中考数学复习选择题解法2[人教版]

合集下载

人教版数学九年级中考复习训练专题二 计算求解题 附答案

人教版数学九年级中考复习训练专题二  计算求解题  附答案

专题二 计算求解题(必考)类型一 简便运算1. (2020唐山路北区三模)如图,是小明完成的一道作业题,请你参考小明的方法解答下面的问题:第1题图(1)计算:① 42020×(-0.25)2020;②(125)11×(-56)13×(12)12. (2)若2×4n ×16n =219,直接写出n 的值.2. 嘉琪研究了“十位数字相加等于10,个位数字相等”的两位数乘法的口算技巧:如34×74=2516.结果中的前两位数是用3×7+4得25,后两位数是用4×4=16,经过直接组合就可以得到正确结果2516.(1)请用上述方法直接计算45×65=________;56×56=________;(2)请用合适的数学知识解释上述方法的合理性.类型二 计算过程纠错1. 小杨对算式“(-24)×(18-13+14)+4÷(12-13)”进行计算时的过程如下: 解:原式=(-24)×18+(-24)×(-13)+(-24)×14+4÷(12-13)……① =-3+8-6+4×(2-3)……②=-1-4……③=-5④根据小杨的计算过程,回答下列问题:(1)小杨在进行第①步时,运用了__________律;(2)他在计算中出现了错误,其中你认为第________步出错了(只填写序号);(3)请你给出正确的解答过程.2. (2020石家庄模拟)已知多项式A =(x +2)2+x (1-x )-9.(1)化简多项式A 时,小明的结果与其他同学的不同,请你检查小明同学的解题过程,在标出①②③④的几项中出现错误的是________,并写出正确的解答过程;(2)小亮说:“只要给出x 2-2x +1的合理的值,即可求出多项式A 的值.”小明给出x 2-2x +1的值为4,请你求出此时A 的值.第2题图类型三 缺 项1. (2020邢台一模)嘉淇在解一道运算题时,发现一个数被污染,这道题是:计算:(-1)2020+÷(-4)×8. (1)若被污染的数为0,请计算(-1)2020+0÷(-4)×8;(2)若被污染的数是不等式组⎩⎪⎨⎪⎧2x +1>3,7-3x ≥1的整数解,求原式的值.2. (2020石家庄模拟)小丽同学准备化简:(3x 2-6x -8)-(x 2-2x □6),算式中“□”是“+,-,×,÷”中的某一种运算符号.(1)如果“□”是“×”,请你化简:(3x 2-6x -8)-(x 2-2x ×6);(2)若x 2-2x -3=0,求(3x 2-6x -8)-(x 2-2x -6)的值;(3)当x =1时,(3x 2-6x -8)-(x 2-2x □6)的结果是-4,请你通过计算说明“□”所代表的运算符号.类型四新定义1.仔细观察下列有理数的运算,回答问题.(+2)∅(+3)=+5,(-2)∅(-3)=+5,(+2)∅(-3)=-5,(-2)∅(+3)=-5,0∅(+3)=(+3)∅0=+3,0∅(-3)=(-3)∅0=+3.(1)“∅”的运算法则为:_______________________________________________________________;(2)计算:(-4)∅[0∅(-5)];(3)若(-2)∅a=a+3,求a的值.2. (2020邢台桥西区二模)如果a,b都是非零整数,且a=4b,那么就称a是“4倍数”.(1)30到35之间的“4倍数”是________,小明说:232-212是“4倍数”,嘉淇说:122-6×12+9也是“4倍数”,他们谁说的对?________.(2)设x是不为零的整数.①x(x+1)是________的倍数;②任意两个连续的“4倍数”的积可表示为________,它________(填“是”或“不是”)32的倍数.(3)设三个连续偶数的中间一个数是2n(n是整数),写出它们的平方和,并说明它们的平方和是“4倍数”.类型五与数轴结合1. (2020石家庄教学质量检测)如图①,点A,B,C是数轴上从左到右排列的三个点,分别对应的数为-5,b,4.某同学将刻度尺如图②放置,使刻度尺上的数字0对齐数轴上的点A,发现点B对齐刻度1.8 cm,点C对齐刻度5.4 cm.图①图②第1题图(1)在图①的数轴上,AC=________个单位长度;数轴上的一个单位长度对应刻度尺上的________cm;(2)求数轴上点B所对应的数b;(3)在图①的数轴上,点Q是线段AB上一点,满足AQ=2QB,求点Q所表示的数.2. (2020张家口一模)如图,在一条不完整的数轴上,从左到右的点A,B,C把数轴分成①、②、③、④四部分,点A,B,C对应的数分别是a,b,c,已知bc<0.(1)请说明原点在第几部分;(2)若AC=5,BC=3,b=-1,求a;(3)若点B到表示1的点的距离与点C到表示1的点的距离相等,且a-b-c=-3,求-a+3b-(b-2c)的值.第2题图3. (2020河北黑马卷)已知:在一条数轴上,从左到右依次排列n(n>1)个点,在数轴上取一点P,使点P到各点的距离之和最小.如图①,若数轴上依次有A1、A2两个点,则点P可以在A1A2之间的任意位置,距离之和为A1A2;图①图②第3题图如图②,若数轴上依次有A1、A2、A3三个点,则点P在A2的位置,距离之和为A1A2+A2A3;如图③,若数轴上依次有A1、A2、A3、A4四个点,则点P可以在A2A3之间的任意位置,距离之和为A1P+A2P+A3P+A4P;第3题图③探究若数轴上依次有A1、A2、A3、A4、A5五个点,判断点P所处的位置;归纳若数轴上依次有n个点,判断点P所处的位置;应用在一条直线上有依次排列的39个工位在工作,每个工位间隔1米,我们需要设置供应站P,使这39个工位到供应站P的距离总和最小,求供应站P的位置和最小距离之和.专题二 计算求解题类型一 简便运算1. 解:(1)①原式=(-4×0.25)2020=(-1)2020=1;②原式=(-125×56×12)11×12×(-56)2 =-12×2536=-2572; (2)n =3.2. 解:(1)2925;3136;类型二 计算过程纠错1. 解:(1)乘法分配:(2)②;(3)原式=(-24)×18+(-24)×(-13)+(-24)×14+4÷(12-13) =-3+8-6+4÷16=-1+24=23.2. 解:(1)①;正确的解答过程为:A =x 2+4x +4+x -x 2-9=5x -5;(2)∵x 2-2x +1=4,即(x -1)2=4,∴x -1=±2,则A =5x -5=5(x -1)=±10.类型三 缺 项1. 解:(1)(-1)2020+0÷(-4)×8=1+0=1;(2)解不等式组⎩⎪⎨⎪⎧2x +1>37-3x ≥1,得1<x ≤2,其整数解为2. 原式=(-1)2020+2÷(-4)×8=1-4=-3.2. 解:(1)(3x 2-6x -8)-(x 2-2x ×6)=3x 2-6x -8-(x 2-12x )=3x 2-6x -8-x 2+12x=2x 2+6x -8;(2)(3x 2-6x -8)-(x 2-2x -6)=3x 2-6x -8-x 2+2x +6=2x 2-4x -2,∵x 2-2x -3=0,∴x 2-2x =3∴2x 2-4x -2=2(x 2-2x )-2=2×3-2=4;(3)当x =1时,原式=(3-6-8)-(1-2□6)=-4,整理得-11-(1-2□6)=-4,1-2□6=-7,-2□6=-8,∴□处应为“-”.类型四 新定义1. 解:(1)运算时两数同号则绝对值相加,两数异号则为绝对值相加的相反数,0与任何数进行运算,结果为该数的绝对值;(2)(-4)∅[0∅(-5)]=(-4)∅(+5)=-9;(3)当a >0时,等式可化为(-2)-a =a +3,解得a =-52,与a >0矛盾,不合题意; 当a =0时,等式可化为2=a +3,解得a =-1,与a =0矛盾,不合题意;当a <0时,等式可化为2-a =a +3,解得a =-12,符合题意. 综上所述,a 的值为-12. 2. 解:(1)32;小明;(2)①2;②16x (x +1)或16x 2+16x ,是;(3)三个连续偶数为2n -2,2n ,2n +2,∴(2n -2)2+(2n )2+(2n +2)2=4n 2-8n +4+4n 2+4n 2+8n +4=12n 2+8=4(3n 2+2),∵n 为整数,∴4(3n 2+2)是“4倍数”.类型五 与数轴结合1. 解:(1)9;0.6;2. 解:(1)∵bc <0,∴b ,c 异号.∴原点在第③部分;(2)若AC =5,BC =3,则AB =2.∵b =-1,∴a =-1-2=-3;(3)设点B 到表示1的点的距离为m (m >0),则b =1-m ,c =1+m .∴b +c =2.∵a -b -c =-3,即a -(b +c )=-3,∴a =-1.∴-a +3b -(b -2c )=-a +3b -b +2c =-a +2b +2c =-a +2(b +c )=-(-1)+2×2=5.3. 解:探究 数轴上依次有A 1、A 2、A 3、A 4、A 5五个点,当点P 的位置在A 3处时,距离总和最小;归纳 当n 为偶数时,点P 在第n 2和第n 2+1个点之间的任意位置; 当n 为奇数时,点P 在第n +12个点的位置; 应用 设点P 在数轴上表示的数为x ,距离之和为M ,则M =||x -1+||x -2+…+||x -39, ∵39+12=20, ∴当x =20时,代数式M 取到最小值,∵每个工位间隔1米,∴M=19+18+…+0+1+2+…+19=(19+1)×19=380(米). 答:供应站P的位置在第20个工位,最小距离之和为380米.。

2022年人教版数学中考复习:选择、填空综合训练2及答案

2022年人教版数学中考复习:选择、填空综合训练2及答案

选择、填空综合训练(时间:40分钟分值:54分)一、选择题:本大题共10小题,每小题3分,共30分.每小题只有一个正确选项.1.412的倒数是( )A.412B.-29C.-412D.292.已知a-b=3,a-c=1,则(b-c)2-2(b-c)+94的值为( )A.274B.412C.272D.4143.点P(a,b)在第四象限,且|a|>|b|,那么点Q(a+b,a-b)在( )A.第一象限B.第二象限C.第三象限D.第四象限4.如图,直线l经过第二、三、四象限,l的解析式是y=(m-2)x+n,则m的取值范围在数轴上表示为( )第4题图5.如图所示,△ABC的各个顶点都在正方形的格点上,则sin A的值为( )第5题图A.55B.255C.225D.1056.若实数a使关于x的一元二次方程(a+1)x2-3x+1=0有两个不相等的实数根,则实数a的取值范围是( )A.a<54B.a<54且a≠-1 C.a>54D.a>54且a≠-17.如图,在△ABC中,∠CAB=70°,将△ABC绕点A逆时针旋转到△AB′C′的位置,使得CC′∥AB,则∠BAB′的度数是( )A.70°B.35°C.40°D.50°第7题图8.如图,△ABC是⊙O的内接三角形,连接OA,OB,OC.若∠AOB=40°,∠OBC=50°,AC=4,则⊙O的直径为( )第8题图A.433B.4 C.833D.89.如图,在矩形纸片ABCD中,AD=9,AB=7,点F是BC上一点,点E在AD上,将矩形纸片沿直线EF折叠,点A落在点A′处,点B恰好落在边CD上的点B′处,A′B′交AD于点G,若CB′=3,则四边形EFB′G的面积等于( )第9题图A.353B.553C.352D.145610.如图,已知二次函数y=ax2+bx+c(a≠0)的图象与x轴交于点A(-1,0),与y 轴的交点B 在(0,-2)和(0,-1)之间(不包括这两点),对称轴为直线x =1,下列结论:①abc >0;②4a +2b +c >0;③13<a <23;④b >c.其中含所有正确结论的选项是( )第10题图A .①②③B .①③④C .②③④D .①②④二、填空题:本大题共8小题,每小题3分,共24分.11.在平面直角坐标系内,把点P 先向左平移2个单位长度,再向上平移4个单位长度后得到的点的坐标是(-5,3),则点P 的坐标是 .12.一枚材质均匀的骰子,六个面的点数分别是1,2,3,4,5,6,投这个骰子,掷的点数不大于4的概率是 .13.若14的小数部分为a ,整数部分为b ,则a ·(14+b)的值为 .14.函数y =2-m x的图象与直线y =x 没有交点,那么m 的取值范围是 . 15.如图,在平行四边形ABCD 中,AB =8,BC =10,∠ABC =60°,BE 平分∠ABC 交AD 于点E ,AF 平分∠BAD 交BC 于点F ,交BE 于点G ,连接DG ,则DG 的长为 .第15题图16.如图,在△ABC 中,∠A =70°,BC =4,以BC 的中点D 为圆心,2为半径作弧,分别交边AB ,AC 于E ,F ,则EF ︵的长为 .第16题图17.如图,在△ABC中,AB=AC=12厘米,∠B=∠C,BC=9厘米,点D为AB的中点.如果点P在线段BC上以v厘米/秒的速度由B点向C点运动,同时,点Q 在线段CA上由C点向A点运动.若点Q的运动速度为3厘米/秒,则当△BPD与△CQP全等时,v的值为.第17题图18.观察等式:2+22=23-2;2+22+23=24-2;2+22+23+24=25-2;…,已知按一定规律排列的一组数:2100,2101,2102,…,2199,2200,若2100=S,用含S 的式子表示这组数据的和是.选择、填空综合训练(时间:40分钟分值:54分)一、选择题:本大题共10小题,每小题3分,共30分.每小题只有一个正确选项.1.412的倒数是( D )A.412B.-29C.-412D.292.已知a-b=3,a-c=1,则(b-c)2-2(b-c)+94的值为( D )A.274B.412C.272D.4143.点P(a,b)在第四象限,且|a|>|b|,那么点Q(a+b,a-b)在( A )A.第一象限B.第二象限C.第三象限D.第四象限4.如图,直线l经过第二、三、四象限,l的解析式是y=(m-2)x+n,则m的取值范围在数轴上表示为( C )第4题图5.如图所示,△ABC的各个顶点都在正方形的格点上,则sin A的值为( A )第5题图A.55B.255C.225D.1056.若实数a使关于x的一元二次方程(a+1)x2-3x+1=0有两个不相等的实数根,则实数a的取值范围是( B )A.a<54B.a<54且a≠-1 C.a>54D.a>54且a≠-17.如图,在△ABC中,∠CAB=70°,将△ABC绕点A逆时针旋转到△AB′C′的位置,使得CC′∥AB,则∠BAB′的度数是( C )A.70°B.35°C.40°D.50°第7题图8.如图,△ABC是⊙O的内接三角形,连接OA,OB,OC.若∠AOB=40°,∠OBC=50°,AC=4,则⊙O的直径为( C )第8题图A.433B.4 C.833D.89.如图,在矩形纸片ABCD中,AD=9,AB=7,点F是BC上一点,点E在AD上,将矩形纸片沿直线EF折叠,点A落在点A′处,点B恰好落在边CD上的点B′处,A′B′交AD于点G,若CB′=3,则四边形EFB′G的面积等于( D )第9题图A.353B.553C.352D.145610.如图,已知二次函数y=ax2+bx+c(a≠0)的图象与x轴交于点A(-1,0),与y轴的交点B在(0,-2)和(0,-1)之间(不包括这两点),对称轴为直线x=1,下列结论:①abc>0;②4a+2b+c>0;③13<a<23;④b>c.其中含所有正确结论的选项是( B )第10题图A.①②③B.①③④C.②③④D.①②④二、填空题:本大题共8小题,每小题3分,共24分.11.在平面直角坐标系内,把点P 先向左平移2个单位长度,再向上平移4个单位长度后得到的点的坐标是(-5,3),则点P 的坐标是 (-3,-1) .12.一枚材质均匀的骰子,六个面的点数分别是1,2,3,4,5,6,投这个骰子,掷的点数不大于4的概率是 23. 13.若14的小数部分为a ,整数部分为b ,则a ·(14+b)的值为 5 .14.函数y =2-m x的图象与直线y =x 没有交点,那么m 的取值范围是 m >2 . 15.如图,在平行四边形ABCD 中,AB =8,BC =10,∠ABC =60°,BE 平分∠ABC 交AD 于点E ,AF 平分∠BAD 交BC 于点F ,交BE 于点G ,连接DG ,则DG 的长为 219 .第15题图16.如图,在△ABC 中,∠A =70°,BC =4,以BC 的中点D 为圆心,2为半径作弧,分别交边AB ,AC 于E ,F ,则EF ︵的长为 49π .第16题图17.如图,在△ABC 中,AB =AC =12厘米,∠B =∠C ,BC =9厘米,点D 为AB 的中点.如果点P 在线段BC 上以v 厘米/秒的速度由B 点向C 点运动,同时,点Q 在线段CA 上由C 点向A 点运动.若点Q 的运动速度为3厘米/秒,则当△BPD 与△CQP 全等时,v 的值为 2.25或3 .第17题图18.观察等式:2+22=23-2;2+22+23=24-2;2+22+23+24=25-2;…,已知按一定规律排列的一组数:2100,2101,2102,…,2199,2200,若2100=S,用含S 的式子表示这组数据的和是 2S2-S .。

人教版中考数学考点系统复习 第二章 方程(组)与不等式(组) 第二节 一元二次方程及其应用

人教版中考数学考点系统复习 第二章 方程(组)与不等式(组) 第二节 一元二次方程及其应用
380
解:设参加交流会的茶叶制作商有 m 人.依题意得 m(m-1)=380,解得 m1=20,m2=-19(舍去). 答:参加交流会的茶叶制作商有 20 人.
4.(2022·荆州第 7 题 3 分)关于 x 的方程 x2-3kx-2=0 实数根的情况,
下列判断中正确的是
(B)
A.有两个相等实数根
B.有两个不等实数根
C.没有实数根
D.有一个实数根
5.(2020·荆州第 9 题 3 分)定义新运算“a*b”:对于任意实数 a,b,都
有 a*b=(a+b)(a-b)-1,其中等式右边是通常的加法、减法、乘法运
解:设小路宽为 x m, 由题意,得(16-2x)(9-x)=112. 整理,得 x2-17x+16=0. 解得 x1=1,x2=16>9(不合题意,舍去).∴x=1. 答:小路的宽应为 1m.
17.(数学文化)《田亩比类乘除捷法》是我国古代数学家杨辉的著作, 其中有一个数学问题:“直田积八百六十四步,只云长阔共六十步,问长 多阔几何?”意思是:一块矩形田地的面积为 864 平方步,只知道它的 长与宽共 60 步,问它的长比宽多多少步?根据题意,长比宽多__112__步.
100.8
解:设后两次采购价格的平均增长率为 x,依题意得 480(1+x)2=480+100.8,解得 x1=0.1,x2=-2.1(舍). 答:后两次采购价格的平均增长率为 10%.
解:设售价为 y 元/袋时,每周的销售额为 32 400 元.依题意可列方程
y-260
为 y100-
10
=32 400,解得 y1=360,y2=900.
第二节 一元二次方程及 其应用
【考情分析】湖北近 3 年主要考查:1.选择合适的方法解一元二次方程, 常在压轴题中涉及考查;2.用一元二次方程根的判别式判断方程根的情 况或者根据根的情况求字母系数的取值范围,根与系数的关系的应用; 3.一元二次方程的应用主要以选择题的形式考查列方程,常在解答题中 与不等式、函数的实际应用结合考查,难度较大,分值一般 3-10 分.

