π+α)= -cotα cot (23π+α)= -tanαsin (23π-α)= -cosα cos (23π-α)= -sinαtan (23π-α)= cotα cot (23π-α)= tanα(以上k ∈Z)这个物理常用公式我费了半天的劲才输进来,希望对大家有用 A•sin(ωt+θ)+ B•sin(ωt+φ) =)cos(222ϕθ⋅++AB B A ×sin)cos(2)Bsin in arcsin[(As t 22ϕθϕθω⋅++++AB B A三角函数公式证明(全部)乘法与因式分解a2-b2=(a+b)(a-b)a3+b3=(a+b)(a2-ab+b2)a3-b3=(a-b)(a2+ab+b2)三角不等式|a+b|≤|a|+|b| |a-b|≤|a|+|b||a|≤b<=>-b≤a≤b |a-b|≥|a|-|b| -|a|≤a≤|a| 一元二次方程的解-b+√(b2-4ac)/2a -b-√(b2-4ac)/2a根与系数的关系X1+X2=-b/aX1*X2=c/a注:韦达定理判别式b2-4a=0 注:方程有相等的两实根b2-4ac>0 注:方程有一个实根b2-4ac<0 注:方程有共轭复数根某些数列前n项和1+2+3+4+5+6+7+8+9+…+n=n(n+1)/21+3+5+7+9+11+13+15+…+(2n-1)=n22+4+6+8+10+12+14+…+(2n)=n(n+1)12+22+32+…+n2=n(n+1)(2n+1)/613+23+33+…n3=n2(n+1)2/41*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3 正弦定理a/sinA=b/sinB=c/sinC=2R注:其中R 表示三角形的外接圆半径余弦定理b2=a2+c2-2accosB注:角B是边a和边c的夹角正切定理[(a+b)/(a-b)]={[Tan(a+b)/2]/[Tan(a-b)/2]}圆的标准方程(x-a)2+(y-b)2=r2 注:(a,b)是圆心坐标圆的一般方程x2+y2+Dx+Ey+F=0 注:D2+E2-4F>0抛物线标准方程y2=2px y2=-2px x2=2py x2=-2py直棱柱侧面积S=c*h斜棱柱侧面积S=c'*h正棱锥侧面积S=1/2c*h'正棱台侧面积S=1/2(c+c')h'圆台侧面积S=1/2(c+c')l=pi(R+r)l球的表面积S=4pi*r2圆柱侧面积S=c*h=2pi*h圆锥侧面积S=1/2*c*l=pi*r*l弧长公式l=a*ra是圆心角的弧度数r >0扇形面积公式s=1/2*l*r锥体体积公式V=1/3*S*H圆锥体体积公式V=1/3*pi*r2h斜棱柱体积V=S'L注:其中,S'是直截面面积,L是侧棱长柱体体积公式V=s*h圆柱体V=pi*r2h。

三角函数公式图像大全2

三角函数公式图像大全2

初等函数的图形幂函数的图形指数函数的图形各三角函数值在各象限的符号sinα·cscα cosα·secα tanα·cotα三角函数的性质函数y=sinx y=cosx y=tanx y=cotx定义域R R{x|x∈R且x≠kπ+2π,k∈Z}{x|x∈R且x≠kπ,k∈Z}值域[-1,1]x=2kπ+2π时y max=1x=2kπ-2π时y min=-1[-1,1]x=2kπ时y max=1x=2kπ+π时y min=-1R无最大值无最小值R无最大值无最小值周期性周期为2π周期为2π周期为π周期为π奇偶性奇函数偶函数奇函数奇函数单调性在[2kπ-2π,2kπ+2π]上都是增函数;在[2kπ+2π,2kπ+32π]上都是减函数(k∈Z)在[2kπ-π,2kπ]上都是增函数;在[2kπ,2kπ+π]上都是减函数(k∈Z)在(kπ-2π,kπ+2π)内都是增函数(k∈Z)在(kπ,kπ+π)内都是减函数(k∈Z)反三角函数的图形反三角函数的性质名称反正弦函数反余弦函数反正切函数反余切函数定义y=sinx(x∈〔-2π,2π〕的反函数,叫做反正弦函数,记作x=arsinyy=cosx(x∈〔0,π〕)的反函数,叫做反余弦函数,记作x=arccosyy=tanx(x∈(-2π,2π)的反函数,叫做反正切函数,记作x=arctanyy=cotx(x∈(0,π))的反函数,叫做反余切函数,记作x=arccoty理解arcsinx表示属于[-2π,2π]且正弦值等于x的角arccosx表示属于[0,π],且余弦值等于x的角arctanx表示属于(-2π,2π),且正切值等于x的角arccotx表示属于(0,π)且余切值等于x的角三角函数公式两角和公式sin(A+B) = sinAcosB+cosAsinBsin(A-B) = sinAcosB-cosAsinB cos(A+B) = cosAcosB-sinAsinB cos(A-B) = cosAcosB+sinAsinBtan(A+B) =tanAtanB -1tanBtanA +tan(A-B) =tanAtanB 1tanBtanA +-cot(A+B) =cotA cotB 1-cotAcotB +cot(A-B) =cotAcotB 1cotAcotB -+倍角公式tan2A =Atan 12tanA2-Sin2A=2SinA•CosACos2A = Cos 2A-Sin 2A=2Cos 2A-1=1-2sin 2A三倍角公式sin3A = 3sinA-4(sinA)3 cos3A = 4(cosA)3-3cosAtan3a = tana ·tan(3π+a)·tan(3π-a)半角公式sin(2A )=2cos 1A - cos(2A )=2cos 1A + tan(2A )=A A cos 1cos 1+- cot(2A )=AA cos 1cos 1-+ tan(2A )=A A sin cos 1-=AA cos 1sin + 和差化积sina+sinb=2sin2b a +cos 2ba - sina-sinb=2cos 2b a +sin 2ba -cosa+cosb = 2cos 2b a +cos 2ba -cosa-cosb = -2sin 2b a +sin 2ba -tana+tanb=ba b a cos cos )sin(+积化和差sinasinb = -21[cos(a+b)-cos(a-b)] cosacosb = 21[cos(a+b)+cos(a-b)]sinacosb = 21[sin(a+b)+sin(a-b)]cosasinb = 21[sin(a+b)-sin(a-b)]诱导公式sin(-a) = -sina cos(-a) = cosasin(2π-a) = cosacos(2π-a) = sinasin(2π+a) = cosacos(2π+a) = -sinasin(π-a) = sina cos(π-a) = -cosa sin(π+a) = -sina cos(π+a) = -cosatgA=tanA =aacos sin全能公式sina=2)2(tan 12tan2aa + cosa=22)2(tan 1)2(tan 1aa+- tana=2)2(tan 12tan2aa -其它公式a•sina+b•cosa=)b (a 22+×sin(a+c) [其中tanc=ab ] a•sin(a)-b•cos(a) = )b (a 22+×cos(a-c) [其中tan(c)=ba ] 1+sin(a) =(sin2a +cos 2a )2 1-sin(a) = (sin 2a -cos 2a)2其他非重点三角函数csc(a) =a sin 1 sec(a) =acos 1双曲函数sinh(a)=2e -e -aacosh(a)=2e e -aa +tg h(a)=)cosh()sinh(a a公式一设α为任意角,终边相同的角的同一三角函数的值相等: sin (2kπ+α)= sinα cos (2kπ+α)= cosα tan (2kπ+α)= tanα cot (2kπ+α)= cotα公式二设α为任意角,π+α的三角函数值与α的三角函数值之间的关系: sin (π+α)= -sinαcos (π+α)= -cosαtan (π+α)= tanαcot (π+α)= cotα公式三任意角α与 -α的三角函数值之间的关系:sin (-α)= -sinαcos (-α)= cosαtan (-α)= -tanαcot (-α)= -cotα公式四利用公式二和公式三能够取得π-α与α的三角函数值之间的关系: sin (π-α)= sinαcos (π-α)= -cosαtan (π-α)= -tanαcot (π-α)= -cotα公式五利用公式-和公式三能够取得2π-α与α的三角函数值之间的关系: sin (2π-α)= -sinαcos (2π-α)= cosαtan (2π-α)= -tanαcot (2π-α)= -cotα公式六2π±α及23π±α与α的三角函数值之间的关系: sin (2π+α)= cosαcos (2π+α)= -sinα tan (2π+α)= -cotα cot (2π+α)= -tanα sin (2π-α)= cosα cos (2π-α)= sinα tan (2π-α)= cotα cot (2π-α)= tanα sin (23π+α)= -cosα cos (23π+α)= sinα tan (23π+α)= -cotα cot (23π+α)= -tanα sin (23π-α)= -cosα cos (23π-α)= -sinα tan (23π-α)= cotα cot (23π-α)= tanα (以上k ∈Z)那个物理经常使用公式我费了半天的劲才输进来,希望对大伙儿有效 A•sin(ωt+θ)+ B•sin(ωt+φ) =)cos(222ϕθ⋅++AB B A ×sin )cos(2)Bsin in arcsin[(As t 22ϕθϕθω⋅++++AB B A三角函数公式证明(全数)公式表达式乘法与因式分解a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b)(a2+ab+b2)三角不等式|a+b|≤|a|+|b||a-b|≤|a|+|b||a|≤b<=>-b≤a≤b|a-b|≥|a|-|b|-|a|≤a≤|a|一元二次方程的解-b+√(b2-4ac)/2a -b-b+√(b2-4ac)/2a根与系数的关系X1+X2=-b/aX1*X2=c/a注:韦达定理判别式b2-4a=0 注:方程有相等的两实根b2-4ac>0 注:方程有一个实根b2-4ac<0 注:方程有共轭复数根三角函数公式两角和公式sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosAcos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinBtan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB) ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA) 倍角公式tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctgacos2a=cos2a-sin2a=2cos2a-1=1-2sin2a半角公式sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)cos(A/2)=√((1+c