4_4对偶单纯形法
第二章 线性规划的对偶理论
对偶问题: Min f = 65 y1 + 40 y2 + 75 y3
s.t. 3y1 + 2 y2
y1, y2 , y3
min
≥1500
≥ 0
2y1 + y2 + 3y3 ≥2500
b=
65 40 75
A=
3 2
2 1
0 3
b=
1500 2500
1500 2500
例:
Min z= 5x1+ 25x2 7x1+ 75x2 ≤98 s.t. 5x1 + 6x2 = 78 24x1+ 12x2≥54 x1≥0 、x2 ≤ 0
怎么样, 没问题吧!
Max w= 98y1+ 78y2 + 54y3 7y1+ 5y2 + 24y3 ≤ 5 s.t. 75y1+ 6y2 + 12y3 ≥25 y1 ≤ 0 、y2无限制、 y3≥0
二、对偶规划问题的求解
1、利用原问题的最优单纯形表
3x1 x2 3x3 ≤100 x1, x2 , x3 ≥0 解: 对偶问题为
min w 100y1 100y2
max z 4 x1 3x2 7 x3 s.t. x1 2 x2 2 x3≤100
s.t.
2 y1 y2 ≥3 2 y1 3 y2≥7
原问题检验数与对偶问题的解的总结
•在主对偶定理的证明中我们有:对偶(min型)变量的最 优解等于原问题松弛变量的机会成本,或者说原问题松 弛变量检验数的绝对值 •容易证明,对偶问题最优解的剩余变量解值等于原问 题对应变量的检验数的绝对值 •由于原问题和对偶问题是相互对偶的,因此对偶问题 的检验数与原问题的解也有类似上述关系。 •更一般地讲,不管原问题是否标准,在最优解的单纯 型表中,都有原问题虚变量(松弛或剩余) 的检验数对应 其对偶问题实变量 (对偶变量)的最优解,原问题实变量 (决策变量) 的检验数对应其对偶问题虚变量 (松弛或剩 余变量)的最优解。因此,原问题或对偶问题只需求解 其中之一就可以了。
3 LP问题的对偶理论
他/她——生产资料租用 者的投入: 租赁工厂的生产设备, 支付工时费和材料费, 考虑怎样的租赁价格可 以接受?
我——生产资料所有 者, 如何为每种资源定价?
产品A 产品B 资源限量 劳动力 设 备 原材料 利润元/kg 9 4 3 70 4 5 10 120 360 200 300
仅为理解“对偶规划”的意义 而设,现实生活中不存在“不劳 而获”的案例。如有发现“不劳 而获”存在,纯属巧合! 切勿认为“不劳而获”发生在 别人身上,也会发生在自己身上。
对偶问题(或原问题) 目标函数 MinW
对偶变量数:m个 第i个变量≥0 第i个变量≤0 第i个变量是自由变量 约束条件数:n 第i个约束条件类型为“≥” 第i个约束条件类型为“≤” 第i个约束条件类型为“=”
1、给每个原始约束条件定义一个非负对偶变量yi(i=1,2,…,n); 2、使原问题的目标函数系数cj变为其对偶问题约束条件的右端 常数; 3、使原问题约束条件的右端常数bi变为其对偶问题目标函数的 系数; 4、将原问题约束条件的系数矩阵转置,得到其对偶问题目标 函数的系数; 5、改变约束条件不等号的方向,即将“≤”改为“≥”; 6、原问题“max”型,对偶问题为“min”型
思路
在考虑定价时,肯定要和生产A、B时的情 况进行比较,起码应当使两种情况下的总 利润相等。
产品A 产品B 资源限量
价格嘛…… 好商量, 好商量。只 是…... 王 老 板 李 老 板
Hi:王老板,听 说近来家具生意 好惨了,也帮帮 兄弟我哦!