中考数学复习用方程(组)解决问题2[人教版]

中考数学复习用方程(组)解决问题2[人教版]
Байду номын сангаас bodog在哪里
[单选]在思科交换机上使用switchporttrunknativevlan20命令的含义是什么()。A.创建vlan20的接口B.指定vlan20的流量不能被打标记C.阻止vlan20的流量在干道通过D.所有未打标记的流量都默认指定为vlan20 [单选]联合试运转费是指整个车间的负荷联合试运转发生的费用支出大于试运转收入的亏损部分,费用内容包括()。A.安装费用开支的单台设备调试费B.试运转产品销售收入和其他收入C.无负荷联动试运转费试车费用D.试运转所需的原料、燃料等费用 [单选]下列纳税人申请变更纳税定额的核准程序符合《服务规范》2.0版基本规范的的是()。A、办税服务厅制作《核定(调整)定额通知书》交纳税人。B、本事项在15个工作日内办理。C、办税服务厅收到反馈后1个工作日通知纳税人领取办理结果。D、根据纳税人报送的资料,制作相关表单脚 [单选]()是人类认识客观事物的最原始、最基本的方法,也是涉烟情报分析的最基本方法。A、比较法B、分析与综合法C、推理法D、数据整合方法 [问答题,简答题]与传统建筑材料相比较,塑料有哪些优缺点? [多选]商品投资基金和对冲基金的区别有()。A.商品投资基金的投资领域比对冲基金小得多,它的投资对象主要为在交易所交易的期货和期权B.对冲基金的投资领域比商品投资基金小得多,它的投资对象主要为在交易所交易的期货和期权C.在组织形式上,对冲基金运作比商品投资基金规范 [单选]卫星通信五大部分中,对卫星的通信性能及参数进行监测与管理的是()A.通信卫星B.跟踪遥测指令系统C.监控管理分子统 [单选]起货机油温高温报警传感器一般设在()。A.高压管B.回油管C.主泵吸口D.辅泵吸口 [名词解释]动校正 [单选]《国内航行船舶船体建造检验管理暂行规定》于何时开始实施?()A、2005年9月1日B、2002年9月1日C、2004年9月1日D、2006年9月1日 [多选]需求价格弹性是()。A.需求随价格变化的数量B.市场需求变化量与价格变化量之比C.市场需求对于价格变化的反应程度D.价格变化量与市场需求变化量之比E.市场需求变化百分比与价格变化百分比之比 [单选]()编程是数控编程方法之一。A、自动B、手动C、机床D、机动 [单选]强迫症包括强迫观念和()。A.怪异观念B.强迫行为C.强迫洗手D.强迫恐惧 [单选,A1型题]关于产后出血预防正确的是()A.宫口开全时肌注缩宫素10UB.应在宫缩较强时娩出胎头C.双胎妊娠,在第一胎肩部娩出后肌注催产素D.胎儿娩出后,应用手按摩子宫帮助胎盘娩出E.产后在产房密切观察宫缩及阴道流血情况2小时 [名词解释]微观市场营销学 [单选]皮肌炎典型的皮疹为()A.面、颈、前胸上部弥漫性红斑B.各关节周围红斑C.面部蝶形红斑D.背部盘形红斑E.全身各部位皮疹 [单选]电力系统中过载和短路故障的保护设备是()。A.负荷开关B.接触器C.熔断器D.隔离开关 [单选,A4型题,A3/A4型题]患者女,5岁。1岁前妈妈就觉得她跟其他小孩不同,抱她的时候患儿不期待,没有愉悦满足的情感表达,目光一般不追随和注视大人,1岁会走路,到目前为止仍不会叫爸妈,和其他小朋友在一起时,总自己玩自己的,有时和别人凑到一起也只会搞破坏,不会玩过家家的 [判断题]卖出套期保值的目的是防止价格上涨。()A.正确B.错误 [单选,A1型题]有降血糖及抗利尿作用的药物是()。A.甲苯磺丁脲B.氯磺丙脲C.格列本脲D.二甲双胍E.苯乙双胍 [填空题]客户服务意味着一项核心的(),要建立一个()、()的客户服务体系,意味着一种不断地总结和学习的() [单选]混凝土是()。A、完全弹性体材料B、完全塑性体材料C、弹塑性体材料D、不好确定 [单选]下列关于会计基本假设的表述中不正确的是()。A.会计核算的基本假设包括会计主体、持续经营、会计分期、货币计量和权责发生制B.会计主体,是指企业会计确认、计量和报告的空间范围C.会计分期规定了会计核算的时间范围D.法律主体必然是一个会计主体 [单选]在积累与消费关系的处理上,企业应贯彻积累优先的原则,合理确定提取盈余公积金和分配给投资者利润的比例。这样的处理体现的利润分配基本原则是()。A、依法分配的原则B、资本保全的原则C、充分保护债权人利益的原则D、多方及长短期利益兼顾的原则 [判断题]组织文化可以通过职工的着装、标志、行为模式、组织的规范等完全反映出来。()A.正确B.错误 [单选,A1型题]能够温肺化饮,治疗肺寒痰饮之咳嗽气喘,痰多清稀者的药组是()A.干姜、细辛B.附子、干姜C.干姜、吴茱萸D.附子、细辛E.干姜、高良姜 [填空题]所谓支路电流法就是以()为未知量,依据()列出方程式,然后解联立方程得到()的数值。 [判断题]贷记卡现金透支也可享受免息待遇。A.正确B.错误 [填空题]()是德国工业联盟的奠基人和整个活动的开创者。 [单选]诊断抑郁症,最重要的症状群是()。A.精力减退、疲乏感B.思维困难、联想缓慢C.情绪低落、兴趣下降D.自责、自罪、自杀观念E.失眠、食欲减退、体重减轻 [单选]300MW机组的火力发电厂,每台机组直流系统采用控制和动力负荷合并供电方式,设两组220kV阀控蓄电池。蓄电池容量为1800Ah,103只。每组蓄电池供电的经常负荷为60A。均衡充电时不与母线相连。在充电设备参数选择计算中下列哪组数据是不正确的()?A.充电装置额定电流满足浮充 [单选]下列不属于门静脉高压症病人的主要临床表现的是()A.腹胀、食欲减退B.呕血和黑便C.白细胞、血小板计数减少D.肝肿大E.肝功能障碍 [问答题,简答题]压缩机突然断电如何处理? [单选]一位小学生在没有人督促的情况下,能够独立地完成各项作业,反映了其意志的()品质A.自觉性B.果断性C.自制性D.坚韧性 [单选]《建筑设计防火规范》规定,老年人建筑及托儿所、幼儿园的儿童用房和儿童游乐厅等儿童活动场所宜设置在()。A.公共建筑内B.独立的建筑内C.民用建筑内 [单选]作为慢性肾衰竭与急性肾衰竭鉴别依据的是()。A.血BUN/Cr&gt;20B.蛋白尿与低蛋白血症较明显C.严重贫血D.严重低钙血症与高磷血症E.肾脏体积缩小 [填空题]意象作为诗歌艺术形象理论范畴的一个概念,意即______________,象指______________。 [单选]脊柱结核的好发部位是()A.颈椎B.胸椎C.腰椎D.胸腰交界区E.骶、尾椎 [单选]下列有关规章制定的立项与起草的说法哪项是正确的?()A.有规章制定权的地方政府的下级政府认为需要制定地方政府规章的,有权向其报请立项B.规章拟确立的主要制度和解决的主要问题是年度规章制订工作计划必须包含的内容C.起草规章听取意见的,应当采取书面方式D.起草单位对 [单选,A2型题]非劳动年龄人口与劳动年龄人口数之比是指什么,用来说明人口年龄构成对人口经济活动的影响()A.老年人口系数B.少年人口系数C.老龄化指数D.总抚养比E.老年人口抚养比

人教版九年级数学中考复习二次函数真题专练(解析版)

人教版九年级数学中考复习二次函数真题专练(解析版)

