第1章平行线总复习

合集下载

平行线的基本概念

平行线的基本概念

平行线的基本概念
平行线是指在同一个平面上,永远不会相交的直线。

它们拥有以下基本概念:
1. 平行关系:如果两条直线在同一个平面上,且永远不会相交,那么它们被称为平行线。

2. 平行公理:平行线的存在性是基于平行公理的假设,平行公理表明,通过一条直线外一点引一条直线,它与给定直线若有一个交点就必然与其有且只有一个交点,或者根本没有交点。

3. 平行符号:常用的表示两条平行线的符号是双竖线 "||",例
如线段AB || 线段CD 表示线段AB与线段CD平行。

4. 平行线的特性:平行线具有多种特性,其中包括:(a) 平行
线之间的距离是相等的;(b) 平行线有相同的斜率;(c) 平行线
之间的交角等于180度减去与其相交直线上的另一个角的度数。

5. 平行线与转角:如果两条直线分别与第三条直线相交,且两个转角互为同位角或内错角,那么这两条直线是平行的。

总之,平行线是在同一个平面上永远不相交的直线,它们具有一系列的特性和关系。

2023年浙教版七下数学第一章平行线章节复习(教师版)

2023年浙教版七下数学第一章平行线章节复习(教师版)

2023年浙教版七下数学第一章平行线章节复习(教师版)一、知识梳理知识点1:平行线的定义1.定义:在同一平面内,不相交的两条直线叫做平行线,如果直线a与b平行,记作a ∥b.注意:(1)平行线的定义有三个特征:一是在同一个平面内;二是两条直线;三是不相交,三者缺一不可;(2)有时说两条射线平行或线段平行,实际是指它们所在的直线平行,两条线段不相交并不意味着它们就平行.(3)在同一平面内,两条直线的位置关系只有相交和平行两种.特别地,重合的直线视为一条直线,不属于上述任何一种位置关系.知识点2:同位角、内错角和同旁内角两条直线被第三条线所截,可得八个角,即“三线八角”,如图6所示。

(1)同位角:可以发现∠1与∠5都处于直线l的同一侧,直线a、b的同一方,这样位置的一对角就是同位角。

图中的同位角还有∠2与∠6,∠3与∠7,∠4与∠8。

(2)内错角:可以发现∠3与∠5都处于直线l的两旁,直线a、b的两方,这样位置的一对角就是内错角。

图中的内错角还有∠4与∠6。

(3)同旁内角:可以发现∠4与∠5都处于直线l的同一侧,直线a、b的两方,这样位置的一对角就是同旁内角。

图中的同旁内角还有∠3与∠6。

知识点3:平行公理及推论1.平行公理:经过直线外一点,有且只有一条直线与这条直线平行.2.推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行.记作:如果a∥b,a∥c,那么a∥c注意:(1)平行公理特别强调“经过直线外一点”,而非直线上的点,要区别于垂线的第一性质.(2)“平行公理的推论”也叫平行线的传递性知识点4:平行线判定判定方法(1):两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行简单说成:同位角相等,两直线平行。

几何语言:∵∠1=∠2∴ AB∥CD(同位角相等,两直线平行)判定方法(2):两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行.简单说成:内错角相等,两直线平行。

浙教版数学七年级下册第1章《平行线》单元复习课课件

浙教版数学七年级下册第1章《平行线》单元复习课课件

B.3 cm
C.4 cm
D.6 cm
【解析】 由平移得,AD=BE=CF,AC=DF.
∵△ABC的周长为12 cm,四边形ABFD的周长为18 cm, ∴AB+BC+AC=12,AB+BF+DF+AD=18,
∴AB+BC+CF+AC+CF=18, 即12+2CF=18,解得CF=3, 即平移的距离为3 cm.
第1章 平行线 单元复习课
类型之一 同位角、内错角、同旁内角的识别 1.如图,下列说法中,正确的是( A ) A.∠2与∠3是同旁内角 B.∠1与∠2是同位角 C.∠1与∠3是同位角 D.∠1与∠2是内错角
类型之二 平行线的判定 2.如图,在下列条件中,不能判定直线a与b平行的是( C ) A.∠1=∠2 B.∠2=∠3 C.∠1=∠5 D.∠3+∠4=180°
问题迁移:如图3,AD∥BC,点P在射线OM上运动,∠ADP=α,∠BCP=β.
(2)当点P在A,B两点之间运动时,∠CPD,α,β之间有何数量关系?请说明理 由.
解:∠CPD=α+β,理由如下:
如答图1,过点P作PE∥AD交CD于点E.
∵AD∥BC,∴AD∥PE∥BC,
∴∠DPE=α,∠CPE=β,
类型之七 与平行线有关的探究型问题 11 . 问 题 情 境 : 如 图 1 , 已 知 A B ∥ C D , ∠ A P C = 1 0 8 ° . 求 ∠ PA B + ∠ P C D 的度数.
(1)经过思考,小敏的思路:如图2,过点P作PE∥AB,根据平行线的有关性 质 , 可 得 ∠ PA B + ∠ P C D = _ _ _2_5_2_ _ _ _ ° . 【解析】∵AB∥CD,PE∥AB, ∴PE∥AB∥CD, ∴ ∠ PA B + ∠ A P E = 1 8 0 ° , ∠ P C D + ∠ C P E = 1 8 0 ° . ∵∠APC=∠APE+∠CPE=108°, ∴ ∠ PA B + ∠ P C D = 3 6 0 ° - 1 0 8 ° = 2 5 2 ° .

浙教版七年级数学下册第一章《平行线复习》优课件 (2)

浙教版七年级数学下册第一章《平行线复习》优课件 (2)
1 2
10.如图,AB∥CD, ∠1=50 °,∠2=110°,
∠3=( B)
A.50° B.60° C.70° D.80°
A
13
D
2
l1
B
24
C1
3
4
l2
11.如图,直线l1 ∥ l2,一块含30 °角 的直角三角板如图放置,若∠1=25 °,
则∠2等于( D ) A.20° B.25° C.30° D.35°
角.
②∠1 和 ∠ 3 是 直 线 __A_B__
A
和直线__A_C__被直线_D_E___ 所截而成的_同__位_角.
B
D1 7 26
3E 4
5C
③∠4和∠5是直线__D_E___和直线__B_C___
被直线__A_C__所截而成的_内__错_角.
④∠2和∠5是直线__A_B___和直线__A_C___ 被直线__B_C__所截而成的_同__旁__内___角.
若AB∥CD, 则∠ 1=∠ 。2
A
A1
B
32 4
D
C
E
1 B
2F
43
D
C
2.在下列给出的条件中,不能判定AB∥DF
的是( D)
A.∠A+∠2=180° B. ∠A=∠3
C. ∠1=∠4 D. ∠1=∠A
3.∠ABC=70°,∠ACB=50°,BO、CO
分别平分∠ABC和∠ACB,DE过点O与BC
AC
l1
A
C
l1
P
B
D l2
B
D
l2
P
15.如图,平面镜OA,OB的夹角为50度,
若要使一条光线经两个镜面反射后沿与OA

2019-2020浙教版七年级数学下册第一章平行线单元测试卷解析版

2019-2020浙教版七年级数学下册第一章平行线单元测试卷解析版

2019-2020浙教版七年级数学下册第一章平行线单元测试卷一.选择题(共12小题)1.如图,若两条平行线EF,MN与直线AB,CD相交,则图中共有同旁内角的对数为()A.4B.8C.12D.162.观察如图所示的长方体,与棱AB平行的棱有几条()A.4B.3C.2D.13.下列说法中,正确的是()A.两条不相交的直线叫平行线B.一条直线的平行线有且只有一条C.若直线a∥b,a∥c,则b∥cD.两条直线不相交就平行4.如图,有以下四个条件:①∠B+∠BCD=180°,②∠1=∠2,③∠3=∠4,④∠B=∠5,其中能判定AB∥CD的条件的个数有()A.1B.2C.3D.45.如图,已知AB∥DE,∠ABC=75°,∠CDE=145°,则∠BCD的值为()A.20°B.30°C.40°D.70°6.如图,如果∠1=∠2,DE∥BC,则下列结论正确的个数为()(1)FG∥DC;(2)∠AED=∠ACB;(3)CD平分∠ACB;(4)∠1+∠B=90°;(5)∠BFG=∠BDC.A.1个B.2个C.3个D.4个7.把如图图形进行平移,能得到的图形是()A.B.C.D.8.下列现象属于平移的是()①打气筒活塞的轮复运动,②电梯的上下运动,③钟摆的摆动,④转动的门,⑤汽车在一条笔直的马路上行走.A.③B.②③C.①②④D.①②⑤9.通过平移,可将如图中的福娃“欢欢”移动到图()A.B.C.D.10.一个长为2、宽为1的长方形以下面的四种“姿态”从直线l的左侧水平平移至右侧(下图中的虚线都是水平线).其中,所需平移的距离最短的是()A.B.C.D.11.如图,直角三角板ABC的斜边AB=12cm,∠A=30°,将三角板ABC绕点C顺时针旋转90°至三角板A′B′C′的位置后,再沿CB方向向左平移,使点B′落在原三角板ABC的斜边AB上,则三角板A′B′C′平移的距离为()A.6cm B.(6﹣2)cm C.3cm D.(4﹣6)cm 12.如图,如果把图中任一条线段沿方格线平移1格称为“1步”,那么要通过平移使图中的3条线段首尾相接组成一个三角形,最少需要()A.4步B.5步C.6步D.7步二.填空题(共8小题)13.如图,如果∠1=40°,∠2=100°,∠3的同旁内角等于.14.平面上两条直线的位置关系是或.15.若AB∥CD,AB∥EF,则CD EF,其理由是.16.如图,∠1=∠2,∠2=∠C,则图中互相平行的直线有.17.一块矩形场地,长为101米,宽为70米,从中留出如图所示的宽为1米的小道,其余部分种草,则草坪的面积为m2.18.如图所示,某住宅小区内有一长方形地块,想在长方形地块内修筑同样宽的两条”之”字路,余下部分绿化,道路的宽为2米,则绿化的面积为m2.19.如图所示,把直角梯形ABCD沿AD方向平移到梯形EFGH,HG=24cm,WG=8cm,WC=6cm,求阴影部分的面积为cm2.20.如图,将周长为15cm的△ABC沿射线BC方向平移2cm后得到△DEF,则四边形ABFD 的周长为cm.三.解答题(共8小题)21.如图,∠1和∠2是哪两条直线被哪一条直线所截形成的?它们是什么角?∠1和∠3是哪两条直线被哪一条直线所截形成的?它们是什么角?22.按要求完成作图,并回答问题;如图在△ABC中:(1)过点A画BC的垂线,垂足为E;(2)画∠ABC的平分线,交AC于F;(3)过E画AB的平行线,交AC于点G;(4)过点C画AB所在的直线的垂线段,垂足为H.23.如图,直线AE、CF分别被直线EF、AC所截,已知,∠1=∠2,AB平分∠EAC,CD 平分∠ACG.将下列证明AB∥CD的过程及理由填写完整.证明:因为∠1=∠2,所以∥,()所以∠EAC=∠ACG,()因为AB平分∠EAC,CD平分∠ACG,所以=,=,所以=,所以AB∥CD().24.已知△ABC中,∠A=60°,∠ACB=40°,D为BC边延长线上一点,BM平分∠ABC,E为射线BM上一点.(1)如图1,连接CE,①若CE∥AB,求∠BEC的度数;②若CE平分∠ACD,求∠BEC的度数.(2)若直线CE垂直于△ABC的一边,请直接写出∠BEC的度数.25.如图所示,一块边长为8米的正方形土地,上面修了横竖各有两条道路,宽都是2米,空白的部分种上各种花草,请利用平移的知识求出种花草的面积.26.宾馆重新装修后,准备在大厅的主楼梯上铺设一种红地毯,已知这种地毯每平方米售价40元,主楼梯道宽2米,其侧面如图所示,求买地毯至少需要多少元?27.如图,桌面内,直线l上摆放着两块大小相同的直角三角板,它们中较大锐角的度数为60°.将△ECD沿直线l向左平移到图的位置,使E点落在AB上,即点E′,点P为AC与E′D′的交点.(1)求∠CPD′的度数;(2)求证:AB⊥E′D′.28.已知,BC∥OA,∠B=∠A=100°,试回答下列问题:(1)如图1所示,求证:OB∥AC;(2)如图2,若点E、F在BC上,且满足∠FOC=∠AOC,并且OE平分∠BOF.试求∠EOC的度数;(3)在(2)的条件下,若平行移动AC,如图3,那么∠OCB:∠OFB的值是否随之发生变化?若变化,试说明理由;若不变,求出这个比值;(4)附加题:在(3)的条件下,如果平行移动AC的过程中,若使∠OEB=∠OCA,此时∠OCA度数等于.(在横线上填上答案即可).参考答案与试题解析一.选择题(共12小题)1.如图,若两条平行线EF,MN与直线AB,CD相交,则图中共有同旁内角的对数为()A.4B.8C.12D.16【分析】此题旨在考查同旁内角的定义,要正确解答应把握以下几点:1、分清截线与被截直线,2、作为同旁内角的两个角应在截线的同旁,被截直线之间.【解答】解:以CD为截线,①若以EF、MN为被截直线,有2对同旁内角,②若以AB、EF为被截直线,有2对同旁内角,③若以AB、MN为被截直线,有2对同旁内角;综上,以CD为截线共有6对同旁内角.同理:以AB为截线又有6对同旁内角.以EF为截线,以AB、CD为被截直线,有2对同旁内角,以MN为截线,以AB、CD为被截直线,有2对同旁内角,综上,共有16对同旁内角.故选D.【点评】解答此题的关键在掌握同旁内角的概念,注意要对截线的情况进行讨论.2.观察如图所示的长方体,与棱AB平行的棱有几条()A.4B.3C.2D.1【分析】根据长方体即平行线的性质解答.【解答】解:图中与AB平行的棱有:EF、CD、GH.共有3条.故选:B.【点评】本题考查了平行线的定义、长方体的性质.一个长方形的两条对边平行.3.下列说法中,正确的是()A.两条不相交的直线叫平行线B.一条直线的平行线有且只有一条C.若直线a∥b,a∥c,则b∥cD.两条直线不相交就平行【分析】根据平行线的定义判断A;根据平行线的性质判断B;根据平行公理的推论判断C;根据两条直线的位置关系判断D.【解答】解:A、在同一平面内不相交的两条直线叫做平行线,故本选项错误;B、一条直线的平行线有无数条,故本选项错误;C、若直线a∥b,a∥c,则b∥c,满足平行公理的推论,故本选项正确;D、在同一平面内两条直线不相交就平行,故本选项错误.故选:C.【点评】本题考查平行线的定义、性质及平行公理,熟练掌握公理和概念是解决本题的关键.4.如图,有以下四个条件:①∠B+∠BCD=180°,②∠1=∠2,③∠3=∠4,④∠B=∠5,其中能判定AB∥CD的条件的个数有()A.1B.2C.3D.4【分析】根据平行线的判定定理求解,即可求得答案.【解答】解:①∵∠B+∠BDC=180°,∴AB∥CD;②∵∠1=∠2,∴AD∥BC;③∵∠3=∠4,∴AB∥CD;④∵∠B=∠5,∴AB∥CD;∴能得到AB∥CD的条件是①③④.故选:C.【点评】此题考查了平行线的判定.此题难度不大,注意掌握数形结合思想的应用,弄清截线与被截线.5.如图,已知AB∥DE,∠ABC=75°,∠CDE=145°,则∠BCD的值为()A.20°B.30°C.40°D.70°【分析】延长ED交BC于F,根据平行线的性质求出∠MFC=∠B=75°,求出∠FDC =35°,根据三角形外角性质得出∠C=∠MFC﹣∠MDC,代入求出即可.【解答】解:延长ED交BC于F,如图所示:∵AB∥DE,∠ABC=75°,∴∠MFC=∠B=75°,∵∠CDE=145°,∴∠FDC=180°﹣145°=35°,∴∠C=∠MFC﹣∠MDC=75°﹣35°=40°,故选:C.【点评】本题考查了三角形外角性质,平行线的性质的应用,解此题的关键是求出∠MFC的度数,注意:两直线平行,同位角相等.6.如图,如果∠1=∠2,DE∥BC,则下列结论正确的个数为()(1)FG∥DC;(2)∠AED=∠ACB;(3)CD平分∠ACB;(4)∠1+∠B=90°;(5)∠BFG=∠BDC.A.1个B.2个C.3个D.4个【分析】由平行线的性质得出内错角相等、同位角相等,得出(2)正确;再由已知条件证出∠2=∠DCB,得出FG∥DC,(1)正确;由平行线的性质得出(5)正确;即可得出结果.【解答】解:∵DE∥BC,∴∠DCB=∠1,∠AED=∠ACB,(2)正确;∵∠1=∠2,∴∠2=∠DCB,∴FG∥DC,(1)正确;∴∠BFG=∠BDC,(5)正确;正确的个数有3个,故选:C.【点评】本题考查了平行线的判定与性质;熟练掌握平行线的判定与性质,并能进行推理论证是解决问题的关键.7.把如图图形进行平移,能得到的图形是()A.B.C.D.【分析】根据平移不改变图形的形状和大小,对应点的连线相等且互相平行即可判断.【解答】解:观察图形可知图形进行平移,能得到的图形C,故选:C.【点评】本题考查了图形的平移,图形的平移只改变图形的位置,而不改变图形的形状和大小.8.下列现象属于平移的是()①打气筒活塞的轮复运动,②电梯的上下运动,③钟摆的摆动,④转动的门,⑤汽车在一条笔直的马路上行走.A.③B.②③C.①②④D.①②⑤【分析】根据平移的定义即可作出判断.【解答】解:①②⑤都是平移现象;③④是旋转.故选:D.【点评】本题主要考查了生活中的平移现象,正确理解平移的定义是关键.9.通过平移,可将如图中的福娃“欢欢”移动到图()A.B.C.D.【分析】根据平移的性质,结合图形,对选项进行一一分析,排除错误答案.【解答】解:A、属于图形旋转所得到,故错误;B、属于图形旋转所得到,故错误;C、图形形状大小没有改变,符合平移性质,故正确;D、属于图形旋转所得到,故错误.故选:C.【点评】本题考查图形的平移变换.图形的平移只改变图形的位置,而不改变图形的形状和大小,学生易混淆图形的平移与旋转或翻转,以致选错.10.一个长为2、宽为1的长方形以下面的四种“姿态”从直线l的左侧水平平移至右侧(下图中的虚线都是水平线).其中,所需平移的距离最短的是()A.B.C.D.【分析】根据平移的性质,利用等腰直角三角形的性质和勾股定理计算出各个图形中平移的距离,然后比较它们的大小即可.【解答】解:A、平移的距离=1+2=3,B、平移的距离=2+1=3,C、平移的距离==,D、平移的距离=2,故选:C.【点评】本题考查了平移的性质:把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同;新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点.连接各组对应点的线段平行且相等.解决本题的关键是利用等腰直角三角形的性质和勾股定理计算出各个图形中平移的距离.11.如图,直角三角板ABC的斜边AB=12cm,∠A=30°,将三角板ABC绕点C顺时针旋转90°至三角板A′B′C′的位置后,再沿CB方向向左平移,使点B′落在原三角板ABC的斜边AB上,则三角板A′B′C′平移的距离为()A.6cm B.(6﹣2)cm C.3cm D.(4﹣6)cm 【分析】根据直角三角形30°角所对的直角边等于斜边的一半求出BC,再利用勾股定理列式求出AC,然后求出AB′,过点B′作B′D⊥AC交AB于D,然后解直角三角形求出B′D即可.【解答】解:∵AB=12cm,∠A=30°,∴BC=AB=×12=6cm,由勾股定理得,AC===6cm,∵三角板ABC绕点C顺时针旋转90°得到三角板A′B′C′,∴B′C′=BC=6cm,∴AB′=AC﹣B′C′=6﹣6,过点B′作B′D⊥AC交AB于D,则B′D=AB′=×(6﹣6)=(6﹣2)cm.故选:B.【点评】本题考查了平移的性质,旋转变换的性质,解直角三角形,熟练掌握各性质是解题的关键,作出图形更形象直观.12.如图,如果把图中任一条线段沿方格线平移1格称为“1步”,那么要通过平移使图中的3条线段首尾相接组成一个三角形,最少需要()A.4步B.5步C.6步D.7步【分析】根据图示和平移的性质,注意正确的计数,查清方格的个数,从而求出步数.【解答】解:由图形知,中间的线段向左平移1个单位,上边的直线向右平移2个单位,最下边的直线向上平移2个单位,只有这样才能使构造的三角形平移的次数最少,其它平移方法都多于5步.∴通过平移使图中的3条线段首尾相接组成一个三角形,最少需要5步.故选:B.【点评】本题考查图形的平移变换,注意平移不改变图形的形状和大小且平移前后图形对应点之间的连线应该互相平行,另外使平移后成为三角形.二.填空题(共8小题)13.如图,如果∠1=40°,∠2=100°,∠3的同旁内角等于100°.【分析】根据同旁内角的定义可得∠3的同旁内角是∠4,根据对顶角相等得到∠2=∠4,可得答案.【解答】解:∵∠2=100°,∴∠4=100°.故答案为:100°.【点评】此题主要考查了同旁内角定义,以及对顶角的性质,题目比较简单.14.平面上两条直线的位置关系是相交或平行.【分析】在同一平面内不重合的两条直线,有两种位置关系:相交或平行.【解答】解:在同一平面内不重合的两条直线,有两种位置关系:相交或平行.故填相交、平行.【点评】本题主要考查平面内两直线的位置关系,注意垂直是两直线相交的特例.15.若AB∥CD,AB∥EF,则CD∥EF,其理由是平行于同一直线的两直线平行.【分析】根据平行公理及推论即可推出答案.【解答】解:∵AB∥CD,AB∥EF,∴CD∥EF(平行于同一直线的两直线平行),故答案为:∥,平行于同一直线的两直线平行.【点评】本题主要考查对平行公理及推论的理解和掌握,能熟练地运用性质进行推理是解此题的关键.16.如图,∠1=∠2,∠2=∠C,则图中互相平行的直线有AB∥CD,EF∥CG.【分析】由∠2=∠C,根据同位角相等,两直线平行得到EF∥CG;而∠1=∠2,等量代换得到∠1=∠C,则AB∥CD.【解答】解:∵∠2=∠C,∴EF∥CG,又∵∠1=∠2,∴∠1=∠C,∴AB∥CD.故答案为EF∥CG,AB∥CD.【点评】本题考查了直线平行的判定:同位角相等,两直线平行.17.一块矩形场地,长为101米,宽为70米,从中留出如图所示的宽为1米的小道,其余部分种草,则草坪的面积为6900m2.【分析】直接利用平移的性质,将小道平移到矩形场地周围进而得出答案.【解答】解:由题意可得:草坪的面积为:(101﹣1)×(70﹣1)=6900(m2).故答案为:6900.【点评】此题主要考查了生活中的平移现象,正确利用平移的性质是解题关键.18.如图所示,某住宅小区内有一长方形地块,想在长方形地块内修筑同样宽的两条”之”字路,余下部分绿化,道路的宽为2米,则绿化的面积为540m2.【分析】把两条”之”字路平移到长方形地块ABCD的最上边和最左边,则余下部分EFCG是矩形,根据矩形的面积公式即可求出结果.【解答】解:如图,把两条”之”字路平移到长方形地块ABCD 的最上边和最左边,则余下部分EFGH 是矩形.∵CF =32﹣2=30(米),CG =20﹣2=18(米),∴矩形EFCG 的面积=30×18=540(平方米).答:绿化的面积为540m 2.故答案为:540.【点评】将长方形地块内部修筑的两条”之”字路平移到长方形ABCD 的最上边和最左边,使余下部分EFGH 是一个矩形,是解决本题的关键.19.如图所示,把直角梯形ABCD 沿AD 方向平移到梯形EFGH ,HG =24cm ,WG =8cm ,WC =6cm ,求阴影部分的面积为 168 cm 2.【分析】根据平移的性质得HG =CD =24,则DW =DC ﹣WC =18,由于S 阴影部分+S 梯形EDWF =S 梯形DHGW +S 梯形EDWF ,所以S 阴影部分=S 梯形DHGW ,然后根据梯形的面积公式计算.【解答】解:∵直角梯形ABCD 沿AD 方向平移到梯形EFGH ,∴HG =CD =24,∴DW =DC ﹣WC =24﹣6=18,∵S 阴影部分+S 梯形EDWF =S 梯形DHGW +S 梯形EDWF ,∴S 阴影部分=S 梯形DHGW =(DW +HG )×WG=×(18+24)×8=168(cm 2).故答案为168.【点评】本题考查了平移的性质:把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同;新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点.连接各组对应点的线段平行且相等.20.如图,将周长为15cm的△ABC沿射线BC方向平移2cm后得到△DEF,则四边形ABFD 的周长为19cm.【分析】根据平移的基本性质,得出四边形ABFD的周长=AD+AB+BF+DF=2+AB+BC+2+AC即可得出答案.【解答】解:根据题意,将周长为15cm的△ABC沿BC向右平移2cm得到△DEF,∴AD=2cm,BF=BC+CF=BC+2cm,DF=AC;又∵AB+BC+AC=15cm,∴四边形ABFD的周长=AD+AB+BF+DF=2+AB+BC+2+AC=19cm.故答案为:19.【点评】本题考查平移的基本性质:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.得到CF=AD,DF=AC是解题的关键.三.解答题(共8小题)21.如图,∠1和∠2是哪两条直线被哪一条直线所截形成的?它们是什么角?∠1和∠3是哪两条直线被哪一条直线所截形成的?它们是什么角?【分析】根据同位角的概念作答.准确识别同位角、内错角、同旁内角的关键,是弄清哪两条直线被哪一条线所截.也就是说,在辨别这些角之前,要弄清哪一条直线是截线,哪两条直线是被截线.【解答】解:∠1和∠2是直线EF、DC被直线AB所截形成的同位角,∠1和∠3是直线AB、CD被直线EF所截形成的同位角.【点评】同位角,即位置相同,两个角都在第三条直线的同旁,同在被截两条直线的上方或下方.在截线的同旁找同位角和同旁内角,在截线的两旁找内错角.要结合图形,熟记同位角、内错角、同旁内角的位置特点,比较它们的区别与联系.22.按要求完成作图,并回答问题;如图在△ABC中:(1)过点A画BC的垂线,垂足为E;(2)画∠ABC的平分线,交AC于F;(3)过E画AB的平行线,交AC于点G;(4)过点C画AB所在的直线的垂线段,垂足为H.【分析】(1)借用量角器,测出∠AEC=90°即可;(2)利用角平分线的作法作出∠ABC的平分线;(3)利用平行线的性质:同位角相等,作图;(4)借用量角器,测出∠AHC=90°即可.【解答】解:(1)作法利用量角器测得∠AEC=90°,AE即为所求;(2)作法:①以点B为圆心,以任意长为半径画弧,两弧交∠ABC两边于点M,N.②分别以点M,N为圆心,以大于MN的长度为半径画弧,两弧交于点P③作射线BP,则射线BP为角ABC的角平分线;④射线BP交AC于点F;(3)作法:用量角器测得∠ABC=∠GEC,EG即为所求;(4)作法:利用量角器测得∠BHC=90°,CH即为所求.【点评】本题主要考查了平行线、垂线及角平分线的画法.在解答此题时,用到的作图工具有圆规、量角器及直尺.23.如图,直线AE、CF分别被直线EF、AC所截,已知,∠1=∠2,AB平分∠EAC,CD平分∠ACG.将下列证明AB∥CD的过程及理由填写完整.证明:因为∠1=∠2,所以AE∥CF,(同位角相等,两直线平行)所以∠EAC=∠ACG,(两直线平行,内错角相等)因为AB平分∠EAC,CD平分∠ACG,所以∠3=,∠4=,所以∠3=∠4,所以AB∥CD(内错角相等,两直线平行).【分析】利用平行线的判定及性质就可求得本题.即同位角相等,两直线平行.内错角相等,两直线平行.同旁内角互补,两直线平行.反之即为性质.【解答】证明:因为∠1=∠2,所以AE∥CF(同位角相等,两直线平行),所以∠EAC=∠ACG(两直线平行,内错角相等),因为AB平分∠EAC,CD平分∠ACG,所以∠3=,∠4=,所以∠3=∠4,所以AB∥CD(内错角相等,两直线平行).【点评】此题主要考查了平行线的判定即同位角相等,两直线平行.内错角相等,两直线平行.同旁内角互补,两直线平行.平行线的判定即两直线平行,同位角相等.两直线平行,内错角相等.两直线平行,同旁内角互补.24.已知△ABC中,∠A=60°,∠ACB=40°,D为BC边延长线上一点,BM平分∠ABC,E为射线BM上一点.(1)如图1,连接CE,①若CE∥AB,求∠BEC的度数;②若CE平分∠ACD,求∠BEC的度数.(2)若直线CE垂直于△ABC的一边,请直接写出∠BEC的度数.【分析】(1)①根据三角形的内角和得到∠ABC=80°,由角平分线的定义得到∠ABE =ABC=40°,根据平行线的性质即可得到结论;②根据邻补角的定义得到∠ACD=180°﹣∠ACB=140°,根据角平分线的定义得到∠CBE=ABC=40°,∠ECD=∠ACD=70°,根据三角形的外角的性质即可得到结论;(2)①当CE⊥BC时,②如图2,当CE⊥AB于F时,③如图3,当CE⊥AC时,根据垂直的定义和三角形的内角和即可得到结论.【解答】解:(1)①∵∠A=60°,∠ACB=40°,∴∠ABC=80°,∵BM平分∠ABC,∴∠ABE=ABC=40°,∵CE∥AB,∴∠BEC=∠ABE=40°;②∵∠A=60°,∠ACB=40°,∴∠ABC=80°,∠ACD=180°﹣∠ACB=140°,∵BM平分∠ABC,CE平分∠ACD,∴∠CBE=ABC=40°,∠ECD=∠ACD=70°,∴∠BEC=∠ECD﹣∠CBE=30°;(2)①如图1,当CE⊥BC时,∵∠CBE=40°,∴∠BEC=50°;②如图2,当CE⊥AB于F时,∵∠ABE=40°,∴∠BEC=90°+40°=130°,③如图3,当CE⊥AC时,∵∠CBE=40°,∠ACB=40°,∴∠BEC=180°﹣40°﹣40°﹣90°=10°.【点评】本题考查了平行线的性质,角平分线的定义,垂直的定义,三角形的内角和,三角形的外角的性质,正确的画出图形是解题的关键.25.如图所示,一块边长为8米的正方形土地,上面修了横竖各有两条道路,宽都是2米,空白的部分种上各种花草,请利用平移的知识求出种花草的面积.【分析】根据平移的知识,把横竖各两条道路平移到正方形的边上,求剩余空白部分的面积即可.【解答】解:由平移,可把种花草的面积看成是如图边长为4米的正方形的面积.∴种花草的面积为:4×4=16(米2).【点评】利用平移的知识,把图形变换位置,可以简化计算,在实际生活中,应用很广.26.宾馆重新装修后,准备在大厅的主楼梯上铺设一种红地毯,已知这种地毯每平方米售价40元,主楼梯道宽2米,其侧面如图所示,求买地毯至少需要多少元?【分析】根据题意,结合图形,先把楼梯的横竖向上向左平移,构成一个矩形,再求得其面积,则购买地毯的钱数可求.【解答】解:如图,利用平移线段,把楼梯的横竖向上向左平移,构成一个矩形,长宽分别为6米,4米,∴地毯的长度为6+4=10米,地毯的面积为10×2=20平方米,∴买地毯至少需要20×40=800元.【点评】本题考查了平移的性质,属于基础应用题,解决此题的关键是要利用平移的知识,把要求的所有线段平移到一条直线上进行计算.27.如图,桌面内,直线l上摆放着两块大小相同的直角三角板,它们中较大锐角的度数为60°.将△ECD沿直线l向左平移到图的位置,使E点落在AB上,即点E′,点P为AC与E′D′的交点.(1)求∠CPD′的度数;(2)求证:AB⊥E′D′.【分析】(1)由平移的性质知,DE∥D′E′,利用两直线平行,同位角相等得∠CPD′=∠CED,故可求出∠CPD',(2)由平移的性质知,CE∥C′E′,∠CED=∠C′E′D′,利用两直线平行,同位角相等得∠BE′C′=∠BAC,故可求出∠BE′D'=90°,故结论可证.【解答】解:(1)由平移的性质知,DE∥D′E′,∴∠CPD′=∠CED=60°;(2)由平移的性质知,CE∥C′E′,∠CED=∠C′E′D′=60°,∴∠BE′C′=∠BAC=30°,∴∠BE′D′=90°∴AB⊥E′D′.【点评】主要考查了平移的性质和平行线的性质.需要注意的是:平移前后图形的大小、形状都不改变.28.已知,BC∥OA,∠B=∠A=100°,试回答下列问题:(1)如图1所示,求证:OB∥AC;(2)如图2,若点E、F在BC上,且满足∠FOC=∠AOC,并且OE平分∠BOF.试求∠EOC的度数;(3)在(2)的条件下,若平行移动AC,如图3,那么∠OCB:∠OFB的值是否随之发生变化?若变化,试说明理由;若不变,求出这个比值;(4)附加题:在(3)的条件下,如果平行移动AC的过程中,若使∠OEB=∠OCA,此时∠OCA度数等于60°.(在横线上填上答案即可).【分析】(1)由同旁内角互补,两直线平行证明.(2)由∠FOC=∠AOC,并且OE平分∠BOF得到∠EOC=∠EOF+∠FOCP=(∠BOF+∠FOA)=∠BOA,算出结果.(3)先得出结论,再证明.(4)由(2)(3)的结论可得.【解答】解:(1)∵BC∥OA,∴∠B+∠O=180°;∵∠A=∠B,∴∠A+∠O=180°,∴OB∥AC.(3分)(2)∵∠A=∠B=100°,由(1)得∠BOA=180°﹣∠B=80°;∵∠FOC=∠AOC,并且OE平分∠BOF,∴∠EOF=∠BOF∠FOC=∠FOA,∴∠EOC=∠EOF+∠FOC=(∠BOF+∠FOA)=∠BOA=40°.(3分)(3)结论:∠OCB:∠OFB的值不发生变化.理由为:∵BC∥OA,∴∠FCO=∠COA,又∵∠FOC=∠AOC,∴∠FOC=∠FCO,∴∠OFB=∠FOC+∠FCO=2∠OCB,∴∠OCB:∠OFB=1:2.(4分)(4)由(1)知:OB∥AC,∴∠OCA=∠BOC,由(2)可以设:∠BOE=∠EOF=α,∠FOC=∠COA=β,∴∠OCA=∠BOC=2α+β∠OEB=∠EOC+∠ECO=α+β+β=α+2β∵∠OEB=∠OCA∴2α+β=α+2β∴α=β∵∠AOB=80°,∴α=β=20°∴∠OCA=2α+β=40°+20°=60°.故答案是:60°.(3分)【点评】本题考查平移和平行线的性质的有关知识.平移的基本性质是:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.。

