异步电动机的继电接触控制(精)
三相异步电动机控制(基于继电接触器和基于电机控制器).
实验一:三相异步电动机控制(基于继电接触器和基于电机控制器)一、实验目的1、熟悉基于继电接触器的传统三相异步电动机控制方法2、了解基于施耐德电机控制器的三相异步电动机控制方法二、实验设备1、中北大学-施耐德电气联合实验室ZSJ-A电气自动化平台。
2、实验台配套通信线、跨接线若干。
三、实验内容1、电动机的单向连续运行,主电路如图1.1所示,控制电路如图1.2所示图1.1 单向连续运行主电路图1.2 单向连续运行控制电路2、电机的正反转控制—双重互锁,主电路如图 1.3所示,控制电路如图 1.4所示图1.3 正反转控制主电路图1.4正反转控制控制电路实验二:M218PLC基本指令的熟悉和应用一、实验目的1、熟悉Somachine编程软件2、加深对布尔指令、定时器、计数器等基本指令的理解三、实验设备1、中北大学-施耐德电气联合实验室ZSJ-A电气自动化平台。
2、实验台配套通信线、跨接线若干。
三、实验内容3.1 SoMachine编程软件熟悉与使用1.选择“创建新机器”。
如图1.1所示。
2.选择创建新机器下的“使用空项目启动”。
如图1.2所示。
图1.1创建新机器图1.2使用空项目启动3.保存新建项目并命名,然后点击“保存”。
如图1.3所示。
图1.3保存新建项目并命名1、配置(1)在左侧目录中选择与项目有关的硬件设备,并将其拖到中间空白区域。
我们使用PLC型号为TM218LDAE24DRHN。
如图1.4所示。
图1.4 PLC配置的选择(2)若使用的设备有PLC和触摸屏,其中触摸屏的型号为HMIGXO3501,图1.5为其连接方式。
图1.5 PLC和触摸屏的连接方式5、编写程序(1) 创建pou:可以直接在mypou中编写程序,”MyPOU”是SoMachine 软件自动生成的程序,并且自动在MAST任务中调用该程序。
”MyPOU”程序由两个部分组成。
如图1.6所示。
图1.6 创建POU(2) 可以根据自己的需求选择更合适的编程语言。
继电器接触器控制的基本线路三相异步电机课件
2)零压(或欠压)保护
作用:防止因电源电压的消失或降低引起机械设备停止运行, 当故障消失后,在没有人工操作的情况下,设备自动启动运行 而可能造成的机械或人身事故。
(2)控制回路:当QS合上后,A、B两端有电压。
· 初始状态时,接触器KM的线圈失电,其动合主触头和 动合辅助触头均为断开状态;
· 当按下启动按钮1SB时,接触器KM的线圈通电,其辅助 动合触头自锁,动合主触头合上使电动机接通电源而运转;
·当按下停止按钮2SB后,接触器KM的线圈失电,其动合 主触头断开使电动机脱离电网而停止运转。
(2)保护 ·电流保护; ·互锁保护:接触器KM1、KM2支路中的动断触头KM2、 KM1 保证KM1、KM2两电器在任何时候都只能有一个得电。
FR QS
FR
基本的正反转控制电路
存在的问题:如果电动机已经在正转(或反转),要使电 动机改为反转(或正转),必须先按停止按钮SB2
2)实用的正反转控制电路
采用的电器:低压断路器(自动开关)
3)互锁保护:保护一个电器通电时,另一个电器不能通 电,若需后者通电,则前者必须先断电的一种保护。
主回路要求控制回路:启动时,控制KM1得电,KM2失 电,当启动结束时,控制KM2得电。
(2) 控制回路
当电路处于初始状态时,接触器KM1、KM2和时间继电 器KT的线圈都失电,电动机脱离电网处于静止状态;
当操作者按下启动按钮SB1时,接触器KM2的线圈首先 得电并自锁,其主触头闭合,电动机定子绕组串接电阻启动 。在开始启动时,时间继电器KT同时开始延时;
继电接触器与电动机的电气控制
电气控制方法分类及特点
直接控制法
通过开关或按钮直接控制电动机的启动、停止和转向。简单直观,但无法实现自动化和远程控制 。
间接控制法