二次函数----真题专练一、选择题1.在同一平面直角坐标系中,函数y=ax+b与y=ax2-bx的图象可能是()A. B.C. D.2.若二次函数的图象经过,,三点则关于,,大小关系正确的是A. B. C. D.3.将抛物线平移,得到抛物线,下列平移方式中,正确的是A. 先向左平移1个单位,再向上平移2个单位B. 先向左平移1个单位,再向下平移2个单位C. 先向右平移1个单位,再向上平移2个单位D. 先向右平移1个单位,再向下平移2个单位4.已知二次函数(a≠0)的图象如图所示,则下列结论:①b<0,c>0;②a+b+c<0;③方程的两根之和大于0;④a-b+c<0,其中正确的个数是()A. 4个B. 3个C. 2个D. 1个5.在二次函数的图象中,若y随x的增大而减少,则x的取值范围是A. B. C. D.6.2下列结论:①抛物线的开口向下;②其图象的对称轴为x=1;③当x<1时,函数值y 随x的增大而增大;④方程ax2+bx+c=0有一个根大于4.其中正确的结论有()A. 1个B. 2个C. 3个D. 4个7.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列结论:①a、b同号;②当x=1和x=3时,函数值相等;③4a+b=0;④当-1<x<5时,y<0.其中正确的有()A. 1个B. 2个C. 3个D. 4个8.抛物线y=(x-2)2-3的顶点坐标是()A. B. C. D.9.二次函数y=ax2+bx+c(a≠0)的图象如图所示,对称轴是直线x=1,下列结论:①ab<0;②b2>4ac;③a+b+2c<0;④3a+c<0.其中正确的是()A.B.C.D.10.如图,抛物线y=ax2+bx+c经过点(-1,0),对称轴如图所示,则下列结论:①abc>0;②a-b+c=0;③2a+c<0;④a+b<0,其中所有正确的结论是()A.B.C.D.二、填空题11.函数y=-中自变量x的取值范围是______.12.已知抛物线y=x2-(k+2)x+9的顶点在坐标轴上,则k的值为______.13.如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴交于A、B两点,与y轴交于点C,对称轴是直线x=-1,点B的坐标为(1,0).下面的四个结论:①AB=4;②b2-4ac>0;③ab<0;④a-b+c<0,其中正确的结论是______ (填写序号).14.二次函数y=-x2+2x+2图象的顶点坐标是______.15.若二次函数y=mx2+x+m(m-2)的图象经过原点,则m的值为______ .16.如图,抛物线C1:y=x2经过平移得到抛物线C2:y=x2+2x,抛物线C2的对称轴与两段抛物线所围成的阴影部分的面积是______三、解答题17.如图,抛物线y=ax2+bx+c的图象与x轴交于A(-1,0),B(3,0)两点,与y轴交于点C(0,-3),顶点为D.(1)求此抛物线的解析式.(2)求此抛物线顶点D的坐标和对称轴.(3)探究对称轴上是否存在一点P,使得以点P、D、A为顶点的三角形是等腰三角形?若存在,请求出所有符合条件的P点的坐标,若不存在,请说明理由.18.如图,抛物线经过A(-1,0),B(5,0),C(0,)三点.(1)求抛物线的解析式;(2)在抛物线的对称轴上有一点P,使PA+PC的值最小,求点P的坐标;(3)点M为x轴上一动点,在抛物线上是否存在一点N,使以A,C,M,N四点构成的四边形为平行四边形?若存在,求点N的坐标;若不存在,请说明理由.19.如图,在平面直角坐标系中,二次函数的图象交坐标轴于A(-1,0),B(4,0),C(0,-4)三点,点P是直线BC下方抛物线上一动点.(1)求这个二次函数的解析式;(2)是否存在点P,使△POC是以OC为底边的等腰三角形?若存在,求出P点坐标;若不存在,请说明理由;(3)动点P运动到什么位置时,△PBC面积最大,求出此时P点坐标和△PBC的最大面积.20.如图,二次函数y=-x2+3x+m的图象与x轴的一个交点为B(4,0),另一个交点为A,且与y轴相交于C点(1)求m的值及C点坐标;(2)在直线BC上方的抛物线上是否存在一点M,使得它与B,C两点构成的三角形面积最大,若存在,求出此时M点坐标;若不存在,请简要说明理由(3)P为抛物线上一点,它关于直线BC的对称点为Q①当四边形PBQC为菱形时,求点P的坐标;②点P的横坐标为t(0<t<4),当t为何值时,四边形PBQC的面积最大,请说明理由.21.如图,抛物线y=ax2+bx+c(a≠0)与直线y=x+1相交于A(-1,0),B(4,m)两点,且抛物线经过点C(5,0).(1)求抛物线的解析式;(2)点P是抛物线上的一个动点(不与点A、点B重合),过点P作直线PD⊥x轴于点D,交直线AB于点E.①当PE=2ED时,求P点坐标;②是否存在点P使△BEC为等腰三角形?若存在请直接写出点P的坐标;若不存在,请说明理由.22.如图,二次函数y=ax2+bx+c(a≠0)的图象交x轴于A、B两点,交y轴于点D,点B的坐标为(3,0),顶点C的坐标为(1,4).(1)求二次函数的解析式和直线BD的解析式;(2)点P是直线BD上的一个动点,过点P作x轴的垂线,交抛物线于点M,当点P 在第一象限时,求线段PM长度的最大值;(3)在抛物线上是否存在异于B、D的点Q,使△BDQ中BD边上的高为2?若存在求出点Q的坐标;若不存在请说明理由.答案和解析1.【答案】C【解析】【分析】此题主要考查了一次函数、二次函数图象的性质及其应用问题;解题的方法是首先根据其中一次函数图象确定a、b的符号,进而判断另一个函数的图象是否符合题意;解题的关键是灵活运用一次函数、二次函数图象的性质来分析、判断、解答.首先根据图形中给出的一次函数图象确定a、b的符号,进而运用二次函数的性质判断图形中给出的二次函数的图象是否符合题意,根据选项逐一讨论解析,即可解决问题.【解答】解:A.对于直线y=ax+b来说,由图象可以判断,a>0,b>0;而对于抛物线y=ax2-bx来说,对称轴x=>0,应在y轴的右侧,故不合题意,图形错误;B.对于直线y=ax+b来说,由图象可以判断,a<0,b>0;而对于抛物线y=ax2-bx 来说,对称轴x=<0,应在y轴的左侧,故不合题意,图形错误;C.对于直线y=ax+b来说,由图象可以判断,a>0,b>0;而对于抛物线y=ax2-bx 来说,图象开口向上,对称轴x=>0,应在y轴的右侧,故符合题意;D.对于直线y=ax+b来说,由图象可以判断,a>0,b>0;而对于抛物线y=ax2-bx 来说,图象开口向下,a<0,故不合题意,图形错误;故选C.2.【答案】A【解析】【分析】本题考查了二次函数图象上点的坐标特征,主要利用了二次函数的对称性以及增减性,确定出各点到对称轴的距离的大小是解题的关键.先求出二次函数的对称轴,再求出点A、B、C到对称轴的距离,然后根据二次函数增减性判断即可.【解答】解:二次函数对称轴为直线x=-=3,3-(-1)=4,3-1=2,3+-3=,∵a=1>0,开口向上,离对称轴越远,y值越大,又∵4>2>,∴y1>y2>y3.故选A.3.【答案】D【解析】【分析】本题考查的是二次函数的图象与几何变换,熟知“上加下减,左加右减”的法则是解答此题的关键.找到两个抛物线的顶点,根据抛物线的顶点即可判断是如何平移得到.【解答】解:∵y=-3x2的顶点坐标为(0,0),y=-3(x-1)2-2的顶点坐标为(1,-2),∴将抛物线y=-3x2向右平移1个单位,再向下平移2个单位,可得到抛物线y=-3(x-1)2-2.故选D.4.【答案】B【解析】解:∵抛物线开口向下,∴a<0,∵抛物线对称轴x>0,且抛物线与y轴交于正半轴,∴b>0,c>0,故①错误;由图象知,当x=1时,y<0,即a+b+c<0,故②正确,令方程ax2+bx+c=0的两根为x1、x2,由对称轴x>0,可知>0,即x1+x2>0,故③正确;由可知抛物线与x轴的左侧交点的横坐标的取值范围为:-1<x<0,∴当x=-1时,y=a-b+c<0,故④正确.故选:B.由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.本题主要考查二次函数图象与系数的关系,熟练掌握二次函数系数符号与抛物线开口方向、对称轴、与x轴、y轴的交点是关键.5.【答案】B【解析】【分析】本题考查了二次函数的性质有关知识,先配方得到抛物线的对称轴为直线x=1,然后根据二次函数的性质求解.【解答】解:y=-x2+2x+1=-(x-1)2+2,抛物线的对称轴为直线x=1,∵a=-1<0,开口向下,∴当x>1时,y随x的增大而减少.故选B.6.【答案】B【解析】解:由表格可知,二次函数y=ax2+bx+c有最大值,当x==时,取得最大值,∴抛物线的开口向下,故①正确,其图象的对称轴是直线x=,故②错误,当x<时,y随x的增大而增大,故③正确,方程ax2+bx+c=0的一个根大于-1,小于0,则方程的另一个根大于=3,小于3+1=4,故④错误,故选:B.根据二次函数的图象具有对称性和表格中的数据,可以得到对称轴为x==,再由图象中的数据可以得到当x=取得最大值,从而可以得到函数的开口向下以及得到函数当x<时,y随x的增大而增大,当x>时,y随x的增大而减小,然后跟距x=0时,y=1,x=-1时,y=-3,可以得到方程ax2+bx+c=0的两个根所在的大体位置,从而可以解答本题.本题考查抛物线与x轴的交点、二次函数的性质,解答本题的关键是明确题意,利用表格中数据和二次函数的性质判断题目中各个结论是否正确.7.【答案】C【解析】【分析】本题考查了二次函数图象与系数的关系有关知识,根据函数图象可得各系数的关系:a>0,b<0,即可判断①,根据对称轴为x=2,即可判断②;由对称轴x=-=2,即可判断③;求得抛物线的另一个交点即可判断④.【解答】解:∵抛物线开口向上,∴a>0,∵对称轴x=2,∴-=2,∴b=-4a<0,∴a、b异号,故①错误;∵对称轴x=2,∴x=1和x=3时,函数值相等,故②正确;∵对称轴x=2,∴-=2,∴b=-4a,∴4a+b=0,故③正确;∵抛物线与x轴交于(-1,0),对称轴为x=2,∴抛物线与x轴的另一个交点为(5,0),∴当-1<x<5时,y<0,故④正确;故正确的结论为②③④三个,故选C.8.【答案】B【解析】【分析】此题考查了二次函数顶点式的性质有关知识,已知解析式是抛物线的顶点式,根据顶点式的坐标特点,直接写出顶点坐标.【解答】解:因为的是抛物线的顶点式,根据顶点式的坐标特点可知,顶点坐标为(2,-3).故选B.9.【答案】C【解析】解:∵抛物线开口向上,∴a>0,∵抛物线的对称轴为直线x=-=1,∴b=-2a<0,∴ab<0,所以①正确;∵抛物线与x轴有2个交点,∴△=b2-4ac>0,所以②正确;∵x=1时,y<0,∴a+b+c<0,而c<0,∴a+b+2c<0,所以③正确;∵抛物线的对称轴为直线x=-=1,∴b=-2a,而x=-1时,y>0,即a-b+c>0,∴a+2a+c>0,所以④错误.故选:C.由抛物线开口方向得到a>0,然后利用抛物线抛物线的对称轴得到b的符合,则可对①进行判断;利用判别式的意义和抛物线与x轴有2个交点可对②进行判断;利用x=1时,y<0和c<0可对③进行判断;利用抛物线的对称轴方程得到b=-2a,加上x=-1时,y>0,即a-b+c>0,则可对④进行判断.本题考查了二次函数图象与系数的关系:对于二次函数y=ax2+bx+c(a≠0),二次项系数a决定抛物线的开口方向和大小.当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置:当a与b 同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右;常数项c决定抛物线与y轴交点:抛物线与y轴交于(0,c).抛物线与x轴交点个数有△决定:△=b2-4ac>0时,抛物线与x轴有2个交点;△=b2-4ac=0时,抛物线与x轴有1个交点;△=b2-4ac<0时,抛物线与x轴没有交点.10.【答案】D【解析】解:①∵二次函数图象的开口向下,∴a<0,∵二次函数图象的对称轴在y轴右侧,∴->0,∴b>0,∵二次函数的图象与y轴的交点在y轴的正半轴上,∴c>0,∴abc<0,故①错误;②∵抛物线y=ax2+bx+c经过点(-1,0),∴a-b+c=0,故②正确;③∵a-b+c=0,∴b=a+c.由图可知,x=2时,y<0,即4a+2b+c<0,∴4a+2(a+c)+c<0,∴6a+3c<0,∴2a+c<0,故③正确;④∵a-b+c=0,∴c=b-a.由图可知,x=2时,y<0,即4a+2b+c<0,∴4a+2b+b-a<0,∴3a+3b<0,∴a+b<0,故④正确.故选D.①根据开口向下得出a<0,根据对称轴在y轴右侧,得出b>0,根据图象与y轴的交点在y轴的正半轴上,得出c>0,从而得出abc<0,进而判断①错误;②由抛物线y=ax2+bx+c经过点(-1,0),即可判断②正确;③由图可知,x=2时,y<0,即4a+2b+c<0,把b=a+c代入即可判断③正确;④由图可知,x=2时,y<0,即4a+2b+c<0,把c=b-a代入即可判断④正确.本题考查了二次函数y=ax2+bx+c(a≠0)的性质:①二次项系数a决定抛物线的开口方向和大小.当a>0时,抛物线向上开口;当a <0时,抛物线向下开口;|a|还可以决定开口大小,|a|越大开口就越小.②一次项系数b和二次项系数a共同决定对称轴的位置.当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右.(简称:左同右异)③常数项c决定抛物线与y轴交点.抛物线与y轴交于(0,c).④抛物线与x轴交点个数.△=b2-4ac>0时,抛物线与x轴有2个交点;△=b2-4ac=0时,抛物线与x轴有1个交点;△=b2-4ac<0时,抛物线与x轴没有交点.11.【答案】-2<x≤3【解析】【分析】本题考查的是函数自变量取值范围,分式有意义的条件,二次根式的概念.根据二次根式有意义的条件就是被开方数大于或等于0,分式有意义的条件是分母不为0,列不等式组求解.【解答】解:根据题意,得,解得:-2<x≤3,则自变量x的取值范围是-2<x≤3.故答案为-2<x≤3.12.【答案】4,-8,-2【解析】解:当抛物线y=x2-(k+2)x+9的顶点在x轴上时,△=0,即△=(k+2)2-4×9=0,解得k=4或k=-8;当抛物线y=x2-(k+2)x+9的顶点在y轴上时,x=-==0,解得k=-2.故答案为:4,-8,-2.由于抛物线的顶点在坐标轴上,故应分在x轴上与y轴上两种情况进行讨论.本题考查的是二次函数的性质,解答此题时要注意进行分类讨论,不要漏解.13.【答案】①②④【解析】解:∵抛物线对称轴是直线x=-1,点B的坐标为(1,0),∴A(-3,0),∴AB=4,故选项①正确;∵抛物线与x轴有两个交点,∴b2-4ac>0,故选项②正确;∵抛物线开口向上,∴a>0,∵抛物线对称轴在y轴左侧,∴a,b同号,∴ab>0,故选项③错误;当x=-1时,y=a-b+c此时最小,为负数,故选项④正确;故答案为:①②④.利用二次函数对称性以及结合b2-4ac的符号与x轴交点个数关系,再利用数形结合分别分析得出答案.此题主要考查了二次函数图象与系数的关系,正确判断a-b+c的符号是解题关键.14.【答案】(1,3)【解析】解:∵y=-x2+2x+2=-(x2-2x+1)+3=-(x-1)2+3,故顶点的坐标是(1,3).故填空答案:(1,3).此题既可以利用y=ax2+bx+c的顶点坐标公式求得顶点坐标,也可以利用配方法求出其顶点的坐标.求抛物线的顶点坐标、对称轴的方法.15.【答案】2【解析】【分析】本题考查了二次函数图象上点的坐标特征,二次函数的定义.此题属于易错题,学生们往往忽略二次项系数不为零的条件.本题中已知二次函数经过原点(0,0),因此二次函数与y轴交点的纵坐标为0,即m(m-2)=0,由此可求出m的值,要注意二次项系数m不能为0.【解答】解:根据题意得:m(m-2)=0,∴m=0或m=2,∵二次函数的二次项系数不为零,即m≠0,∴m=2.故答案为2.16.【答案】4【解析】解:抛物线C1:y=x2的顶点坐标为(0,0),∵y=x2+2x=(x+2)2-2,∴平移后抛物线的顶点坐标为(-2,2),对称轴为直线x=-2,当x=-2时,y=×(-2)2=2,∴平移后阴影部分的面积等于如图三角形的面积为:(2+2)×2=4,故答案为:4.确定出抛物线y=x2+2x的顶点坐标,然后求出抛物线的对称轴与原抛物线的交点坐标,从而判断出阴影部分的面积等于三角形的面积,再根据三角形的面积公式列式计算即可得解.本题考查了二次函数图象与几何变换,确定出与阴影部分面积相等的三角形是解题的关键.17.【答案】解:(1)∵抛物线y=ax2+bx+c的图象与x轴交于A(-1,0),B(3,0)两点,与y轴交于点C(0,-3),∴,解得,,即此抛物线的解析式是y=x2-2x-3;(2)∵y=x2-2x-3=(x-1)2-4,∴此抛物线顶点D的坐标是(1,-4),对称轴是直线x=1;(3)存在一点P,使得以点P、D、A为顶点的三角形是等腰三角形,设点P的坐标为(1,y),当PA=PD时,=,解得,y=-,即点P的坐标为(1,-);当DA=DP时,=,解得,y=-4±,即点P的坐标为(1,-4-2)或(1,-4+);当AD=AP时,=,解得,y=±4,即点P的坐标是(1,4)或(1,-4),当点P为(1,-4)时与点D重合,故不符合题意,由上可得,以点P、D、A为顶点的三角形是等腰三角形时,点P的坐标为(1,-)或(1,-4-2)或(1,-4+)或(1,4).【解析】(1)根据抛物线y=ax2+bx+c的图象与x轴交于A(-1,0),B(3,0)两点,与y轴交于点C(0,-3),可以求得抛物线的解析式;(2)根据(1)中的解析式化为顶点式,即可得到此抛物线顶点D的坐标和对称轴;(3)首先写出存在,然后运用分类讨论的数学思想分别求出各种情况下点P的坐标即可.本题考查二次函数综合题,解题的关键是明确题意,找出所求问题需要的条件,利用分类讨论的数学思想解答问题.18.【答案】解:(1)设抛物线的解析式为y=ax2+bx+c (a≠0),∵A(-1,0),B(5,0),C(0,)三点在抛物线上,∴,解得.∴抛物线的解析式为:y=x2-2x-;(2)∵抛物线的解析式为:y=x2-2x-,∴其对称轴为直线x=-=-=2,连接BC,如图1所示,∵B(5,0),C(0,-),∴设直线BC的解析式为y=kx+b(k≠0),∴,解得,∴直线BC的解析式为y=x-,当x=2时,y=1-=-,∴P(2,-);(3)存在.如图2所示,①当点N在x轴下方时,∵抛物线的对称轴为直线x=2,C(0,-),∴N1(4,-);②当点N在x轴上方时,如图,过点N2作N2D⊥x轴于点D,在△AN2D与△M2CO中,∴△AN2D≌△M2CO(ASA),∴N2D=OC=,即N2点的纵坐标为.∴x2-2x-=,解得x=2+或x=2-,∴N 2(2+,),N3(2-,).综上所述,符合条件的点N的坐标为(4,-),(2+,)或(2-,).【解析】(1)设抛物线的解析式为y=ax2+bx+c(a≠0),再把A(-1,0),B(5,0),C(0,)三点代入求出a、b、c的值即可;(2)因为点A关于对称轴对称的点B的坐标为(5,0),连接BC交对称轴直线于点P,求出P点坐标即可;(3)分点N在x轴下方或上方两种情况进行讨论.本题考查的是二次函数综合题,涉及到用待定系数法求一次函数与二次函数的解析式、平行四边的判定与性质、全等三角形等知识,在解答(3)时要注意进行分类讨论.19.【答案】解:(1)设抛物线解析式为y=ax2+bx+c,把A、B、C三点坐标代入可得,解得,∴抛物线解析式为y=x2-3x-4;(2)作OC的垂直平分线DP,交OC于点D,交BC下方抛物线于点P,如图1,∴PO=PC,此时P点即为满足条件的点,∵C(0,-4),∴D(0,-2),∴P点纵坐标为-2,代入抛物线解析式可得x2-3x-4=-2,解得x=(小于0,舍去)或x=,∴存在满足条件的P点,其坐标为(,-2);(3)∵点P在抛物线上,∴可设P(t,t2-3t-4),过P作PE⊥x轴于点E,交直线BC于点F,如图2,∵B(4,0),C(0,-4),∴直线BC解析式为y=x-4,∴F(t,t-4),∴PF=(t-4)-(t2-3t-4)=-t2+4t,∴S△PBC=S△PFC+S△PFB=PF•OE+PF•BE=PF•(OE+BE)=PF•OB=(-t2+4t)×4=-2(t-2)2+8,∴当t=2时,S△PBC最大值为8,此时t2-3t-4=-6,∴当P点坐标为(2,-6)时,△PBC的最大面积为8.【解析】本题为二次函数的综合应用,涉及待定系数法、等腰三角形的性质、二次函数的性质、三角形的面积、方程思想等知识.在(1)中注意待定系数法的应用,在(2)中确定出P点的位置是解题的关键,在(3)中用P点坐标表示出△PBC的面积是解题的关键.本题考查知识点较多,综合性较强,难度适中.(1)由A、B、C三点的坐标,利用待定系数法可求得抛物线解析式;(2)由题意可知点P在线段OC的垂直平分线上,则可求得P点纵坐标,代入抛物线解析式可求得P点坐标;(3)过P作PE⊥x轴,交x轴于点E,交直线BC于点F,用P点坐标可表示出PF 的长,则可表示出△PBC的面积,利用二次函数的性质可求得△PBC面积的最大值及P点的坐标.20.【答案】解:(1)将B(4,0)代入y=-x2+3x+m,解得,m=4,∴二次函数解析式为y=-x2+3x+4,令x=0,得y=4,∴C(0,4),(2)存在,理由:∵B(4,0),C(0,4),∴直线BC解析式为y=-x+4,当直线BC向上平移b单位后和抛物线只有一个公共点时,△MBC面积最大,∴,∴x2-4x+b=0,∴△=16-4b=0,∴b=4,∴,∴M(2,6),(3)①如图,∵点P在抛物线上,∴设P(m,-m2+3m+4),当四边形PBQC是菱形时,点P在线段BC的垂直平分线上,∵B(4,0),C(0,4)∴线段BC的垂直平分线的解析式为y=x,∴m=-m2+3m+4,∴m=1±,∴P(1+,1+)或P(1-,1-),②如图,设点P(t,-t2+3t+4),过点P作y轴的平行线l交BC于点D,交x轴于点E,过点C作l的垂线交l于点F,∵点D在直线BC上,∴D(t,-t+4),∵PD=-t2+3t+4-(-t+4)=-t2+4t,BE+CF=4,∴S四边形PBQC=2S△PBC=2(S△PCD+S△PBD)=2(PD×CF+PD×BE)=4PD=-4t2+16t,∵0<t<4,∴当t=2时,S四边形PBQC最大=16【解析】(1)用待定系数法求出抛物线解析式;(2)先判断出面积最大时,平移直线BC的直线和抛物线只有一个交点,从而求出点M坐标;(3)①先判断出四边形PBQC时菱形时,点P是线段BC的垂直平分线,利用该特殊性建立方程求解;②先求出四边形PBCQ的面积与t的函数关系式,从而确定出它的最大值.此题是二次函数综合题,主要考查了待定系数法,极值的确定,对称性,面积的确定,解本题的关键是确定出△MBC面积最大时,点P的坐标.21.【答案】解:(1)∵点B(4,m)在直线y=x+1上,∴m=4+1=5,∴B(4,5),把A、B、C三点坐标代入抛物线解析式可得,解得,∴抛物线解析式为y=-x2+4x+5;(2)①设P(x,-x2+4x+5),则E(x,x+1),D(x,0),则PE=|-x2+4x+5-(x+1)|=|-x2+3x+4|,DE=|x+1|,∵PE=2ED,∴|-x2+3x+4|=2|x+1|,当-x2+3x+4=2(x+1)时,解得x=-1或x=2,但当x=-1时,P与A重合不合题意,舍去,∴P(2,9);当-x2+3x+4=-2(x+1)时,解得x=-1或x=6,但当x=-1时,P与A重合不合题意,舍去,∴P(6,-7);综上可知P点坐标为(2,9)或(6,-7);②设P(x,-x2+4x+5),则E(x,x+1),且B(4,5),C(5,0),∴BE==|x-4|,CE==,BC==,当△BEC为等腰三角形时,则有BE=CE、BE=BC或CE=BC三种情况,当BE=CE时,则|x-4|=,解得x=,此时P点坐标为(,);当BE=BC时,则|x-4|=,解得x=4+或x=4-,此时P点坐标为(4+,-4-8)或(4-,4-8);当CE=BC时,则=,解得x=0或x=4,当x=4时E点与B点重合,不合题意,舍去,此时P点坐标为(0,5);综上可知存在满足条件的点P,其坐标为(,)或(4+,-4-8)或(4-,4-8)或(0,5).【解析】(1)由直线解析式可求得B点坐标,由A、B、C三点的坐标,利用待定系数法可求得抛物线解析式;(2)①可设出P点坐标,则可表示出E、D的坐标,从而可表示出PE和ED的长,由条件可知到关于P点坐标的方程,则可求得P点坐标;②由E、B、C三点坐标可表示出BE、CE和BC的长,由等腰三角形的性质可得到关于E点坐标的方程,可求得E点坐标,则可求得P点坐标.本题为二次函数的综合应用,涉及待定系数法、勾股定理、等腰三角形的性质、方程思想及分类讨论思想等知识.在(1)中注意待定系数法的应用,在(2)①中用P点坐标分别表示出PE和ED的长是解题关键,在(2)②中用P点坐标表示出BE、CE和BC的长是解题的关键,注意分三种情况讨论.本题考查知识点较多,综合性较强,难度适中.22.【答案】解:(1)∵抛物线的顶点C的坐标为(1,4),∴可设抛物线解析式为y=a(x-1)2+4,∵点B(3,0)在该抛物线的图象上,∴0=a(3-1)2+4,解得a=-1,∴抛物线解析式为y=-(x-1)2+4,即y=-x2+2x+3,∵点D在y轴上,令x=0可得y=3,∴D点坐标为(0,3),∴可设直线BD解析式为y=kx+3,把B点坐标代入可得3k+3=0,解得k=-1,∴直线BD解析式为y=-x+3;(2)设P点横坐标为m(m>0),则P(m,-m+3),M(m,-m2+2m+3),∴PM=-m2+2m+3-(-m+3)=-m2+3m=-(m-)2+,∴当m=时,PM有最大值;(3)如图,过Q作QG∥y轴交BD于点G,交x轴于点E,作QH⊥BD于H,设Q(x,-x2+2x+3),则G(x,-x+3),∴QG=|-x2+2x+3-(-x+3)|=|-x2+3x|,∵△BOD是等腰直角三角形,∴∠DBO=45°,∴∠HGQ=∠BGE=45°,当△BDQ中BD边上的高为2时,即QH=HG=2,∴QG=×2=4,∴|-x2+3x|=4,当-x2+3x=4时,△=9-16<0,方程无实数根,当-x2+3x=-4时,解得x=-1或x=4,∴Q(-1,0)或(4,-5),综上可知存在满足条件的点Q,其坐标为(-1,0)或(4,-5).【解析】(1)可设抛物线解析式为顶点式,由B点坐标可求得抛物线的解析式,则可求得D 点坐标,利用待定系数法可求得直线BD解析式;(2)设出P点坐标,从而可表示出PM的长度,利用二次函数的性质可求得其最大值;(3)过Q作QG∥y轴,交BD于点G,过Q和QH⊥BD于H,可设出Q点坐标,表示出QG的长度,由条件可证得△DHG为等腰直角三角形,则可得到关于Q点坐标的方程,可求得Q点坐标.本题为二次函数的综合应用,涉及待定系数法、二次函数的性质、等腰直角三角形的性质及方程思想等知识.在(1)中主要是待定系数法的考查,注意抛物线顶点式的应用,在(2)中用P点坐标表示出PM的长是解题的关键,在(3)中构造等腰直角三角形求得QG的长是解题的关键.本题考查知识点较多,综合性较强,难度适中.。

人教版初中数学中考复习 一轮复习-一次方程及其解法(含参)(2)

人教版初中数学中考复习 一轮复习-一次方程及其解法(含参)(2)

x y 3的解,求a的值。
考点二:二元一次方程含参问题
已知方程组2mxx5nyy246, 与n3xx m5 yy
8 ,
36
有相同的解,求m,
n的值。
考点二:二元一次方程含参问题
类型二:解的性质
1.如果关于x、y的二元一次方程组2ax3x
2y 5 (a 2) y
的x与y的值相等, 4
那么a
D.无法判断
追问:m的值是多少?
考点三:二元一次方程与一次函数
2.在二元一次方程组
2x 3y 1 0 6x my 3 0
中,当m=
无数组解。
追问:请你讨论该方程解的情况。
时,这个方程有
考点三:二元一次方程与一次函数
3.已知方程组
2x ky 4
x
2
y
0
有正数解,则k的取值范围是

