2008年普通高等学校招生全国统一考试理科数学(必修+选修Ⅱ)

合集下载

2008年高考全国二卷理科数学题及其答案

2008年高考全国二卷理科数学题及其答案

2008年普通高等学校招生全国统一考试(全国卷2数学)理科数学(必修+选修Ⅱ)第Ⅰ卷一、选择题1.设集合{|32}M m m =∈-<<Z ,{|13}N n n M N =∈-=Z I 则,≤≤( ) A .{}01,B .{}101-,,C .{}012,,D .{}1012-,,,2.设a b ∈R ,且0b ≠,若复数3()a bi +是实数,则( ) A .223b a = B .223a b =C .229b a =D .229a b =3.函数1()f x x x=-的图像关于( ) A .y 轴对称 B . 直线x y -=对称 C . 坐标原点对称 D . 直线x y =对称4.若13(1)ln 2ln ln x e a x b x c x -∈===,,,,,则( ) A .a <b <cB .c <a <bC . b <a <cD . b <c <a5.设变量x y ,满足约束条件:222y x x y x ⎧⎪+⎨⎪-⎩,,.≥≤≥,则y x z 3-=的最小值( )A .2-B .4-C .6-D .8-6.从20名男同学,10名女同学中任选3名参加体能测试,则选到的3名同学中既有男同学又有女同学的概率为( ) A .929B .1029C .1929D .20297.64(1(1的展开式中x 的系数是( )A .4-B .3-C .3D .48.若动直线x a =与函数()sin f x x =和()cos g x x =的图像分别交于M N ,两点,则MN 的最大值为( ) A .1BCD .29.设1a >,则双曲线22221(1)x y a a -=+的离心率e 的取值范围是( ) A. B.C .(25),D.(210.已知正四棱锥S ABCD -的侧棱长与底面边长都相等,E 是SB 的中点,则AE SD ,所成的角的余弦值为( )A .13B C D .2311.等腰三角形两腰所在直线的方程分别为20x y +-=与740x y --=,原点在等腰三角形的底边上,则底边所在直线的斜率为( ) A .3B .2C .13-D .12-12.已知球的半径为2,相互垂直的两个平面分别截球面得两个圆.若两圆的公共弦长为2,则两圆的圆心距等于( ) A .1B .2C .3D .2第Ⅱ卷二、填空题:本大题共4小题,每小题5分,共20分.把答案填在题中横线上. 13.设向量(12)(23)==,,,a b ,若向量λ+a b 与向量(47)=--,c 共线,则=λ . 14.设曲线axy e =在点(01),处的切线与直线210x y ++=垂直,则a = .15.已知F 是抛物线24C y x =:的焦点,过F 且斜率为1的直线交C 于A B ,两点.设FA FB >,则FA 与FB 的比值等于 .16.平面内的一个四边形为平行四边形的充要条件有多个,如两组对边分别平行,类似地,写出空间中的一个四棱柱为平行六面体的两个充要条件:充要条件① ; 充要条件② . (写出你认为正确的两个充要条件)三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分10分) 在ABC △中,5cos 13B =-,4cos 5C =. (Ⅰ)求sin A 的值;(Ⅱ)设ABC △的面积332ABC S =△,求BC 的长. 18.(本小题满分12分)购买某种保险,每个投保人每年度向保险公司交纳保费a 元,若投保人在购买保险的一年度内出险,则可以获得10 000元的赔偿金.假定在一年度内有10 000人购买了这种保险,且各投保人是否出险相互独立.已知保险公司在一年度内至少支付赔偿金10 000元的概率为41010.999-.(Ⅰ)求一投保人在一年度内出险的概率p ;(Ⅱ)设保险公司开办该项险种业务除赔偿金外的成本为50 000元,为保证盈利的期望不小于0,求每位投保人应交纳的最低保费(单位:元).19.(本小题满分12分)如图,正四棱柱1111ABCD A B C D -中,124AA AB ==,点E 在1CC 上且EC E C 31=.(Ⅰ)证明:1AC ⊥平面BED ; (Ⅱ)求二面角1A DE B --的大小. 20.(本小题满分12分)设数列{}n a 的前n 项和为n S .已知1a a =,13n n n a S +=+,*n ∈N .(Ⅰ)设3nn n b S =-,求数列{}n b 的通项公式;(Ⅱ)若1n n a a +≥,*n ∈N ,求a 的取值范围.21.(本小题满分12分)设椭圆中心在坐标原点,(20)(01)A B ,,,是它的两个顶点,直线)0(>=k kx y 与AB 相交于点D ,与椭圆相交于E 、F 两点.(Ⅰ)若6ED DF =u u u r u u u r,求k 的值;(Ⅱ)求四边形AEBF 面积的最大值. 22.(本小题满分12分) 设函数sin ()2cos xf x x=+.(Ⅰ)求()f x 的单调区间;(Ⅱ)如果对任何0x ≥,都有()f x ax ≤,求a 的取值范围.AB CD EA 1B 1C 1D 12008年参考答案和评分参考一、选择题1.B 2.A 3.C 4.C 5.D 6.D 7.B 8.B 9.B 10.C 11.A 12.C部分题解析:2. 设a b ∈R ,且0b ≠,若复数3()a bi +是实数,则( )A .223b a =B .223a b =C .229b a =D .229a b =,解:33223()33()()a bi a a bi a bi bi +=+++gg (←考查和的立方公式,或二项式定理) 3223(3)(3)a a b a b b i =-+-gg (←考查虚数单位i 的运算性质) R ∈ (←题设条件)∵a b ∈R ,且0b ≠∴ 2330a b b -=g(←考查复数与实数的概念) ∴ 223b a =. 故选A.6. 从20名男同学,10名女同学中任选3名参加体能测试,则选到的3名同学中既有男同学又有女同学的概率为( ) A .929B .1029C .1929D .2029思路1:设事件A :“选到的3名同学中既有男同学又有女同学”,其概率为:211220102010330()C C C C P A C += (←考查组合应用及概率计算公式) 201910910202121302928321⨯⨯⨯+⨯⨯⨯=⨯⨯⨯⨯ (←考查组合数公式) 10191010109102914⨯⨯+⨯⨯=⨯⨯ (←考查运算技能)2029=故选D.思路2:设事件A :“选到的3名同学中既有男同学又有女同学”,事件A 的对立事件为A :“选到的3名同学中要么全男同学要么全女同学”其概率为:()1()P A P A =- (←考查对立事件概率计算公式)3320103301C C C +=- (←考查组合应用及概率计算公式)2019810983213211302928321⨯⨯⨯⨯+⨯⨯⨯⨯=-⨯⨯⨯⨯(←考查组合数公式) 2019181098302928⨯⨯+⨯⨯=⨯⨯ (←考查运算技能)2029=故选D.12.已知球的半径为2,相互垂直的两个平面分别截球面得两个圆.若两圆的公共弦长为2,则两圆的圆心距等于( ) A .1B .2C .3D .2分析:如果把公共弦长为2的相互垂直的两个截球面圆,想成一般情况,问题解决起来就比较麻烦,许多考生就是因为这样思考的,所以浪费了很多时间才得道答案;但是,如果把公共弦长为2的相互垂直的两个截球面圆,想成其中一个恰好是大圆,那么两圆的圆心距就是球心到另一个小圆的距离3,问题解决起来就很容易了. 二、填空题13.2 14.2 5.3+16.两组相对侧面分别平行;一组相对侧面平行且全等;对角线交于一点;底面是平行四边形. 注:上面给出了四个充要条件.如果考生写出其他正确答案,同样给分. 三、解答题 17.解:(Ⅰ)由5cos 13B =-,得12sin 13B =, 由4cos 5C =,得3sin 5C =.所以33sin sin()sin cos cos sin 65A B C B C B C =+=+=. ···································· 5分 (Ⅱ)由332ABC S =△得133sin 22AB AC A ⨯⨯⨯=, 由(Ⅰ)知33sin 65A =,故65AB AC ⨯=, ························································································ 8分又sin 20sin 13AB B AC AB C ⨯==, 故2206513AB =,132AB =. 所以sin 11sin 2AB A BC C ⨯==. ········································································· 10分18.解:各投保人是否出险互相独立,且出险的概率都是p ,记投保的10 000人中出险的人数为ξ,则4~(10)B p ξ,.(Ⅰ)记A 表示事件:保险公司为该险种至少支付10 000元赔偿金,则A 发生当且仅当0ξ=, ·················································································································· 2分()1()P A P A =-1(0)P ξ=-=4101(1)p =--,又410()10.999P A =-,故0.001p =. ······························································································ 5分 (Ⅱ)该险种总收入为10000a 元,支出是赔偿金总额与成本的和. 支出 1000050000ξ+,盈利 10000(1000050000)a ηξ=-+,盈利的期望为 100001000050000E a E ηξ=--, ·········································· 9分由43~(1010)B ξ-,知,31000010E ξ-=⨯, 4441010510E a E ηξ=--⨯4443410101010510a -=-⨯⨯-⨯. 0E η≥4441010105100a ⇔-⨯-⨯≥1050a ⇔--≥ 15a ⇔≥(元).故每位投保人应交纳的最低保费为15元. ························································· 12分19.解法一:依题设知2AB =,1CE =.(Ⅰ)连结AC 交BD 于点F ,则BD AC ⊥. 由三垂线定理知,1BD A C ⊥. ········································································ 3分 在平面1A CA 内,连结EF 交1A C 于点G ,由于1AA ACFC CE== AB CD EA 1B 1C 1D 1FH G故1Rt Rt A AC FCE △∽△,1AA C CFE ∠=∠,CFE ∠与1FCA ∠互余.于是1A C EF ⊥.1A C 与平面BED 内两条相交直线BD EF ,都垂直,所以1A C ⊥平面BED . ················································································· 6分 (Ⅱ)作GH DE ⊥,垂足为H ,连结1A H .由三垂线定理知1A H DE ⊥,故1A HG ∠是二面角1A DE B --的平面角. ······················································· 8分EF =CE CF CG EF ⨯==EG == 13EG EF =,13EF FD GH DE ⨯=⨯=.又1AC ==11A G A C CG =-=.11tan AG A HG HG∠== 所以二面角1A DE B --的大小为arctan . ·················································· 12分 解法二:以D 为坐标原点,射线DA 为x 轴的正半轴, 建立如图所示直角坐标系D xyz -.依题设,1(220)(020)(021)(204)B C E A ,,,,,,,,,,,.(021)(220)DE DB ==u u u r u u u r,,,,,,11(224)(204)AC DA =--=u u u r u u u u r,,,,,. ···································································· 3分 (Ⅰ)因为10AC DB =u u u r u u u r g ,10AC DE =u u u r u u u rg, 故1A C BD ⊥,1A C DE ⊥. 又DB DE D =I ,所以1AC ⊥平面DBE .·················································································· 6分 (Ⅱ)设向量()x y z =r,,n 是平面1DA E 的法向量,则DE ⊥u u ur r n ,1DA ⊥u u u u r r n .故20y z +=,240x z +=.令1y =,则2z =-,4x =,(412)=-r,,n . ····················································· 9分 1AC u u u rr ,n 等于二面角1A DE B --的平面角,111cos A C A C A C==u u u r r u u u r r g u u u r r ,n n n . 所以二面角1A DE B --的大小为. ················································· 12分 20.解:(Ⅰ)依题意,113nn n n n S S a S ++-==+,即123n n n S S +=+,由此得1132(3)n n n n S S ++-=-. ······································································· 4分因此,所求通项公式为13(3)2n n n n b S a -=-=-,*n ∈N .① ····························································· 6分(Ⅱ)由①知13(3)2n n n S a -=+-,*n ∈N ,于是,当2n ≥时,1n n n a S S -=-1123(3)23(3)2n n n n a a ---=+-⨯---⨯ 1223(3)2n n a --=⨯+-, 12143(3)2n n n n a a a --+-=⨯+-22321232n n a --⎡⎤⎛⎫=+-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦g ,当2n ≥时,21312302n n n a a a -+⎛⎫⇔+- ⎪⎝⎭g ≥≥9a ⇔-≥.又2113a a a =+>.综上,所求的a 的取值范围是[)9-+∞,. ························································· 12分 21.(Ⅰ)解:依题设得椭圆的方程为2214x y +=, 直线AB EF ,的方程分别为22x y +=,(0)y kx k =>. ····································· 2分 如图,设001122()()()D x kx E x kx F x kx ,,,,,,其中12x x <, 且12x x ,满足方程22(14)4k x +=,故21x x =-=.①由6ED DF =u u u r u u u r 知01206()x x x x -=-,得021215(6)77x x x x =+==;由D 在AB 上知0022x kx +=,得0212x k=+. 所以212k =+,化简得2242560k k -+=,解得23k =或38k =. ····················································································· 6分 (Ⅱ)解法一:根据点到直线的距离公式和①式知,点E F ,到AB 的距离分别为1h ==2h ==. ······················································ 9分又AB ==,所以四边形AEBF 的面积为121()2S AB h h =+ 12===≤当21k =,即当12k =时,上式取等号.所以S 的最大值为 ························· 12分 解法二:由题设,1BO =,2AO =.设11y kx =,22y kx =,由①得20x >,210y y =->, 故四边形AEBF 的面积为BEF AEF S S S =+△△222x y =+ ··································································································· 9分===当222x y =时,上式取等号.所以S 的最大值为. ······································· 12分 22.解: (Ⅰ)22(2cos )cos sin (sin )2cos 1()(2cos )(2cos )x x x x x f x x x +--+'==++.····························· 2分当2π2π2π2π33k x k -<<+(k ∈Z )时,1cos 2x >-,即()0f x '>; 当2π4π2π2π33k x k +<<+(k ∈Z )时,1cos 2x <-,即()0f x '<.因此()f x 在每一个区间2π2π2π2π33k k ⎛⎫-+ ⎪⎝⎭,(k ∈Z )是增函数, ()f x 在每一个区间2π4π2π2π33k k ⎛⎫++ ⎪⎝⎭,(k ∈Z )是减函数. ···························· 6分 (Ⅱ)令()()g x ax f x =-,则第11页(共11页) 22cos 1()(2cos )x g x a x +'=-+ 2232cos (2cos )a x x =-+++ 211132cos 33a x ⎛⎫=-+- ⎪+⎝⎭. 故当13a ≥时,()0g x '≥. 又(0)0g =,所以当0x ≥时,()(0)0g x g =≥,即()f x ax ≤. ······················· 9分 当103a <<时,令()sin 3h x x ax =-,则()cos 3h x x a '=-. 故当[)0arccos3x a ∈,时,()0h x '>.因此()h x 在[)0arccos3a ,上单调增加.故当(0arccos3)x a ∈,时,()(0)0h x h >=,即sin 3x ax >.于是,当(0arccos3)x a ∈,时,sin sin ()2cos 3x x f x ax x =>>+. 当0a ≤时,有π1π0222f a ⎛⎫=> ⎪⎝⎭g ≥. 因此,a 的取值范围是13⎡⎫+∞⎪⎢⎣⎭,. ··································································· 12分。