通过继电器、接触器等控制电器,实现对电动机的间接控制。可以实现复杂的逻辑控制和自动化 控制,但需要增加控制电器和线路。
PLC控制法
利用可编程逻辑控制器(PLC)实现对电动机的控制。具有高度的灵活性和可扩展性,可以实现复杂 的逻辑控制和自动化控制,但需要专业的编程和调试技能。
WENKU DESIGN
电动机类型及特点
01
02
03
04
直流电动机
结构简单,调速性能好,但维 护较复杂。
交流异步电动机
结构简单,维护方便,成本低 ,但调速性能较差。
交流同步电动机
转速稳定,功率因数高,但成 本较高,启动困难。
永磁同步电动机
效率高,功率密度大,调速范 围宽,但成本较高。
工作原理与性能参数
THANKS
感谢观看
REPORTING
https://
特点
具有体积小、重量轻、寿命长、可靠 性高、抗干扰能力强等特点。
应用领域
工业领域
家庭领域
交通领域
其他领域
用于电动机的启动、停 止、正反转等控制。
用于照明、空调等家用 电器的控制。
用于控制交通信号灯、 电动汽车的充电等。
还可应用于自动化生产 线、机器人等领域。
PART 02
电动机基础知识
REPORTING
继电接触器与电动机 的电气控制
https://
REPORTING
• 继电接触器概述 • 电动机基础知识 • 继电接触器与电动机的连接方式 • 电气控制基本原理与方法 • 常见故障诊断与排除方法 • 维护保养及安全操作规范
三相异步电动机的继电接触控制
三相异步电动机的继电接触控制1交流接触器有何用途,主要有哪几部分组成,各起什么作用?答:交流接触器主要用来频繁地远距离接通和切断主电路或大容量控制电路的控制电器。
它主要由触点、电磁操作机构和灭弧装置等三部分组成。
触点用来接通、切断电路;电磁操作机构用于当线圈通电,动铁心被吸下,使触点改变状态;灭弧装置用于主触点断开或闭合瞬间切断其产生的电弧,防止灼伤触头。
2简述热继电器的主要结构和动作原理。
答:热继电器主要由发热元件,双金属片和脱扣装置及常闭触头组成。
当主电路中电流超过容许值而使双金属片受热时,它便向上弯曲,因而脱扣,扣板在弹簧的拉力下将常闭触点断开。
触点是接在电动机的控制电路中的,控制电路断开而使接触器的线圈断电,从而断开电动机的主电路3自动空气开关有何用途?当电路出现短路或过载时,它是如何动作的?答:自动空气开关是常用的一种低压保护电器,当电路发生短路、严重过载及电压过低等故障时能自动切断电路。
开关的自由脱扣机构是一套连轩装置,有过流脱扣器和欠压脱扣器等,它们都是电磁铁。
当主触点闭合后就被锁钩锁住。
过流脱扣器在正常运行时其衔铁是释放着的,一旦发生严重过载或短路故障时,与主电路串联的线圈流过大电流而产生较强的电磁吸力把衔铁往下吸而顶开锁钩,使主触点断开,起到了过流保护作用。
欠压脱扣器的工作恰恰相反,当电路电压正常时,并在电路上的励磁线圈产生足够强的电磁力将衔铁吸住,使料杆同脱扣机构脱离,主触点得以闭合。
若失压(电压严重下降或断电),其吸力减小或完全消失,衔铁就被释放而使主触点断开。
4在电动机主电路中既然装有熔断器,为什么还要装热继电器?它们各起什么作用?答:熔断器用以切断线路的过载和短路故障,当线路过载或短路时,由于大电流很快将熔断器熔断,起到保护电路上其他电器设备的作用。
但因电动机主电路中选用的熔断器就不能起到过载保护作用,因电动机启动时启动电流较大,选用熔丝也大,当电动机过载时熔断器不会熔断,起不到过载保护作用。
磁路、异步电动机及继电器接触控制
磁滞回线
南京航空航天大学
磁路的分析方法
用铁磁材料做成的铁芯线圈,可将磁通基本上都集 中于由铁芯所构成的闭合回路内,形成磁路。各种 电机、电器正是用此原理制成的。 分析磁路的方法主要依据安培环路定律。
南京航空航天大学
磁路的基尔霍夫第二定律
v v H d l = H l + H l u u 0 0 ∫
南京航空航天大学
四、磁导率 磁感应强度B与磁场中的介质的导磁性质有关 铁磁性物质或磁性物质