劳动力 设 备 原材料 利润元/kg
9 4 3 70
m aij yi cj j 1,2,, n s.t. i 1 i 1,2,, m yi符号不限,
单纯形法基本原理
否
含 有xa
是 无可行解
(a对ik
0 任一
j 0)
否
是 无界解
有某个 否 非基变量的
j 0
唯一 最优解
是
无穷多
最优解
循
环
停止
计 算 i
( bi alk
alk
0)
用 非 基 变 量xk 替 换 基 变 量xl
列出下一个 新单纯形表
单纯形法的进一步讨论-人工变量法 Page 17
解的判别: 1)唯一最优解判别:最优表中所有非基变量的检验数非零, 则线 规划具有唯一最优解。 2)多重最优解判别:最优表中存在非基变量的检验数为零, 则线则性规划具有多重最优解(或无穷多最优解)。 3)无界解判别:某个λk>0且aik≤0(i=1,2,…,m)则线性 规划具有无界解。 4)无可行解的判断:当用大M单纯形法计算得到最优解并 且存在Ri>0时,则表明原线性规划无可行解。 5)退化解的判别:存在某个基变量为零的基本可行解。
max Z 3 x1 4 x2
2x1 x2 40
x1
3x2
30
x1
,
x2
0
解:1)将问题化为标准型,加入松驰变量x3、x4则标准型为:
max Z 3 x1 4 x2
2 x1 x2 x3 40
ቤተ መጻሕፍቲ ባይዱ
x
1
3x2
x4
30
x1
,
x2
,
x3
换
x3
x4
出
1
0
40 行
0
1
线性规划与单纯形法(4)
• 右端常数项非正
两端同乘以 -1
• 约束条件为不等式
– 当约束方程为“≤”时,左端加入一个非负的松弛变量, 就把不等式变成了等式;
– 当约束条件为“≥”时,不等式左端减去一个非负的剩余 变量(也可称松弛变量)即可。
• 决策变量xk没有非负性要求 令xk=xk′-x k〃, xk=xk′,x k〃 ≥0
例1是二维空间(平面)线性规划问题,可用作 图法直观地来表述它的求解。
因存在 x1,x2 0
必须在直角坐标的第1象限内作图,求解。
23
图1-2
max z 2x1 3x2
x1 2x2 8
4 x1
16 4x2 12
x1, x2 0
24
图1-3 目标值在(4,2)点,达到最大值14 目标函数 max z 2x1 3x2
约,用量不能突破。
– 生产单位甲产品的零部件需耗用A车间的生产能力 1工时,
– 生产单位乙产品不需耗用A车间的生产能力, – A车间的能力总量为8工时,则A车间能力约束条件
表述为
x1
≤8
– 同理,B和C车间能力约束条件为
2x2 ≤12
3x1 +4 x2 ≤36
16
(3)目标函数。目标是利润最大化,用Z表示利润,则
1
S.t. x1 -3 x2 ≥3
x1 ≥0, x2 ≥0 -1
x1 -3 x2
1
2
=3
3
x1
-1
36
1.3 线性规划问题的标准型式
一 、标准型
• 线性规划问题的数学模型有各种不同的形式,如 – 目标函数有极大化和极小化; – 约束条件有“≤”、“≥”和“=”三种情况; – 决策变量一般有非负性要求,有的则没有。
(完整版)对偶单纯形法详解
一、什么是对偶单纯形法?
对偶单纯形法是应用对偶原理求解原始 线性规划的一种方法——在原始问题的单 纯形表格上进行对偶处理。
注意:不是解对偶问题的单纯形法!