考点三:二元一次方程与一次函数
练习1.
已知xy
21是二元一次方程组mmxx nnyy
7的解,则m 1
n
考点二:二元一次方程含参问题
练习2.
已知xy
25和
x 1 是方程ax y 10
by
15的两个解,则a
考点二:二元一次方程含参问题
类型二:方程同解
1.已知关于x、y的二元一次方程组4xxayy
1 的解也是二元一次方程 3
x2 y 1
考点一:二元一次方程(组)及其解法
例2. 用代入法解方程组2xxyy1106
① ②
解:由①得x=10-y ③ 把③代入②,得2(10-y)+y=16 y=4 把y=4代入③,得x=6
所以这个方程的解为 xy
6 4

中考数学复习 热点专题2 纪念抗战胜利70周年-人教版初中九年级全册数学试题

中考数学复习 热点专题2 纪念抗战胜利70周年-人教版初中九年级全册数学试题

专题2 纪念抗战胜利70周年热点新题预测一、选择题1. 2015年9月3日,我国在天安门广场隆重举行抗日战争暨世界反法西斯战争胜利70周年纪念活动。

此次活动得到了国际社会的广泛响应和积极支持,这表明()①和平与发展是当今世界的两大主题②中国是主宰世界和平与发展的大国③一个和平、合作、负责任的大国形象已被国际社会所公认④正义是人类良知的声音A. ①②③B. ②③④C. ①②④D. ①③④2. 在发表重要讲话时强调,世界各国应该共同维护以联合国宪章宗旨和原则为核心的国际秩序和国际体系,积极构建以合作共赢为核心的新型国际关系,共同推进世界和平与发展的崇高事业。

这是因为()①和平与发展是当今时代的主题②中国人民向往和平,反对战争③中国是一个负责任的大国④世界的发展主要依赖于中国的发展A. ①②④B. ②③④C. ①②③D. ①③④3. 2015年9月3日晚,人民大会堂万人礼堂金碧辉煌,流光溢彩。

向中外观众了展示了主题为“胜利与和平”的纪念中国人民抗日战争暨世界反法西斯战争胜利70周年文艺晚会。

这有利于()①激发爱国热情,振奋民族精神②传承中华民族的一切传统文化③增强民族自尊心、自信心和自豪感④促进社会主义精神文明建设A.①②③ B.①③④C.②③④ D.①②③④4. 在中国人民抗日战争的进程中,形成了伟大的抗战精神,它是中国人民弥足珍贵的精神财富。

因为伟大的抗战精神()A. 是中华民族精神发展的不竭动力B. 使中华民族精神的内涵更加丰富C. 与我们当今的时代精神内容相同D. 是社会主义现代化建设的物质保障5. 主席在纪念中国人民抗日战争暨世界反法西斯战争胜利70周年大会上发表重要讲话,集中体现了“五个大国”思想内涵,即大国领袖、大国道路、大国思维、大国胸怀、大国意志。

这充分表明()A. 中国积极主动承担国际责任B. 中国已成为世界上最强大的国家C. 我国在国际舞台上占主导地位D. 中国是维护世界和平的决定力量6. 大阅兵不是简单的庆祝仪式,而是对历史的纪念与沉思,对未来的展望与宣示。

中考数学专题复习卷 三角形(含解析)-人教版初中九年级全册数学试题

中考数学专题复习卷 三角形(含解析)-人教版初中九年级全册数学试题

三角形一、选择题1.在直角三角形中,若勾为3,股为4,则弦为()A. 5B. 6C. 7D. 8【答案】A【解析】:∵在直角三角形中,勾为3,股为4,∴弦为故答案为:A.【分析】根据在直角三角形中,勾是最短的直角边,股是长的直角边,弦是斜边,知道勾和股利用勾股定理,即可得出答案。

2.在▱ABCD中,对角线AC,BD相交于点O,AC=8,BD=10,那么BC的取值X围是()A.8<BC<10B.2<BC<18C.1<BC<8D.1<BC<9【答案】D【解析】:如图∵▱ABCD,AC=8,BD=10,∴OB=BD=5,OC=AC=4∴5-4<BC<5+4,即1<BC<9故答案为:D【分析】根据平行四边形的性质求出OB、OC的长,再根据三角形三边关系定理,建立不等式组,求解即可。

3.如图所示,∠A=50°,∠B=20°,∠D=30°,则∠BCD的度数为()A. 80°B. 100°C. 120°D. 140°【答案】B【解析】如图,延长BC交AD于点E,∵∠BCD=∠D+∠DEC,∠DEC=∠A+∠B,∴∠BCD=∠A+∠B+∠D,∵∠A=50°,∠B=20°,∠D=30°,∴∠BCD=50°+20°+30°=100°,故答案为:B.【分析】延长BC交AD 于点E,根据三角形的一个外角等于和它不相邻的两个内角的和可得∠BCD=∠D+∠DEC,∠DEC=∠A+∠B,所以∠BCD=∠A+∠B+∠D,由已知可得∠BCD=50°+20°+30°=100°。

4.如图,BE∥AF,点D是AB上一点,且DC⊥BE于点C,若∠A=35°,则∠ADC的度数()A. 105°B. 115°C. 125°D. 135°【答案】C【解析】:∵BE∥AF,∴∠B=∠A=35°.∵DC⊥BE,∴∠DCB=90°,∴∠ADC=90°+35°=125°.故答案为:C.【分析】由平行线的性质可得∠B=∠A=35°,根据三角形的一个外角等于和它不相邻的两个内角的和可得∠ADC=90°+35°=125°。

中考数学试题分项版解析汇编(第02期)专题11 圆(含解析)-人教版初中九年级全册数学试题

中考数学试题分项版解析汇编(第02期)专题11 圆(含解析)-人教版初中九年级全册数学试题

专题11:圆一、选择题1.(2017某某第8题)如图,AB 是O 的直径,,C D 是O 上位于AB 异侧的两点.下列四个角中,一定与ACD ∠互余的角是( )A .ADC ∠B .ABD ∠C . BAC ∠D .BAD ∠【答案】D【解析】∵AB 是直径,∴∠ADB=90°,∴∠BAD+∠B=90°,∵∠ACD=∠B ,∴∠BAD+∠ACD=90°,故选D.2. (2017某某第10题)如图,将半径为2,圆心角为120︒的扇形OAB 绕点A 逆时针旋转60︒,点O ,B 的对应点分别为'O ,'B ,连接'BB ,则图中阴影部分的面积是( )A .23πB .233π C.2233π D .2433π 【答案】C.【解析】试题分析:连接O 'O 、'O B ,根据旋转的性质及已知条件易证四边形AOB 'O 为菱形,且∠'O OB=∠O 'O B=60°,又因∠A 'O 'B =∠A 'O B=120°,所以∠B 'O 'B =120°,因∠O 'O B+∠B 'O 'B =120°+60°=180°,即可得O 、'O 、'B 三点共线,又因'O 'B ='O B ,可得∠'O 'B B=∠'O B 'B ,再由∠O 'O B=∠'O 'B B+∠'O B 'B =60°,可得∠'O 'B B=∠'O B 'B =30°,所以△OB 'B 为Rt 三角形,由锐角三角函数即可求得B 'B =3所以2''16022=S 2232323603OBB BOO S S ππ⨯-=⨯⨯=阴影扇形,故选C.考点:扇形的面积计算.3. (2017某某某某第9题)如图5,在O 中,在O 中,AB 是直径,CD 是弦,AB CD ⊥,垂足为E ,连接0,,20CO AD BAD ∠=,则下列说法中正确的是( )A .2AD OB = B .CE EO = C. 040OCE ∠= D .2BOC BAD ∠=∠【答案】D考点: 垂径定理的应用4.(2017某某某某第6题)如图3,O 是ABC ∆的内切圆,则点O 是ABC ∆的( )图3A . 三条边的垂直平分线的交点B .三角形平分线的交点C. 三条中线的交点 D .三条高的交点【答案】B【解析】试题分析:内心到三角形三边距离相等,到角的两边距离相等的点在这个角的角平分线上,故选B 。

人教版九年级数学中考总复习 第2课时 整式及因式分解 含解析及答案

人教版九年级数学中考总复习   第2课时 整式及因式分解  含解析及答案

第2课时整式及因式分解知能优化训练一、中考回顾1.(2021云南中考)按一定规律排列的单项式:a2,4a3,9a4,16a5,25a6,…,第n个单项式是()A.n2a n+1B.n2a n-1C.n n a n+1D.(n+1)2a n2.(2021安徽中考)计算x2·(-x)3的结果是()A.x6B.-x6C.x5D.-x53.(2021四川成都中考)下列计算正确的是()A.3mn-2mn=1B.(m2n3)2=m4n6C.(-m)3·m=m4D.(m+n)2=m2+n24.(2021江苏连云港中考)下列运算正确的是()A.3a+2b=5abB.5a2-2b2=3C.7a+a=7a2D.(x-1)2=x2+1-2x5.(2021天津中考)计算4a+2a-a的结果等于.a6.(2021云南中考)分解因式:x3-4x=.(x+2)(x-2)二、模拟预测1.下列计算正确的是()A.3a2-a2=2B.2a3·a3=2a9C.a8÷a2=a6D.(-2a)3=-2a22.已知a+b=3,ab=2,则a2+b2的值为()A.3B.4C.5D.63.若关于x的二次三项式x2-kx-b可因式分解为(x-1)(x-3),则k+b的值为()A.-1B.1C.-7D.74.把四张形状、大小完全相同的小长方形卡片(如图①)不重叠地放在一个底部为长方形(长为m cm,宽为n cm)的盒子底部(如图②),盒子底部未被卡片覆盖的部分用阴影表示,则图②中两块阴影部分的周长和是()A.4m cmB.4n cmC.2(m+n)cmD.4(m-n)cm5.若3x m+5y2与x3y n的和是单项式,则n m=.6.按照下图所示的操作步骤,若输入x的值为2,则输出的值为.7.若(a+1)2+|b-2|=0,则a(x2y+xy2)-b(x2y-xy2)的化简结果为.3x2y+xy28.先化简,再求值:(2x+3)(2x-3)-4x(x-1)+(x-2)2,其中,x=-√3.=4x2-9-4x2+4x+x2-4x+4=x2-5,当x=-√3时,原式=(-√3)2-5=3-5=-2.。

中考数学复习用方程(组)解决问题2[人教版]

中考数学复习用方程(组)解决问题2[人教版]
Βιβλιοθήκη 澳门拉斯维加斯线上网址
[判断题]当浮选机某段充气量不足时,整机会表现为泡沫层发死现象。A.正确B.错误 [单选]婴儿痉挛症诊断的最可靠依据是()A.3至8个月起病B.智力发育显著落后C.典型的点头样发作形式D.半数有围生期因素E.脑电图背景波异常 [单选]叉车的最大起重量属()性能。A、牵引B、起重C、通过D、稳定 [单选]企业拟进行一项投资组合,已知A、B、C三者的投资比重分别为0.3、0.5、0.2,相应的投资收益率分别为20%、10%、-5%,则该项投资组合的投资收益率为()。A.10%B.9%C.8.66%D.7% [名词解释]自燃 [单选,A1型题]产褥期是指胎盘娩出至产后()A.2周B.4周C.6周D.8周E.12周 [单选]设关系R、S、W各有10个元组,那么这3个关系自然连接的元组个数为()A.10B.30C.1000D.不确定(与计算结果有关) [单选]目前工程上采用的自动灭火系统中,灭火原理基于抑制燃烧的化学反应过程的是()。A.烟烙尽灭火系统B.二氧化碳灭火系统C.卤代烷灭火系统D.预作用式灭火系统 [多选]下列哪几项属于上海期货交易所的期货交易品种?()A.铜B.大豆C.白糖D.天然橡胶 [单选,B1型题]儿童孤独症的主要临床表现()A.多动、冲动、注意力不集中B.简单的发声或运动抽动C.社会交往障碍,兴趣范围狭窄,行为方式刻板单调D.存在幻听、幻触E.手部刻板的扭转动作 [单选]半月神经节射频温控热凝术时,最后温度应升至()A.40℃~50℃B.50℃~60℃C.60℃~70℃D.70℃~80℃E.90℃~100℃ [单选,A2型题,A1/A2型题]关于冠状面,错误的说法是()A.是将人体纵切为前后两部的切面B.是将人体纵切为左右两部的切面C.与水平面垂直D.与矢状面垂直E.又叫额状面 [单选]()主要用于连接和定位。A.销B.键C.轴D.法兰 [单选,A2型题,A1/A2型题]关于管电压的叙述正确的是()A.是指加于X线管两极间的最高有效值电压B.是指加于X线管两极间的最高平均值电压C.最高管电压与X线管的长度、形状、介质材料无关D.管电压的单位是伏特E.是加于X线管两端的峰值电压 [单选,A1型题]下肢静脉曲张晚期的临床表现中最主要的是()A.皮肤厚硬B.色素沉着C.小腿水肿D.局部瘙痒E.小腿下1/3内侧溃疡 [问答题,简答题]凝结水系统由哪些设备组成? [单选,A2型题,A1/A2型题]对鼻息肉的描述,错误的是()。A.变态反应是鼻息肉形成的主要因素B.鼻息肉为一高度水肿的疏松结缔组织C.其上皮结构为鳞状上皮、柱状上皮以及其他移行上皮D.鼻息肉组织中的血管和腺体无神经支配E.鼻息肉中的IgG合成细胞明显多于中鼻甲和下鼻甲 [单选]卫星通信中,属通信用的天线是()A.鞭状天线B.螺旋形天线C.空向天线 [多选,X型题]以下关于粉末直接压片的描述,正确的是()A.简单、方便B.适用于湿、热不稳定的药物C.要求粉末的流动性和可压性好D.不经制粒直接把药物和辅料的混合物进行压片的方法E.微晶纤维素、可压性淀粉可作为粉末直接压片的辅料 [判断题]住舱着火,当充满水的皮龙、水枪就位后,便可打开所有的门窗,迅速扑救.A.正确B.错误 [多选]港口与航道工程项目技术管理的作用有()。A.保证施工全过程符合规范要求B.保证施工组织设计及时直接报送监理C.不断提高项目施工和管理的技术水平D.开展项目的技术攻关E.积极推广新技术 [单选]一3岁男孩,消瘦明显,右上腹饱满,触及巨大肿块,B.超探及右上腹巨大分叶状肿块,边界清晰,内回声不均,肝右叶向上推移,右肾下移至盆腔,可能是A.右腹膜后神经纤维瘤B.肾母细胞瘤C.神经母细胞瘤D.肾上腺皮质腺癌E.肝母细胞瘤 [单选]铁路电话交换网有些号码用于特殊业务,如113表示人工记录台,()故障申告电话。A.110B.117C.116D.112 [单选]患者恶寒重,发热轻,无汗,头痛,肢体疼痛,鼻塞声重,时流清涕,喉痒,舌苔薄白而润,脉浮。其治法是()A.散寒解肌B.辛温解表C.调和营卫D.散寒止痛E.发汗解肌 [问答题]-15℃等于多少开尔文?293.15K等于多少摄氏度? [单选]以下各项中可能成为行政主体的是()。A.国家权力机关B.人民检察院C.国家行政机关D.治安联防组织 [单选]该病房楼内设有上下层相连通的走廊、敞开楼梯、自动扶梯、传送带等开口部位时,应按上下连通层作为一个防火分区,其允许最大建筑面积之和不应超过《高层民用建筑设计防火规范(2005年版)》(GB50045--1995)的规定。当上下开口部位设有()等分隔设施时,其面积可不叠加计算。 [单选]颅骨凹陷性骨折的好发部位为()A.枕骨B.颞骨C.额骨和顶骨D.颞骨磷部E.乳突区 [单选,A2型题,A1/A2型题]下列各项中与Graves病的发病关系最密切的是().A.精神创伤B.TRH(促甲状腺激素释放激素)升高C.TSH(促甲状腺激素)升高D.碘摄入过多E.自身免疫 [问答题,简答题]精甲醇产品水分超标的原因? [单选,A1型题]治疗糖尿病视网膜病变时,主要是利用了激光的()A.强电场效应B.热效应C.弱刺激效应D.压强效应E.光化学效应 [单选]某大豆种植者在4月份开始种植大豆,并预计在11月份将收获的大豆在市场上出售,预期大豆产量为70吨。为规避大豆价格波动的风险,该种植者决定在期货市场上进行套期保值操作,正确做法应是()。A.买人70吨11月份到期的大豆期货合约B.卖出70吨11月份到期的大豆期货合约C.买 [单选]对新建的易燃易爆化学物品生产场所工程的消防设计未经公安消防机构审核擅自施工的,公安消防机构应当()。A、责令停止违法行为B、责令限期改正C、责令停止施工并处罚款D、责令停止施工 [单选,A2型题,A1/A2型题]骨髓检查原始单核细胞35%,原始粒细胞24%,幼稚单核细胞15%,早幼粒细胞8%,诊断()A.急非淋白血病M5aB.急非淋白血病M5bC.急非淋白血病M4D.急非淋白血病M3E.以上都不正确 [单选,A2型题,A1/A2型题]具有输血指征需符合以下标准()A.急性失血血红蛋白需下降20g/LB.慢性贫血血红蛋白低于80g/LC.急性失血血容量减少大于20%D.慢性失血血容量减少大于20%E.慢性失血患者感觉头昏明显时 [单选]决定分娩过程的要素是()。A.母畜年龄B.产力C.怀孕期D.胎位 [单选,A2型题,A1/A2型题]患者,女性,30岁,因外伤造成右肱骨中段骨折伴伸腕无力,外固定保守治疗8周,伸腕仍无力。患者进行了I/t曲线测定,证实为部分失神经曲线,其基强度为2.0mA,时值为多少毫安对应的刺激时间()A.2B.8C.6D.4E.3 [单选]有关含铁血黄素尿的说法,下列不正确的是()A.慢性血管内溶血时少见B.Rous试验可检出C.急性溶血初期可阴性D.Hb在肾小管上皮细胞内分解而成E.阴性不能排除血管内溶血 [单选]道路勘测是对井队搬迁所经过的道路进行(),以保证安全顺利地搬迁。A.地图研究B.测量C.实地调查D.清理 [单选]花卉园艺分类中,科以下的基本等级依次是()。A.属,科,种,品系,品种B.科,属,种,品系,品种C.纲,属,种,品系,品种D.界,科,种,品系,品种

中考数学复习用方程(组)解决问题2[人教版]