第一章 平行线单元测试卷(含解析)

第一章 平行线单元测试卷(含解析)

绝密★启用前浙教版七年级下第一章平行线单元测试卷题号一二三总分得分注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第Ⅰ卷(选择题)请点击修改第I卷的文字说明评卷人得分一.选择题(共10小题,3*10=30)1.若∠α与∠β同旁内角,且∠α=50°时,则∠β的度数为()A.50°B.130°C.50°或130°D.无法确定2.已知∠AOB,P是任一点,过点P画一条直线与OA平行,则这样的直线()A.有且仅有一条B.有两条C.不存在D.有一条或不存在3.下列说法不正确的是()A.过任意一点可作已知直线的一条平行线B.同一平面内两条不相交的直线是平行线C.在同一平面内,过直线外一点只能画一条直线与已知直线垂直D.平行于同一直线的两直线平行4.如图是用一张长方形纸片折成的,如果∠1=100°,那么∠2的度数是()A.50°B.60°C.70°D.80°5.如图所示,AB∥CD,OE平分∠AOD,OF⊥OE,∠D=50°,则∠BOF为()A.35°B.30°C.25°D.20°6.如图,AB∥CD,MP∥AB,MN平分∠AMD,∠A=40°,∠D=30°,则∠NMP等于()A.10°B.15°C.5°D.7.5°7.将一副三角板按如图放置,则下列结论①∠1=∠3;②如果∠2=30°则有AC∥DE;③如果∠2=30°,则有BC∥AD;④如果∠2=30°,必有∠4=∠C,其中正确的有()A.①②③B.①②④C.③④D.①②③④8.如图,多边形ABCDEFGHIJ的相邻两边互相垂直,要求出它的周长,至少需要知道()条边的边长.A.3 B.4 C.5 D.69.如果两个角的两边分别平行,而其中一个角比另一个角的4倍少30°,那么这两个角是()A.42°、138°B.都是10°C.42°、138°或42°、10°D.以上都不对10.如图,已知AB∥DE,那么下列结论正确的是()A.∠1+∠2+∠3=180°B.∠1+∠2﹣∠3=180°C.∠1=∠2+∠3 D.∠1﹣∠2+∠3=180°第Ⅱ卷(非选择题)请点击修改第Ⅱ卷的文字说明评卷人得分二.填空题(共6小题,3*6=18)11.在同一平面内有三条直线,如果其中有两条且只有两条相互平行,那么它们有个交点.12.如图,与∠1构成同位角的是,与∠2构成同旁内角的是.13.经过直线外一点,一条直线与这条直线平行.14.如图,将一副三角板按如图放置,则下列结论①∠1=∠3;②如果∠2=30°,则有AC∥DE;③如果∠2=30°,则有BC∥AD;④如果∠2=30°,必有∠4=∠C.其中正确的有.(填序号)15.如图a是长方形纸带,∠DEF=26°,将纸带沿EF折叠成图b,则∠FGD的度数是度,再沿BF折叠成图c,则图c中的∠DHF的度数是.16.把一张长方形纸片ABCD沿EF折叠后ED与BC的交点为G,D、C分别在MN的位置上,若∠EFG=55°,则∠2=.评卷人得分三.解答题(共7小题,52分)17.(6分)按要求完成作图,并回答问题;如图在△ABC中:(1)过点A画BC的垂线,垂足为E;(2)画∠ABC的平分线,交AC于F;(3)过E画AB的平行线,交AC于点G;(4)过点C画AB所在的直线的垂线段,垂足为H.18.(6分)如图,有四条互相不平行的直线L1、L2、L3、L4所截出的八个角.请你任意选择其中的三个角(不可选择未标注的角),尝试找到它们的关系,并选择其中一组予以证明.19.(6分)如图,已知∠1=∠2,∠B=∠C,可推得AB∥CD.理由如下:∵∠1=∠2(已知),且∠1=∠CGD()∴∠2=∠CGD(等量代换)∴CE∥BF()∴∠=∠BFD()又∵∠B=∠C(已知)∴∠BFD=∠B(等量代换)∴AB∥CD()20.(8分)(1)如图1,已知直线l1∥l2,且l3和l1,l2分别交于A,B两点,点P在线段AB上,则∠1,∠2,∠3之间的等量关系是;如图2,点A在B处北偏东40°方向,在C处的北偏西45°方向,则∠BAC=°.(2)如图3,∠ABD和∠BDC的平分线交于E,BE交CD于点F,∠1+∠2=90°,试说明:AB∥CD;并探究∠2与∠3的数量关系.21.(8分)如图,已知AB∥CD,现将一直角三角形PMN放入图中,其中∠P=90°,PM交AB 于点E,PN交CD于点F(1)当△PMN所放位置如图①所示时,则∠PFD与∠AEM的数量关系为;(2)当△PMN所放位置如图②所示时,求证:∠PFD﹣∠AEM=90°;(3)在(2)的条件下,若MN与CD交于点O,且∠DON=30°,∠PEB=15°,求∠N的度数.22.(8分)若在方格(每小格正方形边长为1m)上沿着网格线平移,规定:沿水平方向平移的数量为a(向右为正,向左为负,平移|a|个单位),沿竖直方向平移的数量为b(向上为正,向下为负,平移|b|个单位),则把有序数对{a,b}叫做这一平移的“平移量”.例如:点A按“平移量”{1,4}可平移至点B.(1)从点C按“平移量”{,}可平移到点B;(2)若点B依次按“平移量”{4,﹣3}、{﹣2,1}平移至点D,①请在图中标出点D;(用黑色水笔在答题卡上作出点D)②如果每平移1m需要2.5秒,那么按此方法从点B移动至点D需要多少秒?③观察点D的位置,其实点B也可按“平移量”{,}直接平移至点D;观察这两种平移的“平移量”,猜想:点E依次按“平移量”{2a,3b}、{﹣5a,b}、{a,﹣5b}平移至点F,则相当于点E按“平移量”{,}直接平移至点F.23.(10分)如图1所示,已知BC∥OA,∠B=∠A=120°(1)说明OB∥AC成立的理由.(2)如图2所示,若点E,F在BC上,且∠FOC=∠AOC,OE平分∠BOF,求∠EOC的度数.(3)在(2)的条件下,若左右平移AC,如图3所示,那么∠OCB:∠OFB的比值是否随之发生变化?若变化,请说明理由;若不变,请求出这个比值.(4)在(3)的条件下,当∠OEB=∠OCA时,求∠OCA的度数.参考答案与试题解析一.选择题(共10小题)1.若∠α与∠β同旁内角,且∠α=50°时,则∠β的度数为()A.50°B.130°C.50°或130°D.无法确定【分析】两直线平行,同旁内角互补;不平行时无法确定同旁内角的大小关系.【解答】解:虽然α和β是同旁内角,但缺少两直线平行的前提,所以无法确定β的度数.故选:D.【点评】此题主要考查了同旁内角的定义,特别注意,同旁内角互补的条件是两直线平行.2.已知∠AOB,P是任一点,过点P画一条直线与OA平行,则这样的直线()A.有且仅有一条B.有两条C.不存在D.有一条或不存在【分析】分点P在OA上和不在OA上两种情况,根据平行公理解答即可.【解答】解:①若点P在OA上,则不能画出与OA平行的直线,②若点P不在OA上,则过点P有且只有一条直线与OA平行,所以,这样的直线有一条或不存在.故选:D.【点评】本题考查了平行公理,难点在于要考虑点P与OA的位置.3.下列说法不正确的是()A.过任意一点可作已知直线的一条平行线B.同一平面内两条不相交的直线是平行线C.在同一平面内,过直线外一点只能画一条直线与已知直线垂直D.平行于同一直线的两直线平行【分析】根据平行线的定义及平行公理进行判断.【解答】解:A中,若点在直线上,则不可以作出已知直线的平行线,而是与已知直线重合,错误.B、C、D是公理,正确.故选:A.【点评】本题主要考查平行线的定义及平行公理,熟练掌握公理、定理是解决本题的关键.4.如图是用一张长方形纸片折成的,如果∠1=100°,那么∠2的度数是()A.50°B.60°C.70°D.80°【分析】由折叠的性质和平行线的性质可知2∠2=∠1,可得出答案.【解答】解:如图,由折叠的性质可知∠2=∠3,∵AB∥CD,∴∠1=∠3+∠2=100°,∴∠2=50°.故选:A.【点评】本题主要考查平行线的性质,掌握平行线的性质和判定是解题的关键,即①两直线平行⇔同位角相等,②两直线平行⇔内错角相等,③两直线平行⇔同旁内角互补,④a∥b,b∥c⇒a∥c.5.如图所示,AB∥CD,OE平分∠AOD,OF⊥OE,∠D=50°,则∠BOF为()A.35°B.30°C.25°D.20°【分析】首先根据平分线的性质求得∠DOA的度数,然后根据角平分线的性质得到∠EOD的度数,然后根据垂直求得∠DOF,从而求得∠BOF的度数.【解答】解:∵AB∥CD,∠D=50°,∴∠DOA=130°,∵OE平分∠AOD,∴∠DOE=65°,∵OF⊥OE,∴∠DOF=25°,∴∠BOF=25°,故选:C.【点评】本题考查了平行线的性质,利用平行线的性质和已知角求得∠DOA的度数是解决本题的关键.6.如图,AB∥CD,MP∥AB,MN平分∠AMD,∠A=40°,∠D=30°,则∠NMP等于()A.10°B.15°C.5°D.7.5°【分析】由AB∥CD,MP∥AB推出AB∥CD∥MP,根据平行线的性质求出∠AMD的度数为70°,再根据角平分线的定义求出∠AMN=35°,所以∠NMP=∠AMP﹣∠AMN.【解答】解:∵AB∥CD,MP∥AB,∴AB∥CD∥MP,∵∠A=40°,∠D=30°,∴∠AMP=∠A=40°,∠DMP=∠D=30°,∴∠AMD=40°+30°=70°,∵MN平分∠AMD,∴∠AMN=∠AMD=×70°=35°,∴∠NMP=∠AMP﹣∠AMN=40°﹣35°=5°.故选:C.【点评】本题主要考查两直线平行内错角相等的性质和角平分线的定义,熟练掌握性质和定义是解题的关键.7.将一副三角板按如图放置,则下列结论①∠1=∠3;②如果∠2=30°则有AC∥DE;③如果∠2=30°,则有BC∥AD;④如果∠2=30°,必有∠4=∠C,其中正确的有()A.①②③B.①②④C.③④D.①②③④【分析】根据余角的概念和同角的余角相等判断①;根据平行线的判定定理判断②;根据平行线的判定定理判断③;根据②的结论和平行线的性质定理判断④..【解答】解:∵∠1+∠2=90°,∠3+∠2=90°,∴∠1=∠3,①正确;∵∠2=30°,∴∠1=60°,又∵∠E=60°,∴∠1=∠E,∴AC∥DE,②正确;∵∠2=30°,∴∠1+∠2+∠3=150°,又∵∠C=45°,∴BC与AD不平行,③错误;∵∠2=30°∴AC∥DE,∴∠4=∠C,④正确.故选:B.【点评】本题考查的是平行线的性质和余角、补角的概念,掌握平行线的性质定理和判定定理是解题的关键.8.如图,多边形ABCDEFGHIJ的相邻两边互相垂直,要求出它的周长,至少需要知道()条边的边长.A.3 B.4 C.5 D.6【分析】根据平移的性质,只要能求出横向与纵向的总长度,即可求出它的周长.【解答】解:根据平移的性质,只要知道GH、AB、BC的长度,就可以求出周长.故选A.【点评】本题主要考查了平移的性质,把不规则图形部分平移到规则图形的部分是解题的关键.9.如果两个角的两边分别平行,而其中一个角比另一个角的4倍少30°,那么这两个角是()A.42°、138°B.都是10°C.42°、138°或42°、10°D.以上都不对【分析】根据两边分别平行的两个角相等或互补列方程求解.【解答】解:设另一个角为x,则这一个角为4x﹣30°,(1)两个角相等,则x=4x﹣30°,解得x=10°,4x﹣30°=4×10°﹣30°=10°;(2)两个角互补,则x+(4x﹣30°)=180°,解得x=42°,4x﹣30°=4×42°﹣30°=138°.所以这两个角是42°、138°或10°、10°.以上答案都不对.故选:D.【点评】本题主要运用两边分别平行的两个角相等或互补,学生容易忽视互补的情况而导致出错.10.如图,已知AB∥DE,那么下列结论正确的是()A.∠1+∠2+∠3=180°B.∠1+∠2﹣∠3=180°C.∠1=∠2+∠3 D.∠1﹣∠2+∠3=180°【分析】延长BC交直线DE于F,根据平行线的性质得到∠F=180°﹣∠1,由三角形的外角的性质得到∠F=∠2﹣∠3,即可得到结论.【解答】解:延长BC交直线DE于F,∵AB∥DF,∴∠1+∠F=180°,∴∠F=180°﹣∠1,∵∠2=∠3+∠F,∴∠F=∠2﹣∠3,∴∠1+∠2﹣∠3=180°,故选:B.【点评】本题考查了平行线的性质,三角形的外角的性质,熟练掌握平行线的性质定理是解题的关键.二.填空题(共6小题)11.在同一平面内有三条直线,如果其中有两条且只有两条相互平行,那么它们有2个交点.【分析】根据同一平面内直线的位置关系得到第三条直线与另两平行直线相交,再根据直线平行和直线相交的定义即可得到交点的个数.【解答】解:∵在同一平面内有三条直线,如果其中有两条且只有两条相互平行,∴第三条直线与另两平行直线相交,∴它们共有2个交点.故答案为2.【点评】本题考查了直线平行的定义:没有公共点的两条直线是平行直线.也考查了同一平面内两直线的位置关系有:平行,相交.12.如图,与∠1构成同位角的是∠B,,与∠2构成同旁内角的是∠1.【分析】根据同位角:两条直线被第三条直线所截形成的角中,若两个角都在两直线的同侧,并且在第三条直线(截线)的同旁,则这样一对角叫做同位角.内错角:两条直线被第三条直线所截形成的角中,若两个角都在两直线的之间,并且在第三条直线(截线)的两旁,则这样一对角叫做内错角.同旁内角:两条直线被第三条直线所截形成的角中,若两个角都在两直线的之间,并且在第三条直线(截线)的同旁,则这样一对角叫做同旁内角.分别进行分析.【解答】解:如图:与∠1是同位角的是∠B,与∠2是同旁内角的是∠1.故答案为:∠B,∠1.【点评】此题主要考查了三线八角,关键是掌握同位角的边构成“F“形,内错角的边构成“Z“形,同旁内角的边构成“U”形.13.经过直线外一点,有且只有一条直线与这条直线平行.【分析】根据平行公理:经过直线外一点,有且只有一条直线与这条直线平行解答即可.【解答】解:经过直线外一点,有且只有一条直线与这条直线平行.故答案为:有且只有.【点评】本题考查了平行公理,牢记平行公理:经过直线外一点,有且只有一条直线与这条直线平行是解题的关键.注意平行公理中“有且只有”的含义,从作图的角度说,它是“能但只能画出一条”的意思.14.如图,将一副三角板按如图放置,则下列结论①∠1=∠3;②如果∠2=30°,则有AC∥DE;③如果∠2=30°,则有BC∥AD;④如果∠2=30°,必有∠4=∠C.其中正确的有①②④.(填序号)【分析】根据两种三角板的各角的度数,利用平行线的判定与性质结合已知条件对各个结论逐一验证,即可得出答案.【解答】解:①∵∠CAB=∠EAD=90°,∴∠1=∠CAB﹣∠2,∠3=∠EAD﹣∠2,∴∠1=∠3.∴①正确.②∵∠2=30°,∴∠1=90°﹣30°=60°,∵∠E=60°,∴∠1=∠E,∴AC∥DE.∴②正确.③∵∠2=30°,∴∠3=90°﹣30°=60°,∵∠B=45°,∴BC不平行于AD.∴③错误.④由②得AC∥DE.∴∠4=∠C.∴④正确.故答案为:①②④.【点评】此题主要考查学生对平行线判定与性质、余角和补角的理解和掌握,解答此题时要明确两种三角板各角的度数.15.如图a是长方形纸带,∠DEF=26°,将纸带沿EF折叠成图b,则∠FGD的度数是52度,再沿BF折叠成图c,则图c中的∠DHF的度数是78°.【分析】根据两条直线平行,内错角相等,则∠BFE=∠DEF=26°,由三角形的外角性质得出∠FGD 的度数;根据平角定义、折叠的性质求出∠CFE=102°,再根据平行线的性质即可求解.【解答】解:∵AD∥BC,∠DEF=26°,∴∠BFE=∠DEF=26°,∴图b中,∠FGD=26°+26°=52°;图c中,∠CFE=180°﹣3×26°=102°,∴∠DHF=180°﹣102°=78°.故答案为:52,78°.【点评】本题考查了翻折变换的性质,平行线的性质,三角形的外角性质;熟练掌握翻折变换的性质和平行线的性质是解决问题的关键.16.把一张长方形纸片ABCD沿EF折叠后ED与BC的交点为G,D、C分别在MN的位置上,若∠EFG=55°,则∠2=110°.【分析】根据折叠的性质可知ME∥NF,由ME∥NF可得出∠BGM=∠GFN,再分解平角通过计算得出∠BGM的度数,根据∠BGM与∠2互补即可得出结论.【解答】解:由折叠的性质可知ME∥NF,∴∠BGM=∠GFN.∵2∠EFG+∠GFN=180°,且∠EFG=55°,∴∠BGM=∠GFN=180°﹣2×55°=70°,又∵∠2+∠BGM=180°,∴∠2=110°.故答案为:110°【点评】本题考查了平行线的性质以及角的计算,解题的关键是求出∠BGM的度数.本题属于基础题,难度不大,解决该题型题目时,根据平行线的性质结合折叠的性质得出相等(或互补)的角是关键.三.解答题(共7小题)17.按要求完成作图,并回答问题;如图在△ABC中:(1)过点A画BC的垂线,垂足为E;(2)画∠ABC的平分线,交AC于F;(3)过E画AB的平行线,交AC于点G;(4)过点C画AB所在的直线的垂线段,垂足为H.【分析】(1)借用量角器,测出∠AEC=90°即可;(2)利用角平分线的作法作出∠ABC的平分线;(3)利用平行线的性质:同位角相等,作图;(4)借用量角器,测出∠AHC=90°即可.【解答】解:(1)作法利用量角器测得∠AEC=90°,AE即为所求;(2)作法:①以点B为圆心,以任意长为半径画弧,两弧交∠ABC两边于点M,N.②分别以点M,N为圆心,以大于MN的长度为半径画弧,两弧交于点P③作射线BP,则射线BP为角ABC的角平分线;④射线BP交AC于点F;(3)作法:用量角器测得∠ABC=∠GEC,EG即为所求;(4)作法:利用量角器测得∠BHC=90°,CH即为所求.