B µ = H
真空磁导率:
µ 0 = 4π × 10 −7 H m
相对磁导率
µ µr = µ0
磁性材料 非磁性材料
南京航空航天大学
高导磁性 磁饱和性
磁畴理论 磁滞性
Hc称为矫顽磁力。(矫顽力) Br称为剩磁感应强度 磁性材料的分类 1. 软磁材料: 2. 硬磁材料: 3. 矩磁材料:
U 直流电磁铁: , U 为外加直流电压;R I= R
为线圈电阻;吸合前后电流
I
不变。
δ ↓⇒ Rom =
I
δ µo So
↓⇒ IN不变, Φ o ↑⇒ F ↑
U ≈ 4.44 fNΦ om ,U 若不变,吸合 F 交流电磁铁: 前后力不变。
δ ↓⇒ Rom ↓⇒ H omδ ↓⇒ I m
若吸合不上,则过大使线圈发热而烧坏。
南京航空航天大学
交流电磁铁 结论:吸合前的磁动势要比吸合后的磁动势大,因此 ,励磁电流在衔铁吸合前大,在吸合后小,这与直流 电磁铁不一样
1 Φ 10 2 F= = Bom S o 4 µ o S o 16π
2 om 7
Φ om :气隙磁通幅值;
Bom :气隙中磁感应强度幅值
继电接触控制
n0= 60f / p (r/min) p是极对数
转子转速只能小于同步转速,故称为异步电动机 又因为转子导体的电流是由旋转磁场感应而来的 (转子并不接电源)所以又称 感应电动机
转 差 率: S=(n0-n) / n0
或 S=(n0-n) / n0×100%
起动电流:为额定电流的4~7倍(因为转差率S很高)
Y- 起动 仅适用于正常接法为三角形接法的电机
额定转矩: 电动机额定运行时的转矩。 TN=9550PN / nN PN : 额定功率, nN : 额定转速
额定效率: 指满载时的效率。等于输出机械功率与输入机 械功率之比
输出机械功率 P2 P2 效率 100% 输入电功率P 3UI cos 1
6-2:画出异步电动机主电路和控制电路,要求具备:(1)短路保 护;(2)过载保护;(3)电动机运行时绿色指示灯亮,停车时红 色指示灯亮。设接触器的线圈和指示灯的额定电压均为220V。
SB1 甲地 SB’1 KM
SB2 6-4 6-5
6-1:画出既能点动又能连续运行的异步电动机继电接触控制电路。
(1)采用组合(连动)按钮进行控制(如图6-1),其中SB2为连续 运行按钮,SB3为点动按钮。
(2)在自保电路中串接控制开关(如图6-2),当开关闭合时为连 续运行,当开关断开时为点动运行。
L1 L2 L3
QS
FU
SB3
SB1
KM23
KM1
KM11
KM21
KM12 SB2
KM13
KM2
FR
M 3~
KM22
正反转控制电路
L1 L2 L3 QS FU
KM1
SB2
FR1
实验12.三相异步电动机的继电—接触器控制
实验十二三相异步电动机的继电—接触器控制
一. 实验目的
1.掌握三相异步电动机的结构及工作原理。
2.熟悉各种控制电器的主要结构及使用方法。
3.学会三相异步电动机的点动、自锁控制。
二. 实验仪器与设备
DGJ—2型电工技术实验装置1台
三. 实验原理
1.三相异步电动机的使用
①三相异步电动机的结构
定子:定子铁心、定子绕组、机座。
转子:转子铁心、转轴、鼠笼式转子绕组、风扇等
②三相电动机的铭牌
三相电动机的额定值标记在电动机的铭牌上(铭牌上的额定值是正确使用电动机的主要依据,在实验之前必须熟悉它的意义)。
③三相异步电动机的工作原理
a.在空间互隔120o有规律地排列的三相绕组通入三相交流电时,在空间会出现旋转磁场(转向由三相绕组在铁心中排列顺序的方向来决定)。
b.由于转子与旋转磁场之间有相对运动,所以在转子导体上产生感应电流,此感应电流与旋转磁场相互作用产生电磁转矩,使转子沿旋转磁场的方向转动。
2.常用的几中控制电器
①按钮:按钮是一种简单的开关,用来控制电路的接通和断开。
②接触器:利用电磁力使触头动作的自动开关,常用于接通或断开主电路及其控制电路。
