不等式复习课

合集下载

第四节基本不等式课件高三数学一轮复习

第四节基本不等式课件高三数学一轮复习

基本不等式再理解:变形公式
ab a b (a 0,b 0) 2
和定积最大
积定和最小
2.利用基本不等式求最值问题
已知 x>0,y>0,则
(1)如果积 xy 是定值 p,那么当且仅当_x__=__y__时,x+y 有
_最___小___值是__2__p___.(简记:积定和最小)
(2)如果和 x +y 是定值 p,那么当且仅当_x_=___y__时,xy 有
答案 (1)C (2)5+2 6
某厂家拟定在 2018 年举行促销活动,经调查测算,该产 品的年销量(即该厂的年产量)x 万件与年促销费用 m(m≥0)万 元满足 x=3-m+k 1(k 为常数).如果不搞促销活动,那么该产 品的年销量只能是 1 万件.已知 2018 年生产该产品的固定投 入为 8 万元,每生产 1 万件该产品需要再投入 16 万元,厂家 将每件产品的销售价格定为每件产品平均成本的 1.5 倍. (1)将 2018 年该产品的利润 y 万元表示为年促销费用 m 万元 的函数;(产品成本包括固定投入和再投入两部分资金) (2)厂家 2018 年的促销费用投入多少万元时,厂家利润最大?
制 50≤x≤100(单位:千米/时).假设汽油的价格是每升 2 元,而汽车每小
时耗油
2+ x2 360
升,司机的工资是每小时
14
元.
(1)求这次行车总费用 y 关于 x 的表达式;
(2)当 x 为何值时,这次行车的总费用最低,并求出最低费用的值.
(1)y=m(kx2+9)=m x
x+9x
,x∈[1,10].
值,则 a=________. (2)不等式 x2+x<a+b对任意 a,b∈(0,+∞)恒成立,

高三数学高考第一轮复习课件:不等式

高三数学高考第一轮复习课件:不等式
4.构造函数,进而通过导数来证明不等式或解决不等 式恒成立的问题是高考热点问题.
第六单元 │ 使用建议
使用建议
1.本单元内容理论性强,知识覆盖面广,因此教学中 应注意:
(1)复习不等式的性质时,要克服“想当然”和“显 然成立”的思维定式,一定使要用注建议意不等式成立的条件,强化 或者弱化了条件都有可能得出错误的结论.
第34讲 │ 编读互动 编读互动
第34讲 │ 知识要点 知识要点
第34讲 │ 知识要点
第34讲 │ 知识要点
第34讲 │ 双基固化 双基固化
第34讲 │ 双基固化
第34讲 │ 双基固化
第34讲 │ 双基固化
第34讲 │ 双基固化
第34讲 │ 双基固化
第34讲 │ 双基固化
第34讲 │ 双基固化
(1)理解不等式的性质及其证明. (2)掌握两个(不扩展到三个)正数的算术平均数不小于 它们的几何平均数的定理,并会简单的应用. (3)掌握分析法、综合法、比较法证明简单的不等式. (4)掌握简单不等式的解法. (5)理解不等式|a|-|b|≤|a+b|≤|a|+| b|.
第六单元 │ 复习策略
复习策略
不等式
目录
第34讲 不等式的概念与性质 第35讲 均值不等式 第36讲 不等式的解法 第37讲 不等式的证明 第38讲 含绝对值的不等式
第六单元 不等式
第六单元 │ 知识框架 知识框架
第六单元 │ 考点解读 考点解读
不等式、不等式的基本性质、不等式的证明、不等式的 解法、含绝对值的不等式.
第六单元 │ 考点解读
第35讲 │ 双基固化
第35讲 │ 双基固化
第35讲 │ 双基固化
第35讲 │ 双基固化

不等式的解法(复习课)(1)

不等式的解法(复习课)(1)
一、常见不等式
1、一元一次不等式的法
ax>b 或 ax<b
2、绝对值不等式 |x|>a (a>0) x<-a或x>a |x|<a (a>0) -a<x<a
3、一元二次不等式的解法 ax2+bx+c>0 (a>0) 或 ax2+bx+c<0 (a>0)
判别式 一元二次方程 ax2+bx+c=0的 根 二次函数 y=ax2+bx+c的 图象 (a>0) ax2+bx+c>0 (a>0)
二、应用举例:
1、解关于x的不等式: ax+1<a2+x 2、已知a≠b,解关于的不等式:
a2x+b2(1-x) ≥[ax+b(1-x)]2
3、解关于x的不等式
x2-(a+a2)x+a3 >0
4、解关于x的不等式
a x x b 0
ax b
b ( >a>b>0 ) a

