(衡水金卷)2018年普通高等学校招生全国统一考试模拟数学试题二-文
【衡水金卷】2018年普通高等学校招生全国统一考试模拟试题(二,压轴卷)数学(理)试题
2018年普通高等学校招生全国统一考试模拟试题理科数学(二)本试卷共4页,23题(含选考题)。
全卷满分1 50分。
考试用时120分钟。
第I 卷一、选择题:本题共12小题,每小题5分,在每小题给出的四个选项中。
只有一项是符合 题目要求的。
1.已知集合{}{}1,1,2,3,5,6,210xA B x Z =-=∈<,则AB=A .{1}B .{l ,2}C .{1,2,3}D .{一1,1,2,3}2.设i 为虚数单位,复数z 满足2(13)(3)i z i +=-+,则共轭复数z 的虚部为 A .3i B .3i - C .3 D .3- 3.学生李明上学要经过4个路口,前三个路口遇到红灯的概率均为12,第四个路口遇到 红灯的概率为13,设在各个路口是否遇到红灯互不影响,则李明从家到学校恰好遇到 一次红灯的概率为 A .724 B .14 C . 124 D . 184.已知双曲线方程为22221(0,0)x y a b a b-=>>,F 1,F 2为双曲线的左、右焦点,P 为渐近线上一点且在第一象限,且满足120PF PF ⋅=,若1230PF F ︒∠=,则双曲线的离心率为 A .2 B .2 C .22 D .3 5.已知θ为锐角,1cos 211cos 22θθ-=+,则sin()3πθ+的值为A .264+ B .624- C .366+ D .3236+ 6.执行如图所示的程序框图,则输出的s 的值为A .一1B .一2C .1D .27.2101211011112(1)(2)(1)(1)(1)x x a x a x a x a +-=-+-++-+,则01211a a a a ++++的值为A .2B .0C .一 2D .一48.某几何体三视图如图所示,则该几何体的表面积为 A .2052π-B .203π-C .24π-D .12π+9.已知34a b ==12,则a ,b 不可能满足的关系是 A .a +b >4 B .ab >4C .(a 一1)2+(b —1)2>2D .a 2+b 2<8 10.若函数()sin()(0)6f x x πωω=+>在区间(π,2π)内没有最值,则ω的取值范围是 A .112(0,][,]1243 B .(0,16][13,23] C .[12,43] D .[12,33] 11.过抛物线x 2=2p y (p>0)上两点A ,B 分别作抛物线的切线,若两切线垂直且交于点 P(1,一2),则直线AB 的方程为 A .122y x =+ B .124y x =+ C .132y x =+ D .134y x =+ l 2.在正三棱锥(底面是正三角形,顶点在底面的射影是底面三角形的中心的 三棱锥)O 一ABC 中,OA ,OB ,OC 三条侧棱两两垂直,正三棱锥O —ABC 的内切球与三个侧面切点分别为D ,E ,F ,与底面ABC 切于点G ,则三棱 锥G —DEF 与O —ABC 的体积之比为 A .23318+ B .23318- C .6239+ D .6239- 第Ⅱ卷本卷包括必考题和选考题两部分。
普通高等学校2018届高三招生全国统一考试模拟试题(二)数学(文)试题word含答案
普通高等学校2018届高三招生全国统一考试模拟试题(二)数学(文)试题word含答案普通高等学校招生全国统一考试模拟试题——文科数学(二)本试卷满分150分,考试时间120分钟。
注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题纸上。
2.回答选择题时,选出每小题答案后,用铅笔把答题纸上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题纸上,写在本试卷上无效。
3.考试结束后,将本试卷和答题纸一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合 $A=\{x|x-\frac{1}{2}<0\}$,$B=\{x|x-\frac{(2a+8)}{a(a+8)}<0\}$,若 $A\cap B=A$,则实数 $a$ 的取值范围是A。
$(-4,-3)$B。
$[-4,-3]$C。
$(-\infty,-3)\cup(4,+\infty)$D。
$(-3,4)$2.已知复数 $z=\frac{3+i}{2-3i}$,则 $z$ 的实部与虚部的和为A。
$-\frac{2}{5}+\frac{1}{5}i$B。
$-\frac{2}{5}-\frac{1}{5}i$C。
$\frac{2}{5}+\frac{1}{5}i$D。
$\frac{3}{5}+\frac{2}{5}i$3.某景区管理部门为征求游客对景区管理方面的意见及建议,从景区出口处随机选取 $5$ 人,其中 $3$ 人为跟团游客,$2$ 人为自驾游散客,并从中随机抽取 $2$ 人填写调查问卷,则这 $2$ 人中既有自驾游散客也有跟团游客的概率是A。
$\frac{2}{3}$B。
$\frac{1}{5}$C。
$\frac{2}{5}$D。
$\frac{3}{5}$4.已知双曲线 $E:\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$ 的离心率为$\frac{\sqrt{10}}{3}$,斜率为 $-\frac{3}{2}$ 的直线 $l$ 经过双曲线的右顶点 $A$,与双曲线的渐近线分别交于 $M$,$N$ 两点,点 $M$ 在线段$AN$ 上,则 $\frac{AN}{AM}$ 等于A。
2018年普通高校招生全国卷 一(A) 衡水金卷高三信息卷 (二)理科数学试题(解析版)
2018年普通高等学校招生全国统一考试模拟试题理数(二)第Ⅰ卷一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知为虚数单位,复数 ()为纯虚数,则的值为A. -2B.C. 2D.【答案】C【解析】因为为纯虚数,所以所以a=2.故选C.2. 已知集合,,则()A. B. C. D.【答案】B【解析】由得0<x<8,所以A={x|0<x<8},由得x>5或x<-1,所以B={x| x>5或x<-1},所以={x|-1≤x≤5},所以=.故选B.3. 已知是各项均为正数的等比数列的前项和,,,则()A. 31B. 63C. 16D. 127【答案】A【解析】设公比为q(q>0),因为,所以即所以故选A.4. 设向量,,,若,则与的夹角为()A. B. C. D.【答案】D【解析】因为b||c,所以所以与的夹角的余弦值为所以夹角为.故选D.5. 大约2000多年前,古希腊数学家最先开始研究圆锥曲线,并获得了大量的成果,古希腊数学家阿波罗尼斯采用平面切割圆锥的方法来研究这几种曲线,用垂直于锥轴的平面去截圆锥,得到的是圆;把平面再渐渐倾斜得到椭圆.若用周长为24的矩形截某圆锥得到椭圆,且与矩形的四边相切.设椭圆在平面直角坐标系中的方程为,测得的离心率为,则椭圆的方程为()A. B. C. D.【答案】A【解析】由题得4a+4b=24,即a+b=6 (1),由得a=2b(2),由(1)(2)解得a=4,b=2.所以椭圆T的方程为,故选A.6. 已知某服装厂生产某种品牌的衣服,销售量 (单位:百件)关于每件衣服的利润 (单位:元)的函数解析式为, 则当该服装厂所获效益最大时,A. 20B. 60C. 80D. 40【答案】C【解析】设该服装厂所获效益为f(x)(单位:元),则当0<x≤20时,在区间(0,20]上单调递增,所以当x=20时,f(x)有最大值120000.当20<x≤180时,则令当20<x<80时,单调递增,当80≤x≤180时,单调递减,所以当x=80时,f(x)有最大值240000.故选C.7. 已知满足不等式组则的最小值为()A. 2B.C.D. 1【答案】D【解析】不等式组对应的可行域如图所示,因为所以z表示可行域内一点到直线x+y-1=0距离的倍,由可行域可知点A(2,0)到直线x+y-1=0的距离最短,故故选D.点睛:本题的关键是找到的几何意义,要找到的几何意义,必须变形,所以z表示可行域内一点到直线x+y-1=0距离的倍.突破了这一点,后面的解答就迎刃而解了.8. 已知函数,的值域为,则实数的取值范围是()A. B. C. D.【答案】B【解析】由题得由g(t)的图像,可知当时,f(x)的值域为,所以故选B.9. 已知的展开式中常数项为-42,则()A. 10B. 8C. 12D. 11【答案】B【解析】设的展开式中的第r+1项为项为当n为偶数时,令n-2r=0,得令n-2r=-2,得故原式展开式中常数项为代入下面的选项检验得n=8,显然当n为奇数时,不存在常数项,故可得n=8. 故选B.10. 某几何体的三视图如图所示,则该几何体的表面积为()A. B. C. D.【答案】C【解析】由三视图可知该几何体是一个圆柱切去两个弓形柱和半个球所得的几何体,圆柱的底面半径为2,高为6,弓形弦到圆心的距离为2-1=1,故弓形弦所对的圆心角为,弓形柱的高为2,所以几何体的表面积为故选C.11. 已知(1)的左、右焦点分别为,,点是双曲线右支上一点,且,过点作的垂线交轴于点,且,若的中点在的延长线上,则双曲线的离心率是()A. B. C. D.【答案】C【解析】因为点E为PA的中点,且,所以M为的重心,所以为的中点,又可得故故选C.点睛:本题主要是分析,本题的条件比较多,能够对已知条件综合分析得到简洁的结论是解题的关键. 本题通过点E为PA的中点且,推理出M为的重心,这是关键,后面找关于离心率e的方程难度就不大了.12. 已知函数,且对任意实数,均有,若方程有且只有4个实根,则实数的取值范围()A. B. C. D.【答案】A【解析】依题意,函数f(x)的图像关于直线x=-3对称,所以f(-6)=f(0)=0,f(-4)=f(-2)=0,于是此时,因为方程f(x)=a有四个根,且f(x)的图像关于直线x=-3对称,即函数y=f(x)-a的图像在区间有两个零点,所以g(t)-a的图像在区间上有两个零点,所以由g(t)的图像,可知-16<a<9.故选A.点睛:本题解题用到了数学转化的思想,首先把方程f(x)=a有四个根,且f(x)的图像关于直线x=-3对称,转化成函数y=f(x)-a的图像在区间有两个零点,再转化成函数g(t)-a的图像在区间上有两个零点.转化的思想是高中数学里最普遍的数学思想,在高中数学里最常见,特别是遇到较复杂的问题,更应想到转化,把复杂的问题转化得简单,把不熟悉的数学问题转化成熟悉的数学问题,大家在今后的学习中要理解掌握和灵活运用.第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13. 已知圆心角为的扇形的圆心为,在其弧上任取一点,则使和同时大于的概率为__________.【答案】【解析】由几何概型的定义和几何概型的公式可知使和能同时大于50°的概率为故填.14. 已知直线,和平面,,且,,则“,”是“”的__________条件.(填“充分不必要”“必要不充分”“充要”“既不充分也不必要”【答案】必要不充分【解析】由不一定推出由得由得所以“,”是“”的必要不充分条件.故填必要不充分.15. 执行如图所示的程序框图,若输出的,则正整数__________.【答案】2016【解析】第一次循环:s=1,1>T?,否,s=1,k=3,i=2;第二次循环,s=2,2>T?,否,s=4,k=5,i=3;第三次循环,s=3,3>T?,否,s=9,k=7,i=4;最后一次循环,是,输出2017.故T=2016,故填2016.16. 已知数列满足,,是,的等差中项,若为单调递增数列,则实数的取值范围为__________.【答案】【解析】由题可知=+,即-=,所以设则所以当n为奇数时,当n为偶数时,所以,由数列为单调递增数列,得.当n为奇数时,;所以当n>1时,易知当n为偶数时,,即综上,实数的取值范围为.故填点睛:本题的关键是得到后,能设换元得到这主要是对数列的性质的认识,从这里看出数列的奇数项成等差数列,偶数项成等差数列.突破这一点,后面就迎刃而解了.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. 在中,分别为内角的对边,向量,,(1)求;(2)若外接圆的直径为,且,求的面积.【答案】(1) (2)【解析】试题分析:(1)第(1)问,利用正弦定理和向量的数量积化简得到,再解这个三角方程即可得到B的值.(2)第(2)问,利用三角恒等变换化简得到,再分类讨论求出a,c的值,最后求三角形的面积.试题解析:(1)因为,所以.由正弦定理,得,又,即.因为,所以,所以,即.(2)由(1)和正弦定理,得.因为,所以,,即.当时,,由正弦定理,得,,所以.当时,有,即,由余弦定理,得,所以,,所以综上,的面积为.18. 在如图所示的多面体中,平面平面,四边形为边长为2的菱形,为直角梯形,四边形为平行四边形,且,,.(1)若,分别为,的中点,求证:平面;(2)若,与平面所成角的正弦值为,求二面角的余弦值.【答案】(1)见解析(2)【解析】试题分析:(1)第(1)问,转化成证明平面 ,再转化成证明和.(2)第(2)问,先利用几何法找到与平面所成角,再根据与平面所成角的正弦值为求出再建立空间直角坐标系,求出二面角的余弦值.试题解析:(1)连接,因为四边形为菱形,所以.因为平面平面,平面平面,平面,,所以平面.又平面,所以.因为,所以.因为,所以平面.因为分别为,的中点,所以,所以平面(2)设,由(1)得平面.由,,得,.过点作,与的延长线交于点,取的中点,连接,,如图所示,又,所以为等边三角形,所以,又平面平面,平面平面,平面,故平面.因为为平行四边形,所以,所以平面.又因为,所以平面.因为,所以平面平面.由(1),得平面,所以平面,所以.因为,所以平面,所以是与平面所成角.因为,,所以平面,平面,因为,所以平面平面.所以,,解得.在梯形中,易证,分别以,,的正方向为轴,轴,轴的正方向建立空间直角坐标系.则,,,,,,由,及,得,所以,,. 设平面的一个法向量为,由得令,得m=(3,1,2) 设平面的一个法向量为,由得令,得. 所以又因为二面角是钝角,所以二面角的余弦值是.19. 某企业从某种型号的产品中抽取了件对该产品的某项指标的数值进行检测,将其整理成如图所示的频率分布直方图,已知数值在100~110的产品有2l件.(1)求和的值;(2)规定产品的级别如下表:已知一件级产品的利润分别为10,20,40元,以频率估计概率,现质检部门从该批产品中随机抽取两件,两件产品的利润之和为,求的分布列和数学期望;(3)为了了解该型号产品的销售状况,对该公司最近六个月内的市场占有率进行了统计,并绘制了相应的折线图,由折线图可以看出,可用线性回归模型拟合月度市场卢有率(%)与月份代码之间的关系.求关于的线性回归方程,并预测2017年4月份(即时)的市场占有率.(参考公式:回归直线方程为,其中,【答案】(1) (2)见解析(3)2017年4月份的市场占有率预计为【解析】试题分析:(1)第(1)问,根据频率公式求N,利用频率分布直方图的矩形的面积和为1求a. (2)第(2)问,先写出X的值,再列出分布列和求X的数学期望. (3)第(3)问,先利用最小二乘法求关于的线性回归方程,再预测2017年4月份(即时)的市场占有率.试题解析:(1)数值在100~110内的频率为,所以.又因为,所以.(2)由频率分布直方图,可知抽取的一件产品为,,等级的概率分别为,,,且的取值为20,30,40,50,60,80,则,,,,,,所以的分布列为所以.(3)由折线图中所给的数据计算,可得,,所以,所以,故月度市场占有率与月份序号之间的线性回归方程为.当时,.所以2017年4月份的市场占有率预计为.20. 已知抛物线(),直线与抛物线交于 (点在点的左侧)两点,且. (1)求抛物线在两点处的切线方程;(2)若直线与抛物线交于两点,且的中点在线段上,的垂直平分线交轴于点,求面积的最大值.【答案】(1) (2)【解析】试题分析:(1)第(1)问,先求出抛物线的方程得到,再求导求出切线斜率,最后求出抛物线在两点处的切线方程.(2)第(2)问,先利用弦长公式求出,再利用点到直线的距离求三角形的高,最后写出面积的表达式,再换元利用导数求它的最大值.试题解析:(1)由,令,得,所以,解得,,由,得,故所以在点的切线方程为,即,同理可得在点的切线方程为.(2)由题意得直线的斜率存在且不为0,故设,,,由与联立,得,,所以,,故.又,所以,所以,由,得且.因为的中点为,所以的垂直平分线方程为,令,得,即,所以点到直线的距离,所以.令,则,则,故.设,则,结合,令,得;令,得,所以当,即时,.点睛:本题有两个特点.一是计算量大,字母参数多,计算比较复杂,所以计算要认真仔细,需要有耐心. 二是综合性比较强,求切线的方程用到了导数的几何意义,后面求出后,换元得到一个新的函数,又利用了导数来研究函数的单调性.所以要求导数的知识熟练.21. 已知函数,,为自然对数的底数.(1)若函数在点处的切线为,求的值;(2)当时,若在区间上有两个零点,,试判断,,的大小关系.【答案】(1) (2)【解析】试题分析:(1)第(1)问,直接利用导数的几何意义求出的值. (2)第(2)问,先研究函数g(x)在的单调性得到它的两个零点的范围,,,再作差比较和的大小,最后利用函数的图像和性质比较和的大小.学.科.网...学.科.网...学.科.网...学.科.网...学.科.网...学.科.网...学.科.网...学.科.网...试题解析:(1)由题意,知,.因为,所以,即.又因为,所以.(2)由题意,知.因为,,由,得或.当时,,所以在区间上单调递增;当时,,所以在区间上单调递减;所以的极小值为.因为,且在区间上单调递减,所以.又因为,,所以存在,使得,所以存在,使得,且,所以,即.当时,,.令,,则,设,则在区间上恒成立,所以在区间上单调递增,所以,所以在区间上恒成立,即在区间上单调递增,故,所以当时,.又因为,在区间上单调递增,所以所以.点睛:本题的难点在比较和的大小. 本题利用了函数的图像和性质进行分析,分析出,得到时,.而,在区间上单调递增,所以,这个地方要结合图像理解清楚.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22. 选修4-4:坐标系与参数方程以平面直角坐标系的原点为极点,轴的正半轴为极轴,且两个坐标系取相等的长度单位.已知直线的参数方程为 (为参数),曲线的参数方程为(为参数),曲线的极坐标方程为.(1)求曲线和的公共点的极坐标;(2)若为曲线上的一个动点,求到直线的距离的最大值.【答案】(1) ,,, (2)【解析】试题分析:(1)第(1)问,先把曲线化成直角坐标方程,再解方程组得到两曲线交点的坐标,再把交点直角坐标化成极坐标. (2)第(2)问,利用参数方程设点,再求出到直线的距离,最后利用三角函数求它的最大值.试题解析:(1)因为曲线的参数方程为,(为参数)所以曲线的直角坐标方程为.因为,所以曲线的直角坐标方程为.两方程联立得或或或所以其极坐标分别为,,,.(2)直线的普通方程为.设点,则点到l的距离,当,即,时,.23. 选修4-5:不等式选讲已知函数.(1)解不等式:;(2)若函数的最小值为,且,试求的最小值.【答案】(1) (2)4【解析】试题分析:(1)第(1)问,直接利用零点分段讨论法解不等式. (2)第(2)问,先由题得到,再利用基本不等式求的最小值.试题解析:(1)可得当时,,即,所以无解;当时,,得,可得;当时,,得,可得.∴不等式的解集为.(2)根据函数,可知当时,函数取得最小值,可知,,∴.∴,当且仅当时,取得最小值为4.。