二、对偶单纯形法的基本思想 1、对“单纯形法”求解过程认识的提升— —
从更高的层次理解单纯形法 初始可行基(对应一个初始基本可行解)
3 4
x1, x2 , x3, x4, x5 0
以此形式进行列表求解,满足对偶单纯形 法的基本条件,具体如下:
CB
XB
0
x4
0
x5
cj -2 -3 -4 0 0
xj b
x1 x2 x3 x4 x5
-3
-1 -2 -1 1 0
-4
-2 1 -3 0 1
-Z
0
-2 -3 -4 0 0
比
值 -2/-2 --- -4/-3 --- ---
2/5
11/5
-2 -3 -4 0 0 x1 x2 x3 x4 x5
0 1 -1/5 -2/5 1/5 1 0 7/5 -1/5 -2/5
cj-zj
0
0 0 -3/5 -8/5 -1/5
最优解: X*=(11/5,2/5, 0, 0, 0)T,
最优值: minW= -maxZ* = -[11/5×(-2)+2/5×(-3)]= 28/5
将三个等式约束两边分别乘以-1,然后
列表求解如下:
CB
XB
0
y3
0
y4
0
y5
-Z
比
cj yj b
-3 -9 0 y1 y2 y3
00 y4 y5
-2
-1 -1 1 0 0
应用运筹学基础:线性规划(4)-对偶与对偶单纯形法
应⽤运筹学基础:线性规划(4)-对偶与对偶单纯形法这⼀节课讲解了线性规划的对偶问题及其性质。
引⼊对偶问题考虑⼀个线性规划问题:$$\begin{matrix}\max\limits_x & 4x_1 + 3x_2 \\ \text{s.t.} & 2x_1 + 3x_2 \le 24 \\ & 5x_1 + 2x_2 \le 26 \\ & x \ge0\end{matrix}$$ 我们可以把这个问题看作⼀个⽣产模型:⼀份产品 A 可以获利 4 单位价格,⽣产⼀份需要 2 单位原料 C 和 5 单位原料 D;⼀份产品 B 可以获利 3 单位价格,⽣产⼀份需要 3 单位原料 C 和 2 单位原料 D。
现有 24 单位原料 C,26 单位原料 D,问如何分配⽣产⽅式才能让获利最⼤。
但假如现在我们不⽣产产品,⽽是要把原料都卖掉。
设 1 单位原料 C 的价格为 $y_1$,1 单位原料 D 的价格为 $y_2$,每种原料制定怎样的价格才合理呢?⾸先,原料的价格应该不低于产出的产品价格(不然还不如⾃⼰⽣产...),所以我们有如下限制:$$2y_1 + 5y_2 \ge 4 \\ 3y_1 + 2y_2 \ge3$$ 当然也不能漫天要价(也要保护消费者利益嘛- -),所以我们制定如下⽬标函数:$$\min_y \quad 24y_1 + 26y_2$$ 合起来就是下⾯这个线性规划问题:$$\begin{matrix} \min\limits_y & 24y_1 + 26y_2 \\ \text{s.t.} & 2y_1 + 5y_2 \ge 4 \\ & 3y_1 + 2y_2 \ge 3 \\ & y \ge 0\end{matrix}$$ 这个问题就是原问题的对偶问题。
对偶问题对于⼀个线性规划问题(称为原问题,primal,记为 P) $$\begin{matrix} \max\limits_x & c^Tx \\ \text{s.t.} & Ax \le b \\ & x \ge 0\end{matrix}$$ 我们定义它的对偶问题(dual,记为 D)为 $$\begin{matrix} \min\limits_x & b^Ty \\ \text{s.t.} & A^Ty \ge c \\ & y \ge 0\end{matrix}$$ 这⾥的对偶变量 $y$,可以看作是对原问题的每个限制,都⽤⼀个变量来表⽰。
第4章05-对偶单纯形法
第4章05对偶单纯形法同学们,大家好,今天我们来学习对偶单纯形法。
我们先看一下对偶单纯形法的原理。
前面讲单纯形法的时候,我们知道,一个基B 如果是最优基,那么它必须满足下面的三个条件:(1)B 是可逆的;(2)B -1b ≥0;(3)C−C B B -1A ≤0。
(1)B 可逆;(2)10B b -≥;(3)10B C C B A --≤我们在用单纯形法进行求解的时候,是先找到一个满足了前两个条件的可行基,然后在迭代过程中再逐步满足第三个条件,从而找到最优解。
