动态规划解析

合集下载

动态规划算法难点详解及应用技巧介绍

动态规划算法难点详解及应用技巧介绍

动态规划算法难点详解及应用技巧介绍动态规划算法(Dynamic Programming)是一种常用的算法思想,主要用于解决具有重叠子问题和最优子结构性质的问题。

在解决一些复杂的问题时,动态规划算法可以将问题分解成若干个子问题,并通过求解子问题的最优解来求解原始问题的最优解。

本文将详细介绍动态规划算法的难点以及应用技巧。

一、动态规划算法的难点1. 难点一:状态的定义在动态规划算法中,首先需要明确问题的状态。

状态是指问题在某一阶段的具体表现形式。

在进行状态定义时,需要考虑到问题的最优子结构性质。

状态的定义直接影响到问题的子问题划分和状态转移方程的建立。

2. 难点二:状态转移方程的建立动态规划算法是基于状态转移的思想,即通过求解子问题的最优解来求解原始问题的最优解。

因此,建立合理的状态转移方程是动态规划算法的关键。

在进行状态转移方程的建立时,需要考虑问题的最优子结构性质和状态之间的关系。

3. 难点三:边界条件的处理在动态规划算法中,边界条件是指问题的最简单情况,用于终止递归过程并给出递归基。

边界条件的处理需要考虑问题的具体要求和实际情况,确保问题能够得到正确的解。

二、动态规划算法的应用技巧1. 应用技巧一:最长递增子序列最长递增子序列是一类经典的动态规划问题。

其求解思路是通过定义状态和建立状态转移方程,找到问题的最优解。

在应用最长递增子序列问题时,可以使用一维数组来存储状态和记录中间结果,通过迭代计算来求解最优解。

2. 应用技巧二:背包问题背包问题是另一类常见的动态规划问题。

其求解思路是通过定义状态和建立状态转移方程,将问题转化为子问题的最优解。

在应用背包问题时,可以使用二维数组来存储状态和记录中间结果,通过迭代计算来求解最优解。

3. 应用技巧三:最短路径问题最短路径问题是动态规划算法的经典应用之一。

其求解思路是通过定义状态和建立状态转移方程,利用动态规划的思想来求解最优解。

在应用最短路径问题时,可以使用二维数组来存储状态和记录中间结果,通过迭代计算来求解最优解。

动态规划

动态规划

多阶段决策问题中,各个阶段采取的决策,一般来说是与时间有关的,决策依赖于当前状态,又随即引起状 态的转移,一个决策序列就是在变化的状态中产生出来的,故有“动态”的含义,称这种解决多阶段决策最优化 问题的方法为动态规划方法 。
任何思想方法都有一定的局限性,超出了特定条件,它就失去了作用。同样,动态规划也并不是万能的。适 用动态规划的问题必须满足最优化原理和无后效性 。
动态规划
运筹学的分支
01 原理
03 局限性
目录
02 分类
动态规划(Dynamic Programming,DP)是运筹学的一个分支,是求解决策过程最优化的过程。20世纪50年 代初,美国数学家贝尔曼(R.Bellman)等人在研究多阶段决策过程的优化问题时,提出了著名的最优化原理, 从而创立了动态规划。动态规划的应用极其广泛,包括工程技术、经济、工业生产、军事以及自动化控制等领域, 并在背包问题、生产经营问题、资金管理问题、资源分配问题、最短路径问题和复杂系统可靠性问题等中取得了 显著的效果 。
最优化原理可这样阐述:一个最优化策略具有这样的性质,不论过去状态和决策如何,对前面的决策所形成 的状态而言,余下的诸决策必须构成最优策略。简而言之,一个最优化策略的子策略总是最优的。一个问题满足 最优化原理又称其具有最优子结构性质 。
将各阶段按照一定的次序排列好之后,对于某个给定的阶段状态,它以前各阶段的状态无法直接影响它未来 的决策,而只能通过当前的这个状态。换句话说,每个状态都是过去历史的一个完整总结。这就是无后向性,又 称为无后效性 。
状态:状态表示每个阶段开始面临的自然状况或客观条件,它不以人们的主观意志为转移,也称为不可控因 素。在上面的例子中状态就是某阶段的出发位置,它既是该阶段某路的起点,同时又是前一阶段某支路的终点 。

动态规划的基本思想

动态规划的基本思想

动态规划的基本思想动态规划是一种常见的解决问题的算法思想,它通过将复杂的问题分解成一个个子问题,逐步求解并记录下每个子问题的解,最终得到原问题的解。

这种思想在很多领域都有广泛的应用,例如计算机科学、经济学、物理学等。

一、动态规划的定义与特点动态规划是一种分治法的改进方法,它主要用于解决具有重叠子问题和最优子结构性质的问题。

它的基本思想可以概括为“记住中间结果,以便在需要的时候直接使用”。

动态规划算法的特点包括:1. 问题可以分解为若干个重叠的子问题;2. 子问题的解可以通过已知的子问题解来求解,且子问题的解可以重复使用;3. 需要使用一个数据结构(通常是一个矩阵)来存储子问题的解,以便在需要时直接取出。