模拟试卷】衡水金卷2018年普通高等学校招生全国统一考试模拟试卷理科数学(二)试题Word版含答案
模拟试卷】衡水金卷2018年普通高等学校招生全国统一考试模拟试卷理科数学(二)试题Word版含答案2018年普通高等学校招生全国统一考试模拟试题理数(二)第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合$A=\{x|y=x^2-2x\}$,$B=\{y|x^2+1\}$,则$A\cap B=$()A。
$[1,+\infty)$B。
$[2,+\infty)$C。
$(-\infty,2]\cup[2,+\infty)$D。
$(-\infty,+\infty)$2.已知$a\in R$,且$a>0$,$i$是虚数单位,$\frac{a+i}{2+i}=2$,则$a=$()A。
4B。
32C。
19D。
253.已知$\theta$为直线$y=3x-5$的倾斜角,若$A(\cos\theta,\sin\theta)$,$B(2\cos\theta+\sin\theta,5\cos\theta-\sin\theta)$,则直线AB的斜率为()A。
3B。
-4C。
$\frac{11}{3}$D。
$-\frac{3}{4}$4.双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$的渐近线与抛物线$y=x^2+1$相切,则双曲线的离心率为()A。
2B。
3C。
$\sqrt{2}$D。
$\sqrt{5}$5.袋中装有4个红球、3个白球,甲、乙按先后次序无放回地各摸取一球,在甲摸到了白球的条件下,乙摸到白球的概率是()A。
$\frac{3}{11}$B。
$\frac{1}{2}$C。
$\frac{7}{25}$D。
$\frac{9}{25}$6.《算法统宗》是中国古代数学名著,由XXX所著,其中记载这样一首诗:九百九十九文钱,甜果苦果买一千,四文钱买苦果七,十一文钱九个甜,甜苦两果各几个?请XXX算莫迟疑!其含义为:用九百九十九文钱共买了一千个甜果和苦果,其中四文钱可以买苦果七个,十一文钱可以买甜果九个,请问究竟甜、苦果各有几个?现有如图所示的程序框图,输入$m,n$分别代表钱数和果子个数,则符合输出值$p$的为()A。
(衡水金卷)2018年普通高等学校招生全国统一考试模拟数学试题二 理(扫描版)
``
本文档仅供文库使用。
百度文库是百度发布的供网友在线分享文档的平台。
百度文库的文档由百度用户上传,需要经过百度的审核才能发布,百度自身不编辑或修改用户上传的文档内容。
网友可以在线阅读和下载这些文档。
百度文库的文档包括教学资料、考试题库、专业资料、公文写作、法律文件等多个领域的资料。
百度用户上传文档可以得到一定的积分,下载有标价的文档则需要消耗积分。
当前平台支持主流的doc(.docx)、.ppt(.pptx)、.xls(.xlsx)、.pot、.pps、.vsd、.rtf、.wps、.et、.dps、.pdf、.txt文件格式。
【衡水金卷】2018年普通高等学校招生全国统一考试模拟试题(二,压轴卷)数学(文)试题
2018年普通高等学校招生全国统一考试模拟试题文科数学(二)本试卷共4页,23题(含选考题)。
全卷满分1 50分。
考试用时1 20分钟。
第I 卷一、选择题:本题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合 题目要求的。
1.已知集合{}{}21,,26A x x n n N B x x ==-∈=-<<,则A B= A .{1,3,5) B .{一1,1,3,5) C .[一1,5] D .(--2,6) 2.下列各式的运算结果为2i 的是A .234i i i i +++B .3i i -C .(2)1i i +-D .13i i+3.现有甲、乙两台机床同时生产直径为40mm 的零件,各抽测10件进行测量,其结果如 下图,则不通过计算从图中数据的变化不能反映的数字特征是 A .极差 B .方差 C .平均数 D .中位数4.已知在底面为菱形的直四棱柱ABCD —A 1B 1C 1D 1中,AB=4,BD1=42,若∠BAD 60︒=,则异面直线B 1C 与AD 1所成的角为A .30︒B .45︒C .60︒D .90︒5.如图所示的图形中,每个三角形上各有一个数字,若六个三角形上的 数字之和为20,则称该图形是“和谐图形’’.已知其中四个三角形上的 数字之和为14.现从1,2,3,4,5中任取两个数字标在另外两个 三角形上,则恰好使该图形为“和谐图形’’的概率为A .310 B .15 C .110 D .3206.已知函数y =f (x )在区间(-∞,0)内单调递增,且f (-x )=f (x ),若a =3 1.2121(log ),(2),()2f b f c f -==,则a ,b ,c 的大小关系为A. a >c >bB. b >c >aC. b >a >cD. a >b >c 7.执行如图所示的程序框图,则输出的m 值为 A.6 B.7 C. 8 D. 9 8. 关于函数1()2sin()26f x x π=+的图象或性质的说法中,正确的个数为①函数f (x )的图象关于直线83x π=对称, ②将函数f (x )的图象向右平移3π个单位所得图象的函数为 1()2sin()23f x x π=+③函f (x ) 在区间5(,)23ππ-上单调递增 ④若f (x )=a ,则1cos()233ax π-=A.1B. 2C. 3D. 49.某几何体是由两个同底面的三棱锥组成,其三视图如图所示,则 该几何体外接球的面积为A. 2a πB. 22a πC. 23a πD. 24a π10.已知F 是抛物线C:y 2=16x 的焦点,过F 点作x 轴的垂线与抛物线在第一象限的交点为P ,过P 点作直线x =-6的垂线,垂足为M ,直线x =-6与x 轴的交点为K ,在四边形KFPM 内作椭圆E.则面积最大的椭圆E 的内接矩形的最大面积为A. 42B. 62C.32D.4011.在△ABC 中,内角A 、B 、C 的对边分别为a 、b 、c ,若△ABC 的面积为S ,且a =1,4S b 2+c 2-1,则△ABC 外接圆的面积为 A. 4π B. 2π C.π D.2π12.已知函数f (x )是定义在区间(0,)+∞上的可导函数,f (x )为其导函数,当x >0且2x ≠时,'(2)[2()()]x f x xf x -+<0,若曲线y =f (x )在点(2.f (2))处的切线的斜 率为一4,则f (2)的值为A. 4B. 6C. 8D. 10第Ⅱ卷本卷包括必考题和选考题两部分。
衡水金卷2018年普通高等学校招生全国统一考试 分科综合卷 理科数学模拟试题2
2018 年普通高等学校招生全国统一考试模拟试题理数(二)第Ⅰ卷(共 60 分)一、选择题:本大题共 12 个小题,每小题 5 分,共 60 分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合,,则()A.B.C.D.【答案】B【解析】∵,∴故选:B2. 已知 ,且 是虚数单位,,则 ( )A. 4 B.C.D.【答案】C【解析】,由题意知:,解得:故选:C3. 已知 为直线的倾斜角,若,则直线 的斜率为( )A. 3 B. -4 C.D.【答案】D第1页/共22页【解析】由题意知: , 故选:D4. 双曲线的渐近线与抛物线()A.B.【答案】DC.D.【解析】由题意,知双曲线的一条渐近线为. 相切,则双曲线的离心率为联立,得到:,由相切,得,解得: ,∴ .故选:D 点睛:解决椭圆和双曲线的离心率的求值及范围问题其关键就是确立一个关于 a, b,c 的方程或不等式,再根据 a,b,c 的关系消掉 b 得到 a,c 的关系式,建立 关于 a,b,c 的方程或不等式,要充分利用椭圆和双曲线的几何性质、点的坐标 的范围等. 5. 袋中装有 4 个红球、3 个白球,甲、乙按先后次序无放回地各摸取一球,在甲 摸到了白球的条件下,乙摸到白球的概率是( )A.B.C.D.【答案】B【解析】用 A 表示甲摸到白球,B 表示乙摸到白球,则∴.故选:B,,第2页/共22页6. 《算法统宗》是中国古代数学名著,由程大位所著,其中记载这样一首诗:九 百九十九文钱,甜果苦果买一千,四文钱买苦果七,十一文钱九个甜,甜苦两果 各几个?请君布算莫迟疑!其含义为:用九百九十九文钱共买了一千个甜果和苦 果,其中四文钱可以买苦果七个,十一文钱可以买甜果九个,请问究竟甜、苦果 各有几个?现有如图所示的程序框图,输入 分别代表钱数和果子个数,则符合 输出值 的为( )A. 为甜果数 343 B. 为苦果数 343C. 为甜果数 657 D. 为苦果数 657【答案】B【解析】由题意知,,,即若按全是甜果来算钱超出 文,一个苦果和一个甜果差价位 ,则 p 为苦果数,.故选:B7.在区间 内的所有零点之和为( )A.B.C.D.【答案】C第3页/共22页【解析】函数零点即与 图象交点的横坐标,在区间象有两个交点,由得:,取于 对称,故两个零点的和为,.故选:C内,与图,可知两个交点关8. 已知恒成立,若 为真命题,则实数 的最小值为( )A. 2 B. 3 C. 4 D. 5 【答案】A【解析】化为,即 有,又 时,的最小值为 2,故由存在性的意义知 .故实数 的最小值为 2. 故选:A 9. 已知某几何体的三视图如图所示,则该几何体的体积为( )A.B.C.D.【答案】B【解析】由三视图,可知该几何体为一个半圆柱与一个三棱锥结合而成的(如图第4页/共22页所示).半圆柱的底面半径为 1,侧棱长为 2,三棱锥的底面为半圆柱的底面的内接直角三角形,直角边长为 ,两个侧面是全等的等腰三角形,腰长为 2,底边为 ,另一个侧面是边长为 2 的等边三角形,因此.故选:B点睛:三视图问题的常见类型及解题策略(1)由几何体的直观图求三视图.注意正视图、侧视图和俯视图的观察方向,注意看到的部分用实线表示,不能看到的部分用虚线表示.(2)由几何体的部分视图画出剩余的部分视图.先根据已知的一部分三视图,还原、推测直观图的可能形式,然后再找其剩下部分三视图的可能形式.当然作为选择题,也可将选项逐项代入,再看看给出的部分三视图是否符合.(3)由几何体的三视图还原几何体的形状.要熟悉柱、锥、台、球的三视图,明确三视图的形成原理,结合空间想象将三视图还原为实物图.10. 如图为正方体,动点 从 点出发,在正方体表面上沿逆时针方向运动一周后,再回到 ,运动过程种,点 与平面 的距离保持不变,运动的路程 与之间满足函数关系 ,则此函数图象大致是( )A.B.C.D.第5页/共22页【答案】C【解析】取线段 中点为 N,计算得:.同理,当 N 为线段 AC 或 C 的中点时,计算得.符合 C 项的图象特征.故选:C11. 抛物线的准线交 轴于点 ,过点 的直线交抛物线于 两点, 为抛物线的焦点,若,则直线 的斜率 为( )A. 2 B.C.D.【答案】D【解析】易知直线 的斜率存在,且不为零.设得,即 ,带入 ,由 得:,设,,由韦达定理得,由题知,得,,把,带入整理,得故选:D12. 已知函数,其中 为自然对数的底数,若有两个零点,则实数 的取值范围是( )A.B.C.D.【答案】C 【解析】画出 与 的大致图象,如图,第6页/共22页①先求 时,与相切时的 a 值:设切点为 ,则,解得: , ,把,得 ;②再求 时, 与 有唯一公共点 ,且在此点有公切线时的 a 值:,解得: ,而显然是增函数,故是唯一的解,此时,把,得 ,函数 的图象是由 的图象向左平移 1 个单位,再向上平移 a 个单位(或向下平移-a 个单位),由图象可知:时, 仅在 上与 有两个公共点;③把 代入得 ,可知 时, 与 在区间 和内各有一个交点综上,实数 的取值范围是故选:C点睛:已知函数有零点求参数取值范围常用的方法和思路(1)直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围;(2)分离参数法:先将参数分离,转化成求函数值域问题加以解决;(3)数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解.第Ⅱ卷(共 90 分)二、填空题(每题 5 分,满分 20 分,将答案填在答题纸上)第7页/共22页13. 若向量, 是椭圆上的动点,则的最小值为_________.【答案】【解析】设,则,当 时,取最小值为 .故答案为:14. 已知 满足,则 的取值范围是__________.【答案】【解析】如图,阴影部分即为不等式表示的区域,的几何意义是:可行域中的点与点 连线的斜率,且点 在直线上,由图形可得最小值为 1,最大值为过点 且与抛物线相切的直线的斜率.设切点为 ,则,把 代入,解得 或 5,由图可知 不合题意,舍去,故切线斜率为 ,∴ 的取值范围为故答案为:点睛:线性规划问题,首先明确可行域对应的是封闭区域还是开放区域、分界线是实线还是虚线,其次确定目标函数的几何意义,是求直线的截距、两点间距离的平方、直线的斜率、还是点到直线的距离等等,最后结合图形确定目标函数最值取法、值域范围.第8页/共22页15. 中,角 的对边分别为,当 最大时,__________.【答案】【解析】,当且仅当 ,取等号,∴∠C 的最大值为 75°,此时 sinC= ,,∴.故答案为: 16. 3 位逻辑学家分配 10 枚金币,因为都对自己的逻辑能力很自信,决定按以下 方案分配: (1)抽签确定各人序号:1,2,3; (2)1 号提出分配方案,然后其余各人进行表决,如果方案得到不少于半数的人同 意(提出方案的人默认同意自己方案),就按照他的方案进行分配,否则 1 好只 得到 2 枚金币,然后退出分配与表决; (3)再由 2 号提出方案,剩余各人进行表决,当且仅当不少于半数的人同意时(提 出方案的人默认同意自己方案),才会按照他的提案进行分配,否则也将得到 2 枚金币,然后退出分配与表决; (4)最后剩的金币都给 3 号. 每一位逻辑学家都能够进行严密的逻辑推理,并能很理智的判断自身的得失,1 号为得到最多的金币,提出的分配方案中 1 号、2 号、3 号所得金币的数量分别 为__________.第9页/共22页【答案】9,0,1【解析】先看一下个人的利益最大化:①3 号:如果 1 号的方案被否定,此时剩余金币有 8 枚,那么 2 号的方案必然是 2 号 8 枚,3 号 0 枚,然后 2 号方案不低于半数通过,②由①的分析可知,只要 1 号的分配方案分配给 3 号的金币数量多于 0,3 号就会同意,方案就会通过,所以 1 号的利益最大化的分配方案是 1 号,2 号,3 号所得金币数量分别是 9,0,1.故答案为:9,0,1三、解答题 (本大题共 6 小题,共 70 分.解答应写出文字说明、证明过程或演算步骤.)17. 已知数列 满足,且 .(1)求数列 的通项公式;(2)求的值.【答案】(1);(2).【解析】试题分析:(1)由,作差易得:差数列,即可得到数列 的通项公式;(2)利用错位相减法求出的值.试题解析:(1)当 时,由,得,, 为等第10页/共22页两式相减得.由 ,得,故 为等差数列,公差为 2.当 时,由,所以.(2)易知,,两式相减得,,所以.点睛:用错位相减法求和应注意的问题(1)要善于识别题目类型,特别是等比数列公比为负数的情形;(2)在写出“Sn”与“qSn”的表达式时应特别注意将两式“错项对齐”以便下一步准确写出“Sn-qSn”的表达式;(3)在应用错位相减法求和时,若等比数列的公比为参数,应分公比等于 1 和不等于 1 两种情况求解.18. 某校高三年级有 1000 人,某次考试不同成绩段的人数,且所有得分都是整数.