2008年高考数学全国一卷试题和规范标准答案

2008年高考数学全国一卷试题和规范标准答案

2008年普通高等学校夏季招生考试数学理工农医类(全国Ⅰ)本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分.第I 卷1至2页,第II 卷3至9页.考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷考生注意:1.答题前,考生在答题卡上务必用0.5毫米黑色墨水签字笔将自己的姓名、准考证号、填写清楚 ,并贴好条形码.请认真核准条形码上的准考证号、姓名和科目.2.每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.在试题卷上作答无效..........3.本卷共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 参考公式: 如果事件A B ,互斥,那么球的表面积公式()()()P A B P A P B +=+24πS R =如果事件A B ,相互独立,那么 其中R 表示球的半径()()()P A B P A P B =球的体积公式如果事件A 在一次试验中发生的概率是P ,那么34π3V R =n 次独立重复试验中恰好发生k 次的概率其中R 表示球的半径()(1)(01,2)k kn k n n P k C P P k n -=-=,,,一、选择题1.函数y =的定义域为( )A .{}|0x x ≥ B .{}|1x x ≥ C .{}{}|10x x ≥D .{}|01x x ≤≤2.汽车经过启动、加速行驶、匀速行驶、减速行驶之后停车,若把这一过程中汽车的行驶路程s 看作时间t 的函数,其图像可能是( )3.在ABC △中,AB =c ,AC =b .若点D 满足2BD DC =,则AD =( ) A .2133+b cB .5233-c b C .2133-b cD .1233+b c 4.设a ∈R ,且2()a i i +为正实数,则a =( ) A .2B .1C .0D .1-5.已知等差数列{}n a 满足244a a +=,3510a a +=,则它的前10项的和10S =( ) A .138B .135C .95D .236.若函数(1)y f x =-的图像与函数ln 1y =的图像关于直线y x =对称,则()f x =( ) A .21x e- B .2xeC .21x e+ D .22x e+7.设曲线11x y x +=-在点(32),处的切线与直线10ax y ++=垂直,则a =( ) A .2B .12C .12- D .2-8.为得到函数πcos 23y x ⎛⎫=+ ⎪⎝⎭的图像,只需将函数sin 2y x =的图像( ) A .向左平移5π12个长度单位B .向右平移5π12个长度单位A .B .C .D .C .向左平移5π6个长度单位D .向右平移5π6个长度单位 9.设奇函数()f x 在(0)+∞,上为增函数,且(1)0f =,则不等式()()0f x f x x--<的解集为( ) A .(10)(1)-+∞,, B .(1)(01)-∞-,,C .(1)(1)-∞-+∞,,D .(10)(01)-,,10.若直线1x ya b+=通过点(cos sin )M αα,,则( ) A .221a b +≤ B .221a b +≥ C .22111a b+≤D .22111a b +≥ 11.已知三棱柱111ABC A B C -的侧棱与底面边长都相等,1A 在底面ABC 内的射影为ABC △的中心,则1AB 与底面ABC 所成角的正弦值等于( )A .13B.3C.3D .2312.如图,一环形花坛分成A B C D ,,,四块,现有4种不同的花供选种,要求在每块里种1种花,且相邻的2块种不同的花,则不同的种法总数为( ) A .96 B .84C .60D .482008年普通高等学校招生全国统一考试理科数学(必修+选修Ⅱ)第Ⅱ卷注意事项:1.答题前,考生先在答题卡上用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,然后贴好条形码.请认真核准条形码上的准考证号、姓名和科目.2.第Ⅱ卷共7页,请用直径0.5毫米黑色墨水签字笔在答题卡上各题的答题区域内作答,在试题卷上作答无效.......... 3.本卷共10小题,共90分.二、填空题:本大题共4小题,每小题5分,共20分.把答案填在题中横线上.(注意:在试题卷上作答无效.........) 13.若x y ,满足约束条件03003x y x y x ⎧+⎪-+⎨⎪⎩,,,≥≥≤≤则2z x y =-的最大值为 .14.已知抛物线21y ax =-的焦点是坐标原点,则以抛物线与两坐标轴的三个交点为顶点的三角形面积为 .15.在ABC △中,AB BC =,7cos 18B =-.若以A B ,为焦点的椭圆经过点C ,则该椭圆的离心率e = .16.等边三角形ABC 与正方形ABDE 有一公共边AB ,二面角C AB D --的余弦值为,M N ,分别是AC BC ,的中点,则EM AN ,所成角的余弦值等于 . 三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分10分) (注意:在试题卷上作答无效.........)设ABC △的内角A B C ,,所对的边长分别为a b c ,,,且3cos cos 5a Bb Ac -=. (Ⅰ)求tan cot A B 的值; (Ⅱ)求tan()A B -的最大值.18.(本小题满分12分) (注意:在试题卷上作答无效.........) 四棱锥A BCDE -中,底面BCDE 为矩形,侧面ABC ⊥底面BCDE ,2BC =,CD =AB AC =.(Ⅰ)证明:AD CE ⊥;(Ⅱ)设CE 与平面ABE 所成的角为45,求二面角C AD E --的大小.19.(本小题满分12分)(注意:在试题卷上作答无效.........) 已知函数32()1f x x ax x =+++,a ∈R . (Ⅰ)讨论函数()f x 的单调区间;C DE AB(Ⅱ)设函数()f x 在区间2133⎛⎫-- ⎪⎝⎭,内是减函数,求a 的取值范围.20.(本小题满分12分)(注意:在试题卷上作答无效.........) 已知5只动物中有1只患有某种疾病,需要通过化验血液来确定患病的动物.血液化验结果呈阳性的即为患病动物,呈阴性即没患病.下面是两种化验方法: 方案甲:逐个化验,直到能确定患病动物为止.方案乙:先任取3只,将它们的血液混在一起化验.若结果呈阳性则表明患病动物为这3只中的1只,然后再逐个化验,直到能确定患病动物为止;若结果呈阴性则在另外2只中任取1只化验.(Ⅰ)求依方案甲所需化验次数不少于依方案乙所需化验次数的概率; (Ⅱ)ξ表示依方案乙所需化验次数,求ξ的期望.21.(本小题满分12分)(注意:在试题卷上作答无效.........) 双曲线的中心为原点O ,焦点在x 轴上,两条渐近线分别为12l l ,,经过右焦点F 垂直于1l 的直线分别交12l l ,于A B ,两点.已知OA AB OB 、、成等差数列,且BF 与FA 同向. (Ⅰ)求双曲线的离心率;(Ⅱ)设AB 被双曲线所截得的线段的长为4,求双曲线的方程.22.(本小题满分12分)(注意:在试题卷上作答无效.........) 设函数()ln f x x x x =-.数列{}n a 满足101a <<,1()n n a f a +=. (Ⅰ)证明:函数()f x 在区间(01),是增函数; (Ⅱ)证明:11n n a a +<<;(Ⅲ)设1(1)b a ∈,,整数11ln a bk a b-≥.证明:1k a b +>.2008年普通高等学校招生全国统一考试 理科数学(必修+选修Ⅱ)参考答案1. C.2. A .3. A.4. D.5. C.6. B.7.D.8.A.9.D .10.D .11.B12.B. 13.答案:9.14. 答案:2.15.答案:38.16.答案:16. 三、17.解:(Ⅰ)由正弦定理得,sin sin ,sin sin CBc b C A c a ==c A CBB C A A b B a )cos sin sin cos sin sin (cos cos ⋅-⋅=-,1cot tan )1cot (tan sin cos cos sin sin cos cos sin )sin(cos sin cos sin +-=⋅+-=⋅+-=B A c B A c B A B A B A B A cB A AB B A 依题设得:.4cot tan .531cot tan )1cot (tan ==+-B A c B A c B A 解得(Ⅱ)由(Ⅰ)得tanA=4tanB,故A 、B 都是锐角,于是tanB>0.,43tan 41tan 3tan tan 1tan tan )tan(2≤+=+-=-B B BA B A B A且当tanB=21时,上式取等号。

2008年高考理科数学(全国)卷(Ⅱ)

2008年高考理科数学(全国)卷(Ⅱ)

2008年普通高等学校招生全国统一考试理科数学(必修+选修Ⅱ)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合{|32}M m m =∈-<<Z ,{|13}N n n M N =∈-=Z 则,≤≤A .{}01,B .{}101-,,C .{}012,,D .{}1012-,,, 2.设a b ∈R ,且0b ≠,若复数3()a bi +是实数,则 A .223b a = B .223a b =C .229b a =D .229a b =3.函数1()f x x x=-的图像关于 A .y 轴对称 B . 直线x y -=对称 C . 坐标原点对称 D . 直线x y =对称4.若13(1)ln 2ln ln x e a x b x c x -∈===,,,,,则 A .a <b <cB .c <a <bC . b <a <cD . b <c <a5.设变量x y ,满足约束条件:222y x x y x ⎧⎪+⎨⎪-⎩,,.≥≤≥,则y x z 3-=的最小值A .2-B .4-C .6-D .8-6.从20名男同学,10名女同学中任选3名参加体能测试,则选到的3名同学中既有男同学又有女同学的概率为 A .929B .1029C .1929D .20297.64(1(1+的展开式中x 的系数是A .4-B .3-C .3D .48.若动直线x a =与函数()sin f x x =和()cos g x x =的图像分别交于M N ,两点,则MN 的最大值为A .1BCD .29.设1a >,则双曲线22221(1)x y a a -=+的离心率e 的取值范围是 A. B.C .(25),D.(210.已知正四棱锥S ABCD -的侧棱长与底面边长都相等,E 是SB 的中点,则AE SD ,所成的角的余弦值为A .13B C D .2311.等腰三角形两腰所在直线的方程分别为20x y +-=与740x y --=,原点在等腰三角形的底边上,则底边所在直线的斜率为 A .3B .2C .13-D .12-12.已知球的半径为2,相互垂直的两个平面分别截球面得两个圆.若两圆的公共弦长为2,则两圆的圆心距等于 A .1B .2C .3D .2二、填空题:本大题共4小题,每小题5分,共20分.把答案填在题中横线上. 13.设向量(12)(23)==,,,a b ,若向量λ+a b 与向量(47)=--,c 共线,则=λ . 14.设曲线axy e =在点(01),处的切线与直线210x y ++=垂直,则a = . 15.已知F 是抛物线24C y x =:的焦点,过F 且斜率为1的直线交C 于A B ,两点.设FA FB >,则FA 与FB 的比值等于 .16.平面内的一个四边形为平行四边形的充要条件有多个,如两组对边分别平行,类似地,写出空间中的一个四棱柱为平行六面体的两个充要条件:充要条件① ; 充要条件② . (写出你认为正确的两个充要条件)三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分10分) 在ABC △中,5cos 13B =-,4cos 5C =. (Ⅰ)求sin A 的值; (Ⅱ)设ABC △的面积332ABC S =△,求BC 的长. 18.(本小题满分12分) 购买某种保险,每个投保人每年度向保险公司交纳保费a 元,若投保人在购买保险的一年度内出险,则可以获得10 000元的赔偿金.假定在一年度内有10 000人购买了这种保险,且各投保人是否出险相互独立.已知保险公司在一年度内至少支付赔偿金10 000元的概率为(Ⅰ)求一投保人在一年度内出险的概率p ;(Ⅱ)设保险公司开办该项险种业务除赔偿金外的成本为50 000元,为保证盈利的期望不小于0,求每位投保人应交纳的最低保费(单位:元).19.(本小题满分12分)如图,正四棱柱1111ABCD A B C D -中,124AA AB ==,点E 在1CC 上且EC E C 31=.(Ⅰ)证明:1AC ⊥平面BED ; (Ⅱ)求二面角1A DE B --的大小. 20.(本小题满分12分)设数列{}n a 的前n 项和为n S .已知1a a =,13nn n a S +=+,*n ∈N .(Ⅰ)设3nn n b S =-,求数列{}n b 的通项公式;(Ⅱ)若1n n a a +≥,*n ∈N ,求a 的取值范围.21.(本小题满分12分)设椭圆中心在坐标原点,(20)(01)A B ,,,是它的两个顶点,直线)0(>=k kx y 与AB 相交于点D ,与椭圆相交于E 、F 两点.(Ⅰ)若6ED DF =,求k 的值;(Ⅱ)求四边形AEBF 面积的最大值. 22.(本小题满分12分) 设函数sin ()2cos xf x x=+.(Ⅰ)求()f x 的单调区间;(Ⅱ)如果对任何0x ≥,都有()f x ax ≤,求a 的取值范围.AB CD EA 1B 1C 1D 1参考答案和评分参考评分说明:1.本解答给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要 考查内容比照评分参考制订相应的评分细则.2.对计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和 难度,可视影响的程度决定后继部分的给分,但不得超过该部分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分.3.解答右端所注分数,表示考生正确做到这一步应得的累加分数. 4.只给整数分数.选择题不给中间分.一、选择题1.B 2.A 3.C 4.C 5.D 6.D 7.B 8.B 9.B 10.C 11.A 12.C 二、填空题13.2 14.2 15.3+16.两组相对侧面分别平行;一组相对侧面平行且全等;对角线交于一点;底面是平行四边形.注:上面给出了四个充要条件.如果考生写出其他正确答案,同样给分. 三、解答题 17.解:(Ⅰ)由5cos 13B =-,得12sin 13B =, 由4cos 5C =,得3sin 5C =.所以33sin sin()sin cos cos sin 65A B C B C B C =+=+=. ··············································· 5分 (Ⅱ)由332ABC S =△得133sin 22AB AC A ⨯⨯⨯=, 由(Ⅰ)知33sin 65A =,故65AB AC ⨯=, ················································································································ 8分又sin 20sin 13AB B AC AB C ⨯==,故2206513AB =,132AB =. 所以sin 11sin 2AB A BC C ⨯==. ····························································································· 10分 18.解:各投保人是否出险互相独立,且出险的概率都是p ,记投保的10 000人中出险的人数为ξ, 则4~(10)B p ξ,.(Ⅰ)记A 表示事件:保险公司为该险种至少支付10 000元赔偿金,则A 发生当且仅当0ξ=, ··································································································································· 2分 ()1()P A P A =-1(0)P ξ=-= 4101(1)p =--,又410()10.999P A =-,故0.001p =. ························································································································ 5分 (Ⅱ)该险种总收入为10000a 元,支出是赔偿金总额与成本的和. 支出 1000050000ξ+,盈利 10000(1000050000)a ηξ=-+, 盈利的期望为 1000010000500E a E ηξ=--, ······················································ 9分 由43~(1010)B ξ-,知,31000010E ξ-=⨯, 4441010510E a E ηξ=--⨯4443410101010510a -=-⨯⨯-⨯. 0E η≥4441010105100a ⇔-⨯-⨯≥1050a ⇔--≥15a ⇔≥(元). 故每位投保人应交纳的最低保费为15元.········································································· 12分19.解法一:依题设知2AB =,1CE =.(Ⅰ)连结AC 交BD 于点F ,则BD AC ⊥.由三垂线定理知,1BD AC ⊥. ···························································································· 3分 在平面1A CA 内,连结EF 交1AC 于点G ,由于1AA ACFC CE== 故1Rt Rt A AC FCE △∽△,1AAC CFE ∠=∠, CFE ∠与1FCA ∠互余. 于是1AC EF ⊥. 1AC 与平面BED 内两条相交直线BDEF ,都垂直, 所以1AC ⊥平面BED . ······································································································· 6分 (Ⅱ)作GH DE ⊥,垂足为H ,连结1A H .由三垂线定理知1A H DE ⊥,故1A HG ∠是二面角1A DE B --的平面角. ······································································ 8分EF ==CE CF CG EF ⨯==,EG ==13EG EF =,13EF FD GH DE ⨯=⨯=又1A C ==11AG AC CG =-=11tan AG A HG HG∠== 所以二面角1A DE B --的大小为arctan ······························································· 12分 解法二:以D 为坐标原点,射线DA 为x 轴的正半轴, 建立如图所示直角坐标系D xyz -.依题设,1(220)(020)(021)(204)B C E A ,,,,,,,,,,,.(021)(220)DE DB ==,,,,,,11(224)(204)AC DA =--= ,,,,,. ······················································································· 3分 (Ⅰ)因为10AC DB = ,10AC DE =,A B CDEA 1B 1C 1D 1 FH G故1AC BD ⊥,1AC DE ⊥. 又DB DE D = ,所以1AC ⊥平面DBE . ········································································································ 6分 (Ⅱ)设向量()x y z =,,n 是平面1DA E 的法向量,则DE ⊥n ,1DA ⊥ n .故20y z +=,240x z +=.令1y =,则2z =-,4x =,(412)=-,,n . ··································································· 9分 1A C ,n 等于二面角1A DE B --的平面角,111cos 42AC AC AC ==,n n n . 所以二面角1A DE B --的大小为arccos 42······························································ 12分 20.解:(Ⅰ)依题意,113nn n n n S S a S ++-==+,即123nn n S S +=+, 由此得1132(3)n n n n S S ++-=-. ·························································································· 4分因此,所求通项公式为13(3)2n n n n b S a -=-=-,*n ∈N .① ·············································································· 6分(Ⅱ)由①知13(3)2nn n S a -=+-,*n ∈N ,于是,当2n ≥时,1n n n a S S -=-1123(3)23(3)2n n n n a a ---=+-⨯---⨯ 1223(3)2n n a --=⨯+-, 12143(3)2n n n n a a a --+-=⨯+- 22321232n n a --⎡⎤⎛⎫=+-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦,当2n ≥时,21312302n n n a a a -+⎛⎫⇔+- ⎪⎝⎭≥≥9a ⇔-≥.又2113a a a =+>.综上,所求的a 的取值范围是[)9-+∞,. ········································································· 12分21.(Ⅰ)解:依题设得椭圆的方程为2214x y +=,直线AB EF ,的方程分别为22x y +=,(0)y kx k =>. ··············································· 2分 如图,设001122()()()D x kx E x kx F x kx ,,,,,,其中12x x <, 且12x x ,满足方程22(14)4k x +=,故21x x =-=由6ED DF = 知01206()x x x x -=-,得021215(6)77x x x x =+==;由D 在AB 上知0022x kx +=,得0212x k=+. 所以212k =+,化简得2242560k k -+=,解得23k =或38k =. ············································································································ 6分 (Ⅱ)解法一:根据点到直线的距离公式和①式知,点E F ,到AB 的距离分别为1h ==2h ==. ····································································· 9分又AB ==,所以四边形AEBF 的面积为121()2S AB h h =+12===≤当21k =,即当12k =时,上式取等号.所以S 的最大值为 ······························· 12分 解法二:由题设,1BO =,2AO =.设11y kx =,22y kx =,由①得20x >,210y y =->, 故四边形AEBF 的面积为BEF AEF S S S =+△△222x y =+ ······························································································································ 9分===当222x y =时,上式取等号.所以S 的最大值为 ·················································· 12分 22.解: (Ⅰ)22(2cos )cos sin (sin )2cos 1()(2cos )(2cos )x x x x x f x x x +--+'==++. ····································· 2分当2π2π2π2π33k x k -<<+(k ∈Z )时,1cos 2x >-,即()0f x '>; 当2π4π2π2π33k x k +<<+(k ∈Z )时,1cos 2x <-,即()0f x '<. 因此()f x 在每一个区间2π2π2π2π33k k ⎛⎫-+ ⎪⎝⎭,(k ∈Z )是增函数,()f x 在每一个区间2π4π2π2π33k k ⎛⎫++ ⎪⎝⎭,(k ∈Z )是减函数. ···································· 6分 (Ⅱ)令()()g x ax f x =-,则22cos 1()(2cos )x g x a x +'=-+ 2232cos (2cos )a x x =-+++ 211132cos 33a x ⎛⎫=-+- ⎪+⎝⎭.故当13a ≥时,()0g x '≥. 又(0)0g =,所以当0x ≥时,()(0)0g x g =≥,即()f x ax ≤. ······························ 9分 当103a <<时,令()sin 3h x x ax =-,则()cos 3h x x a '=-. 故当[)0arccos3x a ∈,时,()0h x '>. 因此()h x 在[)0arccos3a ,上单调增加. 故当(0arccos3)x a ∈,时,()(0)0h x h >=, 即sin 3x ax >.于是,当(0arccos3)x a ∈,时,sin sin ()2cos 3x xf x ax x =>>+.当0a ≤时,有π1π0222f a ⎛⎫=>⎪⎝⎭ ≥. 因此,a 的取值范围是13⎡⎫+∞⎪⎢⎣⎭,.--------------------------------------------------------- 12分。