osA)/2) cos(A/2)=-√((1+cosA)/2)tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))ctg(A/2)=√((1+cosA)/((1-cosA)) ctg(A/2)=-√((1+cosA)/((1-cosA))和差化积2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B)2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B)sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2) tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosBctgA+ctgBsin(A+B)/sinAsinB -ctgA+ctgBsin(A+B)/sinAsinB某些数列前n项和1+2+3+4+5+6+7+8+9+…+n=n(n+1)/21+3+5+7+9+11+13+15+…+(2n-1)=n22+4+6+8+10+12+14+…+(2n)=n(n+1)12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/613+23+33+43+53+63+…n3=n2(n+1)2/41*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3正弦定理a/sinA=b/sinB=c/sinC=2R注:其中R 表示三角形的外接圆半径余弦定理b2=a2+c2-2accosB注:角B是边a和边c的夹角正切定理[(a+b)/(a-b)]={[Tan(a+b)/2]/[Tan(a-b)/2]} 圆的标准方程(x-a)2+(y-b)2=r2 注:(a,b)是圆心坐标圆的一样方程x2+y2+Dx+Ey+F=0 注:D2+E2-4F>0抛物线标准方程y2=2px y2=-2px x2=2py x2=-2py直棱柱侧面积S=c*h斜棱柱侧面积S=c'*h正棱锥侧面积S=1/2c*h'正棱台侧面积S=1/2(c+c')h'圆台侧面积S=1/2(c+c')l=pi(R+r)l球的表面积S=4pi*r2圆柱侧面积S=c*h=2pi*h圆锥侧面积S=1/2*c*l=pi*r*l弧长公式l=a*ra是圆心角的弧度数r >0扇形面积公式s=1/2*l*r锥体体积公式V=1/3*S*H圆锥体体积公式V=1/3*pi*r2h斜棱柱体积V=S'L注:其中,S'是直截面面积,L是侧棱长柱体体积公式V=s*h圆柱体V=pi*r2h-------------------------------------------------------------------------------------------- 三角函数积化和差和差化积公式记不住就自己推,用两角和差的正余弦:cos(A+B)=cosAcosB-sinAsinBcos(A-B)=cosAcosB+sinAsinB这两式相加或相减,能够取得2组积化和差:相加:cosAcosB=[cos(A+B)+cos(A-B)]/2相减:sinAsinB=-[cos(A+B)-cos(A-B)]/2sin(A+B)=sinAcosB+sinBcosAsin(A-B)=sinAcosB-sinBcosA这两式相加或相减,能够取得2组积化和差:相加:sinAcosB=[sin(A+B)+sin(A-B)]/2相减:sinBcosA=[sin(A+B)-sin(A-B)]/2如此一共4组积化和差,然后倒过来确实是和差化积了不明白如此你能够记住伐,实在记不住考试的时候也能够临时推导一下正加正正在前正减正余在前余加余都是余余减余没有余还负正余正加余正正减余余余加正正余减还负.3.三角形中的一些结论:(不要求经历)(1)anA+tanB+tanC=tanA·tanB·tanC(2)sinA+tsinB+sinC=4cos(A/2)cos(B/2)cos(C/2)(3)cosA+cosB+cosC=4sin(A/2)·sin(B/2)·sin(C/2)+1(4)sin2A+sin2B+sin2C=4sinA·sinB·sinC(5)cos2A+cos2B+cos2C=-4cosAcosBcosC-1 ...........................已知sinα=m sin(α+2β), |m|<1,求证tan(α+β)=(1+m)/(1-m)tanβ解:sinα=m sin(α+2β)sin(a+β-β)=msin(a+β+β)sin(a+β)cosβ-cos(a+β)sinβ=msin(a+β)cosβ+mcos(a+β)sinβsin(a+β)cosβ(1-m)=cos(a+β)sinβ(m+1)tan(α+β)=(1+m)/(1-m)tanβ。

(完整版)三角函数公式和图像大全

(完整版)三角函数公式和图像大全

初等函数的图形幂函数的图形指数函数的图形各三角函数值在各象限的符号sinα·cscα cosα·secα tanα·cotα三角函数的性质反三角函数的图形反三角函数的性质三角函数公式两角和公式sin(A+B) = sinAcosB+cosAsinB sin(A-B) = sinAcosB-cosAsinB cos(A+B) = cosAcosB-sinAsinB cos(A-B) = cosAcosB+sinAsinBtan(A+B) =tanAtanB -1tanBtanA +tan(A-B) =tanAtanB 1tanBtanA +-cot(A+B) =cotA cotB 1-cotAcotB +cot(A-B) =cotAcotB 1cotAcotB -+倍角公式tan2A =Atan 12tanA2- Sin2A=2SinA•CosACos2A = Cos 2A-Sin 2A=2Cos 2A-1=1-2sin 2A三倍角公式sin3A = 3sinA-4(sinA)3 cos3A = 4(cosA)3-3cosAtan3a = tana ·tan(3π+a)·tan(3π-a)sin(2A )=2cos 1A - cos(2A )=2cos 1A + tan(2A )=A A cos 1cos 1+- cot(2A )=AA cos 1cos 1-+ tan(2A )=A A sin