而对偶单纯形法是先找到一个基满足第一个和第三个条件,然后在迭代过程中逐步满足第二条,最后也同样找到最优解。
我们把满足第一和第三个条件的基称为正则基。
也就是说,单纯形法是先找一个可行基,然后逐步迭代找到最优基;而对偶单纯形法是先找一个正则基,然后再逐步迭代找到最优基。
关于对偶单纯形法,我们还需要注意下面三点:首先,在判定最优解时,单纯形法中根据的是检验数行,而对偶单纯形法中根据的是检验数列,也就是单纯形表中右端项的列。
第二,对偶单纯形法是求解线性规划模型的另一种方法,而不要简单的理解为对偶单纯形法就是求解对偶线性规划模型。
第三,使用对偶单纯形法时,需要先找到正则基,但实际上找一个正则基并不容易,所以,对偶单纯形法往往不单独使用,而是与第五章的灵敏度分析配合使用。
下面我们通过例4-7来说明对偶单纯形法是如何操作的。
例4-71212121212min 233436st.22,0z x x x x x x x x x x =+--≤-⎧⎪--≤-⎪⎨--≤-⎪⎪≥⎩第一步,先把它化成标准型,写出约束矩阵A ,右端项b ,以及价值向量C ,如下所示。
1234512312412512345max 200033436st.22,,,,0z x x x x x x x x x x x x x x x x x x x =--++++-=⎧⎪+-=⎪⎨+-=⎪⎪≥⎩311004*********-⎛⎫ ⎪=- ⎪ ⎪-⎝⎭A ,362⎛⎫⎪= ⎪ ⎪⎝⎭b ,()21000=--C 第二步,找初始基。
《运筹学》第四章对偶问题
设X,Y分别为(P1)与(D1)的任意可行解,则当
CX = Yb
时, X, Y分别是(P1)与(D1)的最优解。
性质4无界性 互为对偶的两个线性规划问题,若其中一个问题的解无界, 则另一个问题无可行解。
性质5 对偶定理 互为对偶的两个线性规划问题,若其中一个问题有最优解,
资源 产品
Ⅰ
Ⅱ
拥有量
设备 A
2
2
12
设备 B
1
2
8
原材料 A
4
/
16
原材料 B
/
4
12
2.资源最低售价模型
设 企业生产甲产品为X1件, 乙产品为X2件,则
max z 2x1 3x2
设第i种资源价格为yi,( i=1, 2, 3) 则有
2x1 2x2 12
y1
x1 2x2 8
4 x1
X*= (4, 6, 4, 0, 0)T
( D1):min w=8y1+12y2+36y3 ( Ds):min w=8y1+12y2+36y3
y1
+3y3 ≥ 3
y1 +3y3 -y4 = 3
s.t.
2y2+4y3 ≥ 5
y1 , y2, y3 ≥ 0
s.t.
2y2+4y3 -y5 = 5
y1 , y2 , y3 , y4 , y5 ≥ 0
大连海事大学交通运输管理学院
2.4.1 对偶问题的提出 2.4.2 原问题与对偶问题 2.4.3 对偶问题的性质 2.4.4 对偶变量的经济含义 2.4.5 对偶单纯形法
某工厂在计划期内要安排生产Ⅰ、Ⅱ两种产品,已知生产单位
对偶单纯形法(经典运筹学)
解:问题化为标准型 max Z 2 x1 x 2 5 x1 x 2 x3 2 x 2 x3 x 4 5 s.t 6x xx 9 xx 2 2 6 x3 3 5 5 9 44 x1 , x 2 , x3,x 4,x5 0
X1 X2 X3 X4 X 5
2 检 0 1 -1 1 2 -4 0 -2 1 1 -6 0 0 1 0 0 0 0 1
Z Z-10
X1 1 X4 0
5 5 -9
X5 0
4
14 13 X1 X 2 X 3
检
X1 X4
0 1 0 0 0 0 0 1
X4
X5
-1/4 Z-31/4 1/4 1/2 11/4 1/2
所在行的基变量出基 则取br
4、以ari0 为主元素进行换基迭代 ,得一新的单纯形表, 转2
例:用对偶单纯形法 求解下列问题 max Z 2 x1 x 2 x1 x 2 x3 5 2x x 5 11 9 2 3 最优解 X ( ,) s.t 4 4 4 x 6 x 9 2 3 31 x1 , x 2 ,Z x3 0 最优值
-1/2 0 -1/2 0 -2 3/2 1 0
X2
-1/4 9/4