中考数学复习用方程(组)解决问题2[人教版]
品牌策划 https:///
衡量经济总量平衡的主要标志是A.物价稳定B.充分就业C.经来潮前天左右。 A、12 B、13 C、14 D、15
评价抗病毒治疗的有效性,最重要的指标是A.艾滋病相关临床症状B.免疫学指标C.HIV-RNAD.耐药基因检测E.HIV抗体 人民币教育储蓄每份本金合计不得超过。A.5000元B.1万元C.2万元D.3万元 国家秘密的基本范围有哪些? 下列不属于口头沟通特点的是.A、费时少,迅速交换意见B、可随时提问和解答C、方便,便于准备D、具有可追索性 行使代位权的条件有: 被动大陆边缘 对于APU紧急关车A、机组可按压APU火警按钮B、地面人员按压机身下内话面板上APU关车按钮C、以上两个都可以 在全麻下行扁桃体切除术后患者在尚未清醒时,应保持的体位是A.仰卧位B.半俯卧位C.侧位D.半坐位E.头后仰位 生产可能性曲线向右移动是因为。A.投入减少而引起产出增加B.产出随着投入的增加而增加C.劳动力被有效地利用D.生产可能性曲线内的一点向生产可能性曲线上一点的移动 道氏理论认为市场波动具有。A.2种趋势B.4种趋势C.3种趋势D.5种趋势 感觉性失语的主要言语特征()A.理解障碍重于表达障碍B.表达障碍重于理解障碍C.非流畅性自发言语D.电报式言语E.自发性找词困难 关于根管口的解释,正确的是A.根管末端的开口处B.髓室和根管交界的部分C.髓腔中分叉的部位D.髓腔的开口E.侧支根管的开口 下列属于化学变化的是。A.氯化钠溶解在水中B.液态氧受热放出氧气C.金属导电D.氧化钠溶解在水中 关于正常玻璃体表述正确的是()A.黏液性胶样组织B.水样组织C.浆液状组织D.固态透明组织E.液体状组织 西方关于人的发展的理论研究中,以道德认知、判断的发展水平为指标的代表人物是A.弗洛伊德B.皮亚杰C.柯尔伯格D.达维多夫 患者,女,20岁。溺水,救出时呼吸、心跳已停止,立即由两人行心肺复苏术。口对口人工呼吸的频率为()A.10~12次/分B.12~16次/分C.18~20次/分D.20~24次/分E.30~40次/分 下列能揭示原子具有核式结构的实验是。A.光电效应实验B.伦琴射线的发现C.a粒子散射实验D.氢原子光谱的发现 根据我国刑事诉讼法的规定,下列哪些情况需要省级人民政府指定的医院进行鉴定或者出具证明文件?A.某被害人对公安机关的轻伤鉴定不服,要求重新鉴定B.犯罪嫌疑人的父亲提出犯罪嫌疑人患有精神病要求进行鉴定C.已被逮捕的犯罪嫌疑人提出自己患有严重疾病要求取保候审需要鉴定,但是 2009年在全球流行的甲型H1N1流感是一种新发疾病,其病原为新甲型H1N1流感病毒株。关于这种流感毒株的基因,正确的描述是A.仅包含人流感病毒基因B.仅包含猪流感病毒基因C.仅包含禽流感病毒基因D.仅包含猪流感和禽流感病毒基因E.包含猪流感、禽流感和人流感三种流感病毒的基因片段 《绿色施工导则》规定,图纸会审时,应审核节材与材料资源利用的相关内容,达到材料损耗率比定额损耗率降低。A.15%B.20%C.25%D.30% 人类免疫球蛋白占血浆蛋白总量的A.20%B.5%C.50%D.15%E.10% 在中标通知书发出后合同规定的时间内,承包人应向()书面提交一份详细和格式符合要求的工程总体进度计划。A.监理工程师B.业主C.质量监督站D.上级公司 患者,男,52岁,乙肝“小三阳”20余年,B超体检发现肝区结节状肿块数个。实验室检查:AFP>1000ng/L,ALT35U/L。首先可考虑为()A.胃癌肝转移B.胆管癌C.胰腺癌D.原发性肝癌E.肾癌肝转移 火灾探测器的作用是检测被保护区域。A、有无火警信号B、有无火灾危险C、有无可燃物体D、有无可疑人员 自然应激在第一阶段即可结束,强烈而持久的应激源才会发展到第三阶段。A.正确B.错误 卢梭以小说体裁反映自然主义教育思想的代表作是。A.社会契约论B.忏悔录C.新爱洛绮丝D.爱弥儿 利用细胞代谢变化作为增殖指征来检测细胞因子生物活性的方法称为A.放射性核素掺入法B.NBT法C.细胞毒测定D.MTT比色法E.免疫化学法 在机械化抢险中,要有抢险人员与之配合,还要有经验丰富的等。A.指挥员B.评论员C.评判员D.调度员E.观察员 下列关于肾血流动力学异常的原因哪项是错误的A.交感神经过度兴奋B.肾内肾素血管紧张素系统兴奋C.肾内舒血管性前列腺素合成减少,缩血管性前列腺素产生过多D.血管缺血导致血管内皮损伤E.球一管反馈过弱 股骨头、颈部的血液供应的来源有A.圆韧带内的小动脉B.股骨干滋养动脉降支C.旋股内侧动脉分支D.股骨干滋养动脉升支E.旋股外侧动脉的分支 某患者眼睛偏斜,眼位检查如图,考虑麻痹肌为()A.左外直肌B.右外直肌C.左内直肌D.右内直肌E.左上斜肌 要求用样本期内所有变量的样本数据进行同归计算。A.标准普尔指数B.特雷诺指数C.夏普指数D.詹森指数 《汉书》是第一部纪传体的断代史,作者是,其中写得最好的人物传记是《》。

2023年中考数学二轮《方程与不等式》专题练习-人教版(含答案)

2023年中考数学二轮《方程与不等式》专题练习-人教版(含答案)

2023年中考数学二轮《方程与不等式》专题练习-人教版(含答案)一、选择题(共16题)1.在数轴上表示不等式﹣2≤x <4,正确的是( ) A.B.C. D.2.下列方程中是关于x 的一元二次方程的是( ) A. B.C.D.3.用配方法解方程2237x x +=时,方程可变形为( )A.273724x ⎛⎫-= ⎪⎝⎭B.274324x ⎛⎫-= ⎪⎝⎭C.271416x ⎛⎫-= ⎪⎝⎭D.2725416x ⎛⎫-= ⎪⎝⎭4.若2211m m m m m --=--,则m 等于( ) A.1- B.0 C.1-或1 D.1-或25.对于任意的实数x ,代数式259x x -+的值是一个( ) A.整数B.非负数C.正数D.不能确定6.关于x 的一元一次方程3xy -2=4的解为2,则y 的值是( ) A.y = 1B.y =-2C.y =-6D.y =-57.已知下列方程:①2x +3y =0;①x +3=7;①y 2-y +1=0;①3x =7x +2;①2x -3=4x ;①73y =3.其中属于一元一次方程的有( ) A.2个 B.3个 C.4个 D.5个8.不等式组的解集在数轴上表示为( ).A. B. C. D.9.在平面直角坐标系中,若点(),1P a a -在第一象限内,则a 的取值范围在数轴上表示为( )A. B.C. D.10.下列方程组的解为31x y =⎧⎨=⎩的是① ①A.224x y x y -=⎧⎨+=⎩ B.253x y x y -=⎧⎨+=⎩ C.32x y x y +=⎧⎨-=⎩ D.2536x y x y -=⎧⎨+=⎩ 11.已知a 、b 、c 都是实数,则关于三个不等式:a >b 、a >b +c 、c <0的逻辑关系的表述,下列正确的是( ) .A.因为a >b 、c <0所以a >b +cB.因为a >b +c ,c <0,所以a >bC.因为a >b +c ,所以a >b ,c <0D.因为a >b 、a >b +c ,所以c <012.下列方程中,有实数根的方程是( ) A.4y 10+=B.2x x 10++=C.x 1x 1x 1=-++x -13.下列方程变形中,正确的是( ) A.方程3x ﹣2=2x +1,移项,得3x ﹣2x =﹣1+2B.方程3﹣x =2﹣5(x ﹣1),去括号,得3﹣x =2﹣5x ﹣1C.方程23t =32,未知数系数化为1,得t =1D.方程2x+3=x ,去分母得x +6=2x14.下列一元二次方程中,两根分别为5和-7的是( ) A.7)50()(x x ++= B.7)50()(x x =-- C.7)50()(x x +-=D.7)50()(x x +=-15.方程组3455792x y x y +=⎧⎪⎨-+=-⎪⎩的解是( )A.20.25x y =⎧⎨=-⎩B. 5.54x y =-⎧⎨=⎩C.10.5x y =⎧⎨=⎩D.10.5x y =-⎧⎨=-⎩16.如果二次函数22y x x t =++与一次函数y x =的图像两个交点的横坐标分别为m 、n ,且1m n <<,则t 的取值范围是( )A.2t >-B.2t <-C.14t >D.14t <二、综合题(共10题)17.用不等式表示:x 的4倍大于x 的3倍与7的差:__________.18.把分式方程311xx x -=+化成整式方程,去分母后的方程为______________________ 19.关于x 的方程(2m ﹣1)x 2+mx+2=0是一元二次方程,则m 的取值范围是_____. 20.一项工程,甲单独完成要10天,乙单独完成要15天,则由甲先做5天,然后甲、乙合做余下的部分还要_____天完成.21.买一些4分、8分、1角的邮票共15张,用币100分最多可买1角的______张。

中考数学复习用方程(组)解决问题2[人教版]

中考数学复习用方程(组)解决问题2[人教版]
பைடு நூலகம்
开心8在线注册 收集24小时尿液测定肌酐、肌酸需加的防腐剂是A.液状石蜡B.稀盐酸C.40%甲醛D.浓盐酸E.甲苯 何谓催化重整? 位于某市的某工厂转让一栋3年前购入的旧办公楼,购置成本550万元,转让收入为700万,已提折旧300万元。经房地产评估机构评定,该楼的重置成本价为1000万元,成新度为6成新,则应纳土地增值税万元。A.27.53B.140C.120D.50 关于对禽流感的易感性,正确的说法应该是A.老人与鸡易感B.小孩与鸭易感C.禽群和人群普遍易感D.妇女和养禽人员易感E.兽医易感 中枢兴奋性神经递质(谷氨酸、门冬氨酸)的影响,应除外()A.学习B.记忆C.行为D.精神状态E.癫痫 牙本质中胶原主要为。A.Ⅰ型B.Ⅱ型C.Ⅲ型D.Ⅳ型E.Ⅴ型 以下不能作为诊断肺心病的主要依据的是A.肺动脉段突出B.右下肺动脉干扩张,横内径&ge;15mmC.肺性P波D.右束支传导阻滞E.V1R/S&gt;1 工业污水、船舶废弃物排放入海,会产生影响。A、损害海洋生物资源B、危害人体健康C、损坏海水使用素质D、A+B+C 《“十一五”规划纲要》强调,要健全科学民主决策机制,保障公民对政府工作的。A.知情权B.参与权C.否决权D.监督权E.表达权 不符合急性胃炎的治疗原则是A.停止服用非甾体类消炎药B.止血并补充血容量C.阿托品缓解腹痛D.应用制酸剂和硫糖铝E.对反复发作者行全胃切除 关于外阴白色病变下列何项是正确的A.外阴白色病变的病因是念珠菌感染B.硬化性苔癣型营养不良的病因与遗传、自身免疫、男性素不足可能有关C.增生型和混合型营养不良常继发癌变D.外阴白色病变病理变化恒定,任何病变区域一次活检均能作出诊断E.治疗原则以手术切 除为宜 [单选,案例分析题]患者男性,78岁,1天前因右腹股沟疝嵌顿手法回纳后,即感腹痛。现因腹痛加剧、腹胀、气促、呕吐而来就诊。查体:神志淡漠,四肢厥冷。脉细速140次/分,血压60/40mmHg,腹胀,全腹压痛、反跳痛、肌紧张,以脐右最为明显,诊断肠坏死穿孔、弥 漫性腹膜炎、中毒性休克腹股沟深环的体表投影位于。A.腹股沟中点上方1cmB.腹股沟中点上方2cmC.腹股沟中点D.腹股沟中点下方1cmE.腹股沟中点下方2cm 空心砖墙的组砌方法。 简述办公室接待工作及礼仪。 根据《公路工程技术标准》,路基、路面排水设计除应综合规划、合理布局,并与沿线排灌系统相协调外,还要考虑。A.冰冻的作用B.防止污染水源C.防止水土流失D.地下水、毛细水的作用E.保护生态环境 有下列情形之一的,不是人民法院应当裁定中止执行()。A.申请人表示可以延期执行的B.被执行人有异议的C.案外人对执行标的提出确有理由的异议的D.作为一方当事人的公民死亡,需要等待继承人继承权利或者承担义务的 哪项检查对确诊流脑有意义A.咽拭子涂片染色镜检B.咽拭子培养C.血清内毒素测定D.血清特异性抗体测定E.脑脊液沉淀物涂片染色镜检 目前要求火灾探测器的工作电压为。A、DC6VB、DC18VC、DC20VD、DC24V 孕育处理的目的是A.促进石墨化B.降低白口倾向C.控制石墨形态D.消除过冷石墨 数控机床按控制坐标轴数分类,可分为两坐标数控机床、三坐标数控机床、多坐标数控机床和五面加工数控机床等。A.正确B.错误 ABC会计师事务所完成对H股份有限公司2017年度财务报表的审计业务,出具审计报告后,应当对其年度财务报表的审计业务工作底稿的进行归档.对业务底稿的归档期限A.业务报告日后六十天内B.业务报告日后三十天内C.结束审计业务后六十天内D.结束审计业务后三十天 内 为避免输血相关性急性肺损伤,应淘汰的献血者是。A.1次妊娠的女性献血者B.2次妊娠的女性献血者C.&ge;3次妊娠的女性献血者D.多次献血的女性献血者E.有1次输血史的男性献血者 可靠性必须与结合起来。 催产素主要产生部位A.神经垂体(垂体后叶)B.腺垂体(垂体前叶)C.卵巢D.下丘脑室旁核E.下丘脑正中隆突 水肿如何分度? 房屋登记的预告登记包括A.预购商品房预告登记B.预购商品房抵押权预告登记C.房屋所有权转移预告登记D.房屋租赁权预告登记E.房屋地役权预告登记 肺部CT的应用指征不包括A.肺部弥漫性病变B.咯血C.肺气肿D.大范围气胸E.肿瘤分期 流通加工是指。A.在流通阶段所进行的为保存而进行的加工或者同一机能形态转换而进行的加工B.在生产阶段所进行的为保存而进行的加工或者同一机能形态转换而进行的加工C.在消费阶段所进行的为保存而进行的加工或者同一机能形态转换而进行的加工D.在储存阶段所进 行的为保存而进行的加工或者不同机能形态转换而进行的加工 特种设备的安全工作方针是什么?使用管理工作的要点或根本保障是什么? 引起儿童黄疸型肝炎最常见的病原为。A.甲型肝炎病毒B.乙型肝炎病毒C.丙型肝炎病毒D.丁型肝炎病毒E.戊型肝炎病毒 疲劳会使船员.A.体力下降,反应迟钝B.体力不支,大脑不听使唤C.记忆、判断、感知失误D.以上都是 尸检主检人员是受过尸检训练,具有中级以上专业职称的A.病理学医师和病理学教师B.病理学医师、教师和病理学技师C.病理学医师、教师和外科医师D.病理学医师、教师和检验科医师E.必须是法医医师 对我国证券投资基金的叙述正确的是。A.《证券投资基金管理暂行办法》以法律形式确认了基金业在资本市场及社会主义市场经济中的地位和作用B.封闭式基金一直是我国基金设立的主流形式C.1998年3月,两只封闭式基金&mdash;&mdash;基金金泰、基金开元设立, 分别由国泰基金管理公司和大成基金管理公司管理D.到2009年年底,已有30多只封闭式基金转为开放式基金 肺炎喘嗽的好发季节是。A.春季B.冬季C.夏季D.冬春E.秋冬 有关公账户余额管理价格再转授权规定正确的是A、横向可转授至二级分支行业务经营和管理部门B、纵向最低可再转授至县级行分管行领导C、横向再转授权由二级分支行自行确定D、纵向最低可再转授至县级行业务部门负责人或网点负责人 信息安全经理了三个发展阶段,包括.A.通信保密阶段B.加密机阶段C.安全审计阶段D.安全保障阶段 糖皮质激素与抗生素合用治疗严重感染的目的是A.增强抗生素的抗菌作用B.增强机体防御能力C.拮抗抗生素的某些副作用D.通过激素的作用缓解症状,度过危险期E.增强机体应激性 关于脑梗死前期2b期CT灌注表现,叙述正确的是A.MTT、TTP延长,CBF、CBV下降B.MTT延长,TTP、CBF、CBV正常C.MTT、TTP延长,CBF、CBV正常D.MTT、TTP正常,CBF、CBV下降E.MTT、TTP延长,CBF、CBV增高 以下关于囊肿型淋巴管瘤的叙述,哪项是错误的()A.表面皮肤色泽正常B.扪之柔软,有波动感C.体位试验阳性D.有时需要做穿刺检查以明确诊断E.可与毛细管型淋巴管瘤同时存在 组织产生于生物-心理-会医学模式下的一种新的临床护理模式是A.小组护理B.功能制护理C.个案护理D.责任制护理E.综合护理