cos 1-=AA cos 1sin + 和差化积sina+sinb=2sin2b a +cos 2ba - sina-sinb=2cos 2b a +sin 2ba -cosa+cosb = 2cos 2b a +cos 2ba -cosa-cosb = -2sin 2b a +sin 2ba -tana+tanb=ba b a cos cos )sin(+积化和差sinasinb = -21[cos(a+b)-cos(a-b)] cosacosb = 21[cos(a+b)+cos(a-b)]sinacosb = 21[sin(a+b)+sin(a-b)]cosasinb = 21[sin(a+b)-sin(a-b)]sin(-a) = -sina cos(-a) = cosasin(2π-a) = cosacos(2π-a) = sinasin(2π+a) = cosacos(2π+a) = -sinasin(π-a) = sina cos(π-a) = -cosa sin(π+a) = -sina cos(π+a) = -cosatgA=tanA =aacos sin万能公式sina=2)2(tan 12tan2aa + cosa=22)2(tan 1)2(tan 1aa+- tana=2)2(tan 12tan2aa -a•sina+b•cosa=)b (a 22+×sin(a+c) [其中tanc=a b ] a•sin(a)-b•cos(a) =)b (a 22+×cos(a-c) [其中tan(c)=b a ] 1+sin(a) =(sin 2a +cos 2a )2 1-sin(a) = (sin 2a -cos 2a )2其他非重点三角函数 csc(a) =asin 1 sec(a) =a cos 1 双曲函数 sinh(a)=2e -e -aa cosh(a)=2e e -aa + tg h(a)=)cosh()sinh(a a 公式一设α为任意角,终边相同的角的同一三角函数的值相等:sin (2kπ+α)= sinαcos (2kπ+α)= cosαtan (2kπ+α)= tanαcot (2kπ+α)= cotα设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)= -sinαcos(π+α)= -cosαtan(π+α)= tanαcot(π+α)= cotα公式三任意角α与-α的三角函数值之间的关系:sin(-α)= -sinαcos(-α)= cosαtan(-α)= -tanαcot(-α)= -cotα公式四利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)= sinαcos(π-α)= -cosαtan(π-α)= -tanαcot(π-α)= -cotα公式五利用公式-和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)= -sinαcos(2π-α)= cosαtan(2π-α)= -tanαcot(2π-α)= -cotα2π±α及23π±α与α的三角函数值之间的关系: sin (2π+α)= cosα cos (2π+α)= -sinα tan (2π+α)= -cotα cot (2π+α)= -tanα sin (2π-α)= cosα cos (2π-α)= sinα tan (2π-α)= cotα cot (2π-α)= tanα sin (23π+α)= -cosα cos (23π+α)= sinα tan (23π+α)= -cotα cot (23π+α)= -tanα sin (23π-α)= -cosα cos (23π-α)= -sinα tan (23π-α)= cotα cot (23π-α)= tanα (以上k ∈Z)这个物理常用公式我费了半天的劲才输进来,希望对大家有用 A•sin(ωt+θ)+ B•sin(ωt+φ) =)cos(222ϕθ⋅++AB B A ×sin )cos(2)Bsin in arcsin[(As t 22ϕθϕθω⋅++++AB B A三角函数公式证明(全部)公式表达式乘法与因式分解a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b)(a2+ab+b2) 三角不等式|a+b|≤|a|+|b||a-b|≤|a|+|b||a|≤b<=>-b≤a≤b|a-b|≥|a|-|b|-|a|≤a≤|a|一元二次方程的解-b+√(b2-4ac)/2a -b-b+√(b2-4ac)/2a根与系数的关系X1+X2=-b/aX1*X2=c/a注:韦达定理判别式b2-4a=0 注:方程有相等的两实根b2-4ac>0 注:方程有一个实根b2-4ac<0 注:方程有共轭复数根三角函数公式两角和公式sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosAcos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinBtan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB) ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)倍角公式tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctgacos2a=cos2a-sin2a=2cos2a-1=1-2sin2a半角公式sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))ctg(A/2)=√((1+cosA)/((1-cosA)) ctg(A/2)=-√((1+cosA)/((1-cosA))和差化积2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B)2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B)sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2) tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosBctgA+ctgBsin(A+B)/sinAsinB -ctgA+ctgBsin(A+B)/sinAsinB某些数列前n项和1+2+3+4+5+6+7+8+9+…+n=n(n+1)/21+3+5+7+9+11+13+15+…+(2n-1)=n22+4+6+8+10+12+14+…+(2n)=n(n+1)12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6 13+23+33+43+53+63+…n3=n2(n+1)2/41*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3 正弦定理a/sinA=b/sinB=c/sinC=2R注:其中R 表示三角形的外接圆半径余弦定理b2=a2+c2-2accosB注:角B是边a和边c的夹角正切定理[(a+b)/(a-b)]={[Tan(a+b)/2]/[Tan(a-b)/2]}圆的标准方程(x-a)2+(y-b)2=r2 注:(a,b)是圆心坐标圆的一般方程x2+y2+Dx+Ey+F=0 注:D2+E2-4F>0抛物线标准方程y2=2px y2=-2px x2=2py x2=-2py直棱柱侧面积S=c*h斜棱柱侧面积S=c'*h正棱锥侧面积S=1/2c*h'正棱台侧面积S=1/2(c+c')h'圆台侧面积S=1/2(c+c')l=pi(R+r)l球的表面积S=4pi*r2圆柱侧面积S=c*h=2pi*h圆锥侧面积S=1/2*c*l=pi*r*l弧长公式l=a*ra是圆心角的弧度数r >0扇形面积公式s=1/2*l*r锥体体积公式V=1/3*S*H圆锥体体积公式V=1/3*pi*r2h斜棱柱体积V=S'L注:其中,S'是直截面面积,L是侧棱长柱体体积公式V=s*h圆柱体V=pi*r2h。

三角函数图像公式大全

三角函数图像公式大全

幂函数的图形指数函数的图形对数函数的图形三角函数的图形各三角函数值在各象限的标志sinα·csc cosα·sec tanα·cotα三角函数的性质函数y=sinxR y=cosx y=tanx y=cotx{x|x∈R且{x|x∈R且x≠kπ∈,kZ}R定义域x≠k ,k∈Z}2[-1,1][-1,1]x=2k 时2 x=2kπ时y max =1 R R值域y max =1 无最大年夜值无最小值无最大年夜值无最小值x=2kπ+π时y=-1min x=2kπ- 时y min =-12周期性奇偶性周期为2π周期为2π周期为π奇函数周期为π奇函数奇函数偶函数在[2k π-π,2k π]上根本上 增函数;在[2k π,2k π+π] 上根本上减函数(k ∈Z)在(k π,k π+内都 是减函数(k ∈Z)在[2k π-在(k π-,k,2k]上)内都2222根本上增函数;在是增函数(k ∈Z)单调性23[2k,2kπ]上 2根本上减函数(k ∈Z)反三角函数的图形反三角函数的性质名称反正弦函数反余弦函数 反正切函数反余切函数 y=cosx(x ∈〔0,π〕) y=cotx(x ∈(0,π的)) y=sinx(x ∈〔-,22〕 y=tanx(x ∈(-,2的反函数,叫做反 反函数,叫做反余切 的反函数,叫做反正弦余弦函数,记作 函数,记作定义)的反函数,叫做反2函数,记作x=arsinyx=arccosyx=arccoty正切函数,记作 x=arctanyarcsinx 表示属于 arccosx 表示属于 arctanx 表示属于arccotx 表示属于(0, 且余切值等于x 的角[0,π],且余弦值 [-],(-,22),且正切值等等于x 的角理解22且正弦值等于x 的角于x 的角定义域 值域 [-1,1] [-1,1] [0,π](-∞,+ (-∞,+ (0, [-,22 ](-,22)性 质在〔-1,1〕上是增函数 在[-1,1]上是减 在(-∞,+上是增数在(-∞,+ 上是减函单调性函数数arcsin(-x)=-arcsinx arccos(-x)=π-arcco arctan(-x)=-arctanx arccot(-x)=π-arccot 奇偶性 周期性sxx都不是同期函数sin(arcsinx)=x(x ∈[-1,cos(arccosx)=x(x ∈tan(arctanx)=x(x ∈ cot(arccotx)=x(x ∈ R)[-1,1])1])arcsin(sinx)=x(x ∈R)arctan(tanx)=x 〔x ∈ arccos(cosx)=x(x ∈ [0,π])arccot(cotx)=x(x ∈ (0,π))恒等式[-]),22(-,22)〕互余恒等式arcsinx+arccosx=2(x ∈[-1,1]) arctanx+arccotx=(X ∈R)2三角函数公式 两角跟公式tan(A-B)=tanAtanB1tanAtanB sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-cosAsinB cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB cot(A+B)=cotAcotB-1 cotBcotAcot(A-B)=cotAcotB1cotBcotA倍角公式tan(A+B)=tanAtanB1-tanAtanB2tanA 诱惑公式tan2A=21tanASin2A=2SinACosAsin(-a)=-sina cos(-a)=cosa 2 2 22Cos2A=CosA-SinA=2CosA-1=1-2sinA 