③继电器:电流继电器、热继电器和时间继电器。
3.电动机的基本控制电路
①点动控制电路
②自锁控制电路
四.实验内容与步骤
图12.0点动控制
图12.1自锁控制
五. 注意事项。
继电-接触器控制
40
第四节 三相笼型异步电动机的正反转控制
二、复合互锁的正反转控制电路
在接触器互锁的基础上再加上按钮的互锁。 对于功率较大电动机:不允许直接正反转 转换。在正反转转换时,在换接瞬间,旋转磁 场已经反向,而转子因惯性仍按原方向旋转, 会引起很大电流冲击,造成相当大的机械冲击, 所以,一般要先按下停止按钮,待转速下降后 再行反转。
42
第四节 三相笼型异步电动机的正反转控制 正转 按钮
复合按钮 SBstp SB F
KMR
KMF
正转 线圈
KMF SBR 反转 按钮
KMF KMR
反转 线圈
KMR
机械互锁:利用复合按钮的触点,实现同一时 间里两个接触器,只允许一个工作。
43
一、行程控制
二、时间控制 三、速度控制
第五节 开关自动控制
22
第二节 三相笼型异步电动机的直接起动控制
三、多地点控制
有的生产机械可能需要几个操作台控制, 称多地点控制。 3套起、停按 钮分别置于3个 按任一起停止按 操作台 钮都可使KM断电
多地点独立操作的电路
按任一起动 按钮都可使 KM通电 23
第二节 三相笼型异步电动机的直接起动控制
3个起动按钮串联。 同时按3个起动按 钮才可使KM通电
(三)负荷开关:实用中,常把熔断器和刀开 关组合在一起,既可通断电路,又起短路保护作 用。分为闸刀开关和铁壳开关。
开启式负 荷开关 封闭式负 荷开关
8
第一节 几种常见低压电器
二、按钮
一种最简单的手动电器。 (一)作用:发出操作信号、接通和断开电流较小 的控制电路,以控制电流较大的电动机运行。 (二)结构:钮帽、动触点、静触点和复位弹簧等。
三相异步电动机继电接触控制线路
三相异步电动机继电接触控制线路一、简要说明1.通过对三相异步电动机点动控制、自锁控制线路、三相异步电动机正反转控制线路的实际安装接线,掌握由电气原理图变换成安装接线图的知识。
2.通过实验进一步加深理解点动控制和自锁控制的特点及三相异步电动机正反转控制的原理和方法。
二、设计要求:1.三相异步电动机点动控制线路按图3-1 接线。
图中SB1、FR1、KM1选用D61上元器件,Q1、FU1、FU2、FU3、FU4选用D62上元器件,电机选用DJ16(△/220V)。
接线时,先接主电路,它是从220V三相交流电源的输出端U、V、W开始,经三刀开关Q1、熔断器FU1、FU2、FU3、接触器KM1主触点、FR1的发热元件到电动机M的三个线端A、B、C的电路,用导线按顺序串联起来,有三路。
主电路经检查无误后,再接控制电路,从熔断器FU4插孔V开始,经FR1的常闭触点、按钮SB1常开、接触器KM1线圈到插孔W。
线接好经指导老师检查无误后,按下列步骤进行实验:图3-1 三相异步电动机点动控制线路(1)按下控制屏上“开”按钮;(2)先合Q1,接通三相交流220V电源;(3)按下启动按钮SB1,对电动机M进行点动操作,比较按下SB1和松开SB1时电动机M的运转情况。
2.三相异步电动机自锁长动控制线路:按下控制屏上的“关”按钮以切断三相交流电源。
图中SB1、SB2、KM1、FR1选用D61挂件,Q1、FU1、FU2 、FU3 、FU4选用D62挂件,电机选用DJ16(△/220V)。
检查无误后,启动电源进行实验:(1) 合上开关Q1,接通三相交流220V电源;(2) 按下起动按钮SB2,松手后观察电动机M运转情况;(3) 按下停止按钮SB1,松手后观察电动机M运转情况。
图3-2 三相异步电动机自锁长动控制线路3.三相异步电动机正反转控制线路(带电气互锁)(1)按下“关”按钮切断交流电源。
按图3-7接线。
图中SB1、SB2、SB3、KM1、KM2、FR1选用D61 件,Q1 、Q2、FU1、FU2 、FU3、FU4选用D62挂件,电机选用DJ16(△/220V)。