人教版九年级数学上册中考专题复习题含答案全套

人教版九年级数学上册中考专题复习题含答案全套

人教版九年级数学上册中考专题复习题1.类比归纳专题:配方法的应用2.类比归纳专题:一元二次方程的解法3.易错易混专题:一元二次方程中的易错问题4.考点综合专题:一元二次方程与其他知识的综合5.解题技巧专题:抛物线中与系数a,b,c有关的问题6.易错易混专题:二次函数的最值或函数值的范围7.难点探究专题:抛物线与几何图形的综合(选做)8.抛物线中的压轴题9.易错专题:抛物线的变换10.解题技巧专题:巧用旋转进行计算11.旋转变化中的压轴题12.类比归纳专题:圆中利用转化思想求角度13.类比归纳专题:切线证明的常用方法14.解题技巧专题:圆中辅助线的作法15.解题技巧专题:圆中求阴影部分的面积16.考点综合专题:圆与其他知识的综合17.圆中的最值问题18.抛物线与圆的综合19.易错专题:概率与放回、不放回问题类比归纳专题:配方法的应用——体会利用配方法解决特定问题◆类型一 配方法解方程1.一元二次方程x 2-2x -1=0的解是( )A .x 1=x 2=1B .x 1=1+2,x 2=-1- 2C .x 1=1+2,x 2=1- 2D .x 1=-1+2,x 2=-1- 22.用配方法解下列方程时,配方有错误的是( )A .x 2-2x -99=0化为(x -1)2=100B .x 2+8x +9=0化为(x +4)2=25C .2t 2-7t -4=0化为⎝⎛⎭⎫t -742=8116 D .3x 2-4x -2=0化为⎝⎛⎭⎫x -232=1093.利用配方法解下列方程:(1)(2016·淄博中考)x 2+4x -1=0;(2)(x +4)(x +2)=2;(3)4x 2-8x -1=0;(4)3x 2+4x -1=0.◆类型二 配方法求最值或证明 4.代数式x 2-4x +5的最小值是( ) A .-1 B .1 C .2 D .55.下列关于多项式-2x 2+8x +5的说法正确的是( )A .有最大值13B .有最小值-3C .有最大值37D .有最小值1 6.(2016-2017·夏津县月考)求证:代数式3x 2-6x +9的值恒为正数.7.若M =10a 2+2b 2-7a +6,N =a 2+2b 2+5a +1,试说明无论a ,b 为何值,总有M >N .◆类型三 完全平方式中的配方 8.如果多项式x 2-2mx +1是完全平方式,则m 的值为( )A .-1B .1C .±1D .±29.若方程25x 2-(k -1)x +1=0的左边可以写成一个完全平方式,则k 的值为( )A .-9或11B .-7或8C .-8或9D .-6或7◆类型四 利用配方构成非负数求值 10.已知m 2+n 2+2m -6n +10=0,则m +n 的值为( )A .3B .-1C .2D .-211.已知x 2+y 2-4x +6y +13=0,求(x +y )2016的值.答案:类比归纳专题:一元二次方程的解法——学会选择最优的解法◆类型一 一元二次方程的一般解法方法点拨: 形如(x +m )2=n (n ≥0)的方程可用直接开平方法;当方程二次项系数为1,且一次项系数为偶数时,可用配方法;若方程移项后一边为0,另一边能分解成两个一次因式的积,可用因式分解法;如果方程不能用直接开平方法和因式分解法求解,则用公式法.1.用合适的方法解下列方程:(1)⎝⎛⎭⎫x -522-14=0;(2)x 2-6x +7=0;(3)x 2-22x +18=0;(4)3x (2x +1)=4x +2.◆*类型二 一元二次方程的特殊解法 一、十字相乘法方法点拨:例如:解方程:x 2+3x -4=0.第1种拆法:4x -x =3x (正确), 第2种拆法:2x -2x =0(错误), 所以x 2+3x -4=(x +4)(x -1)=0,即x +4=0或x -1=0,所以x 1=-4,x 2=1. 2.解一元二次方程x 2+2x -3=0时,可转化为解两个一元一次方程,请写出其中的一个一元一次方程____________.3.用十字相乘法解下列一元二次方程: (1)x 2-5x -6=0; (2)x 2+9x -36=0.二、换元法方法点拨:在已知或者未知条件中,某个代数式几次出现,可用一个字母来代替它从而简化问题,这就是换元法,当然有时候要通过变形才能换元.把一些形式复杂的方程通过换元的方法变成一元二次方程,从而达到降次的目的.4.若实数a ,b 满足(4a +4b )(4a +4b -2)-8=0,则a +b =_______.5.解方程:(x 2+5x +1)(x 2+5x +7)=7.1.解:(1)移项,得⎝⎛⎭⎫x -522=14, 两边开平方,得x -52=±14, 即x -52=12或x -52=-12,∴x 1=3,x 2=2;(2)移项,得x 2-6x =-7,配方,得x 2-6x +9=-7+9,即(x -3)2=2, 两边开平方,得x -3=±2, ∴x 1=3+2,x 2=3-2;(3)原方程可化为8x 2-42x +1=0. ∵a =8,b =-42,c =1,∴b 2-4ac =(-42)2-4×8×1=0, ∴x =-(-42)±02×8=24,∴x 1=x 2=24; |(4)原方程可变形为(2x +1)(3x -2) =0,∴2x +1=0或3x -2=0, ∴x 1=-12,x 2=23.2. x -1=0或x +3=0.3.解:(1)原方程可变形为(x -6)(x +1) =0,∴x -6=0或x +1=0, ∴x 1=6,x 2=-1;(2)原方程可变形为(x +12)(x -3) =0,∴x +12=0或x -3=0, ∴x 1=-12,x 2=3. 4.-12或15.解:设x 2+5x +1=t ,则原方程化为t (t +6)=7,∴t 2+6t -7=0,解得t =1或-7.当t =1时,x 2+5x +1=1,x 2+5x =0, x (x +5)=0,∴x =0或x +5=0,∴x 1=0,x 2=-5; 当t =-7时,x 2+5x +1=-7,x 2+5x +8=0,∴b 2-4ac =52-4×1×8<0,此时方程 无实数根.∴原方程的解为x 1=0,x 2=-5.易错易混专题:一元二次方程中的易错问题◆类型一 利用方程或其解的定义求待定系数时,忽略“a ≠0”1.(2016-2017·江都区期中)若关于x的方程(a +3)x |a |-1-3x +2=0是一元二次方程,则a 的值为______.【易错1】2.关于x 的一元二次方程(a -1)x 2+x +a 2-1=0的一个根是0,则a 的值是( )A .-1B .1C .1或-1D .-1或0 3.已知关于x 的一元二次方程(m -1)x 2+5x +m 2-3m +2=0的常数项为0.(1)求m 的值; (2)求方程的解.◆类型二 利用判别式求字母取值范围时,忽略“a ≠0”及“a 中的a ≥0”4.(2016-2017·抚州期中)若关于x 的一元二次方程(m -2)2x 2+(2m +1)x +1=0有解,那么m 的取值范围是( )A .m >34B .m ≥34C .m >34且m ≠2D .m ≥34且m ≠25.已知关于x 的一元二次方程x 2+k -1x -1=0有两个不相等的实数根,则k的取值范围是________.6.若m 是非负整数,且关于x 的方程(m -1)x 2-2x +1=0有两个实数根,求m 的值及其对应方程的根.◆类型三 利用根与系数关系求值时,忽略“Δ≥0”7.(2016·朝阳中考)关于x 的一元二次方程x 2+kx +k +1=0的两根分别为x 1,x 2,且x 21+x 22=1,则k 的值为_______.【易错2】 8.已知关于x 的方程x 2+2(m -2)x +m 2+4=0有两个实数根,且这两根的平方和比两根的积大21,求m 的值.【易错2】◆类型四 与三角形结合时忘记取舍 9.已知三角形两边长分别为2和9,第三边的长为一元二次方程x 2-14x +48=0的根,则这个三角形的周长为( )A .11B .17C .17或19D .1910.在等腰△ABC 中,三边分别为a ,b ,c ,其中a =5,若关于x 的方程x 2+(b +2)x +6-b =0有两个相等的实数根,求△ABC 的周长.考点综合专题:一元二次方程与其他知识的综合◆类型一一元二次方程与三角形、四边形的综合1.(雅安中考)已知等腰三角形的腰和底的长分别是一元二次方程x2-4x+3=0的根,则该三角形的周长可以是()A.5 B.7 C.5或7 D.102.(广安中考)一个等腰三角形的两条边长分别是方程x2-7x+10=0的根,则该等腰三角形的周长是()A.12 B.9C.13 D.12或93.(罗田县期中)菱形ABCD的一条对角线长为6,边AB的长是方程x2-7x+12=0的一个根,则菱形ABCD的周长为()A.16 B.12 C.16或12 D.244.(烟台中考)等腰三角形边长分别为a,b,2,且a,b是关于x的一元二次方程x2-6x+n-1=0的两根,则n的值为()A.9 B.10C.9或10 D.8或105.(齐齐哈尔中考)△ABC的两边长分别为2和3,第三边的长是方程x2-8x+15=0的根,则△ABC的周长是________.6.(西宁中考)若矩形的长和宽是方程2x2-16x+m=0(0<m≤32)的两根,则矩形的周长为_________.【方法8】7.已知一直角三角形的两条直角边是关于x的一元二次方程x2+(2k-1)x+k2+3=0的两个不相等的实数根,如果此直角三角形的斜边是5,求它的两条直角边分别是多少.【易错4】◆类型二一元二次方程与一次函数的综合8.(泸州中考)若关于x的一元二次方程x2-2x+kb+1=0有两个不相等的实数根,则一次函数y=kx+b的大致图象可能是()9.(安顺中考)若一元二次方程x2-2x -m=0无实数根,则一次函数y=(m+1)x +m-1的图象不经过()A.第四象限B.第三象限C.第二象限D.第一象限10.(葫芦岛中考)已知k、b是一元二次方程(2x+1)(3x-1)=0的两个根,且k>b,则函数y=kx+b的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限11.(广元中考)从3,0,-1,-2,-3这五个数中抽取一个数,作为函数y=(5-m2)x和关于x的一元二次方程(m+1)x2+mx+1=0中m的值.若恰好使函数的图象经过第一、三象限,且使方程有实数根,则满足条件的m的值是______.◆类型三一元二次方程与二次根式的综合12.(达州中考)方程(m-2)x2-3-mx +14=0有两个实数根,则m的取值范围为()A.m>52B.m≤52且m≠2C.m≥3 D.m≤3且m≠213.(包头中考)已知关于x的一元二次方程x2+k-1x-1=0有两个不相等的实数根,则k的取值范围是______.答案:12.B 13.解题技巧专题:抛物线中与系数a,b,c有关的问题◆类型一由某一函数的图象确定其他函数图象的位置1.二次函数y=-x2+ax-b的图象如图所示,则一次函数y=ax+b的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限第1题图第2题图2.已知一次函数y=-kx+k的图象如图所示,则二次函数y=-kx2-2x+k的图象大致是()3.已知函数y=(x-a)(x-b)(其中a>b)的图象如图所示,则函数y=ax+b的图象可能正确的是()第3题图第4题图4.如图,一次函数y1=x与二次函数y2=ax2+bx+c的图象相交于P,Q两点,则函数y=ax2+(b-1)x+c的图象可能是()◆类型二由抛物线的位置确定代数式的符号或未知数的值5.(2016·新疆中考)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列结论中正确的是【方法10】()A.a>0B.c<0C.3是方程ax2+bx+c=0的一个根D.当x<1时,y随x的增大而减小第5题图第7题图6.(2016·黄石中考)以x为自变量的二次函数y=x2-2(b-2)x+b2-1的图象不经过第三象限,则实数b的取值范围是【方法10】()A.b≥54B.b≥1或b≤-1C.b≥2 D.1≤b≤27.(2016·孝感中考)如图是抛物线y=ax2+bx+c(a≠0)的部分图象,其顶点坐标为(1,n),且与x轴的一个交点在点(3,0)和(4,0)之间.则下列结论:①a-b+c>0;②3a+b=0;③b2=4a(c-n);④一元二次方程ax2+bx+c=n-1有两个不相等的实数根.其中正确结论的个数是()A.1个B.2个C.3个D.4个8.(2016·天水中考)如图,二次函数y =ax2+bx+c(a≠0)的图象与x轴交于A,B 两点,与y轴交于点C,且OA=OC,则下列结论:①abc<0;②b2-4ac4a>0;③ac-b+1=0;④OA·OB =-ca .其中正确结论的序号是____________.答案:易错易混专题:二次函数的最值或函数值的范围——类比各形式,突破给定范围求最值◆类型一 没有限定自变量的范围求最值 1.函数y =-(x +1)2+5的最大值为_______. 2.已知二次函数y =3x 2-12x +13,则函数值y 的最小值是【方法11】( )A .3B .2C .1D .-13.已知函数y =x(2-3x),当x 为何值时,函数有最大值还是最小值?并求出最值.◆类型二 限定自变量的取值范围求最值4.(2016-2017·双台子区校级月考)函数y =x 2+2x -3(-2≤x ≤2)的最大值和最小值分别是( )A .4和-3B .-3和-4C .5和-4D .-1和-45.二次函数y =-12x 2+32x +2的图象如图所示,当-1≤x ≤0时,该函数的最大值是【方法11】( )A .3.125B .4C .2D .06.已知0≤x ≤32,则函数y =x 2+x +1( ) A .有最小值34,但无最大值B .有最小值34,有最大值1C .有最小值1,有最大值194D .无最小值,也无最大值◆类型三 限定自变量的取值范围求函数值的范围7.从y =2x 2-3的图象上可以看出,当-1≤x ≤2时,y 的取值范围是( )A .-1≤y ≤5B .-5≤y ≤5C .-3≤y ≤5D .-2≤y ≤18.已知二次函数y =-x 2+2x +3,当x ≥2时,y 的取值范围是( )A .y ≥3B .y ≤3C .y >3D .y <39.二次函数y =x 2-x +m(m 为常数)的图象如图所示,当x =a 时,y <0;那么当x =a -1时,函数值CA .y <0B .0<y <mC .y >mD .y =m◆类型四 已知函数的最值,求自变量的取值范围或待定系数的值10.当二次函数y =x 2+4x +9取最小值时,x 的值为( )A .-2B .1C .2D .911.已知二次函数y =ax 2+4x +a -1的最小值为2,则a 的值为( )A.3 B.-1C.4 D.4或-112.已知y=-x(x+3-a)+1是关于x 的二次函数,当x的取值范围在1≤x≤5时,y在x=1时取得最大值,则实数a的取值范围是()A.a=9 B.a=5 C.a≤9 D.a≤513.在△ABC中,∠A,∠B所对的边分别为a,b,∠C=70°.若二次函数y=(a+b)x2+(a+b)x-(a-b)的最小值为-a2,则∠A=_______度.14.★已知函数y=-4x2+4ax-4a-a2,若函数在0≤x≤1上的最大值是-5,求a的值.答案:难点探究专题:抛物线与几何图形的综合(选做)——代几结合,突破面积及点的存在性问题◆类型一二次函数与三角形的综合一、全等三角形的存在性问题1.如图,抛物线y=x2+bx+c经过点(1,-4)和(-2,5),请解答下列问题:(1)求抛物线的解析式;(2)若抛物线与x轴的两个交点为A,B,与y轴交于点C.在该抛物线上是否存在点D,使得△ABC与△ABD全等?若存在,求出D点的坐标;若不存在,请说明理由.二、线段(或周长)的最值问题及等腰三角形的存在性问题2.(2016·凉山州中考)如图,已知抛物线y=ax2+bx+c(a≠0)经过A(-1,0),B(3,0),C(0,-3)三点,直线l是抛物线的对称轴.(1)求抛物线的函数关系式;(2)设点P是直线l上的一个动点,当点P到点A、点B的距离之和最短时,求点P 的坐标;(3)点M也是直线l上的动点,且△MAC 为等腰三角形,请直接写出所有符合条件的点M的坐标.◆类型二二次函数与平行四边形的综合3.如图,抛物线y=ax2+2ax+c(a>0)与y轴交于点C,与x轴交于A,B两点,A点在B点左侧.若点E在x轴上,点P 在抛物线上,且以A,C,E,P为顶点的四边形是平行四边形,则符合条件的点P有()A.1个B.2个C.3个D.4个4.如图,抛物线y=12x2+x-32与x轴相交于A,B两点,顶点为P.(1)求点A,B的坐标;(2)在抛物线上是否存在点E,使△ABP 的面积等于△ABE的面积?若存在,求出符合条件的点E的坐标;若不存在,请说明理由;(3)坐标平面内是否存在点F,使得以A,B,P,F为顶点的四边形为平行四边形?直接写出所有符合条件的点F的坐标.◆类型三 二次函数与矩形、菱形、正方形的综合5.如图,在平面直角坐标系中,点A 在抛物线y =x 2-2x +2上运动.过点A 作AC ⊥x 轴于点C ,以AC 为对角线作矩形ABCD ,连接BD ,则对角线BD 的最小值为________.第5题图 第6题图6.如图,抛物线y =ax 2-x -32与x 轴正半轴交于点A(3,0).以OA 为边在x 轴上方作正方形OABC ,延长CB 交抛物线于点D ,再以BD 为边向上作正方形BDEF.则a =,点E 的坐标是_________________.7. (2016·新疆中考)如图,对称轴为直线x =72的抛物线经过点A(6,0)和B(0,-4). (1)求抛物线的解析式及顶点坐标; (2)设点E(x ,y)是抛物线上一动点,且位于第一象限,四边形OEAF 是以OA 为对角线的平行四边形,求平行四边形OEAF 的面积S 与x 之间的函数关系式;(3)当(2)中的平行四边形OEAF 的面积为24时,请判断平行四边形OEAF 是否为菱形.8.(2016·百色中考)正方形OABC 的边长为4,对角线相交于点P ,抛物线l 经过O ,P ,A 三点,点E 是正方形内的抛物线l 上的动点.(1)建立适当的平面直角坐标系,①直接写出O ,P ,A 三点的坐标; ②求抛物线l 的解析式;(2)求△OAE 与△OCE 面积之和的最大值.答案:拔高专题抛物线中的压轴题一、基本模型构建常见模型思考在边长为1的正方形网格中有A, B, C三点,画出以A,B,C为其三个顶点的平行四边形ABCD。

中考数学复习选择题解法2[人教版]