【点评】本题主要考查了平行线、垂线及角平分线的画法.在解答此题时,用到的作图工具有圆规、量角器及直尺.18.如图,有四条互相不平行的直线L1、L2、L3、L4所截出的八个角.请你任意选择其中的三个角(不可选择未标注的角),尝试找到它们的关系,并选择其中一组予以证明.【分析】根据三角形的外角和为360°,三角形的内角和为180°以及三角形外角和定理即可写出三个角之间的数量关系.【解答】解:如∠2+∠4+∠6=360°,∠1+∠5+∠7=180°,∠2=∠5+∠7,∠3=∠1+∠8,已知如图:有四条互相不平行的直线L1、L2、L3、L4所截出的八个角,求证:∠1+∠5+∠7=180°,证明:∵∠DAC+∠7+∠5=180°,又∵∠1=∠DAC,∴∠1+∠5+∠7=180°.【点评】此题主要考查了对顶角的性质以及三角形的内角和定理,正确的应用三角形内角和定理是解决问题的关键.19.如图,已知∠1=∠2,∠B=∠C,可推得AB∥CD.理由如下:∵∠1=∠2(已知),且∠1=∠CGD(对顶角相等)∴∠2=∠CGD(等量代换)∴CE∥BF(同位角相等,两直线平行)∴∠C=∠BFD(两直线平行,同位角相等)又∵∠B=∠C(已知)∴∠BFD=∠B(等量代换)∴AB∥CD(内错角相等,两直线平行)【分析】首先确定∠1=∠CGD是对顶角,利用等量代换,求得∠2=∠CGD,则可根据:同位角相等,两直线平行,证得:CE∥BF,又由两直线平行,同位角相等,证得角相等,易得:∠BFD=∠B,则利用内错角相等,两直线平行,即可证得:AB∥CD.【解答】解:∵∠1=∠2(已知),且∠1=∠CGD(对顶角相等),∴∠2=∠CGD(等量代换),∴CE∥BF(同位角相等,两直线平行),∴∠C=∠BFD(两直线平行,同位角相等),又∵∠B=∠C(已知),∴∠BFD=∠B(等量代换),∴AB∥CD(内错角相等,两直线平行).故答案为:(对顶角相等),(同位角相等,两直线平行),C,(两直线平行,同位角相等),(内错角相等,两直线平行).【点评】此题考查了平行线的判定与性质.注意数形结合思想的应用.20.(1)如图1,已知直线l1∥l2,且l3和l1,l2分别交于A,B两点,点P在线段AB上,则∠1,∠2,∠3之间的等量关系是∠3=∠1+∠2;如图2,点A在B处北偏东40°方向,在C处的北偏西45°方向,则∠BAC=85°.(2)如图3,∠ABD和∠BDC的平分线交于E,BE交CD于点F,∠1+∠2=90°,试说明:AB∥CD;并探究∠2与∠3的数量关系.【分析】(1)在图1中,作PM∥AC,利用平行线性质即可证明;利用①结论即可求得∠BAC的度数.(2)根据BE、DE平分∠ABD、∠BDC,且∠1+∠2=90°,可得∠ABD+∠BDC=180°,根据同旁内角互补,可得两直线平行.根据∠1+∠2=90°,即∠BED=90°;那么∠3+∠FDE=90°,将等角代换,即可得出∠3与∠2的数量关系.【解答】解:(1)如图1中,作PM∥AC,∵AC∥BD,∴PM∥BD,∴∠1=∠CPM,∠2=∠MPD,∴∠1+∠2=∠CPM+∠MPD=∠CPD=∠3.由题可知:∠BAC=∠B+∠C,∵∠B=40°,∠C=45°,∴∠BAC=40°+45°=85°.故答案为:∠1+∠2=∠3,85°.(2)证明:∵BE、DE平分∠ABD、∠BDC,∴∠1=∠ABD,∠2=∠BDC;∵∠1+∠2=90°,∴∠ABD+∠BDC=180°;∴AB∥CD;(同旁内角互补,两直线平行)∵DE平分∠BDC,∴∠2=∠FDE;∵∠1+∠2=90°,∴∠BED=∠DEF=90°;∴∠3+∠FDE=90°;∴∠2+∠3=90°.【点评】此题主要考查了角平分线的性质以及平行线的判定,正确添加辅助线是解决问题的关键.21.如图,已知AB∥CD,现将一直角三角形PMN放入图中,其中∠P=90°,PM交AB于点E,PN交CD于点F(1)当△PMN所放位置如图①所示时,则∠PFD与∠AEM的数量关系为∠PFD+∠AEM=90°;(2)当△PMN所放位置如图②所示时,求证:∠PFD﹣∠AEM=90°;(3)在(2)的条件下,若MN与CD交于点O,且∠DON=30°,∠PEB=15°,求∠N的度数.【分析】(1)由平行线的性质得出∠PFD=∠1,∠2=∠AEM,即可得出结果;(2)由平行线的性质得出∠PFD+∠1=180°,再由角的互余关系即可得出结果;(3)由角的互余关系求出∠PHE,再由平行线的性质得出∠PFC的度数,然后由三角形的外角性质即可得出结论.【解答】解:(1)作PG∥AB,如图①所示:则PG∥CD,∴∠PFD=∠1,∠2=∠AEM,∵∠1+∠2=∠P=90°,∴∠PFD+∠AEM=∠1+∠2=90°,故答案为:∠PFD+∠AEM=90°;(2)证明:如图②所示:∵AB∥CD,∴∠PFD+∠BHF=180°,∵∠P=90°,∴∠BHF+∠2=90°,∵∠2=∠AEM,∴∠BHF=∠PHE=90°﹣∠AEM,∴∠PFD+90°﹣∠AEM=180°,∴∠PFD﹣∠AEM=90°;(3)如图③所示:∵∠P=90°,∴∠PHE=90°﹣∠FEB=90°﹣15°=75°,∵AB∥CD,∴∠PFC=∠PHE=75°,∵∠PFC=∠N+∠DON,∴∠N=75°﹣30°=45°.【点评】本题考查了平行线的性质、角的互余关系;熟练掌握平行线的性质,弄清角之间的数量关系是解决问题的关键.22.若在方格(每小格正方形边长为1m)上沿着网格线平移,规定:沿水平方向平移的数量为a(向右为正,向左为负,平移|a|个单位),沿竖直方向平移的数量为b(向上为正,向下为负,平移|b|个单位),则把有序数对{a,b}叫做这一平移的“平移量”.例如:点A按“平移量”{1,4}可平移至点B.(1)从点C按“平移量”{﹣2,﹣1}可平移到点B;(2)若点B依次按“平移量”{4,﹣3}、{﹣2,1}平移至点D,①请在图中标出点D;(用黑色水笔在答题卡上作出点D)②如果每平移1m需要2.5秒,那么按此方法从点B移动至点D需要多少秒?③观察点D的位置,其实点B也可按“平移量”{2,﹣2}直接平移至点D;观察这两种平移的“平移量”,猜想:点E依次按“平移量”{2a,3b}、{﹣5a,b}、{a,﹣5b}平移至点F,则相当于点E按“平移量”{﹣2a,﹣b}直接平移至点F.【分析】(1)根据图形,点B在点C的左边2个单位,下方1个单位,再根据“平移量”的定义即可求解;(2)①根据“平移量”的定义确定出点D的位置即可;②根据“平移量”的定义求出从点B移动到点D的路程,然后乘以2.5,计算即可得解;③根据“平移量”的定义结合直接写出点B到点D的平移量即可;把从点E到点F所有平移量的横向相加,纵向相加,计算即可得解.【解答】解:(1)从C到B,向左2个单位,向下1个单位,所以,平移量为{﹣2,﹣1};(2)①点B依次按“平移量”{4,﹣3}、{﹣2,1}平移至点D如图所示;②(4+3+2+1)×2.5=10×2.5=25秒;③由图可知,点B到点D,向右2个单位,向下2个单位,所以,平移量为{2,﹣2},∵2a﹣5a+a=﹣2a,3b+b﹣5b=﹣b,∴点E到F的平移量为{﹣2a,﹣b}.故答案为:(1)﹣2,﹣1;(2)③2,﹣2;﹣2a,﹣b.【点评】本题考查了平移的性质,平移量的定义,读懂题目信息,理解平移量的定义并熟练掌握网格结构是解题的关键.23.如图1所示,已知BC∥OA,∠B=∠A=120°(1)说明OB∥AC成立的理由.(2)如图2所示,若点E,F在BC上,且∠FOC=∠AOC,OE平分∠BOF,求∠EOC的度数.(3)在(2)的条件下,若左右平移AC,如图3所示,那么∠OCB:∠OFB的比值是否随之发生变化?若变化,请说明理由;若不变,请求出这个比值.(4)在(3)的条件下,当∠OEB=∠OCA时,求∠OCA的度数.【分析】(1)由BC∥OA得∠B+∠O=180°,所以∠O=180°﹣∠B=60°,则∠A+∠O=180°,根据平行线的判定即可得到OB∥AC;(2)由OE平分∠BOF得到∠BOE=∠FOE,加上∠FOC=∠AOC,所以∠EOF+∠COF=∠AOB =30°;(3)由BC∥OA得到OCB=∠AOC,∠OFB=∠AOF,加上∠FOC=∠AOC,则∠AOF=2∠AOC,所以∠OFB=2∠OCB;(4)设∠AOC的度数为x,则∠OFB=2x,根据平行线的性质得∠OEB=∠AOE,则∠OEB=∠EOC+∠AOC=30°+x,再根据三角形内角和定理得∠OCA=180°﹣∠AOC﹣∠A=60°﹣x,利用∠OEB=∠OCA得到30°+x=60°﹣x,解得x=15°,所以∠OCA=60°﹣x=45°.【解答】解:(1)∵BC∥OA,∴∠B+∠O=180°,∴∠O=180°﹣∠B=60°,而∠A=120°,∴∠A+∠O=180°,∴OB∥AC;(2)∵OE平分∠BOF,∴∠BOE=∠FOE,而∠FOC=∠AOC,∴∠EOF+∠COF=∠AOB=×60°=30°,即∠EOC=30°;(3)比值不改变.∵BC∥OA,∴∠OCB=∠AOC,∠OFB=∠AOF,∵∠FOC=∠AOC,∴∠AOF=2∠AOC,∴∠OFB=2∠OCB,即∠OCB:∠OFB的值为1:2;(4)设∠AOC的度数为x,则∠OFB=2x,∵∠OEB=∠AOE,∴∠OEB=∠EOC+∠AOC=30°+x,而∠OCA=180°﹣∠AOC﹣∠A=180°﹣x﹣120°=60°﹣x,∵∠OEB=∠OCA,∴30°+x=60°﹣x,解得x=15°,∴∠OCA=60°﹣x=60°﹣15°=45°.【点评】本题考查了平行线的判定与性质:同位角相等,两直线平行;同旁内角互补,两直线平行;两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补.熟练掌握平行线的判定与性质是解本题的关键.。

《平行线》全章复习与巩固(基础)知识讲解

《平行线》全章复习与巩固(基础)知识讲解

《平行线》全章复习与巩固(基础)知识讲解【学习目标】1. 熟练找出“同位角、内错角、同旁内角”;2. 区别平行线的判定与性质,能用性质和判定解决综合问题;3. 通过具体实例认识平移,理解平移的性质;4. 会运用平行线和平移的知识解决有关的简单问题.【知识网络】【要点梳理】要点一、平行线的定义及三线八角1.平行线的定义:在同一平面内,不相交的两条直线叫做平行线.要点诠释:(1)平行线定义中包含三层含义:在同一平面内、不相交、两条直线.(2)基本事实:经过直线外一点,有且只有一条直线与这条直线平行.2.三线八角:要点二、平行线的判定和性质1.平行线的判定判定方法1:同位角相等,两直线平行.判定方法2:内错角相等,两直线平行.判定方法3:同旁内角互补,两直线平行.要点诠释:根据平行线的定义和平行公理的推论,平行线的判定方法还有:(1)平行线的定义:在同一平面内,如果两条直线没有交点(不相交),那么两直线平行.(2)如果两条直线都平行于第三条直线,那么这两条直线平行(平行线的传递性).(3)在同一平面内,垂直于同一直线的两条直线互相平行.(4)平行公理:经过直线外一点,有且只有一条直线与这条直线平行.2.平行线的性质性质1:两直线平行,同位角相等;性质2:两直线平行,内错角相等;性质3:两直线平行,同旁内角互补.要点诠释:根据平行线的定义和平行公理的推论,平行线的性质还有:(1)若两条直线平行,则这两条直线在同一平面内,且没有公共点.(2)如果一条直线与两条平行线中的一条直线垂直,那么它必与另一条直线垂直.3.两条平行线间的距离如图,直线AB∥CD,EF⊥AB于E,EF⊥CD于F,则称线段EF的长度为两平行线AB与CD间的距离.要点诠释:(1)两条平行线间的距离处处相等.(2)初中阶级学习了三种距离:两点间的距离、点到直线距离、平行线间的距离.这三种距离的共同点在于都是线段的长度,它们的区别是两点间的距离是连接这两点的线段的长度,点到直线距离是直线外一点引已知直线的垂线段的长度, 平行线间的距离是一条直线上的一点到与之平行的另一直线的距离.(3)“垂线段”与“距离”的关系:垂线段是一个图形,距离是线段的长度,是一个量,它们之间不能等同. 要点三、图形的平移定义:一个图形沿某个方向移动,在移动的过程中,原图形上所有的点都沿同一个方向移动相等的距离,这样的图形运动叫做图形的平移.要点诠释:平移的性质:(1)平移不改变图形的形状与大小,只改变图形的位置.(2)一个图形和它经过平移所得的图形中,两组对应点的连线平行(或在同一条直线上)且相等.【典型例题】类型一、平行线的定义及三线八角1. (乌兰察布校级期中)a、b、c是平面上任意三条直线,交点可以有()A.1个或2个或3个B.0个或1个或2个或3个C.1个或2个D.都不对举一反三:【变式】如图,在正方体中:(1)找出与线段AB平行的线段:_________;(2)找出与线段AB相交的线段:______.2.如图,已知直线a、b被直线c所截. 图中八个角共有组同位角,组内错角,组同旁内角.举一反三:【变式】观察下图并填空:(1) ∠1 与是同位角;(2) ∠5 与是同旁内角;(3) ∠1 与是内错角.类型二、平行线的判定和性质3.如图,已知∠ADE = ∠B,∠1 =∠2,那么CD∥FG吗?并说明理由.举一反三:【变式】如图,已知∠1+∠2=180°,∠3=∠B,试判断∠AED与∠ACB的大小关系,并说明理由.4.如图所示,AB∥EF,那么∠BAC+∠ACE+∠CEF=( ).A.180°B.270°C.360°D.540°举一反三:【变式】如图所示,如果∠BAC+∠ACE+∠CEF=360°,则AB与EF的位置关系.类型三、图形的平移5.如图(1),线段AB经过平移有一端点到达点C,画出线段AB平移后的线段CD.举一反三:【变式】(福州自主招生)如图,4根火柴棒形成象形“口”字,只通过平移火柴棒,原图形能变成的汉字是()A. B. C. D..类型四、综合应用6.如图是一块长方形草地,长方形的长是16,宽是10.中间有两条道路,一条是长方形,一条是平行四边形,它们的宽都是2,求草地部分的面积(阴影部分)有多大?【巩固练习】一、选择题1.下列图中,∠1和∠2是对顶角的有()个.A.1个B.2个C.3个D.4个2.如图所示是同位角关系的是().A.∠3和∠4 B.∠1和∠4 C.∠2和∠4 D.不存在3.(春•鄂城区月考)下列语句正确的有()个①任意两条直线的位置关系不是相交就是平行②过一点有且只有一条直线和已知直线平行③过两条直线a,b外一点P,画直线c,使c∥a,且c∥b④若直线a∥b,b∥c,则c∥a.A.4 B.3 C.2 D.14.∠1和∠2是直线AB和CD被直线EF所截得到的同位角,那么∠1和∠2的大小关系是().A.∠1=∠2 B.∠1>∠2 C.∠1<∠2 D.无法确定5.如图所示中,不能通过基本图形平移得到的是().6.一个人从A点出发向北偏东60°方向走到B点,再从B点出发向南偏西15°方向走到C点,那么∠ABC等于().A.75°B.105°C.45°D.135°7.下列说法中,正确的是().A.过点P画线段AB的垂线.B.P是直线AB外一点,Q是直线AB上一点,连接PQ,使PQ⊥AB.C.过一点有且只有一条直线垂直于已知直线.D.过一点有且只有一条直线平行于已知直线.8.如果在同一平面内有两个图形甲和乙,通过平移,总可以完全重合在一起(不论甲和乙的初始位置如何),则甲和乙是().A.两个点B.两个半径相等的圆C.两个点或两个半径相等的圆D.两个能够完合重合的多边形二、填空题9.如图所示,AB∥CD,EF分别交AB、CD于G、H两点,若∠1=50°,则∠EGB=________.10.(盐津县校级月考)平行用符号 表示,直线AB 与CD 平行,可以记作为 .11.每天小明上学时,需要先由家向东走150米到公共汽车站点,然后再乘车向西900米到学校,每天小明由家到学校移动的方向是________,移动的距离是________.12. (大庆校级自主招生)如图,点E 在AC 的延长线上,对于给出的四个条件: (1)∠3=∠4;(2)∠1=∠2;(3)∠A=∠DCE ;(4)∠D+∠ABD=180°. 能判断AB ∥CD 的有 个.13.如图,已知AB ∥CD ,CE ,AE 分别平分∠ACD ,∠CAB ,则∠1+∠2=________.14.同一平面内的三条直线a ,b ,c ,若a ⊥b ,b ⊥c ,则a________c .若a ∥b ,b ∥c ,则a________c .若a ∥b ,b ⊥c ,则a________c .15. 如图,在甲、乙两地之间修一条笔直的公路,从甲地测得公路的走向是北偏东48°.甲、乙两地间同时开工,若干天后,公路准确接通,则乙地所修公路的走向是南偏西 .16.如图所示,AC ⊥BC 于点C ,CD ⊥AB 于点D ,DE ⊥BC 于点E ,能表示点到直线(或线段)的距离的线段有 条.三、解答题17.(滨湖区校级期末)把图中的互相平行的线写出来,互相垂直的线写出来:18.如图所示,已知∠1=∠2,AC 平分∠DAB ,你能推断哪两条线段平行?说明理由.19.如图,在一块长为a 米,宽为b 米的长方形地上,有一条弯曲的柏油马路,马路的任何地方的水平宽度都是2米,其它部分都是草地.求草地的面积.北 北 甲 乙20.如图所示,点P是∠ABC内一点.(1)画图:①过点P画BC的垂线,垂足为D;②过点P画BC的平行线交AB于点E,过点P画AB的平行线交BC于点F.(2)∠EPF等于∠B吗?为什么?。