11 9 1 最优解 X ( ,, 0, , 0 ) 4 4 2 初始基 B (P ) 1,P 4,P 5 31 最优值 Z 不是典则形式 4
注意:对偶单纯形法仅限于初始基B对应 可用对偶单 的典则形式中目标函数的系数(检 纯形法 验数)均≤0的情形。 B的典则形式
对偶单纯形法是求解对偶规划的一种方法 × 对偶单纯形法:利用对偶理论得到的一个 求解线性规划问题的方法
单纯形法(原始单纯形法)的两个条件:
4第四章 对偶单纯形法和对偶问题
例如
原 : max Z = x1 + 2x2 −x1 + x2 + x3 ≤ 2 −2x1 + x2 − x3 ≤ 1 x , x , x ≥ 0 1 2 3
对 : min W = 2 y1 + y2 − y1 − 2 y2 ≥ 1 y + y ≥2 1 2 y1 − y2 ≥ 0 y1, y2 ≥ 0
A 工 时 材 料 单件利润
总价格最小 1 1 2
B
1 4 3
C
1 7 3
拥有量 3 9
min W=3y1+9y2 y1+y2≥2 y1+4y2≥3 y1+7y2≥3 y1≥0 y2≥0
保证获利大于A产品利润 保证获利大于 产品利润 保证获利大于 产品利润 保证获利大于B产品利润 获利大于 保证获利大于 产品利润 保证获利大于C产品利润 获利大于 售价非负
θj
对 偶 问 题
0 6 20
σj = cj-zj Cj→
CB YB Y4 Y2 Y1
Y4 Y5 Y6 1 -10 4 -4 -1 2 -4 -16
θj
σj = cj-zj
第四章 对偶问题及对偶单纯形法
§4.4 对偶单纯形法
一、原理
当一个线性规划问题是求目标函数值最 小,约束方程是≥时,求解时用大M法或两阶 段法比较麻烦,此时较有效的算法是将要介绍 的对偶单纯形法 对偶单纯形法并不是求解对偶问题解的 方法,而是利用对偶理论求解原问题的解的方 法。
(1)目标函数在一个问题中是求最大值在另 ) 一问题中则为求最小值 (2)一个问题中目标函数的系数是另一个问 ) 题中约束条件的右端项 (3)一个问题中的约束条件个数等于另一个 ) 问题中的变量数 (4)原问题的约束系数矩阵与对偶问题的约 ) 束系数矩阵互为转置矩阵
单纯形法
x6
x7
14
22
1
0
0
1
0
0
0
0
0
-1
1
0
0
1
σj=cj-zj
6.3 人工变量法
Cj CB xB b -6 x1
2
4 1
-4 x2
列新单纯形表
Cj CB 0 5 xB x5 x2 b 23 12 3 x1
-4 5
5 x2
0 1
0 x3
1 0
1 x4
1 -1
0 x5
1 0
0 x6
-1 1
0 x7
0 0
θ
23 -
0
x7
5
0
-22
0
0
-1
0
σj=cj-zj
1 1 6 6
0
0
0
-5
1
0
5
6.2 单纯形法计算步骤
列新单纯形表
Cj CB 0 5 xB x5 x2 b
0
…
0
…
c j ci aij
i 1
m
cn ci ain
i 1
m
6.2 单纯形法计算步骤
2) 检验 j c j ci ai , j
i 1 m
若 j 0
j m 1,..., n 得到最优解,停止。
否则,转入下一步。 否则,转入下一步。
3) 若 k ,
... am , j
... am ,n
6.1 单纯形法迭代原理
m Pj= aij Pi Pj- aij Pi=0 i=1 i=1 m θ (Pj- aij Pi)=0 两边乘上一个正数θ>0,得 i=1 m m 同 Pixi0 =b 相加整理得: ( xi0 aij ) Pi Pj b i 1 i=1 m
对偶单纯形法(经典运筹学)
X1 X2 X3 X4 X5 检 X3 -2 -1 0 -3 -1 1 0 0 0 0 Z -3
X4
X5
-4 -3 0
1 2 0
1
0
0
1
-6
3
不 可 行
即max Z 2 x1 x2
3 3x1 x 2 x3 4 x 3x x4 6 1 2 s.t x5 3 x1 2 x 2 x1 , x 2 , x3 , x 4 , x5 0
-1/3 0 -1/3 0 2/3 1
X 3 X4 X5 0 -3/5 -2/5 Z+12/5 1 -1 -1 0
X2 0 X1 1
1 0
0 0