二、动态规划的基本步骤动态规划算法通常可以分为以下几个基本步骤:1. 确定问题的状态:将原问题转化为一个或多个子问题,并定义清楚每个子问题的状态是什么。

2. 定义问题的状态转移方程:找出子问题之间的关系,即如何通过已知的子问题解来解决当前问题。

3. 设置边界条件:确定最简单的子问题的解,即边界条件。

4. 计算子问题的解并记录:按顺序计算子问题的解,并将每个子问题的解记录下来,以便在需要时直接使用。

5. 由子问题的解得到原问题的解:根据子问题的解和状态转移方程,计算得到原问题的解。

三、动态规划的实例分析为了更好地理解动态规划的基本思想,我们以求解斐波那契数列为例进行分析。

问题描述:斐波那契数列是一个经典的数学问题,它由以下递推关系定义:F(n) = F(n-1) + F(n-2),其中F(0) = 0,F(1) = 1。

解决思路:根据递推关系,可以将问题分解为求解F(n-1)和F(n-2)两个子问题,并将子问题的解累加得到原问题的解。

根据以上思路,可以得到以下的动态规划算法实现:1. 确定问题的状态:将第n个斐波那契数定义为一个状态,记为F(n)。

2. 定义问题的状态转移方程:由递推关系F(n) = F(n-1) + F(n-2)可得,F(n)的值等于前两个斐波那契数之和。

动态规划的基本原理和基本应用

动态规划的基本原理和基本应用

动态规划的基本原理和基本应用动态规划(Dynamic Programming)是一种通过将一个问题分解为较小的子问题并存储子问题的解来解决复杂问题的方法。

动态规划的基本原理是通过记忆化或自底向上的迭代方式来求解问题,以减少不必要的重复计算。

它在计算机科学和数学中具有广泛的应用,尤其是在优化、组合数学和操作研究等领域。

1.确定最优子结构:将原问题分解为较小的子问题,并且子问题的最优解能够推导出原问题的最优解。

2.定义状态:确定存储子问题解的状态变量和状态方程。

3.确定边界条件:确定初始子问题的解,也称为边界状态。

4.递推计算:利用状态方程将子问题的解计算出来,并存储在状态变量中。

5.求解最优解:通过遍历状态变量找到最优解。

1.背包问题:背包问题是动态规划的经典应用之一、它有多种变体,其中最基本的是0/1背包问题,即在限定容量的背包中选择物品,使得所选物品的总价值最大。

可以使用动态规划的思想来解决背包问题,确定状态为背包容量和可选物品,递推计算每个状态下的最优解。

2. 最长递增子序列:最长递增子序列(Longest Increasing Subsequence)是一种常见的子序列问题。

给定一个序列,找到其中最长的递增子序列。

可以使用动态规划来解决这个问题,状态可以定义为以第i个元素为结尾的最长递增子序列的长度,并递推计算每个状态的解。

3.矩阵链乘法:矩阵链乘法是一种优化矩阵连乘计算的方法。

给定一系列矩阵,求解它们相乘的最小计算次数。

可以使用动态规划解决矩阵链乘法问题,状态可以定义为矩阵链的起始和结束位置,递推计算每个状态下最小计算次数。

4.最短路径问题:最短路径问题是在有向图或无向图中找到两个节点之间最短路径的问题。

可以使用动态规划解决最短路径问题,状态可以定义为起始节点到一些节点的最短距离,递推计算每个状态的最优解。

动态规划问题求解步骤

动态规划问题求解步骤

动态规划问题求解步骤动态规划问题是指在具有重叠子问题和最优子结构特性的问题中,通过将问题分解成更小的子问题,利用已解决的子问题的解来求解原问题。

动态规划问题的求解过程可分为以下几个步骤。

1. 定义状态:首先,我们需要明确问题的状态。

状态是指问题的子问题所依赖的变量或参数,即决定子问题解的输入。

状态可以是多个变量组成的元组,也可以是一个单一的变量。

定义好状态有助于我们更好地理解问题的本质,并能够将问题分解成更小的子问题。

2. 定义初始状态:在动态规划问题中,初始状态是问题的边界条件或者基本情况。

我们需要确定初始状态的值,并将其作为问题求解的起点。

初始状态的设置应符合问题的需求,并满足问题求解的逻辑。

3. 确定状态转移方程:状态转移方程是动态规划问题的核心。

通过定义状态之间的转移关系,我们可以将原问题分解为一系列的子问题,并通过已解决的子问题的解来求解当前问题的解。

状态转移方程的推导需要通过分析子问题间的关联关系,并根据问题的特点来定义。

状态转移方程应具备递推性,即当前问题的解可以通过之前子问题的解得到。

4. 确定计算顺序:在确定了状态转移方程后,我们需要确定求解问题的顺序。

一般来说,动态规划问题可以采用自底向上或自顶向下的方式进行求解。

自底向上的求解方式从初始状态开始,按照计算顺序逐步求解,直至得到最终问题的解;而自顶向下的求解方式则从最终问题的解开始,通过递归或备忘录等方式来求解子问题,最终得到初始状态的解。

5. 计算最优解:在得到了问题的所有状态和状态转移方程后,我们可以利用动态规划的思想来计算最优解。

根据计算顺序,我们先计算出初始状态的值,然后按照状态转移方程逐步计算,直到得到最终问题的解。

在计算的过程中,我们可以使用辅助数组或表格来存储和更新中间状态的值,以便于后续的计算,并最终得到问题的最优解。

通过以上步骤,我们可以较为系统地解决动态规划问题。

这种求解方法具有重用已解决子问题的解、减少重复计算和提高时间效率等优势,适用于诸如最优路径、最长子序列、最大连续子数组和背包问题等多种场景。

动态规划-例题众多-详细讲解

动态规划-例题众多-详细讲解

步骤2:状态转移方程:
步骤3:以自底向上的方法来计算最优解
12
程序的实现
BuyTicks(T, R)
1 n ← length[T]
2 f[0] ← 0
3 f[1] ← T[1]
4 for i ← 2 to n do
5
f[i] ← f[i-2]+R[i-1]
6
if f[i] > f[i-1]+T[i] then
n 0 1 2 3 4 5 6 7 8 9 10 F(n) 1 1 2 3 5 8 13 21 34 55 89
2
递归 vs 动态规划
递归版本:
F(n)
1 if n=0 or n=1 then
2
return 1
3 else
4
return F(n-1) + F(n-2)
太慢!
动态规划:
F(n)
1 A[0] = A[1] ← 1
这里是某支股票的价格清单: 日期 1 2 3 4 5 6 7 8 9 10 11 12 价格 68 69 54 64 68 64 70 67 78 62 98 87 最优秀的投资者可以购买最多4次股票,可行方案中的一种是: 日期 2 5 6 10 价格 69 68 64 62 输入 第1行: N (1 <= N <= 5000),股票发行天数 第2行: N个数,是每天的股票价格。 输出 输出文件仅一行包含两个数:最大购买次数和拥有最大购买次数的方案数(<=231) 当二种方案“看起来一样”时(就是说它们构成的价格队列一样的时候),这2种方 案被认为是相同的。
你的任务是,已知所有N位同学的身高,计算最少需要 几位同学出列,可以使得剩下的同学排成合唱队形。

动态规划习题详解

动态规划习题详解

动态规划动态规划是运筹学的一个分支,它是解决多阶段决策过程最优化问题的一种方法。

该方法是由美国数学家贝尔曼(R.Bellman)等人在本世纪50年代初提出的。

他们针对多阶段决策问题的特点,提出了解决这类问题的“最优化原理”,并成功地解决了生产管理、工程技术等方面的许多实际问题,从而建立了运筹学的一个新分支——动态规划。

他的名著《动态规划》于1957年出版,该书是动态规划的第一本著作。

动态规划是现代企业管理中的一种重要决策方法,在工程技术、经济管理、工农业生产及军事及其它部们都有广泛的应用,并且获得了显著的效果。

动态规划可用于解决最优路径问题、资源分配问题、生产计划与库存问题、投资分配问题、装载问题、设备更新与维修问题、排序问题及生产过程的最优控制等。

由于它所具有独特的解题思路,在处理某些优化问题时,常常比线性规划或非线性规划方法更有效。

第一节动态规划的基本方法多阶段决策的实际问题很多,下面通过具体例子,说明什么是动态规划模型及其求解方法。

例1:最短路线问题某工厂需要把一批货物从城市A运到城市E,中间可经过B1 、B2、B3、C1、C2、C3、D1、D2等城市,各城市之间的交通线和距离如下图所示,问应该选择一条什么路线,使得从A到E的距离最短?下面引进几个动态规划的基本概念和相关符号。