七年级下册期末复习 第一章 平行线 常考经典较难题、压轴题例题(含解析)

七年级下册期末复习 第一章 平行线  常考经典较难题、压轴题例题(含解析)

平行线常考经典较难题、压轴题例题例1 翻折(2018•仙居县一模)如图,把一张长方形纸带沿着直线GF折叠,∠CGF=30°,则∠1的度数是.【练习】(2018春•莒县期中)如图,生活中将一个宽度相等的纸条按图所示折叠一下,如果∠2=100°,那么∠1的度数为.例2 旋转(2017•上海中考)一副三角尺按如图的位置摆放(顶点C 与F 重合,边CA与边FE叠合,顶点B、C、D在一条直线上).将三角尺DEF绕着点F按顺时针方向旋转n°后(0<n<180 ),如果EF∥AB,那么n的值是.【练习】1.(2017秋•前郭县期末改编)将一副直角三角尺ABC 和CDE 按如图方式放置,其中直角顶点C 重合,∠D=45°,∠A=30°.将三角形CDE 绕点C 旋转,若DE ∥BC ,则直线AB 与直线CE 的较大的夹角∠1的大小为 度.2.(2018春•滨海县期中)长江汛期即将来临,防汛指挥部在一危险地带两岸各安置了一探照灯,便于夜间查看江水及两岸河堤的情况.如图,灯A 射线自AM 顺时针旋转至AN 便立即回转,灯B 射线自BP 顺时针旋转至BQ 便立即回转,两灯不停交叉照射巡视.若灯A 转动的速度是a°/秒,灯B 转动的速度是b°/秒,且a 、b 满足|a ﹣3b |+(a +b ﹣4)2=0.假定这一带长江两岸河堤是平行的,即PQ ∥MN ,且∠BAN=45° (1)求a 、b 的值;(2)若灯B 射线先转动20秒,灯A 射线才开始转动,在灯B 射线到达BQ 之前,A 灯转动几秒,两灯的光束互相平行?(3)如图,两灯同时转动,在灯A 射线到达AN 之前.若射出的光束交于点C ,过C 作CD ⊥AC 交PQ 于点D ,则在转动过程中,∠BAC 与∠BCD 的数量关系是否发生变化?若不变,请求出其数量关系;若改变,请求出其取值范围.1A EDBC例3 平行线的性质(2017春•南沙区期末)已知,直线AB∥DC,点P为平面上一点,连接AP与CP.(1)如图1,点P在直线AB、CD之间,当∠BAP=60°,∠DCP=20°时,求∠APC.(2)如图2,点P在直线AB、CD之间,∠BAP与∠DCP的角平分线相交于点K,写出∠AKC与∠APC之间的数量关系,并说明理由.(3)如图3,点P落在CD外,∠BAP与∠DCP的角平分线相交于点K,∠AKC与∠APC 有何数量关系?并说明理由.【练习】1. (2017春•武侯区校级期中)如图,已知AB∥CD,CE、BE的交点为E,现作如下操作:第一次操作,分别作∠ABE和∠DCE的平分线,交点为E1,第二次操作,分别作∠ABE1和∠DCE1的平分线,交点为E2,第三次操作,分别作∠ABE2和∠DCE2的平分线,交点为E3,…,第n次操作,分别作∠ABE n﹣1和∠DCE n﹣1的平分线,交点为E n.若∠E n=1度,那∠BEC等于度2.(2018春•宿豫区期中)如图,两直线AB、CD平行,则∠1+∠2+∠3+∠4+∠5=720°.3.(2018春•黄陂区期中)已知直线AB∥CD.(1)如图1,直接写出∠BME、∠E、∠END的数量关系为;(2)如图2,∠BME与∠CNE的角平分线所在的直线相交于点P,试探究∠P与∠E之间的数量关系,并证明你的结论;(3)如图3,∠ABM=∠MBE,∠CDN=∠NDE,直线MB、ND交于点F,则=.4.(2017春•丰城市期末)数学思考:(1)如图1,已知AB∥CD,探究下面图形中∠APC和∠PAB、∠PCD的关系,并证明你的结论推广延伸:(2)①如图2,已知AA1∥BA1,请你猜想∠A1,∠B1,∠B2,∠A2、∠A3的关系,并证明你的猜想;②如图3,已知AA1∥BA n,直接写出∠A1,∠B1,∠B2,∠A2、…∠B n﹣1、∠A n的关系拓展应用:(3)①如图4所示,若AB∥EF,用含α,β,γ的式子表示x,应为( )A.180°+α+β﹣γB.180°﹣α﹣γ+βC.β+γ﹣αD.α+β+γ②如图5,AB∥CD,且∠AFE=40°,∠FGH=90°,∠HMN=30°,∠CNP=50°,请你根据上述结论直接写出∠GHM的度数是.例4 平移(2017春•上虞区期末)如图1所示,已知BC∥OA,∠B=∠A=120°(1)说明OB∥AC成立的理由.(2)如图2所示,若点E,F在BC上,且∠FOC=∠AOC,OE平分∠BOF,求∠EOC的度数.(3)在(2)的条件下,若左右平移AC,如图3所示,那么∠OCB:∠OFB的比值是否随之发生变化?若变化,请说明理由;若不变,请求出这个比值.(4)在(3)的条件下,当∠OEB=∠OCA时,求∠OCA的度数.【练习】如图,已知AM∥BN,∠A=60°.点P是射线AM上一动点(与点A不重合),BC、BD分别平分∠ABP和∠PBN,分别交射线AM于点C,D.(1)求∠CBD的度数;(2)当点P运动时,∠APB与∠ADB之间的数量关系是否随之发生变化?若不变化,请写出它们之间的关系,并说明理由;若变化,请写出变化规律.(3)当点P运动到使∠ACB=∠ABD时,∠ABC的度数是.例5 作图—应用作图题(1)如图1,一个牧童从P点出发,赶着羊群去河边喝水,则应当怎样选择饮水路线,才能使羊群走的路程最短?请在图中画出最短路线.(2)如图2,在一条河的两岸有A,B两个村庄,现在要在河上建一座小桥,桥的方向与河岸方向垂直,桥在图中用一条线段CD表示.试问:桥CD建在何处,才能使A到B的路程最短呢?请在图中画出桥CD的位置.【练习】(2016春•湖州市吴兴区期末)如图,平面上有直线a及直线a外的三点A、B、P.(1)过点P画一条直线m,使得m∥a;(2)过B作BH⊥直线m,并延长BH至B′,使得BB′为直线a、m之间的距离;(3)若直线a、m表示一条河的两岸,现要在这条河上建一座桥(桥与河岸垂直),使得从村庄A经桥过河到村庄B的路程最短,试问桥应建在何处?画出示意图.【巩固练习】一、选择题图2图1PBA1.(2018春•洪山区期中)如图,AB∥DE,∠ABC的角平分线BP和∠CDE的角平分线DK 的反向延长线交于点P且∠P﹣2∠C=57°,则∠C等于()A.24°B.34°C.26°D.22°第1题图第2题图2.(2018春•高新区校级期中)如图,AB∥CD,∠ABK的角平分线BE的反向延长线和∠DCK的角平分线CF的反向延长线交于点H,∠K﹣∠H=27°,则∠K=()A.76°B.78°C.80°D.82°3.(2017春•祁阳县期末)在同一平面内,有8条互不重合的直线,l1,l2,l3…l8,若l1⊥l2,l2∥l3,l3⊥l4,l4∥l5…以此类推,则l1和l8的位置关系是()A.平行B.垂直C.平行或垂直D.无法确定4.(2013春•汉阳区期末)如图,AB⊥BC,AE平分∠BAD交BC于点E,AE⊥DE,∠1+∠2=90°,M,N分别是BA,CD延长线上的点,∠EAM和∠EDN的平分线交于点F.下列结论:①AB∥CD;②∠AEB+∠ADC=180°;③DE平分∠ADC;④∠F为定值其中结论正确的有()A.1个B.2个C.3个D.4个第4题图第5题图5.(2018•丰南区一模)如图所示,AB∥CD,则∠A+∠E+∠F+∠C等于()A.180° B.360°C.540° D.720°二、填空题6.(2018春•雁塔区校级月考)平面上不重合的四条直线,可能产生交点的个数为个.7.(2018•河南模拟)如图所示,AB∥EF,∠B=35°,∠E=25°,则∠C+∠D的值为.第7题图第8题图第9题图8.(2018•昆山市二模)如图所示,AB∥CD,∠E=35°,∠C=20°,则∠EAB的度数为.9.(2017秋•遂宁期末)如图,AB∥EF∥CD,EG平分∠BEF,∠B+∠BED+∠D=192°,∠B﹣∠D=24°,则∠GEF=.10.(2017秋•福田区校级期末)已知D是△ABC的边BC所在直线上的一点,与B,C不重合,过D分别作DF∥AC交AB所在直接于F,DE∥AB交AC所在直线于E.若∠A=80°,则∠FDE的度数是.11.(2018春•开福区校级期末)学习了平行线后,小敏想出了过已知直线外一点画这条直线的平行线的新方法,她是通过折一张半透明的纸得到的,如图所示,由操作过程可知小敏画平行线的依据可以是.(把所有正确结论的序号都填在横线上)①如果两条直线和第三条直线平行,那么这两条直线平行;②同位角相等,两直线平行;③内错角相等,两直线平行;④同旁内角互补,两直线平行.12.(2018春•青山区期中)把一张对边互相平行的纸条折成如图那样,EF是折痕,若∠EFB=32°,则∠D′FD的度数为.13.(2018春•宁波期中)如图(1)所示为长方形纸带,将纸带沿EF折叠成图(2),再沿BF折叠成图(3),继续沿EF折叠成图(4),按此操作,最后一次折叠后恰好完全盖住∠EFG;整个过程共折叠了9次,问图(1)中∠DEF的度数是.三、解答题14. (余姚市校级期中)按要求解答下列问题:(1)分别按下列要求作出经过平移后的图形①把三角形ABC向右平移3格.②把第①题所得图形向上平移4格.(2)经(1)中二次平移后所得的图形,能通过三角形ABC一次平移得到吗?如果你认为可以,描述这个平移过程.(3)如图:直线l1,l2表示一条河的两岸,且l1∥l2,现要在河上建一座桥.桥建在何处才能使从村庄A经过河到村庄B的路程最短?画出示意图,并用平移的原理说明理由15.(2018春•甘井子区期中)如图1,MN∥PQ,直线AD与MN、PQ分别交于点A、D,点B在直线PQ上,过点B作BG⊥AD,垂足为点G.(1)求证:∠MAG+∠PBG=90°;(2)若点C在线段AD上(不与A、D、G重合),连接BC,∠MAG和∠PBC的平分线交于点H,请在图2中补全图形,猜想并证明∠CBG与∠AHB的数量关系;(3)若直线AD的位置如图3所示,(2)中的结论是否成立?若成立,请证明;若不成立,请直接写出∠CBG与∠AHB的数量关系.16.(2017春•嘉祥县期中)(1)如图甲,AB∥CD,∠2与∠1+∠3的关系是什么?并写出推理过程;(2)如图乙,AB∥CD,直接写出∠2+∠4与∠1+∠3+∠5的数量关系;(3)如图丙,AB∥CD,试问∠2+∠4+∠6与∠1+∠3+∠5+∠7还有类似的数量关系吗?若有,请直接写出,并将它们推广到一般情况,用一句话写出你的结论.17.(2017春•成都期中)已知AM∥CN,点B为平面内一点,AB⊥BC于B.(1)如图1,直接写出∠A和∠C之间的数量关系;(2)如图2,过点B作BD⊥AM于点D,求证:∠ABD=∠C;(3)如图3,在(2)问的条件下,点E、F在DM上,连接BE、BF、CF,BF平分∠DBC,BE平分∠ABD,若∠FCB+∠NCF=180°,∠BFC=3∠DBE,求∠EBC的度数.18.(2017春•乐亭县期中)已知,∠AOB=90°,点C在射线OA上,CD∥OE.(1)如图1,若∠OCD=120°,求∠BOE的度数;(2)把“∠AOB=90°”改为“∠AOB=120°”,射线OE沿射线OB平移,得O′E,其他条件不变,(如图2所示),探究∠OCD、∠BO′E的数量关系;(3)在(2)的条件下,作PO′⊥OB垂足为O′,与∠OCD的平分线CP交于点P,若∠BO′E=α,请用含α的式子表示∠CPO′(请直接写出答案).19.(2017春•碑林区校级期中)探究:如图①,已知直线l1∥l2,直线l3和l1,l2分别交于点C和D,直线l3上有一点P.(1)若点P在C、D之间运动时,问∠PAC,∠APB,∠PBD之间有怎样的关系?并说明理由.(2)若点P在C、D两点的外侧运动时(点P与点C、D不重合),请尝试自己画图,写出∠PAC,∠APB,∠PBD之间的关系,并说明理由.(3)如图②,AB∥EF,∠C=90°,我们可以用类似的方法求出∠α、∠β、∠γ之间的关系,请直接写出∠α、∠β、∠γ之间的关系.20.(2017春•汉阳区期中)如图1,AB∥CD,E是AB、CD之间的一点.(1)判定∠BAE,∠CDE与∠AED之间的数量关系,并证明你的结论;(2)如图2,若∠BAE、∠CDE的两条平分线交于点F.直接写出∠AFD与∠AED之间的数量关系;(3)将图2中的射线DC沿DE翻折交AF于点G得图3,若∠AGD的余角等于2∠E的补角,求∠BAE的大小.21.(2015春•越秀区校级期中)已知:如图,BC∥OA,∠B=∠A=100°,试回答下列问题:(1)如图①所示,求证:OB∥AC.(注意证明过程要写依据)(2)如图②,若点E、F在BC上,且满足∠FOC=∠AOC,并且OE平分∠BOF.(ⅰ)求∠EOC的度数;(ⅱ)求∠OCB:∠OFB的比值;(ⅲ)如图③,若∠OEB=∠OCA.此时∠OCA度数等于.(在横线上填上答案即可)22.(2015春•巴南区校级期末)如图,已知两条射线OM∥CN,动线段AB的两个端点A、B分别在射线OM、CN上,且∠C=∠OAB=108°,F在线段CB上,OB平分∠AOF,OE平分∠COF.(1)请在图中找出与∠AOC相等的角,并说明理由;(2)若平行移动AB,那么∠OBC与∠OFC的度数比是否随着AB位置的变化而发生变化?若变化,找出变化规律;若不变,求出这个比值;(3)在平行移动AB的过程中,是否存在某种情况,使∠OEC=2∠OBA?若存在,请求出∠OBA度数;若不存在,说明理由.23.(2017春•江北区校级期中)已知直线AB∥CD.(1)如图1,直接写出∠ABE,∠CDE和∠BED之间的数量关系是.(2)如图2,BF,DF分别平分∠ABE,∠CDE,那么∠BFD和∠BED有怎样的数量关系?请说明理由.(3)如图3,点E在直线BD的右侧,BF,DF仍平分∠ABE,∠CDE,请直接写出∠BFD 和∠BED的数量关系.24.(2017春•锡山区校级月考)将一副三角板中的两块直角三角尺的直角顶点C按如图方式叠放在一起(其中,∠A=60°,∠D=30°;∠E=∠B=45°):(1)若∠DCE=35°,求∠ACB的度数;(2)猜想∠ACB与∠DCE的数量关系,并说明理由;(3)请你动手操作,现将三角尺ACD固定,三角尺BCE的CE边与CA边重合,绕点C顺时针方向旋转,当0°<∠ACE<180°且点E在直线AC的上方时,这两块三角尺是否存在一组边互相平行?若存在,请直接写出∠ACE角度所有可能的值(不必说明理由);若不存在,请说明理由.21世纪教育网–中小学教育资源及组卷应用平台。

浙教版七年级下第1章平行线复习课件2

浙教版七年级下第1章平行线复习课件2
A D C
2:1

B




同位角相等 1.知识框架 三线八角 判定 平行线 内错角相等 同旁内角互补
通过今天的复习,你 有何收获吗?
性质 内 错 角 同 旁 内 角 两 直 线 平 行 同位角相等 内错角相等 同旁内角互补
两 直 线 平 行
同 位 角
平行线之间的距离
通过今天的复习,你 有何收获吗?
F
知识回顾
二.平行线的判定和性质
3.如何判定AC∥DE? 平行线的判定
A E 1 B 2 4 D F 3 C
(1)同位角相等,两直线平行; (2)内错角相等,两直线平行; (3)同旁内角互补,两直线平行。
4.若AB∥DF,你能得到什么结论?
平行线的性质 (1) 两直线平行,同位角相等 ; (2) 两直线平行,内错角相等 ; (3) 两直线平行,同旁内角互补。
2.一题多变,一题多解的解题过程中 需要抓住什么? 3.添辅助线的基本方法及作用
必做题:学案课外作业1—5 选做题:课外作业6—8
认真复习第一章,
积极迎接期中考。
新课标教学网()--海量 教学资源欢迎下载!
本章重点
互 逆
角的关系 • 判定是说: 满足了什么 条件的两条 直线是互相 平行的。
平行线的判定 线的平行 线的平行 角的关系 (1)同位角相等,两直线平行; (2)内错角相等,两直线平行; 性质是说: (3)同旁内角互补,两直线平行。 如果两条直 线平行,就 平行线的性质 具有什么性 (1) 两直线平行,同位角相等 ; 质(角的关 系 )。 (2) 两直线平行,内错角相等 ; (3) 两直线平行,同旁内角互补。
A D E
折叠问题

浙教版七下数学第一章:平行线期末总复习效果检测

浙教版七下数学第一章:平行线期末总复习效果检测

浙教版七下数学第一章:平行线期末总复习效果检测一.选择题(共10小题,每小题3分,共30分)温馨提示:每小题有四个答案,只有一个是正确的,请将正确的答案选出来!1.下列说法正确的是()A.不相交的两条线段是平行线. B.不相交的两条直线是平行线.C.不相交的两条射线是平行线D.在同一平面内,不相交的两条直线叫做平行线.2.下列说法:①两直线平行,同旁内角互补;②内错角相等,两直线平行;③同位角相等,两直线平行;④垂直于同一条直线的两条直线平行,其中是平行线的性质的是() A.①B.②和③C.④D.①和④3.如图所示,AB∥CD,若∠2是∠1的2倍,则∠2等于()A.60°B.90°C.120°D.150°4.如图,点D是AB上的一点,点E是AC边上的一点,且∠B=70°,∠ADE=70°,∠DEC=100°,则∠C是()A.70°B.80°C.100°D.110°5.如图所示,已知AD与BC相交于点O,CD∥OE∥AB.如果∠B=40°,∠D=30°,则∠AOC的大小为()A.60°B.70°C.80°D.120°6.如图所示,直线l1//l2,∠1=40°,∠2=75°,则∠3等于()A.55°B.30°C.65°D.70°7.如图,AB∥CD∥EF,BC∥AD,AC平分∠BAD,且交EF于点O,则与∠AOE相等的角有()A.5个B.4个C.3个D.2个8. 有下列语句中,真命题的个数是()①画直线AB垂直于CD;②若|x|=|y|,则x2=y2.③两直线平行,同旁内角相等;④直线a、b相交于点O;⑤等角的余角相等.A.2个B.3个C.4个D.5个9.如图,AB∥EF∥CD,∠ABC=46°,∠CEF=154°,则∠BCE等于()A.23°B.16°C.20°D.26°10.如图所示,直线l 1∥l 2,点A 、B 在直线l 2上,点C 、D 在直线l 1上,若△ABC 的面积为S 1,△ABD 的面积为S 2,则( )A .S 1>S 2B .S 1=S 2C .S 1<S 2D .不确定二.填空题(共6小题,每题4分,共24分)温馨提示:填空题应将最简洁最正确的答案填在空格内!11.如图所示,已知CD 平分∠ACB ,DE ∥AC ,∠1=30°,则∠2=______度.12.将两张矩形纸片如图所示摆放,使其中一张矩形纸片的一个顶点恰好落在另一张矩形纸片的一条边上,则∠1+∠2=________13.如图,已知ED ∥AC ,DF ∥AB ,有以下命题:①∠A =∠EDF ;②∠1+∠2=180°;③∠A+∠B+∠C =180°;④∠1=∠3.其中,正确 的是________(填序号)14.如图所示,AB ∥CD ,且∠BAP =α-060,∠APC =α+045,∠PCD =α-030,则=α________15.如图所示的图形中的小三角形可以由△ABC 平移得到的有________个16.规律探究:同一平面内有直线10099321,......,,a a a a a 若...,//,433221a a a a a a ⊥⊥按此规律,1a 和100a 的位置是________三.解答题(共7题,共66分)温馨提示:解答题应将必要的过程呈现出来!17(本题6分).如图,已知AB ∥CD ,MG 、NH 分别平分∠BMN 与∠CNM ,试说明NH ∥MG?18(本题10分)如图,将四边形ABCD平移到四边形EFGH的位置,根据平移后对应点所连的线段平行且相等,写出图中平行的线段和相等的线段.19(本题10分)如图所示,AB∥EF,求∠BAC+∠ACE+∠CEF的度数。