(1)求全班平均成绩;(2)计算得分超过 141 的人数;(精确到整数)(3)甲同学每次考试进入年级前 100 名的概率是 ,若本学期有 4 次考试, 表示进第11页/共22页入前 100 名的次数,写出 的分布列,并求期望与方差.参考数据:.【答案】(1);(2)23 人;(3)见解析.【解析】试题分析:(1)由易知全班平均成绩;(2)由正太分布曲线的对称性易得,从而计算出得分超过 141 的人数;(3) 的取值为 0,1,2,3,4,计算出相应的概率值,利用公式即可算得期望与方差.试题解析:(1)由不同成绩段的人数服从正态分布,可知平均成绩 .(2),故 141 分以上的人数为人.(3) 的取值为 0,1,2,3,4,,,,,, 故 的分布列为01234第12页/共22页期望,方差.19. 已知在直角梯形 中,,,使二面角为直角.,将 沿 折起至(1)求证:平面 平面 ;(2)若点 满足,,当二面角为 45°时,求 的值.【答案】(1)见解析;(2) .【解析】试题分析:(1)要证平面平面 ,转证 平面 即可;(2)建立空间直角坐标系计算平面的法向量,利用二面角为 45°建立等量关系求出 的值............................试题解析:(1)梯形 中,∵∴.又∵,∴,∴.∴.折起后,∵二面角为直角,∴平面 平面 .又平面 平面,第13页/共22页∴ 平面 .又 平面 ,∴.又∵,∴ 平面 .又∵ 平面 ,∴平面 平面 .(2)由(1)知, 平面,∴以 为原点,轴正方向,建立如图所示的空间直角坐标系 .方向分别为 轴、 轴、则,设,由,得,得.取线段 的中点 ,连结 ,则,∵,∴.又∵,∴ 平面 .∴平面 的一个法向量为.第14页/共22页设平面 的一个法向量为,则取 ,则.∴,即或.∵ ,∴ .20. 如图,矩形 中,且点.,交于(1)若点 的轨迹是曲线 的一部分,曲线 关于 轴、 轴、原点都对称,求曲线 的 轨迹方程; (2)过点 作曲线 的两条互相垂直的弦 ,四边形 的面积为 ,探究是否为定值?若是,求出此定值,若不是,请说明理由.【答案】(1)曲线 的轨迹方程为;(2)为定值 .【解析】试题分析:(1)可得 M(﹣2,2λ),N(﹣2+4λ,2),,设 Q(x,y),整理得:,即可得曲线 P 的轨迹方程为;(2)设直线 的斜率为 ,把代入椭圆方程,化简整理得.利用韦达定理易得四边形 GFHE 的面积为第15页/共22页,试题解析:(1)设 ,由,求得,∵,∴,∴,整理得.,所以,可知点 的轨迹为第二象限的 椭圆,由对称性可知曲线 的轨迹方程为.(2)设,当直线 斜率存在且不为零时,设直线 的斜率为 ,把代入椭圆方程,化简整理得.,. ∴.∵,∴把 换成 ,即得.第16页/共22页∴, ,,∴.当直线 斜率不存在或为零时,.∴为定值 .点睛:求定值问题常见的方法①从特殊入手,求出定值,再证明这个值与变量无关. ②直接推理、计算,并在计算推理的过程中消去变量,从而得到定值.21. 已知函数,其中 为自然对数的底数.(1)若 有极值点,求证:必有一个极值点在区间 内;(2)求证:对任意,有.【答案】(1)见解析;(2)见解析.【解析】试题分析:(1)易知,设,若 有极值点,则 有两个不相等的实根;(2)对任意,有等价于,记可得: ,即证.试题解析:第17页/共22页(1)易知,设,若 有极值点,则 有两个不相等的实根,∴,∴或,此时,,∴ 有两个零点,且有一个在区间 内.即 有一个极值点在区间 内.(2)由,得,得,.∴只需证.令,则.∴当 时, 为增函数,∴,即 .∴只需证,即证,令第18页/共22页则,∴当 时, 为增函数,∴,即.∴原不等式成立.22. 在平面直角坐标系 中,以坐标原点为极点, 轴正半轴为极轴,取相同的长度单位建立极坐标系,曲线 的极坐标方程为.(1)求曲线 的直角坐标方程;(2)在平面直角坐标系中,将曲线 的纵坐标不变,横坐标变为原来的 2 倍,得到曲线 ,过点 作直线 ,交曲线 于 两点,若,求直线 的斜率.【答案】(1);(2)线 的斜率为 .【解析】试题分析:(1)利用把极坐标方程化为直角坐标方程;(2)设直线 的参数方程为( 为参数,),代入曲线 的方程,整理得,利用韦达定理可得,得 同向共线. 由可得直线的斜率.试题解析:(1)由,得,将,代入整理得.(2)把中的 换成 ,即得曲线 的直角坐标方程.设直线 的参数方程为( 为参数,),代入曲线 的方程,整理得,,第19页/共22页. 设 两点所对应的参数分别为 , 则 为上述方程的两个根.由,得 同向共线. 故由.由,得,即直线 的斜率为 .23. 已知,且.(1)的最小值;(2)证明:.【答案】(1)最小值为 9;(2)见解析.【解析】试题分析:(1)利用柯西不等式求出的最小值;(2)由,得.同理得累加即可得结果. 试题解析:(1)由柯西不等式,得当且仅当时,取等号.,.,第20页/共22页所以的最小值为9.(2)由,得.同理得,.三式相加得,∴,当且仅当时,取等号.。
衡水金卷高考模拟卷(二)数学(文)试题Word版含答案
3.函数fIn 2x 1的定义域为(1,2C .1 2D .1,2 122’2的算法.所谓割圆术,就是不断倍增圆内接正多边形的边数求出圆周率的方法.如图是刘徽利衡水金卷高考模拟卷(二)数学(文)试题 Word 版含答案2018年普通高等学校招生全国统一考试模拟试题(衡水金卷调研卷)文数二第I 卷(共60 分)、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项 中,只有一项是符合题目要求的A. 第一象限B. 第二象限C. 第三象限D. 第四象限)4.三世纪中期,魏晋时期的数学家刘徽首创割圆术,为计算圆周率建立了严密的理论和完善 用正六边形计算圆周率时所画的示意图,现项园中随机投掷一个点,则该点落在正六边形内垂直,且焦点在圆图所示是一种榫卯的三视图,其表面积为 ()(LU 是虚数单位)已知复数H 满足z 1 i,则复数LZ 在复平面内对应的点所在象限为2. ・2018i~ 2图所示是一种榫卯的三视图,其表面积为()2 22 22 2 x i B. x 乂 1C. x乂 19 1616 93 46.执行如图所示的程序框图,若输入的 |t 0.05],则输出的为(7. 已知数列邑|的前[n 项和为 囱,3,寻! 2不,则口() A.閭 B .閭 C .団 D .団8. 已知将函数f x sin 2 x —0的图象向左平移6A JB .1_,0C .1D□L61 1L±__ 1 1121112 19.榫卯是在两个木构件上所采用的一中凹凸结合的连接方式,凸出部分叫 榫,凹进部分叫卯,A. 3 B4 C .5 D . 6个单位长度得到函数 |g x 的图 象,若函数|g x 图象的两条相邻的对称轴间的距离为 ()l g x的一个对称中心为~ 2榫和卯咬合,起到连接作用,代表建筑有:北京的紫禁城、天坛祈年殿、山西悬空寺等,女口图所示是一种榫卯的三视图,其表面积为()A. 8 12 B . 8 16 C9 12 D . 9 16当且仅当x y 1时,10.已知实数竺满足约束条件目标函数z kx y取大值,则实数卜的取值范围是()A. ,1 B 1 C . 1, D 1,11.已知a 0 命题[p:函数f x lg ax22x 3的值域为[R,命题[q]函数区间1,内单调递增.若p q是真命题,则实数回的取值范围是()y轴对称的点,则实数的取值范围是()A J_R|B e, D .口第U卷(共90分)、填空题(每题5分,满分20分,将答案填在答题纸上)13.已知在ABC中, I D I为BC边上的点,uuu our 亠———2BD CD 0,若AD mAB nAC m,n R,则uctr non un14.已知焦点在因轴上的椭圆一2心率为2 2x y2 m2m 11的一个焦点在直线忌y 2 0上,则椭圆的离15. 在锐角丨ABC中,角A,B,C所对的边分别为a,b,c,若si n Ceos A sin B 1 cosC,且A 3,b V1 2 3,贝y i_c_____________ .316. 如图,在矩形| ABCD ]中,| AD 2|,囘为两边上的点,项将| ADE|沿[5目翻折至| A DE |,使得点区在平面|EBCD上的投影在[CD上,且直线込可与平面[EBCD ]所成角为西,则线段AE的长为___________ .三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. 已知等差数列_aj的前丄项和为0,(1)求数列a n的通项公式;(2)若数列b n满足18.如图,四棱锥P ABCD的底面ABCD是边长为2的正方形,平面PAB平面ABCD占:叵I是而的中点,棱两与平面[BCE交于点眉.1求证:|AD //EF ;2若匚PAB]是正三角形,求三棱锥|P BEF|的体积.19. 某市统计局就某地居民的收入调查了10000人,并根据所得数据画出样本的频率分布直方图(每个分组包括左端点,不包括右端点,如第一组表示收入在1000,1500 )a-i 5,3a5 a g & .(1) 求居民收入在 3000,3500的频率;(2) 根据频率分布直方图算出样本数据的中位数及样本数据的平均数; (3) 为了分析居民的收人与年龄、职业等方面的关系,必须按月收入再从这 10000人中按分层抽样方法抽出100人作进一步分析,则月收入在2500,3000内应抽取多少人?20. 已知点F 为抛物线|c :y 2 2px p 刁的焦点,过[F 的直线0交抛物线于 区回两点• (1)若直线0的斜率为1, || AB| 8,求抛物线 回的方程;,__, ----------- ------------------------------- ---- uur uui|(2) 若抛物线 回的准线与門轴交于点P 1,0 , S A PF :S BPF 2 V 3 :1,求| PA P B |的值•21. 已知函数 f x ln x x 2 ax,a R .(1) 当|a 11时,求曲线 匚打在区二处的切线方程;(2) 若xix 为X 2是函数的导函数f x 的两个零点,当a , 3时,求证:3f x 1 f x 2一 In 2 .4请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22. 选修4-4 :坐标系与参数方程(凶为参数),以原点LO 为 极点,凶轴的正半轴为极轴建立极坐标系,曲线 直的极坐标方程为(1) 求曲线 回的普通方程与 哇的直角坐标方程; (2) 判断曲线[GG ]是否相交,若相交,求出相交弦长 23. 选修4-5 :不等式选讲 已知函数rnx —.(1)求不等式f x 0的解集;(2)若对任意的x m,,都有f x x m 成立,求实数四的取值范围x 2t 1 y 4t 3在平面直角坐标系|xOy 中,已知曲线 匕的参数方程为试卷答案一、选择题1-5: CBDAB 6-10: CCDBB 11 、12:DC二、填空题13. - 14. - 15. [73 16.3| |3|三、解答题17.解:(1)设等差数列匕i的公差为同,由a1 5,3a5 a S6 ,6 5得 3 5 4d 5 8d 6 5 匕上d,______________________________________________解得|d 2 .所以a n a1n 1 d 5 2 n 1 2n 3 n N* .(2)由(1)得,ib—a^ —.又因为b n i an &所以当 n 2 时,b n a n a n 1 2n 3 2n 1 当In 1时,b i 5 3 15,符合上式, 所以 b n2n 3 2n 11 1 1 11 b n2n 3 2n 1 2 2n 1 2n 318. 解:(1 )因为底面 ABCD 是边长为2的正方形, 所以BC//AD所以BC//平面PADB ,C ,E ,F 四点共面,且平面 BCEF平面 PAD EF所以BC//EF 又因为 |BC //AD ,所以 |AD //EF . (2)因为|AD //EF |,点E 是[PD ]的中点, 所以点回为画的中点,EF 丄AD 1 .— 2PAB 平面 ABCD ,平面 PAB 平面 ABCD AB, AD AB所以|AD |平面|PAB |,所以| EF |平面|PAB19.解:(1)由题知,月收入在 3000,3500的频率为0.0003 500 0.15(2)从左数第一组的频率为 0.0002 500 0.1,第二组的频率为 0.0004 500 0.2•••中位数在第三组, 设中位数为|2000 x 则| x 0.0005 0.5 0.10.2,解得 |x 400所以 T n11111——_ _ _ L 2 3 5 5 71 1 2n 1 2n 31 1 1 n 232n 33 2n 3又因为BC平面PAD ,AD 平面PAD第三组的频率为|0.0005 500 0.25•••中位数为2400.由 1250 0.1 1750 0.2 2250 0.25 2750 0.25 3250 0.15 3750 0.05 2400得样本数据的平均数为2400.(3)月收入在 2500,3000 的频数为 0.25 10000 2500 (人),•••抽取的样本容量为 100,设[AB ]两点的坐标分别为 | X A , y A , X B 』B 则 X A X B 3p由抛物线的性质,可得I AB |FA| |F B X A X BX A X B P 4p 8解得—2, 所以抛物线回的方程为y 2 4x (2)由题意,得F 1,0,抛物线C :y 2 4x 设直线[]的方程为 [x ―my —1, A X 1, y 1 , B X 2, y 2 联立x ? my 1,得y 2厶口丫 4。
【衡水金卷压轴卷】2018年普通高等学校招生全国统一考试模拟试题文科数学(二)试题(解析版)
2018年普通高等学校招生全国统一考试模拟试题文科数学(二)第Ⅰ卷一、选择题:本大题共12个小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合,,则()A. B. C. D.【答案】B【解析】【分析】由A与B,求出两集合的交集即可【详解】因为集合,所以,故选:.【点睛】此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.2. 下列各式的运算结果为的是()A. B. C. D.【答案】D【解析】【分析】利用复数形式的代数运算化简各选项即可得到答案.【详解】;;.故选:.【点睛】复数的运算,难点是乘除法法则,设,则,.3. 现有甲、乙两台机床同时生产直径为的零件,各抽测件进行测量,其结果如下图,则不通过计算从图中数据的变化不能反映的数字特征是()A. 极差B. 方差C. 平均数D. 中位数【答案】C【解析】【分析】根据频数分布折线图逐一进行判断即可.【详解】由于极差反映了最大值与最小值差的关系,方差反映数据的波动幅度大小关系,平均数反映所有数据的平均值的关系,中位数反映中间一位或两位平均值的大小关系,因此由图可知,不通过计算不能比较平均数大小关系.故选:.【点睛】平均数与方差都是重要的数字特征,是对总体的一种简明的描述,它们所反映的情况有着重要的实际意义,平均数、中位数、众数描述其集中趋势,方差和标准差描述其波动大小,方差或标准差越小,则数据分布波动较小,相对比较稳定.4. 已知在底面为菱形的直四棱柱中,,若,则异面直线与所成的角为()A. B. C. D.【答案】D【解析】【分析】连接交于点,(或其补角)为异面直线与所成的角,转化到三角形中即可求出. 【详解】连接,四边形为菱形,,.又为直角三角形,,得,四边形为正方形.连接交于点,(或其补角)为异面直线与所成的角,由于为正方形,,故异面直线与所成的角为.故选:.【点睛】求异面直线所成角的步骤:1平移,将两条异面直线平移成相交直线.2定角,根据异面直线所成角的定义找出所成角.3求角,在三角形中用余弦定理或正弦定理或三角函数求角.4结论.5. 如下图所示的图形中,每个三角形上各有一个数字,若六个三角形上的数字之和为,则称该图形是“和谐图形”,已知其中四个三角形上的数字之和为.现从中任取两个数字标在另外两个三角形上,则恰好使该图形为“和谐图形”的概率为()A. B. C. D.【答案】B【解析】【分析】由“和谐图形”得到满足题意的情况共两种,利用古典概型概率公式即可求出.【详解】由题意可知,若该图形为“和谐图形”,则另外两个三角形上的数字之和恰为.从中任取两个数字的所有情况有,,,共种,而其中数字之和为的情况有,共种,所以所求概率.故选:.【点睛】有关古典概型的概率问题,关键是正确求出基本事件总数和所求事件包含的基本事件数:1.基本事件总数较少时,用列举法把所有基本事件一一列出时,要做到不重复、不遗漏,可借助“树状图”列举;2.注意区分排列与组合,以及计数原理的正确使用.6. 已知函数在区间内单调递增,且,若,,,则的大小关系为()A. B.C. D.【答案】B【解析】【分析】利用奇偶性把自变量转化到同一单调区间即可比较大小.【详解】,且,.又在区间内单调递增,且为偶函数,在区间内单调递减,,.故选:.【点睛】对于比较大小、求值或范围的问题,一般先利用函数的奇偶性得出区间上的单调性,再利用其单调性脱去函数的符号“f”,转化为考查函数的单调性的问题或解不等式(组)的问题,若为偶函数,则,若函数是奇函数,则.7. 执行如图所示的程序框图,则输出的值为()A. B. C. D.【答案】C【解析】【分析】模拟程序的运行,可得程序框图的功能,结合已知进而计算得解m的值.【详解】初始值:,第一次运行:;第二次运行:;第三次运行:;第四次运行:,运行终止,因此输出.故选:.【点睛】本题主要考查程序框图的循环结构流程图,属于中档题. 