>0
2

=0

无实根
<0
两相异实根
b b 4ac x 1 、2 = 2a
两相等实根 b x1=x2= 2a
{x|x<x1或 {x|x∈ R x>x2 } 且X≠X1}
R
ax2+bx+c<0 {X|X1<X (a>0) <X2}
4、分式不等式的源自法x 0 (1)简单分式不等式的解法 如: 3 x
5、解关于x的不等式:
ax2-2(a+1)x+4>0 6、解不等式: |x+3|-|x-5|>7 (其中a≠0)
7、已知关于x的不等式 ax+b>0的解 集为 (1,+∞ ) ,解不等式

方程和不等式的解法复习课教案

方程和不等式的解法复习课教案

方程和不等式的解法复习课教案一、教学目标1. 回顾和巩固方程和不等式的解法,提高学生解决实际问题的能力。

2. 培养学生运用数学知识分析和解决问题的能力。

3. 激发学生的学习兴趣,培养合作意识和创新精神。

二、教学内容1. 回顾一元一次方程、一元二次方程、不等式的解法。

2. 分析实际问题,运用方程和不等式解决生活中的问题。

三、教学重点与难点1. 重点:方程和不等式的解法及其应用。

2. 难点:如何将实际问题转化为方程和不等式,并灵活运用解法求解。

四、教学方法与手段1. 采用问题驱动法,引导学生主动探究方程和不等式的解法。

2. 利用多媒体课件,展示实际问题,帮助学生理解和运用方程和不等式。

3. 组织小组讨论,培养学生的合作意识和沟通能力。

五、教学过程1. 导入:回顾方程和不等式的基本概念,引导学生思考实际问题与方程不等式之间的关系。

2. 自主学习:学生通过阅读教材,回顾一元一次方程、一元二次方程、不等式的解法。

3. 课堂讲解:讲解方程和不等式的解法,结合实例进行分析,引导学生理解解法的原理和步骤。

4. 案例分析:出示实际问题,让学生运用方程和不等式进行解答,培养学生的应用能力。

5. 小组讨论:组织学生进行小组讨论,分享解题心得,互相学习,提高解题能力。

6. 课堂练习:布置练习题,让学生巩固所学知识,及时发现并解决学习中存在的问题。

7. 总结与反思:对本节课的内容进行总结,引导学生反思自己在解题过程中的优点和不足,提出改进措施。

8. 课后作业:布置适量作业,让学生进一步巩固方程和不等式的解法。

六、教学评价1. 评价学生对方程和不等式解法的掌握程度。

2. 评价学生在解决实际问题中的应用能力和创新精神。

3. 采用课堂练习、小组讨论、课后作业等多种形式进行评价。

七、教学资源1. 教材:提供相关章节,方便学生复习和自学。

2. 多媒体课件:展示实际问题,辅助教学。

3. 练习题:供学生课堂练习和课后巩固。

4. 小组讨论材料:提供案例,促进学生交流和合作。

不等式复习课件

不等式复习课件
B,0
3
的最小整数解为( A )
A,-1
C,2
D,3
2 x 4 0 -3,-2 例7:不等式组 1 的整数解为_________ 2 x 2 0
4、不等式2x-2≥3x-4的正整数解的个数为(
(A)1个 (B)2个 (C)3个
B )
(D)4个
2 x 3 0 5、不等式组 的整数解的个数是( C ) 3 x 5 0
由不等式②得: x≥5
-1 0 1 2 3 4 5 6 7 8
注意:不等式组的 公共解集,可用口诀: 同大取大,同小取小 大小,小大中间夹, 大大小小无解答.
∴ 原不等式组的解集为:5≤x≤8
∴原不等式组的整数解x为: 5,6,7,8.
二,求不等式的特殊解:
例6:不等式 2 x
x 1 8 2x
数轴显示
b a
语言叙述
同大取大 同小取小
大小小大中间找 大大小小无解集
1 2

xa x b
xa x b
b
a
3 xa 4 xb
xa x b
b
a
b
a
一元一次不等式(组)的解
例1:不等式4-3x>0的解是( D )
4 A, x 3 4 B, x 3 4 C, x 3 4 D, x 3
x 2 0 x 3 0
x>2 的解集为___.ห้องสมุดไป่ตู้
的解集是
3x 1 5 x 7.(05上海)解不等式组: ,并把解集在 2 x 1 6 x 数轴上表示出来.
-5 -4 -3 -2 -1 O 1 2 3 4
4.(04青海)已知点M(3a-9,1-a)在第三象限,且它 们的坐标都是整数,则a=___ A. 1 B. 2 C. 3 D. 0 5.(05临沂市)关于x的不等式3x-2a≤-2的解集如图所 示,则a的值是___ 2 x 7>3 x-1 -1 0 1 6.(05天津)不等式组 的解集为___ x-2 0