2008年高考数学全国一卷试题和答案

2008年高考数学全国一卷试题和答案

2008年普通高等学校夏季招生考试数学理工农医类(全国Ⅰ)本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分.第I 卷1至2页,第II 卷3至9页.考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷考生注意: 1.答题前,考生在答题卡上务必用0.5毫米黑色墨水签字笔将自己的姓名、准考证号、填写清楚 ,并贴好条形码.请认真核准条形码上的准考证号、姓名和科目. 2.每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.在试题卷上作答无效..........3.本卷共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 参考公式: 如果事件A B ,互斥,那么 球的表面积公式()()()P A B P A P B +=+24πS R =如果事件A B ,相互独立,那么 其中R 表示球的半径()()()P A B P A P B =球的体积公式如果事件A 在一次试验中发生的概率是P ,那么 34π3V R =n 次独立重复试验中恰好发生k 次的概率其中R 表示球的半径()(1)(01,2)k kn k n n P k C P P k n -=-=,,,一、选择题 1.函数y =)A .{}|0x x ≥ B .{}|1x x ≥ C .{}{}|10x x ≥D .{}|01x x ≤≤2.汽车经过启动、加速行驶、匀速行驶、减速行驶之后停车,若把这一过程中汽车的行驶路程s 看作时间t 的函数,其图像可能是( )3.在ABC △中,AB =c ,AC =b .若点D 满足2BD DC =,则AD =( )A .B .C .D .A .2133+b cB .5233-c b C .2133-b cD .1233+b c 4.设a ∈R ,且2()a i i +为正实数,则a =( ) A .2B .1C .0D .1-5.已知等差数列{}n a 满足244a a +=,3510a a +=,则它的前10项的和10S =( ) A .138B .135C .95D .236.若函数(1)y f x =-的图像与函数1y =的图像关于直线y x =对称,则()f x =( ) A .21x e-B .2xeC .21x e+D .22x e+7.设曲线11x y x +=-在点(32),处的切线与直线10ax y ++=垂直,则a =( ) A .2B .12C .12- D .2-8.为得到函数πcos 23y x ⎛⎫=+⎪⎝⎭的图像,只需将函数sin 2y x =的图像( ) A .向左平移5π12个长度单位B .向右平移5π12个长度单位 C .向左平移5π6个长度单位D .向右平移5π6个长度单位9.设奇函数()f x 在(0)+∞,上为增函数,且(1)0f =,则不等式()()0f x f x x--<的解集为( ) A .(10)(1)-+∞,, B .(1)(01)-∞-,,C .(1)(1)-∞-+∞,,D .(10)(01)-,,10.若直线1x ya b+=通过点(cos sin )M αα,,则( ) A .221a b +≤ B .221a b +≥ C .22111a b+≤D .22111a b +≥ 11.已知三棱柱111ABC A B C -的侧棱与底面边长都相等,1A 在底面ABC 内的射影为ABC △的中心,则1AB 与底面ABC 所成角的正弦值等于( )A .13B .3C D .2312.如图,一环形花坛分成A B C D ,,,四块,现有4种不同的花供选种,要求在每块里种1种花,且相邻的2块种不同的花,则不同的种法总数为( )A .96B .84C .60D .482008年普通高等学校招生全国统一考试理科数学(必修+选修Ⅱ)第Ⅱ卷注意事项:1.答题前,考生先在答题卡上用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,然后贴好条形码.请认真核准条形码上的准考证号、姓名和科目.2.第Ⅱ卷共7页,请用直径0.5毫米黑色墨水签字笔在答题卡上各题的答题区域内作答,在试题卷上作答无效.......... 3.本卷共10小题,共90分.二、填空题:本大题共4小题,每小题5分,共20分.把答案填在题中横线上.(注意:在试题卷上作答无效.........) 13.若x y ,满足约束条件03003x y x y x ⎧+⎪-+⎨⎪⎩,,,≥≥≤≤则2z x y =-的最大值为 .14.已知抛物线21y ax =-的焦点是坐标原点,则以抛物线与两坐标轴的三个交点为顶点的三角形面积为 .15.在ABC △中,AB BC =,7cos 18B =-.若以A B ,为焦点的椭圆经过点C ,则该椭圆的离心率e = .16.等边三角形ABC 与正方形ABDE 有一公共边AB ,二面角C AB D --的余弦值为3,M N ,分别是AC BC ,的中点,则EM AN ,所成角的余弦值等于 . 三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分10分) (注意:在试题卷上作答无效.........) 设ABC △的内角A B C ,,所对的边长分别为a b c ,,,且3cos cos 5a Bb Ac -=. (Ⅰ)求tan cot A B 的值;(Ⅱ)求tan()A B -的最大值.18.(本小题满分12分) (注意:在试题卷上作答无效.........) 四棱锥A BCDE -中,底面BCDE 为矩形,侧面ABC ⊥底面BCDE ,2BC =,CD =AB AC =.(Ⅰ)证明:AD CE ⊥;(Ⅱ)设CE 与平面ABE 所成的角为45,求二面角C AD E --的大小.19.(本小题满分12分)(注意:在试题卷上作答无效.........) 已知函数32()1f x x ax x =+++,a ∈R . (Ⅰ)讨论函数()f x 的单调区间;(Ⅱ)设函数()f x 在区间2133⎛⎫-- ⎪⎝⎭,内是减函数,求a 的取值范围.20.(本小题满分12分)(注意:在试题卷上作答无效.........) 已知5只动物中有1只患有某种疾病,需要通过化验血液来确定患病的动物.血液化验结果呈阳性的即为患病动物,呈阴性即没患病.下面是两种化验方法: 方案甲:逐个化验,直到能确定患病动物为止.方案乙:先任取3只,将它们的血液混在一起化验.若结果呈阳性则表明患病动物为这3只中的1只,然后再逐个化验,直到能确定患病动物为止;若结果呈阴性则在另外2只中任取1只化验.(Ⅰ)求依方案甲所需化验次数不少于依方案乙所需化验次数的概率; (Ⅱ)ξ表示依方案乙所需化验次数,求ξ的期望.CDE AB21.(本小题满分12分)(注意:在试题卷上作答无效.........) 双曲线的中心为原点O ,焦点在x 轴上,两条渐近线分别为12l l ,,经过右焦点F 垂直于1l 的直线分别交12l l ,于A B ,两点.已知OA AB OB 、、成等差数列,且BF 与FA 同向. (Ⅰ)求双曲线的离心率;(Ⅱ)设AB 被双曲线所截得的线段的长为4,求双曲线的方程.22.(本小题满分12分)(注意:在试题卷上作答无效.........) 设函数()ln f x x x x =-.数列{}n a 满足101a <<,1()n n a f a +=. (Ⅰ)证明:函数()f x 在区间(01),是增函数; (Ⅱ)证明:11n n a a +<<;(Ⅲ)设1(1)b a ∈,,整数11ln a bk a b-≥.证明:1k a b +>.2008年普通高等学校招生全国统一考试 理科数学(必修+选修Ⅱ)参考答案1. C.2. A .3. A.4. D.5. C.6. B.7.D.8.A.9.D .10.D .11.B12.B.13.答案:9.14. 答案:2.15.答案:38.16.答案:16. 三、17.解:(Ⅰ)由正弦定理得,sinsin ,sin sin CBc b C A c a ==c A CBB C A A b B a )cos sin sin cos sin sin (cos cos ⋅-⋅=-,1cot tan )1cot (tan sin cos cos sin sin cos cos sin )sin(cos sin cos sin +-=⋅+-=⋅+-=B A c B A c B A B A B A B A cB A AB B A 依题设得:.4cot tan .531cot tan )1cot (tan ==+-B A c B A c B A 解得(Ⅱ)由(Ⅰ)得tanA=4tanB,故A 、B 都是锐角,于是tanB>0.,43tan 41tan 3tan tan 1tan tan )tan(2≤+=+-=-B B BA B A B A且当tanB=21时,上式取等号。

2008年普通高等学校招生全国统一考试全国卷Ⅱ理

2008年普通高等学校招生全国统一考试全国卷Ⅱ理

2008年普通高等学校招生全国统一考试(全国卷Ⅱ.理)数学(必选+选修Ⅰ)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

第Ⅰ卷参考公式:如果事件A 、B 互斥,那么 球的表面积公式P (A+B )=P (A )+P (B ) S=4π2R如果事件A 、B 相互独立,那么 其中R 表示球的半径 R (A·B )=P (A )·P (B ) 球的体积公式如果事件A 在一次试验中发生的概率是P ,那么 V =43πR 3 n 次独立重复试验中事件A 恰好发生k 次的概率 其中R 表示球的半径k n k k n n p P C k P --=)1()((k=0,1,2,…,n )一、选择题1.设集合M={m ∈Z|-3<m <2}, N={n ∈Z|-1≤n ≤3},则M N=A .{0,1}B .{-1,0,1}C .{0,1,2}D .{-1,0,1,2}2.设a ,b ∈R ,且b≠0,若复数(a +bi )3是实数,则A .223a b =B .223b a =C .229a b =D .229b a = 3.函数x x x f -=1)(的图像关于 A .y 轴对称 B .直线x y -=对称 C .坐标原点对称 D .直线x y =对称4.若)1,(1-∈e x ,x c x b x a 3ln ,ln 2,ln ===,则A .c b a <<B .b a c <<C .c a b <<D .a c b <<5.设变量y x ,满足条件⎪⎩⎪⎨⎧-≥≤+≥222,x y x x y ,则y x z 3-=的最小值为A .-2B .-4C .-6D .-86.从20名男同学,10名女同学中任选3名参加体能测试,则选到的3名同学中既有男同学又有女同学的概率为A .299B .2910C .2919D .2920 7.46)1()1(x x +-的展开式中x 的系数是 A .-4 B .-3 C .3 D .48.若动直线a x =与函数x x f sin )(=和x x g cos )(=的图像分布交于M 、N 两点,则|MN|的最大值为A .1B .2C .3D .29.设1>a ,则双曲线1)1(2222=+-a y a x 的离心率e 的取值范围是 A .(2,2) B .(2,5) C .(2,5) D .(2,5)10.已知正四棱锥S —ABCD 的侧棱长与底面边长都相等,E 是SB 的中点,则AE 、SD 所成的角的余弦值为A .31B .32C .33D .32 11.等腰三角形两腰所在直线的方程分别为02=-+y x 和047=--y x ,原点在等腰三角形的底边上,则底边所在直线的斜率为A .3B .2C .31-D .21- 12.已知球的半径为2,相互垂直的两个平面分别截球面得两个圆,若两圆的公共弦长为2,则两圆的圆心距等于A .1B .2C .3D .2第Ⅱ卷(非选择题,共90分)二、填空题:(本大题共4个小题,每小题5分,共20分)把答案填在答题卡上。