(1)阶段(Stage)把所给问题的过程,按时间和空间特征划分成若干个相互联系的阶段,以便按次序去求每个阶段的解,阶段总数一般用字母n表示,用字母k表示阶段变量。

如例l中 (最短路线问题)可看作是n=4阶段的动态规划问题,k=2表示处于第二阶段。

(2)状态(State)状态表示每个阶段开始时系统所处的自然状况或客观条件,它描述了研究问题过程状况。

描述各阶段状态的变量称为状态变量,常用字母sk表示第k阶段的状态变量,状态变量的取值范围称为状态集,用Sk表示。

如例l中,第一阶段的状态为A(即出发位置)。

第二阶段有三个状态:B1 、B2、B3,状态变量s2=B2表示第2阶段系统所处的位置是B2。

动态规划的基本思想

动态规划的基本思想

动态规划的基本思想动态规划是一种常用于解决具有重叠子问题和最优子结构特征的问题的算法思想。

它将问题分解成一系列子问题,并通过解决子问题构建出整个问题的最优解。

动态规划的基本思想是将原始问题转化成一个或多个相似的子问题,然后通过解决这些子问题获得原始问题的解。

这种思想在很多实际问题中都能够得到应用。

动态规划的基本流程一般包括以下几个步骤:1. 将原始问题分解为子问题:首先需要将原问题划分为多个子问题,并且确保这些子问题之间有重叠的部分。

2. 定义状态:确定每个子问题需要求解的状态,也即问题需要达成的目标。

3. 确定状态转移方程:根据子问题之间的关系,确定子问题之间的状态转移方程,即如何将子问题的解转移到原问题的解。

4. 解决首个子问题:解决最基本的子问题,获得初始状态下的解。

5. 填充状态表格:根据状态转移方程,依次求解其他子问题,并且填充状态表格。

6. 求解原问题:通过填充状态表格,在保证状态转移方程的基础上求解原问题的最优解。

动态规划的关键在于将原问题转化为子问题,通过递归或者迭代的方式求解子问题,最终获得原问题的最优解。

在这个过程中,重叠子问题的求解是动态规划的特点之一。

由于问题的子问题存在重叠,所以在求解的过程中我们可以保存已经求解过的子问题的解,避免重复计算,从而提高效率。

动态规划还要求问题具有最优子结构特征,即问题的最优解可以通过子问题的最优解构建出来。

通过利用已解决的子问题的最优解,可以有效地解决原问题。

动态规划算法在实际应用中有着广泛的应用。

它可以用于解决很多经典的问题,如最长公共子序列、0-1背包问题、最大子数组和等。

动态规划算法可以有效地解决这些问题,使得它们的时间复杂度得到了有效的降低。

总结来说,动态规划的基本思想是将原始问题转化为子问题,并通过解决子问题构建整个问题的最优解。

动态规划算法通过保存已经解决的子问题的解来避免重复计算,从而提高算法的效率。

动态规划算法在实际应用中具有广泛的应用,是解决具有重叠子问题和最优子结构特征的问题的常用算法思想。

动态规划复杂度分析

动态规划复杂度分析

动态规划复杂度分析动态规划(Dynamic Programming)是一种常用的解决优化问题的方法,通过将问题分解为若干子问题,并将子问题的答案保存起来,避免重复计算,从而提高算法效率。

在实际应用中,我们需要对动态规划算法的时间复杂度和空间复杂度进行准确的分析,以便评估算法的性能和可行性。

一、动态规划的时间复杂度分析动态规划算法的时间复杂度取决于以下两个因素:1. 子问题数量:动态规划算法将原问题分解为若干子问题,并通过求解子问题的答案来解决原问题。

因此,子问题的数量直接关系到算法的时间复杂度。

如果每个子问题的求解时间相同且规模相等,那么子问题数量的增加会导致时间复杂度的线性增长。

2. 单个子问题的求解时间:每个子问题的求解时间是动态规划算法时间复杂度的另一个重要因素。

在实际应用中,子问题的求解时间可能不同,这取决于子问题之间的关系和具体的求解方法。

一般来说,如果每个子问题的求解时间相同,则总体的时间复杂度为子问题数量乘以单个子问题的求解时间。

基于以上分析,可以得出结论:动态规划算法的时间复杂度与子问题数量和单个子问题的求解时间相关,可以用O(N*M)表示,其中N 为子问题的数量,M为单个子问题的求解时间。

二、动态规划的空间复杂度分析动态规划算法的空间复杂度取决于以下两个因素:1. 子问题数量:与时间复杂度类似,子问题的数量也会影响算法的空间复杂度。

每个子问题需要保存其对应的答案,因此子问题的数量直接关系到算法的空间需求。

2. 单个子问题的空间需求:每个子问题需要保存其对应的答案,因此单个子问题的空间需求是算法空间复杂度的重要因素。

不同的子问题可能需要不同的空间来保存求解结果。

根据以上讨论,可以得出结论:动态规划算法的空间复杂度与子问题数量和单个子问题的空间需求相关,可以用O(N*M)表示,其中N为子问题的数量,M为单个子问题的空间需求。

三、动态规划算法的优化和改进在实际应用中,为了降低动态规划算法的时间复杂度和空间复杂度,可以采取以下优化和改进措施:1. 优化状态转移方程:动态规划算法的核心是状态转移方程,通过优化方程的表达和求解方式,可以减少算法的时间复杂度。

马尔可夫决策过程中的动态规划算法解析(四)

马尔可夫决策过程中的动态规划算法解析(四)