不等式的性质(复习课)

不等式的性质(复习课)

定理5 补充
若a>b>0 则n a >n b (n ∈N且 n>1)
11
若a>b且ab>0 则 <
ab
定理:若a、b∈R,那么 a2+b2≥2ab (当且仅当a=b取“=”)
定理:如果是a、b正数,那么
a
2
b

a b(当且仅当a=b取“=”)
(1) 两个定理中条件的区别 (2)两个定理的结构特征及应用 (3)要注意“=”的取到,事实上在“=”处是一种边界情况
v
2两火车的间距不得ຫໍສະໝຸດ 于 2 0 千米,那么这批物资全部到
达灾区最少需要 ( B )小时
(A) 5 (B)10 (C)15 (D)20

安全柜 ;
之色/马开那双凌厉の眸子所过之处/这些人忍不住后退壹步/到最后开始溃败咯起来/马开就站在那里/以壹双眼睛/逼の这些人四处逃窜/这种威势/让为首の几佫人惊恐不已/就算荒原の最出名の凶人/都不可能凭借着目光让这些久经战斗の人溃败/可面前这佫少年做到咯/几佫人在见到马开目光落 在它们身上后/它们也再无战意/随着众人壹起逃离/钟薇见到这壹幕/忍不住向马开の侧脸/马开此刻の侧脸拾分坚毅/这种坚毅/让她の有些呆滞/感受到马开身体传来の温热/钟薇那绝美の脸蛋上/飘扬起无端の绯红/醉人美艳/"再坚持几滴/就能到器宗の实力范围咯/到时候/我们就安全咯/"马开背 着钟薇/对着她说道/"嗯/"钟薇点头道/"不过刀疤皇从那壹战后/就壹直没有出现/它见过你身上の不少好东西/肯定不会放过你/怕确定还有什么算计/它能有什么算计?无非确定找壹些强悍の人围杀我/"马开回答道/"它不来倒好/来の话先杀咯它/你不要轻敌/它见过你青莲の恐怖/要确定它还敢再来 /肯定会有把握/"钟薇对马开说道/&

一轮复习:基本不等式

一轮复习:基本不等式
1
2
课时分层作业
)
5
2
2
(2)当 <x< 时,函数y= 2 − 1 + 5 − 2的最大值为________.
(1)BC
(2)2
+ 2
2
2
2
[(1)由x +y -xy=1,可得(x+y) -3xy=1,而xy≤
,即1=(x+y)2 -
4
3 + 2
+ 2
2
3xy≥(x+y) -
A.1
D
B.2
C.2 2
1
的最小值是(
−2
)
D.4

1
1
[∵x>2,∴x+ =x-2+ +2≥2
−2
−2
1
,即x=3时,等号成立.故选D.]
−2
−2
1
·
+2=4,当且仅当x-2=
−2
第4课时
基本不等式
链接教材 夯基固本
典例精研
核心考点
课时分层作业
3.(多选)(人教A版必修第一册P46练习T2改编)若a,b∈R,则下列不等式成立的
=2+ ,
+1
+1
故2x+y=4+
4
+y+1-1≥4+2
+1
4
·
+1
+ 1 -1=7,当且仅当
即x=3,y=1时取等号.故选C.
(3)令x-1=m,2y-1=n,
则m>0,n>0且m+n=x-1+2y-1=1,
1
1
1