中考数学复习选择题解法2[人教版]
实在太稳健了 /dudu/124/124868/ 与埋弧自动焊相比,手工电弧焊的优点在于。 什么是保险?什么是保险合同? 以下属于资产配置基本方法的是。A.风险控制法B.情景综合分析法C.横界面法D.市场有效法 过敏性紫癜的特点不包括A.粪隐血试验可(+)B.毛细血管脆性试验(+)C.血清IgA及补体C3降低D.血小板计数,出、凝血时间及血块退缩时间正常E.尿液检查可有血尿、蛋白尿及管型 船舶对海洋环境的可能污染源不包括.A、营运产生的废弃物B、海上船舶打捞和拆体C、海损事故造成溢油D、清洁压载水 载运多少载重吨的散装货油的国际航线船舶的所有人应进行保险或取得其他财务保证,并持有有效的《油污损害民事责任保险或其它财务保证证书》? 突发公共卫生事件是指突然发生,造成或者可能造成社会公众健康严重损害的重大。A.传染病疫情事件B.社会治安事件C.公众安全事件D.领导责任事件E.医疗机构事故 下列应按劣药论处的法定情形是。A.药品所含成分与国家药品标准规定成分不符的B.国务院药品监督管理部门规定禁止使用的C.变质的D.所标明的功能主治超出规定范围的E.超过有效期的 对违犯党纪的党员进行纪律处分,必须坚持的基本原则有A、纪律面前人人平等的原则B、严肃慎重和区别对待的原则C、从严处理的原则D、实事求是的原则 由锥体外系病变所致的是()A.痉挛型构音障碍B.弛缓型构音障碍C.失调型构音障碍D.运动过多型构音障碍E.混合型构音障碍 FIDIC系列合同条件中,发包人设计的或咨询工程师设计的房屋建筑工程和土木工程应常用。A.施工合同条件B.永久设备和设计一建造合同条件C.EPC交钥匙项目合同条件D.简明合同格式 能量密度 手轮式的开启机构是由首轮、螺杆组成的,开启后能重复使用.A.正确B.错误 《固体废物污染环境防治法》规定,收集、储存、运输、处置危险废物的场所、设施设备和容器、包装物和其他物品转作他用时,必须经过()处理方可使用。A.无害化B.减轻污染的C.再生利用D.消除污染的 按二氧化碳灭火剂在储存容器中的储存压力分类,可分为高压贮存系统和贮存系统。A、中压B、低压C、高中压D、中低压 水温测定时,当气温与水温相差较大时,尤应注意立即,避免受影响。 [多选,案例分析题]患者男,75岁。因“肺部感染”来诊。住院治疗6天仍无明显好转,夜间突发氧饱和度快速下降,进而出现呼吸、心搏骤停,行心肺复苏抢救约10分钟后恢复自主心律,持续球囊面罩通气,送入重症监护室继续治疗。患者既往有高血压、糖尿病病史。查体:体 温35.6℃,脉搏72次/分,自主呼吸频率0次/分,血压85/46mmHg(1mmHg=0.133kPa),血氧饱和度84%。昏迷,口唇轻度发绀,颈静脉无怒张。左肺呼吸音低,右肺呼吸音清晰,双肺可闻及少量湿啰音,心率72次/分,节律整齐,未闻及明显杂音。有助于明确病因诊断的 检查项目包括。A.动脉血气分析B.血常规C.心肌酶学标志物D-二聚体E.心电图F.胸部X线片 关于出版活动中的“复制”,下列表述中错误的是。A.在商品经济条件下,复制作品的过程也是出版物的商品生产过程B.印刷是出版物生产中最常用的复制方式之一C.电子期刊可以由读者直接下载到计算机上阅读,所以不必经过复制D.只有经过复制,作品中所含有的精神文化信 息才能向消费者广泛传播 设A,B,C均为非零二阶矩阵,则下列各式正确的是。AB=BAB.(AB)C=A(BC)C.若AB=0,则A=0或B=0D.若AB=C,则B=CA称取工业K2Cr2O720g,配制铬酸洗液,应选择。A.台式天平B.电光天平C.半微量天平D.微量天平 骑士七艺的内容是A、骑马、跳高、投枪、击剑、狩猎、角力和吟诗B、骑马、游泳、投枪、射剑、狩猎、攀登和吟诗C、骑马、游泳、投枪、击剑、狩猎、下棋和吟诗D、骑马、跳舞、投枪、击剑、狩猎、角力和吟诗 对民族发展起到精神纽带作用的因素是。A、共同语言B、共同文化C、共同族源D、共同心理认同 下列是白塞病特异性皮疹的是A.蝶形红斑B.结节性红斑C.网状青斑D.痤疮样毛囊炎E.栓塞性浅静脉炎 某病房总人数是50人,一级护理10人,二级护理20人,三级护理20人。经测定,各级护理的病人在一日内需要的平均护理时数是一级护理5.5小时,二级护理3.5小时,三级护理2.5小时。每位病人一日内得到的间接护理时数是30分钟。病房每日护理时数的总和是A.210.5小时 B.200.0小时C.175.5小时D.175.0小时E.155.5小时 患儿,4岁,缺铁性贫血,为改善贫血症状,最佳的食物是()A.海带、紫菜B.白菜、西红柿C.鱼、罐头、水果D.果汁、米粉E.动物肝脏、乳制品 泌尿系统梗阻引起的基本病理改变是A.梗阻以上的尿路扩张B.容易诱发感染C.可以促使结石形成D.肾积水E.肾功能受损 先天性心脏病的发病率为A.0.5%B.0.7%C.1.0%D.1.2%E.1.5% 男,48岁。咳嗽、咯血伴右侧胸疼3周,临床和影像学诊断右下叶中央型肺癌。本例患者需进一步确定和评价的项目中最重要的应是()A.组织学类型和分期B.免疫状态C.血细胞计数D.肝肾功能E.生命质量 心电图示:窦性心律,P-R间期逐渐延长,直到心室脱漏,心室脱漏后第1个P-R间期接近正常。该心律失常为A.一度房室传导阻滞B.二度Ⅰ型房室传导阻滞C.二度Ⅱ型房室传导阻滞D.三度房室传导阻滞E.几乎完全房室传导阻滞 1994年,中国农业银行向中国农业发展银行划转了政策性业务,标志着农业银行已彻底完成了由国家专业银行向国有商业银行的转变,不再承担任何政策性金融业务。A.正确B.错误 下面哪种血尿应考虑为上尿路结石A.无痛性血尿B.活动后血尿C.终末血尿D.初期血尿E.血尿伴血块 当肠道感染时,新生儿大便呈的黏液便,且脓性腥臭。A、溏薄水样B、绿色水样C、溏薄黄色D、水样黑色 神经嵴细胞来自A.口腔上皮层B.固有层C.黏膜下层D.外胚层E.中胚层 下列各项可以保证地籍资料现势性和准确性的是。A.地籍测量B.初始地籍调查C.变更地籍调查D.变更地籍测量 严格管理原则 女,45岁。颈前区肿大,伴疼痛,1周前有上呼吸道感染史,查体:双侧甲状腺肿大,质地韧,有压痛,化验:血沉快,T3、T4升高,摄碘率下降,初步诊断为A.桥本甲状腺炎B.亚急性非化脓性甲状腺炎C.急性化脓性甲状腺炎D.慢性硬化性甲状腺炎E.结节性甲状腺肿 往复式压缩机活塞杆的表面热处理方法有处理、或渗碳、氮化、镀铬。A.正火B.回火C.高频淬火D.退火 阅读以下关于Java企业级应用系统开发体系结构选择方面的叙述,在答题纸上回答问题1至问题3。博学公司承担了某中小型企业应用软件开发任务,进度要求紧迫。为了按时完成任务,选择合适的企业应用系统开发体系结构非常重要。因此,首席架构师张博士召集了相关技 术人员进行方案讨论,在进行方案论证时,项目组成员提出了两种开发思路。(1)谢工建议采用J2EE和EJB进行开发。理由是J2EE定义了标准的应用开发体系结构和部署环境,EJB是J2EE的基础和核心。J2EE的主要目标是简化开发。(2)王工建议采用Struts、Spring和 Hibernate轻量级开源框架相结合的方式。理由是随着Java开源项目阵营的发展壮大,一些基于POJOs(PlanOldJavaObjects)的开源框架被广泛地引入到Java企业应用开发中来,与重量级的EJB框架相比,这些轻量级的框架有很多优点。针对这两种思路,张博士仔细比较 和分析了两种方案的特点、优点和不足之处。认为王工和谢工的建议都合理,但是,从结合当前项目实际情况出发,最后决定采用王工建议。 GB8978-1996《污水综合排放标准》规定,废水的PH值为。A、5-8;B、6-9;C、4-9。 中国民间文艺研究会1958年制定出“,重点整理,大力推广,”的民间文学工作方针。

中考数学试题分项版解析汇编(第05期)专题02 代数式和因式分解(含解析)-人教版初中九年级全册数学

中考数学试题分项版解析汇编(第05期)专题02 代数式和因式分解(含解析)-人教版初中九年级全册数学

专题02 代数式和因式分解一、选择题1.(2017年某某省某某地区第3题)下列计算正确的是( ) A .a 3•a 3=a 9B .(a+b )2=a 2+b 2C .a 2÷a 2=0 D .(a 2)3=a6【答案】D. 【解析】试题分析:A 、原式=a 6,不符合题意;B 、原式=a 2+2ab+b 2,不符合题意; C 、原式=1,不符合题意;D 、原式=a 6,符合题意, 故选D考点:整式的混合运算2.(2017年某某省黔东南州第3题)下列运算结果正确的是( ) A .3a ﹣a=2 B .(a ﹣b )2=a 2﹣b 2C .6ab 2÷(﹣2ab )=﹣3bD .a (a+b )=a 2+b 【答案】C 【解析】考点:整式的混合运算3. (2017年某某省某某市第7题)下列计算正确的是( )A .325a a a +=B .325a a a ⋅= C. ()235a a = D .623a a a ÷=【答案】B 【解析】考点:1、同底数幂的除法;2、合并同类项;3、同底数幂的乘法;4、幂的乘方与积的乘方4.(2017年某某省某某市第14题)计算()()224x y x yxy+--的结果为()A.1 B.12C.14D.0【答案】A【解析】考点:约分5.(2017年某某省第4题)下列运算正确的是()A.(﹣a5)2=a10B.2a•3a2=6a2C.﹣2a+a=﹣3a D.﹣6a6÷2a2=﹣3a3【答案】A【解析】试题分析: A.根据幂的乘方,可得(﹣a5)2=a10,故A正确;B.根据单项式乘以单项式,可得2a•3a2=6a3,故B错误;C.根据合并同类项法则,可得﹣2a+a =a,故C错误;D.根据单项式除以单项式法则,可得﹣6a6÷2a2=﹣3a4,故D错误;故选:A考点:整式的混合运算6.(2017年某某省东营市第2题)下列运算正确的是( ) A .(x ﹣y )2=x 2﹣y 2 B .|3﹣2|=2﹣3 C .8﹣3=5 D .﹣(﹣a+1)=a+1【答案】B 【解析】考点:1、二次根式的加减法,2、实数的性质,3、完全平方公式,4、去括号 7. (2017年某某省某某市第2题)下列运算正确的是( ) A .2222a a a = B .224a a a +=C .22(12)124a a a +=++D .2(1)(1)1a a a -++=- 【答案】D 【解析】试题分析:A 、根据同底数幂相乘,底数不变,指数相加,可知a 2•a 2=a 4,此选项错误; B 、根据合并同类项法则,可知a 2+a 2=2a 2,此选项错误; C 、根据完全平方公式,可知(1+2a )2=1+4a+4a 2,此选项错误; D 、根据平方差公式,可知(﹣a+1)(a+1)=1﹣a 2,此选项正确; 故选:D .考点:1、平方差公式;2、合并同类项;3、同底数幂的乘法;4、完全平方公式8. (2017年某某省某某市第5题)化简22211(1)(1)x x x--÷-的结果为( ) A .11x x -+ B .11x x +- C.1x x + D .1x x-【答案】A 【解析】试题分析:原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分即可得到:原式=2222211x x x x x-+-÷=222(1)(1)(1)x x x x x -⋅+-=11x x -+ , 故选:A考点:分式的混合运算9. (2017年某某省威海市第3题)下列运算正确的是( ) A .422743x x x =+ B .333632x x x =⋅ C .32a a a =÷- D .363261)21(b a b a -=-【答案】C 【解析】考点:1、整式的混合运算,2、负整数指数幂10.(2017年某某省潍坊市第1题)下列计算,正确的是().A.623a a a =⨯B.33a a a =÷C.422a a a =+D.422a a =)(【答案】D 【解析】试题分析:A 、根据同底数幂相乘,底数不变,指数相加,可知原式=a 5,故A 错误; B 、根据同底数幂相除,可知原式=a 2,故B 错误; C 、根据合并同类项法则,可知原式=2a 2,故C 错误;D 、根据幂的乘方,底数不变,指数相乘,可知422a a =)(,故正确. 故选:D考点:1、同底数幂的除法;2、合并同类项;3、同底数幂的乘法;4、幂的乘方与积的乘方11. (2017年某某省潍坊市第9题)若代数式12--x x 有意义,则实数x 的取值X 围是(). A.1≥x B.2≥x C.1>x D.2>x 【答案】B 【解析】试题分析:根据二次根式有意义的条件可知:2010x x -⎧⎨-⎩≥>,解得:x ≥2.故选:B考点:二次根式有意义的条件12. (2017年某某省某某市第4题)下列运算正确的是( )A .235()a a = B .235a a a ⋅= C .1a a -=- D .22()()a b a b a b +-=+【答案】B. 【解析】试题分析:选项A ,原式=a 6;选项B ,原式=a 5;选项C ,原式=1a;选项D ,原式=a 2﹣b 2,故选B. 考点:整式的运算.13.(2017年某某省内江市第8题)下列计算正确的是( ) A .232358x y xy x y += B .222()x y x y +=+ C .2(2)4x x x -÷= D .1y x x y y x+=-- 【答案】C . 【解析】考点:分式的加减法;整式的混合运算.14. (2017年某某省某某市第7题)下列运算正确的是( ) A.358x x x +=B.3515x x x +=C.()()2111x x x +-=-D.()5522x x =【答案】C. 【解析】试题分析:选项A ,不是同类项,不能够合并,选项A 错误;选项B ,不是同底数幂的乘法,不能够计算,选项B 错误;选项C ,根据平方差公式,选项C 计算正确;选项D ,根据积的乘方可得原式=532x =,选项D 错误,故选C. 考点:整式的计算.15. (2017年某某省某某市第6题)下列计算正确的是 ( )A .5510a a a += B . 76a a a ÷= C. 326a a a = D .()236a a -=-【答案】B 【解析】考点:幂的性质16. (2017年某某省六盘水市第3题)下列式子正确的是( ) A.7887m n m nB.7815m n mnC.7887m n n mD.7856m n mn 【答案】C.试题分析:选项C 、利用加法的交换律,此选项正确;故选C. 考点:整式的加减.17. (2017年某某省六盘水市第8题)使函数3y x 有意义的自变量的取值X 围是( )A. 3≥xB. 0≥xC.3≤xD.0≤x【答案】C .试题分析:根据二次根式a ,被开方数0≥a 可得3-x ≥0,解得x ≤3,故选C . 考点:函数自变量的取值X 围.18. (2017年某某省某某市第2题)下列运算正确的是 A .()235xx = B .()55x x -=- C .326x x x ⋅= D .235325x x x +=【答案】B . 【解析】考点:幂的乘方与积的乘方;合并同类项;同底数幂的乘法. 19. (2017年某某省黄冈市第2题)下列计算正确的是( ) A . 235x y xy += B .()2239m m +=+ C . ()326xy xy = D .1055a a a ÷=【答案】D 【解析】试题分析:A 、原式中的2x 与3y 不是同类项,不能进行加减计算,故不正确;B 、根据完全平方公式()2222a b a ab b ±=±+,可知22(3)69m m m +=++,故不正确;C 、根据积的乘方,等于各项分别乘方,可得2336()xy x y =,故不正确; D 、根据同底数幂相除,底数不变,指数相减,可知1055a a a ÷=,故正确. 故选:D考点:整式的运算20.(2017年某某省某某市第2题)下列计算正确的是( ) A .532=+ B .222a a a =+ C .xy x y x +=+)1( D .632)(mn mn =【答案】C 【解析】考点:1、同类项,2、同类二次根式,3、单项式乘以多项式,4、积的乘方二、填空题1.(2017年某某省某某地区第16题)分解因式:2x2﹣8xy+8y2=.【答案】2(x﹣2y)2【解析】试题分析:2x2﹣8xy+8y2=2(x2﹣4xy+4y2)=2(x﹣2y)2.故答案为:2(x﹣2y)2.考点:提公因式法与公式法的综合运用2.(2017年某某省某某市第12题)若a﹣b=1,则代数式2a﹣2b﹣1的值为.【答案】1.【解析】试题分析:∵a﹣b=1,∴原式=2(a﹣b)﹣1=2﹣1=1.故答案为:1.考点:代数式求值3.(2017年某某省黔东南州第13题)在实数X围内因式分解:x5﹣4x=.【答案】x(x2+3)(x)【解析】试题分析:先提取公因式x,再把4写成22的形式,然后利用平方差公式继续分解因式.)(x即原式=x(x4﹣22)=x(x2+2)(x2﹣2)=x(x2+2)(故答案是:x(x2+3)()(x)考点:实数X围内分解因式4.(2017年某某省荆州市第12题)若单项式﹣5x4y2m+n与2017x m﹣n y2是同类项,则m-7n的算术平方根是_________.【答案】4【解析】考点:1、算术平方根;2、同类项;3、解二元一次方程组 5. (2017年某某某某市第14题)若关于x 的二次三项式412++ax x 是完全平方式,则a 的值是. 【答案】±1 【解析】试题分析:这里首末两项是x 和12这两个数的平方,那么中间一项为加上或减去x 和12积的2倍,故﹣a=±1,求解得a=±1, 故答案为:±1. 考点:完全平方式6.(2017年某某省东营市第12题)分解因式:﹣2x 2y+16xy ﹣32y=. 【答案】﹣2y (x ﹣4)2【解析】试题分析:根据提取公因式以及完全平方公式即可求出:原式=﹣2y (x 2﹣8x+16)=﹣2y (x ﹣4)2故答案为:﹣2y (x ﹣4)2 考点:因式分解7.(2017年某某省潍坊市第13题)计算:212(1)11x x x --÷-- = .【答案】x+1【解析】试题分析:根据分式的减法和除法可以化简题目中的式子,从而可以解212(1)11x x x --÷-- =11(1)(1)12x x x x x --+-⋅-- =2(1)(1)12x x x x x -+-⋅--=x+1,故答案为:x+1. 考点:分式的混合运算8. (2017年某某省潍坊市第14题)因式分解:=-+-)2(22x x x .【答案】(x+1)(x ﹣2) 【解析】考点:因式分解﹣提公因式法9. (2017年某某省某某市第10题)函数1y x =+的自变量x 的取值X 围是.【答案】x ≥﹣1. 【解析】试题分析:由题意得,x+1≥0,解得x ≥﹣1. 考点:函数自变量的取值X 围.10. (2017年某某省某某市第11题)把多项式2312x -因式分解的结果是. 【答案】3(x ﹣2)(x+2). 【解析】试题分析:先提取公因式,再利用平方差公式进行二次分解即可,即3x 2﹣12=3(x 2﹣4)=3(x ﹣2)(x+2). 考点:因式分解.11.(2017年某某省内江市第13题)分解因式:231827x x -+=. 【答案】23(3)x - . 【解析】试题分析:231827x x -+=23(69)x x -+=23(3)x -.故答案为:23(3)x -.考点:提公因式法与公式法的综合运用. 12.(2017年某某省内江市第14题)在函数123y x x =+--中,自变量x 的取值X 围是. 【答案】x ≥2且x ≠3.考点:函数自变量的取值X 围.13.(2017年某某省内江市第22题)若实数x 满足2210x x --=,则322742017x x x -+-=. 【答案】﹣2020. 【解析】 试题分析:∵2210x x --=,∴221x x =+,322742017x x x -+-=2(21)7(21)42017x x x x +-++-=24214742017x x x x +--+-=2482024x x --=4(21)82024x x +--=4﹣2024=﹣2020,故答案为:﹣2020. 考点:因式分解的应用;降次法;整体思想.14. (2017年某某省某某市第11题)因式分解23a a +=. 【答案】3(3a+1). 【解析】试题分析:直接提公因式a 即可,即原式=3(3a+1). 考点:因式分解.15. (2017年某某省某某市第13题)2121x xx x x +⋅=++. 【答案】11x +. 【解析】 试题分析:原式=211(1)1x x x x x +⋅=++. 考点:分式的运算.16.(2017年某某省六盘水市第14题)计算:2017×1983. 【答案】3999711.试题分析:2017×1983=()()399971117200017200017200022=-=-+考点:平方差公式.17.(2017年某某省日照市第13题)分解因式:2m 3﹣8m=.【答案】2m (m+2)(m ﹣2).试题分析:提公因式2m ,再运用平方差公式对括号里的因式分解即可,即2m 3﹣8m=2m (m 2﹣4)=2m (m+2)(m ﹣2).考点:提公因式法与公式法的综合运用.18. (2017年某某省某某市第10题)因式分解:269x x -+=. 【答案】(x-3)2. 【解析】试题解析:x 2-6x+9=(x-3)2. 考点:因式分解-运用公式法.19. (2017年某某省黄冈市第8题)分解因式:22mn mn m -+=____________. 【答案】m (n-1)2考点:分解因式20. (2017年某某省黄冈市第11题) 化简:23332xx x x x -⎛⎫+= ⎪---⎝⎭_____________. 【答案】1 【解析】试题分析:原式变形后,利用乘法分配律计算,再约分化简即可得23()332x x x x x -+⋅---=23()332x x x x x --⋅---=222x x x ---=1. 考点:分式的运算21.(2017年某某省某某市第13题)分解因式:=++2422a a . 【答案】2(a+1)2【解析】一般步骤:一提(公因式)、二套(平方差公式()()22-=+-a b a b a b ,完全平方公式()2222±+=±a ab b a b)、三检查(彻底分解),可以先提公因式2,再用完全平方分解为2(a+1)2.故答案为:2(a+1)2考点:因式分解22.(2017年某某省某某市第16题)某水果点销售50千克香蕉,第一天售价为9元/千克,第二天降价6元/千克,第三天再降为3元/千克.三天全部售完,共计所得270元.若该店第二天销售香蕉t千克,则第三天销售香蕉千克.【答案】30﹣2t【解析】考点:列代数式三、解答题1.(2017年某某省某某地区第22题)先化简,再求值:(2221x xx x-+-+2242xx x-+)÷1x,且x为满足﹣3<x<2的整数.【答案】【解析】试题分析:首先化简(2221x xx x-+-+2242xx x-+)÷1x,然后根据x为满足﹣3<x<2的整数,求出x的值,再根据x的取值X围,求出算式的值是多少即可.试题解析:(2221x xx x-+-+2242xx x-+)÷1x=[2(1)1)xx x--(+(2)(2(2)x xx x+-+)]×x=(1xx-+2xx-)×x=2x﹣3∵x为满足﹣3<x<2的整数,∴x=﹣2,﹣1,0,1,∵x要使原分式有意义,∴x≠﹣2,0,1,∴x=﹣1,当x=﹣1时,原式=2×(﹣1)﹣3=﹣5考点:分式的化简求值.2.(2017年某某省某某市第18题)化简:(21a++221aa+-)÷1aa-【答案】31aa+.【解析】考点:分式的混合运算3.(2017年某某省黔东南州第18题)先化简,再求值:(x﹣1﹣)÷,其中x=+1.【答案】3x-【解析】试题分析:原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把x的值代入计算即可求出值.试题解析:原式=221(1).(1)(1) x x x xx x x-+++-=2(1)(1).(1)(1)x x x x x x -++- =x ﹣1,当x=3+1时,原式=3. 考点:分式的化简求值4. (2017年某某某某市第19题)先化简,再求值.165)121(2-+-÷--x x x x ,其中x 从0,1,2,3,四个数中适当选取.【答案】12x -,-12【解析】考点:分式的化简求值5.(2017年某某省东营市第19题)(1)计算:6cos45°+(13)﹣1+3﹣1.73)0+|5﹣2|+42017×(﹣0.25)2017(2)先化简,再求值:(31a +﹣a+1)÷244412a a a a -+++-﹣a ,并从﹣1,0,2中选一个合适的数作为a 的值代入求值.【答案】(1)8(2)﹣a ﹣1,当a=0时,原式=﹣0﹣1=﹣1 【解析】考点:1、分式的化简求值,2、实数的运算,3、殊角的三角函数值,4、负整数指数幂,5、零指数幂,6、绝对值,7、幂的乘方6. (2017年某某省威海市第19题)先化简)111(11222+-+-÷-+-x x x x x x ,然后从55<<-x 的X 围内选取一个合适的整数作为x 的值代入求值.【答案】1x -,12【解析】试题分析:根据分式的减法和除法可以化简题目中的式子,然后在﹣<x <中选取一个使得原分式有意义的整数值代入化简后的式子即可解答本题.试题解析:22211(1)11x x x x x x -+-÷-+-+ =2(1)1(1)(1)(1)(1)1x x x x x x x ----+÷+-+=211111x x x x x -+⋅+--+ =1(1)x x x --- =1x-∵﹣5<x <5且x+1≠0,x ﹣1≠0,x ≠0,x 是整数, ∴x=﹣2时,原式=﹣12-=12. 考点:1、分式的化简求值,2、估算无理数的大小 7. (2017年某某省某某市第18题)先化简,再求值21639a a ---,其中1a =. 【答案】原式=13a +,当a=1时,原式=14. 【解析】考点:分式的化简求值.8. (2017年某某省某某市第16题)化简求值:2121211x x x x -⎛⎫÷- ⎪+++⎝⎭,其中31x =-.【答案】11x +,33【解析】考点:分式的化简求值9.(2017年某某省日照市第17题)(1)计算:﹣(2﹣)﹣(π﹣3.14)0+(1﹣cos30°)×()﹣2; (2)先化简,再求值:﹣÷,其中a=.【答案】(1)3+1;(2)原式= 221a --,当2=2-.试题分析:(1)根据去括号得法则、零指数幂、特殊角的三角函数值、负整数指数幂可以解答本题;(2)根据分式的除法和减法可以化简题目中的式子,然后将a 的值代入即可解答本题. 试题解析:(1)原式==3﹣2﹣1+(1﹣32)×4 =3-2-1+4-23 =-3+1; (2)原式=21111(1)1a a a a a ++-÷+--考点:分式的化简求值;实数的运算.。