马尔可夫决策过程(Markov Decision Process,MDP)是一种用于描述随机决策问题的数学框架。

在MDP中,代理需要根据环境状态的随机变化做出决策,使得长期累积奖励最大化。

动态规划(Dynamic Programming,DP)是一种解决优化问题的方法,可以应用于求解MDP的最优策略。

本文将对马尔可夫决策过程中的动态规划算法进行解析。

首先,我们来了解一下马尔可夫决策过程的基本概念。

在MDP中,环境被建模成一组状态空间S和一组动作空间A。

代理根据当前状态和选择的动作,转移到下一个状态并获得相应的奖励。

状态转移过程是随机的,且受到当前状态和选择的动作的影响。

这种随机性是MDP与其他决策问题的显著区别,也是其求解的难点之一。

在MDP中,我们通常定义状态转移概率函数P(s'|s, a)和奖励函数R(s, a, s')。

其中,P(s'|s, a)表示在状态s下选择动作a后转移到状态s'的概率;R(s, a, s')表示在状态s下选择动作a后转移到状态s'并获得的奖励。

基于这些定义,我们可以使用动态规划算法求解MDP的最优策略。

动态规划算法通常包括价值迭代和策略迭代两种方法。

在MDP中,我们可以利用这两种方法求解最优价值函数和最优策略。

首先,我们来看价值迭代算法。

该算法通过迭代更新状态的价值函数来逼近最优价值函数。

我们定义状态s的价值函数V(s)为从状态s开始遵循最优策略所能获得的期望累积奖励。

价值迭代算法的核心思想是利用Bellman最优方程递归地更新状态的价值函数,直到收敛为止。

Bellman最优方程表示了最优价值函数之间的关系,可以用于迭代更新状态的价值函数。

通过不断迭代更新,最终可以得到最优价值函数,从而得到最优策略。

接下来,我们来看策略迭代算法。

与价值迭代算法不同,策略迭代算法首先需要初始化一个初始策略,然后交替进行策略评估和策略改进。

动态规划算法详解及经典例题

动态规划算法详解及经典例题

动态规划算法详解及经典例题⼀、基本概念(1)⼀种使⽤多阶段决策过程最优的通⽤⽅法。

(2)动态规划过程是:每次决策依赖于当前状态,⼜随即引起状态的转移。

⼀个决策序列就是在变化的状态中产⽣出来的,所以,这种多阶段最优化决策解决问题的过程就称为动态规划。

假设问题是由交叠的⼦问题所构成,我们就能够⽤动态规划技术来解决它。

⼀般来说,这种⼦问题出⾃对给定问题求解的递推关系中,这个递推关系包括了同样问题的更⼩⼦问题的解。

动态规划法建议,与其对交叠⼦问题⼀次重新的求解,不如把每⼀个较⼩⼦问题仅仅求解⼀次并把结果记录在表中(动态规划也是空间换时间的)。

这样就能够从表中得到原始问题的解。

(3)动态规划经常常使⽤于解决最优化问题,这些问题多表现为多阶段决策。

关于多阶段决策:在实际中,⼈们经常遇到这样⼀类决策问题,即因为过程的特殊性,能够将决策的全过程根据时间或空间划分若⼲个联系的阶段。

⽽在各阶段中。

⼈们都须要作出⽅案的选择。

我们称之为决策。

⽽且当⼀个阶段的决策之后,经常影响到下⼀个阶段的决策,从⽽影响整个过程的活动。

这样,各个阶段所确定的决策就构成⼀个决策序列,常称之为策略。

因为各个阶段可供选择的决策往往不⽌⼀个。

因⽽就可能有很多决策以供选择,这些可供选择的策略构成⼀个集合,我们称之为同意策略集合(简称策略集合)。

每⼀个策略都对应地确定⼀种活动的效果。

我们假定这个效果能够⽤数量来衡量。

因为不同的策略经常导致不同的效果,因此,怎样在同意策略集合中选择⼀个策略,使其在预定的标准下达到最好的效果。

经常是⼈们所关⼼的问题。

我们称这种策略为最优策略,这类问题就称为多阶段决策问题。

(4)多阶段决策问题举例:机器负荷分配问题某种机器能够在⾼低两种不同的负荷下进⾏⽣产。

在⾼负荷下⽣产时。

产品的年产量g和投⼊⽣产的机器数量x的关系为g=g(x),这时的年完善率为a,即假设年初完善机器数为x,到年终时完善的机器数为a*x(0<a<1);在低负荷下⽣产时,产品的年产量h和投⼊⽣产的机器数量y的关系为h=h(y)。

运筹学动态规划

运筹学动态规划

运筹学动态规划运筹学是一门综合运筹学、优化学、决策学和统计学等多学科知识的学科,它的核心内容是对决策问题进行建模和分析,并通过数学方法进行求解和优化。

动态规划是运筹学中的一种重要方法,它通过将问题划分为相互重叠的子问题,并通过解决子问题的最优解来求解原问题的最优解。

下面将详细介绍运筹学中的动态规划方法。

动态规划方法的核心思想是将原问题分解为若干个相互重叠的子问题,并通过求解子问题的最优解来求解原问题的最优解。

为了可以使用动态规划方法,必须满足以下两个条件:子问题的最优解可以作为原问题的最优解的一部分;子问题之间必须具有重叠性,即一个子问题可以被多次使用。

动态规划方法的具体步骤如下:首先,将原问题分解为若干个子问题,并定义出每个子问题的状态和状态转移方程;其次,通过迭代求解每个子问题的最优解,直到求解出原问题的最优解;最后,根据子问题的最优解和状态转移方程,得到原问题的最优解。

动态规划方法的应用非常广泛,可以用于求解各种各样的优化问题。

例如,在物流配送中,可以使用动态规划方法求解最短路径问题;在生产计划中,可以使用动态规划方法求解最优生产计划;在股票投资中,可以使用动态规划方法求解最优投资策略等。

动态规划方法的优点是可以通过求解子问题的最优解来求解原问题的最优解,避免了穷举法的复杂性。

此外,动态规划方法还可以通过引入一定的约束条件,来对问题进行更精确的建模和求解。

然而,动态规划方法也存在一些局限性。

首先,动态规划方法要求问题能够满足子问题的最优解可以作为原问题的最优解的一部分,这限制了动态规划方法的应用范围。

其次,动态规划方法通常需要建立较为复杂的状态转移方程,并进行复杂的计算,使得算法的实现和求解过程比较困难。

综上所述,动态规划是运筹学中的一种重要方法,通过将问题划分为相互重叠的子问题,并通过解决子问题的最优解来求解原问题的最优解。

动态规划方法的优点是可以高效地求解优化问题,但同时也存在一些局限性。

信息学奥赛一本通 题解

信息学奥赛一本通 题解

信息学奥赛一本通题解信息学奥赛一本通是一本针对信息学竞赛准备的教材,它包含了各种类型的编程题目和解题思路。

本文将为你详细解答一些典型的题目,并且给出相应的解题方法和思路。

1. 动态规划题目解析动态规划是一种常见的解题方法,它通过将问题划分为子问题,并且保存子问题的解,最终得到原问题的解。

在信息学竞赛中,动态规划常常被用来解决一些优化问题,比如最长递增子序列、背包问题等。

2. 图论题目解析图论是信息学竞赛中的重要内容,它研究的是图的性质和图的算法。

图可以用来表示各种复杂的关系,比如社交网络、道路网络等。

在解决图论问题时,常用的算法有深度优先搜索(DFS)、广度优先搜索(BFS)、最短路径算法(Dijkstra算法、Floyd算法)、最小生成树算法(Prim算法、Kruskal算法)等。