解决程序框图问题时一定注意以下几点:(1) 不要混淆处理框和输入框;(2) 注意区分程序框图是条件分支结构还是循环结构;(3) 注意区分当型循环结构和直到型循环结构;(4) 处理循环结构的问题时一定要正确控制循环次数;(5) 要注意各个框的顺序,(6)在给出程序框图求解输出结果的试题中只要按照程序框图规定的运算方法逐次计算,直到达到输出条件即可.8. 关于函数的图象或性质的说法中,正确的个数为()①函数的图象关于直线对称;②将函数的图象向右平移个单位所得图象的函数为;③函数在区间上单调递增;④若,则.A. B. C. D.【答案】A【解析】【分析】①令得到对称轴,即可作出判断;②根据平移变换知识可知正误;③求出其单调增区间即可作出判断;④利用配角法即可得到结果.【详解】令,解得,当时,得到,故①正确;将函数的图象向右平移个单位,得,故②错误;令,故③错误;若,则,故④错误.故选:.【点睛】函数的性质(1) .(2)周期(3)由求对称轴(4)由求增区间;由求减区间.9. 某几何体是由两个同底面的三棱锥组成,其三视图如下图所示,则该几何体外接球的面积为()A. B. C. D.【答案】C【解析】【分析】由三视图可得该几何体为同底面不同棱的两个三棱锥构成,补成正方体即可求出该几何体外接球的面积【详解】由题可知,该几何体是由同底面不同棱的两个三棱锥构成,其中底面是棱长为的正三角形,一个是三条侧棱两两垂直,且侧棱长为的正三棱锥,另一个是棱长为的正四面体,如图所示:该几何体的外接球与棱长为的正方体的外接球相同,因此外接球的直径即为正方体的体对角线,所以,所以该几何体外接球面积,故选:.【点睛】空间几何体与球接、切问题的求解方法(1)求解球与棱柱、棱锥的接、切问题时,一般过球心及接、切点作截面,把空间问题转化为平面图形与圆的接、切问题,再利用平面几何知识寻找几何中元素间的关系求解.(2)若球面上四点P,A,B,C构成的三条线段PA,PB,PC两两互相垂直,且PA=a,PB=b,PC=c,一般把有关元素“补形”成为一个球内接长方体,利用4R2=a2+b2+c2求解.10. 已知是抛物线的焦点,过点作轴的垂线与抛物线在第一象限的交点为,过点作直线的垂线,垂足为,直线与轴的交点为,在四边形内作椭圆,则面积最大的椭圆的内接矩形的最大面积为()A. B. C. D.【答案】D【解析】【分析】明确四边形的边长,在其内作面积最大的椭圆应与各边相切,可知所作的椭圆的长半轴长为,短半轴长为,利用三角换元知识即可得到最值.【详解】由,得,即,则,当时,,所以,则四边形为边长分别为与的矩形,故在其内作面积最大的椭圆应与各边相切,可知所作的椭圆的长半轴长为,短半轴长为,又在椭圆内作内接矩形的最大面积记为,易知 (为参数),因此,故选:.【点睛】圆锥曲线中最值与范围问题的常见求法:(1)几何法:若题目的条件和结论能明显体现几何特征和意义,则考虑利用图形性质来解决;(2)代数法:若题目的条件和结论能体现一种明确的函数关系,则可首先建立目标函数,再求这个函数的最值.在利用代数法解决最值与范围问题时常从以下几个方面考虑:①利用判别式来构造不等关系,从而确定参数的取值范围;②利用隐含或已知的不等关系建立不等式,从而求出参数的取值范围;③利用基本不等式求出参数的取值范围;④利用函数的值域的求法,确定参数的取值范围.11. 在中,内角的对边分别为.若的面积为,且,,则外接圆的面积为()A. B. C. D.【答案】D【解析】【分析】由余弦定理与面积公式结合条件可得∠A的值,然后利用正弦定理可得外接圆的直径,进而得到外接圆的面积.【详解】在中,由余弦定理,得,既有,又由面积公式,得,即有,又,所以,所以.因为,所以,又由正弦定理,得,其中为外接圆的半径,由及,得,所以外接圆的面积.故选:.【点睛】本题主要考查正弦定理、余弦定理在解三角形中的应用,属于中档题. 正弦定理是解三角形的有力工具,其常见用法有以下三种:(1)知道两边和一边的对角,求另一边的对角(一定要注意讨论钝角与锐角);(2)知道两角与一个角的对边,求另一个角的对边;(3)证明化简过程中边角互化;(4)求三角形外接圆半径.12. 已知函数是定义在区间上的可导函数,为其导函数,当且时,,若曲线在点处的切线的斜率为,则的值为()A. B. C. D.【答案】A【解析】【分析】令g (x )=x 2f (x ),讨论x >2,0<x <2时,g (x )的单调区间和极值点,可得g′(2)=0,即有f (2)+f′(2)=0,由f′(2)=﹣4,即可得出.【详解】当且时,,可得时,;时,,令,,则,可得当时, ;当时,,所以函数在处取得极大值,所以,又,所以.故选:.【点睛】用导数解抽象函数不等式,实质是利用导数研究对应函数单调性,而对应函数需要构造.构造辅助函数常根据导数法则进行:如构造;如构造;如构造;如构造等.第Ⅱ卷二、填空题:本题共4小题,每小题5分.13. 已知向量,其中,且与垂直,则的值为__________.【答案】【解析】 【分析】利用平面向量坐标运算法则先求出,再由+与垂直,能求出实数x 的值.【详解】由题可知, ,因为与垂直,所以,即,即.故答案为:【点睛】本题考查实数值的求法,考查平面向量坐标运算法则、向量垂直等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,是基础题.14. 过双曲线的右焦点作渐近线的垂线,垂足为,且该直线与轴的交点为,若(为坐标原点),则双曲线的离心率的取值范围为__________. 【答案】【解析】 【分析】由可得从而得到双曲线的离心率.【详解】不妨设渐近线方程为,右焦点,则点到渐近线的距离为.又在方程中,令,得,所以.由|FP<OQ|,可得,可得,即得,又因为,所以.故答案为:【点睛】本题考查了双曲线的几何性质——离心率的求解,其中根据条件转化为圆锥曲线的离心率的方程,得到a,c 的关系式是解得的关键,对于双曲线的离心率(或离心率的取值范围),常见有两种方法:①求出a,c,代入公式;②只需要根据一个条件得到关于a,b,c的齐次式,转化为a,c的齐次式,然后转化为关于e的方程(不等式),解方程(不等式),即可得e (e的取值范围).15. 已知曲线的方程为,过平面上一点作的两条切线,切点分别为,且满足.记的轨迹为,过平面上一点作的两条切线,切点分别为,且满足.记的轨迹为,按上述规律一直进行下去,…,记,且为数列的前项和,则满足的最小正整数为__________.【答案】5【解析】【分析】由题意可知轨迹分别是半径为的圆,故,求出,解不等式足即可.【详解】由题设可知轨迹分别是半径为的圆.因为,所以,所以.由,得,故最小的正整数为.故答案为:5【点睛】本题考查等比数列的通项公式与求和公式,考查数列递推公式、两点间距离公式、直线与圆相切的性质、勾股定理等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,是中档题.16. 某儿童玩具生产厂一车间计划每天生产遥控小车模型、遥控飞机模型、遥控火车模型这三种玩具共个,生产一个遥控小车模型需分钟,生产一个遥控飞机模型需分钟,生产一个遥控火车模型需分钟,已知总生产时间不超过分钟,若生产一个遥控小车模型可获利元,生产一个遥控飞机模型可获利元,生产一个遥控火车模型可获利元,该公司合理分配生产任务可使每天的利润最大,则最大利润是__________元【答案】【解析】【分析】依题意,每天安排生产个遥控小车模型,个遥控飞机模型,则生产个遥控火车,根据题意即可得出每天的利润;先根据题意列出约束条件,再根据约束条件画出可行域,设,再利用z的几何意义求最值.【详解】设每天安排生产个遥控小车模型,个遥控飞机模型,则生产个遥控火车模型,依题得,实数满足线性约束条件目标函数为,化简得,作出不等式组表示的可行域(如图所示):作直线,将直线向右上方平移过点时,直线在y轴上的截距最大,由得所以,此时(元).故答案为:5000【点睛】本题考查线性规划的实际应用,在解决线性规划的应用题时,其步骤为:①分析题目中相关量的关系,列出不等式组,即约束条件,②由约束条件画出可行域,③分析目标函数Z与直线截距之间的关系,④使用平移直线法求出最优解,⑤还原到现实问题中.三、解答题:解答应写出文字说明,证明过程或演算步骤.17. 设正项等比数列的前项和为,已知.(1)记,判断:数列是否成等差数列,若是,请证明;若不是,请说明理由;(2)记,数列的前项和为,求满足的最小正整数的值.【答案】(1)见解析(2)【解析】【分析】(1)设等比数列的首项为,公比为,求出进而得到,结合等差数列定义即可作出判断;(2)由(1)可知,.利用裂项相消法求出,即可求出最小正整数的值.【详解】(1)设等比数列的首项为,公比为,由,得(舍).当时,,所以.所以,所以,则,所以,因此,且,故数列是首项为,公差为的等差数列.(2)由(1)可知,.则.令,解得,又,所以.【点睛】裂项相消法是最难把握的求和方法之一,其原因是有时很难找到裂项的方向,突破这一难点的方法是根据式子的结构特点,常见的裂项技巧:(1);(2);(3);(4);此外,需注意裂项之后相消的过程中容易出现丢项或多项的问题,导致计算结果错误.18. 如图,在四棱锥中,底面,,,以为圆心,为半径的圆过点.(1)证明:平面;(2)若,求三棱锥的体积.【答案】(1)见解析(2)【解析】【分析】(1)要证平面,转证即可;(2)三棱锥的体积,在中利用解三角形知识求出其面积即可.【详解】(1)由底面,可知.又以为圆心,为半径的圆过点,所以.又因为,所以.在中,有,所以,即.又,所以平面.(2)由(1)可知,,所以.又由已知及(1)可知,,所以.在中,设,则由余弦定理,得,即,即,解得.且,所以.因为底面,所以三棱锥的体积,故三棱锥的体积为.【点睛】求锥体的体积要充分利用多面体的截面和旋转体的轴截面,将空间问题转化为平面问题求解,注意求体积的一些特殊方法——分割法、补形法、等体积法.①割补法:求一些不规则几何体的体积时,常用割补法转化成已知体积公式的几何体进行解决.②等积法:等积法包括等面积法和等体积法.等积法的前提是几何图形(或几何体)的面积(或体积)通过已知条件可以得到,利用等积法可以用来求解几何图形的高或几何体的高,特别是在求三角形的高和三棱锥的高时,这一方法回避了通过具体作图得到三角形(或三棱锥)的高,而通过直接计算得到高的数值.19. 下表是某学生在4月份开始进人冲刺复习至高考前的5次大型联考数学成绩(分);(1)请画出上表数据的散点图;(2)①请根据上表提供的数据,用最小二乘法求出关于的线性回归方程;②若在4月份开始进入冲刺复习前,该生的数学分数最好为116分,并以此作为初始分数,利用上述回归方程预测高考的数学成绩,并以预测高考成绩作为最终成绩,求该生4月份后复习提高率.(复习提高率=,分数取整数)附:回归直线的斜率和截距的最小二乘估计公式分别为,.【答案】(1)(2) ①②【解析】【分析】(1)把所给的5对数据写成对应的点的坐标,在坐标系中描出来,得到散点图;(2)根据所给的这组数据求出利用最小二乘法所需要的几个数据,代入求系数的公式,求得结果,再把样本中心点代入,求出的值,得到线性回归方程;根据上一问所求的线性回归方程,把代入线性回归方程 (分),净提高分为 (分),即可估计该生4月份后复习提高率.【详解】(1)散点图如图:(2)①由题得,,,,,,所以,,故关于的线性回归方程为.②由上述回归方程可得高考应该是第六次考试,故,则 (分),故净提高分为 (分),所以该生的复习提高率为.【点睛】求回归直线方程的步骤:①依据样本数据画出散点图,确定两个变量具有线性相关关系;②计算的值;③计算回归系数;④写出回归直线方程为;回归直线过样本点中心是一条重要性质,利用线性回归方程可以估计总体,帮助我们分析两个变量的变化趋势.20. 已知函数,.(1)若函数在定义域内单调递增,求实数的取值范围;(2)证明:方程有且只有一个实数根.【答案】(1) (2) 见解析【解析】【分析】(1)依题意,得恒成立,即在区间内恒成立;(2)方程有且只有一个实数根即证明函数的图象与直线有且只有一个交点.令,研究其图象变化趋势即可.【详解】(1)由题得,函数的定义域为由,得,依题意,得恒成立,所以在区间内恒成立,所以.而,当且仅当,即时,等号成立,故,因此实数的取值范围为.(2)令,即,即,也就是证明函数的图象与直线有且只有一个交点.由,得记,所以令,当时,,在区间内单调递减;当时,,在区间内单调递增,所以当时,有有极小值,故,因此在区间内单调递增,又因为当,且时,,当时,,因此函数的图象与直线有且只有一个交点,故方程有且只有一个实数根.【点睛】已知函数有零点求参数取值范围常用的方法和思路(1)直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围;(2)分离参数法:先将参数分离,转化成求函数值域问题加以解决;(3)数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解.21. 在平面直角坐标系中,已知椭圆的离心率为,且椭圆的短轴恰好是圆的一条直径.(1)求椭圆的方程(2)设分别是椭圆的左,右顶点,点是椭圆上不同于的任意点,是否存在直线,使直线交直线于点,且满足,若存在,求实数的值;若不存在,请说明理由.【答案】(1) (2)【解析】【分析】(1)由e===,2b=4,联立解出即可得出;(2)由题意知, 设,直线的方程为,则,又点在椭圆上,.从而故存在实数的值.【详解】(1)由题可知,.联立,故椭圆的方程为.(2)由题意知,,设,则直线的方程为.设存在直线满足条件,则当时,,所以.又点在椭圆上,所以,所以,,.因为,所以,即,又由题可知,所以,所以存在满足条件.【点睛】解决解析几何中探索性问题的方法存在性问题通常采用“肯定顺推法”.其步骤为:假设满足条件的元素(点、直线、曲线或参数)存在,用待定系数法设出,列出关于待定系数的方程组,若方程组有实数解,则元素(点、直线、曲线或参数)存在;否则,元素(点、直线、曲线或参数)不存在.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22. 选修4-4:坐标系与参数方程在平面直角坐标系,曲线,(为参数)在以原点为极点轴的正半轴为极轴的极坐标系中,圆的极坐标方程为.(1)求曲线的普通方程和圆的直角坐标方程(2)设曲线与圆E相交于两点,求的值.【答案】(1) (2)【解析】【分析】(1)利用sin2α+cos2α=1可得曲线C的普通方程,利用及其ρ2=x2+y2即可得到圆的直角坐标方程;(2)联立曲线与圆E的普通方程可得两点坐标,从而得到的值.【详解】(1)由消去参数,可得.所以曲线的普通方程为.将,,代人中,得,即圆的直角坐标方程为.(2)联立化简,得,解得或(舍).当时,,设直线与轴交于点,数形结合,得,所以,故的值为.【点睛】(1)直角坐标方程化为极坐标方程,只要运用公式及直接代入并化简即可; (2)极坐标方程化为直角坐标方程时常通过变形,构造形如的形式,进行整体代换.其中方程的两边同乘以(或同除以)及方程两边平方是常用的变形方法.但对方程进行变形时,方程必须同解,因此应注意对变形过程的检验. 23. 选修4-5:不等式选讲已知函数.(1)求不等式的解集;(2)设,证明:.【答案】(1) (2)见解析【解析】【分析】(1)讨论x的取值范围,去掉绝对值,从而得到不等式的解集;(2)利用作差法证明不等式.【详解】(1)当时,恒成立,所以;当时,,所以,综合可知,不等式的解集为. (2)因为,又因为,所以,因此,所以,所以原不等式成立.【点睛】作差法一般步骤:①作差;②变形;③定号;④结论.其中关键是变形,常采用配方、因式分解、有理化等方法把差式变成积式或者完全平方式.当两个式子都为正数时,有时也可以先平方再作差.。
河北省衡水金卷压轴卷全国统一考试模拟试题理科数学(二)---精校解析Word版