+

−1
2−1
1
1
+ =

均值不等式复习课件

均值不等式复习课件
高维空间中均值不等式的证明
利用高维空间中向量模长的平方与点积之间的关系,通过数学推导证明该不等式。
高维空间中均值不等式的应用
在解决高维空间中的优化问题、概率统计问题以及机器学习算法中,可以利用高维空间中的均值不等式 进行求解。
06
练习与思考题
基础练习题
基础练习题1
已知$x > 0,y > 0$,求证:$frac{x+y}{2} geq sqrt{xy}$。
04
均值不等式的应用举例
在数学解题中的应用
01Leabharlann 代数问题均值不等式可以用于解决代数问题,例如求最值、证明不等式等。通过
运用均值不等式,可以将问题转化为对基本不等式的理解和运用。
02 03
几何问题
在几何学中,均值不等式常常用于解决与面积、周长和体积等几何量相 关的问题。例如,利用均值不等式求得几何体的最大或最小面积、周长 等。
如果将不等式中的每一项 都乘以一个正数$k$,则 不等式的方向不会改变。
可加性
如果将不等式中的每一项 都加上一个正数$k$,则 不等式的方向不会改变。
应用场景
最大最小值问题
证明不等式
利用均值不等式可以求出函数在某个 区间上的最大值和最小值。
利用均值不等式可以证明一些数学上 的不等式。
优化问题
在生产和经济活动中,经常需要通过 调整某些参数使得某个指标达到最优 ,此时可以利用均值不等式进行求解 。
供需分析
在微观经济学中,均值不等式用于分析市场供需关系。例如,利用均值不等式分析商品价 格与需求量之间的关系,以及生产成本与供给量之间的关系。
生产效率
在生产效率分析中,均值不等式可以用于评估生产过程中的资源配置效率。例如,利用均 值不等式分析生产要素之间的最优配置,以提高生产效率。

不等式的解法(复习课)(1)

不等式的解法(复习课)(1)
一、常见不等式
1、一元一次不等式的法 ax>b 或 ax<b
2、绝对值不等式 |x|>a (a>0) x<-a或x>a |x|<a (a>0) -a<x<a
3、一元二次不等式的解法 ax2+bx+c>0 (a>0) 或 ax2+bx+c<0 (a>0)
判别式
>0
=0 <0
一元二次方程 ax2+bx+c=0的 根
6、解不等式: |x+3|-|x-5|>7
7、已知关于x的不等式 ax+b>0的解 集为 (1,+∞ ) ,解不等式
ax b x2 5x 6 >0
1、含参数不等式要注意参数的范围、参数引起 的讨论
2、含两个绝对值不等式的解法 ——零值点法
二、应用举例:
1、解关于x的不等式: ax+1<a2+x
2、已知a≠b,解关于的不等式: a2x+b2(1-x) ≥[ax+b(1-x)]2
3、解关于x的不等式 x2-(a+a2)x+a3 >0
4、解关于x的不等式
a xxb 0
b
( >a>b>0 )
ax b
a
5、解关于x的不等式: ax2-2(a+1)x+4>0 (其中a≠0)
注意:
1、以后解不等式最后的结果都要写成集合或区间。
2、解不等式时一定要注意“是否有=”。
3、对绝对值不等式一定要分清是 “或”还是“且”, 是求并集还是要求交集。
4、对一元二次不等式,要注意二次项系数a是否大于0
5、数轴标根法—分式不等式—高次整式不等式
6、有关计算的要求------移项、去括号、通分、两边同 乘一个数是正还是负。

不等式及其解法课件—高三数学一轮复习

不等式及其解法课件—高三数学一轮复习


f f
(0) 5x 3 (1) (x2
2x2 0, 7) 5x
3
2x2
0,
化简得
2 x
x
2
2 5x 3 0, 5x 4 0,
解得
x x
1 或x 3, 2 1或x 4,
故x≤-4或x≥
1 2
.故选A.
答案 A
例2 (2021江苏连云港测试,14)设函数f(x)=mx2-mx-1.若对于x∈[1,3],f(x)< -m+5恒成立,求m的取值范围.
注意 可逆 同向
可逆 c的 符号 可逆 同向
同向同正 可乘性 可乘方性 可开方性
a>b>0,c>d>0⇒ac>bd
a>b>0,n∈N*⇒an>bn a>b>0⇒ n a > n b (n∈N,n≥2)
同向 同正 同正 同正
2.不等式的倒数和分数性质
1)倒数性质:a>b,ab>0⇒ 1< 1;
ab
考向一 解一元二次不等式
1.(2023届山东潍坊临朐实验中学月考,6)若关于x的不等式(a2-4)x2+(a+2)x -1≥0的解集不为空集,则实数a的取值范围为 ( )
A.
2,
6 5
B.
2,
6 5
C.(-∞,-2)∪
6 5
,
D.(-∞,-2]∪
6 5
,
答案 C
2.(多选)(2023届山西长治质量检测,10)已知函数y=x2+ax+b(a>0)有且只有 一个零点,则 ( ) A.a2-b2≤4
1 n
x