3. 字符串算法题目解析字符串算法是信息学竞赛中的常见题型之一,它通常涉及到字符串的匹配、替换、遍历等操作。

在解决字符串问题时,常用的算法有暴力匹配算法、KMP算法、Trie树等。

4. 数学题目解析数学在信息学竞赛中也扮演着重要的角色,因为很多问题可以通过数学方式进行建模和求解。

在解决数学问题时,我们常常需要运用到数论、概率论、组合数学等知识。

比如求解最大公约数、最小公倍数、质数判定、排列组合等问题。

5. 数据结构题目解析数据结构是信息学竞赛中的基础知识,它研究的是数据的存储、组织和管理方式。

在解决数据结构问题时,我们常常需要运用到数组、链表、栈、队列、堆、树、图等数据结构进行存储和操作。

总结:信息学奥赛一本通提供了丰富的题目和解题思路,涵盖了动态规划、图论、字符串算法、数学、数据结构等各个方面的知识。

通过学习和掌握这些解题方法和技巧,可以帮助我们在信息学竞赛中取得更好的成绩。

同时,练习解题也是提升编程能力和逻辑思维能力的有效途径。

希望本文所提供的信息能够帮助到你,祝你在信息学竞赛中取得好成绩!。

动态规划讲解大全(含例题及答案)

动态规划讲解大全(含例题及答案)
基本模型
多阶段决策过程的最优化问题。 在现实生活中,有一类活动的过程,由于它的特殊性,可将过程分成若干个互相联系的阶段,在 它的每一阶段都需要作出决策,从而使整个过程达到最好的活动效果。当然,各个阶段决策的选取不 是任意确定的,它依赖于当前面临的状态,又影响以后的发展,当各个阶段决策确定后,就组成一个 决策序列,因而也就确定了整个过程的一条活动路线,如图所示:(看词条图) 这种把一个问题看作是一个前后关联具有链状结构的多阶段过程就称为多阶段决策过程,这种问 题就称为多阶段决策问题。
在前面的例子中,第一个阶段就是点 A,而第二个阶段就是点 A 到点 B,第三个阶段是点 B 到点 C,而第四个阶段是点 C 到点 D。
状态:状态表示每个阶段开始面临的自然状况或客观条件,它不以人们的主观意志为转移,也称 为不可控因素。在上面的例子中状态就是某阶段的出发位置,它既是该阶段某路的起点,同时又是前 一阶段某支路的终点。
fout.close(); return 0; }
USACO 2.3 Longest Prefix
题目如下: 在生物学中,一些生物的结构是用包含其要素的大写字母序列来表示的。生物学家对于把长的序 列分解成较短的(称之为元素的)序列很感兴趣。 如果一个集合 P 中的元素可以通过串联(允许重复;串联,相当于 Pascal 中的 “+” 运算符) 组成一个序列 S ,那么我们认为序列 S 可以分解为 P 中的元素。并不是所有的元素都必须出现。 举个例子,序列 ABABACABAAB 可以分解为下面集合中的元素: {A, AB, BA, CA, BBC} 序列 S 的前面 K 个字符称作 S 中长度为 K 的前缀。设计一个程序,输入一个元素集合以及一 个大写字母序列,计算这个序列最长的前缀的长度。 PROGRAM NAME: prefix INPUT FORMAT 输入数据的开头包括 1..200 个元素(长度为 1..10 )组成的集合,用连续的以空格分开的字 符串表示。字母全部是大写,数据可能不止一行。元素集合结束的标志是一个只包含一个 “.” 的行。 集合中的元素没有重复。接着是大写字母序列 S ,长度为 1..200,000 ,用一行或者多行的字符串 来表示,每行不超过 76 个字符。换行符并不是序列 S 的一部分。 SAMPLE INPUT (file prefix.in) A AB BA CA BBC . ABABACABAABC OUTPUT FORMAT 只有一行,输出一个整数,表示 S 能够分解成 P 中元素的最长前缀的长度。 SAMPLE OUTPUT (file prefix.out) 11 示例程序如下: #include <stdio.h>

动态规划算法及其应用

动态规划算法及其应用

动态规划算法及其应用动态规划是一种重要的求解优化问题的算法,在计算机科学和应用数学领域都有广泛的应用。

它的基本思想是将大问题分解成小问题,通过记录中间结果来降低计算复杂度,从而达到在合理运行时间内求解问题的目的。

本文将介绍动态规划算法的基本概念和面向实际场景的应用。

1. 动态规划算法基本概念动态规划算法简而言之,就是由小问题推导出大问题的解。

通常情况下,我们将一个大问题拆分成若干个小问题,然后对每个小问题进行求解,并进行状态记录,最后将小问题的结果组合起来,得到大问题的最优解。

动态规划算法的核心是状态转移方程。

这个方程的形式通常为:dp[i] = max(dp[i-1], nums[i])其中,dp[i]表示到第i个位置的最优解,nums[i]是输入序列的第i个元素。

对于其他问题,这个状态转移方程可能会有所不同。

2. 动态规划算法的应用2.1 背包问题背包问题是动态规划算法的经典应用之一。

假设有n个物品和一个最大容量为W的背包,每个物品有一个重量wi和一个价值vi。

我们需要选择一些物品放入背包中,使得在满足背包的最大容量限制下,能够得到最大的总价值。

这个问题可以用动态规划来解决。

假设我们用dp[i][j]表示前i 个物品能够放入容量为j的背包中的最大价值。

对于每个物品i,可以考虑两种情况:放入背包和不放入背包。

如果把第i个物品放入背包中,则dp[i][j] = dp[i-1][j-wi] + vi;如果不把第i个物品放入背包中,则dp[i][j] = dp[i-1][j]。

状态转移方程为:dp[i][j] = max(dp[i-1][j-wi] + vi, dp[i-1][j])最终的最优解为dp[n][W]。

2.2 编辑距离问题编辑距离应用广泛,它可以度量字符串之间的差异性,用于拼写检查、语音识别、人工智能等领域。

编辑距离问题的目标是,给定两个字符串s和t,通过增加、删除、替换操作,将s转换成t,使得转换的代价最小。

Python中的动态规划解析

Python中的动态规划解析

Python中的动态规划解析动态规划是一种常用的算法思想,可以解决许多实际问题。

在Python中,动态规划的应用广泛,无论是求解最优解还是优化算法效率,都离不开动态规划的思想。

本文将对Python中的动态规划进行解析,并介绍其基本原理、常见应用和实现方法。

一、动态规划的基本原理动态规划(Dynamic Programming,简称DP)是一种通过拆分问题,定义问题状态和状态之间的关系,使得问题能够以递推(或递归)的方式去解决的算法思想。

它通常适用于有重叠子问题和最优子结构性质的问题。

具体来说,动态规划的基本原理可以概括为以下几步:1. 找到问题的最优子结构,即将原问题分解为若干个子问题;2. 定义问题状态,即确定需要存储的信息,以便用于子问题之间的转移;3. 确定状态转移方程,即问题状态之间的递推关系;4. 确定边界条件,即最小的子问题的解;5. 通过状态转移方程和边界条件,计算出原问题的解。