已知集合,(D.,然后再求出【详解】由题意得.复数满足∵,,,.前三个路口遇到红灯的概率均为第四个路口遇到红灯的概率为则李明从家到学校恰好遇到一次红灯的概率为(【答案】前三个路口恰有一次红灯,且第四个路口为绿灯的概率为..已知双曲线方程为,为双曲线的左、右焦点为渐近线上一点且在第一象限若,则双曲线的离心率为(C. D.为直角三角形,又得所以故得的倾斜角为,即,由此可得离心率.【详解】设为正三角形,直线的倾斜角为,离心率将提供的双曲线的几何关系转化为关于双曲线基本量利用和则B. C. D.【答案】D,进而可得,然后再根据两角和的正弦公式求解即可.∵,又为锐角,故选D.A. B. C. D.第一次:第二次:第三次:第四次:第五次:第六次:第七次:时,的值为(C. D.运用赋值法求解,令,得,.故选C.B.D.故几何体的表面积为,B.【答案】D可得,,然后对给出的四个选项分别进行判断即可得到结论.∵整理得.,解得,所以,由于,解得,,所以C成立.,所以【点睛】本题考查对数、指数的转化及基本不定式的变形及其应用,解题时注意不等式10.若函数在区间则B.D.【答案】在区间内单调,故可先求出函数的单调区间,再根据区间的单调区间为,.函数在区间内没有最值,在区间内单调,,解得.,得时,得;时,得,又,故的取值范围是函数在区间的单调区间后将问题转化为两个集合间的包含关系处理,并将问题再转化过抛物线上两点若两切线垂直且交于点则直线【答案】B并结合点的坐标求得.再根据两切线垂直可得抛物线的方程为,设出直线方程,联立消元后根据二次方程根与系数的关系可求得直线的斜率及截距,于是可得直线方程.【详解】由,得,则抛物线在点处的切线方程为,点处的切线方程为,解得又两切线交于点,,故得.∵过两点的切线垂直,,故,故得抛物线的方程为.的斜率存在,可设直线方程为整理得和可得的方程为中,正三菱锥的内切球与三个侧面切点分别为与底面切于点的体积之比为(【答案】B,由题意可得.,.,解得.把面单独拿出来分析,如图.的中心,,.D作于,则,为等边三角形,故选B.【点睛】解答本题时注意:中,与【答案】【解析】与分别用表示,通过求【详解】设,,.,.与的夹角为【点睛】求向量夹角时,可先由坐标运算或定义计算出这两个向量的数量积,并求得两向量的模,然后根,组成的区域为作关于直线,和点内的任一点,则的最小值为【答案】,求出区域内的点到直线的最小距离,由题意得的最小值为表示的区域,如下图阴影部分所示.由题意得三个交点的坐标分别为.结合图形可得区域内的点到直线的距离最小,且最小值为.由题意得的最小值为因此所求的最小值为【点睛】解答本题的关键有两个:一是正确画出不等式组表示的平面区域,并根据数形结合解题;二是将和内的两点间的距离的最小值转化为点到直线的距离处理,满足,当,且斜率为的直线与个交点【答案】【解析】为偶函数且图象的对称轴为,由此得到函数的周期为∵,即的周期为时,,结合函数的周期性,画出函数且斜率为的直线方程为.结合图象可得:联立消去整理得,,得(舍去)时,点与点,此时直线与有两个交点,又,相切,将两式联立消去整理得,得(所以当时有三个交点.综上可得的取值范围为.【点睛】已知函数有零点(方程有根中,【答案】【解析】中由题意可得,故得.过点,交的延长线于点,根据平行线,且.然后在中,由正弦定理得【详解】在中,,,.过点作,交的延长线于点,如下图,,.中,由正弦定理得【点睛】本题考查正弦定理在几何中的应用,同时也考查三角变换的应用,解题时要注意平面几何知识的利用,并由此寻求解三角形所需要的条件,然后再根据正弦(余弦)定理求解.在数列已知,求数列或,可得由以上两式消去的公比为,,整理得,解得或)得,当,此时数列为等比数列,,此时数列【点睛】本题考查定比数列的定义及其通项公式的求法,解题时要根据所给出的条件并结合等比数列的有平面平面平面四边形为正方形,,在棱为的中点为平面平面,使得平面平面?使得平面平面平面可得平面,从而有,结合条件可得四边形平行四边形,于是,可得平面.又可根据条件得到平面的判定定理可得结论.(2)在中,由余弦定理得,于是,所以,又两两垂直,故可建立空间直角坐标系,根据空间向量的知识求解.【详解】(1)∵平面平面平面平面平面.平面,∴四边形为平行四边形,.平面平面平面.,又平面平面平面.平面平面,平面平面)在中,由余弦定理得,,∴为直角三角形,且,平面可得两两垂直.依次为则的一个法向量为,即,解得,.设平面的一个法向量为,,得,平面化简得,,故此方程无解,平面【点睛】立体几何中,对于“是否存在”型问题的解答方式有两种:一种是根据条件作出判断,再进一步,期中在犯错误的概率不超过的前提下认为学习先修课程与优等生有关系后与临界值表对照可得结论.;设获得某高校自主招生通过的人数为,则可得的分布列.结合可得通过的人数为因此在犯错误的概率不超过的前提下认为学习先修课程与优等生有关系.②设获得某高校自主招生通过的人数为,则,∴的分布列为.列联表;②根据公式计算的值;③比较的值可以确定在多大程度上认为“两个分类变量有关系”;的值越大,认为“两个分类变量有关系”的把握越大.已知椭圆的方程为其离心率且短轴的个端点与两焦点组成的三角形面积为作轴的垂线,垂足为,点满足,的轨迹为曲线.求曲线)若直线与曲线且交椭圆于,的面积为的面积为,设,,得根据代入法可得曲线的方程为设直线的方程为,由与圆相切可得.将与,从而得到,求得,,.,,得代人椭圆方程得曲线的方程为由题知直线的斜率存在,设直线的方程为,,即.消整理得又直线与椭圆交于,故得,,.,.,当且仅当,即时,等号成立.的最大值为.【点睛】求解解析几何中的范围(最值)问题时,可先建立目标函数,再求这个函数的最值,在利用代数知函数与在交点的解析式;已知若函数的取值范围(1)。
【衡水金卷】2018年普通高校招生全国卷 I A 信息卷 高三文科数学(二)含解析
【衡水金卷】2018年普通高校招生全国卷 I A 信息卷高三(二)数学(文)注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。
3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4.考试结束后,请将本试题卷和答题卡一并上交。
第I 卷(选择题)一、单选题1.已知集合{}()(){}2,1,0,1,|130A B x x x =--=+-<,则A B ⋂=( )A. {}1,0,1-B. {}0,1C. {}0D. {}2,1--2.若i 为虚数单位, ()()13i a i i +-=+,则实数a =( )A. 2B. -2C. 3D. -33.游戏《王者荣耀》对青少年的不良影响巨大,被戏称为“王者农药”.某车间20名青年工人都有着不低的游戏段位等级,其中白银段位11人,其余人都是黄金或铂金段位.从该车间随机抽取一名工人,若抽得黄金段位的概率是0.2,则抽得铂金段位的概率是( )A. 0.20B. 0.22C. 0.25D. 0.424.下列函数既是偶函数又在区间()0,+∞上单调递增的是 ( )A. 3y x =B. 14y x = C. y x = D. tan y x =5.已知变量,x y 满足不等式组10{35250 430x x y x y -≥+-≤-+≤,则目标函数23z x y =--的最大值是 ( )A. -3B. -5C. 195D. 5 6.一个几何体的三视图如图所示,则该几何体的体积为( ) A. 53π B. 73π C. 76π D. 23π 7.设实数,,a b c 满足21log 332,,ln a b a c a --===,则,,a b c 的大小关系为 ( ) A. c a b << B. c b a << C. a c b << D. b c a << 8.数学猜想是推动数学理论发展的强大动力,是数学发展中最活跃、最主动、最积极的因素之一,是人类理性中最富有创造性的部分.1927年德国汉堡大学的学生考拉兹提出一个猜想:对于每一个正整数,如果它是奇数,对它乘3再加1,如果它是偶数,对它除以2,这样循环,最终结果都能得到1.下面是根据考拉兹猜想设计的一个程序框图,则输出的i 为 ( ) A. 5 B. 6 C. 7 D. 8 9.已知函数()()2sin 03f x x ωω=<<的图象关于直线4x π=对称,将()f x 的图象向右平移3π个单位,再向上平移1个单位可以得到函数()g x 的图象,则()g x 在区间,32ππ⎡⎤-⎢⎥⎣⎦上的值域是( )A. 1⎡⎤-⎣⎦B. 1⎡⎤⎣⎦C. ⎤⎥⎣⎦D. 1⎡⎤+⎢⎥⎣⎦此卷只装订不密封班级姓名准考证号考场号座位号10.已知正四棱锥P ABCD -四棱锥的体积为2,则此球的体积为 ( ) A. 1243πB. 62581πC. 50081πD. 2569π11.已知定义在R 上的函数()f x 满足()()f x f x >-',则关于m 的不等式()()132120m f m f m e -+-->的解集是( ) A. 1,3⎛⎫+∞ ⎪⎝⎭ B. 10,3⎛⎫ ⎪⎝⎭ C. 1,3⎛⎫-∞ ⎪⎝⎭ D. 11,23⎛⎫- ⎪⎝⎭12.已知椭圆()222:1024x y C b b +=<<的离心率e =椭圆C 与y 轴正半轴的交点F 是抛物线()2:20D x py p =>的焦点,过点F 的直线l 交抛物线D 于,A B 两点,过点,A B 分别作抛物线D 的切线1l 和2l ,直线1l 和2l 相交于点M ,则·FM AB = ( )A. 0B. 1C. -1D. 不确定第II 卷(非选择题)二、填空题13.如图,在ABC ∆中, D 是AB 边上的点,且满足3AD BD =,设,CA a CD b ==,则向量CB 用,a b 表示为__________.14.若()f n 为()2*1n n N +∈的各位数字之和,如: 2111122,1225+=++=,则()115f =.记()()()()()()()()()()()*121321,,,,,k k f n f n f n f f n f n f f n f n f f n k N +====∈,则()20175f =__________.15.已知点()2,0P 到双曲线()2222:10,0x y E a b a b -=>>则双曲线离心率的取值范围是__________.16.已知数列{}n a 满足1221,2,2n n a a a +==是()()22,2n n a n n λ++的等差中项,若()*212n n a a n N +>∈,则实数λ的取值范围为__________. 三、解答题 17.在ABC ∆中,内角,,A B C 所对的边分别为,,a b c,已知sin cos a C A =. (1)求角A 的大小; (2)若2b =,且43B ππ≤≤,求边c 的取值范围. 18.如图,在直三棱柱111ABC A B C -中,2,,BC AB AC M N ===分别是111,A B B C 的中点. (1)求证: //MN 平面11ACC A ; (2)若三棱柱111ABC A B C -的体积为4,求异面直线1AC 与BN 夹角的余弦值. 19.“双十一”期间,某淘宝店主对其商品的上架时间x (小时)和销售量y (件)的关系作了统计,得到了如下数据并研究.(1)求表中销售量y 的平均数和中位数; (2)① 作出散点图,并判断变量y 与x 是否线性相关?若研究的方案是先根据前5组数据求线性回归方程,再利用第6组数据进行检验,求线性回归方程ˆˆˆy bx a =+; ②若根据①中线性回归方程得到商品上架12小时的销售量的预测值与检测值不超过3件,则认为得到的线性回归方程是理想的,试问:①中的线性回归方程是否理想. 附:线性回归方程ˆˆˆy bx a =+中, 1221,ˆˆˆn i i i n i i x y nxy b a y bx x nx ==-==--∑∑.20.已知圆C 的圆心在x 轴正半轴上,且y轴和直线20x +=均与圆C 相切.(1)求圆C 的标准方程;(2)若直线y x m =+与圆C 相交于,M N 两点,点()0,1P ,且MPN ∠为锐角,求实数m 的取值范围.21.已知函数()()1ln f x a x a R x =+∈. (1)讨论()f x 的单调性;(2)若(]()0,,0x e f x ∈≥恒成立,求实数a 的取值范围.22.在平面直角坐标系xOy 中,圆22:1O x y +=,把圆O 上每一点的横坐标伸长为原来的2倍,纵坐标不变,得到曲线C ,且倾斜角为α,经过点(Q 的直线l 与曲线C 交于,A B 两点.(1)当4πα=时,求曲线C 的普通方程与直线l 的参数方程;(2)求点Q 到,A B 两点的距离之积的最小值.23.设函数()321f x x x =+--.(1)解不等式()2f x x >;(2)若存在[]1,3x ∈,使不等式()1ax f x +>成立,求实数a 的取值范围.【衡水金卷】2018年普通高校招生全国卷 I A 信息卷高三(二)数学(文)答 案1.B【解析】()(){}{}|130|13B x x x x x =+-<=-<<{}2101A =--,,,{}01A B ∴⋂=,故选B2.A【解析】()()()1113i a i a a i i +-=++-=+,13{ 11a a +=∴-=解得2a =故选A3.C【解析】由题意可得,黄金段位的人数为0.2204⨯= 则抽得铂金段位的概率为201140.2520--=故选C4.C【解析】对于A ,为奇函数,不符合题意对于B ,非奇非偶函数,不符合题意对于D ,是偶函数,但在区间()0+∞,上不单调递增故选C5.B【解析】作出不等式所表示的平面区域,由图可以看出,当直线233z y x =--经过可行域上的点B 时, z 取得最大值 由1{ 430x x y =-+=得点B 的坐标为()11, ∴函数23z x y =--的最大值为21315-⨯-⨯=- 故选B 6.A 【解析】由三视图可知,该几何体是半圆柱和半球的组合体 故其体积23125121233V πππ=⨯⨯⨯+⨯⨯= 故选A 7.A 【解析】221331223log log a -=== 1013311133b a --⎛⎫⎛⎫==== ⎪ ⎪⎝⎭⎝⎭ 103c lna ln ==< 故c a b << 故选A 8.B 【解析】执行程序框图可得: 511a i a ===,,不成立, a 是奇数,不成立 1621a i a ===,,不成立, a 是奇数,不成立 831a i a ===,,不成立, a 是奇数,不成立 441a i a ===,,不成立, a 是奇数,成立 251a i a ===,,不成立, a 是奇数,成立161a i a ===,,成立,故输出6i =,结束算法故选B9.A【解析】由题意可得: 2sin 244f ππω⎛⎫==± ⎪⎝⎭ 故()42k k Z πωππ=+∈()42k k Z ω∴=+∈又03ω<<, 2ω∴=()22f x sin x ∴=故()22sin 213g x x π⎛⎫=-+ ⎪⎝⎭ 32x ππ-≤≤, 422333x πππ∴-≤-≤21sin 232x π⎛⎫∴-≤-≤ ⎪⎝⎭()11g x -≤≤即函数()g x 在区间32ππ⎡⎤-⎢⎥⎣⎦,上的值域为1⎡⎤-⎣⎦故选A10.C【解析】如图所示,设底面正方形ABCD 的中心为O ',正四棱锥P ABCD -的外接球的球心为O 1O D ∴'=正四棱锥的体积为22123P ABCD V PO -⨯⨯'∴==,解得3PO '= 3OO PO PO R ∴-'=='- 在 Rt OO D '中,由勾股定理可得: 222OO O D OD '+=' 即()22231R R -+=,解得53R = 2344550033381V R πππ⎛⎫∴==⨯= ⎪⎝⎭球 故选C 11.A 【解析】设()()x g x f x e =, ()()()x g x f x f x e ⎡⎤=+⎣⎦'' ()()f x f x >-' ()0g x ∴'>,则()g x 是增函数 ()()132120m f m f m e -+--> ()()212212m m f m e f m e +-∴+⨯>- 即()()212g m g m +>- 212m m ∴+>-,解得13m > 故选A 点睛:本题考查了运用导数解不等式,在本题中构造新函数是关键,也是本题的难点所在,在处理类似的题目时的方法是结合条件和问题在一起,是构造含有x e 的乘法运算还是除法运算,然后利用导数求导后解不等式 12.A 【解析】由题知, ce a ==,解得c =1b = ∴椭圆的方程为2214x y += ()01F ,, 12p ∴=,解得2p =∴抛物线的方程为24x y = 直线l 和抛物线有两个交点, ∴直线l 的斜率存在, 设直线l 的方程为1y kx =+, ()11A x y ,, ()22B x y ,, ()12x x ≠联立方程21{ 4y kx x y =+=,消去y ,得2440x kx --=12124{ 4x x kx x +=∴=-抛物线D 的方程为24x y =, 2xy ∴'=过抛物线D 上A B ,两点的切线方程分别为()1112x y y x x -=-, ()2222xy y x x -=- 即21124xx x y =-, 22224xx x y =- 联立直线方程21122224{ 24xx x y xx x y =-=-,解得12122{ 4x x x x x y +==即点M 的坐标为121224x x x x +⎛⎫⎪⎝⎭,()()2222122121212112202244x x x x FM AB x x y y x x ⎛⎫+⎛⎫∴=---=---= ⎪ ⎪⎝⎭⎝⎭,,故选A 点睛:本题考查了直线与圆锥曲线的位置关系,求交点坐标计算定值问题,在解答此类问题是常用设而不求方法,设出点坐标和直线方程,联立方程组,由根与系数之间的关系进行计算,求出结果,要有一定的计算能力。
衡水金卷2018年普通高校招生全国卷信息卷 高三文科数学(二)