三倍角公式3sin3A=3sinA-4(sinA)3sin(-a)=cosa2cos3A=4(cosA)-3cosAcos(-a)=sina2tan3a=tana ·tan(+a)·tan(-a) 33半角公式 sin(+a)=cosa2A1cosAsin()=cos(+a)=-sina22 2 sin(-πa)=sina 1cosA2 cos(π-a)=-cosa sin(π+a)-s=ina cos(π+a)-=cosa tgA=tanA=sinaAcos()=21cosA 1cosA Atan()=2cosa万能公式1cosA 1cosAAa cot()=2tan22 a1(tan)22sina=A1cosAsinA=1cosAtan()=2跟差化积sinAa1(tan)2 2 ababcos cosa=sina+sinb=2sina1(tan)22 2 2 abab sina-sinb=2cossina 2 2 2tan2 a1(tan)22ababtana=cosa+cosb=2coscos2 2 ab 2 ab2cosa-cosb=-2sin sin不的公式2 2tana+tanb=sin(ab)asina+bcosa= (ab)×sin(a+c) cosacosb[其中tanc=b ]a积化跟差1sinasinb=-[cos(a+b)-cos(a-b)] 2 22asin(a)-bcos(a)=(ab)×cos(a-c) 1cosacosb=[cos(a+b)+cos(a-b)] a[其中tan(c)=]2 b 1 sinacosb=[sin(a+b)+sin(a-b)] a a 2 1+sin(a)=(sin+cos) 2 1 2 a 2 cosasinb=[sin(a+b)-sin(a-b)]a 2 1-sin(a)=(sin -cos)2 22其他非重点三角函数sin 〔2π-α〕=-sin αcos 〔2π-α〕=cos α tan 〔2π-α〕=-tan α 1 csc(a)= sina 1 cot 〔2π-α〕=-cot αsec(a)=公式六cosa双曲函数±α及3±α与α的三角函数值之间的关系:22e-e -aa sinh(a)=sin 〔+α〕=cos α 22ee -aa cos 〔+α〕=-sin α2cosh(a)=2tan 〔+α〕=-cot α2 tgh(a)=sinh(a)cosh(a)cot 〔+α〕=-tan α2公式一sin 〔-α〕=cos α设α为任意角,终边一样的角的一致三角函数的值相当:2 sin 〔2k π+α〕=sin αcos 〔-α〕=sin αcos 〔2k π+α〕=cos α tan 〔2k π+α〕=tan α2 tan 〔-α〕=cot α2cot 〔2k π+α〕=cot α 公式二cot 〔-α〕=tan α 设α为任意角,π+α的三角函数值与α的三角函数值之2 间的关系: sin 〔3+α〕=-cos α sin 〔π+α〕=-sin α cos 〔π+α〕=-cos α tan 〔π+α〕=tan α 2 cos 〔3+α〕=sin α 2cot 〔π+α〕=cot αtan 〔3+α〕=-cot α 2公式三任意角α与-α的三角函数值之间的关系:cot 〔3+α〕=-tan αsin 〔-α〕=-sin α cos 〔-α〕=cos α tan 〔-α〕=-tan α cot 〔-α〕=-cot α公式四2sin 〔3-α〕=-cos α2cos 〔3-α〕=-sin α2使用公式二跟公式三可以掉掉落π-α与α的三角函数值之3tan 〔 -α〕=cot α间的关系: 2sin 〔π-α〕=sin αcos 〔π-α〕=-cos α tan 〔π-α〕=-tan α cot 〔3-α〕=tan α 2 (以上k ∈Z)cot 〔π-α〕=-cot α谁人物理常用公式我费了半天的劲才输入去 家无效 ,希望对大年夜公式五 使用公式-跟公式三可以掉掉落2π-α与α的三角函数值之 间的关系:b2-4ac>0注:方程有一个实根 AB 22ABcos( 2)×Asin(ωt+θB)+sin(ωt+φ=) b2-4ac<0注:方程有共轭双数根tarcsin[(Asin Bsin)sin22AB2ABcos()三角函数公式 两角跟公式sin(A+B)=sinAcosB+cosAsinBsin(A-B)=sinAcosB-sinBcosA 三角函数公式证明〔全部〕公式表达式 cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB 乘法与因式分析a2-b2=(a+b)(a-b) tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB) a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b)(a2+ab+b2) ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)倍角公式三角不等式 tan2A=2tanA/(1-tan2A)ctg2A=(ctg2A-1)/2ctga |a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b<=>-b ≤a |a-b|≥|a|-|b| cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a半角公式sin(A/2)=√-((1cosA)/2)sin(A/2)=-√((1-cosA)/2) cos(A/2)=√((1+cosA)/2)cos(A/2)=-√((1+cosA)/2) tan(A/2)=√-((1cosA)/((1+cosA))-|a|≤a ≤|a|一元二次方程的解tan(A/2)=-√((1-cosA)/((1+cosA)) ctg(A/2)=√((1+cosA)/((1-cosA)) ctg(A/2)=-√((1+cosA)/((1-cosA))-b+√(b2-4ac)/2a-b-b+√(b2-4ac)/2a 