二、动态规划的应用动态规划在解决实际问题中有着广泛的应用。

以下是一些常见的动态规划问题及其解决方法:1. 斐波那契数列斐波那契数列是一个常见的动态规划问题,其定义如下:F(0) = 0F(1) = 1F(n) = F(n-1) + F(n-2) (n ≥ 2)2. 背包问题背包问题是求解在有限的背包容量下,如何选择装入背包的物品,使得物品的价值最大化或重量最小化的问题。

常见的背包问题包括01背包问题、完全背包问题和多重背包问题。

3. 矩阵链乘法问题矩阵链乘法问题是求解如何在给定的一系列矩阵相乘的情况下,使得计算乘法的次数最少的问题。

4. 最长公共子序列问题最长公共子序列问题是求解两个序列中最长的公共子序列的问题,常见的解决方法是使用动态规划。

三、动态规划的实现方法在Python中,可以使用递归或迭代的方式来实现动态规划。

1. 基于递归的实现基于递归的实现方式通常会利用递归的性质来解决问题,但由于递归会导致重复计算,因此需要使用记忆化搜索(Memoization)来优化递归过程。

《动态规划》课件

《动态规划》课件
特点
动态规划具有最优子结构和重叠子问题的特点,能够通过保存已解决的子问题来避免重复计 算。
应用场景
动态规划广泛应用于路线规划、资源分配、序列匹配等问题,能够有效地解决复杂的优化和 决策问题。
动态规划的优缺点
1 优点
动态规划能够提供最优的解决方案,同时能够高效地解决问题,避免重复计算。
2 缺点
使用动态规划解决问题需要设计状态转移方程,对于复杂问题可能需要较高的思维和计 算复杂度。
《动态规划》PPT课件
欢迎来到《动态规划》PPT课件! 本课程将深入探讨动态规划的应用和技巧, 帮助你理解这一强大的问题求解方法。
什么是动态规划
动态规划是一种通过将问题拆分为更小的子问题,并根据子问题的解来求解 原问题的方法。它可以应用于许多领域,包括优化、组合数学和图论。动态规划的特点 Nhomakorabea应用场景
参考资料
• 经典教材 • 学术论文 • 网络资源
确定问题的初始状态和结束条件,作为动态规划的边界。
4
确定优化方向
选择最优的状态转移路径,以达到问题的最优解。
经典问题解析
斐波那契数列
通过动态规划求解斐波那契数列,可以有效 地避免重复计算,提高计算效率。
最长公共子序列
使用动态规划求解最长公共子序列,可以在 时间复杂度为O(n*m)的情况下找到最长公共 子序列。
最优子结构
定义
最优子结构表示一个问题的最优解可以通过子 问题的最优解来构建。
举例
在路径规划问题中,通过求解子问题的最短路 径,可以获得整个路径规划的最短路径。
重叠子问题
定义
重叠子问题表示一个问题的子问题会被重复计 算多次。
举例
在斐波那契数列中,计算每个数字需要依赖于 前两个数字,导致重复计算了相同的子问题。

动态规划的基本概念和基本原理

动态规划的基本概念和基本原理

史的一个完整总结。只有具有无后效性的多阶段决策过程
才适合于用动态规划方法求解。
2 A1
3
5 B1 4
7
6
B2
5
3
2
C1 2 5 6
C2 3
2
C3 1
D3
1
E 5 D
2
B3 2
3.决策(decision)
C4 7
当各阶段的状态选定以后可以做出不同的决定(或选择)从
而确定下一个阶段的状态,这种决定(或选择)称为决策。
5.状态转移方程(state transfer equation) 设第k阶段状态为sk,做出的决策为uk(sk),则第k+1阶段 的状态sk+1随之确定,他们之间的关系可以表示为:
sk+1=Tk(sk,uk) 表示从第k阶段到第k+1阶段状态转移规律的方程称为状态 转移方程,它反映了系统状态转移的递推规律。
f3
(C3
)
min
d d
3 3
(C3 (C3
, ,
D1) D2 )
f4 (D1) f4 (D2 )
2 3
min1
5
5
u3(C3)=D1
f3(C4)= d3(C4,D2)+ f4(D2)=7+5=12
u3(C4)=D2
5
C1 2
2
A
1
3
B1 4
7
6
B2
5
3
2
5 6 C2 3 2
C3 1
D1 3
4.策略(policy)
当各个阶段的决策确定以后,各阶段的决策形成一个决策序 列,称此决策序列为一个策略。

动态规划应用动态规划解决问题的思路与技巧

动态规划应用动态规划解决问题的思路与技巧

动态规划应用动态规划解决问题的思路与技巧动态规划应用 - 动态规划解决问题的思路与技巧动态规划(Dynamic Programming)是一种常见的算法思想,用于解决一些具有重叠子问题和最优子结构性质的问题。

通过将大问题划分为小问题,并将小问题的解存储起来以避免重复计算,可以在一定程度上优化问题的求解过程。

本文将介绍动态规划的应用,并提供一些思路与技巧。

一、动态规划的基本思路动态规划问题通常可以由以下步骤解决:1. 定义状态:将问题划分成若干子问题,并确定每个子问题需要记录的状态。

2. 定义状态转移方程:通过分析子问题之间的关系,建立状态转移方程,以表达子问题的最优解与更小规模子问题的关系。

3. 初始化边界条件:确定最小规模子问题的解,并初始化状态转移方程中需要用到的边界条件。

4. 递推求解:按照状态转移方程的定义,从较小规模的子问题开始逐步推导出较大规模的问题的解。

5. 求解目标问题:根据最终推导出的状态,得到原始问题的最优解。

二、动态规划的技巧与优化1. 滚动数组:为了降低空间复杂度,可以使用滚动数组来存储状态。

滚动数组只记录当前状态与之前一部分状态相关的信息,避免了存储所有状态的需求。

2. 状态压缩:对于某些问题,可以将状态压缩成一个整数,从而大幅减小状态的数量。

例如,当问题中涉及到某些特定的组合或排列时,可以使用二进制位来表示状态。

3. 前缀和与差分数组:对于某些问题,可以通过计算前缀和或差分数组,将问题转化为求解累加或差对应数组中的某个区间的值的问题,从而简化计算过程。

4. 贪心思想:有些动态规划问题可以结合贪心思想,在每个阶段选择局部最优解,然后得到全局最优解。

5. 双重循环与多重循环:在实际解决问题时,可以使用双重循环或多重循环来遍历状态空间,求解问题的最优解。

三、动态规划的实际应用动态规划广泛应用于各个领域,包括但不限于以下几个方面:1. 最短路径问题:例如,求解两点之间的最短路径、最小生成树等。

力扣优秀题解

力扣优秀题解

力扣优秀题解——动态规划动态规划(Dynamic programming,简称DP)是一种常见的求解优化问题的方法。

它与分治算法类似,都是通过将大问题分解成若干个小问题来求解的。

不同的是,DP解决的问题通常是有重叠子问题和最优子结构特征的,即在求解过程中会反复计算相同的子问题,并且每个子问题都具有最优解,可以通过这些最优解推导出全局最优解。