2008年高考数学全国一卷试题和答案

2008年高考数学全国一卷试题和答案

2008年高考数学全国一卷试题和答案2008年普通高等学校夏季招生考试数学理工农医类(全国Ⅰ)本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分.第I 卷1至2页,第II 卷3至9页.考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷考生注意:1.答题前,考生在答题卡上务必用0.5毫米黑色墨水签字笔将自己的姓名、准考证号、填写清楚 ,并贴好条形码.请认真核准条形码上的准考证号、姓名和科目.2.每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.在试题卷上作答.......无效... 3.本卷共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 参考公式:如果事件A B ,互斥,那么 球的表面积公式()()()P A B P A P B +=+24πS R =如果事件A B ,相互独立,那么 其中R表示球的半径 ()()()P A B P A P B =g g 球的体积公式如果事件A 在一次试验中发生的概率是P ,那么 34π3V R =n次独立重复试验中恰好发生k 次的概率其中R 表示球的半径()(1)(01,2)k kn k n n P k C P P k n -=-=L ,,,一、选择题 1.函数(1)y x x x- )A .{}|0x x ≥B .{}|1x x ≥C .{}{}|10x x U ≥D .{}|01x x ≤≤2.汽车经过启动、加速行驶、匀速行驶、减速行驶之后停车,若把这一过程中汽车的行驶路程s看作时间t 的函数,其图像可能是( )3.在ABC △中,AB =u u u r c ,AC =u u u r b .若点D 满足2BD DC =u u u r u u u r,则AD =u u u r ( )s OA s t Os t Os OB C DA .2133+b cB .5233-c bC .2133-b c D .1233+b c 4.设a ∈R ,且2()a i i +为正实数,则a =( )A .2B .1C .0D .1- 5.已知等差数列{}na 满足244aa +=,3510aa +=,则它的前10项的和10S =( )A .138B .135C .95D .23 6.若函数(1)y f x =-的图像与函数1y x =的图像关于直线y x =对称,则()f x =( ) A .21x e - B .2xe C .21x e + D .22x e +7.设曲线11x y x +=-在点(32),处的切线与直线10ax y ++=垂直,则a =( )A .2B .12C .12- D .2- 8.为得到函数πcos 23y x ⎛⎫=+ ⎪⎝⎭的图像,只需将函数sin 2y x=的图像( )A .向左平移5π12个长度单位 B .向右平移5π12个长度单位C .向左平移5π6个长度单位D .向右平移5π6个长度单位9.设奇函数()f x 在(0)+∞,上为增函数,且(1)0f =,则不等式()()0f x f x x --<的解集为( ) A .(10)(1)-+∞U ,, B .(1)(01)-∞-U ,, C .(1)(1)-∞-+∞U ,, D .(10)(01)-U ,,10.若直线1x y a b+=通过点(cos sin )M αα,,则( ) A .221ab +≤ B .221ab +≥ C .22111a b +≤D .22111a b +≥11.已知三棱柱111ABC A B C -的侧棱与底面边长都相等,1A 在底面ABC 内的射影为ABC △的中心,则1AB 与底面ABC 所成角的正弦值等于( ) A .13B 2C 3D .2312.如图,一环形花坛分成A B C D ,,,四块,现有4种不同的花供选种,要求在每块里种1种花,且相邻的2块种不同的花,则不同的种法总数为( )A .96B .84C .60D .48DB CA2008年普通高等学校招生全国统一考试理科数学(必修+选修Ⅱ)第Ⅱ卷注意事项:1.答题前,考生先在答题卡上用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,然后贴好条形码.请认真核准条形码上的准考证号、姓名和科目.2.第Ⅱ卷共7页,请用直径0.5毫米黑色墨水签字笔在答题卡上各题的答题区域内作答,在试..题卷上作答无效........3.本卷共10小题,共90分.二、填空题:本大题共4小题,每小题5分,共20分.把答案填在题中横线上.(注意:在试题卷上作答无效.........)13.若x y,满足约束条件3003x yx yx⎧+⎪-+⎨⎪⎩,,,≥≥≤≤则2z x y=-的最大值为 . 14.已知抛物线21y ax=-的焦点是坐标原点,则以抛物线与两坐标轴的三个交点为顶点的三角形面积为 .15.在ABC △中,AB BC =,7cos 18B =-.若以A B ,为焦点的椭圆经过点C,则该椭圆的离心率e =.16.等边三角形ABC 与正方形ABDE 有一公共边AB ,二面角C AB D --的余弦值为3,M N ,分别是AC BC ,的中点,则EM AN ,所成角的余弦值等于 . 三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分10分)(注意:在试题卷上作答无........效.) 设ABC △的内角A B C ,,所对的边长分别为a b c ,,,且3cos cos 5a Bb A c-=.(Ⅰ)求tan cot A B 的值; (Ⅱ)求tan()A B -的最大值.(注意:在试题卷上作答无效.........) 四棱锥A BCDE -中,底面BCDE 为矩形,侧面ABC ⊥底面BCDE ,2BC =,2CD =AB AC =. (Ⅰ)证明:AD CE ⊥;(Ⅱ)设CE 与平面ABE 所成的角为45o,求二面角C AD E--的大小.19.(本小题满分12分)(注意:在试题卷上作答无效.........) 已知函数32()1f x xax x =+++,a ∈R .(Ⅰ)讨论函数()f x 的单调区间;(Ⅱ)设函数()f x 在区间2133⎛⎫--⎪⎝⎭,内是减函数,求a 的取值范围.CDE A B(注意:在试题卷上作答无效.........) 已知5只动物中有1只患有某种疾病,需要通过化验血液来确定患病的动物.血液化验结果呈阳性的即为患病动物,呈阴性即没患病.下面是两种化验方法:方案甲:逐个化验,直到能确定患病动物为止. 方案乙:先任取3只,将它们的血液混在一起化验.若结果呈阳性则表明患病动物为这3只中的1只,然后再逐个化验,直到能确定患病动物为止;若结果呈阴性则在另外2只中任取1只化验. (Ⅰ)求依方案甲所需化验次数不少于依方案乙所需化验次数的概率;(Ⅱ)ξ表示依方案乙所需化验次数,求ξ的期望.21.(本小题满分12分)(注意:在试题卷上作答无效.........) 双曲线的中心为原点O ,焦点在x 轴上,两条渐近线分别为12l l ,,经过右焦点F 垂直于1l 的直线分别交12l l ,于A B ,两点.已知OA AB OB u u u r u u u r u u u r 、、成等差数列,且BFu u u r与FAu u u r同向.(Ⅰ)求双曲线的离心率;(Ⅱ)设AB 被双曲线所截得的线段的长为4,求双曲线的方程.22.(本小题满分12分)(注意:在试题卷上作答无效.........) 设函数()ln f x x x x =-.数列{}na 满足101a <<,1()n n af a +=.(Ⅰ)证明:函数()f x 在区间(01),是增函数; (Ⅱ)证明:11nn aa +<<;(Ⅲ)设1(1)b a ∈,,整数11ln a bk a b-≥.证明:1k a b+>.2008年普通高等学校招生全国统一考试 理科数学(必修+选修Ⅱ)参考答案1.C.2.A.3.A.4.D.5.C.6.B.7.D.8.A.9.D .10.D .11.B12.B.13.答案:9.14. 答案:2.15.答案:38.16.答案:16. 三、17.解:(Ⅰ)由正弦定理得 ,sin sin ,sin sin CB c bC A c a == c A CBB C A A b B a )cos sin sin cos sin sin (cos cos ⋅-⋅=-,1cot tan )1cot (tan sin cos cos sin sin cos cos sin )sin(cos sin cos sin +-=⋅+-=⋅+-=B A c B A c B A B A B A B A cB A AB B A依题设得:.4cot tan .531cot tan )1cot (tan ==+-B A c B A c B A 解得(Ⅱ)由(Ⅰ)得tanA=4tanB,故A 、B 都是锐角,于是tanB>0.,43tan 41tan 3tan tan 1tan tan )tan(2≤+=+-=-B B BA B A B A且当tanB=21时,上式取等号。

2008年普通高等学校招生全国统一考试(陕西卷)数学理

2008年普通高等学校招生全国统一考试(陕西卷)数学理

2008年普通高等学校招生全国统一考试(陕西卷)理科数学(必修+选修Ⅱ)一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的(本大题共12小题,每小题5分,共60分). 1.复数(2)12i i i+-等于( ) A .i B .i - C .1 D .1-2.已知全集{12345}U =,,,,,集合2{|320}A x x x =-+=,{|2}B x x a a A ==∈,,则集合()U A B ð中元素的个数为( )A .1B .2C .3D .43.ABC △的内角A B C ,,的对边分别为a b c ,,,若120c b B ===,则a 等于( )AB .2 CD4.已知{}n a 是等差数列,124a a +=,7828a a +=,则该数列前10项和10S 等于( )A .64B .100C .110D .12050y m -+=与圆22220x y x +--=相切,则实数m 等于( )AB.C.-D.-6.“18a =”是“对任意的正数x ,21ax x+≥”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件 7.已知函数3()2x f x +=,1()fx -是()f x 的反函数,若16mn =(m n ∈+R ,),则11()()f m f n --+的值为( ) A .2- B .1 C .4 D .108.双曲线22221x y a b-=(0a >,0b >)的左、右焦点分别是12F F ,,过1F 作倾斜角为30的直线交双曲线右支于M 点,若2MF 垂直于x 轴,则双曲线的离心率为( )ABCD.39.如图,l A B A B αβαβαβ⊥=∈∈ ,,,,,到l 的距离分别是a 和b ,AB 与αβ,所成的角分别是θ和ϕ,AB 在αβ,内的射影分别是m 和n ,若a b >,则( )A .m n θϕ>>,B .m n θϕ><,C .m n θϕ<<,D .m n θϕ<>,A B a bl αβ10.已知实数x y ,满足121y y x x y m ⎧⎪-⎨⎪+⎩≥,≤,≤.如果目标函数z x y =-的最小值为1-,则实数m 等于( )A .7B .5C .4D .311.定义在R 上的函数()f x 满足()()()2f x y f x f y xy +=++(x y ∈R ,),(1)2f =,则(3)f -等于( )A .2B .3C .6D .912.为提高信息在传输中的抗干扰能力,通常在原信息中按一定规则加入相关数据组成传输信息.设定原信息为012i a a a a ,{01}∈,(012i =,,),传输信息为00121h a a a h ,其中001102h a a h h a =⊕=⊕,,⊕运算规则为:000⊕=,011⊕=,101⊕=,110⊕=,例如原信息为111,则传输信息为01111.传输信息在传输过程中受到干扰可能导致接收信息出错,则下列接收信息一定有误的是( )A .11010B .01100C .10111D .00011二、填空题:(本大题共4小题,每小题4分,共16分). 13.(1)1lim2n a n n a∞++=+→,则a = .14.长方体1111ABCD A BC D -的各顶点都在球O的球面上,其中1::AB AD AA =A B ,两点的球面距离记为m ,1A D ,两点的球面距离记为n ,则mn的值为 . 15.关于平面向量,,a b c .有下列三个命题:①若a b =a c ,则=b c .②若(1)(26)k ==-,,,a b ,∥a b ,则3k =-. ③非零向量a 和b 满足||||||==-a b a b ,则a 与+a b 的夹角为60.其中真命题的序号为 .(写出所有真命题的序号)16.某地奥运火炬接力传递路线共分6段,传递活动分别由6名火炬手完成.如果第一棒火炬手只能从甲、乙、丙三人中产生,最后一棒火炬手只能从甲、乙两人中产生,则不同的传递方案共有 种.(用数字作答).三、解答题:解答应写出文字说明,证明过程或演算步骤(本大题共6小题,共74分) 17.(本小题满分12分)已知函数2()2sincos 444x x xf x =-+. (Ⅰ)求函数()f x 的最小正周期及最值;(Ⅱ)令π()3g x f x ⎛⎫=+ ⎪⎝⎭,判断函数()g x 的奇偶性,并说明理由.18.(本小题满分12分)某射击测试规则为:每人最多射击3次,击中目标即终止射击,第i 次击中目标得1~i (123)i =,,分,3次均未击中目标得0分.已知某射手每次击中目标的概率为0.8,其各次射击结果互不影响.(Ⅰ)求该射手恰好射击两次的概率;(Ⅱ)该射手的得分记为ξ,求随机变量ξ的分布列及数学期望. 19.(本小题满分12分)三棱锥被平行于底面ABC 的平面所截得的几何体如图所示,截面为111A B C ,90BAC ∠=,1A A ⊥平面ABC,1A AAB ,2AC =,111AC =,12BD DC =. (Ⅰ)证明:平面1A AD ⊥平面11BCC B ; (Ⅱ)求二面角1A CC B --的大小. 20.(本小题满分12分)已知抛物线C :22y x =,直线2y kx =+交C 于A B ,两点,M 是线段AB 的中点,过M 作x 轴的垂线交C 于点N .(Ⅰ)证明:抛物线C 在点N 处的切线与AB 平行;(Ⅱ)是否存在实数k 使0NA NB =,若存在,求k 的值;若不存在,说明理由.21.(本小题满分12分)已知函数21()kx f x x c+=+(0c >且1c ≠,k ∈R )恰有一个极大值点和一个极小值点,其中一个是x c =-. (Ⅰ)求函数()f x 的另一个极值点;(Ⅱ)求函数()f x 的极大值M 和极小值m ,并求1M m -≥时k 的取值范围. 22.(本小题满分14分)已知数列{}n a 的首项135a =,1321nn n a a a +=+,12n = ,,. (Ⅰ)求{}n a 的通项公式; (Ⅱ)证明:对任意的0x >,21121(1)3n n a x x x ⎛⎫-- ⎪++⎝⎭≥,12n = ,,; (Ⅲ)证明:2121n n a a a n +++>+ .参考答案1.D 2.B 3.D 4.B 5.C 6.A 7.A 8.B 9.D 10.B 11.C 12.CA 1 A C 1B 1BDC13.1 14.1215.② 16.96 17.解:(Ⅰ)2()sin2sin )24x x f x =+-sin 22x x =π2sin 23x ⎛⎫=+ ⎪⎝⎭. ()f x ∴的最小正周期2π4π12T ==. 当πsin 123x ⎛⎫+=-⎪⎝⎭时,()f x 取得最小值2-;当πsin 123x ⎛⎫+= ⎪⎝⎭时,()f x 取得最大值2. (Ⅱ)由(Ⅰ)知π()2sin 23x f x ⎛⎫=+⎪⎝⎭.又π()3g x f x ⎛⎫=+ ⎪⎝⎭.∴1ππ()2sin 233g x x ⎡⎤⎛⎫=++ ⎪⎢⎥⎝⎭⎣⎦π2sin 22x ⎛⎫=+ ⎪⎝⎭2cos 2x =.()2cos 2cos ()22x x g x g x ⎛⎫-=-== ⎪⎝⎭.∴函数()g x 是偶函数.18.(Ⅰ)设该射手第i 次击中目标的事件为(123)i A i =,,,则()0.8()0.2i i P A P A ==,,()()()0.20.80.16i i i i P A A P A P A ==⨯=.(Ⅱ)ξ可能取的值为0,1,2,3.ξ的分布列为00.00810.03220.1630.8 2.752E ξ=⨯+⨯+⨯+⨯=.19.解法一:(Ⅰ) 1A A ⊥平面ABC BC ⊂,平面ABC ,∴1A A BC ⊥.在Rt ABC △中,2AB AC BC =∴=,:1:2BD DC =,3BD ∴=,又3BD AB AB BC==, DBA ABC ∴△∽△,90ADB BAC ∴∠=∠= ,即AD BC ⊥.又1A A AD A = ,BC ∴⊥平面1A AD ,BC ⊂ 平面11BCC B ,∴平面1A AD ⊥平面11BCC B .(Ⅱ)如图,作1AE C C ⊥交1C C 于E 点,连接BE ,由已知得AB ⊥平面11ACC A .AE ∴是BE 在面11ACC A 内的射影. 由三垂线定理知1BE CC ⊥,AEB ∴∠为二面角1A CC B --的平面角. 过1C 作1C F AC ⊥交AC 于F 点,则1CF AC AF =-=,11C F A A ==160C CF ∴∠=.在Rt AEC △中,sin 6022AE AC ==⨯=在Rt BAE △中,tan AB AEB AE ===.AEB ∴∠= 即二面角1A CC B --为 解法二:(Ⅰ)如图,建立空间直角坐标系,则11(000)0)(020)(00A B C A C ,,,,,,,,,,:1:2BD DC = ,13BD BC ∴= .D ∴点坐标为203⎫⎪⎪⎝⎭,,. ∴203AD ⎫=⎪⎪⎝⎭,,,1(20)(00BC AA == ,,. 10BC AA =,0BC AD = ,1BC AA ∴⊥,BC AD ⊥,又1A A AD A = , BC ∴⊥平面1A AD ,又BC ⊂平面11BCC B ,∴平面1A AD ⊥平面11BCC B .(Ⅱ)BA ⊥ 平面11ACC A,取0)AB ==,m 为平面11ACC A 的法向量,设平面11BCC B 的法向量为()l m n =,,n ,则100BC CC == ,n n .200m m ⎧+=⎪∴⎨-=⎪⎩,,l n ∴==,,如图,可取1m =,则=⎭n , A 1 AC 1B 1BD CFE(第19题,解法一)(第19题,解法二)010cos5⨯+<>==,m n,即二面角1A CC B--为arccos5.20.解法一:(Ⅰ)如图,设211(2)A x x,,222(2)B x x,,把2y kx=+代入22y x=得2220x kx--=,由韦达定理得122kx x+=,121x x=-,∴1224N Mx x kx x+===,∴N点的坐标为248k k⎛⎫⎪⎝⎭,.设抛物线在点N处的切线l的方程为284k ky m x⎛⎫-=-⎪⎝⎭,将22y x=代入上式得222048mk kx mx-+-=,直线l与抛物线C相切,2222282()048mk km m mk k m k⎛⎫∴∆=--=-+=-=⎪⎝⎭,m k∴=.即l AB∥.(Ⅱ)假设存在实数k,使0NA NB=,则NA NB⊥,又M是AB的中点,1||||2MN AB∴=.由(Ⅰ)知121212111()(22)[()4]222My y y kx kx k x x=+=+++=++22142224k k⎛⎫=+=+⎪⎝⎭.MN⊥x轴,22216||||2488M Nk k kMN y y+∴=-=+-=.又12||||AB x x=-=)6==2168k+∴=2k=±.即存在2k=±,使0NA NB=.解法二:(Ⅰ)如图,设221122(2)(2)A x xB x x,,,,把2y kx=+代入22y x=得2220x kx--=.由韦达定理得121212kx x x x+==-,.∴1224N M x x kx x +===,∴N 点的坐标为248k k ⎛⎫ ⎪⎝⎭,.22y x = ,4y x '∴=, ∴抛物线在点N 处的切线l 的斜率为44kk ⨯=,l AB ∴∥. (Ⅱ)假设存在实数k ,使0NA NB =.由(Ⅰ)知22221122224848k k k k NA x x NB x x ⎛⎫⎛⎫=--=-- ⎪ ⎪⎝⎭⎝⎭ ,,则22221212224488k k k k NA NB x x x x ⎛⎫⎛⎫⎛⎫⎛⎫=--+-- ⎪⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭222212124441616k k k k x x x x ⎛⎫⎛⎫⎛⎫⎛⎫=--+-- ⎪⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭1212144444k k k k x x x x ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=--+++ ⎪⎪ ⎪⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦()221212121214()4164k k k x x x x x x k x x ⎡⎤⎡⎤=-++++++⎢⎥⎢⎥⎣⎦⎣⎦22114(1)421624k k k k k k ⎛⎫⎡⎤=--⨯++⨯-+⨯+ ⎪⎢⎥⎝⎭⎣⎦ 22313164k k ⎛⎫⎛⎫=---+ ⎪ ⎪⎝⎭⎝⎭0=,21016k --< ,23304k ∴-+=,解得2k =±.即存在2k =±,使0NA NB = .21.解:(Ⅰ)222222()2(1)2()()()k x c x kx kx x ckf x x c x c +-+--+'==++,由题意知()0f c '-=, 即得220c k c ck --=,(*)0c ≠ ,0k ∴≠.由()0f x '=得220kx x ck --+=,由韦达定理知另一个极值点为1x =(或2x c k=-). (Ⅱ)由(*)式得21k c =-,即21c k=+. 当1c >时,0k >;当01c <<时,2k <-.(i )当0k >时,()f x 在()c -∞-,和(1)+∞,内是减函数,在(1)c -,内是增函数. 1(1)012k k M f c +∴===>+,221()02(2)kc k m f c c c k -+-=-==<++,由2122(2)k k M m k -=++≥及0k >,解得k(ii )当2k <-时,()f x 在()c -∞-,和(1)+∞,内是增函数,在(1)c -,内是减函数. 2()02(2)k M f c k -∴=-=>+,(1)02k m f ==<22(1)1112(2)22k k k M m k k -++-=-=-++≥恒成立.综上可知,所求k的取值范围为(2))-∞-+∞ ,. 22.解法一:(Ⅰ)1321n n n a a a +=+ ,112133n n a a +∴=+,1111113n n a a +⎛⎫∴-=- ⎪⎝⎭, 又1213n a -=,11n a ⎛⎫∴- ⎪⎝⎭是以23为首项,13为公比的等比数列.∴112121333n n n a --== ,332n n na ∴=+. (Ⅱ)由(Ⅰ)知3032nn na =>+, 21121(1)3n x x x ⎛⎫-- ⎪++⎝⎭2112111(1)3n x x x ⎛⎫=-+-- ⎪++⎝⎭2111(1)1(1)n x x x a ⎡⎤=--+⎢⎥++⎣⎦2112(1)1n a x x =-+++ 2111n n n a a a x ⎛⎫=--+ ⎪+⎝⎭n a ≤,∴原不等式成立. (Ⅲ)由(Ⅱ)知,对任意的0x >,有122221121121(1)31(1)3n a a a x x x x x x ⎛⎫⎛⎫+++--+-- ⎪ ⎪++++⎝⎭⎝⎭ ≥21121(1)3nx x x ⎛⎫++-- ⎪++⎝⎭2212221(1)333n n nx x x ⎛⎫=-+++- ⎪++⎝⎭. ∴取22111222113311333313n n n x n n n ⎛⎫- ⎪⎛⎫⎛⎫⎝⎭=+++==- ⎪ ⎪⎛⎫⎝⎭⎝⎭- ⎪⎝⎭,则2212111111133n nn n n n a a a n n n +++=>+⎛⎫+-+- ⎪⎝⎭≥. ∴原不等式成立.解法二:(Ⅰ)同解法一. (Ⅱ)设2112()1(1)3n f x x x x ⎛⎫=-- ⎪++⎝⎭, 则222222(1)2(1)2133()(1)(1)(1)n n x x x x f x x x x ⎛⎫⎛⎫-+--+- ⎪ ⎪⎝⎭⎝⎭'=--=+++0x > ,∴当23n x <时,()0f x '>;当23nx >时,()0f x '<, ∴当23n x =时,()f x 取得最大值212313n n nf a ⎛⎫== ⎪⎝⎭+.原不等式成立. (Ⅲ)同解法一.。