第1章平行线复习课件(浙教版)

第1章平行线复习课件(浙教版)

B
A
C
D E
书本P21的13题
将一条两边沿互相平行的纸带按如图 折叠。设∠1位x度,请用关于x的代数式 表示∠α的度数。
1
图3
翻折+平行线
1、如图,已知AD//BC,请找出图中面积相等的
三角形,并说明理由。
A
D
O
B
C
等积法
2、已知平行四边形ABCD的周长为 25cm,对边的距离分别为 AE=2cm,AF=3cm,求这个平行四边形 的面积
x
3、如图:甲、乙两户的承包田由折线 ABC分割,现需把分割线改成直线,并且两 户农田面积不变,道路的一端点仍为A,问 应该怎么改?画出示意图,并说明理由。
4、如图,在梯形ABCD中,AD∥BC, 画BE∥AC,DE∥AB,BE与DE相交于点E, 连结EC,则S△ACD=S△BEC,请说明理由.
找出图中各对平行线,并说明理由. A
F
1E
2
B
3 D
E
B
A
A
B
1
2
D
C
3
C
4 D
5、如图,已知DE平分∠BDF,AF平分∠BAC, 且∠1= ∠2,试说明DF∥AC
A
D2
1
B
EF
C
6、如图,A、F、C、D四点在一直线上,
AF = CD,AB//DE,且AB = DE,判断EF和
BC是否平行,并说明理由。
E
D
F
C
Байду номын сангаас
A
B
7、已知△ABC中,∠A=∠B=∠C,D、E、F分别 是BC、AC、AB上的点,且∠1=∠2=∠3=600 ,
找出图中由AD、BC被直线AC所截而成的内错

2021-2022学年浙教版七年级数学下册《第1章平行线》单元综合练习题(附答案)

2021-2022学年浙教版七年级数学下册《第1章平行线》单元综合练习题(附答案)

2021-2022学年浙教版七年级数学下册《第1章平行线》单元综合练习题(附答案)一.选择题1.下列各图中,∠1与∠2是对顶角的是()A.B.C.D.2.如图,OA⊥OB,若∠1=55°30′,则∠2的度数是()A.34°B.34°30′C.35°D.35°30′3.若点A到直线l的距离为7cm,点B到直线l的距离为3cm,则线段AB的长度为()A.10cm B.4cm C.10cm或4cm D.至少4cm4.如图所示,同位角共有()A.6对B.8对C.10对D.12对5.下列说法正确的有()①两点之间的所有连线中,线段最短;②相等的角叫对顶角;③在同一平面内的两直线位置关系只有两种:平行或相交;④过一点有且只有一条直线与已知直线垂直;⑤两点之间的距离是两点间的线段.A.1个B.2个C.3个D.4个6.下列生活实例中,数学原理解释错误的一项是()A.从一条河向一个村庄引一条最短的水渠,其中数学原理是:在同一平面内,过一点有且只有一条直线垂直于已知直线B.两个村庄之间修一条最短的公路,其中的数学原理是:两点之间线段最短C.把一个木条固定到墙上需要两颗钉子,其中的数学原理是:两点确定一条直线D.从一个货站向一条高速路修一条最短的公路,其中的数学原理是:连接直线外一点与直线上各点的所有线段中,垂线段最短7.将一副三角板如图摆放,∠OAB=∠OCD=90°,∠AOB=60°,∠COD=45°,OM 平分∠AOD,ON平分∠COB,则∠MON的度数为()A.60°B.45°C.65.5°D.52.5°8.如图,将Rt△ABC沿着点B到点C的方向平移到△DEF的位置,已知AB=6,HD=2,CF=3,则图中阴影部分的面积为()A.12B.15C.18D.249.学习平行线性质后,老师给小明出了一道题:如图,一条公路修到湖边时,需拐弯绕湖而过,如果第一次拐角∠A是120°,第二次拐的角∠B是150°,第三次拐的角是∠C,这时的道路恰好和第一次拐弯之前道路平行,则∠C是多少度?请你帮小明求出()A.120°B.130°C.140°D.150°二.填空题10.如图所示,AB⊥l1,AC⊥l2,则点A到直线l1的距离是线段的长度.11.如图,∠1和∠3是直线和被直线所截而成的角;图中与∠2是同旁内角的角有个.12.如图,两条直线相交成四个角,已知∠2=3∠1,那么∠4=度.13.如图,∠AOC为平角,已知OE平分∠AOB,OF平分∠BOC,AC与DF相交于点O,∠AOD=25°,则∠BOE的度数为.14.∠α与∠β的两边互相垂直,且∠a=50°,则∠β的度数为.15.如图,将长为5cm,宽为3cm的长方形ABCD先向右平移2cm,再向下平移1cm,得到长方形A'B'C'D',则阴影部分的面积为cm2.16.如图,AB∥CD,有图中α,β,γ三角之间的关系是.17.如图,将一张长方形纸片ABCD分别沿着BE、BF折叠,使边AB、CB均落在BD上,得到折痕BE、BF,则∠ABE+∠CBF=.18.已知∠AOB=22.5°,分别以射线OA,OB为始边,在∠AOB的外部作∠AOC=∠AOB,∠BOD=2∠AOB,则OC与OD的位置关系是.三.解答题19.如图,直线AB、CD交于O点,且∠BOC=80°,OE平分∠BOC,OF为OE的反向延长线.(1)求∠2和∠3的度数;(2)OF平分∠AOD吗?为什么?20.直线AB与直线CD相交于点O,OE平分∠BOD.(1)如图①,若∠BOC=130°,求∠AOE的度数;(2)如图②,射线OF在∠AOD内部.①若OF⊥OE,判断OF是否为∠AOD的平分线,并说明理由;②若OF平分∠AOE,∠AOF=∠DOF,求∠BOD的度数.21.一个问题解决往往经历发现猜想﹣﹣探索归纳﹣﹣问题解决的过程,下面结合一道几何题来体验一下.【发现猜想】如图①,已知∠AOB=70°,∠AOD=100°,OC为∠BOD的角平分线,则∠AOC的度数为;【探索归纳】如图①,∠AOB=m,∠AOD=n,OC为∠BOD的角平分线.猜想∠AOC 的度数(用含m、n的代数式表示),并说明理由.【问题解决】如图②,若∠AOB=20°,∠AOC=90°,∠AOD=120°.若射线OB绕点O以每秒20°逆时针旋转,射线OC绕点O以每秒10°顺时针旋转,射线OD绕点O每秒30°顺时针旋转,三条射线同时旋转,当一条射线与直线OA重合时,三条射线同时停止运动.运动几秒时,其中一条射线是另外两条射线夹角的角平分线?22.如图,已知BC∥GE,AF∥DE,∠1=50°.(1)求∠AFG的度数;(2)若AQ平分∠F AC,交BC于点Q,且∠Q=15°,求∠ACB的度数.23.如图,已知∠1+∠2=180°,∠3=∠B,试判断∠AED与∠ACB的大小关系,并说明理由.24.(1)如图(1),已知任意三角形ABC,过点C作DE∥AB,求证:∠DCA=∠A;(2)如图(1),求证:三角形ABC的三个内角(即∠A、∠B、∠ACB)之和等于180°;(3)如图(2),求证:∠AGF=∠AEF+∠F;(4)如图(3),AB∥CD,∠CDE=119°,GF交∠DEB的平分线EF于点F,∠AGF =150°,求∠F.参考答案一.选择题1.解:根据两条直线相交,才能构成对顶角进行判断,A、B、D都不是由两条直线相交构成的图形,错误,C是由两条直线相交构成的图形,正确,故选:C.2.解:∵OA⊥OB,∴∠AOB=90°∵∠1=55°30′,∴∠2=90°﹣55°30′=34°30′,故选:B.3.解:从点A作直线l的垂线,垂足为C点,当A、B、C三点共线时,线段AB的长为7﹣3=4cm,其它情况下大于4cm,当A、B在直线l的两侧时,AB>4cm,故选:D.4.解:如图,由AB、CD、EF组成的“三线八角”中同位角有四对,射线GM和直线CD被直线EF所截,形成2对同位角;射线GM和直线HN被直线EF所截,形成2对同位角;射线HN和直线AB被直线EF所截,形成2对同位角.则总共10对.故选:C.5.解:两点之间的所有连线中,线段最短,故①正确;两相交的直线所形成的角中,一个角的两边分别是另一个角两边的反向延长线,这两个角是对顶角,所以②说法错误;在同一平面内的两直线位置关系只有两种:平行或相交,故③说法正确;在同一平面内,过一点有且只有一条直线与已知直线垂直,故④说法错误;两点之间的距离是两点间的线段的长,故⑤说法错误;所以说法正确的有2个.故选:B.6.解:A、从一条河向一个村庄引一条最短的水渠,其中数学原理是:垂线段最短,故原命题错误;B、两个村庄之间修一条最短的公路,其中的数学原理是:两点之间线段最短,正确;C、一个木条固定到墙上需要两颗钉子,其中的数学原理是:两点确定一条直线,正确;D、从一个货站向一条高速路修一条最短的公路,其中的数学原理是:连接直线外一点与直线上各点的所有线段中,垂线段最短,正确.故选:A.7.解:设∠AOM=∠DOM=x,∠CON=∠BON=y,则∠BOD=60°﹣2x,∵∠COD=45°,∴60°﹣2x+2y=45°,x﹣y=7.5°,∴∠MON=x+(60°﹣2x)+y=60°﹣(x﹣y)=52.5°.故选:D.8.解:∵△ABC沿着点B到点C的方向平移到△DEF的位置,∴△ABC的面积=△DEF的面积,∴阴影部分面积等于梯形ABEH的面积,由平移的性质得,DE=AB=6,BE=CF=3,∵AB=6,DH=2,∴HE=DE﹣DH=6﹣2=4,∴阴影部分的面积=×(4+6)×3=15.故选:B.9.解:作BD∥AE,如图,∵AE∥CF,∴BD∥CF,∵BD∥AE,∴∠ABD=∠A=120°,∴∠DBC=150°﹣120°=30°,∵BD∥CF,∴∠C+∠DBC=180°,∴∠C=180°﹣30°=150°.故选:D.故选:D.二.填空题10.解:∵AB⊥l1,∴点A到直线l1的距离是线段AB的长度.故答案为:AB.11.解:∠1和∠3是直线AB和AC被直线DE所截而成的内错角;图中与∠2 是同旁内角的角有∠6、∠5、∠7,共3个,故答案为:AB、AC、DE、内错,3.12.解:∵∠2=3∠1,∠1+∠2=180°,∴∠2=135°,则∠4=∠2=135°,故答案为:13513.解:∵OE平分∠AOB,OF平分∠BOC,∴∠AOE=∠EOB=∠AOB,∠COF=∠BOF=∠BOC,∵∠AOC为平角,∴∠AOB+∠BOC=180°∴∠EOB+∠BOF=∠EOF=90°∵∠AOD=25°=∠COF,∴∠BOE=90°﹣25°=65°,故答案为:65°.14.解:∵∠α与∠β的两边互相垂直,∴α+β=180°或α=β,又∵∠a=50°,∴∠β=130°或50°,故答案是:130°或50°.15.解:由题意,空白部分是矩形,长为5﹣2=3(cm),宽为3﹣1=2(cm),∴阴影部分的面积=5×3×2﹣2×2×3=18(cm2),故答案为:18.16.解:∵AD∥BC,∴∠BFE=∠DEF=α,∠CFE=180°﹣∠DEF=180°﹣α,∴∠CFG=∠CFE﹣∠BFE=180°﹣α﹣α=180°﹣2α,∴∠CFE=∠CFG﹣∠BFE=180°﹣2α﹣α=180°﹣3α.故答案为:180°﹣3α.17.解:由折叠得,∠ABE=∠DBE,∠CBF=∠DBF,∵∠ABE+∠DBE+∠CBF+∠DBF=∠ABC=90°,∴∠ABE+∠CBF=∠ABC=×90°=45°,故答案为:45°.18.解:①当射线OC在射线OA上方,射线OD在射线OB下方时,如图,∵∠AOB=22.5°,∠AOC=∠AOB=22.5°,∠BOD=2∠AOB=45°,∴∠COD=∠AOC+∠AOB+∠BOD=22.5°+22.5°+45°=90°,∴OC与OD的位置关系是垂直.②当当射线OC在射线OA上方,射线OD在射线OB上方时,由题意可知,∠BOC=∠BOD=45°,此时射线OC和射线OD重合.故填垂直或重合.三.解答题19.解:(1)∵∠BOC+∠2=180°,∠BOC=80°,∴∠2=180°﹣80°=100°;∵OE是∠BOC的角平分线,∴∠1=40°.∵∠1+∠2+∠3=180°,∴∠3=180°﹣∠1﹣∠2=180°﹣40°﹣100°=40°.(2)平分理由:∵∠2+∠3+∠AOF=180°,∴∠AOF=180°﹣∠2﹣∠3=180°﹣100°﹣40°=40°.∴∠AOF=∠3=40°,∴OF平分∠AOD.20.解:(1)∵∠BOC=130°,∴∠AOD=∠BOC=150°,∠BOD=180°﹣∠BOC=50°∵OE平分∠BOD,∴∠DOE=25°∴∠AOE=∠AOD+∠DOE=155°.答:∠AOE的度数为155°(2)①OF是∠AOD的平分线,理由如下:∵OF⊥OE,∴∠EOF=90°∴∠BOE+∠AOF=90°∵OE平分∠BOD,∴∠BOE=∠DOE∴∠DOE+∠AOF=90°∠DOE+∠DOF=90°∴∠AOF=∠DOF∴OF是∠AOD的平分线;②∵∠AOF=∠DOF,设∠DOF=3x,则∠AOF=∠5x,∵OF平分∠AOE,∴∠AOF=∠EOF=5x∴∠DOE=2x∵OE平分∠BOD,∴∠BOD=4x5x+3x+4x=180°∴x=15°.∴∠BOD=4x=60°.答:∠BOD的度数为60°.21.解:【发现猜想】∵∠AOB=70°,∠AOD=100°,∴∠BOD=∠AOD﹣∠AOB=30°,∵OC为∠BOD的角平分线,∴∠BOC=∠BOD=15°,∴∠AOC=∠AOB+∠BOC=85°则∠AOC的度数为85°;故答案为85°;【探索归纳】∠AOC=(m+n).理由如下:∵∠AOB=m,∠AOD=n,∴∠BOD=n﹣m,∵OC为∠BOD的角平分线.∴∠BOC=(n﹣m)∴∠AOC=(n﹣m)+m=(m+n).答:∠AOC的度数为(m+n).【问题解决】设经过的时间为x秒,∵∠AOB=20°,∠AOC=90°,∠AOD=120°.∴∠DOA=120°﹣30x°,∠COA=90°﹣10x°,∠BOA=20°+20x°.①当在x=之前,OC为OB、OD夹角的角平分线:30﹣20x=70﹣30x,解得x=4(舍去);②当x在和2之间,OD为OC、OB夹角的角平分线:﹣30+20x=100﹣50x,解得x=;③当x在2和之间,OB为OC、OD夹角的角平分线:70﹣30x=﹣100+50x,解得x=;④当x在和4之间,OC为OB、OD夹角的角平分线:﹣70+30x=﹣30+20x,解得x=4.答:经过、、4秒时,其中一条射线是另两条射线夹角的平分线.22.解:(1)∵BC∥EG,∴∠E=∠1=50°.∵AF∥DE,∴∠AFG=∠E=50°;(2)作AM∥BC,∵BC∥EG,∴AM∥EG,∴∠F AM=∠AFG=50°.∵AM∥BC,∴∠QAM=∠Q=15°,∴∠F AQ=∠F AM+∠QAM=65°.∵AQ平分∠F AC,∴∠QAC=∠F A Q=65°,∴∠M AC=∠QAC+∠QAM=80°.∵AM∥BC,∴∠ACB=∠MAC=80°.23.解:∠AED=∠ACB.理由:∵∠1+∠4=180°(平角定义),∠1+∠2=180°(已知).∴∠2=∠4.∴EF∥AB(内错角相等,两直线平行).∴∠3=∠ADE(两直线平行,内错角相等).∵∠3=∠B(已知),∴∠B=∠ADE(等量代换).∴DE∥BC(同位角相等,两直线平行).∴∠AED=∠ACB(两直线平行,同位角相等).24.证明:(1)∵DE∥BC,∴∠DCA=∠A;(2)如图1所示,在△ABC中,∵DE∥BC,∴∠B=∠2,∠1=∠A(内错角相等).∵∠1+∠BCA+∠2=180°,∴∠A+∠B+∠C=180°.即三角形的内角和为180°;(3)∵∠AGF+∠FGE=180°,由(2)知,∠GEF+∠F+∠FGE=180°,∴∠AGF=∠AEF+∠F;(4)∵AB∥CD,∠CDE=119°,∴∠DEB=119°,∠AED=61°,∵GF交∠DEB的平分线EF于点F,∴∠DEF=59.5°,∴∠AEF=120.5°,∵∠AGF=150°,∵∠AGF=∠AEF+∠F,∴∠F=150°﹣120.5°=29.5°.。

八年级上册数学单元测试题BKA 第1章 平行线

八年级上册数学单元测试题BKA 第1章 平行线
(3)量出点A到DF的距离以及DF与GE,GE与BC之间的距离(精确到0.1 cm),你有什么发现?
解析:(1)略;(2)AF=FG=0G;(3)它们之间的距离相等
35.如图,AB∥CD,AD∥BC,请过点B作AB与CD之间的垂线段,过点A作AD与BC之间的垂线段,并量出AD与BC之间的距离.
解析:略
三、解答题
31.如图4,AB∥EF,AB∥CD.若∠EFB =l20°,∠C =70°,求∠FBC的度数.
解析:∵AB∥EF,∠EFB=120°,∴∠ABF=180°-120°=60°
∵AB∥CD.∠C=70°,∴∠A8C=∠C=70°.
∴∠FBC∠ABC-∠ABF=70°-60°=10°
32.如图,∠1 =∠2,∠1+∠3 =180,问CD、EF平行吗?为什么?
∴∠BAM=∠BGE,
∴∥().
又∵∠AGH=∠BGE(),
∴∠AGH=75°,
∴∠AGH+∠CHG=75°+105°=l80°,
∴∥().
解析:已知;m;EF;同位角相等,两直线平行;对顶角相等;AB;CD;同旁内角互补,两直线平行
30.如图,∠2和∠A是直线、直线被直线所截而得的角.
解析:AB,CD,AC,内错
36.如图,已知AB∥CD,∠ABE = 130°,∠CDE =152°,求∠BED度数.
23.如图,∠1的同位角是,∠3的内错角是,∠4与是同旁内角.
解析:∠4,∠2,∠2
24.如图,一个弯形管道ABCD的拐角∠ABC=110°,要使AB∥CD,那么另一个拐角∠BCD应弯成.
解析:70°
25.如图,由∠1 =∠B,得到的一组平行线是.
解析:ED∥BC

第1章 平行线单元试卷B(含解析)

第1章 平行线单元试卷B(含解析)