2018年普通高等学校招生全国统一考试模拟试题文数(二)第Ⅰ卷一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}()(){}2,1,0,1,|130A B x x x =--=+-<,则AB =( )A .{}1,0,1-B .{}0,1C .{}0D .{}2,1-- 2. 若i 为虚数单位,()()13i a i i +-=+,则实数a =( ) A . 2 B . -2 C .3 D .-33. 游戏《王者荣耀》对青少年的不良影响巨大,被戏称为“王者农药”.某车间20名青年工人都有着不低的游戏段位等级,其中白银段位11人,其余人都是黄金或铂金段位.从该车间随机抽取一名工人,若抽得黄金段位的概率是0.2,则抽得铂金段位的概率是( ) A .0.20 B .0.22 C . 0.25 D . 0.424.下列函数既是偶函数又在区间()0,+∞上单调递增的是 ( ) A .3y x = B .14y x = C. y x = D .tan y x =5.已知变量,x y 满足不等式组1035250430x x y x y -≥⎧⎪+-≤⎨⎪-+≤⎩,则目标函数23z x y =--的最大值是 ( )A .-3B .-5 C.195D .5 6.一个几何体的三视图如图所示,则该几何体的体积为( )A . 53πB .73π C.76π D .23π7.设实数,,a b c 满足21log 332,,ln a b a c a --===,则,,a b c 的大小关系为 ( )A .c a b <<B .c b a << C. a c b << D .b c a <<8.数学猜想是推动数学理论发展的强大动力,是数学发展中最活跃、最主动、最积极的因素之一,是人类理性中最富有创造性的部分.1927年德国汉堡大学的学生考拉兹提出一个猜想:对于每一个正整数,如果它是奇数,对它乘3再加1,如果它是偶数,对它除以2,这样循环,最终结果都能得到1.下面是根据考拉兹猜想设计的一个程序框图,则输出的i 为 ( )A . 5B . 6 C. 7 D .89. 已知函数()()2sin 03f x x ωω=<<的图象关于直线4x π=对称,将()f x 的图象向右平移3π个单位,再向上平移1个单位可以得到函数()g x 的图象,则()g x 在区间,32ππ⎡⎤-⎢⎥⎣⎦上的值域是( )A .1⎡⎤-⎣⎦B .1⎡⎤+⎣⎦C. ⎤⎥⎣⎦ D .1⎡⎤⎢⎥⎣⎦10.已知正四棱锥P ABCD -,若该正四棱锥的体积为2,则此球的体积为 ( ) A .1243π B .62581π C. 50081π D .2569π11. 已知定义在R 上的函数()f x 满足()()f x f x '>-,则关于m 的不等式()()132120m f m f m e -+-->的解集是( )A .1,3⎛⎫+∞ ⎪⎝⎭B .10,3⎛⎫ ⎪⎝⎭ C. 1,3⎛⎫-∞ ⎪⎝⎭ D .11,23⎛⎫-⎪⎝⎭12.已知椭圆()222:1024x y C b b+=<<的离心率2e =,椭圆C 与y 轴正半轴的交点F 是抛物线()2:20D x py p =>的焦点,过点F 的直线l 交抛物线D 于,A B 两点,过点,A B 分别作抛物线D 的切线1l 和2l ,直线1l 和2l 相交于点M ,则FM AB = ( ) A . 0 B . 1 C. -1 D .不确定第Ⅱ卷本卷包括必考题和选考题两部分.第13-21题为必考题,每个试题考生都必须作答.第22-23题为选考题,考生根据要求作答.二、填空题:本题共4小题,每小题5分,满分20分,将答案填在答题纸上13.如图,在ABC ∆中,D 是AB 边上的点,且满足3AD BD =,设,CA a CD b ==,则向量CB 用,a b 表示为 .14.若()f n 为()2*1n n N +∈的各位数字之和,如:2111122,1225+=++=,则()115f =.记()()()()()()()()()()()*121321,,,,,k k f n f n f n f f n f n f f n f n f f n k N +====∈,则()20175f = .15.已知点()2,0P 到双曲线()2222:10,0x y E a b a b-=>>则双曲线离心率的取值范围是 .16.已知数列{}n a 满足1221,2,2n na a a +==是()()22,2n n a n n λ++的等差中项,若()*212n n a a n N +>∈,则实数λ的取值范围为 .三、解答题:解答应写出文字说明、证明过程或演算步骤.17.在ABC ∆中,内角,,A B C 所对的边分别为,,a b c ,已知sin a C A =. (1)求角A 的大小; (2)若2b =,且43B ππ≤≤,求边c 的取值范围.18.如图,在直三棱柱111ABC A B C -中,2,,BC AB AC M N ===分别是111,A B B C 的中点. (1)求证://MN 平面11ACC A ;(2)若三棱柱111ABC A B C -的体积为4,求异面直线1AC 与BN 夹角的余弦值.19. “双十一”期间,某淘宝店主对其商品的上架时间x (小时)和销售量y (件)的关系作了统计,得到了如下数据并研究.(1)求表中销售量y 的平均数和中位数;(2)① 作出散点图,并判断变量y 与x 是否线性相关?若研究的方案是先根据前5组数据求线性回归方程,再利用第6组数据进行检验,求线性回归方程ˆˆˆybx a =+; ②若根据①中线性回归方程得到商品上架12小时的销售量的预测值与检测值不超过3件,则认为得到的线性回归方程是理想的,试问:①中的线性回归方程是否理想.附:线性回归方程ˆˆˆybx a =+中,1221ˆˆˆ,ni ii ni i x y nx yb ay bx x nx==-==--∑∑. 20. 已知圆C 的圆心在x 轴正半轴上,且y 轴和直线20x +=均与圆C 相切. (1)求圆C 的标准方程;(2)若直线y x m =+与圆C 相交于,M N 两点,点()0,1P ,且MPN ∠为锐角,求实数m 的取值范围. 21.已知函数()()1ln f x a x a R x=+∈. (1)讨论()f x 的单调性;(2)若(]()0,,0x e f x ∈≥恒成立,求实数a 的取值范围.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22.选修4-4:坐标系与参数方程在平面直角坐标系xOy 中,圆22:1O x y +=,把圆O 上每一点的横坐标伸长为原来的2倍,纵坐标不变,得到曲线C ,且倾斜角为α,经过点(Q 的直线l 与曲线C 交于,A B 两点. (1)当4πα=时,求曲线C 的普通方程与直线l 的参数方程;(2)求点Q 到,A B 两点的距离之积的最小值. 23.选修4-5:不等式选讲 设函数()321f x x x =+--. (1)解不等式()2f x x >;(2)若存在[]1,3x ∈,使不等式()1ax f x +>成立,求实数a 的取值范围.试卷答案一、选择题1-5: BACCB 6-10: AABAC 11、12:AA二、填空题13. 1433a b -+14. 8 15. ( 16. [)0,+∞ 三、解答题17.解:(1sin 1sin sin c CC C=⇔==,∴tan A =,∴3A π=.(2)∵2,3b A π==,在ABC ∆中,由正弦定理,得sin sin b cB C=,∴2sin 2sin 311sin sin sin tan B C B c B B B Bπ2⎛⎫- ⎪⎝⎭===+=+,∵43B ππ≤≤,∴1tan B ≤≤∴21c ≤≤,即c的取值范围为1⎡⎤⎣⎦.18.(1)如图,连接1AB ,因为该三棱柱是直三棱柱,所以111AA A B ⊥, 则四边形11ABB A 为矩形.由矩形性质,得1AB 过1A B 的中点M . 在11AB C ∆中,由中位线性质,得1//MN AC , 又MN ⊄平面111,ACC A AC ⊂平面11ACC A , 所以//MN 平面11ACC A .(2)因为2,BC AB AC ===AB BC ⊥, 故1122222ABC S BC AB ∆==⨯⨯=, 又三棱柱111ABC A B C -体积为4. 所以1124ABC S BB BB ∆=⨯=,即12BB = 由(1)知,1//MN AC ,则MNB ∠即为异面直线1AC 与BN 的夹角(或补角).在MNB ∆中,111122MN AC BM A B BN =====,所以cos MNB ∠==,即异面直线1AC 与BN 夹角的余弦值为5. 19.解:(1)由题得,平均数为641382052853604302476+++++=;中位数为2052852452+=;(2)①作出散点图如图所示:由散点图发现这些点大致在一条直线附近,故变量y 与x 是线性相关的. 由前5组数据计算,得6,210.4x y ==,55211220,7790ii i i i xx y ====∑∑,∴2779056210.4ˆˆ36.95,210.436.95611.322056ba-⨯⨯===-⨯=--⨯, ∴线性回归方程为ˆ36.9511.3yx =-; ②将12x =代入ˆ36.95x 11.3y=-,得ˆ432.1y =, ∵432.14303-<,故①中的线性回归方程是理想的.20.解:(1)设圆C 的方程为()()222x a y b r -+-=,由题意,得00a b a r r>⎧⎪=⎪⎪=⎨=,解得202a b r =⎧⎪=⎨⎪=⎩,则圆C 的标准方程为()2224x y -+=;(2)将y x m =+代入圆C 的方程,得()222220x m x m +-+=,由()224280m m ∆=-->,得22m --<-+设()()1122,,,M x y N x y ,则212122,2m x x m x x +=-=,依题意,得0PM PN >,即()()1212110x x x m x m ++-+->, 即210m m +->,解得12m -<或12m ->, 故实数m的取值范围是1522⎛⎛-+---+ ⎝⎭⎝. 21.解:(1)由题得,()f x 的定义域为()()22110,,a ax f x x x x-'+∞=-=, 当0a ≤时,()0f x '<恒成立,故()f x 在区间()0,+∞上单调递减,无递增区间; 当0a >,由()0f x '<,得10x a<<, 由()0f x '>,得1x a>. 所以()f x 的单调递减区间为10,a ⎛⎫ ⎪⎝⎭,单调递增区间为1,a ⎛⎫+∞ ⎪⎝⎭. (2)若(]()0,,0x e f x ∈≥恒成立,即()f x 在区间(]0,e 上的最小值大于等于0, 由(1)可知,当0a ≤时,()0f x '<恒成立, 即()f x 在区间(]0,e 上单调递减, 故()f x 在区间(]0,e 上的最小值为()11ln f e a e a e e=+=+, 由10a e +≥,得1a e ≥-,故10a e-≤≤, 当0a >时,若1e a ≤,即10a e<≤时,()0f x '≤对(]0,x e ∈恒成立, 所以()f x 在区间(]0,e 上单调递减, 则()f x 在区间(]0,e 上的最小值为()11ln 0f e a e a e e=+=+>, 显然()f x 的区间(]0,e 上的最小值大于等于0成立. ②若10e<<,即1a >时,则有所以()f x 在区间(]0,e 上的最小值为11ln f a a a a ⎛⎫=+⎪⎝⎭, 由1ln0a a a+≥,得1ln 0a -≥, 解得a e ≤,即1a e e<≤.综上所述,实数a 的取值范围是1,e e⎡⎤-⎢⎥⎣⎦.22.解:(1)设圆O 上任意一点的坐标为()00,x y ,曲线C 上一点的坐标为(),x y ,根据题意,得002x x y y =⎧⎨=⎩,即0012x xy y⎧=⎪⎨⎪=⎩.又点()00,x y 在圆22:1O x y +=上,所以22112x y ⎛⎫+= ⎪⎝⎭,即曲线C 的方程为2214x y +=,由题知,(,4Q πα=,所以直线l的参数方程是1x y ⎧=⎪⎪⎨⎪=⎪⎩(t 是参数). (2)将直线l的参数方程1cos sin x t y t αα=+⎧⎪⎨=⎪⎩(t 是参数)代入2214x y +=, 得()()222cos4sin 2cos 90tt αααα++++= (*).设,A B 两点对应的参数分别为12,t t , 则1222299cos 4sin 13sin t t ααα==++, 当2πα=时,经检验,(*)式中0∆>,则12t t 取得最小值,即最小值为94. 23.解:(1)因为()321f x x x =+--,所以()4,3132,3214,2x x f x x x x x ⎧⎪-≤-⎪⎪=+-<≤⎨⎪⎪-+>⎪⎩,由()2f x x >,得342x x x ≤-⎧⎨->⎩或132322x x x ⎧-<≤⎪⎨⎪+>⎩或1242x x x⎧>⎪⎨⎪-+>⎩,解得4x <-或122x -<≤或1423x <<.综上所述,不等式()2f x x >的解集为()4,42,3⎛⎫-∞-- ⎪⎝⎭. (2)当[]1,3x ∈时,()4f x x =-+, 由()1ax f x +>,得14ax x +>-+, 即31a x>-+. 存在[]1,3x ∈,使不等式()1ax f x +>成立,等价于31min a x ⎛⎫>-+⎪⎝⎭. 因为()31g x x=-+在[]1,3x ∈上是减函数, 所以()()min 30g x g ==,所以0a >,即实数a 的取值范围是()0,+∞.。
衡水金卷2018年高考数学二模试卷(文科)
2018年全国普通高等学校高考数学二模试卷(文科)(衡水金卷)一.选择题(本大题共12小题,每小题5分,共60分.在每小题列出的四个选项中,只有一项符合题目要求)1.已知集合A={x∈N|x(2﹣x)≥0},B={x|﹣1≤x≤1},则A∩B=()A.{x|0≤x≤2}B.{x|0<x<2}C.{0,1,2}D.{0,1}2.已知复数z=(a∈R,i为虚数单位)是纯虚数,则a的值为()A.1 B.2 C.﹣1 D.03.已知=2,则tanα=()A.B.﹣C.D.﹣54.A,B,C三位抗战老兵应邀参加了在北京举行的“纪念抗战胜利70周年”大阅兵的老兵方队,现安排这三位老兵分别坐在某辆检阅车的前三排(每两人均不坐同一排),则事件“A或B坐第一排”的概率为()A.B.C.D.5.已知圆O的方程为x2+y2=1,直线l的方程为y=k(x﹣1)+3,则“k=“是”直线l与圆O相切”的.A.充分不必要条件B.必要不充分条件C.充要条件 D.既不充分也不必要条件6.椭圆C: +=1(a>b>0)的两焦点为F1,F2,P为椭圆C上一点,且PF2⊥x轴,若△PF1F2的内切圆半径r=,则椭圆C的离心率为()A.B.C.D.7.已知某几何体的三视图如图所示,则几何体的体积为()A. + B. +C. +D. +8.《张丘建算经》卷上第22题为“今有女善织,日益功疾,初日织五尺,今一月日织九匹三丈.”其意思为:现有一善于织布的女子,从第2天开始,每天比前一天多织相同量的布,第1天织了5尺布,现在一月(按30天计算)共织390尺布,记该女子一月中的第n天所织布的尺数为a n,则a14+a15+a16+a17的值为()A.55 B.52 C.39 D.269.将函数f(x)=2sin(2x+)的图象向左平移个单位,再把所有点的横坐标缩短到原来的倍,纵坐标不变,得到函数y=g(x)的图象,则下面对函数y=g(x)的叙述正确的是()A.函数g(x)=2sin(x+)B.函数g(x)的周期为πC.函数g(x)的一个对称中心为点(﹣,0)D.函数g(x)在区间[,]上单调递增10.执行如图所示的程序框图,其中输入的a i(i=1,2,…10)依次是:﹣3,﹣4,5,3,4,﹣5,6,8,0,2,则输出的V值为()A.16 B.C.D.11.设关于x,y的不等式组,表示的平面区域内存在点M(x0,y0),满足x0+2y0=5,则实数t的取值范围是()A.(﹣∞,﹣1]B.[1,+∞)C.(﹣∞,1]D.以上都不正确12.定义在R上的函数f(x)满足:①f(﹣x)=﹣f(x);②f(x+2)=f(x);③x∈[0,1]时,f(x)=log(x2﹣x+1),则函数y=f(x)﹣log3|x|的零点个数为()A.8 B.6 C.4 D.2二.填空题(本大题共4小题,每小题5分,共20分)13.已知正项数列{a n}满足=4,且a3a5=64,则数列{a n}的前6项和S6=______.14.已知向量=(m,n﹣1),=(1,1),且⊥,则mn的最大值为______.15.已知F是抛物线y2=2x的焦点,A,B是抛物线上的两点,|AF|+|BF|=3,若直线AB的斜率为3,则线段AB的中点P的坐标为______.16.若函数f(x)=(a>0且a≠1)在区间[,+∞)内单调递减,则a的取值范围是______.三.解答题(本大题共5小题,共70分,解答应写出必要的文字说明,证明过程或演算步骤)17.在△ABC中,角A,B,C所对的边分别为a,b,c,且b=c,sinA﹣sinB=(﹣1)sinC.(1)求B的大小;(2)若△ABC的面积为4,求a,b,c的值.18.到2018年,北京市高考英语总分将由150分降低到100分,语文分值将相应增加.某校高三学生率先尝试100分制英语考试,从中随机抽出50人的英语成绩作为样本并进行统计,将测试结果按如下方式分成五组:第一组[50,60],第二组[60,70],…第五组[90,100],如图是按上述分组方法得到的频率分布直方图.(1)统计方法中,同一组数据常用该组区间的中点值作为代表,据此估计这次参加英语考试的高三学生的英语平均成绩;(2)从这五组中抽取14人进行座谈,若抽取的这14人中,恰好有2人成绩为50分,7人成绩为70分,2人成绩为75分,3人成绩为80分,求这14人英语成绩的方差;(3)从50人的样本中,随机抽取测试成绩在[50,60]∪[90,100]内的两名学生,设其测试成绩分别为m,n(i)求事件“|m﹣n|>30”的概率;(ii)求事件“mn≤3600”的概率.19.如图,△ADM是等腰直角三角形,AD⊥DM,四边形ABCM是直角梯形,AB⊥BC,MC⊥BC,且AB=2BC=2CM=2,平面ADM⊥平面ABCM.(1)求证:AD⊥BD;(2)若点E是线段DB上的一动点,问点E在何位置时,三棱锥M﹣ADE的体积为?20.已知圆C的圆心与双曲线M:y2﹣x2=的上焦点重合,直线3x+4y+1=0与圆C相交于A,B两点,且|AB|=4.(1)求圆C的标准方程;(2)O为坐标原点,D(﹣2,0),E(2,0)为x轴上的两点,若圆C内的动点P使得|PD|,|PO|,|PE|成等比数列,求•的取值范围.21.已知函数f(x)=lnx+(a>1).(1)若函数f(x)的图象在x=1处的切线斜率为﹣1,求该切线与两坐标轴围成的三角形的面积;(2)若函数f(x)在区间[1,e]上的最小值是2,求a的值.请考生在22.23.24题三题中任选一题作答,如果多做,则按所做的第一题记分)[选修4-1:几何证明选讲]22.如图,直线PB与⊙O交于A,B两点,OD⊥AB于点D,PC是⊙O的切线,切点为C.(1)求证:PC2+AD2=PD2(2)若BC是⊙O的直径,BC=3BD=3,试求线段BP的长.[选修4-4:坐标系与参数方程]23.设点A是曲线C:,(θ为参数)上的动点,点B是直线l:,(t为参数)上的动点(1)求曲线C与直线l的普通方程;(2)求A,B两点的最小距离.[选修4-5:不等式选讲]24.已知函数f(x)=|x﹣2|﹣|x﹣4|.(1)求不等式f(x)<0的解集;(2)若函数g(x)=的定义域为R,求实数m的取值范围.2018年全国普通高等学校高考数学二模试卷(文科)(衡水金卷)参考答案与试题解析一.