不等式复习课

不等式复习课
不等式的性质1 不等式两边加(或减)同 一个数(或式子),不等号的方向不变.
如果a b,
那么a c b c.
不等式的性质2 不等式两边乘(或除以) 同一个正数,不等号的方向不变.
如果a b, c 0, a b 那么ac bc(或 ). c c
不等式的性质3 不等式两边乘(或除以) 同一个负数,不等号的方向改变.
一个工程队原定在10天内至少要挖土 600m³ ,在前两天一共完成了12m³ , 由于整个工程调整工期,要求提前两 天完成挖土任务。问以后几天内,平 均每天至少要挖土多少m³ ?
2.学校图书馆搬迁,有15万册图书, 原准备每天在一个班级的劳动课上, 安排一个小组同学帮助搬运图书,两 天共搬了1.8万册。如果要求在一周 内搬完,设每个小组搬运图书数相同, 则在以后五天内,每天至少安排几个 小组搬书?
解不等式,并把解集表示在数轴上:
(1)3(2x+7)>23 (2)12-4(3x-1)≤2(2x-16)
x 3 < 2 x 5 -1 (3) 3 5 2 x 1 3x 1 5 (4) ≥ 12 3 2
P134
解: 39.98≤ V ≤40.02.
解:设蛋白质的含量为x g, 由题意,得 x ≥300×0.6% x ≥1.8 答:蛋白质的含量不小于1.8 g.
(5) x的
2
3
与y的0.5的和是非正数;
2
3
x+0.5y≤0
(6) a的平方与3的差不大于a与5的和.
a² ≤a+5 -3
(7)m与n的平方和是非负数;
m² +n² ≥0
你认为是这样吗 ?
小辉在学了不等式的基本性质这一节后,他
觉得很容易;并用很快的速度做了一道填空题,

人教高中数学必修一B版《不等式》等式与不等式说课复习(不等关系与不等式)

人教高中数学必修一B版《不等式》等式与不等式说课复习(不等关系与不等式)

课件
课件
课件
课件
课件
课件
课件 课件
课件 课件
课件 课件
课件 课件
课件
课件
课件
=x+122+34. ∵x+122≥0,∴x+122+34≥34>0. ∴(2x2+5x+3)-(x2+4x+2)>0,
∴2x2+5x+3>x2+4x+2.
栏目导航
不等关系的实际应用
【例
课件
课件
3】 课件
课件
课件
课件
课件
课件
(3)错误.ac-bc=(a-b)c,这与 c 的符号有关.
[答案] (1)√ (2)√ (3)×
栏目导航
2.下面表示“a 与 b 的差是非负数”的不等关系的是( )
课件
课件
课件
课件
课件
课件
课件
课件
课件
课件
课件
课件
课件 课件
课件 课件
课件 课件
课件 课件
课件
课件
A.a-b>0
B.a-b<0
C.a-b≥0
栏目导航
作差法比较两个实数大小的基本步骤 课件 课件 课件 课件
课件 课件 课件 课件
课件
课件
课件
课件
课件 课件
课件 课件
课件 课件
课件 课件
课件
课件
栏目导航
2.比较 2x2+5x+3 与 x2+4x+2 的大小.
[解] (2x2+5x+3)-(x2+4x+2)=x2+x+1 课件
课件
课件
课件
课件
第二章 等式与不等式 2.2 不等式
第1课时 不等关系与不等式
课件

不等式复习课课件

不等式复习课课件

(2)若题中区间改为x∈[-2,2],求a的取值范围; (3)若题中区间改为a∈[-2,2],求x的取值范围. 解 原不等式可化为 x2 1 2x 而 2, x x
x2 1 a , x
所以a的取值范围是(-∞,2].
x2 1 x2 1 1 (1)因为 a , 令f ( x) x , x x x 1 则函数f(x)在区间(0, ]上是减函数,
1 1 ⅰ)当a> 2 时,原不等式的解集为{x|x>2或x< a }. 1 1 ⅱ)当0<a< 2 时,原不等式的解集为{x|x> a 或
x<2}.
1 ⅲ)当a= 时,原不等式的解集为{x|x≠2}. 2 1 ⅳ)当a<0时,原不等式的解集为{x| <x<2}. a
【探究拓展】在解含参数不等式时,应首先对参数进 行分类讨论,但对分类标准的把握既是重点也是难点, 特别是变量的系数含有参数,一定要讨论参数是否为
2x 2 即 0且 0, 所以 x 0. x 1 x 1
7.(2008·全国Ⅱ)设变量x,y满足约束条件: y x, x 2 y 2,则z=x-3y的最小值为 x 2, A.-2 B.-4 C.-6 D.-8
(D )
解析
作出可行域如图所示.
可知当x-3y=z经过点A(-2,2)时, z有最小值, 此时z的最小值为-2-3×2=-8.
1 , 1, 2 的取值范围是 .
3.已知
lg x lg y 1, 则
5 2 x y的最小值是 Nhomakorabea2
.
1 x , x 0 , 则不等式 4.(2009·北京)若函数f(x)= ( 1 ) x , x 0 3 1
|f(x)|≥ 的解集为_______. [-3,1] 3 x 0 解析 (1) | f ( x) | 1 1 1 3 x 0. 3 | x | 3