1/5 4/5 6/5 -2/5 -3/5 3/5
3 6 最优解X ( ,, 0, 0, 0 ) 5 5 最优值Z 12 5
则取xi0 为入基变量
1
1
令X N 0 得X B B b 0 得基本可行解 X 1 B b,0
1
1
1 、若所有的检验数 CN B 1 N 0 , 则X 1为最优解
2、检验数 C N C B B 1 N中存在一个分量 0, 且该分量对应的列 向量中所有的分量 0, 则目标函数值在可行解 域内无上界
1、确定出基变量: 设br =min{bi | bi <0} 则取br所在行的基变量 为出基变量 即取X4为出基变量 2、确定入基变量: 原则: 保持检验行系数≤0
i i0 设 min | a ri 0 a ri a ri 0
1 21 3
X1 检 -2/3 X3 -5/3 X2 4/3 X5 -5/3 X1 检 0 X3 0 X3 X4 0 -1/3 1 0 0
第二章对偶规划
1. 对偶规划的定义 2. 对偶规划定理 3. 互补松弛关系 4. 对偶单纯形法
对偶规划应掌握的主要内容
对偶规划的意义 对偶规划与原问题的关系 对偶规划的定理 对偶单纯形法 影子价格 灵敏度分析
第一节 线性规划的对偶问题
一、对偶问题的提出 例2.1:某工厂拥有A、B、C三种类型的设备,生产甲、乙两种产品。每件产品在生产中需要占用的设备机时数,每件产品可以获得的利润以及三种设备可利用的机时数如下表所示。求获最大利润的方案。
推论1
如果X0 、Y0 分别是原问 题和对偶问题的可行解,并 且它们对应的目标函数值相 同CX0 = Y0b,则X0 、Y0 分别是 原问题和对偶问题的最优解。
推论2:
如果原始问题和对偶问题中 的任一个目标函数无界,则另一 个必定无可行解。 请注意推论2之逆命题不存在 即一个问题无可行解,不能推得 另一个问题目标函数无界。
原 问 题
有最优解
一定
不可能
不可能
无界解
不可能
不可能
可能
无可行解
不可能
可能
可能
定理四、互补松弛定理
对偶问题 Min W=Yb s.t. YA≥C Y≥0
设X0 、Y0 分别为原问题和对偶问题的可行解,则X0 、Y0分别为原问题和对偶问题最优解的充要条件是: YSX0=0 和 Y0XS =0
∵ CX` ≥ CX0 ∵ Y`b ≤ Y0 b CX0 ≤ Y0b ∴ CX` ≥ CX0 ≤ Y0 b≤ Y`b CX` = Y`b 换句话说:当对偶问题和原问题目标函 数值相同时 Z = W ,则 X`和 Y`一定是 对偶问题和原问题的最优解。或者说如 果对偶问题和原问题有最优解,那么它 们的目标函数值一定相等。
第三章对偶单纯形法
··
≥ (c1,c2,…,cn)
y1,y2,…,ym≥0
m个变量,n个约束条件
2﹒约束条件全部为“=”的对偶
原问题:
max z=CX
max z=CX
max z=CX
AX=b
等价
AX≤b AX≥b
AX≤b 等价 -AX≤-b
X≥0
min ω=(Y1,Y2) A
(Y1,Y2) -A Y1,Y2≥0
b -b
承租
出让代价应不低于 用同等数量的资源 自己生产的利润。
厂家能接受的条件:
出 用同让6等代y数价2量应的不y资低3 源于 2 5 y自1 己生2产y2的利y润3。 1
收购方的意愿:
min w 15 y 24 y 5 y
1
2
3
Ⅰ
Ⅱ
D
设备A
0
设备B
6
调试工序
1
5 15时 2 24时 1 5时
利润(元) 2
x1 0, x2 , x3 0, x4无限制max变S量个数5n y1 约4束y方2 程个6数yn3
2、求下列问题的对偶问题 min Z 2x1 3x2 5x3 x4
4x1 x2 3x3 2x4 5
s.t
3x1 2x2 7x4 2x1 3x2 4x3
4 x4
6
s.t
3﹒约束条件为“≥”的对偶
原问题:
max z=CX
max z=CX
对
AX≥b
等价
-AX≤ - b
偶
X≥0 min ω=Yb
对偶 问题
X≥0
问
题
min ω=Y1 (- b)
YA ≥C Y≤0
令Y= - Y1
运筹学对偶问题和性质
❖ 目旳函数 min
m个
变
≥0
量
≤0
无约束
n个
约
束
≥
条
≤
件
=
❖ 例2.2 写出下列线性规划问题旳对偶问题.