第1章平行线单元试卷B一.选择题(共10小题,3*10=30)1.∠1与∠2是内错角,∠1=40°,则()A.∠2=40°B.∠2=140°C.∠2=40°或∠2=140°D.∠2的大小不确定2.下列说法:(1)射线AB与射线BA是同一条射线;(2)两点之间,直线最短;(3)在,(﹣3)3,﹣22,0,﹣(﹣2)中,负数的个数有3个;(4)若AP=PB,则点P是线段AB的中点;(5)一条直线的平行线有且只有一条.其中错误的个数为()A.2B.3C.4D.53.在下面的四个图形中,已知∠1=∠2,那么能判定AB∥CD的是()A.B.C.D.4.如图,AB∥CD,直线MN分别交AB、CD于点E、F,EG平分∠AEF,EG⊥FG于点G,若∠BEM=55°,则∠CFG=()A.27.5°B.65°C.62.5°D.112.5°5.如图,已知∠1=∠2,那么下列结论正确的是()A.∠A=∠C B.AD∥BC C.AB∥CD D.∠3=∠46.下列运动属于平移的是()A.荡秋千B.地球绕着太阳转C.风筝在空中随风飘动D.急刹车时,汽车在地面上的滑动7.如图图形中,把△ABC平移后能得到△DEF的是()A.B.C.D.8.下列图形中,可以由其中一个图形通过平移得到的是()A.B.C.D.9.下列四个命题中,真命题的是()A.同位角相等B.相等的角是对顶角C.邻补角相等D.a,b,c是直线,且a∥b,b∥c,则a∥c10.如图,在10×6的网格中,每个小正方形的边长都是1个单位,将三角形ABC平移到三角形DEF的位置,下面正确的平移步骤是()A.先向左平移5个单位,再向下平移2个单位B.先向右平移5个单位,再向下平移2个单位C.先向左平移5个单位,再向上平移2个单位D.先向右平移5个单位,再向上平移2个单位二.填空题(共8小题,3*8=24)11.如图,能与∠1构成同位角的角有个.12.已知三条不同的直线a、b和c,a∥b,c∥b,则a和c位置关系是.13.如图,用直尺和三角尺作出直线AB、CD,得到AB∥CD的理由是.14.将一张长方形纸片折叠成如图所示的形状,若∠DBC=56°,则∠1=°.15.如图,直线a,b都垂直于直线c,直线d与a,b相交.若∠1=135°,则∠2=°.16.小明家新建了一栋楼房,装修时准备在一段楼梯上铺设地毯,已知这种地毯每平方米售价为50元,楼梯宽2m,其侧面如图所示,则铺设地毯至少需要元.17.如图,矩形ABCD的对角线AC=10,BC=8,则图中四个小矩形的周长之和为.18.如图,将△ABE向右平移2cm得到△DCF,AE、DC交于点G.如果△ABE的周长是16cm,那么△ADG与△CEG的周长之和是cm.三.解答题(共9小题,66分)19.(6分)如图所示,∠1与∠2是哪两条直线被另一条直线所截,构成的是什么角的关系?∠3与∠D呢?20.(6分)如图,已知直线a,b被直线c,d所截,直线a,c,d相交于点O,按要求完成下列各小题.(1)在图中的∠1~∠9这9个角中,同位角共有多少对?请你全部写出来;(2)∠4和∠5是什么位置关系的角?∠6和∠8之间的位置关系与∠4和∠5的相同吗?21.(6分)如图,已知∠1=∠B,∠2=∠E,请你说明AB∥DE的理由.22.(8分)AB⊥BC,∠1+∠2=90°,∠2=∠3.BE与DF平行吗?为什么?解:BE∥DF.∵AB⊥BC,∴∠ABC=°,即∠3+∠4=°.又∵∠1+∠2=90°,且∠2=∠3,∴=.理由是:.∴BE∥DF.理由是:.23.(8分)如图,已知∠1=∠2,AB∥EF.求证:∠A=∠E.24.(8分)如图,直线CB∥OA,∠C=∠A=112°,E,F在CB上,且满足∠FOB=∠AOB,DE平分∠COF.(1)求∠EOB的度数;(2)若平行移动AB,那么∠OBC:∠OFC的值是否随之发生变化?若变化,找出变化规律或求出变化范围;若不变,求出这个比值;(3)在平行移动AB的过程中,是否存在某种情况使∠OEC=∠OBA?若存在,求出其度数;若不存在,说明理由.25.(8分)探究:如图①,直线AB、BC、AC两两相交,交点分别为点A、B、C,点D在线段AB上,过点D作DE∥BC交AC于点E,过点E作EF∥AB交BC于点F.若∠ABC=40°,求∠DEF的度数.请将下面的解答过程补充完整,并填空(理由或数学式)解:∵DE∥BC,∴∠DEF=.()∵EF∥AB,∴=∠ABC.()∴∠DEF=∠ABC.(等量代换)∵∠ABC=40°,∴∠DEF=°.应用:如图②,直线AB、BC、AC两两相交,交点分别为点A、B、C,点D在线段AB 的延长线上,过点D作DE∥BC交AC于点E,过点E作EF∥AB交BC于点F.若∠ABC=60°,则∠DEF=°.26.(8分)阅读下面材料:小亮遇到这样问题:如图1,已知AB∥CD,EOF是直线AB、CD间的一条折线.判断∠O、∠BEO、∠DFO三个角之间的数量关系.小亮通过思考发现:过点O作OP∥AB,通过构造内错角,可使问题得到解决.请回答:∠O、∠BEO、∠DFO三个角之间的数量关系是.参考小亮思考问题的方法,解决问题:(2)如图2,将△ABC沿BA方向平移到△DEF(B、D、E共线),∠B=50°,AC与DF相交于点G,GP、EP分别平分∠CGF、∠DEF相交于点P,求∠P的度数;(3)如图3,直线m∥n,点B、F在直线m上,点E、C在直线n上,连接FE并延长至点A,连接BA、BC和CA,做∠CBF和∠CEF的平分线交于点M,若∠ADC=α,则∠M=(直接用含α的式子表示).27.(8分)已知,射线BC∥射线OA,∠C=∠BAO=100°,试回答下列问题:(1)如图①,求证:OC∥AB;(2)若点E、F在线段BC上,且满足∠EOB=∠AOB,并且OF平分∠BOC,Ⅰ)如图②,若∠AOB=30°,则∠EOF的度数等于多少(直接写出答案即可);Ⅱ)若平行移动AB,当∠BOC=6∠EOF时,求∠ABO.参考答案与试题解析一.选择题(共10小题)1.∠1与∠2是内错角,∠1=40°,则()A.∠2=40°B.∠2=140°C.∠2=40°或∠2=140°D.∠2的大小不确定【分析】两直线平行时内错角相等,不平行时无法确定内错角的大小关系.【解答】解:内错角只是一种位置关系,并没有一定的大小关系,只有两直线平行时,内错角才相等.故选:D.【点评】特别注意,内错角相等的条件是两直线平行.2.下列说法:(1)射线AB与射线BA是同一条射线;(2)两点之间,直线最短;(3)在,(﹣3)3,﹣22,0,﹣(﹣2)中,负数的个数有3个;(4)若AP=PB,则点P是线段AB的中点;(5)一条直线的平行线有且只有一条.其中错误的个数为()A.2B.3C.4D.5【分析】根据射线的定义对(1)进行判断;根据两点之间线段最短对(2)进行判断;根据有理数的乘方得到(﹣3)3=﹣27,﹣22=﹣4,即可对(3)进行判断;根据线段中点的定义对(4)进行判断;根据平行线的定义对(5)进行判断.【解答】解:射线AB与射线BA端点不同,所有(1)错误;两点之间,线段最短,所有(2)错误;由于(﹣3)3=﹣27,﹣22=﹣4,﹣(﹣2)=2,在,(﹣3)3,﹣22,0,﹣(﹣2)中,负数有﹣1,(﹣3)3,﹣22,所以(3)正确;若AP=PB且P在线段AB上,则点P是线段AB的中点,所以(4)错误;一条直线的平行线有无数条,所以(5)错误.故选:C.【点评】本题考查了平行线:在同一平面内,没有公共端点的两条直线叫平行线.也考查了有理数的乘方、射线、线段的性质等.3.在下面的四个图形中,已知∠1=∠2,那么能判定AB∥CD的是()A.B.C.D.【分析】根据两条直线被第三条所截,如果同位角相等或内错角相等或同旁内角互补,那么这两条直线平行.【解答】解:A.由∠1=∠2,能判定AB∥CD,故本选项正确;B.由∠1=∠2,不能判定AB∥CD,故本选项错误;C.由∠1=∠2,不能判定AB∥CD,故本选项错误;D.由∠1=∠2,只能判定AD∥CB,故本选项错误;故选:A.【点评】此题主要考查了平行线的判定,关键是掌握内错角相等,两直线平行.4.如图,AB∥CD,直线MN分别交AB、CD于点E、F,EG平分∠AEF,EG⊥FG于点G,若∠BEM=55°,则∠CFG=()A.27.5°B.65°C.62.5°D.112.5°【分析】首先由AB∥CD,根据两直线平行,同旁内角互补,即可求得∠CFE的度数,又由内角和定理,求得∠GFE的度数,则可求得∠CFG的度数.【解答】解:∵AB∥CD,∴∠AEF+∠CFE=180°,∵∠AEF=∠BEM=55°,∴∠CFE=125°,∵EG平分∠AEF,∴∠GEF=∠AEF=27.5°,∵EG⊥FG,∴∠EGF=90°,∴∠GFE=90°﹣∠GEF=62.5°,∴∠CFG=∠CEF﹣∠GFE=62.5°.故选:C.【点评】此题考查了平行线的性质,垂直的定义以及角平分线的性质.注意两直线平行,同旁内角互补.5.如图,已知∠1=∠2,那么下列结论正确的是()A.∠A=∠C B.AD∥BC C.AB∥CD D.∠3=∠4【分析】∠1和∠2是直线AB、CD被直线DB所截的内错角,若∠1=∠2,则AB∥CD.【解答】解:∵∠1=∠2,∴AB∥CD.(内错角相等,两直线平行)故选:C.【点评】此题考查平行线的判定和性质,正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键,只有同位角相等、内错角相等、同旁内角互补,才能推出两直线平行.6.下列运动属于平移的是()A.荡秋千B.地球绕着太阳转C.风筝在空中随风飘动D.急刹车时,汽车在地面上的滑动【分析】判断是否是平移现象,要根据平移的性质进行,即图形平移前后的形状和大小没有变化,只是位置发生变化.【解答】解:A、荡秋千不符合平移的性质,不属于平移,故本选项错误;B、地球绕着太阳转不符合平移的性质,不属于平移,故本选项错误;C、风筝在空中随风飘动,不符合平移的性质,故本选项错误;D、急刹车时,汽车在地面上的滑动,符合平移的性质,故本选项正确.故选:D.【点评】本题考查了图形的平移,图形的平移只改变图形的位置,而不改变图形的形状和大小,学生易混淆图形的平移与旋转或翻转而误选.7.如图图形中,把△ABC平移后能得到△DEF的是()A.B.C.D.【分析】根据图形平移的性质对各选项进行逐一分析即可.【解答】解:A、△DEF由△ABC平移而成,故本选项正确;B、△DEF由△ABC对称而成,故本选项错误;C、△DEF由△ABC旋转而成,故本选项错误;D、△DEF由△ABC对称而成,故本选项错误.故选:A.【点评】本题考查的是平移的性质,熟知把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同是解答此题的关键.8.下列图形中,可以由其中一个图形通过平移得到的是()A.B.C.D.【分析】根据平移的性质,结合图形对小题进行一一分析,选出正确答案.【解答】解:∵只有B的图形的形状和大小没有变化,符合平移的性质,属于平移得到;故选:B.【点评】本题考查的是平移的性质,熟知图形平移后所得图形与原图形全等是解答此题的关键.9.下列四个命题中,真命题的是()A.同位角相等B.相等的角是对顶角C.邻补角相等D.a,b,c是直线,且a∥b,b∥c,则a∥c【分析】真命题就是正确的命题,即如果命题的题设成立,那么结论一定成立.【解答】解:A、前提条件没有确定,同位角不一定相等;B、相等的角是对顶角,不符合对顶角的定义,也不成立;C、邻补角相等也不成立;D、平行于同一直线的两条直线平行,故a∥b,b∥c,则a∥c.是真命题.故选:D.【点评】本题主要考查结论是在题设成立的基础上才能成立,如果没有题设,则结论不能成立.这样才符合真命题就是正确的命题.10.如图,在10×6的网格中,每个小正方形的边长都是1个单位,将三角形ABC平移到三角形DEF的位置,下面正确的平移步骤是()A.先向左平移5个单位,再向下平移2个单位B.先向右平移5个单位,再向下平移2个单位C.先向左平移5个单位,再向上平移2个单位D.先向右平移5个单位,再向上平移2个单位【分析】根据网格结构,可以利用一对对应点的平移关系解答.【解答】解:根据网格结构,观察对应点A、D,点A向左平移5个单位,再向下平移2个单位即可到达点D的位置,所以平移步骤是:先把△ABC向左平移5个单位,再向下平移2个单位.故选:A.【点评】本题考查了坐标与图形变化﹣平移,利用对应点的平移规律确定图形的平移规律是解题的关键.二.填空题(共8小题)11.如图,能与∠1构成同位角的角有3个.【分析】两条直线被第三条直线所截形成的角中,若两个角都在两直线的同侧,并且在第三条直线(截线)的同旁,则这样一对角叫做同位角.依此求解即可.【解答】解:由同位角的定义知,能与∠1构成同位角的角有∠2、∠3、∠4,共3个.故答案为3.【点评】本题考查了同位角、内错角、同旁内角.三线八角中的某两个角是不是同位角、内错角或同旁内角,完全由那两个角在图形中的相对位置决定.在复杂的图形中判别三类角时,应从角的两边入手,具有上述关系的角必有两边在同一直线上,此直线即为截线,而另外不在同一直线上的两边,它们所在的直线即为被截的线.同位角的边构成“F“形,内错角的边构成“Z“形,同旁内角的边构成“U”形.12.已知三条不同的直线a、b和c,a∥b,c∥b,则a和c位置关系是平行.【分析】根据平行于同一条直线的两直线也平行可得答案.【解答】解:∵a∥b,c∥b,∴a∥c,故答案为:平行.【点评】此题主要考查了平行线,关键是掌握平行公理的推论.13.如图,用直尺和三角尺作出直线AB、CD,得到AB∥CD的理由是同位角相等,两直线平行.【分析】根据同位角相等,两直线平行解答即可.【解答】解:用直尺和三角尺作出直线AB、CD,得到AB∥CD的理由是同位角相等,两直线平行;故答案为:同位角相等,两直线平行.【点评】此题主要考查了平行线的判定,熟练掌握平行线的判定是解题关键.14.将一张长方形纸片折叠成如图所示的形状,若∠DBC=56°,则∠1=62°.【分析】根据折叠的性质得出∠2=∠ABD,利用平角的定义解答即可.【解答】解:如图所示:由折叠可得:∠2=∠ABD,∵∠DBC=56°,∴∠2+∠ABD+56°=180°,解得:∠2=62°,∴∠1=62°,故答案为:62【点评】本题考查了折叠变换的知识以及平行线的性质的运用,根据折叠的性质得出∠2=∠ABD是关键.15.如图,直线a,b都垂直于直线c,直线d与a,b相交.若∠1=135°,则∠2=45°.【分析】由平面内垂直于同一直线的两直线平行知a∥b,据此知∠2=180°﹣∠3,根据∠3=∠1=135°可得答案.【解答】解:如图,∵a⊥c、b⊥c,∴a∥b,∵∠1=∠3=135°,∴∠2+∠3=180°,则∠3=45°,故答案为:45.【点评】本题主要考查平行线的判定与性质,解题的关键是掌握平面内垂直于同一直线的两直线平行及平行线的性质.16.小明家新建了一栋楼房,装修时准备在一段楼梯上铺设地毯,已知这种地毯每平方米售价为50元,楼梯宽2m,其侧面如图所示,则铺设地毯至少需要550元.【分析】根据题意,结合图形,先把楼梯的横竖向上向左平移,构成一个矩形,再求得其面积,则购买地毯的钱数可求.【解答】解:如图,利用平移线段,把楼梯的横竖向上向左平移,构成一个矩形,长宽分别为3米,2.5米,则地毯的长度为3+2.5=5.5(米),面积为5.5×2=11(m2),故买地毯至少需要11×50=550(元).故答案为:550.【点评】此题主要考查了生活中的平移现象,解决此题的关键是要利用平移的知识,把要求的所有线段平移到一条直线上进行计算.17.如图,矩形ABCD的对角线AC=10,BC=8,则图中四个小矩形的周长之和为28.【分析】根据题意可知五个小矩形的周长之和正好能平移到大矩形的四周,即可得出答案.【解答】解:∵矩形ABCD的对角线AC=10,BC=8,∴AB=,由平移的性质可知:五个小长方形的周长和=2×(AB+BC)=2×14=28.故答案为:28【点评】此题主要考查了勾股定理以及平移的性质,得出五个小矩形的周长之和正好能平移到大矩形的四周是解决问题的关键.18.如图,将△ABE向右平移2cm得到△DCF,AE、DC交于点G.如果△ABE的周长是16cm,那么△ADG与△CEG的周长之和是16cm.【分析】根据平移的性质可得DF=AE,然后判断出△ADG与△CEG的周长之和=AD+CE+CD+AE=BE+AB+AE,然后代入数据计算即可得解.【解答】解:∵△ABE向右平移2cm得到△DCF,∴DF=AE,∴△ADG与△CEG的周长之和=AD+CE+CD+AE=BE+AB+AE=16,故答案为:16;【点评】本题考查平移的基本性质:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.三.解答题(共9小题)19.如图所示,∠1与∠2是哪两条直线被另一条直线所截,构成的是什么角的关系?∠3与∠D呢?【分析】根据同位角是:两个角都在截线的同旁,又分别处在被截的两条直线同侧的位置的角;内错角是:两个角都在截线的两侧旁,又分别处在被截的两条直线中间的位置的角;同旁内角是:两个角都在截线的同旁,又分别处在被截的两条直线中间的位置的角可得答案.【解答】解:∠1与∠2是AB与CD被直线AC所截形成的内错角;∠3与∠D是AC与CD被直线AD所截形成的同旁内角.【点评】本题考查了同位角、内错角、同旁内角,牢记三线八角是解题关键.20.如图,已知直线a,b被直线c,d所截,直线a,c,d相交于点O,按要求完成下列各小题.(1)在图中的∠1~∠9这9个角中,同位角共有多少对?请你全部写出来;(2)∠4和∠5是什么位置关系的角?∠6和∠8之间的位置关系与∠4和∠5的相同吗?【分析】(1)直接利用两条直线被第三条直线所截形成的角中,若两个角都在两直线的同侧,并且在第三条直线(截线)的同旁,则这样一对角叫做同位角,进而得出答案;(2)直接利用两条直线被第三条直线所截形成的角中,若两个角都在两直线的之间,并且在第三条直线(截线)的同旁,则这样一对角叫做同旁内角,进而得出答案.【解答】解:(1)如图所示:同位角共有5对:分别是∠1和∠5,∠2和∠3,∠3和∠7,∠4和∠6,∠4和∠9;(2)∠4和∠5是同旁内角,∠6和∠8也是同旁内角,故∠6和∠8之间的位置关系与∠4和∠5的相同.【点评】此题主要考查了同位角以及同旁内角的定义,正确把握相关定义是解题关键.21.如图,已知∠1=∠B,∠2=∠E,请你说明AB∥DE的理由.【分析】先根据∠1=∠B得出AB∥CF,再由∠2=∠E可知CF∥DE,最后根据两条直线同时平行第三条直线,那么这两条直线平行即可解答.【解答】证明:∵∠1=∠B(已知)∴AB∥CF (内错角相等,两直线平行)∵∠2=∠E(已知)∴CF∥DE(内错角相等,两直线平行))∴AB∥DE(平行同一条直线的两条直线平行).【点评】本题考查的是平行线的判定,熟知平行线的判定定理是解答此题的关键.22.AB⊥BC,∠1+∠2=90°,∠2=∠3.BE与DF平行吗?为什么?解:BE∥DF.∵AB⊥BC,∴∠ABC=90°,即∠3+∠4=90°.又∵∠1+∠2=90°,且∠2=∠3,∴∠1=∠4.理由是:等角的余角相等.∴BE∥DF.理由是:同位角相等,两直线平行.【分析】由AB垂直于BC,利用垂直的定义得到∠ABC为直角,进而得到∠3与∠4互余,再由∠1与∠2互余,根据∠2=∠3,利用等角的余角相等得到∠1=∠4,利用同位角相等两直线平行即可得证.【解答】解:BE∥DF,∵AB⊥BC,∴∠ABC=90°,即∠3+∠4=90°.又∵∠1+∠2=90°,且∠2=∠3,∴∠1=∠4,理由是:等角的余角相等,∴BE∥DF.理由是:同位角相等,两直线平行.故答案为:90;90;∠1,∠4;等角的余角相等;同位角相等,两直线平行.【点评】此题考查了平行线的判定,熟练掌握平行线的判定方法是解本题的关键.23.如图,已知∠1=∠2,AB∥EF.求证:∠A=∠E.【分析】依据∠1=∠AHB,∠1=∠2,即可得到∠2=∠AHB,进而得出AF∥CE,再根据∠A+∠ACE=180°,∠E+∠ACE=180°,可得∠A=∠E.【解答】证明:∵∠1=∠AHB,∠1=∠2,∴∠2=∠AHB,∴AF∥CE,∴∠A+∠ACE=180°,又∵AB∥EF,∴∠E+∠ACE=180°,∴∠A=∠E.【点评】本题主要考查了平行线的判定与性质,平行线的判定是由角的数量关系判断两直线的位置关系,平行线的性质是由平行关系来寻找角的数量关系.24.如图,直线CB∥OA,∠C=∠A=112°,E,F在CB上,且满足∠FOB=∠AOB,DE 平分∠COF.(1)求∠EOB的度数;(2)若平行移动AB,那么∠OBC:∠OFC的值是否随之发生变化?若变化,找出变化规律或求出变化范围;若不变,求出这个比值;(3)在平行移动AB的过程中,是否存在某种情况使∠OEC=∠OBA?若存在,求出其度数;若不存在,说明理由.【分析】(1)根据两直线平行,同旁内角互补求出∠AOC,然后求出∠EOB=∠AOC,计算即可得解;(2)根据两直线平行,内错角相等可得∠AOB=∠OBC,再根据三角形的一个外角等于与它不相邻的两个内角的和可得∠OFC=2∠OBC,从而得解;(3)根据三角形的内角和定理求出∠COE=∠AOB,从而得到OB、OE、OF是∠AOC 的四等分线,再利用三角形的内角和定理列式计算即可得解.【解答】解:(1)∵CB∥OA,∴∠AOC=180°﹣∠C=180°﹣112°=68°,∵OE平分∠COF,∴∠COE=∠EOF,∵∠FOB=∠AOB,∴∠EOB=∠EOF+∠FOB=∠AOC=×68°=34°;(2)∠OBC:∠OFC的值不变.∵CB∥OA,∴∠AOB=∠OBC,∵∠FOB=∠AOB,∴∠FOB=∠OBC,∴∠OFC=∠FOB+∠OBC=2∠OBC,∴∠OBC:∠OFC=1:2,是定值;(3)在△COE和△AOB中,∵∠OEC=∠OBA,∠C=∠OAB,∴∠COE=∠AOB,∴OB、OE、OF是∠AOC的四等分线,∴∠COE=∠AOC=×68°=17°,∴∠OEC=180°﹣∠C﹣∠COE=180°﹣112°﹣17°=51°,故存在某种情况,使∠OEC=∠OBA,此时∠OEC=∠OBA=51°.【点评】本题考查了平行线的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,角平分线的定义,熟记各性质并准确识图理清图中各角度之间的关系是解题的关键.25.探究:如图①,直线AB、BC、AC两两相交,交点分别为点A、B、C,点D在线段AB上,过点D作DE∥BC交AC于点E,过点E作EF∥AB交BC于点F.若∠ABC=40°,求∠DEF的度数.请将下面的解答过程补充完整,并填空(理由或数学式)解:∵DE∥BC,∴∠DEF=∠EFC.(两直线平行,内错角相等)∵EF∥AB,∴∠EFC=∠ABC.(两直线平行,同位角相等)∴∠DEF=∠ABC.(等量代换)∵∠ABC=40°,∴∠DEF=40°.应用:如图②,直线AB、BC、AC两两相交,交点分别为点A、B、C,点D在线段AB 的延长线上,过点D作DE∥BC交AC于点E,过点E作EF∥AB交BC于点F.若∠ABC=60°,则∠DEF=120°.【分析】(1)依据两直线平行,内错角相等;两直线平行,同位角相,即可得到∠DEF=40°.(2)依据两直线平行,内同位角相;两直线平行,同旁内角互补,即可得到∠DEF=180°﹣60°=120°.【解答】解:(1)∵DE∥BC,∴∠DEF=∠EFC.(两直线平行,内错角相等)∵EF∥AB,∴∠EFC=∠ABC.(两直线平行,同位角相等)∴∠DEF=∠ABC.(等量代换)∵∠ABC=40°,∴∠DEF=40°.故答案为:∠EFC,两直线平行,内错角相等,∠EFC,两直线平行,同位角相等,40;(2)∵DE∥BC,∴∠ABC=∠EADE=60°.(两直线平行,内同位角相等)∵EF∥AB,∴∠ADE+∠DEF=180°.(两直线平行,同旁内角互补)∴∠DEF=180°﹣60°=120°.故答案为:120.【点评】本题主要考查了平行线的性质,解题时注意:两直线平行,内同位角相;两直线平行,同旁内角互补.26.阅读下面材料:小亮遇到这样问题:如图1,已知AB∥CD,EOF是直线AB、CD间的一条折线.判断∠O、∠BEO、∠DFO三个角之间的数量关系.小亮通过思考发现:过点O作OP∥AB,通过构造内错角,可使问题得到解决.请回答:∠O、∠BEO、∠DFO三个角之间的数量关系是∠EOF=∠BEO+∠DFO.参考小亮思考问题的方法,解决问题:(2)如图2,将△ABC沿BA方向平移到△DEF(B、D、E共线),∠B=50°,AC与DF相交于点G,GP、EP分别平分∠CGF、∠DEF相交于点P,求∠P的度数;(3)如图3,直线m∥n,点B、F在直线m上,点E、C在直线n上,连接FE并延长至点A,连接BA、BC和CA,做∠CBF和∠CEF的平分线交于点M,若∠ADC=α,则∠M=90°﹣α(直接用含α的式子表示).【分析】(1)根据平行线的性质求出∠EOM=∠BEO,∠FOM=∠DFO,即可得出答案;(2)由DF∥BC,AC∥EF,推出∠EDF=∠B=50°,∠F=∠CGF,推出∠DEF+∠F=180°﹣50°=130°,再由三角形内角和定理可得∠P+∠FGP=∠F+∠FEP,由此即可解决问题;(3)由∠M=∠FBM+∠CEM=∠FBC+∠CEM=(180°﹣α)=90°﹣α即可解决问题;【解答】解:(1)如图1中,∵OP∥AB∴∠EOP=∠BEO,∵AB∥CD,∴OP∥CD,∴∠FOP=∠DFO,∴∠EOP+∠FOP=∠BEO+∠DFO,即:∠EOF=∠BEO+∠DFO;故答案为:∠EOF=∠BEO+∠DFO.(2)如图2中,∵DF∥BC,AC∥EF,∴∠EDF=∠B=50°,∠F=∠CGF,∴∠DEF+∠F=180°﹣50°=130°,∵∠P+∠FGP=∠F+∠FEP,∴∠P=∠F+∠FEP﹣∠FGP=∠DEF+∠F=65°.(3)如图3中,易知∠M=∠FBM+∠CEM,∵BF∥EC,∴∠DCE=∠DBF,∵∠DEC+∠DCE=180°﹣α,∠FBM+∠CEM=∠FBC+∠CEM=(180°﹣α)=90°﹣α.故答案为90°﹣α.【点评】本题考查平行线的性质、三角形内角和定理、角平分线的定义等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.27.已知,射线BC∥射线OA,∠C=∠BAO=100°,试回答下列问题:(1)如图①,求证:OC∥AB;(2)若点E、F在线段BC上,且满足∠EOB=∠AOB,并且OF平分∠BOC,Ⅰ)如图②,若∠AOB=30°,则∠EOF的度数等于多少(直接写出答案即可);Ⅱ)若平行移动AB,当∠BOC=6∠EOF时,求∠ABO.【分析】(1)只要证明∠COA+∠OAB=180°即可;(2)Ⅰ)如图②,根据∠EOF=∠COF﹣∠COE,只要求出∠COF,∠COE即可;Ⅱ)设∠EOF=x,则∠BOC=6x,∠BOF=3x,∠BOE=∠AOB=4x,构建方程即可解决问题;【解答】(1)证明:∵BC∥OA,∴∠C+∠COA=180°,∠BAO+∠ABC=180°,∵∠C=∠BAO=100°,∴∠COA=∠ABC=80°,∴∠COA+∠OAB=180°,∴OC∥AB.(2)Ⅰ)∵∠AOB=∠EOB=30°,∠AOC=50°,∴∠COE=80°﹣60°=20°,∠COB=80°﹣30°=50°,∵CF平分∠COB,∴∠COF=∠COB=25°,∴∠EOF=25°﹣20°=5°Ⅱ)设∠EOF=x,则∠BOC=6x,∠BOF=3x,∠BOE=∠AOB=4x,∵∠AOB+∠BOC+∠OCB=180°,∴4x+6x+100°=180°,∴x=8°,∴∠ABO=∠BOC=6x=48°.【点评】本题考查平行线的性质与判定、平移变换等知识,解题的关键是熟练掌握基本知识,学会利用此时构建方程解决问题,属于中考常考题型.。