人教版七年级数学下册《不等式与不等式组复习课》教学设计

人教版七年级数学下册《不等式与不等式组复习课》教学设计

《不等式与不等式组复习课》教学设计一、设计思想:“不等式”是初中数学核心内容之一。

就不等式的解法来说,它是一种重要的数学技能;而就不等式的广泛作用来说,不管是与实际相关的问题,还是纯粹的数学问题,不管是代数方面的问题,还是几何图形方面的问题,乃至更为一般化的问题,只要是求未知数的值或范围的问题,经常要借助于不等式,可见学好不等式具有非常重要的意义。

这节课是全章复习课。

由于学生刚刚学完本章内容,因此在本节复习中主要以题带知识点的形式进行复习。

教师主要在习题的设计上选好典型例题,复习的知识尽量全面。

教学效果上使不同的学生有不同的收获。

二、教学内容分析:1、《数学课程标准》对本章教学内容的要求:①能够根据具体问题中的大小关系了解不等式的意义,并探索不等式的基本性质。

②会解简单的一元一次不等式,并能在数轴上表示出解集。

会解由两个一元一次不等式组成的不等式组,并会用数轴确定解集。

③能够根据具体问题中的数量关系,列出一元一次不等式和一元一次不等式组,解决简单的问题。

2、本节内容在教材的地位和作用。

本部分内容在教材中承接4-6学段的不等关系,又为后续方程、函数三角函数、几何等内容的学习起着铺垫作用,中中考中也是综合考查,因此学好本章内容对于解决这些综合问题起着举足轻重的作用。

三、教学目标:1、知识技能:①掌握不等式的概念和性质,能根据不等式的性质解决有关问题;②掌握不等式(组)的解法,会求不等式(组)的解集;③能根据不等式组的解集确定字母系数的范围;2、过程方法:通过列不等式或不等式组解决具有不等关系的实际问题,让学生体会不等式是解决实际问题的有效的数学模型。

3、情感态度:①通过复习教学,继续强化用数学的意识,从而使学生乐于接触能够在数学活动中发挥积极作用。

②通过探索,增进学生之间的配合,使学生敢于面对数学活动中的困难,并有克服困难和运用知识解决问题的成功体验,树立学好数学的自信心。

教学重点:不等式(组)的解法的规范性及实际应用。

第八章一元一次不等式复习课课件华东师大版七年级数学下册

第八章一元一次不等式复习课课件华东师大版七年级数学下册

系数化为 1 得:
x≥
-5 2
不等式的解集在数轴上表示如图所示:

3-
5 2

2
–1
0
1
2
3
注意:系数化为1时,要注意不等号的方向.
三、考点探究
考点三 解一元一次不等式组
例3:解不等式组
2 2
x x
3 5
x6 10 3x
① ②
集中的整数解写出来.
,把解集在数轴上表示出来,并将解
分析:先分别解出每个不等式,再求出其公共部分即可.
a
b
x>b
同大取大
a
b
a<x<b
大小小大中间找
a
b
x<a
同小取小
a
b
无解
大大小小解不了
二、知识梳理
五、利用一元一次不等式(组)解决实际问题
① 审: 找出题目中的不等关系; ② 设:设出未知数,用未知数表示有关代数式; ③ 列:列出不等式; ④ 解:解不等式; ⑤ 答:根据实际情况写出答案.
三、考点探究
x≥4
x<–3
(1)
(2)
x>–4
x≤–2
x > –1 (3)
x<5
x>–4 (4)
x<–5
x≥4
x < –3
–1 < x < 5
无解
同大取大
同小取小 大小小大中间找 大大小小解不了
三、考点探究
考点四 用一元一次不等式(组)解决实际问题
例4:某小区计划购进甲、乙两种树苗,已知甲、乙两种树苗每株分别为8元、 6元. 若购买甲、乙两种树苗共360株,并且甲树苗的数量不少于乙树苗的一 半,请你设计一种费用最少的购买方案. 解:设购买甲树苗的数量为 x 株;