选择题(本大题共12小题,每小题5分,共60分.在每小题列出的四个选项中,只有一项符合题目要求)1.已知集合A={x∈N|x(2﹣x)≥0},B={x|﹣1≤x≤1},则A∩B=()A.{x|0≤x≤2}B.{x|0<x<2}C.{0,1,2}D.{0,1}【考点】交集及其运算.【分析】求出两个集合,然后求解交集即可.【解答】解:集合A={x∈N|x(2﹣x)≥0}═{x∈N|0≤x≤2}={0,1,2},B={x|﹣1≤x≤1},则集合A∩B={0,1}.故选:D.2.已知复数z=(a∈R,i为虚数单位)是纯虚数,则a的值为()A.1 B.2 C.﹣1 D.0【考点】复数代数形式的乘除运算.【分析】由复数的除法运算化复数为a+bi(a,b∈R)的形式,由实部等于0且虚部不等于0列方程求出实数a的值.【解答】解:根据复数z===+i是纯虚数,得,解得a=2;所以使复数是纯虚数的实数a的值为2.故选:B.3.已知=2,则tanα=()A.B.﹣C.D.﹣5【考点】三角函数的化简求值.【分析】利用诱导公式,同角三角函数基本关系式化简已知等式即可得解.【解答】解:∵===2,∴解得:tanα=﹣5.故选:D.4.A,B,C三位抗战老兵应邀参加了在北京举行的“纪念抗战胜利70周年”大阅兵的老兵方队,现安排这三位老兵分别坐在某辆检阅车的前三排(每两人均不坐同一排),则事件“A或B坐第一排”的概率为()A.B.C.D.【考点】古典概型及其概率计算公式.【分析】安排这3位老兵分别坐在某辆检阅车的前3排(每两人均不坐同一排),先求出基本事件总数,再求出A或B坐第一排的种数,根据概率公式计算即可.【解答】解:安排这3位老兵分别坐在某辆检阅车的前3排(每两人均不坐同一排),基本事件总数A33=6,A或B坐第一排有C21A22=4种,故“A或B坐第一排”的概率为=,故选:A.5.已知圆O的方程为x2+y2=1,直线l的方程为y=k(x﹣1)+3,则“k=“是”直线l与圆O相切”的.A.充分不必要条件B.必要不充分条件C.充要条件 D.既不充分也不必要条件【考点】必要条件、充分条件与充要条件的判断.【分析】根据利用点到直线的距离公式求得圆心到直线的距离,求出k的值,再根据充分必要条件的定义判断即可.【解答】解:O的方程为x2+y2=1,表示以(0,0)为圆心、半径r=1的圆.求出圆心到直线l的方程为y=k(x﹣1)+3的距离为d==1,解得k=,故“k=“是”直线l与圆O相切”充要条件,故选:C.6.椭圆C: +=1(a>b>0)的两焦点为F1,F2,P为椭圆C上一点,且PF2⊥x轴,若△PF1F2的内切圆半径r=,则椭圆C的离心率为()A.B.C.D.【考点】椭圆的简单性质.【分析】设出椭圆的焦点坐标,令x=c,求得|PF2|=,由椭圆的定义可得,|PF1|=2a﹣,在直角△PF1F2中,运用面积相等,可得内切圆的半径r,由条件化简整理,结合离心率公式,计算即可得到所求值.【解答】解:由椭圆C: +=1(a>b>0)的两焦点为F1(﹣c,0),F2(c,0),P为椭圆C上一点,且PF2⊥x轴,可得|F1F2|=2c,由x=c,可得y=±b=±,即有|PF2|=,由椭圆的定义可得,|PF1|=2a﹣,在直角△PF1F2中, |PF2|•|F1F2|=r(|F1F2|+|PF1|+|PF2|),可得△PF1F2的内切圆半径r==c,即有2b2=2(a2﹣c2)=a(a+c),整理,得a=2c,椭圆C的离心率为e==.故选:B.7.已知某几何体的三视图如图所示,则几何体的体积为()A. + B. +C. +D. +【考点】由三视图求面积、体积.【分析】由三视图知该几何体是一个组合体:上面是三棱锥、下面是半球,由三视图求出几何元素的长度,由球体、锥体的体积公式求出该几何体的体积.【解答】解:根据三视图可知几何体是一个组合体:上面是三棱锥、下面是半球,且三棱锥的底面是等腰直角三角形、直角边为1,高为1,由圆的直径所对的圆周角是直角得球的半径是,∴几何体的体积V==,故选D.8.《张丘建算经》卷上第22题为“今有女善织,日益功疾,初日织五尺,今一月日织九匹三丈.”其意思为:现有一善于织布的女子,从第2天开始,每天比前一天多织相同量的布,第1天织了5尺布,现在一月(按30天计算)共织390尺布,记该女子一月中的第n天所织布的尺数为a n,则a14+a15+a16+a17的值为()A.55 B.52 C.39 D.26【考点】等差数列的前n项和.【分析】设从第2天开始,每天比前一天多织d尺布,由等差数列前n项和公式求出d=,由此利用等差数列通项公式能求出a14+a15+a16+a17.【解答】解:设从第2天开始,每天比前一天多织d尺布,则=390,解得d=,∴a14+a15+a16+a17=a1+13d+a1+14d+a1+15d+a1+16d=4a1+58d=4×5+58×=52.故选:B.9.将函数f(x)=2sin(2x+)的图象向左平移个单位,再把所有点的横坐标缩短到原来的倍,纵坐标不变,得到函数y=g(x)的图象,则下面对函数y=g(x)的叙述正确的是()A.函数g(x)=2sin(x+)B.函数g(x)的周期为πC.函数g(x)的一个对称中心为点(﹣,0)D.函数g(x)在区间[,]上单调递增【考点】函数y=Asin(ωx+φ)的图象变换.【分析】利用函数y=Asin(ωx+φ)的图象变换规律,求得g(x)的解析式,再利用正弦函数的周期性、单调性以及它的图象的对称性,得出结论.【解答】解:将函数f(x)=2sin(2x+)的图象向左平移个单位,可得函数y=2sin[2(x+)+]=2sin(2x+)的图象;再把所有点的横坐标缩短到原来的倍,纵坐标不变,得到函数y=g(x)=2sin(4x+)的图象,故g(x)的周期为=,排除A、B.令x=﹣,求得f(x)=0,可得g(x)的一个对称中心为点(﹣,0),故C满足条件.在区间[,]上,4x+∈[π,],函数g(x)没有单调性,故排除D,故选:C.10.执行如图所示的程序框图,其中输入的a i(i=1,2,…10)依次是:﹣3,﹣4,5,3,4,﹣5,6,8,0,2,则输出的V值为()A.16 B.C.D.【考点】程序框图.【分析】模拟程序的运行,可得程序框图的功能是计算并输出V=的值,由题意计算S,T的值即可得解.【解答】解:根据题意,本程序框图中循环体为“直到型”循环结构,模拟程序的运行,可得程序框图的功能是计算并输出V=的值.由题意可得:S=3+4+5+6+8+2,T=(﹣3)+(﹣4)+(﹣5)+0,所以:V===.故选:B.11.设关于x,y的不等式组,表示的平面区域内存在点M(x0,y0),满足x0+2y0=5,则实数t的取值范围是()A.(﹣∞,﹣1]B.[1,+∞)C.(﹣∞,1]D.以上都不正确【考点】简单线性规划.【分析】作出可行域,根据可行域满足的条件判断可行域边界x﹣2y=t的位置,列出不等式解出.【解答】解:作出可行域如图:∵平面区域内存在点M(x0,y0),满足x0+2y0=5,∴直线x+2y=5与可行域有交点,解方程组得A(2,).∴点A在直线x﹣2y=t上或在直线x﹣2y=t下方.由x﹣2y=t得y=.∴,解得t≤﹣1.故选:A.12.定义在R上的函数f(x)满足:①f(﹣x)=﹣f(x);②f(x+2)=f(x);③x∈[0,1]时,f(x)=log(x2﹣x+1),则函数y=f(x)﹣log3|x|的零点个数为()A .8B .6C .4D .2 【考点】函数零点的判定定理. 【分析】由已知画出两个函数f (x )=log(x 2﹣x +1)与y=log 3|x |的简图,数形结合得答案.【解答】解:由①②可知,f (x )是周期为2的奇函数,又x ∈[0,1]时,f (x )=log (x 2﹣x +1),可得函数f (x )在R 上的图象如图,由图可知,函数y=f (x )﹣log 3|x |的零点个数为6个,故选:B .二.填空题(本大题共4小题,每小题5分,共20分)13.已知正项数列{a n }满足=4,且a 3a 5=64,则数列{a n }的前6项和S 6= 63 .【考点】数列的求和.【分析】由正项数列{a n }满足=4,两边开方可得:a n+1=2a n ,可得公比q=2.又a 3a 5=64,利用等比数列的通项公式可得a 1.再利用等比数列的求和公式即可得出.【解答】解:∵正项数列{a n }满足=4,∴a n+1=2a n ,∴公比q=2.∵a 3a 5=64,∴=64,解得a 1=1. 则数列{a n }的前6项和S 6==63. 故答案为:63.14.已知向量=(m ,n ﹣1),=(1,1),且⊥,则mn 的最大值为.【考点】平面向量数量积的运算.【分析】首先由向量的垂直得到关于m ,n 的等式,然后利用基本不等式求mn 的最值.【解答】解:因为向量=(m ,n ﹣1),=(1,1),且⊥,所以=m +n ﹣1=0,即m +n=1,所以mn,当且仅当m=n 时取等号,所以mn 的最大值为.故答案为:15.已知F 是抛物线y 2=2x 的焦点,A ,B 是抛物线上的两点,|AF |+|BF |=3,若直线AB 的斜率为3,则线段AB 的中点P 的坐标为 (1,) . 【考点】抛物线的简单性质. 【分析】设A (x 1,y 1),B (x 2,y 2),代入抛物线的方程,求得抛物线的焦点和准线方程,运用抛物线的定义,以及中点坐标公式,结合直线的斜率公式,化简整理,即可得到所求中点P 的坐标. 【解答】解:设A (x 1,y 1),B (x 2,y 2), 可得y 12=2x 1,y 22=2x 2,抛物线y 2=2x 的焦点为F (,0),准线为x=﹣, 由抛物线的定义,可得|AF |=x 1+,|BF |=x 2+, 由AF |+|BF |=3,可得x 1+x 2+1=3, 即x 1+x 2=2,即=1,AB 的中点的横坐标为1,又k AB ====3,即为y 1+y 2=,则=.则AB 的中点坐标为(1,).故答案为:(1,).16.若函数f (x )=(a >0且a ≠1)在区间[,+∞)内单调递减,则a 的取值范围是 (0,] .【考点】函数单调性的性质.【分析】由题意利用函数的单调性与导数的关系可得,由此求得a的范围.【解答】解:∵函数f(x)=(a>0且a≠1)在区间[,+∞)内单调递减,当≤x≤1时,f′(x)=﹣3x2+a≤0,且﹣1+a+≥2a﹣1,∴,求得0<a≤,故答案为:(0,].三.解答题(本大题共5小题,共70分,解答应写出必要的文字说明,证明过程或演算步骤)17.在△ABC中,角A,B,C所对的边分别为a,b,c,且b=c,sinA﹣sinB=(﹣1)sinC.(1)求B的大小;(2)若△ABC的面积为4,求a,b,c的值.【考点】余弦定理;正弦定理.【分析】(1)利用正弦定理化简已知可得a﹣b=()c,结合b=c,可得a=,由余弦定理可求cosB,结合范围B∈(0,π),即可得解B的值.(2)利用已知及三角形面积公式可求c的值,结合(1)即可求得b,a的值.【解答】解:(1)∵sinA﹣sinB=(﹣1)sinC.∴由正弦定理可得:a﹣b=()c,又∵b=c,可得a=.∴cosB===,又∵B∈(0,π),∴B=(2)∵△ABC的面积为4,∴=4,解得:c=4,∴由(1)可得:b=4,a=418.到2018年,北京市高考英语总分将由150分降低到100分,语文分值将相应增加.某校高三学生率先尝试100分制英语考试,从中随机抽出50人的英语成绩作为样本并进行统计,将测试结果按如下方式分成五组:第一组[50,60],第二组[60,70],…第五组[90,100],如图是按上述分组方法得到的频率分布直方图.(1)统计方法中,同一组数据常用该组区间的中点值作为代表,据此估计这次参加英语考试的高三学生的英语平均成绩;(2)从这五组中抽取14人进行座谈,若抽取的这14人中,恰好有2人成绩为50分,7人成绩为70分,2人成绩为75分,3人成绩为80分,求这14人英语成绩的方差;(3)从50人的样本中,随机抽取测试成绩在[50,60]∪[90,100]内的两名学生,设其测试成绩分别为m,n(i)求事件“|m﹣n|>30”的概率;(ii)求事件“mn≤3600”的概率.【考点】列举法计算基本事件数及事件发生的概率;频率分布直方图.【分析】(1)由频率分布直方图能估计高三学生的英语平均成绩.(2)先求出这14人英语成绩的平均分,由此能求出这14人英语成绩的方差.(3)(i)由直方图知成绩在[50,60]内的人数为2,设其成绩分别为a,b,c,利用列举法能求出事件“|m﹣n|>30”的概率.(ii)由事件mn≤3600的基本事件只有(x,y)这一种,能求出事件“mn≤3600”的概率.【解答】解:(1)估计高三学生的英语平均成绩为:55×0.004×10+65×0.018×10+75×0.040×10+85×0.032×10+95×0.006×10=76.8.(2)这14人英语成绩的平均分为:==70,∴这14人英语成绩的方差:S2= [2(50﹣70)2+7(70﹣70)2+2(75﹣70)2+3(80﹣70)2]=.(3)(i)由直方图知成绩在[50,60]内的人数为:50×10×0.004=2,设其成绩分别为a,b,c,若m,n∈[50,60)时,只有(x,y)一种情况,若m,n∈[90,100]时,有(a,b),(b,c),(a,c)三种情况,∴基本事件总数为10种,事件“|m﹣n|>30”所包含的基本事件有6种,∴P(|m﹣n|>30)=.(ii)事件mn≤3600的基本事件只有(x,y)这一种,∴P(mn≤3600)=.19.如图,△ADM是等腰直角三角形,AD⊥DM,四边形ABCM是直角梯形,AB⊥BC,MC⊥BC,且AB=2BC=2CM=2,平面ADM⊥平面ABCM.(1)求证:AD⊥BD;(2)若点E是线段DB上的一动点,问点E在何位置时,三棱锥M﹣ADE的体积为?【考点】棱柱、棱锥、棱台的体积;空间中直线与直线之间的位置关系.【分析】(1)根据平面几何知识可证明AM⊥BM,故而BM⊥平面ADM,于是BM⊥AD,结合AD⊥DM可得AD⊥平面BDM,于是AD⊥BD;(2)令,则E到平面ADM的距离d=λ•BM=,代入棱锥的体积公式即可得出λ,从而确定E的位置.【解答】证明:(1)∵四边形ABCM是直角梯形,AB⊥BC,MC⊥BC,AB=2BC=2MC=2,∴BM=AM=,∴BM2+AM2=AB2,即AM⊥BM.∵平面ADM⊥平面ABCM,平面ADM∩平面ABCM=AM,BM⊂平面ABCM,∴BM⊥平面DAM,又DA⊂平面DAM,∴BM⊥AD,又AD⊥DM,DM⊂平面BDM,BM⊂平面BDM,DM∩BM=M,∴AD⊥平面BDM,∵BD⊂平面BDM,∴AD⊥BD.(2)由(1)可知BM⊥平面ADM,BM=,设,则E到平面ADM的距离d=.∵△ADM是等腰直角三角形,AD⊥DM,AM=,∴AD=DM=1,∴V M﹣ADE =V E﹣ADM==.即=.∴.∴E为BD的中点.20.已知圆C的圆心与双曲线M:y2﹣x2=的上焦点重合,直线3x+4y+1=0与圆C相交于A,B两点,且|AB|=4.(1)求圆C的标准方程;(2)O为坐标原点,D(﹣2,0),E(2,0)为x轴上的两点,若圆C内的动点P使得|PD|,|PO|,|PE|成等比数列,求•的取值范围.【考点】双曲线的简单性质.【分析】(1)求出双曲线的标准方程求出焦点坐标,利用直线和圆相交的弦长公式进行求解即可.(2)根据|PD|,|PO|,|PE|成等比数列,建立方程关系,结合向量数量积的坐标进行化简求解即可.【解答】解:(1)双曲线的标准方程为=1,则c==1,即双曲线的焦点C(0,1),圆心C到直线3x+4y+1=0的距离d=,则半径r=.故圆C的标准方程为x2+(y﹣1)2=5.(2)设P(x,y),∵|PD|,|PO|,|PE|成等比数列,∴•=x2+y2,整理得x2﹣y2=2,故•=(﹣2﹣x,﹣y)•(2﹣x,﹣y)=x2﹣4+y2=2(y2﹣1),由于P在圆C内,则,得y2﹣y﹣1<0,得<y<,则0≤y2<()2=,∴2(y2﹣1)∈[﹣2,1+),则•的取值范围是[﹣2,1+).21.已知函数f(x)=lnx+(a>1).(1)若函数f(x)的图象在x=1处的切线斜率为﹣1,求该切线与两坐标轴围成的三角形的面积;(2)若函数f(x)在区间[1,e]上的最小值是2,求a的值.【考点】利用导数求闭区间上函数的最值;利用导数研究函数的单调性.【分析】(1)求出函数的导数,根据f′(1)=﹣1,求出a的值,从而求出切线方程即可;(2)求出函数的导数,通过讨论a的范围,单调函数的单调区间,求出函数的最小值,从而求出a的值即可.【解答】解:(1)由f(x)=lnx+,得:f′(x)=,则f′(1)=1﹣a,由切线斜率为﹣1,得1﹣a=﹣1,解得:a=2,则f(1)=2,∴函数f(x)在x=1处的切线方程是y﹣2=﹣(x﹣1),即x+y﹣3=0,故与两坐标轴围成的三角形的面积为:×3×3=;(2)由(1)知,f′(x)=,x∈[1,e],①1<a<e时,在区间[1,a]上有f′(x)<0,函数f(x)在区间[1,a]上单调递减,在区间(a,e]上有f′(x)>0,函数f(x)在区间(a,e]上单调递增,∴f(x)的最小值是f(a)=lna+1,由lna+1=2得:a=e与1<a<e矛盾,②a=e时,f′(x)≤0,f(x)在[1,e]上递减,∴f(x)的最小值是f(e)=2,符合题意;③a>e时,显然f(x)在区间[1,e]上递减,最小值是f(e)=1+>2,与最小值是2矛盾;综上,a=e.请考生在22.23.24题三题中任选一题作答,如果多做,则按所做的第一题记分)[选修4-1:几何证明选讲]22.如图,直线PB与⊙O交于A,B两点,OD⊥AB于点D,PC是⊙O的切线,切点为C.