2008年普通高等学校招生全国统一考试全国卷Ⅱ理

2008年普通高等学校招生全国统一考试全国卷Ⅱ理

2008年普通高等学校招生全国统一考试(全国卷H .理)数学(必选+选修I )本试卷分第I 卷(选择题)和第H 卷(非选择题)两部分。

参考公式:如果事件A 、 B 互斥,那么P (A+B ) =P(A) +P ( B )R (AB )= P (A ) P ( B )P n (k)=C ;k P k (1 —p)2 ( k=0,1,2,•- n )、选择题1.设集合M={m € Z|-3< m <2}, N={n € Z|- 1< n w 3},则 M N=A . {0 , 1}B . { — 1, 0, 1}C . {0 , 1, 2}D . { — 1, 0,1 ,2}2 .设 a ,b :=R ,且b MQ 若复数(a + bi ) 3是实数,则A . b 2 =3a 2B . a 2 =3b 2C . b 2 =9a 2D . a 2 =9b 213 .函数 f(x):x-x 的图像关于A . y 轴对称B .直线y - -x 对称C .坐标原点对称D .直线y = x 对称4 .若 x (e',1), 3a =1 nx, b=2lnx, c=ln x ,贝yA . a : b ::: cB . c ■ a :: bC . b a :: cD . b ::c :: ay-x,5.设变量x, y 满足条件 x 22,则z = x-3y 的最小值为x _ -2A . - 2B . - 4C . - 6D . - 86•从20名男同学,10名女同学中任选 3名参加体能测试,则选到的 3名同学中既有男同学又有女同学的概率为如果事件A 、 B 相互独立,那么 其中R 表示球的半径 如果事件A 在一次试验中发生的概率是P ,那么V =4 n R 33n 次独立重复试验中事件 A 恰好发生k 次的概率其中R 表示球的半径球的表面积公式球的体积公式4成的角的余弦值为2 D .311.等腰三角形两腰所在直线的方程分别为 x ,y-2=0和x-7y-4=0,原点在等腰三角形的底边上,则底边所在直线的斜率为12 .已知球的半径为2,相互垂直的两个平面分别截球面得两个圆, 若两圆的公共弦长为 2,则两圆的圆心距等于第n 卷(非选择题,共 90分)二、填空题:(本大题共4个小题,每小题5分,共20分)把答案填在答题卡上。