max Z 2 x1 3 x2 5 x3 x4
4 x1 x2 3 x3 2 x4 5
3 x1 2 x2
7x4 4
2 x1 3 x2 4 x3 x4 6
x1 0, x2 , x3 0, x4无约束
2y1y1 22y2y234
解此线性方程组得y1=1,y2=1,从而对偶问题旳最优解为: Y*=(1,1),最优值w=26。
作业:第88-89页: 3.3(1),(2) 3.8
思索题:3.2 3.4
❖ 当B为最优基时,应有
CN CB B1N 0 C CB B1 A 0 CB B1 0
❖ 令Y=CBB-1, 则 YA C
Y 0
且 w Yb CB B1b z
项目
基变量
非基变量
CB XB B-1b cj-zj
XB I 0 -Ys1
XN
Xs
B-1N
B-1
CN-CBB-1N -CBB-1
性质6 (互补松弛性):在线性规划问题旳最优解中,假如相 应某一约束条件旳对偶变量值为非零,则该约束条件取严格 等式;反之假如约束条件取严格不等式,则其相应旳对偶变 量一定为零. 即Y*XS=0,YSX*=0
n
yˆi 0 aij xˆ j bi j 1 n
aij xˆ j bi yˆi 0
1/4
y3 j 1/2
15/2 15/2
0 0
1 0
1/2 7/2
-3/2 3/2
运筹学第4章单纯形法的对偶问题
5 x1 3x2 x3 200 5 x1 3x2 x3 200
显然,这两个约束条件与原来第三个约束条件是等价的,我们再把其 中的
5x1 3x2 x3 200
1/2
25
25 1/ 2
75 1/ 2
cj z j
zj
-250
1/2
-325 25
0
-400 0 2
1
-250 0 0
1/2
75 -75 -1
-1
250 -250 0
-1/2
-75 -M+75 1
75
-28750
y1 y3
-300
1
50
3
zj
-250
0
-300 0
-1
-350 -50 管 理
1
-250 0 运 筹
min f 440y1 100y2 200( y '3 y ''3 )
s.t.
2 y1 6 y2 5( y '3 y ''3 ) 3, 3 y1 4 y2 3( y '3 y ''3 ) 4, 6 y1 y2 ( y '3 y ''3 ) 6, y1 , y2 , y '3 , y ''3 0,
y3 的取值可以为正,可以为0,
min f 440y1 100y2 200y3
2 y1 6 y2 5 y3 3, 3 y1 4 y2 3 y3 4, 6 y1 y2 y3 6, y1 , y2 0,
运筹学线性规划习题
一、需要掌握的主要内容1、单纯形法的计算过程(1)确定初始基本可行解(2)最优性检验;(3)基变换。
2、单纯形法的灵敏度分析(1)最终单纯形表中,变量系数的灵敏度分析针对最优解不变时,判断其变化范围;(2)约束条件常数项b的灵敏度分析针对最优解不变时,判断其变化范围;(3)增加一个变量的灵敏度分析首先,确定增加变量在初始单纯形表中的系数列Pj;然后,求出其对应在最终单纯形表中的系数列Pj ;最后求出σj=Cj-CBB-1Pj。
若σj ≤0,则最优解不变;σj≥0,则继续进行基变换,直到求出最优解。
二、需要基本掌握的内容1、解、基本解、可行解、基本可行解等基本概念;2、利用单纯形法求解如何判断无可行解、无界解和无穷最优解等基本理论;3、如何写出一个线性规划的对偶问题;4、对偶单纯形法的基本思路和过程。
一、填空题(1)线性规划模型中,松弛变量的经济意义是,它在目标函数中的系数是。
(2)设有线性规划问题:max z=CXAX≤bX≥0有一可行基B,记相应基变量为XB ,非基变量为XN,则可行解的定义为,基本可行解的定义为,B为最优基的条件是。
(3)线性规划模型具有可行域,若其有最优解,必能在上获得。
二、选择题1.线性规划一般模型中,自由变量可以用两个非负变量的()代换。
A.和 B.差 C.积 D.商2.满足线性规划问题全部约束条件的解称为()A.最优解 B.基本解 C.可行解 D.多重解3.当满足最优检验,且检验数为零的变量的个数大于基变量的个数时,可求得() A.多重解 B.无解 C.无界解 D.退化解4.原问题与对偶问题的()相同。