(1)求证:PC2+AD2=PD2(2)若BC是⊙O的直径,BC=3BD=3,试求线段BP的长.【考点】与圆有关的比例线段.【分析】(1)由垂径定理和切割线定理得AD=BD,PC2=PA•PB=(PD﹣AD)(PD+AD),由此能证明PC2+AD2=PD2.(2)求出AB=2BD=2,在Rt△BCP中,由射影定理得BC2=BA•BP,即可求出线段BP的长.【解答】证明:(1)∵直线PB与圆O交于A,B两点,OD⊥AB于点D,PC是圆O的切线,切点为C.∴AD=BD,PC2=PA•PB=(PD﹣AD)(PD+AD)=PD2﹣AD2,∴PC2+AD2=PD2.解:(2)∵BC是⊙O的直径,∴AC⊥AB,∵D是AB的中点,∴AB=2BD=2,在Rt△BCP中,由射影定理得BC2=BA•BP,∴BP==.[选修4-4:坐标系与参数方程]23.设点A是曲线C:,(θ为参数)上的动点,点B是直线l:,(t为参数)上的动点(1)求曲线C与直线l的普通方程;(2)求A,B两点的最小距离.【考点】参数方程化成普通方程.【分析】(1)由曲线C:,(θ为参数),利用cos2θ+sin2θ=1可得普通方程.由直线l:,(t为参数),消去参数t化为普通方程.(2)设A(2cosθ,sinθ),点A到直线l的距离d=(其中tanφ=4),利用三角函数的单调性与值域即可得出最值.【解答】解:(1)由曲线C:,(θ为参数),可得普通方程:=1.由直线l:,(t为参数)化为普通方程:2x﹣y﹣5=0.(2)设A(2cosθ,sinθ),点A到直线l的距离d==(其中tanφ=4),当sin(θ﹣φ)=﹣1时,d取得最小值=.[选修4-5:不等式选讲]24.已知函数f(x)=|x﹣2|﹣|x﹣4|.(1)求不等式f(x)<0的解集;(2)若函数g(x)=的定义域为R,求实数m的取值范围.【考点】绝对值不等式的解法;绝对值三角不等式.【分析】(1)通过讨论x的范围,求出不等式的解集即可;(2)问题等价于m=f(x)在R无解,求出f(x)的范围,从而求出m的范围即可.【解答】解:(1)原不等式即为|x﹣2|﹣|x﹣4|<0,若x≤2,则2﹣x+x﹣4<0,符合题意,∴x≤2,若2<x<4,则x﹣2+x﹣4<0,解得:x<3,∴2<x<3,若x≥4,则x﹣2﹣x+4<0,不合题意,综上,原不等式的解集是{x|x<3};(2)若函数g(x)=的定义域为R,则m﹣f(x)=0恒不成立,即m=f(x)在R无解,|f(x)|=||x﹣2|﹣|x﹣4||≤|x﹣2﹣(x﹣4)|=2,当且仅当(x﹣2)(x﹣4)≤0时取“=”,∴﹣2≤f(x)≤2,故m的范围是(﹣∞,﹣2)∪(2,+∞).2018年9月18日编制:衡水中学总群386429879。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(衡水金卷)2018年普通高等学校招生全国统一考试模拟数学试题二第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}3,2,1,0,1,2,3A =---,集合{}1,0,1,3A =-,集合{}3,2,1,3B =---,则()U C A B ⋃=( )A .{}3,2,1--B .{}2,1,1--C .{}2D .{}1,2,3-2. 已知复数z 满足()20181z i i +=(i 是虚数单位),则复数z 在复平面内对应的点所在象限为( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限3.函数()()ln 21f x x =+的定义域为( )A .1,22⎡⎤-⎢⎥⎣⎦B .1,22⎡⎫-⎪⎢⎣⎭C .1,22⎛⎤- ⎥⎝⎦D .1,22⎛⎫- ⎪⎝⎭4.三世纪中期,魏晋时期的数学家刘徽首创割圆术,为计算圆周率建立了严密的理论和完善的算法.所谓割圆术,就是不断倍增圆内接正多边形的边数求出圆周率的方法.如图是刘徽利用正六边形计算圆周率时所画的示意图,现项园中随机投掷一个点,则该点落在正六边形内的概率为( )A B C5.已知双曲线()222210,0x y a b a b-=>>的一条渐近线与直线4310x y ++=垂直,且焦点在圆()22126x y +-=上,则该双曲线的标准方程为( )A .221916x y -=B .221169x y -=C .22134x y -=D .22143x y -=6.执行如图所示的程序框图,若输入的0.05t =,则输出的n 为( )A .3B .4C .5D .67.已知数列{}n a 的前n 项和为n S ,1133,2n n a a S ++==,则5a =( ) A .33 B .43 C .53 D .638.已知将函数()()sin 206f x x πωω⎛⎫=+> ⎪⎝⎭的图象向左平移3π个单位长度得到函数()g x 的图象,若函数()g x 图象的两条相邻的对称轴间的距离为2π,则函数()g x 的—个对称中心为( )A .,06π⎛⎫- ⎪⎝⎭B .,06π⎛⎫ ⎪⎝⎭C .,012π⎛⎫- ⎪⎝⎭D .,012π⎛⎫⎪⎝⎭9.榫卯是在两个木构件上所采用的一中凹凸结合的连接方式,凸出部分叫榫,凹进部分叫卯,榫和卯咬合,起到连接作用,代表建筑有:北京的紫禁城、天坛祈年殿、山西悬空寺等,如图所示是一种榫卯的三视图,其表面积为( )A .812π+B .816π+C .912π+D .916π+10.已知实数,x y 满足约束条件0,20,3,x y x y x -≥⎧⎪+-≥⎨⎪≤⎩当且仅当1x y ==时,目标函数z kx y =+取大值,则实数k 的取值范围是( )A .(),1-∞B .(),1-∞-C .()1,-+∞D .()1,+∞11.已知0a >,命题:p 函数()()2lg 23f x ax x =++的值域为R ,命题:q 函数()ag x x x=+在区间()1,+∞内单调递增.若p q ⌝∧是真命题,则实数a 的取值范围是( ) A .(],0-∞ B .1,3⎛⎤-∞ ⎥⎝⎦ C .10,3⎛⎤ ⎥⎝⎦ D .1,13⎛⎤⎥⎝⎦12.若函数()ln ,0x x f x x >⎧⎪=⎨≤⎪⎩与()1g x x a =++的图像上存在关于y 轴对称的点,则实数a的取值范围是( )A .RB .(],e -∞-C .[),e +∞D .∅第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.已知在ABC ∆中,D 为BC 边上的点,20BD CD +=,若(),AD mAB nAC m n R =+∈,则n = .14.已知焦点在x 轴上的椭圆222121x y m m +=+20y -+=上,则椭圆的离心率为 .15.在锐角ABC ∆中,角,,A B C 所对的边分别为,,a b c ,若()sin cos sin 1cos C A B C =-,且,3A b π=,则c = .16.如图,在矩形ABCD 中,2AD =,E 为AB 边上的点,项将ADE ∆沿DE 翻折至A DE '∆,使得点A '在平面EBCD 上的投影在CD 上,且直线A D '与平面EBCD 所成角为30︒,则线段AE 的长为 .三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17.已知等差数列{}n a 的前n 项和为n S ,15965,3a a a S =+=. (1)求数列{}n a 的通项公式;(2)若数列{}n b 满足11n n n b a a ++=,且16b a =,求数列1n b ⎧⎫⎨⎬⎩⎭的前n 项和n T .18.如图,四棱锥P ABCD -的底面ABCD 是边长为2的正方形,平面PAB ⊥平面ABCD ,点E 是PD 的中点,棱PA 与平面BCE 交于点F .(1)求证://AD EF ;(2)若PAB ∆是正三角形,求三棱锥P BEF -的体积.19.某市统计局就某地居民的收入调查了10000人,并根据所得数据画出样本的频率分布直方图(每个分组包括左端点,不包括右端点,如第一组表示收入在[)1000,1500).(1)求居民收入在[)3000,3500的频率;(2)根据频率分布直方图算出样本数据的中位数及样本数据的平均数;(3)为了分析居民的收人与年龄、职业等方面的关系,必须按月收入再从这10000人中按分层抽样方法抽出100人作进一步分析,则月收入在[)2500,3000内应抽取多少人?20.已知点F 为抛物线()2:20C y px p =>的焦点,过F 的直线l 交抛物线于,A B 两点. (1)若直线l 的斜率为1,8AB =,求抛物线C 的方程;(2)若抛物线C 的准线与x 轴交于点()1,0P -,(:2:1APF BPF S S ∆∆=,求PA PB ⋅的值. 21.已知函数()2ln ,f x x x ax a R =++∈.(1)当1a =时,求曲线()f x 在1x =处的切线方程;(2)若()1212,x x x x <是函数()f x 的导函数()f x '的两个零点,当(),3a ∈-∞-时,求证:()()123ln 24f x f x ->-. 请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分. 22.选修4-4:坐标系与参数方程在平面直角坐标系xOy 中,已知曲线1C 的参数方程为2143x t y t =-⎧⎨=-+⎩(t 为参数),以原点O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线2C 的极坐标方程为4πρθ⎛⎫=- ⎪⎝⎭.(1)求曲线1C 的普通方程与2C 的直角坐标方程; (2)判断曲线12,C C 是否相交,若相交,求出相交弦长. 23.选修4-5:不等式选讲 已知函数()212f x x x =-++. (1)求不等式()0f x >的解集;(2)若对任意的[),x m ∈+∞,都有()f x x m ≤-成立,求实数m 的取值范围.试卷答案一、选择题1-5: CBDAB 6-10: CCDBB 11、12:DC 二、填空题13.13 14. 23三、解答题17. 解:(1)设等差数列{}n a 的公差为d , 由15965,3a a a S =+=, 得 ()()6535458652d d d ⨯+++=⨯+, 解得2d =.所以()()()*1152123n a a n d n n n N =+-=+-=+∈. (2)由(1)得,1626315b a ==⨯+=. 又因为11n n n b a a ++=,所以当2n ≥时,()()12321n n n b a a n n -==++ 当1n =时,15315b =⨯=,符合上式, 所以()()2321n b n n =++. 所以()()11111232122123n b n n n n ⎛⎫==- ⎪++++⎝⎭. 所以1111111235572123n T n n ⎛⎫=-+-++- ⎪++⎝⎭()1112323323nn n ⎛⎫=-=⎪++⎝⎭. 18. 解:(1)因为底面ABCD 是边长为2的正方形, 所以//BC AD .又因为BC ⊄平面PAD ,AD ⊂平面PAD , 所以//BC 平面PAD .又因为,,,B C E F 四点共面,且平面BCEF ⋂平面PAD EF =, 所以//BC EF .又因为//BC AD ,所以//AD EF . (2)因为//AD EF ,点E 是PD 的中点, 所以点F 为PA 的中点,112EF AD ==. 又因为平面PAB ⊥平面ABCD ,平面PAB ⋂平面,ABCD AB AD AB =⊥, 所以AD ⊥平面PAB ,所以EF ⊥平面PAB . 又因为PAB ∆是正三角形, 所以2PA PB AB ===,所以12PBF PBA S S ∆∆=又1EF =,所以113P BEF B PEF V V --===故三棱锥P BEF -. 19.解:(1)由题知,月收入在[)3000,3500的频率为0.00035000.15⨯=.(2)从左数第一组的频率为0.00025000.1⨯=,第二组的频率为0.00045000.2⨯=, 第三组的频率为0.00055000.25⨯=, ∴中位数在第三组, 设中位数为2000x +,则0.00050.50.10.2x ⨯=--,解得400x =, ∴中位数为2400.由12500.117500.222500.2527500.2532500.1537500.052400⨯+⨯+⨯+⨯+⨯+⨯=, 得样本数据的平均数为2400.(3)月收入在[)2500,3000的频数为0.25100002500⨯=(人), ∵抽取的样本容量为100, ∴抽取的比例为100110000100=, ∴月收入在[)2500,3000内应抽取的人数为1250025100⨯=(人). 20.解:(1)由题意知,直线l 的方程为2p y x =-.联立2,22,p y x y px ⎧=-⎪⎨⎪=⎩得22304p x px -+=. 设,A B 两点的坐标分别为()(),,,A A B B x y x y , 则3A B x x p +=.由抛物线的性质,可得4822A B A B p pAB FA FB x x x x p p =+=+++=++==, 解得2p =,所以抛物线C 的方程为24y x =.(2)由题意,得()1,0F ,抛物线2:4C y x =, 设直线l 的方程为1x my =+,()()1122,,,A x y B x y , 联立21,4,x my y x =+⎧⎨=⎩得2440y my --=.所以12124,4,y y m y y +=⎧⎨=-⎩①因为(:2:1APF BPF S S ∆∆=,所以2AF BF=-因为,,A F B 三点共线,且,AF FB 方向相同, 所以()23AF FB =-,所以()(()11221,21,x y x y --=-, 所以)122yy =,代入①,得))22214,2 4.y m y⎧=⎪⎨=-⎪⎩解得212m =, 又因为()1,0P -,所以()()11221,,1,PA x y PB x y =+=+, 所以()()11221,1,PA PB x y x y ⋅=+⋅+ ()1212121x x x x y y =++++()()()1212111114my my my my =+++++++- ()212122m y y m y y =++2224842m m m =-+==.21.解:(1)当1a =-时,()2ln f x x x x =+-,()121f x x x'=+-, 所以()1ln1110f =+-=,()11212f '=+-=. 所以曲线()f x 在1x =处的切线方程为()21y x =-, 即220x y --=.(2)由题得,()()212120x ax f x x a x x x ++'=++=>.因为12,x x 是导函数()f x '的两个零点, 所以12,x x 是方程210ax ax ++=的两根, 故121210,22a x x x x +=->=. 令()221g x x ax =++, 因为(),3a ∈-∞-,所以13022a g +⎛⎫=< ⎪⎝⎭,()130g a =+<, 所以()1210,,1,2x x ⎛⎫∈∈+∞ ⎪⎝⎭,且22112221,21ax x ax x =--=--, 所以()()()()()2222111212121222ln ln x x f x f x x x ax ax x x x x -=+-+-=--+, 又因为1212x x =,所以1212x x =,所以()()()()2212121221ln 2,1,4f x f x x x x x -=--∈+∞,令()2222,t x =∈+∞,()()()121ln 22t h t f x f x t t=-=--. 因为()()22211110222t h t t t t -'=+-=>, 所以()h t 在区间()2,+∞内单调递增, 所以()()32ln 24h t h >=-, 即()()123ln 24f x f x ->-. 22.解:(1)由题知,将曲线1C 的参数方程消去参数t , 可得曲线1C 的普通方程为210x y +-=.由4πρθ⎛⎫=- ⎪⎝⎭,得()22cos sin ρρθρθ=+.将222x y ρ=+,cos ,sin x y ρθρθ==代入上式, 得2222x y x y +=+,即()()22112x y -+-=.故曲线2C 的直角坐标方程为()()22112x y -+-=.(2)由(1)知,圆2C 的圆心为()1,1,半径R =,因为圆心到直线1C 的距离d ==< 所以曲线12,C C 相交,所以相交弦长为==. 23.解:(1)当2x ≤-时,不等式转化为()()2120x x --++>,解得2x ≤-;当122x -<<时,不等式转化为()()2120x x ---+>,解得123x -<<-; 当12x ≥时,不等式转化为()()2120x x --+>,解得3x >. 综上所述,不等式()0f x >的解集为{13x x <-或}3x >.(2)由(1)得,()3,2,131,2,213,,2x x f x x x x x ⎧⎪-+≤-⎪⎪=---<<⎨⎪⎪-≥⎪⎩作出其函数图象如图所示:令y x m =-,若对任意的[),x m ∈+∞,都有()f x x m ≤-成立, 即函数()f x 的图象在直线y x m =-的下方或在直线y x m =-上.当2m ≤-时,30m -+≤,无解; 当122m -<<时,310m --≤,解得1132m -≤<; 当12m ≥时,30m -≤,解得132m ≤≤. 综上可知,当133m -≤≤时满足条件,故实数m 的取值范围是1,33⎡⎤-⎢⎥⎣⎦.。