2008年高考理科数学试卷及答案-全国卷

2008年高考理科数学试卷及答案-全国卷

2008年普通高等学校招生全国统一考试理科数学(必修+选修Ⅱ)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分、第Ⅰ卷1至2页、第Ⅱ卷3至10页、考试结束后,将本试卷和答题卡一并交回、第Ⅰ卷注意事项:1、答第Ⅰ卷前,考生务必将自己的姓名、准考证号、考试科目涂写在答题卡上、2、每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑、如需改动,用橡皮擦干净后,再选涂其他答案标号、不能答在试题卷上、3、本卷共12小题,每小题5分,共60分、在每小题给出的四个选项中,只有一项是符合题目要求的、参考公式:如果事件A B ,互斥,那么 球的表面积公式()()()P A B P A P B +=+24πS R =如果事件A B ,相互独立,那么 其中R 表示球的半径()()()P A B P A P B = 球的体积公式如果事件A 在一次试验中发生的概率是p ,那么 34π3V R =n 次独立重复试验中事件A 恰好发生k 次的概率 其中R 表示球的半径()(1)(012)k k n kk n P k C p p k n -=-=,,,,一、选择题1、设集合{|32}M m m =∈-<<Z ,{|13}N n n M N =∈-=Z 则,≤≤( )A 、{}01,B 、{}101-,,C 、{}012,,D 、{}1012-,,,2、设a b ∈R ,且0b ≠,若复数3()a bi +是实数,则( ) A 、223b a = B 、223a b =C 、229b a =D 、229a b =3、函数1()f x x x=-的图像关于( )A 、y 轴对称B 、 直线x y -=对称C 、 坐标原点对称D 、 直线x y =对称4、若13(1)ln 2ln ln x e a x b x c x -∈===,,,,,则( ) A 、a <b <cB 、c <a <bC 、 b <a <cD 、 b <c <a5、设变量x y ,满足约束条件:222y x x y x ⎧⎪+⎨⎪-⎩,,.≥≤≥,则y x z 3-=的最小值( )A 、2-B 、4-C 、6-D 、8-6、从20名男同学,10名女同学中任选3名参加体能测试,则选到的3名同学中既有男同学又有女同学的概率为( ) A 、929B 、1029C 、1929D 、20297、64(1(1的展开式中x 的系数是( ) A 、4-B 、3-C 、3D 、48、若动直线x a =与函数()sin f x x =和()cos g x x =的图像分别交于M N ,两点,则MN 的最大值为( )A 、1BCD 、29、设1a >,则双曲线22221(1)x y a a -=+的离心率e 的取值范围是( ) A、B、C 、(25),D、(210、已知正四棱锥S ABCD -的侧棱长与底面边长都相等,E 是SB 的中点,则AE SD ,所成的角的余弦值为( ) A 、13B、3C、3D 、2311、等腰三角形两腰所在直线的方程分别为20x y +-=与740x y --=,原点在等腰三角形的底边上,则底边所在直线的斜率为( ) A 、3B 、2C 、13-D 、12-12、已知球的半径为2,相互垂直的两个平面分别截球面得两个圆、若两圆的公共弦长为2,则两圆的圆心距等于( ) A 、1B 、2C 、3D 、22008年普通高等学校招生全国统一考试理科数学(必修+选修Ⅱ)第Ⅱ卷二、填空题:本大题共4小题,每小题5分,共20分、把答案填在题中横线上、13、设向量(12)(23)==,,,a b ,若向量λ+a b 与向量(47)=--,c 共线,则=λ 、 14、设曲线ax y e =在点(01),处的切线与直线210x y ++=垂直,则a = 、 15、已知F 是抛物线24C y x =:的焦点,过F 且斜率为1的直线交C 于A B ,两点、设FA FB >,则FA 与FB 的比值等于 、16、平面内的一个四边形为平行四边形的充要条件有多个,如两组对边分别平行,类似地,写出空间中的一个四棱柱为平行六面体的两个充要条件:充要条件① ; 充要条件② 、 (写出你认为正确的两个充要条件)三、解答题:本大题共6小题,共70分、解答应写出文字说明,证明过程或演算步骤、 17、(本小题满分10分) 在ABC △中,5cos 13B =-,4cos 5C =、 (Ⅰ)求sin A 的值;(Ⅱ)设ABC △的面积332ABC S =△,求BC 的长、 18、(本小题满分12分)购买某种保险,每个投保人每年度向保险公司交纳保费a 元,若投保人在购买保险的一年度内出险,则可以获得10 000元的赔偿金、假定在一年度内有10 000人购买了这种保险,且各投保人是否出险相互独立、已知保险公司在一年度内至少支付赔偿金10 000元的概率为41010.999-、(Ⅰ)求一投保人在一年度内出险的概率p ;(Ⅱ)设保险公司开办该项险种业务除赔偿金外的成本为50 000元,为保证盈利的期望不小于0,求每位投保人应交纳的最低保费(单位:元)、19、(本小题满分12分)如图,正四棱柱1111ABCD A BC D -中,124AA AB ==,点E 在1CC 上且EC E C 31=、 (Ⅰ)证明:1AC ⊥平面BED ; (Ⅱ)求二面角1A DE B --的大小、20、(本小题满分12分)设数列{}n a 的前n 项和为n S 、已知1a a =,13n n n a S +=+,*n ∈N 、(Ⅰ)设3n n n b S =-,求数列{}n b 的通项公式; (Ⅱ)若1n n a a +≥,*n ∈N ,求a 的取值范围、21、(本小题满分12分)设椭圆中心在坐标原点,(20)(01)A B ,,,是它的两个顶点,直线)0(>=k kx y 与AB 相交于点D ,与椭圆相交于E 、F 两点、 (Ⅰ)若6ED DF =,求k 的值; (Ⅱ)求四边形AEBF 面积的最大值、 22、(本小题满分12分) 设函数sin ()2cos xf x x=+、(Ⅰ)求()f x 的单调区间;(Ⅱ)如果对任何0x ≥,都有()f x ax ≤,求a 的取值范围、ABCD EA 1B 1C 1D 12008年普通高等学校招生全国统一考试 理科数学试题(必修+选修Ⅱ)参考答案和评分参考评分说明:1、本解答给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要 考查内容比照评分参考制订相应的评分细则、2、对计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和 难度,可视影响的程度决定后继部分的给分,但不得超过该部分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分、3、解答右端所注分数,表示考生正确做到这一步应得的累加分数、4、只给整数分数、选择题不给中间分、一、选择题1、B2、A3、C4、C5、D6、D7、B8、B9、B 10、C 11、A 12、C 二、填空题13、2 14、2 5、3+16、两组相对侧面分别平行;一组相对侧面平行且全等;对角线交于一点;底面是平行四边形、注:上面给出了四个充要条件、如果考生写出其他正确答案,同样给分、 三、解答题 17、解:(Ⅰ)由5cos 13B =-,得12sin 13B =, 由4cos 5C =,得3sin 5C =、所以33sin sin()sin cos cos sin 65A B C B C B C =+=+=、 ····································· 5分 (Ⅱ)由332ABC S =△得 133sin 22AB AC A ⨯⨯⨯=, 由(Ⅰ)知33sin 65A =,故 65AB AC ⨯=, ·············································································· 8分又 sin 20sin 13AB B AC AB C ⨯==, 故 2206513AB =,132AB =、 所以 sin 11sin 2AB A BC C ⨯==、 ································································· 10分18、解:各投保人是否出险互相独立,且出险的概率都是p ,记投保的10 000人中出险的人数为ξ, 则4~(10)B p ξ,、(Ⅰ)记A 表示事件:保险公司为该险种至少支付10 000元赔偿金,则A 发生当且仅当0ξ=, ····································································································· 2分()1()P A P A =-1(0)P ξ=-=4101(1)p =--,又410()10.999P A =-,故0.001p =、 ······························································································· 5分 (Ⅱ)该险种总收入为10000a 元,支出是赔偿金总额与成本的和、 支出 1000050000ξ+,盈利 10000(1000050000)a ηξ=-+,盈利的期望为 1000010000500E aE ηξ=--, ·········································· 9分由43~(1010)B ξ-,知,31000010E ξ-=⨯,4441010510E a E ηξ=--⨯4443410101010510a -=-⨯⨯-⨯、0E η≥4441010105100a ⇔-⨯-⨯≥1050a ⇔--≥ 15a ⇔≥(元)、故每位投保人应交纳的最低保费为15元、 ························································· 12分19、解法一:依题设知2AB =,1CE =、(Ⅰ)连结AC 交BD 于点F ,则BD AC ⊥、由三垂线定理知,1BD AC ⊥、 ········································································· 3分 在平面1ACA 内,连结EF 交1AC 于点G ,由于1AA ACFC CE== 故1Rt Rt A AC FCE △∽△,1AAC CFE ∠=∠, CFE ∠与1FCA ∠互余、于是1AC EF ⊥、 1AC 与平面BED 内两条相交直线BD EF ,都垂直, 所以1AC ⊥平面BED 、 ·················································································· 6分 (Ⅱ)作GH DE ⊥,垂足为H ,连结1A H 、由三垂线定理知1A H DE ⊥,故1A HG ∠是二面角1A DE B --的平面角、························································ 8分EF =CE CF CG EF ⨯==EG ==、 13EG EF =,13EF FD GH DE ⨯=⨯=又1AC ==11AG AC CG =-=、11tan A GA HG HG∠== 所以二面角1A DE B --的大小为 ················································· 12分 解法二:以D 为坐标原点,射线DA 为x 轴的正半轴, 建立如图所示直角坐标系D xyz -、依题设,1(220)(020)(021)(204)B C E A ,,,,,,,,,,,、(021)(220)DE DB ==,,,,,,AB CDEA 1B 1C 1D 1 FH G11(224)(204)AC DA =--=,,,,,、 ····································································· 3分 (Ⅰ)因为10AC DB =,10AC DE =, 故1AC BD ⊥,1AC DE ⊥、 又DBDE D =,所以1AC ⊥平面DBE 、 ·················································································· 6分 (Ⅱ)设向量()x y z =,,n 是平面1DA E 的法向量,则DE ⊥n ,1DA ⊥n 、故20y z +=,240x z +=、令1y =,则2z =-,4x =,(412)=-,,n 、 ····················································· 9分1AC ,n 等于二面角1A DE B --的平面角, 11114cos 42AC AC AC ==,nn n 、 所以二面角1A DE B --的大小为、 ················································· 12分 20、解:(Ⅰ)依题意,113n n n n n S S a S ++-==+,即123n n n S S +=+,由此得1132(3)n n n n S S ++-=-、 ······································································· 4分 因此,所求通项公式为13(3)2n n n n b S a -=-=-,*n ∈N 、① ······························································ 6分 (Ⅱ)由①知13(3)2n n n S a -=+-,*n ∈N , 于是,当2n ≥时,1n n n a S S -=-1123(3)23(3)2n n n n a a ---=+-⨯---⨯ 1223(3)2n n a --=⨯+-,12143(3)2n n n n a a a --+-=⨯+-22321232n n a --⎡⎤⎛⎫=∙+-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦, 当2n ≥时,21312302n n n a a a -+⎛⎫⇔∙+- ⎪⎝⎭≥≥9a ⇔-≥、又2113a a a =+>、综上,所求的a 的取值范围是[)9-+∞,、 ························································· 12分 21、(Ⅰ)解:依题设得椭圆的方程为2214x y +=, 直线AB EF ,的方程分别为22x y +=,(0)y kx k =>、 ····································· 2分 如图,设001122()()()D x kx E x kx F x kx ,,,,,,其中12x x <, 且12x x ,满足方程22(14)4k x +=,故21x x =-=、①由6ED DF =知01206()x x x x -=-,得021215(6)77x x x x =+==; 由D 在AB 上知0022x kx +=,得0212x k=+、 所以212k =+, 化简得2242560k k -+=,解得23k =或38k =、 ······················································································ 6分 (Ⅱ)解法一:根据点到直线的距离公式和①式知,点E F ,到AB 的距离分别为1h ==2h==·······················································9分又AB==AEBF的面积为121()2S AB h h=+1525(14k=+==≤当21k=,即当12k=时,上式取等号、所以S的最大值为 ························ 12分解法二:由题设,1BO=,2AO=、设11y kx=,22y kx=,由①得2x>,21y y=->,故四边形AEBF的面积为BEF AEFS S S=+△△222x y=+ ····································································································9分===当222x y=时,上式取等号、所以S的最大值为······································· 12分22、解:(Ⅰ)22(2cos)cos sin(sin)2cos1()(2cos)(2cos)x x x x xf xx x+--+'==++、 ·····························2分2008年高考各省各科真题及解析11 / 11当2π2π2π2π33k x k -<<+(k ∈Z )时,1cos 2x >-,即()0f x '>; 当2π4π2π2π33k x k +<<+(k ∈Z )时,1cos 2x <-,即()0f x '<、 因此()f x 在每一个区间2π2π2π2π33k k ⎛⎫-+ ⎪⎝⎭,(k ∈Z )是增函数, ()f x 在每一个区间2π4π2π2π33k k ⎛⎫++ ⎪⎝⎭,(k ∈Z )是减函数、 ····························· 6分 (Ⅱ)令()()g x ax f x =-,则22cos 1()(2cos )x g x a x +'=-+ 2232cos (2cos )a x x =-+++ 211132cos 33a x ⎛⎫=-+- ⎪+⎝⎭、 故当13a ≥时,()0g x '≥、 又(0)0g =,所以当0x ≥时,()(0)0g x g =≥,即()f x ax ≤、 ························ 9分 当103a <<时,令()sin 3h x x ax =-,则()cos 3h x x a '=-、 故当[)0arccos3x a ∈,时,()0h x '>、因此()h x 在[)0arccos3a ,上单调增加、故当(0arccos3)x a ∈,时,()(0)0h x h >=, 即sin 3x ax >、于是,当(0arccos3)x a ∈,时,sin sin ()2cos 3x x f x ax x =>>+、 当0a ≤时,有π1π0222f a ⎛⎫=>∙ ⎪⎝⎭≥、 因此,a 的取值范围是13⎡⎫+∞⎪⎢⎣⎭,、 ··································································· 12分。

2008年理科数学辽宁省高考真题含答案

2008年理科数学辽宁省高考真题含答案

2008年普通高等学校招生全国统一考试(辽宁卷)数学(供理科考生使用)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至2页,第Ⅱ卷3至4页,考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷(选择题共60分) 参考公式:如果事件A 、B 互斥,那么 球的表面积公式P(A+B)=P(A)+P(B) S=42R π如果事件A 、B 相互独立,那么 其中R 表示球的半径 P(A ·B)=P(A)·P(B) 球的体和只公式 如果事件A 在一次试验中发生的概率是p ,那么n 次独立重复试验中事件A 恰好发生k 次的概率 V =243R π()(1)(0,1,2,k knk n n P k C Pp k n -=-= 其中R 表示球的半径 一、选择题 1.已知集合{}30,31x M x N x x x ⎧+⎫=<=-⎨⎬-⎩⎭…,则集合{}1x x …为( )A.M NB.MN C.()R MN ð D.()R MN ð答案:C解析:本小题主要考查集合的相关运算知识。

依题{}{}31,3M x x N x x =-<<=-…,∴{|1}M N x x ⋃=<,()R M N =ð{}1.x x …2.135(21)lim(21)n n n n →∞++++-+等于( )A.14 B.12C.1D.2 答案:B解析:本小题主要考查对数列极限的求解。

依题22135(21)1lim lim .(21)22n n n n n n n n →∞→∞++++-==++ 3.圆221x y +=与直线2y kx =+没有公共点的充要条件是( )A.(k ∈B.(,(2,)k ∈-∞+∞C.(k ∈D.(,(3,)k ∈-∞+∞答案:C解析:本小题主要考查直线和圆的位置关系。

依题圆221x y +=与直线2y kx =+没有公共点1d ⇔=>⇔(k ∈4.复数11212i i +-+-的虚部是( ) A.15i B.15 C.15i - D.15-答案:B解析:本小题主要考查复数的相关运算及虚部概念。

2008年高考(四川

2008年高考(四川

2008年普通高等学校招生全国统一考试(四川)数 学(理工农医类)韩先华编辑本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

第Ⅰ卷1至2页。

第Ⅱ卷3到8页。

考试结束后,将本试卷和答题卡一并交回。

第Ⅰ卷注意事项:1.答第Ⅰ卷前,考生务必将自己的姓名、准考证号、考试科目涂写在答题卡上。

2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其它答案标号。

不能答在试题卷上。

3.本卷共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

参考公式:如果事件A 、B 互斥,那么 球是表面积公式如果事件A 、B 相互独立,那么 其中R 表示球的半径)()()(B P A P B A P ⋅=⋅ 球的体积公式如果事件A 在一次试验中发生的概率是P ,那么334R V π=n 次独立重复试验中恰好发生k 次的概率 其中R 表示球的半径一、选择题:本大题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1、设集合{1,2,3,4,5}U =,{1,2,3}A =,{2,3,4}B =,则()UA B =(A ){2,3} (B ){1,4,5}(C ){4,5} (D ){1,5}2、复数22(1)i i +=(A )4-(B )4(C )4i -(D )4i3、2(tan cot )cos x x x +=(A )tan x(B )sin x(C )cos x(D )cot x4、将直线3y x =绕原点逆时针旋转90︒,再向右平移1个单位,所得到的直线为(A )1133y x =-+(B )113y x =-+(C )33y x =- (D )113y x =+5、设0≤2απ<,若sin αα>,则α的取值范围是(A )(,)32ππ(B )(,)3ππ (C )4(,)33ππ (D )3(,)32ππ6、从甲、乙等10名同学中挑选4名参加某项公益活动,要求甲、乙中至少有1人参加,则不同的挑选方法共有(A )70种(B )112种 (C )140种 (D )168种7、已知等比数列{}n a 中21a =,则其前3项的和3S 的取值范围是(A )(,1]-∞-(B )(,0)(1,)-∞+∞学校 班级 姓名 考号////////密///////////封/////////////线/////////////内/////////////不/////////////要/////////////答/////////////题///////(C )[3,)+∞ (D )(,1][3,)-∞-+∞8、设M 、N 是球O 的半径OP 上的两点,且NP MN OM ==,分别过N 、M 、O 作垂直于OP 的面截球得三个圆,则这三个圆的面积之比为:(A )3:5:6 (B )3:6:8 (C )5:7:9 (D )5:8:99、设直线l ⊂平面α,过平面α外一点A 且与l 、α都成30︒角的直线有且只有:(A )1条 (B )2条 (C )3条 (D )4条 10、设()sin()f x x ωϕ=+,其中0ϕ>,则函数()f x 是偶函数的充分必要条件是(A )(0)0f =(B )(0)1f =(C )(0)1f '=(D )(0)0f '=11、定义在R 上的函数()f x 满足:()(2)13f x f x ⋅+=,(1)2f =,则(99)f =(A )13(B )2(C )132(D )21312、已知抛物线2:8C y x =的焦点为F ,准线与x 轴的交点为K ,点A 在C上且|||AK AF =,则△AFK 的面积为(A )4(B )8(C )16 (D )32第Ⅱ卷(非选择题 共90分)二、填空题:本大题共4小题,每小题4分,共16分。

2008年普通高等学校招生全国统一考试数学卷(全国Ⅱ.理)含详解

2008年普通高等学校招生全国统一考试数学卷(全国Ⅱ.理)含详解

参考 式 如果 件 A B 互斥 那
球的表面

P ( A + B ) = P ( A) + P ( B )
如果 件 A B 相互独立 那
S = 4πR 2
其中 R 表示球的半径 球的体 那 式
P ( A B ) = P ( A) P ( B )
如果 件 A 在一次试验中发生的概率是 p
V=
4 3 πR 3
sin x 2 + cos x
求 f ( x ) 的单调区间 如果对任何 x
0
都有 f ( x )
ax
求 a 的取值范围
an
n ∈ N*
求 a 的取值范围
21
本小题满
12
设椭圆中心在坐标原点 于点 D
A(2 0) B(0 1) 是它的 个 点 直线 y = kx(k > 0)

AB 相交
椭圆相交于 E F
uuu r uuur 若 ED = 6 DF
求 k 的值
求四边形 AEBF 面 的最大值
22
本小题满
12
设函数 f ( x ) =
1 − 0.99910
4
求一投保人在一 度内出险的概率 p 设保险 开办该项险种业 除赔偿金外的成本 50 000 元 保证盈利的期望
第 3
共 15
小于 0 求 19 本小题满
投保人 交纳的最 保费 单 12


四棱柱 ABCD − A1 B1C1 D1 中 证明
AA1 = 2 AB = 4
点 E 在 CC1 D1 A1
2008 年普通高等学校招生全国统一考试 理科 学(必修+选修Ⅱ)
第 卷1至2 第 卷 3 至 10

2008年各地高考试题

2008年各地高考试题

a3 a5 10 ,则它的前 10 项的和 S10
( ) A.138 B.135 C.95 D.23
P ( A B) P( A) P( B)
球的体积公式 如果事件 A 在一次试验中发生的概率 是 P ,那么 V
6 . 若 函 数 y f ( x 1) 的 图 像 与 函 数
B.
2 3 C. 3 3
D.
2 3
3 , M、 N 分别是 AC、 BC 的中点, 则 EM、 3
AN 所成角的余弦值等于 . 三、解答题:本大题共 6 小题,共 70 分.解 答应写出文字说明,证明过程或演算步骤.
12. 如图, 一环形花坛分成 A,B,C,D 四 块,现有 4 种不同的花供选种,要求在每块 里种 1 种花,且相邻的 2 块种不同的花,则
2008 年高考数学
理数试卷
目录
2008 年普通高等学校招生全国统一考试(全国卷 1 理) ......................................................................... 3 2008 年普通高等学校招生全国统一考试(全国卷 2 理) ..................................................................... 6 2008 年普通高等学校招生全国统一考试(北京卷理) ....................................................................... 10 2008 年普通高等学校招生全国统一考试(湖北卷理) ....................................................................... 14 2008 年普通高等学校招生全国统一考试(四川卷理) ....................................................................... 17 2008 年普通高等学校招生全国统一考试(四川延考卷理) ................................................................... 21 2008 年普通高等学校招生全国统一考试(天津卷理) ....................................................................... 25 2008 年普通高等学校招生全国统一考试(陕西卷理) ....................................................................... 28 2008 年普通高等学校招生全国统一考试(湖南卷理) ....................................................................... 32 2008 年普通高等学校招生全国统一考试(福建理) ........................................................................... 36 2008 年普通高等学校招生全国统一考试(重庆卷理) ........................................................................... 40 2008 年普通高等学校招生全国统一考试(安徽卷理) ........................................................................... 44 2008 年普通高等学校招生全国统一考试(辽宁卷理) ....................................................................... 48 2008 年普通高等学校招生全国统一考试(江西卷理) ....................................................................... 51 2008 年普通高等学校统一考试(宁夏卷理) ....................................................................................... 56 2008 年全国普通高等学校招生统一考试(上海卷理) ....................................................................... 61 2008 年普通高等学校招生全国统一考试 (广东卷理) ..................................................................... 65 2008 年普通高等学校招生全国统一考试(山东卷理) ....................................................................... 69 2008 年普通高等学校招生全国统一考试(江苏卷) ........................................................................... 74 2008 年普通高等学校招生全国统一考试(浙江卷理) ....................................................................... 79 2008 年普通高等学校招生全国统一考试(全国卷 1 文数) ............................................................... 85 2008 年普通高等学校招生全国统一考试(全国卷 2 文数) ............................................................... 89