A.最优解 B.最优目标值 C.解结构 D.解的分量个数5.记线性规划原问题(p)max z=CX,对偶问题(D) min w=YbAX≤b YA≥CX≥0 Y≥0现用单纯形表解(P)求得最优解,则在最优单纯形表中,同时也可得到(D)的最优解,它应等于:(a)表中松弛变量的检验数(b)表中松弛变量的检验数的负值(c)表中非基变量的检验数(d)表中非基变量的检验数的负值6. 线形规划问题max z = 3x1+ 2x2S.t x1+ x2≤ 4 (1)-x1+ 2x2≥ 2 (2)2x1+ 3x2≥ 6 (3)x 1,x2≥0的约束条件(1),(2),(3)相应的松弛变量分别为x3、x4、x5,相应的约束直线如图所示,选择一个或多个正确答案填在相应的括号内。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
例、用对偶单纯形法求解线性规划问题:
m w i1 n y 5 2y4 5 y
1
2
3
s.t
6y y 2
2
3
5y 2y y 1
1
2
3
y,y ,y 0 123
对偶问题的 初初始始可可行行基基
m m w w a a 1 1 x x y 1 1 5 2y 2 2 4 5 y 3 3 s.ts-.5t5yy11y1y66,221yyy,yy222y22,2 , yyy,y333y3,5yy5y440yy0552211
练习
用对偶单纯形法求解线性规划问题:
m s.t.inwx1 22x1x2 3xx2343x3 2xxi1 0x,2i31x,23 ,3 4
对 偶 问 题
上页 下页 返回
若 b ~ i0,i1,2,,m ,即表中原问题和
对偶问题均为最优解,否则换基。
换基方法:
•确定换出基变量
~
~~
br m i { ibn i bi 0}
对应变量x r 为换出基的变量
•确定换入基变量
m j ic njarjzj arj0 csa rszs
a rs 为主元素,x s 为换入基变量
24 y2 6 2
24 1 0 0 1 0 0
5 y3 1 1 5 1/ 6 2/3 1 0 1 0
0 y4 1 0 0 1/ 6 1/ 3 4 1/ 4 1/ 2 7/2
0 y5 0 1 0 0 1 0 1/ 4 3/2 3/2
使对偶问题基变量可行,
a 14 1 , 4 0 , 0
24 60 4 50 5
y 2 换入
例、用对偶单纯形法求解线性规划问题:
cj zj
15 24 5 0
0
C B YB b
y1
y2
y3
y4
y5
0 y4 2
0
6 1
1
0
0 y5 1 5 2 1
0
1
15 24 5 0
0
24 y 2 1 / 3
0
0 y5 1/ 3 5
15
1 1/6 1/6 0 0 2/3 1/3 1 0 1 4 0
0 y5 0 1 0 0 1 0 1/ 4 3/2 3/2
最优解
对偶单纯形法的优点:
不需要人工变量; 当变量多于约束时,用对偶单纯形法可减少
迭代次数; 在灵敏度分析中,有时需要用对偶单纯形法
处理简化。
对偶单纯形法缺点:
在初始单纯形表中对偶问题是基可行解,这 点对多数线性规划问题很难做到。 因此,对偶单纯形法一般不单独使用。
24 y 2 1 / 4 5 / 4 1
5
c
y
j
3
1/
z
2
j
15 / 2 15 / 2
0 0
0 1/4 1/4 1 1/2 3/2 0 7/2 3/2
例、用对偶单纯形法求解线性规划问题:
cj zj
C B YB
b
0 y4 2
பைடு நூலகம்
0 y5 1
24c jy 2 1z/j3 0 y5 1/ 3
24 y 2 1 / 4
c5 j y3 z1j / 2
15 y1 0 5
15 0 5
15 5/4 15 / 2 15 / 2
24 y2 6 2
24 1 0 0 1 0 0
5 y3 1 1 5 1/ 6 2/3 1 0 1 0
0 y4 1 0 0 1/ 6 1/3 4 1/ 4 1/ 2 7/2
例、 m用yi对4n换偶2(出,单换1纯)出形法2求解线性规划问题:
c j C B YB
0
y4
0
y5
b 2 1
24 y 2 1 / 3
0
y5 1 / 3
24 y 2 1 / 4
c z 5 y 3 1 / 2
j
j
15 y1 0
5 15
0 5 15 5/4 15 / 2 15 / 2
对 偶 问 题
上页 下页 返回
对偶单纯形法的基本思路
单纯形法的基本思路:
原问题基可行解
最优解判断
b ~B1b0
j cj zj 0
对偶问题 最优解判断
对偶问题的可行解
对偶单纯形法 基本思路
对偶单纯形法的计算步骤
线性规划问题
max z CX
AX X
b 0
不妨设 B(P 1,P2,,Pm)为对偶问题的 初始可行基,则j cj z 0。