初三数学复习教案初中数学复习课教案

初三数学复习教案初中数学复习课教案

初三数学复习教案初中数学复习课教案一、教学内容本节课我们将复习人教版初中数学九年级下册第十七章《不等式与不等式组》中的内容。

具体包括不等式的性质、一元一次不等式的解法、不等式组的解法及其在实际问题中的应用。

二、教学目标1. 让学生熟练掌握不等式的性质,能运用这些性质解决实际问题。

2. 使学生掌握一元一次不等式的解法,并能解决相关的实际问题。

3. 培养学生解决不等式组问题的能力,提高他们的数学思维。

三、教学难点与重点教学难点:一元一次不等式的解法及不等式组的解法。

教学重点:不等式的性质、一元一次不等式的解法、不等式组的解法及其在实际问题中的应用。

四、教具与学具准备1. 教具:多媒体课件、黑板、粉笔。

2. 学具:练习本、笔。

五、教学过程1. 实践情景引入(5分钟)利用多媒体展示一个实际情景,如小明和小华的年龄问题,引发学生对不等式的兴趣。

2. 知识回顾(10分钟)通过提问方式引导学生回顾不等式的性质、一元一次不等式的解法及不等式组的解法。

3. 例题讲解(15分钟)讲解一道关于一元一次不等式的题目,详细讲解解题步骤,强调关键点。

4. 随堂练习(10分钟)学生独立完成一道类似例题的练习题,教师巡回指导。

5. 知识拓展(10分钟)讲解不等式组在实际问题中的应用,如购物问题。

6. 课堂小结(5分钟)7. 互动环节(10分钟)学生分组讨论,互相提问,加深对知识的理解和应用。

六、板书设计1. 不等式的性质2. 一元一次不等式的解法3. 不等式组的解法4. 实际问题中的应用七、作业设计1. 作业题目:(1)解不等式:2(x3) > 5(2)解不等式组:\[\begin{cases}3x2y>6 \\2x+y<5\end{cases}\]2. 答案:(1)x > 4.5(2)x > 2, y < 1(3)至少需要带250元。

八、课后反思及拓展延伸1. 反思:本节课学生对不等式的性质和一元一次不等式的解法掌握情况较好,但在解决实际问题方面还需加强。

不等式复习课件(职高)

不等式复习课件(职高)

综合练习
基础练习题
通过解老师提供的练习题,检验一下自己对不等 式的掌握程度吧!
提高练习题
来挑战一下自己吧!这些练习题将考验您的不等 式应用能力。
总结
1 知识点回顾
通过本次课程,您已经全面回顾了职高数学中的各种不等式。
2 学习建议
继续做题,不断积累,加油!
二元不等式的应用 之一是约束条件。 例如,当一个工程 需要满足多个条件 时,可以将这些条 件用二元不等式表 示出来。
三元不等式
三元不等式是三个 变量之间的不等式。 三元不等式在最值 和优化问题中经常 用到。
三元不等式的应 用
三元不等式的应用 之一是优化问题。 例如,当需要最小 化或最大化某个函 数时,可以将函数 与三元不等式组合 起来,以实现优化。
绝对值不等式的定义
绝对值表示一个数到0的距离。绝对值不等式是指包含绝对值的不等式,通常在求解问题时要将绝 对值拆开讨论。
绝对值不等式的解法
绝对值不等式的解法是将绝对值拆开讨论,每一种情况有不同的解法。
多元不等式
二元不等式
二元不等式是两个 变量之间的不等式。 二元不等式在生活 和工作中经常用到。
二元不等式的应 用
如果a>b,则a+c>b+c(c为任意数)
一元一次不等式
一元一次不等式的解法
使用图像法或非图像法求解一元一次不等式
一元一次不等式的应用
一元一次不等式的应用之一是求最值
一元二次不式
1
一元二次不等式的解法
使用图像法或非图像法求解一元二次不等式
2
一元二次不等式的应用
一元二次不等式的应用之一是求区间
绝对值不等式
不等式复习课件(职高)