第一章 平行线好题精选

第一章 平行线好题精选

第一章平行线好题精选一.选择题(共15小题)1.如图,直尺的一条边经过一个含45角的直角顶点直尺的一组对边分别与直角三角尺的两边相交,若∠1=30°,则∠2的度数是()A.30°B.45°C.60°D.75°2.如图,已知AC∥BD,∠A=∠C,则下列结论不一定成立的是()A.∠B=∠D B.OA=OC C.OA=OD D.AD=BC3.如图所示,AB⊥EF,CD⊥EF,∠1=∠F=40°,且A,C,F三点共线,那么与∠FCD相等的角有()A.1个B.2个C.3个D.4个4.如图,AB∥DC,点E在BC上,且∠D=∠CED,∠D=74°,则∠B的度数为()A.68°B.32°C.22°D.16°5.如图,∠BCD=90°,AB∥DE,则α与β一定满足的等式是()A.α+β=180°B.α+β=90°C.β=3αD.α﹣β=90°6.如图所示,将矩形纸片ABCD折叠,使点D与点B重合,点C落在点C′处,折痕为EF,若∠ABE=20°,那么∠EFC′的度数为()A.115°B.120°C.125°D.130°7.如图,AB与CD相交于点O,如果∠D=∠C=40°,∠A=80°,那么∠B的度数是()A.40°B.80°C.60°D.无法确定8.如图,直线a、b被直线c、d所截若∠1=∠2,∠3=105°,则∠4的度数为()A.55°B.60°C.70°D.75°9.如图,AB∥DE,∠ABC的角平分线BP和∠CDE的角平分线DK的反向延长线交于点P且∠P﹣2∠C=57°,则∠C等于()A.24°B.34°C.26°D.22°10.如图,直线a、b被直线c、d所截,若∠1=∠2,∠3=110°,则∠4的度数为()A.110°B.100°C.70°D.80°11.一艘轮船从A港出发,沿着北偏东63°的方向航行,行驶至B处时发现前方有暗礁,所以转向北偏西27°方向航行,到达C后需要把航向恢复到出发时的航向,此时轮船航行的航向向顺时针方向转过的度数为()A.63°B.27°C.90°D.50°12.如图,将一张长方形纸片ABCD沿EF折叠,点D、C分别落在D′、C′的位置处,若∠1=56°,则∠EFB的度数是()A.56°B.62°C.68°D.124°13.两个角的两边分别平行,其中一个角是60°,则另一个角是()A.60°B.120°C.60°或120°D.无法确定14.如图,AB⊥BC,AE平分∠BAD交BC于点E,AE⊥DE,∠1+∠2=90°,M,N分别是BA,CD延长线上的点,∠EAM和∠EDN的平分线交于点F.下列结论:①AB∥CD;②∠AEB+∠ADC=180°;③DE平分∠ADC;④∠F为定值其中结论正确的有()A.1个B.2个C.3个D.4个15.如图,AB∥CD,∠BED=61°,∠ABE的平分线与∠CDE的平分线交于点F,则∠DFB=()A.149°B.149.5°C.150°D.150.5°二.填空题(共10小题)16.如图,直角△ABC中,AC=3,BC=4,AB=5,则内部五个小直角三角形的周长为.17.如图,直线m∥n,以直线m上的点A为圆心,适当长为半径画弧,分别交直线m,n于点B、C,连接AC、BC,若∠1=30°,则∠2=.18.将一副直角三角尺ABC和CDE按如图方式放置,其中直角顶点C重合,∠D=45°,∠A=30°.若DE∥BC,则∠1的大小为度.19.将一副三角板如图放置,使点A落在DE上,若BC∥DE,则∠AFC的度数为.20.裁剪师傅将一块长方形布料ABCD沿着AE折叠,使D点落在BC边上的F点处,若∠BAF=50°,则∠AEF=°.21.如图,a∥b,点B在直线a上,且AB⊥BC,∠1=35°,那么∠2=.22.将一张长方形纸片折叠成如图所示的形状,若∠DBC=56°,则∠1=°.23.如图,a∥b,直线a,b被直线c所截,AC1,BC1分别平分∠EAB,∠FBA,AC2,BC2分别平分∠EAC1,∠FBC1;AC3,BC3分别平分∠EAC2,∠FBC2交于点C3…依次规律,得点∁n,则∠C3=度,∠∁n=度.24.如图,AB∥CD,∠DCE的角平分线CG的反向延长线和∠ABE的角平分线BF交于点F,∠E ﹣∠F=33°,则∠E=.25.如图,AB∥CD,AD∥BE,试说明:∠ABE=∠D.解:∵AB∥CD(已知)∴∠ABE=(两直线平行,内错角相等)∵AD∥BE(已知)∴∠D=∴∠ABE=∠D(等量代换)三.解答题(共15小题)26.如图,在四边形ABCD中,E、F分别是CD、AB延长线上的点,连结EF,分别交AD、BC于点G、H.若∠1=∠2,∠A=∠C,试说明AD∥BC和AB∥CD.请完成下面的推理过程,并填空(理由或数学式):∵∠1=∠2()∠1=∠AGH()∴∠2=∠AGH()∴AD∥BC()∴∠ADE=∠C()∵∠A=∠C()∴∠ADE=∠A∴AB∥CD()27.如图,AD∥BC,∠DAC=120°,∠ACF=20°,∠EFC=140°.求证:EF∥AD.28.已知AB∥CD,点E、F分别在AB、CD上,线段EF可左右平移.(1)如图1,当点E与点A重合时,求证:∠AFD=∠F AC+∠ACF;(2)将线段EF向左平移,当点E在A左侧,点F在点C右侧时(如图2),作EP平分∠AEF,CP平分∠ACD,两条角平分线交于点P.若∠AEF=m°,∠ACD=n°.求∠EPC的度数(用含m、n的代数式表示)(3)将线段EF向右平移,当点E在点A右侧,点F在点C右侧,∠AEF和∠ACD的平分线交于点Q时(如图3),直接写出∠EAC、∠EFC与∠EQC的数量关系式.29.如图,已知点E在线段AD上,点P在直线CD上,∠AEF=∠F,∠BAD=∠CPF.求证:∠ABD+∠BDC=180°.30.将一副三角板中的两块直角三角板的直角顶点C按如图方式叠放在一起,友情提示:∠A=60°,∠D=30°,∠E=∠B=45°.(1)①若∠DCB=45°,则∠ACB的度数为.②若∠ACB=140°,则∠DCE的度数为.(2)由(1)猜想∠ACB与∠DCE的数量关系,并说明理由.(3)当∠ACE<90°且点E在直线AC的上方时,当这两块三角尺有一组边互相平行时,请直接写出∠ACE角度所有可能的值(不必说明理由).31.已知:∠MON=36°,OE平分∠MON,点A,B分别是射线OM,OE,上的动点(A,B不与点O重合),点D是线段OB上的动点,连接AD并延长交射线ON于点C,设∠OAC=x,(1)如图1,若AB∥ON,则①∠ABO的度数是;②当∠BAD=∠ABD时,x=;当∠BAD=∠BDA时,x=;(2)如图2,若AB⊥OM,则是否存在这样的x的值,使得△ABD中有两个相等的角?若存在,求出x的值;若不存在,请说明理由.32.已知:如图所示,AB∥CD,BC∥DE.求证:∠B+∠D=180°证明:∵AB∥CD∴∠B=∠()∵BC∥DE,∴∠C+∠D=180°()∴∠B+∠D=180°()33.如图,AB∥CD,E为AC的中点,(1)请过E作线段EF,且使EF∥AB,EF与BD相交于F;(2)请回答:EF与CD平行吗?为什么?34.在下列解题过程的空白处填上适当的内容(推理的理由或数学表达式)如图,已知AB∥CD,BE、CF分别平分∠ABC和∠DCB,求证:BE∥CF.证明:∵AB∥CD(已知)∴∠=∠.()∵.(已知)∴∠EBC=∠ABC,(角平分线的定义)同理,∠FCB=∴∠EBC=∠FCB.()∴BE∥CF.()35.如图,∠E=50°,∠BAC=50°,∠D=110°,求∠ABD的度数.请完善解答过程,并在括号内填写相应的理论依据.解:∵∠E=50°,∠BAC=50°,(已知)∴∠E=(等量代换)∴∥.()∴∠ABD+∠D=180°.()∴∠D=110°,(已知)∴∠ABD=70°.(等式的性质)36.已知|3m﹣2n+60|与(7m﹣3n﹣60)2互为相反数,且m、n的值分别是图中∠1与∠2的度数,如果∠4=70°,试求∠6的度数.37.如图1,直线MN与直线AB、CD分别交于点E、F,∠1与∠2互补.(1)求证:AB∥CD;(2)如图2,∠AEF与∠EFC的角平分线相交于点P,直线EP与直线CD交于点G,过点G做EG 的垂线,交直线MN于点H.求证:PF∥GH;(3)如图3,在(2)的条件下,连接PH,K是GH上一点,且∠PHK=∠HPK,作∠EPK的平分线交直线MN于点Q.问∠HPQ的大小是否发生变化?若不变,请求出∠HPQ的度数;若变化,请说明理由.38.探究:如图①,直线AB、BC、AC两两相交,交点分别为点A、B、C,点D在线段AB上,过点D作DE∥BC交AC于点E,过点E作EF∥AB交BC于点F.若∠ABC=40°,求∠DEF的度数.请将下面的解答过程补充完整,并填空(理由或数学式)解:∵DE∥BC,∴∠DEF=.()∵EF∥AB,∴=∠ABC.()∴∠DEF=∠ABC.(等量代换)∵∠ABC=40°,∴∠DEF=°.应用:如图②,直线AB、BC、AC两两相交,交点分别为点A、B、C,点D在线段AB的延长线上,过点D作DE∥BC交AC于点E,过点E作EF∥AB交BC于点F.若∠ABC=60°,则∠DEF =°.39.如图,已知直线l1∥l2,点A、B在直线l1上,点C、D在直线l2上,点C在点D的右侧,∠ADC =80°,∠ABC=n°,BE平分∠ABC,DE平分∠ADC,直线BE、DE交于点E.(1)写出∠EDC的度数;(2)试求∠BED的度数(用含n的代数式表示);(3)将线段BC向右平行移动,其他条件不变,请直接写出∠BED的度数(用含n的代数式表示)40.如图,两条射线AM∥BN,线段CD的两个端点C、D分别在射线BN、AM上,且∠A=∠BCD =108°.E是线段AD上一点(不与点A、D重合),且BD平分∠EBC.(1)求∠ABC的度数.(2)请在图中找出与∠ABC相等的角,并说明理由.(3)若平行移动CD,且AD>CD,则∠ADB与∠AEB的度数之比是否随着CD位置的变化而发生变化?若变化,找出变化规律;若不变,求出这个比值.参考答案与试题解析一.选择题(共15小题)1.如图,直尺的一条边经过一个含45角的直角顶点直尺的一组对边分别与直角三角尺的两边相交,若∠1=30°,则∠2的度数是()A.30°B.45°C.60°D.75°【分析】求出∠3,利用平行线的性质即可解决问题;【解答】解:如图,∵∠ACB=90°∴∠1+∠3=90°,∵∠1=30°,∴∠3=60°,∵a∥b,∴∠2=∠3=60°,故选:C.【点评】本题考查平行线的性质,解题的关键是熟练掌握基本知识,属于中考基础题.2.如图,已知AC∥BD,∠A=∠C,则下列结论不一定成立的是()A.∠B=∠D B.OA=OC C.OA=OD D.AD=BC【分析】根据平行线的性质和等腰三角形的判定逐个判断即可.【解答】解:A、∵AC∥BD,∴∠A=∠D,∠C=∠B,∵∠A=∠C,∴∠B=∠D,正确,故本选项不符合题意;B、∵∠A=∠C,∴OA=OC,正确,故本选项不符合题意;C、根据已知不能推出OA=OD,错误,故本选项符合题意;D、∵∠A=∠C,∠B=∠D,∴OA=OC,OD=OB,∴OA+OD=OC+OB,即AD=BC,正确,故本选项不符合题意;故选:C.【点评】本题考查了平行线的性质和等腰三角形的判定,能灵活运用定理进行推理是解此题的关键.3.如图所示,AB⊥EF,CD⊥EF,∠1=∠F=40°,且A,C,F三点共线,那么与∠FCD相等的角有()A.1个B.2个C.3个D.4个【分析】利用平行线的性质进行求解,即可判断与∠FCD相等的角.【解答】解:∵AB⊥EF,CD⊥EF,∴AB∥CD,∴∠FCD=∠A,∵∠1=∠F=40°,∴BG∥AF,∴∠A=∠ABG;∴与∠FCD相等的角有∠A,∠ABG,故选:B.【点评】本题考查了平行线的判定以及平行线的性质,平行线的判定是由角的数量关系判断两直线的位置关系,平行线的性质是由平行关系来寻找角的数量关系.4.如图,AB∥DC,点E在BC上,且∠D=∠CED,∠D=74°,则∠B的度数为()A.68°B.32°C.22°D.16°【分析】根据三角形内角和定理和等腰三角形性质求出∠C,根据平行线性质得出∠B=∠C,代入求出即可.【解答】解:∵∠D=∠CED,∠D=74°,∴∠DEC=∠D=74°,∴∠C=180°﹣74°﹣74°=32°,∵AB∥CD,∴∠B=∠C=32°,故选:B.【点评】本题考查了两直线平行,内错角相等的性质,等腰三角形两底角相等的性质,熟记性质是解题的关键.5.如图,∠BCD=90°,AB∥DE,则α与β一定满足的等式是()A.α+β=180°B.α+β=90°C.β=3αD.α﹣β=90°【分析】过C作CF∥AB,根据平行线的性质得到∠1=∠β,∠2=180°﹣∠α,于是得到结论.【解答】解:过C作CF∥AB,∵AB∥DE,∴AB∥DE∥CF,∴∠1=∠β,∠α=180°﹣∠2,∴∠α﹣∠β=180°﹣∠2﹣∠1=180°﹣∠BCD=90°,故选:D.【点评】本题考查了平行线的性质,熟记平行线的性质是解题的关键.6.如图所示,将矩形纸片ABCD折叠,使点D与点B重合,点C落在点C′处,折痕为EF,若∠ABE=20°,那么∠EFC′的度数为()A.115°B.120°C.125°D.130°【分析】由折叠的性质知:∠EBC′、∠BC′F都是直角,因此BE∥C′F,那么∠EFC′和∠BEF 互补,欲求∠EFC′的度数,需先求出∠BEF的度数;根据折叠的性质知∠BEF=∠DEF,而∠AEB的度数可在Rt△ABE中求得,由此可求出∠BEF的度数即可得解.【解答】解:Rt△ABE中,∠ABE=20°,∴∠AEB=70°;由折叠的性质知:∠BEF=∠DEF;而∠BED=180°﹣∠AEB=110°,∴∠BEF=55°;易知∠EBC′=∠D=∠BC′F=∠C=90°,∴BE∥C′F,∴∠EFC′=180°﹣∠BEF=125°.故选:C.【点评】本题考查了平行线的性质以及图形的翻折变换,折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变.7.如图,AB与CD相交于点O,如果∠D=∠C=40°,∠A=80°,那么∠B的度数是()A.40°B.80°C.60°D.无法确定【分析】由∠D=∠C判定AD∥BC,继而根据平行线的性质可得答案.【解答】解:∵∠D=∠C=40°,∴AD∥BC,∴∠B=∠A=80°,故选:B.【点评】本题主要考查平行线的判定与性质,解题的关键是掌握内错角相等两直线平行和两直线平行内错角相等.8.如图,直线a、b被直线c、d所截若∠1=∠2,∠3=105°,则∠4的度数为()A.55°B.60°C.70°D.75°【分析】求出∠5,根据平行线的判定得出直线a∥直线b,根据平行线的性质得出即可.【解答】解:∵∠3=105°,∴∠5=180°﹣∠3=75°,∵∠1=∠2,∴直线a∥直线b,∴∠4=∠5=75°,故选:D.【点评】本题考查了平行线的判定和性质,能求出直线a∥直线b是解此题的关键.9.如图,AB∥DE,∠ABC的角平分线BP和∠CDE的角平分线DK的反向延长线交于点P且∠P﹣2∠C=57°,则∠C等于()A.24°B.34°C.26°D.22°【分析】延长KP交AB于F,设∠C=α,则∠BPG=2α+57°,利用三角形的外角性质,即可得到2α+57°﹣∠ABP=α+180°﹣(2α+57°)﹣∠CBP,再根据∠ABP=∠CBP,即可得出2α+57°=α+180°﹣(2α+57°),进而得到∠C的度数.【解答】解:如图,延长KP交AB于F,∵AB∥DE,DK平分∠CDE,∴∠BPF=∠EDK=∠CDK,设∠C=α,则∠BPG=2α+57°,∵∠BPG是△BPF的外角,∠CDK是△CDG的外角,∴∠BFP=∠BPG﹣∠ABP=2α+57°﹣∠ABP,∠CDK=∠C+∠CGD=α+∠BGP=α+(180°﹣∠BPG﹣∠CBP),∴2α+57°﹣∠ABP=α+180°﹣(2α+57°)﹣∠CBP,∵PB平分∠ABC,∴∠ABP=∠CBP,∴2α+57°=α+180°﹣(2α+57°),解得α=22°,故选:D.【点评】本题考查的是平行线的性质及三角形外角的性质,解答此题的关键是熟知以下知识:①三角形的外角等于与之不相邻的两个内角的和;②三角形的内角和是180°.10.如图,直线a、b被直线c、d所截,若∠1=∠2,∠3=110°,则∠4的度数为()A.110°B.100°C.70°D.80°【分析】根据平行线的判定得出a∥b,根据平行线的性质得出∠4=∠5,即可求出答案.【解答】解:如图:∵∠1=∠2,∴a∥b,∴∠4=∠5,∵∠3=110°,∴∠4=∠5=180°﹣∠3=70°,故选:C.【点评】本题考查了平行线的性质和判定的应用,能综合运用定理进行推理是解此题的关键.11.一艘轮船从A港出发,沿着北偏东63°的方向航行,行驶至B处时发现前方有暗礁,所以转向北偏西27°方向航行,到达C后需要把航向恢复到出发时的航向,此时轮船航行的航向向顺时针方向转过的度数为()A.63°B.27°C.90°D.50°【分析】即求图中∠DCN的度数.根据平行线的性质知∠DCN=∠DBM.即求∠DBM即可.∠DBM =∠FBC+∠1,∠1=∠A.【解答】解:根据题意,得AE∥BF,AM∥CN;∠A=63°,∠FBC=27°.∵AE∥BF,∴∠1=∠A=63°.∵AM∥CN,∴∠DCN=∠DBM=∠1+∠FBC=63°+27°=90°.故选:C.【点评】此题考查平行线的性质及方向角的定义,正确理解方向角是关键.12.如图,将一张长方形纸片ABCD沿EF折叠,点D、C分别落在D′、C′的位置处,若∠1=56°,则∠EFB的度数是()A.56°B.62°C.68°D.124°【分析】根据折叠性质得出∠DED′=2∠DEF,根据∠1的度数求出∠DED′,即可求出∠DEF的度数,进而得到答案.【解答】解:由翻折的性质得:∠DED′=2∠DEF,∵∠1=56°,∴∠DED′=180°﹣∠1=124°,∴∠DEF=62°,又∵AD∥BC,∴∠EFB=∠DEF=62°.故选:B.【点评】本题考查了平行线的性质,翻折变换的性质,邻补角定义的应用,熟记折叠的性质是解题的关键.13.两个角的两边分别平行,其中一个角是60°,则另一个角是()A.60°B.120°C.60°或120°D.无法确定【分析】根据题意分两种情况画出图形,再根据平行线的性质解答.【解答】解:如图(1),∵AB∥DE,∴∠A=∠1=60°,∵AC∥EF,∴∠E=∠1,∴∠A=∠E=60°.如图(2),∵AC∥EF,∴∠A=∠1=60°,∵DE∥AB,∴∠E+∠1=180°,∴∠A+∠E=180°,∴∠E=180°﹣∠A=180°﹣60°=120°.故一个角是60°,则另一个角是60°或120°.故选:C.【点评】本题考查的是平行线的性质,解答此题的关键是要分两种情况讨论,不要漏解.14.如图,AB⊥BC,AE平分∠BAD交BC于点E,AE⊥DE,∠1+∠2=90°,M,N分别是BA,CD延长线上的点,∠EAM和∠EDN的平分线交于点F.下列结论:①AB∥CD;②∠AEB+∠ADC=180°;③DE平分∠ADC;④∠F为定值其中结论正确的有()A.1个B.2个C.3个D.4个【分析】先根据AB⊥BC,AE平分∠BAD交BC于点E,AE⊥DE,∠1+∠2=90°,∠EAM和∠EDN 的平分线交于点F,由三角形内角和定理以及平行线的性质即可得出结论.