2008年高考数学试卷(江西.理)含详解

2008年高考数学试卷(江西.理)含详解

准考证号 姓名(在此卷上答题无效)绝密★启用前2008年普通高等学校招生全国统一考试(江西卷)理科数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷l 至2页,第Ⅱ卷3至4页,共150分.第Ⅰ卷考生注意:1.答题前,考生务必将自己的准考证号、姓名填写在答题卡上.考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名、考试科目”与考生本人准考证号、姓名是否一致.2.第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.第Ⅱ卷用黑色墨水签字笔在答题卡上书写作答.若在试题卷上作答,答案无效.3.考试结束,监考员将试题卷、答题卡一并收回.参考公式:如果事件A 、B 互斥,那么 球的表面积公式P (A +B)=P (A)+P (B) S =4πR 2如果事件A 、B 相互独立,那么 其中R 表示球的半径P (A·B)=P (A)·P (B) 球的体积公式如果事件A 在一次试验中发生的概率是P ,那么 V =34πR 3n 次独立重复试验中恰好发生k 次的概率 其中R 表示球的半径P n (k )=C kn P k (1一P )kn -一.选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.在复平面内,复数sin 2cos2z i =+对应的点位于A .第一象限B .第二象限C .第三象限D .第四象限 2.定义集合运算:{}|,,A B z z xy x A y B *==∈∈.设{}{}1,2,0,2A B ==,则集合A B *的所有元素之和为A .0B .2C .3D .63.若函数()y f x =的值域是1,32⎡⎤⎢⎥⎣⎦,则函数()()1()F x f x f x =+的值域是A .[21,3] B .[2,310] C .[25,310] D .[3,310] 4.123lim1--+→x x x =A .21 B .0 C .-21D .不存在 5.在数列{}n a 中,1112,ln 1n n a a a n +⎛⎫==++⎪⎝⎭,则n a = A .2ln n + B .()21ln n n +- C .2ln n n + D .1ln n n ++ 6.函数tan sin tan sin y x x x x =+--在区间(2π,23π)内的图象大致是A B C D7.已知12F F 、是椭圆的两个焦点.满足1MF ·2MF =0的点M 总在椭圆内部,则椭圆离心率的取值范围是A .(0,1)B .(0,21] C .(0,22) D .[22,1)8.(1+3x )6(1+41x)10展开式中的常数项为A .1B .46C .4245D .42469.若12120,0a a b b <<<<,且12121a a b b +=+=,则下列代数式中值最大的是A .1122a b a b +B .1212a a b b +C .1221a b a b +D .2110.连结球面上两点的线段称为球的弦.半径为4的球的两条弦AB 、CD 的长度分别等于27、43,M 、N 分别为AB 、CD 的中点,每条弦的两端都在球面上运动,有下列四个命题: ①弦AB 、CD 可能相交于点M ②弦AB 、CD 可能相交于点N ③MN 的最大值为5 ④MN 的最小值为l 其中真命题的个数为A .1个B .2个C .3个D .4个11.电子钟一天显示的时间是从00∶00到23∶59,每一时刻都由四个数字组成,则一天中任一时刻显示的四个数字之和为23的概率为 A .1801 B .2881 C .3601 D .480112.已知函数()()()22241,f x mx m x g x mx =--+=,若对于任一实数x ,()f x 与()g x 的值至少有一个为正数,则实数m 的取值范围是A .(0,2)B .(0,8)C .(2,8)D .(-∞,0)绝密★启用前2008年普通高等学校招生全国统一考试(江西卷)理科数学第Ⅱ卷注意事项:第Ⅱ卷2页,须用黑色墨水签字笔在答题卡上书写作答.若在试题卷上作答,答案无效. 二.填空题:本大题共4小题,每小题4分,共16分.请把答案填在答题卡上.13.直角坐标平面内三点()()()1,23,29,7A B C -、、,若E F 、为线段BC 的三等分点,则AE ·AF = .14.不等式132+-xx ≤21的解集为 . 15.过抛物线()220x py p =>的焦点F 作倾斜角为30°的直线,与抛物线分别交于A 、B 两点(点A 在y 轴左侧),则FBAF= . 16.如图1,一个正四棱柱形的密闭容器水平放置,其底部镶嵌了同底的正四棱锥形实心装饰块,容器内盛有a 升水时,水面恰好经过正四棱锥的顶点P .如果将容器倒置,水面也恰好过点P (图2).有下列四个命题:A .正四棱锥的高等于正四棱柱高的一半B .将容器侧面水平放置时,水面也恰好过点PC .任意摆放该容器,当水面静止时,水面都恰好 经过点PD .若往容器内再注入a 升水,则容器恰好能装满其中真命题的代号是 .(写出所有真命题的代号) .三.解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)在△ABC 中.a 、b 、c 分别为角A 、B 、C 所对的边长,a =23,tan 2B A ++tan 2C =4,sin B sin C =cos 22A.求A 、B 及b 、c .18.(本小题满分12分)因冰雪灾害,某柑桔基地果林严重受损,为此有关专家提出两种拯救果树的方案,每种方案都需分两年实施.若实施方案一,预计第一年可以使柑桔产量恢复到灾前的1.0倍、0.9倍、0.8倍的概率分别是0.3、0.3、0.4;第二年可以使柑桔产量为第一年产量的1.25倍、1.0倍的概率分别是0.5、0.5.若实施方案二,预计第一年可以使柑桔产量达到灾前的1.2倍、1.0倍、0.8倍的概率分别是0.2、0.3、0.5;第二年可以使柑桔产量为第一年产量的1.2倍、1.0倍的概率分别是0.4、0.6.实施每种方案第一年与第二年相互独立,令()1,2i i ξ=表示方案i 实施两年后柑桔产量达到灾前产量的倍数. (1)写出ξ1、ξ2的分布列;(2)实施哪种方案,两年后柑桔产量超过灾前产量的概率更大?(3)不管哪种方案,如果实施两年后柑桔产量达不到、恰好达到、超过灾前产量,预计利润分别为10万元、15万元、20万元.问实施哪种方案的平均利润更大? 19.(本小题满分12分)等差数列{}n a 各项均为正整数,13a =,前n 项和为n S ,等比数列{}n b 中,11b =,且2264b S =,{}n b 是公比为64的等比数列.(1)求n a 与n b ; (2)证明:11S +21S +……+n S 1<43.20.(本小题满分12分)正三棱锥O ABC -的三条侧棱OA OB OC 、、两两垂直,且长度均为2.E F 、分别是AB AC 、的中点,H 是EF 的中点,过EF 的一个平面与侧棱OA OB OC 、、或其延长线分别相交于111A B C 、、,已知132OA =. (1)证明:11B C ⊥平面OAH ; (2)求二面角111O A B C --的大小.21.(本小题满分12分)设点()00,P x y 在直线(),01x m y m m =≠±<<上,过点P 作双曲线221x y -=的两条切线PA PB 、,切点为A B 、,定点M (m1,0). (1)过点A 作直线0x y -=的垂线,垂足为N ,试求△AMN 的重心G 所在的曲线方程;(2)求证:A M B 、、三点共线. 22.(本小题满分14分) 已知函数()f x =x+11+a+11+8+ax ax,x ∈(0,+∞).(1)当8a =时,求()f x 的单调区间; (2)对任意正数a ,证明:()12f x <<.2008年普通高等学校招生全国统一考试(江西卷)理科数学参考答案一.选择题:本大题共12小题,每小题5分,共60分。

2008年高考陕西数学理(含答案)

2008年高考陕西数学理(含答案)

2008年普通高等学校招生全国统一考试(陕西卷)理科数学(必修+选修Ⅱ)一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的(本大题共12小题,每小题5分,共60分).1.复数(2)12i i i+-等于( ) A .i B .i - C .1D .1-2.已知全集{12345}U =,,,,,集合2{|320}A x x x =-+=,{|2}B x x a a A ==∈,,则集合()U A B ð中元素的个数为( )A .1B .2C .3D .43.ABC △的内角A B C ,,的对边分别为a b c ,,,若120c b B ==,则a 等于( )AB .2CD 4.已知{}n a 是等差数列,124a a +=,7828a a +=,则该数列前10项和10S 等于( ) A .64B .100C .110D .12050y m -+=与圆22220x y x +--=相切,则实数m 等于( )A B .C .-D .-6.“18a =”是“对任意的正数x ,21ax x+≥”的( ) A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件7.已知函数3()2x f x +=,1()f x -是()f x 的反函数,若16mn =(m n ∈+R ,),则11()()f m f n --+的值为( ) A .2- B .1C .4D .108.双曲线22221x y a b-=(0a >,0b >)的左、右焦点分别是12F F ,,过1F 作倾斜角为30的直线交双曲线右支于M 点,若2MF 垂直于x 轴,则双曲线的离心率为( )ABCD .39.如图,l A B A B αβαβαβ⊥=∈∈,,,,,到l 的距离分别是a 和b ,AB 与αβ,所成的角分别是θ和ϕ,AB 在αβ,内的射影分别是m 和n ,若a b >,则( ) A .m n θϕ>>, B .m n θϕ><, C .m n θϕ<<,D .m n θϕ<>,10.已知实数x y ,满足121y y x x y m ⎧⎪-⎨⎪+⎩≥,≤,≤.如果目标函数z x y =-的最小值为1-,则实数m 等于( )A .7B .5C .4D .311.定义在R 上的函数()f x 满足()()()2f x y f x f y xy +=++(x y ∈R ,),(1)2f =,则(3)f -等于( )A .2B .3C .6D .9 12.为提高信息在传输中的抗干扰能力,通常在原信息中按一定规则加入相关数据组成传输信息.设定原信息为012i a a a a ,{01}∈,(012i =,,),传输信息为00121h a a a h ,其中001102h a a h h a =⊕=⊕,,⊕运算规则为:000⊕=,011⊕=,101⊕=,110⊕=,例如原信息为111,则传输信息为01111.传输信息在传输过程中受到干扰可能导致接收信息出错,则下列接收信息一定有误的是( ) A .11010 B .01100 C .10111 D .00011二、填空题:把答案填在答题卡相应题号后的横线上(本大题共4小题,每小题4分,共16分). 13.(1)1lim2n a n n a∞++=+→,则a = .14.长方体1111ABCD A BC D -的各顶点都在球O 的球面上,其中1::AB AD AA =A B ,两点的球面距离记为m ,1A D ,两点的球面距离记为n ,则mn的值为 . 15.关于平面向量,,a b c .有下列三个命题:①若a b =a c ,则=b c .②若(1)(26)k ==-,,,a b ,∥a b ,则3k =-. ③非零向量a 和b 满足||||||==-a b a b ,则a 与+a b 的夹角为60.其中真命题的序号为 .(写出所有真命题的序号)16.某地奥运火炬接力传递路线共分6段,传递活动分别由6名火炬手完成.如果第一棒火炬手只能从甲、乙、丙三人中产生,最后一棒火炬手只能从甲、乙两人中产生,则不同的传递方案共有 种.(用数字作答).三、解答题:解答应写出文字说明,证明过程或演算步骤(本大题共6小题,共74分) 17.(本小题满分12分)已知函数2()2sincos 444x x xf x =-+. (Ⅰ)求函数()f x 的最小正周期及最值;A Ba bl(Ⅱ)令π()3g x f x ⎛⎫=+⎪⎝⎭,判断函数()g x 的奇偶性,并说明理由. 18.(本小题满分12分)某射击测试规则为:每人最多射击3次,击中目标即终止射击,第i 次击中目标得1~i (123)i =,,分,3次均未击中目标得0分.已知某射手每次击中目标的概率为0.8,其各次射击结果互不影响. (Ⅰ)求该射手恰好射击两次的概率;(Ⅱ)该射手的得分记为ξ,求随机变量ξ的分布列及数学期望. 19.(本小题满分12分)三棱锥被平行于底面ABC 的平面所截得的几何体如图所示,截面为111A B C ,90BAC ∠=,1A A ⊥平面ABC,1A AAB ,2AC =,111AC =,12BD DC =. (Ⅰ)证明:平面1A AD ⊥平面11BCC B ; (Ⅱ)求二面角1A CC B --的大小. 20.(本小题满分12分)已知抛物线C :22y x =,直线2y kx =+交C 于A B ,两点,M 是线段AB 的中点,过M 作x 轴的垂线交C 于点N .(Ⅰ)证明:抛物线C 在点N 处的切线与AB 平行;(Ⅱ)是否存在实数k 使0NA NB =,若存在,求k 的值;若不存在,说明理由. 21.(本小题满分12分) 已知函数21()kx f x x c+=+(0c >且1c ≠,k ∈R )恰有一个极大值点和一个极小值点,其中一个是x c =-.(Ⅰ)求函数()f x 的另一个极值点;(Ⅱ)求函数()f x 的极大值M 和极小值m ,并求1M m -≥时k 的取值范围. 22.(本小题满分14分) 已知数列{}n a 的首项135a =,1321nn n a a a +=+,12n =,,. (Ⅰ)求{}n a 的通项公式; (Ⅱ)证明:对任意的0x >,21121(1)3n n a x x x ⎛⎫-- ⎪++⎝⎭≥,12n =,,; (Ⅲ)证明:2121n n a a a n +++>+.A 1 AC 1B 1B DC2008年普通高等学校招生全国统一考试(陕西卷)理科数学(必修+选修Ⅱ)参考答案一、1.D 2.B 3.D 4.B 5.C 6.A 7.A 8.B 9.D 10.B 11.C 12.C 二、13.1 14.12 15.② 16.96 三、17.解:(Ⅰ)2()sin2sin )24x x f x =+-sin 22x x =π2sin 23x ⎛⎫=+ ⎪⎝⎭. ()f x ∴的最小正周期2π4π12T ==. 当πsin 123x ⎛⎫+=-⎪⎝⎭时,()f x 取得最小值2-;当πsin 123x ⎛⎫+= ⎪⎝⎭时,()f x 取得最大值2. (Ⅱ)由(Ⅰ)知π()2sin 23x f x ⎛⎫=+⎪⎝⎭.又π()3g x f x ⎛⎫=+ ⎪⎝⎭.∴1ππ()2sin 233g x x ⎡⎤⎛⎫=++ ⎪⎢⎥⎝⎭⎣⎦π2sin 22x ⎛⎫=+ ⎪⎝⎭2cos 2x =.()2cos 2cos ()22x x g x g x ⎛⎫-=-== ⎪⎝⎭.∴函数()g x 是偶函数.18.(Ⅰ)设该射手第i 次击中目标的事件为(123)i A i =,,,则()0.8()0.2i i P A P A ==,,()()()0.20.80.16i i i i P A A P A P A ==⨯=.(Ⅱ)ξ可能取的值为0,1,2,3. ξ的分布列为00.00810.03220.1630.8 2.752E ξ=⨯+⨯+⨯+⨯=.19.解法一:(Ⅰ)1A A ⊥平面ABC BC ⊂,平面ABC ,∴1A A BC ⊥.在Rt ABC △中,2AB AC BC =∴=,:1:2BD DC =,3BD ∴=,又3BD AB AB BC==, DBA ABC ∴△∽△,90ADB BAC ∴∠=∠=,即AD BC ⊥.又1A AAD A =,BC ∴⊥平面1A AD ,BC ⊂平面11BCC B ,∴平面1A AD ⊥平面11BCC B .(Ⅱ)如图,作1AE C C ⊥交1C C 于E 点,连接BE , 由已知得AB ⊥平面11ACC A .AE ∴是BE 在面11ACC A 内的射影.由三垂线定理知1BE CC ⊥,AEB ∴∠为二面角1A CC B --的平面角.过1C 作1C F AC ⊥交AC 于F 点, 则1CF AC AF =-=,11C F A A ==160C CF ∴∠=.在Rt AEC △中,sin 6022AE AC ==⨯= 在Rt BAE △中,tan 3AB AEB AE ===.AEB ∴∠= 即二面角1A CC B --为 解法二:(Ⅰ)如图,建立空间直角坐标系,则11(000)0)(020)(00A B C A C ,,,,,,,,,,:1:2BD DC =,13BD BC ∴=. D ∴点坐标为203⎫⎪⎪⎝⎭,,.A 1 AC 1B 1BD CFE(第19题,解法一)(第19题,解法二)∴2203AD ⎛⎫= ⎪⎪⎝⎭,,,1(220)(00BC AA =-=,,,.10BC AA =,0BC AD =,1BC AA ∴⊥,BC AD ⊥,又1A A AD A =,BC ∴⊥平面1A AD ,又BC ⊂平面11BCC B ,∴平面1A AD ⊥平面11BCC B .(Ⅱ)BA ⊥平面11ACC A ,取(20)AB ==,,m 为平面11ACC A 的法向量,设平面11BCC B 的法向量为()l m n =,,n ,则100BC CC ==,n n .200m m ⎧+=⎪∴⎨-=⎪⎩,,ln ∴==,,如图,可取1m =,则=⎭n ,22010cos 5(2)1⨯+<>==+,m n , 即二面角1A CC B --为15. 20.解法一:(Ⅰ)如图,设211(2)A x x ,,222(2)B x x ,,把2y k x =+代入22y x =得2220x kx --=, 由韦达定理得122kx x +=,121x x =-, ∴1224N M x x kx x +===,∴N 点的坐标为248k k ⎛⎫⎪⎝⎭,. 设抛物线在点N 处的切线l 的方程为284k k y m x ⎛⎫-=- ⎪⎝⎭,将22y x =代入上式得222048mk k x mx -+-=, 直线l 与抛物线C 相切,2222282()048mk k m m mk k m k ⎛⎫∴∆=--=-+=-= ⎪⎝⎭,m k ∴=.即l AB ∥.(Ⅱ)假设存在实数k ,使0NA NB =,则NA NB ⊥,又M 是AB 的中点,1||||2MN AB ∴=. 由(Ⅰ)知121212111()(22)[()4]222M y y y kx kx k x x =+=+++=++22142224k k ⎛⎫=+=+ ⎪⎝⎭. MN ⊥x 轴,22216||||2488M N k k k MN y y +∴=-=+-=.又2212121||||1()4AB x x kx x x x =-=++-22214(1)11622k k k ⎛⎫=-⨯-=++ ⎪⎝⎭.22161168k k +∴=+,解得2k =±.即存在2k =±,使0NA NB =.解法二:(Ⅰ)如图,设221122(2)(2)A x x B x x ,,,,把2y kx =+代入22y x =得2220x kx --=.由韦达定理得121212kx x x x +==-,.∴1224N M x x kx x +===,∴N 点的坐标为248k k ⎛⎫⎪⎝⎭,.22y x =,4y x '∴=,∴抛物线在点N 处的切线l 的斜率为44kk ⨯=,l AB ∴∥. (Ⅱ)假设存在实数k ,使0NA NB =.由(Ⅰ)知22221122224848k k k k NA x x NB x x ⎛⎫⎛⎫=--=-- ⎪ ⎪⎝⎭⎝⎭,,,,则0=,21016k --<,23304k ∴-+=,解得2k =±.即存在2k =±,使0NA NB =.21.解:(Ⅰ)222222()2(1)2()()()k x c x kx kx x ckf x x c x c +-+--+'==++,由题意知()0f c '-=, 即得220c k c ck --=,(*)0c ≠,0k ∴≠.由()0f x '=得220kx x ck --+=,由韦达定理知另一个极值点为1x =(或2x c k=-). (Ⅱ)由(*)式得21k c =-,即21c k=+. 当1c >时,0k >;当01c <<时,2k <-.(i )当0k >时,()f x 在()c -∞-,和(1)+∞,内是减函数,在(1)c -,内是增函数.1(1)012k kM f c +∴===>+, 221()02(2)kc k m f c c c k -+-=-==<++,由2122(2)k k M m k -=++≥及0k >,解得k(ii )当2k <-时,()f x 在()c -∞-,和(1)+∞,内是增函数,在(1)c -,内是减函数. 2()02(2)k M f c k -∴=-=>+,(1)02k m f ==<22(1)1112(2)22k k k M m k k -++-=-=-++≥恒成立.综上可知,所求k 的取值范围为(2)[2)-∞-+∞,,.22.解法一:(Ⅰ)1321n n n a a a +=+,112133n n a a +∴=+,1111113n n a a +⎛⎫∴-=- ⎪⎝⎭,又1213n a -=,11n a ⎛⎫∴- ⎪⎝⎭是以23为首项,13为公比的等比数列.∴112121333n n n a --==,332n n n a ∴=+. (Ⅱ)由(Ⅰ)知3032nn na =>+, 2111n n n a a a x ⎛⎫=--+ ⎪+⎝⎭n a ≤,∴原不等式成立.(Ⅲ)由(Ⅱ)知,对任意的0x >,有2212221(1)333n n nx x x ⎛⎫=-+++- ⎪++⎝⎭.∴取22111222113311333313n n n x n n n ⎛⎫- ⎪⎛⎫⎛⎫⎝⎭=+++==- ⎪ ⎪⎛⎫⎝⎭⎝⎭- ⎪⎝⎭,则2212111111133n nn n n n a a a n n n +++=>+⎛⎫+-+- ⎪⎝⎭≥. ∴原不等式成立.解法二:(Ⅰ)同解法一. (Ⅱ)设2112()1(1)3nf x x x x ⎛⎫=-- ⎪++⎝⎭, 则222222(1)2(1)2133()(1)(1)(1)n n x x x x f x x x x ⎛⎫⎛⎫-+--+- ⎪ ⎪⎝⎭⎝⎭'=--=+++0x >, ∴当23n x <时,()0f x '>;当23n x >时,()0f x '<,∴当23nx =时,()f x 取得最大值212313n n nf a ⎛⎫== ⎪⎝⎭+. ∴原不等式成立.(Ⅲ)同解法一.。