根与系数的关系 跟差化积X1+X2=-b/a 2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B) X1*X2=c/a 2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B)注:韦达定理判不式b2-4a=0注:方程有相当的两实根sinA+sinB=2sin((A+B)/2)cos((A-B)/2cosA+cosB=2cos((A+B)/2)sin((A-B)/2)抛物线标准方程y2=2pxy2=-2pxx2=2pyx2=-2py tanA+tanB=sin(A+B)/cosAcosBtanA-tanB=sin(A-B)/cosAcosB 直棱柱正面积S=c*hctgA+ctgBsin(A+B)/sinAsinB-ctgA+ctgBsin(A+B)/sinAsinB歪棱柱正面积某些数列前n项跟S=c'*h1+2+3+4+5+6+7+8+9+⋯+n=n(n+1)/21+3+5+7+9+11+13+15+⋯+(2n-1)=n2 2+4+6+8+10+12+14+⋯+(2n)=n(n+1) 正棱锥正面积S=1/2c*h' 正棱台正面积12+22+32+42+52+62+72+82+⋯+n2=n(n+1)(2n+1)/613+23+33+43+53+63+⋯n3=n2(n+1)2/4S=1/2(c+c')h'圆台正面积1*2+2*3+3*4+4*5+5*6+6*7+ ⋯+n(n+1)=n(n+1)(n+2)/3S=1/2(c+c')l=pi(R+r)l 正弦定理球的表面积a/sinA=b/sinB=c/sinC=2RS=4pi*r2注:其中R表示三角形的外接圆半径圆柱正面积余弦定理S=c*h=2pi*hb2=a2+c2-2accosB注:角B是边a跟边c的夹角正切定理圆锥正面积S=1/2*c*l=pi*r*l 弧长公式[(a+b)/(a-b)]={[Tan(a+b)/2]/[Tan(a-b)/2]}l=a*r圆的标准方程a是圆心角的弧度数r>0扇形面积公式(x-a)2+(y-b)2=r2注:〔a,b〕是圆心坐标圆的一般方程s=1/2*l*rx2+y2+Dx+Ey+F=0注:D2+E2-4F>0锥体体积公式V=1/3*S*H正加正正在前 圆锥体体积公式正减正余在前 V=1/3*pi*r2h余加余根本上余 歪棱柱体积余减余没缺乏还负 正余正加余正正减 余余余加正正余减还负V=S'L注:其中,S'是直截面面积,L 是侧棱长柱体体积公式3.三角形中的一些结论:(不恳求阅历) V=s*h(1)tanA+tanB+tanC=tanAtan ·B ·tanC圆柱体(2)sinA+tsinB+sinC=4cos(A/2)cos(B/2)cos(C/2) (3)cosA+cosB+cosC=4sin(A/2)sin(B ·/2)sin ·(C/2)+1 (4)sin2A+sin2B+sin2C=4sinAsinB ··sinCV=pi*r2h-------------------------------------------------三角函数积化跟差跟差化积公式(5)cos2A+cos2B+cos2C=-4cosAcosBcosC-1记不住就自己推,用两角跟差的正余弦:cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB这两式相加或相减,可以掉掉落 2组积化跟差:相加:cosAcosB=[cos(A+B)+cos(A-B)]/2 相减:sinAsinB=-[cos(A+B)-cos(A-B)]/2 sin(A+B)=sinAcosB+sinBcosA sin(A-B)=sinAcosB-sinBcosA这两式相加或相减,可以掉掉落 2组积化跟差:相加:sinAcosB=[sin(A+B)+sin(A-B)]/2 相减:sinBcosA=[sin(A+B)-sin(A-B)]/2如斯一共4组积化跟差,然后倒过来的确是跟差化积了。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三角函数的图象变换有振幅变换、周期变换和相位变换等,重点掌握函数 +φ)+B 的作法.
函数 y=Asin (ωx+φ)的 物理意义:
y=Asin (ω x
振幅 |A| ,周期 T 2 ,频率 f 1 | | ,相位 x ; 初相 (即当 x=0 时的相位).(当 A
||
T2
>0,ω> 0 时以上公式可去绝对值符号) , ( 1)振幅变换 或叫 沿 y 轴的伸缩变换 .( 用 y/A 替换 y)由 y=sinx 的图象上的点的横坐
的图象 .
( 3) 相位变换 或叫做 左右平移. (用 x+φ替换 x)由 y=sinx 的图象上所有的点向左(当
φ> 0)或向右(当 φ< 0)平行移动| φ|个单位,得到 y=sin(x+φ)的图象 .
( 4) 上下平移 (用 y+(-b)替换 y)由 y= sinx 的图象上所有的点向上(当 b>0)或向下
84
84
5、函数 y 3sin( 2x ) 与 y 轴距离最近的对称轴是______ . 6
6、将函数 y f (x) sin x( x R) 的图象向右平移 个单位后,再作关于 x 轴的对称变换,得到 4
函数 y 1 2 sin 2 x 的图象,则 f (x) 可以是_______。

6
A 、向左平移 6
B、向左平移 18
C、向右平移 6
D、向右平移 18
2、函数 f ( x) 2sin | x |的部分图象是 2
y
y
y
2
2
2
O
x
O
x
O
x


y
2
O x
A
B
C
D
3、函数 y 2 cos x(sin x cos x) 的图象一个对称中心的坐标是


A、 ( 3 , 0) 8
B、 ( 3 , 1) 8
2 ) 的部分图象如图,则
A.