中考数学复习用方程(组)解决问题2[人教版]

中考数学复习用方程(组)解决问题2[人教版]
牌 / 下列哪一种不属于犬和猫的行为发育过程A、发育过度期B、社会化时期C、新生儿期D、性成熟期 按照《企业会计准则》的规定,“资产是企业拥有或者控制的能以货币计量的经济资源。”包括A.各种财产B.各种债权C.各种所有权D.其他权利 医德规范内容有哪些? 小脑幕上部的神经支配来自A.迷走神经B.舌咽神经C.颈2~3神经D.三叉神经E.面神经 航空器驾驶员执照被吊销者,自吊销之日起内不得申请任何驾驶员执照或等级。A、12个月B、24个月C、36个月 汽轮机为什么必须维持额定转速运行? 卢梭以小说体裁反映自然主义教育思想的代表作是。A.社会契约论B.忏悔录C.新爱洛绮丝D.爱弥儿 10个月女婴(双胎),面色苍黄5个月,母奶加牛奶喂养,未加辅食,长期腹泻,血红蛋白60g/L,红细胞2.5×1012/L,网织红细胞1%,白细胞10×109/L。应诊断为A.溶血性贫血B.营养性缺铁性贫血C.缺乏叶酸所致的巨幼红细胞性贫血D.营养性混合性贫血E.缺乏维生 素B12所致的巨幼红细胞性贫血 气血亏虚型颤震的主方为A.龟鹿二仙膏B.导痰汤C.通窍活血汤D.六味地黄丸E.八珍汤 以下关于痛风的描述正确的是A.多见于年轻男性B.所有痛风的患者都出现痛风石C.痛风石是痛风的一种特征性损害D.急性关节炎是痛风的首发症状,最常见的关节是踝关节E.原发性痛风对动脉粥样硬化的发展无影响 下列说法中,是不正确的。A.一般的分布式系统是建立在计算机网络之上的,因此分布式系统与计算机网络在物理结构上基本相同B.分布式操作系统与网络操作系统的设计思想是不同的,但是它们的结构、工作方式与功能是相同的C.分布式系统与计算机网络的主要区别不在 它们的物理结构,而是在高层软件D.分布式系统是一个建立在网络之上的软件系统,这种软件保证了系统的高度一致性与透明性 [单选,案例分析题]一急性心梗患者,突然晕厥,心电图为室速160次/分,查血压为80/60nmmHg,脉搏触不清,心音弱,无杂音。最有可能的诊断是A.室速伴急性左心衰B.室速伴心源性休克C.室速演化为室颤D.急性心梗合并室速E.急性心梗合并心源性休克 患者,女,68岁,主因"反复咳嗽、咳痰30年,加重伴双下肢水肿1周"入院。查体:口唇和甲床发绀,颈静脉充盈,双下肺可闻及细湿啰音,肝右肋下3指,双下肢水肿。该患者可能的诊断为()A.慢性支气管炎B.慢性阻塞性肺疾病C.慢性肺源性心脏病D.慢性肺源性心脏病, 右心功能失代偿E.呼吸衰竭 在车身的有安全气囊传感器。A.前部和后部B.前部和中部C.中部和后部 正确把握医德评价依据的观点是A.动机论B.效果论C.目的论D.手段论E.动机与效果、目的与手段统一论 下述哪一点不符合神经内分泌的细胞特征A.属于一些特化的神经细胞B.通过胞突接受神经冲动C.由轴突释放神经递质D.由轴突释放激素物质E.释放的激素经血运输后,发挥作用 消毒皮肤用的碘酒﹑酒精应密闭保存,盛放消毒液的容器每周灭菌次.开封的无菌干燥罐每小时更换一次,小计量单包装皮肤消毒液应注明开瓶时间,启用后更换一次。 流式细胞仪采集的荧光信号反映A.细胞的大小B.细胞的寿命C.细胞内部结构的复杂程度D.细胞表面的光滑程度E.被染成荧光部分细胞数量的多少 蓄涝区设计的正常蓄水位应按下列哪项原则确定?A.蓄涝区内大部分农田能自流排水B.蓄涝区内全部农田能自流排水C.蓄涝区内少部分农田能自流排水D.蓄涝区内1/2农田能自流排水 关于热效因素的阐述,错误的是()A.湿热穿透力强B.个体对热的耐受性不同C.热效应与热敷面积成正比D.热效应与热敷时间成正比E.室温过低,热效应减低 近年来对痢疾杆菌较为敏感的抗菌药物是A.磺胺药B.庆大霉素C.喹诺酮类D.氨苄西林E.四环素 摩擦与冲击火花属于A.机械火源B.化学火源C.热火源D.电火源 肺吸虫病的临床症状哪项是错误的A.不可能侵犯脑部B.血中嗜酸性粒细胞可增加C.可无明显症状D.可出现肝型E.急性期可出现低热、荨麻疹 患者男性,62岁,咳嗽,咳痰20年,有高血压、肝炎病史。查体:BP150/83mmHg,肺肝界位于第六肋间。心界缩小,心率110次/分,律不齐,P亢进,胸骨左缘第五肋间可闻及收缩期杂音。肝肋下3.5cm,双下肢水肿。心电图报告:顺钟向转位,V,V呈QS型。为进一步 明确诊断,检查首选()A.X线胸片B.腹部B超C.肺功能检查D.支气管镜检查E.痰细菌培养 演示紧急外科洗手的过程。 马血清抗毒素是A.是抗体,不是抗原B.是抗原,不是抗体C.即是抗体,又是异种抗原D.即非抗原,又非抗体E.是异嗜性抗原 下列工具书中,属于综合性词典的是。A.《汉语小词典》B.《古今汉语词典》C.《经济大词典》D.《辞海》 电力发展规则划分应当根据和制定,并纳入国民经济和社会发展计划。 确定药物寒热、温凉的依据是。A.神农氏尝百草的体会B.《素问》:&quot;寒者热之,热者寒之。&quot;C.《本经》:&quot;疗寒以热药,疗热以寒药。&quot;D.药物作用于人体的反应E.口尝的滋味 流行性斑疹伤寒病人禁用A.复方磺胺甲噁唑B.四环素C.红霉素D.氯霉素E.环丙沙星 下列哪种心律失常不是造成突发心跳骤停的常见致命性心律失常A.室颤B.无脉性室速C.心脏停搏D.心率>200次/min的PSVTE.无脉电活动 是指在保险标的物发生推定全损时,由被保险人把保险标的物的所有权转让给保险人,而向保险人请求赔付全部保险金额。 请将+1.00DS/+2.00DC×90根据透镜能光学恒等变换原则转换成另外一种球柱联合形式。A.+1.00DS/+2.00DS&times;180B.+3.00DS/-2.00DC&times;180C.+3.00DS/-2.00DC&times;90D.+2.00DS/+2.00DC&times;180E.+2.00DS/-2.00DC&times;90 伤寒杆菌的主要致病因素是A.外毒素B.肠毒素C.内毒素D.H抗原E.0抗原 客服中心统计分析工作主要分为运营类、及管理类。 把NaCl溶液加热蒸发至干,直至析出全部溶质,选用最合适的仪器是。A.表面皿B.蒸发皿C.烧杯D.烧瓶 继发性腹膜炎最主要的临床表现是A.腹痛、腹胀B.腹膜刺激征C.叩出移动性浊音D.肠鸣音消失E.高热、脉快、疲乏 前尿道损伤尿外渗部位是A.膀胱周围B.会阴浅袋C.会阴深袋D.阴茎部E.阴囊部 土地登记代理合同应得到的认同。A.委托人B.土地登记代理人C.土地登记代理机构D.委托人和土地登记代理机构双方 医患之间非技术关系的是A.同事关系B.道德关系C.上下级关系D.陌生人关系E.竞争关系
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

; / 小学数学试题网
duh50exc
树。作法的话,在院子里也够了吧?何况苏老太太正要找高人看这两棵树。于是张神仙就出现在了两棵芙蓉树边,既没有捏法诀、也没有画符咒, 甚至都没有好好的看它们。他的眼睛,事实上一直都在偷偷瞟表 的屋子。“那屋子里,现在其实没有住人。”明远不得不对他解释,带一点讽刺。 张神仙吃惊道:“你以为我真的连一个屋子有没有住人都看不出来吗?”“那你——”“我在看足迹。”张神仙好心的解释。“足迹?”第三十 三章 梦惊戏台见神仙(6)“人并不是经常能有机会瞻仰真仙的足迹的。”张神仙感慨道,“所以见面也不一定认得出来,要好生勘察。”“这 样说来,你承认自己还不是真仙?”明远饶有兴致的问。“不真,但也够使了。我看我这趟是白来了。”张神仙指着两棵芙蓉树大言不惭,“叫 你们家老太太别担心这两棵树了,养着就行了,它们死不了。”“„„就这样?”明远诧异。“还要怎样?好罢好罢!”张神仙摸着树枝,嘀咕 了一番,似乎是说些什么“不死就活着呗”,“死了还能投胎,怕啥?”“嘿,怕就更得好好活着了!”完了也没见那树有什么反应。他已经志 得意满的直起腰来,又举手把屋子包括在内画个圈儿:“虽不是什么在簿在册的大神仙,也好生养护着罢,受偏重呢!”明远必须问个清楚: “你是说,这房子、这花树,真有神明,得小心养护才有好报?怎样才叫小心养护?万一触怒了有什么恶报么?怎样会触怒?”张神仙双目圆睁, 念诵曰:“什么是真?你若信时,万物有灵,万物皆佛,举头三尺有神明。什么是幻?你若横时,明枪不碍,暗箭不防,铁齿铜牙水上漂。咄! 抛却真金烹烈火,挑来蠢雪苦塞井!”念到后头居然还唱起来了,明远很担心他唱到激动处会双眼上翻叉腿扬臂跳起大神来。张神仙忽然收声, 疲倦而满足的站了一会儿,向明远示意道:“嗯?”明远没反应过来:“嗯?”“车马费。”张神仙含笑道,“我出诊一场,总要有个辛苦钱 吧?”“你有出诊吗?”明远怒了。“你家病人应该好了吧。”张神仙闲闲道。果然下人来报:表 服了药,平定下来,刘大夫说,谨慎饮食,无 大碍了。明远没得话说,着人给张神仙拿赏银去。一转身间,他有点恍惚,似乎张神仙会消失在原地,只留下一段传说——赫然转身,啊不!张 神仙只是弯腰在地上拣起不知谁丢的一个大钱,抹一抹,揣兜里了。这个举动彻底的摧毁了明远心中张神仙的形象,以至于他找个借口匆匆离开, 没有陪张神仙去领赏银。几刻钟后发赏银的人哭爹喊娘来找大少爷,说他们把那刚够打发叫花子的微薄赏银交给张神仙后,他接了正要走,忽然 喃喃:“哦,活还没完,差一步。”于是,换了个身法,非常飘逸的、简直飘飘欲仙的,在众目睽睽下消失了。“白
C 图形特殊
10、a、b为实数,切ab=1,设
a b M a 1 b 1 a b N a 1 b 1
则M、N的大小关系是( A M>N B M=N C M<N D 不能确定 特殊法
)
数据特殊
10、下列与 2是同类二次根式的是( ) A 8 B 10 C 12 D 27 变形法 选项变形
整数解是 ( A -1
B C 0 2
)
D
3
代入法
选项代入
2 4、当 m 1时,点P(3m-2, m-1)在 3
A B C D ( ) 第一象限 第二象限 第三象限 第四象限
代入法
特殊值代入
5、如图,在同一平面直角坐标系中, 一次函数y=ax+c和二次函数y=ax2+c 的图象大致为( )
y o x y y y
o
x
o
x
o
x
A
B
C
D
排除法
矛盾排除
x2 6、若 x 2,则 的值为( x2 A -1
B C D 0 1 2
)
排除法
分析排除
7、下列命题正确的是( ) A 所有的等腰三角形都相似 B 所有的直角三角形都相似 C 所有的等边三角形都相似 D 所有的矩形都相似 排除法 反例排除
选择题的解法
1、商场促销活动中,将标价为200 元的商品,在打8折的基础上,再打8 折销售,现该商品的售价是( ) A 160元 B 128元 C 120元 D 88元
直接法
2、当a=-1时,代数式(a+1)2+a(a-3) 的值是( ) A -4 B 4 C -2 D 2
代入法
已知代入
2 x 3 3、不等式组 的最小 x 1 8 2x
11、用配方法解一元二次方程x2+8x+7 =0,则方程可变形为( ) A (x-4)2=9 B (x+4)2=9 C (x-8)2=19 D (x+8)2=57
变形法 已知变形
12、边长12米的正方形池塘的周围是草 地,池塘边A、B、C、D各有一棵树, 且AB=BC=CD=3米,现用一根长4米的 绳子将一羊拴在其中一棵树上,为了 使羊在草地的活动面积最大,应将绳子 拴在( ) A A处 B B处 A C C处 B C D D D处 观察法
8、如图,PA切⊙O于点A,割线PBC 过圆心,若PA=4,PB=2,则 tan∠P的值为( ) 4 3 A A B C
3 5 4
D
4 5 3
C
O
B
P
排除法
直觉排除
9、E、F、G、H分别是四边形ABCD 的中点,阴影部分需甲布料30匹,则 空白部分需移布料( ) A A 15匹 E H B 20匹 B D C 30匹 D 60匹 F G 特殊法
16、点A为数轴上表示-2的动点,当A 沿数轴移动4个单位到点B时,点B所 表示的实数是( ) A 2 B -6 C -6或2 D 以上都不对
分类法
17、AB是⊙O的直径,M是⊙ O上一点, MNAB,P、Q分别是弧AB、弧BM上 的点(不与端点重合),如果∠MNP= ∠MNQ,下面结论: ①∠1=∠2 ②∠P+∠Q=180° ③∠Q=∠PMN ④PM=PN ⑤MN2=PNQN M Q 其中正确的是( ) P B A ①②③ B ①③⑤ A 1 N 2 O C ④⑤ D ①②⑤
13、二次函数的图象如图所示, c 则(a, )在( )
b
A 第一象限
B 第二象限 C 第三象限
c b
Y
D 第四象限 观察法
O
X
14、如图表示了某个不等式的解集,该 解集中所有自然数解的个数是( ) A 4个 B 5个 C 6个 -2 -1 0 1 2 3 4 D 7个
定义法
15、下列命题正确的是( ) A 对角线互相平分的四边形是菱形 B 对角线互相平分且相等的四边形 是菱形 C 对角线互相垂直的四边形是菱形 D 对角线互相垂直平分的四边形是 菱形 定义法
相关文档
最新文档