2008年高考数学全国一卷试题和标准答案

2008年高考数学全国一卷试题和标准答案

2008年普通高等学校夏季招生考试数学理工农医类(全国Ⅰ) 本试卷分第I 卷(选择题)和第I I卷(非选择题)两部分.第I 卷1至2页,第II 卷3至9页.考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷考生注意:ﻩ1.答题前,考生在答题卡上务必用0.5毫米黑色墨水签字笔将自己的姓名、准考证号、填写清楚 ,并贴好条形码.请认真核准条形码上的准考证号、姓名和科目.2.每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.在试题卷上作答无效.......... 3.本卷共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.参考公式:如果事件A B ,互斥,那么 ﻩﻩﻩﻩ 球的表面积公式()()()P A B P A P B +=+ﻩ ﻩﻩﻩ 24πS R =ﻩ如果事件A B ,相互独立,那么ﻩ ﻩﻩﻩ其中R 表示球的半径ﻩ()()()P A B P A P B = ﻩﻩ球的体积公式 如果事件A 在一次试验中发生的概率是P ,那么34π3V R = ﻩn 次独立重复试验中恰好发生k 次的概率ﻩ 其中R 表示球的半径()(1)(01,2)k k n k n n P k C P P k n -=-=,,,一、选择题1.函数y ( )A.{}|0x x ≥ﻩB.{}|1x x ≥ C.{}{}|10x x ≥ ﻩD.{}|01x x ≤≤ 2.汽车经过启动、加速行驶、匀速行驶、减速行驶之后停车,若把这一过程中汽车的行驶路程s 看作时间t 的函数,其图像可能是( )3.在ABC △中,AB =c ,AC =b .若点D 满足2BD DC =,则AD =( )A .B .C .D .A.2133+b c ﻩB .5233-c b ﻩ C.2133-b c ﻩﻩﻩD.1233+b c 4.设a ∈R ,且2()a i i +为正实数,则a =( )A.2ﻩﻩB .1 ﻩC .0ﻩﻩD .1-5.已知等差数列{}n a 满足244a a +=,3510a a +=,则它的前10项的和10S =( )A.138ﻩﻩB .135ﻩﻩC.95ﻩ D.236.若函数(1)y f x =-的图像与函数ln 1y =的图像关于直线y x =对称,则()f x =( )A.21x e - B.2x e ﻩ C .21x e + ﻩD.22x e +7.设曲线11x y x +=-在点(32),处的切线与直线10ax y ++=垂直,则a =( ) A.2 ﻩB.12 ﻩC.12-ﻩ D.2- 8.为得到函数πcos 23y x ⎛⎫=+⎪⎝⎭的图像,只需将函数sin 2y x =的图像( ) A .向左平移5π12个长度单位 ﻩB.向右平移5π12个长度单位 C.向左平移5π6个长度单位 ﻩ D.向右平移5π6个长度单位 9.设奇函数()f x 在(0)+∞,上为增函数,且(1)0f =,则不等式()()0f x f x x --<的解集为( )A.(10)(1)-+∞,,B.(1)(01)-∞-,,C.(1)(1)-∞-+∞,, ﻩD .(10)(01)-,, 10.若直线1x y a b+=通过点(cos sin )M αα,,则( ) A .221a b +≤ﻩ B.221a b +≥ﻩﻩC.22111a b +≤ D .22111a b+≥ 11.已知三棱柱111ABC A B C -的侧棱与底面边长都相等,1A 在底面ABC 内的射影为ABC △的中心,则1AB 与底面ABC 所成角的正弦值等于( )A .13ﻩﻩB.3 ﻩ C .3 ﻩD .2312.如图,一环形花坛分成A B C D ,,,四块,现有4种不同的花供选种,要求在每块里种1种。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

本卷共 l J 题, 9 分. OJ  ̄ 共 0
二、 填空题: 本大 题共 4 题, 小题 5 小 每 分, 共 2 分. 0 把答 案填在题 中横线 上.
(3设向量 = (,) 1) 12,b = (,) 若向 23. 量 入 + b与 向量 = ( 4一 ) 线, 入= 一 , 7共 则
第1 卷
本卷共 1 小题, 2 每小题 5 共 6 分, 分, 0 在每 Biblioteka { y≤2, f x+2
【≥ 2 一 .
则Z= 一3 的最小值为 … … … … … … ・ ) ( () 2 () 4 () 6 () 8 A -; B-; C-; D-. () 2 名 男同学, 0 6从 0 1名女同学中任选 3 名
参加体能测试, 则选到 的3 名同学 中既有男同学
小题给出的四个选项中, 只有一项是符合题 目 要 求的.
参考公式:
如果事件 、 B互斥, 那么P( A+B)= P( ) A +P( B) 如果事件 、B相互独立, 那么P( B) A・ =
又有女 同学的概率为 … … … … … …・ …( ) …
实数, … … … … … … … … … ・ … … …( ) 则 … ( ) a; A b =32 () =3 Ba b;
(等腰 三角形两腰 ( ; ) A;( ; ) 的方程分别 ) B 所在直线 ( . 丢 ) c D 孚 昙 (1 1)
为 + Y一 2= 0 与 一 7 y一 4= 0 原 点 在 等 ,
( ; ( ) 0 ( ) 9 ( O A) B - c 西 ; D 2 1; 1

PA ・ ( ()PB)
如果 事件 在一次试验 中发生的概率是 P , 那么n 次独立重复试验中事件 A恰好发生 次的
()1一 )( + )的展开式中 的系 7 ( 61 4
数是 … … … … … … … … … … … … … … ・ ) (
●●___ ____ --_● -___ 。_-_。 _一


(4 设曲线Y= e 在点 (,) 1) 01处的切线与
() A a<b ; <c () C b<a<c :
( ) <a<6 Bc ; ( ) <c . D b <a
维普资讯
20 年第 7 08 期

数 学教 学
一g 3
D1 C1
第Ⅱ 卷
() Ⅱ 求二面角 1 一DE—B的大小.
概率 R () c p (- )一 (- ,,, ,) 后= 1 pn k 012… n
球 的表面积公 式 S=4r 7 R
其 中 R表 示球 的 半 径
球的体积公式 V = 丌 3 R
其 中 R表 示 球 的 半 径

( 一 ; () 3 ( ) ; ( 4 A) 4 B 一 ; C 3 D). () 8 若动直线 = a 与函数/x ()=s 和 i n gx ()= CS O 的图象分别交于 M、Ⅳ两点, 则 l Ⅳl M 的最大值为 … … … … … … … … … ・ ) ( ( 1 A); ()/; ( )/; ( 2 B 、 C 、3 D). / 2 / () 9设。> 1 则双曲线 一 , =1
( ) a ; C b =9
( a = 9 D) b.
() 3函数/x = 一 () 的图象关于 …・ ) ・ ( ( ) 轴对称; AY () B 直线Y=一 对称; () C 坐标原点对称; ( 直线Y= D) 对称. () 4若 ∈(一 ,)a=I b I c e 1, n , =2n , =

选择题
的离心率 e 的取值范围是 … … … … … … ・ ) ・ (
( )、22; A (/,) / ()、2、 ) B (/,/ ; / / 5 ( 设集合 M = . ∈Z 一3<m <2, 1 ) [ m l ) ( )2 5; C (, ) ( (,/) D)2、5. / N : n∈z 一1 I ≤n≤3 , ) 则M =・ ) nN ・ ( (0 已知正四棱 锥 S—AB 1) D的侧棱 长与 ( )01; A .,) [ ( )- ,,) B { 101; 底 面边长都相等, E是 S B的中点, A 则 E、S D ( )012; C .,,) [ ( )- ,,,) D { 1012. () 、b 2设a ∈R且b , ≠0 若复数(+b)是 所成 的角的余 弦值为 … … … … … … … … ( ) a i 3
I , ……………………………………………( ) n 则
腰三 角 形 的底 边 上,则 底边 所 在直 线 的斜率
为 …………………………・ …………………一 ……・ ( )
(); (); () 言 () 言 A3 B2 C一 ; D 一 .
(2 已知球的半径为 2 相互垂直的两个平 1) , 面分别截球面得两个 圆. 若两 圆的公共弦长为2 , 则两圆的圆心距等于 OmOoo.OO.im )  ̄.oO.mo OOmo ..O..m ( OOmo ( ); ()/; ( )/; ( ) . A1 B 、 C 、3 D 2 / 2 /
维普资讯
,3 }8 一
数 学数 学
20 年第 7 08 期
2 0 年 普通 高等 学校 招生全 国统 一 考试 08
理 科数 学 ( + 必修 选修Ⅱ )
本试卷分第1 ( 卷 选择题) 和第Ⅱ ( 卷 非选择
题) 两部分.
() 5设变量 、 满足约束条件:
相关文档
最新文档