力扣中的很多题目都可以使用动态规划来解决,比如最长公共子序列、股票买卖、打家劫舍等等。

下面针对这些题目进行详细解析。

一、最长公共子序列题目描述:给定两个字符串text1 和text2,返回它们的最长公共子序列。

如果不存在公共子序列,返回0。

示例:输入:text1 = "abcde", text2 = "ace" 输出:3 解释:最长公共子序列是 "ace",它的长度为 3。

解题思路:最长公共子序列问题是比较经典的DP问题。

设字符串text1和text2的长度分别为m 和n,令dp[i][j]表示text1[0:i]和text2[0:j]的最长公共子序列长度,为方便起见,text1和text2的下标从1开始。

当text1[i-1] == text2[j-1]时,dp[i][j] = dp[i-1][j-1] + 1,即text1[0:i-1]和text2[0:j-1]的最长公共子序列长度加上1。

当text1[i-1] != text2[j-1]时,dp[i][j] = max(dp[i-1][j], dp[i][j-1]),即考虑text1[0:i-1]和text2[0:j]的最长公共子序列长度与text1[0:i]和text2[0:j-1]的最长公共子序列长度,两者取最大值。

最终的答案即为dp[m][n]。

代码实现:class Solution: def longestCommonSubsequence(self, text1: str, text2: str) -> int: m, n = len(text1), len(text2) dp = [[0] * (n + 1) for _ in range(m + 1)] for i in range(1, m + 1): for j in range(1, n + 1): if text1[i - 1] == text2[j - 1]: dp[i][j] = dp[i - 1][j - 1] + 1 else: dp[i][j] = max(dp[i - 1][j], dp[i][j - 1]) return dp[m][n]二、股票买卖题目描述:给定一个数组prices,其中prices[i]是一支给定股票第i天的价格。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

动态规划的典型实例分析例1 背包问题设有n 种物品,每一种物品数量无限。

第i 种物品每件重量为w i 公斤,每件价值c i 元。

现有一只可装载重量为W 公斤的背包,求各种物品应各取多少件放入背包,使背包中物品的价值最高。

这个问题可以用整数规划模型来描述。

设第i 种物品取x i 件(i=1,2,…,n ,xi 为非负整数),背包中物品的价值为z ,则max z= c 1x 1 +c 2x 2 +… +c n x n s.t. w 1x 1 +w 2x 2 +… +w n x n ≤Wx 1, x 2,…, x n 为非负整数阶段k :第k 次装载第k 种物品(k=1,2,…,n )状态变量x k : 第k 次装载时背包还可以装载的重量; 决策变量d k :第k 次装载第k 种物品的件数;决策允许集合: D k (x k )={d k |0≤ d k ≤x k /w k ,d k 为整数}; 状态转移方程: x k +1=x k -w k d k 阶段指标: v k =c k d k递推方程: f k (x k )=max{c k d k +f k +1(x k +1)}=max{c k d k +f k +1(x k -w k d k )} 终端条件:f 4(x 4)=0对于一个具体问题: c 1=65,c 2=80,c 3=30 w 1=2,w 2=3,w 3=1 以及W=5用动态规划求解 对于k=3}d 30{max )}x (f d c {max )x (f 3w /x d 04433w /x d 033333333≤≤≤≤=+=列出f 3(x 3)的数值表f 3(x 3)对于k=2)}d 3x (f d 80{max )}x (f d c {max )x (f 22323/x d 03322w /x d 02222222-+=+=≤≤≤≤列出f 2(x 2)的数值表f 2(x 2)对于)}d 2x (f d 65{max )}x (f d c {max )x (f 11212/x d 02211w /x d 01111111-+=+=≤≤≤≤列出f 1(x 1)的数值表f 1(x 1)由题意知,x1=5,由表f1(x1)、f2(x2)、f3(x3),经回朔可得:d1*=2,x2=x1-2d1=1,d2*=0,x3=x2-3d2=1,d3*=1,x4=x3-d3=0即应取第一种物品2件,第三种物品1件,最高价值为160元,背包没有余量。

由f1(x1)得列表可以看出,如果背包得容量为W=4,W=3,W=2和W=1时,相应的最优解立即可以得到。

例2 石子归并在一个圆形操场的四周摆放着N堆石子(N<= 100),现要将石子有次序地合并成一堆.规定每次只能选取相邻的两堆合并成新的一堆,并将新的一堆的石子数,记为该次合并的得分.编一程序,由文件读入堆栈数N及每堆栈的石子数(<=20).(!)选择一种合并石子的方案,使用权得做N-1次合并,得分的总和最小;(2)选择一种合并石子的方案,使用权得做N-1次合并,得分的总和最大;输入数据:第一行为石子堆数N;第二行为每堆的石子数,每两个数之间用一个空格分隔.输出数据:从第一至第N行为得分最小的合并方案.第N+1行是空行.从第N+2行到第2N+1行是得分最大合并方案.每种合并方案用N行表示,其中第i行(1<=i<=N)表示第i次合并前各堆的石子数(依顺时针次序输出,哪一堆先输出均可).要求将待合并的两堆石子数以相应的负数表示.输入输出范例:输入:44 5 9 4输出:-4 5 9 -4-8 -5 9-13 -9224 -5 -9 44 -14 -4-4 -1822算法分析可能的贪心法:从最上面的一堆开始,沿顺时针方向排成一个序列。

第一次选得分最小(最大)的相邻两堆合并,形成新的一堆;接下来,在N-1堆中选得分最小(最大)的相邻两堆合并……,依次类推,直至所有石子经N-1次合并后形成一堆。

例如有6堆石子,每堆石子数(从最上面一堆数起,顺时针数)依次为346542要求选择一种合并石子的方案,使得做5次合并,得分的总和最小。

按照贪心法,合并的过程如下:每次合并得分第一次合并3465425第二次合并546549第三次合并96549第四次合并96915第五次合并 15 924总得分=5+9+9+15+24=62但是当我们仔细琢磨后,可得出另一个合并石子的方案:每次合并得分第一次合并3465427第二次合并7654213第三次合并 13 5426第四次合并 13 5611第五次合并 13 11 24总得分=7+6+11+13+24=61显然,后者比贪心法得出的合并方案更优。