中专不等式复习教案

中专不等式复习教案

中职数学备课教案模板观察法直接写出答案,如:63.1531< 作差法分三步:先添括号(遇到多项式)再作差变形判断正、0、负实数性质解大小2、区间两数之间成区间。

用数轴表示很关键。

“—∞”永远左开,“+∞”永远右开。

集用区间“画轴”求,数形结合“交、并、补” 3、不等式的基本性质 性质1:传递性c a c b b a >⇒>>,性质2:加同同向(加法性)c b c a b a +>+⇔>性质3:乘法性乘正同向乘负反向bc ac c b a >⇒>>0, bc ac c b a <⇒<>0,性质4:反对称性a b b a <⇔>补充性质(不作要求,技能高考班高三时可补充)d b c a d c b a +>+⇒>>,(同向可加性)00,0>>⇒>>>>bd ac d c b a (同向同正可乘性)ba ab b a 110,<⇒>>(同号两数比较,较大的数其倒数反而小)4、不等式(组)的解法(1)一元一次不等式的解法:“去、去、移、合、1”[注意]:“去、去、移、合”4步同向(不等号不变),“系数化为1”的“正系数化1”同向,“负系数化1”反向(2)一元二次不等式的图像解法(格式按例题执行)原不等式化为“0>a ”的不等式解对应方程02=++c bx ax ,并说明根的情况(2交点,1交点,无交点)画出简图写不等式的解集0>a0>∆0=∆0<∆一元二次函数cbx ax y ++=2的图象一元二次方程2=++c bx ax 的根 有两实根21x x x x ==或有两相等的实根21x x x ==无实根一元二次不等式2>++c bx ax 的解12,x x x x <>或2b x a≠-的全体实数全体实数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三、课堂练习
课后作业 教学效 果分析 不等式练习题一份 作业情况: 良好 掌握情况: 对公式掌握良好
有两相等实根 b x1 x2 2a
b x x 2a
无实根
x x x 或x x
1 2
R
x x
1
x x2


2.分式不等式的解法 (1) 标准化: 移项通分化为
f ( x) f ( x) f ( x) f ( x) >0(或 <0); ≥0(或 ≤0)的形式, g ( x) g ( x) g ( x) g ( x) f ( x) f ( x) 0 f ( x) g ( x) 0; 0 f ( x) g ( x) 0 g ( x) 0 g ( x) g ( x)
0 0 0
2
二次函数
y ax 2 bx c
( a 0 )的图象 一元二次方程
ax bx c 0
2
有两相异实根
x1 , x2 ( x1 x2 )
a 0的根
ax 2 bx c 0 (a 0)的解集 ax 2 bx c 0 (a 0)的解集
(2)转化为整式不等式(组) 3.含绝对值不等式的解法
(1)公式法: ax b c ,与 ax b c(c 0) 型的不等式的解法. (2)定义法:用“零点分区间法”分类讨论. (3)几何法:根据绝对值的几何意义用数形结合思想方法解题. 4.一元二次方程根的分布 一元二次方程 ax2+bx+c=0(a≠0) (1)根的“零分布” :根据判别式和韦达定理分析列式解之. (2)根的“非零分布” :作二次函数图象,用数形结合思想分析列式解之.
x1
x2
x3
x m-3
-
x m-2 x m-1
+
-
xm
+
x
(自右向左正负相间) 则不等式 a0 x n a1 x n1 a 2 x n2 a n 0( 0)( a0 0) 的解可以根据各区间的符 号确定.
特例:① 一元一次不等式 ax>b 解的讨论; ②一元二次不等式 ax +box>0(a>0)解的讨论.
南京学尔思教育咨询有限公司教学目标 重难点 任瑜 2011-8-24 年级 时段 高一 13-15


科目

数学 王鑫 班主任 课时 戴鑫 2
辅导老师
不等式复习课 掌握一元二次不等式的解法;二元一次不等式组表示的平面区域及线性规划问题;利用 基本不等式进行不等式证明与求函数的最值. 含参不等式的解法,线性规划中最优整数解的求法,不等式证明.
一、不等式的知识网络
与另两个"二次"的关系
一元二次不等式
不等式的解法 不等式的应用
表示的平面区域 不等关系 不等式组 二次不等式组 线性规划 证明不等式 基本不等式 求函数最值 实际应用
教案 二、不等式知识要点
1.整式不等式的解法 根轴法(零点分段法) ①将不等式化为 a0(x-x1)(x-x2)„(x-xm)>0(<0)形式,并将各因式 x 的系数化“+” ; (为了统一方便) w.w.w.k.s.5.u.c.o.m ②求根,并在数轴上表示出来; ③由右上方穿线,经过数轴上表示各根的点(为什么?) ; ④若不等式(x 的系数化“+”后)是“>0”,则找“线”在 x 轴上方的区间;若不 等式是“<0”,则找“线”在 x 轴下方的区间.
相关文档
最新文档