,
B.
,
2
4
3
6
C.
,
D.
5 ,
4
4
4
4
4、( 05 天津卷) 函数 y Asin( x )( 0, 部分图象如图所示,则函数表达式为)
, x R) 的 2
(A ) y 4 sin( x ) ( B) y 4sin( x )
84
84
(C) y 4 sin( x ) ( D) y 4sin( x )
0) 个单位, 所得的图象关于 y 轴对
y
( A 0, 0, | | ) 的图象的一段,求其解析式。 2
3
O
3
3
5
x
6
例 4、受日月的引力,海水会发生涨落,这种现象叫做潮汐,在通常情况下,船在涨潮 时驶进航道, 靠近船坞;缺货后落潮时返回海洋。 某港口水的深度 y(米)是时间 t( 0 t 24 , 单位:时)的函数,记作 y f (t) ,下面是该港口在某季节每天水深的数据:
例 5. (00) 已知函数
( I )当函数 y 取得最大值时,求自变量 x 的集合; ( II )该函数的图象可由 y=sinx (x∈R)的图象经过怎样的平移和伸缩变换得到?
四、作业 同步练习 g3.1046 三角函数的图象
1、若函数 f ( x) 3sin( x
A、0
B、3
) 对任意实数 x ,都有 f ( x) f ( x) ,则 f ( ) 等于
标保持不变,纵坐标伸长(当 |A|>1)或缩短(当 0<|A|<1)到原来的 |A|倍,得到 y=Asinx 的图象 .
( 2)周期变换 或叫做 沿 x 轴的伸缩变换. (用ωx 替换 x )由 y=sinx 的图象上的点的纵坐
标保持不变,横坐标伸长( 0< |ω|< 1)或缩短( |ω |> 1)到原来的 | 1 | 倍,得到 y=sinω x
t (时) 0 3 6 9 12 15 18 21 24 y (米) 10.0 13.0 9.9 7.0 10.0 13.0 10.1 7.0 10.0 经长期观察, y f (t ) 曲线可以近似地看做函数 y Asin t k 的图象。 (1) 根据以上数据,求出函数 y f (t) 的近似表达式; (2) 一般情况下,船舶航行时,船底离海底的距离为 5 米或 5 米以上时认为是安全的 (船 舶停靠时,船底只需不碰海底即可 ),某船吃水深度 (船底离水面的距离 )为 6.5 米。如果该船 想在同一天内安全进出港,问它至多能在港内停留多长时间 (忽略进出港所需的时间 )?
三、例题分析
例 1、 已知函数 y 2sin(2x ) 。 3
(1)求它的振幅、周期和初相; (2)用五点法作出它的图象;
(3)说明 y 2 sin(2x ) 的图象可由 y sin x 的图象经过怎样的变换而得到? 3
例 2、把函数 y 称,求 m 的最小值。
例 3、 如图为 y
3 cosx sin x 的图象向左平移 m( m Asin( x )
一、知识回顾
g3.1046 三角函数的图象
(一)熟悉 .三角函数图象的特征:
y y=sinx 1
-1 o
x
y y=cosx 1
-1 o
cotx
Hale Waihona Puke y=tanxx
y=
(二)三角函数图象的作法:
1.几何法 (利用三角函数线)
2. 描点法: 五点作图法(正、余弦曲线),三点二线作图法 (正、
余切曲线) .
3.利用图象变换作三角函数图象.
(当 b< 0)平行移动| b|个单位,得到 y=sinx+ b 的图象 .
注意: 由 y= sinx 的图象利用图象变换作函数 y=Asin (ωx+φ)+B(A >0,ω >0)( x
∈R)的图象,要特别注意:当周期变换和相位变换的先后顺序不同时,原图象延
x 轴量伸
缩量的区别。
二、基本训练
1、为了得到函数 y sin(3x ) 的图象,只需把函数 y sin 3x 的图象 (
C、 ( , 1) 8
4、( 00)函数 y=-xcosx 的部分图象是
D、 ( , 1) 8
5、已知函数 f ( x) 范围是______。
4sin 2 x 4 cos x 1 a ,当 x [
2 ,
] 时 f (x) =0 恒有解,则 a 的
43
6、方程 lg | x | sin( x ) 有___个实数根。 3
4
4
4
C、- 3
D、3 或- 3
2、把函数 y 3cos(2x ) 的图象向右平移 m(m 0) 个单位,设所得图象的解析式为 3
y f ( x) ,则当 y f ( x) 是偶函数时, m 的值可以是
A、 3
B、 6
C、 4
D、 12
3、( 05 福建卷) 函数 y sin( x )( x R, 0,0
相关文档
最新文档