动态规划算法1.最佳合并过程符合最佳原理使用贪心法至所以可能出错,是因为每一次选择得分最小(最大)的相邻两堆合并,不一定保证余下的合并过程能导致最优解。

我们可以想到一种理想的假设:如果N-1次合并的全局最优解包含了每一次合并的子问题的最优解,那么经这样的N-1次合并后的得分总和必然是最优的。

例如上例中第五次合并石子数分别为13和11的相邻两堆。

这两堆石头分别由最初的第1,2,3堆(石头数分别为3,4,6)和第4,5,6堆(石头数分别为5,4,2)经4次合并后形成的。

于是问题又归结为如何使得这两个子序列的N-2 次合并的得分总和最优。

为了实现这一目标,我们将第1个序列又一分为二:第1、2堆构成子序列1,第3堆为子序列2。

第一次合并子序列1中的两堆,得分7;第二次再将之与子序列2的一堆合并,得分13。

显然对于第1个子序列来说,这样的合并方案是最优的。

同样,我们将第2个子序列也一分为二;第4堆为子序列1,第5,6堆构成子序列2。

第三次合并子序列2中的2堆,得分6;第四次再将之与子序列1中的一堆合并,得分13。

显然对于第二个子序列来说,这样的合并方案也是最优的。

由此得出一个结论──6堆石子经过这样的5次合并后,得分的总和最小。

我们把每一次合并划分为阶段,当前阶段中计算出的得分和作为状态,如何在前一次合并的基础上定义一个能使目前得分总和最大的合并方案作为一次决策。

很显然,某阶段的状态给定后,则以后各阶段的决策不受这阶段以前各段状态的影响。

这种无后效性的性质符最佳原理,因此可以用动态规划的算法求解。

2.动态规划的方向和初值的设定采用动态规划求解的关键是确定所有石子堆子序列的最佳合并方案。

这些石子堆子序列包括:{第1堆、第2堆}、{第2堆、第3堆}、……、{第N堆、第1堆};{第1堆、第2堆、第3堆}、{第2堆、第3堆、第4堆}、……、{第N堆、第1堆、第2堆};{第1堆、……、第N堆}{第1堆、……、第N堆、第1堆}……{第N堆、第1堆、……、第N-1堆}为了便于运算,我们用〔i,j〕表示一个从第i堆数起,顺时针数j堆时的子序列{第i堆、第i+1堆、……、第(i+j-1)mod n堆}它的最佳合并方案包括两个信息:①在该子序列的各堆石子合并成一堆的过程中,各次合并得分的总和;②形成最佳得分和的子序列1和子序列2。

由于两个子序列是相邻的,因此只需记住子序列1的堆数;设f〔i,j〕──将子序列〔i,j〕中的j堆石子合并成一堆的最佳得分和;c〔i,j〕──将〔i,j〕一分为二,其中子序列1的堆数;(1≤i≤N,1≤j≤N)显然,对每一堆石子来说,它的f〔i,1〕=0 c〔i,1〕=0(1≤i≤N)对于子序列〔i,j〕来说,若求最小得分总和,f〔i,j〕的初始值为∞;若求最大得分总和,f〔i,j〕的初始值为0。

(1≤i≤N,2≤j≤N)。

规划的方向是顺推。

先考虑含二堆石子的N个子序列(各子序列分别从第1堆、第2堆、……、第N堆数起,顺时针数2堆)的合并方案f〔1,2〕,f〔2,2〕,……,f〔N,2〕c〔1,2〕,c〔2,2〕,……,c〔N,2〕然后考虑含三堆石子的N个子序列(各子序列分别从第1堆、第2堆、……、第N堆数起,顺时针数3堆)的合并方案f〔1,3〕,f〔2,3〕,……,f〔N,3〕c〔1,3〕,c〔2,3〕,……,c〔N,3〕依次类推,直至考虑了含N堆石子的N个子序列(各子序列分别从第1堆、第2堆、……、第N堆数起,顺时针数N堆)的合并方案f〔1,N〕,f〔2,N〕,……,f〔N,N〕c〔1,N〕,c〔2,N〕,……,c〔N,N〕最后,在子序列〔1,N〕,〔2,N〕,……,〔N,N〕中,选择得分总和(f值)最小(或最大)的一个子序列〔i,N〕(1≤i≤N),由此出发倒推合并过程。

3.动态规划方程和倒推合并过程对子序列〔i,j〕最后一次合并,其得分为第i堆数起,顺时针数j堆的石子总数t。

被合并的两堆石子是由子序列〔i,k〕和〔(i+k-1)modn+1,j-k〕(1≤k≤j-1)经有限次合并形成的。

为了求出最佳合并方案中的k值,我们定义一个动态规划方程:当求最大得分总和时f〔i,j〕=max{f〔i,k〕+f〔x,j-k〕+t}1≤k≤j-1c〔i,j〕=k│ f〔i,j〕=f〔i,k〕+f〔x,j-k〕+t(2≤j≤n,1≤i≤n)当求最小得分总和时f〔i,j〕=min{f〔i,k〕+f〔x,j-k〕+t}1≤k≤j-1c〔i,j〕=k│ f〔i,j〕=f〔i,k〕+f〔x,j-k〕+t(2≤j≤n,1≤i≤n)其中x=(i+k-1)modn+1,即第i堆数起,顺时针数k+1堆的堆序号。

例如对3 4 6 5 4 2中的6堆石子,按动态规划方程顺推最小得分和。

依次得出含二堆石子的6个子序列的合并方案f〔1,2〕=7 f〔2,2〕=10 f〔3,2〕=11c〔1,2〕=1 c〔2,2〕=1 c〔3,2〕=1f〔4,2〕=9 f〔5,2〕=6 f〔6,2〕=5c〔4,2〕=1 c〔5,2〕=1 c〔6,2〕=1含三堆石子的6个子序列的合并方案f〔1,3〕=20 f〔2,3〕=25 f〔3,3〕=24c〔1,3〕=2 c〔2,3〕=2 c〔3,3〕=1f〔4,3〕=17 f〔5,3〕=14 f〔6,3〕=14c〔4,3〕=1 c〔5,3〕=1 c〔6,3〕=2含四堆石子的6个子序列的合并方案f〔1,4〕=36 f〔2,4〕=38 f〔3,4〕=34c〔1,4〕=2 c〔2,4〕=2 c〔3,4〕=1f〔4,4〕=28 f〔5,4〕=26 f〔6,4〕=29c〔4,4〕=1 c〔5,4〕=2 c〔6,4〕=3含五堆石子的6个子序列的合并方案f〔1,5〕=51 f〔2,5〕=48 f〔3,5〕=45c〔1,5〕=3 c〔2,5〕=2 c〔3,5〕=2f〔4,5〕=41 f〔5,5〕=43 f〔6,5〕=45c〔4,5〕=2 c〔5,5〕=3 c〔6,5〕=3含六堆石子的6个子序列的合并方案f〔1,6〕=61 f〔2,6〕=62 f〔3,6〕=61c〔1,6〕=3 c〔2,6〕=2 c〔3,6〕=2f〔4,6〕=61 f〔5,6〕=61 f〔6,6〕=62c〔4,6〕=3 c〔5,6〕=4 c〔6,6〕=3f〔1,6〕是f〔1,6〕,f〔2,6〕,……f〔6,6〕中的最小值,表明最小得分和是由序列〔1,6〕经5次合并得出的。

相关文档
最新文档