【解答】解:∵AB⊥BC,AE⊥DE,∴∠1+∠AEB=90°,∠DEC+∠AEB=90°,∴∠1=∠DEC,又∵∠1+∠2=90°,∴∠DEC+∠2=90°,∴∠C=90°,∴∠B+∠C=180°,∴AB∥CD,故①正确;∴∠ADN=∠BAD,∵∠ADC+∠ADN=180°,∴∠BAD+∠ADC=180°,又∵∠AEB≠∠BAD,∴AEB+∠ADC≠180°,故②错误;∵∠4+∠3=90°,∠2+∠1=90°,而∠3=∠1,∴∠2=∠4,∴ED平分∠ADC,故③正确;∵∠1+∠2=90°,∴∠EAM+∠EDN=360°﹣90°=270°.∵∠EAM和∠EDN的平分线交于点F,∴∠EAF+∠EDF=×270°=135°.∵AE⊥DE,∴∠3+∠4=90°,∴∠F AD+∠FDA=135°﹣90°=45°,∴∠F=180°﹣(∠F AD+∠FDA)=180﹣45°=135°,故④正确.故选:C.【点评】本题主要考查了平行线的性质与判定、三角形内角和定理、直角三角形的性质及角平分线的性质,熟知三角形的内角和等于180°是解答此题的关键.15.如图,AB∥CD,∠BED=61°,∠ABE的平分线与∠CDE的平分线交于点F,则∠DFB=()A.149°B.149.5°C.150°D.150.5°【分析】过点E作EG∥AB,根据平行线的性质可得“∠ABE+∠BEG=180°,∠GED+∠EDC=180°”,根据角的计算以及角平分线的定义可得“∠FBE+∠EDF=(∠ABE+∠CDE)”,再依据四边形内角和为360°结合角的计算即可得出结论.【解答】解:如图,过点E作EG∥AB,∵AB∥CD,∴AB∥CD∥GE,∴∠ABE+∠BEG=180°,∠GED+∠EDC=180°,∴∠ABE+∠CDE+∠BED=360°;又∵∠BED=61°,∴∠ABE+∠CDE=299°.∵∠ABE和∠CDE的平分线相交于F,∴∠FBE+∠EDF=(∠ABE+∠CDE)=149.5°,∵四边形的BFDE的内角和为360°,∴∠BFD=360°﹣149.5°﹣61°=149.5°.故选:B.【点评】本题考查了平行线的性质、三角形内角和定理以及四边形内角和为360°,解决该题型题目时,根据平行线的性质得出相等(或互补)的角是关键.二.填空题(共10小题)16.如图,直角△ABC中,AC=3,BC=4,AB=5,则内部五个小直角三角形的周长为12.【分析】由图形可知,内部小三角形直角边是大三角形直角边平移得到的,故内部五个小直角三角形的周长为大直角三角形的周长.【解答】解:由图形可以看出:内部小三角形直角边是大三角形直角边平移得到的,故内部五个小直角三角形的周长为AC+BC+AB=12.故答案为:12.【点评】本题主要考查了平移的性质,需要注意的是:平移前后图形的大小、形状都不改变.17.如图,直线m∥n,以直线m上的点A为圆心,适当长为半径画弧,分别交直线m,n于点B、C,连接AC、BC,若∠1=30°,则∠2=75°.【分析】依据平行线的性质,即可得到∠BAC=∠1=30°,依据三角形内角和定理,即可得到∠ABC 的度数,进而得出∠2的度数.【解答】解:∵直线m∥n,∴∠BAC=∠1=30°,∵AB=AC,∴∠ABC=(180°﹣∠BAC)=75°,∴∠2=∠ABC=75°,故答案为:75°.【点评】本题主要考查了平行线的性质的运用,解题时注意:两直线平行,内错角相等.18.将一副直角三角尺ABC和CDE按如图方式放置,其中直角顶点C重合,∠D=45°,∠A=30°.若DE∥BC,则∠1的大小为105度.【分析】根据DE∥BC,得出∠E=∠ECB=45°,进而得出∠1=∠ECB+∠B即可.【解答】解:∵DE∥BC,∴∠E=∠ECB=45°,∴∠1=∠ECB+∠B=45°+60°=105°,故答案为:105【点评】此题主要考查平行线的性质,关键是根据DE∥BC得出∠E=∠ECB,并根据三角形外角性质分析.19.将一副三角板如图放置,使点A落在DE上,若BC∥DE,则∠AFC的度数为75°.【分析】先根据BC∥DE及三角板的度数求出∠EAB的度数,再根据三角形内角与外角的性质即可求出∠AFC的度数.【解答】解:∵BC∥DE,△ABC为等腰直角三角形,∴∠FBC=∠EAB=(180°﹣90°)=45°,∵∠AFC是△AEF的外角,∴∠AFC=∠F AE+∠E=45°+30°=75°.故答案为:75°.【点评】本题考查的是平行线的性质及三角形内角与外角的关系,解题时注意:两直线平行,内错角相等.20.裁剪师傅将一块长方形布料ABCD沿着AE折叠,使D点落在BC边上的F点处,若∠BAF=50°,则∠AEF=70°.【分析】根据折叠的性质和矩形的性质,以及三角形内角和定理来解决.【解答】解:∵∠BAF=50°,∠BAD=90°,∴∠F AD=40°,由折叠的性质知,∠DAE=∠EAF=∠F AD=20°,∠AFE=∠D=90°,∴Rt△AEF中,∠AEF=90°﹣20°=70°,故答案为:70.【点评】本题主要考查了矩形的性质以及折叠的性质,折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.21.如图,a∥b,点B在直线a上,且AB⊥BC,∠1=35°,那么∠2=55°.【分析】先根据∠1=35°,a∥b求出∠3的度数,再由AB⊥BC即可得出答案.【解答】解:∵a∥b,∠1=35°,∴∠3=∠1=35°.∵AB⊥BC,∴∠2=90°﹣∠3=55°.故答案为:55°.【点评】本题考查的是平行线的性质、垂线的性质,熟练掌握垂线的性质和平行线的性质是解决问题的关键.22.将一张长方形纸片折叠成如图所示的形状,若∠DBC=56°,则∠1=62°.【分析】根据折叠的性质得出∠2=∠ABD,利用平角的定义解答即可.【解答】解:如图所示:由折叠可得:∠2=∠ABD,∵∠DBC=56°,∴∠2+∠ABD+56°=180°,解得:∠2=62°,∴∠1=62°,故答案为:62【点评】本题考查了折叠变换的知识以及平行线的性质的运用,根据折叠的性质得出∠2=∠ABD是关键.23.如图,a∥b,直线a,b被直线c所截,AC1,BC1分别平分∠EAB,∠FBA,AC2,BC2分别平分∠EAC1,∠FBC1;AC3,BC3分别平分∠EAC2,∠FBC2交于点C3…依次规律,得点∁n,则∠C3=22.5度,∠∁n=度.【分析】根据a∥b以及AC1,BC1分别平分∠EAB,即可得出∴∠C1=90°,写出部分∠∁n的度数,根据数据的变化找出变化规律“∠∁n=°”,依此规矩即可得出结论.【解答】解:∵a∥b,∴∠EAB+∠ABF=180°,∵AC1,BC1分别平分∠EAB,∴∠C1=90°.观察,发现规律:∠C1=90°,∠C2=∠C1=45°,∠C3=∠C2=22.5°,∠C4=∠C3=11.25°,…,∴∠∁n=°.故答案为:22.5;.【点评】本题考查了平行线的性质以及角平分线,解题的关键是找出变化规律“∠∁n=°”.本题属于中档题,难度不大,解决该题型题目时,根据平行线以及角平分线找出部分∠∁n的度数,根据数据的变化找出变化规律是关键.24.如图,AB∥CD,∠DCE的角平分线CG的反向延长线和∠ABE的角平分线BF交于点F,∠E ﹣∠F=33°,则∠E=82°.【分析】过F作FH∥AB,依据平行线的性质,可设∠ABF=∠EBF=α=∠BFH,∠DCG=∠ECG =β=∠CFH,根据四边形内角和以及∠E﹣∠F=33°,即可得到∠E的度数.【解答】解:如图,过F作FH∥AB,∵AB∥CD,∴FH∥AB∥CD,∵∠DCE的角平分线CG的反向延长线和∠ABE的角平分线BF交于点F,∴可设∠ABF=∠EBF=α=∠BFH,∠DCG=∠ECG=β=∠CFH,∴∠ECF=180°﹣β,∠BFC=∠BFH﹣∠CFH=α﹣β,∴四边形BFCE中,∠E+∠BFC=360°﹣α﹣(180°﹣β)=180°﹣(α﹣β)=180°﹣∠BFC,即∠E+2∠BFC=180°,①又∵∠E﹣∠BFC=33°,∴∠BFC=∠E﹣33°,②∴由①②可得,∠E+2(∠E﹣33°)=180°,解得∠E=82°,故答案为:82°.【点评】本题主要考查平行线的性质,掌握平行线的判定和性质是解题的关键,即①两直线平行⇔同位角相等,②两直线平行⇔内错角相等,③两直线平行⇔同旁内角互补.25.如图,AB∥CD,AD∥BE,试说明:∠ABE=∠D.解:∵AB∥CD(已知)∴∠ABE=∠BEC(两直线平行,内错角相等)∵AD∥BE(已知)∴∠D=∠BCE∴∠ABE=∠D(等量代换)【分析】根据平行线的性质填空即可.【解答】解:∵AB∥CD(已知)∴∠ABE=∠BEC(两直线平行,内错角相等)∵AD∥BE(已知)∴∠D=∠BEC,∴∠ABE=∠D(等量代换).故答案为:∠BEC,∠BEC.【点评】本题主要考查了平行线的性质,准确识图并熟记性质是解题的关键.三.解答题(共15小题)26.如图,在四边形ABCD中,E、F分别是CD、AB延长线上的点,连结EF,分别交AD、BC于点G、H.若∠1=∠2,∠A=∠C,试说明AD∥BC和AB∥CD.请完成下面的推理过程,并填空(理由或数学式):∵∠1=∠2(已知)∠1=∠AGH(对顶角相等)∴∠2=∠AGH(等量代换)∴AD∥BC(同位角相等,两直线平行)∴∠ADE=∠C(两直线平行,同位角相等)∵∠A=∠C(已知)∴∠ADE=∠A∴AB∥CD(内错角相等,两直线平行)【分析】先根据同位角相等,两直线平行,判定AD∥BC,进而得到∠ADE=∠C,再根据内错角相等,两直线平行,即可得到AB∥CD.【解答】证明:∵∠1=∠2(已知)∠1=∠AGH(对顶角相等)∴∠2=∠AGH(等量代换)∴AD∥BC(同位角相等,两直线平行)∴∠ADE=∠C(两直线平行,同位角相等)∵∠A=∠C(已知)∴∠ADE=∠A∴AB∥CD(内错角相等,两直线平行)故答案为:已知;对顶角相等;等量代换;同位角相等,两直线平行;两直线平行,同位角相等;已知;内错角相等,两直线平行.【点评】本题主要考查了平行线的判定与性质,解题时注意:平行线的判定是由角的数量关系判断两直线的位置关系;平行线的性质是由平行关系来寻找角的数量关系.27.如图,AD∥BC,∠DAC=120°,∠ACF=20°,∠EFC=140°.求证:EF∥AD.【分析】依据平行线的性质,即可得到∠ACB=60°,进而得出∠BCF的度数,再根据∠EFC=140°,即可得出∠BCF+∠EFC=180°,进而得到EF∥BC,依据AD∥BC可得结论.【解答】证明:∵AD∥BC,∴∠DAC+∠ACB=180°,∵∠DAC=120°,∴∠ACB=60°,又∵∠ACF=20°,∴∠BCF=∠ACB﹣∠ACF=40°,又∵∠EFC=140°,∴∠BCF+∠EFC=180°,∴EF∥BC,∵AD∥BC,∴EF∥AD.【点评】本题主要考查了平行线的性质以及判定,能熟练地运用平行线的性质进行推理是解此题的关键.28.已知AB∥CD,点E、F分别在AB、CD上,线段EF可左右平移.(1)如图1,当点E与点A重合时,求证:∠AFD=∠F AC+∠ACF;(2)将线段EF向左平移,当点E在A左侧,点F在点C右侧时(如图2),作EP平分∠AEF,CP平分∠ACD,两条角平分线交于点P.若∠AEF=m°,∠ACD=n°.求∠EPC的度数(用含m、n的代数式表示)(3)将线段EF向右平移,当点E在点A右侧,点F在点C右侧,∠AEF和∠ACD的平分线交于点Q时(如图3),直接写出∠EAC、∠EFC与∠EQC的数量关系式.【分析】(1)根据三角形的外角等于与它不相邻的两个内角的和,可得答案;(2)根据角平分线的性质,可得∠AEP、∠PCF的度数,根据平行线的性质,可得∠EPG、∠CPG 的度数,根据角的和差,可得答案;(3)根据角平分线的性质,可得∠ACF、∠AEF,根据角平分线的性质,可得∠QCF、∠AEQ,根据平行线的性质,可得∠CQG、∠EQG,根据角的和差,可得答案.【解答】(1)证明:如图1,,∵∠AFD是△AFC的外角,∴∠AFD=∠F AC+∠ACF(三角形的外角等于与它不相邻的两个内角的和);(2)解:如图2,,作GP∥AB∥CD,由EP平分∠AEF,CP平分∠ACD,两条角平分线交于点P,得∠AEP=∠AEF=m°,∠PCF=∠ACF=n°.由GP∥AB∥CD,得∠EPG=∠AEP=m°,∠CPG=∠PCF=n°.由角的和差,得∠EPC=∠EPG+∠CPG=(m+n)°;(3)解:如图3,作GQ∥AB∥CD,由AB∥CD,得∠ACF=180°﹣∠EAC,∠AEF=180°﹣∠EFC.由角平分线的性质,得∠QCF=∠ACF=90°﹣∠EAC,∠AEQ=∠AEF=90°﹣∠EFC.由GQ∥AB∥CD,得∠CQG=∠QCF=90°﹣∠EAC,∠EQG=180°﹣∠AEQ=90°+∠EFC.由角的和差,得∠EQC=∠CQG+∠EQG=90°﹣∠EAC+90°+∠EFC即∠EQC+∠EAC﹣∠EFC=180°.【点评】本题考查了平行线的性质,(1)利用了三角形的外角的性质;(2)利用了角平分线的性质,平行线的性质;(3)利用了平行线的性质,角平分线的性质,平行线的性质.29.如图,已知点E在线段AD上,点P在直线CD上,∠AEF=∠F,∠BAD=∠CPF.求证:∠ABD+∠BDC=180°.【分析】根据平行线的判定,得出PF∥AD,再根据平行线的性质,即可得到∠ADC=∠CPF,依据等量代换即可得到∠BAD=∠ADC,再判定AB∥CD,即可得出∠ABD+∠BDC=180°.【解答】证明:∵∠AEF=∠F,∴PF∥AD,∴∠ADC=∠CPF,又∵∠BAD=∠CPF,∴∠BAD=∠ADC,∴AB∥CD,∴∠ABD+∠BDC=180°.【点评】本题考查了平行线的性质和判定,能灵活运用判定和性质定理进行推理是解此题的关键.30.将一副三角板中的两块直角三角板的直角顶点C按如图方式叠放在一起,友情提示:∠A=60°,∠D=30°,∠E=∠B=45°.(1)①若∠DCB=45°,则∠ACB的度数为135°.②若∠ACB=140°,则∠DCE的度数为40°.(2)由(1)猜想∠ACB与∠DCE的数量关系,并说明理由.(3)当∠ACE<90°且点E在直线AC的上方时,当这两块三角尺有一组边互相平行时,请直接写出∠ACE角度所有可能的值(不必说明理由).【分析】(1)①根据∠DCE和∠ACD的度数,求得∠ACE的度数,再根据∠BCE求得∠ACB的度数;②根据∠BCE和∠ACB的度数,求得∠ACE的度数,再根据∠ACD求得∠DCE的度数;(2)根据∠ACE=90°﹣∠DCE以及∠ACB=∠ACE+90°,进行计算即可得出结论;(3)分2种情况进行讨论:当CB∥AD时,当EB∥AC时,分别求得∠ACE角度即可.【解答】解:(1)①∵∠DCE=45°,∠ACD=90°∴∠ACE=45°∵∠BCE=90°∴∠ACB=90°+45°=135°故答案为:135°;②∵∠ACB=140°,∠ECB=90°∴∠ACE=140°﹣90°=50°∴∠DCE=90°﹣∠ACE=90°﹣50°=40°故答案为:40°;(2)猜想:∠ACB+∠DCE=180°理由如下:∵∠ACE=90°﹣∠DCE又∵∠ACB=∠ACE+90°∴∠ACB=90°﹣∠DCE+90°=180°﹣∠DCE即∠ACB+∠DCE=180°;(3)30°、45°.理由:当CB∥AD时,∠ACE=30°;当EB∥AC时,∠ACE=45°.【点评】本题主要考查了平行线的性质,以及直角三角形的性质,解题时注意分类讨论思想的运用,分类时不能重复,也不能遗漏.31.已知:∠MON=36°,OE平分∠MON,点A,B分别是射线OM,OE,上的动点(A,B不与点O重合),点D是线段OB上的动点,连接AD并延长交射线ON于点C,设∠OAC=x,(1)如图1,若AB∥ON,则①∠ABO的度数是18°;②当∠BAD=∠ABD时,x=126°;当∠BAD=∠BDA时,x=63°;(2)如图2,若AB⊥OM,则是否存在这样的x的值,使得△ABD中有两个相等的角?若存在,求出x的值;若不存在,请说明理由.【分析】(1)运用平行线的性质以及角平分线的定义,可得∠ABO的度数;根据∠ABO、∠BAD的度数以及△AOB的内角和,可得x的值;(2)根据三角形内角和定理以及直角的度数,可得x的值.【解答】解:(1)如图1,①∵∠MON=36°,OE平分∠MON,∴∠AOB=∠BON=18°,∵AB∥ON,∴∠ABO=18°;②当∠BAD=∠ABD时,∠BAD=18°,∵∠AOB+∠ABO+∠OAB=180°,∴∠OAC=180°﹣18°×3=126°;③当∠BAD=∠BDA时,∵∠ABO=18°,∴∠BAD=81°,∠AOB=18°,∵∠AOB+∠ABO+∠OAB=180°,∴∠OAC=180°﹣18°﹣18°﹣81°=63°,故答案为:①18°;②126°;③63°;(2)如图2,存在这样的x的值,使得△ADB中有两个相等的角.∵AB⊥OM,∠MON=36°,OE平分∠MON,∴∠AOB=18°,∠ABO=72°,若∠BAD=∠ABD=72°,则∠OAC=90°﹣72°=18°;若∠BAD=∠BDA=(180°﹣72°)÷2=54°,则∠OAC=90°﹣54°=36°;若∠ADB=∠ABD=72°,则∠BAD=36°,故∠OAC=90°﹣36°=54°;综上所述,当x=18、36、54时,△ADB中有两个相等的角.【点评】本题考查了三角形的内角和定理和三角形的外角性质的应用,三角形的内角和等于180°,三角形的一个外角等于和它不相邻的两个内角之和.利用角平分线的性质求出∠ABO的度数是关键,注意分类讨论思想的运用.32.已知:如图所示,AB∥CD,BC∥DE.求证:∠B+∠D=180°证明:∵AB∥CD∴∠B=∠∠C(两直线平行,内错角相等)∵BC∥DE,∴∠C+∠D=180°(两直线平行,同旁内角互补)∴∠B+∠D=180°(等量代换)【分析】先由AB∥CD推出∠B=∠C,再由BC∥DE推出∠C+∠D=180°,通过等量代换推出∠B+∠D=180°.【解答】解:∵AB∥CD,∴∠B=∠C(两直线平行、内错角相等),又∵BC∥DE,∴∠C+∠D=180°(两直线平行、同旁内角互补),∴∠B+∠D=180°(等量代换).故答案分别为:∠C,两直线平行、内错角相等,两直线平行、同旁内角互补,等量代换.【点评】此题考查的知识点是平行线的性质,解题的关键是由平行线的性质及等量代换得出答案.33.如图,AB∥CD,E为AC的中点,(1)请过E作线段EF,且使EF∥AB,EF与BD相交于F;(2)请回答:EF与CD平行吗?为什么?【分析】(1)利用作一角等于已知角作法,作∠CEF=∠A,利用同位角相等两直线平行得出即可;(2)利用如果两条直线都与第三条直线平行,那么这两条直线也互相平行,得出答案即可.【解答】解:(1)如图所示:①以点A为圆心,任意长为半径.即AW为半径画弧,交于AB于点M,②以AW为半径,以点E为圆心画弧,③以R为圆心,WM为半径画弧,交于点N,即作出了∠CEF=∠A,延长EN交于BD于点F,∵∠FEC=∠A,∴EF∥AB(同位角相等,两直线平行);(2)EF∥CD,∵EF∥AB,AB∥CD,∴EF∥CD(如果两条直线都与第三条直线平行,那么这两条直线也互相平行).【点评】此题主要考查了平行公理的推论以及作一条直线平行于已知直线,正确作出∠CEF=∠A是。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档