三级项目:三相笼型异步电动机反接制动继电接触器控制电路的设计
三相笼型异步电动机反接制动继电接触器控制电路的设计组长:李余赞组员:柴英杰谷岩帅林银福年级:2013级班级:机电控制二班指导教师:姜万录时间:2016年11月3日目录一、设计背景 (1)二、设计思路 (1)三、电气图设计 (2)四、电气图运行原理 (3)1、电路的工作过程分析........... 错误!未定义书签。
2、电气图连接注意事项........... 错误!未定义书签。
五、心得体会 (3)六、参考文献 (7)一、设计背景有些生产工艺要求电动机能迅速而准确地停车,但电动机断电后,由于惯性作用,停车时间较长。
这就要求对电动机进行强迫制动。
制动停车的方式有机械制动和电气制动两种:机械制动实际上就是利用电磁铁操作机械装置,迫使电动机在切断电源后迅速停止制动的方法,常见的如电磁抱闸制动和电磁铁制动;而电气制动实际上就是在电动机停止转动过程中产生一个与原来转动方向相反的制动转矩来迫使电动机迅速停止转动的方法。
三相笼型异步电动机常用的电气制动方法有反接制动和能耗制动。
二、设计思路在电动机处于电动运行时,将电动机定子电路的电源两相反接,因机械惯性,转子的转向不变,而电源相序改变,使旋转磁场的方向变为和转子的旋转方向相反,转子绕组中的感应电动势、感应电流和电磁转矩的方向都发生了改变,电磁转矩变成了制动转矩。
制动过程结束,如需停车,应立即切断电源,否则电动机将反向启动。
所以在一般的反接制动电路中常利用速度继电器来反映速度,以实现自动控制。
在反接制动时,由于反向旋转磁场的方向和电动机转子做惯性旋转的方向相反,因而转子和反向旋转磁场的相对转速接近于两倍同步转速,定子绕组中流过的反接制动电流相当于启动时电流的2倍,冲击很大。
因此,反接制动虽有制动快、制动转矩大等优点,但是由于有制动电流冲击过大、能量消耗大、适用范围小等缺点,故此种制动方法仅适用于10 kW以下的小容量电动机。
通常在笼型异步电动机的定子回路中串接电阻以限制反接制动电流。
三相异步电动机常用的继电接触控制电路
开触点使线圈保持通电的作用称为“自锁”,与SB2并联的起自锁作用的辅助触点KM称作自锁
触点。
4
2.保护措施 为确保电动机正常运行,三相异步电动机起动-停止控制电路还具有短路保护、过载保护和欠
压保护等功能。
5
1.2 三相异步电动机正、反转控制电路 在生产过程中,许多生产设备要求能够实现可逆运行,例如机床的进刀退刀、卷扬机提升设
备、电动闸门等,都要求电动机能正、反转。
图1.2就是实现这种控制的电路。在图1.2中,当正转接触器KMF工作时,电动机正转;当反 转接触器KMR工作时,由于调换了两根电源线,所以电动机反转。
6
Q
KMF
FR M 3~
KMR
图1.2 两个接触器实现电动机的正反转
7
1.3 顺序控制
在生产过程中经常要求几台电动机配合工作,其起、停等动作常常有顺序上和时间上的
11
1.5 行程控制
在生产过程中,若需要控制某些机械的行程和位置时,可以利用行程开关来实现。图7-
19所示的是用行程开关控制机床工作台作往复运动的示意图和控制电路。
前进
A
A
终点
M
STb
STa
后退
原位
STb
STa
(a)示意图
SB1
SBF
FR
STb
KMR KMF
KMF SBR
STa
KMF KMR
KMR STb
(b)控制电路 图1.7 行程控制电路
12
图中行程开关STa和STb分别装在工作台的原位和终点,由装在工作台上的挡块来撞动。工作 台由电动机M带动。控制电路如图7-19(b)所示。
电动机在原位时,上档快将行程开关STa压下,使串接在反转控制电路中的常闭触点STa断开。 这时即使按下反转按钮SBR,反转接触器线圈KMR也不会通电,所以在原位时电动机不能反 转。当按下正转启动按钮SBF 时,正转接触器线圈KMF通电,使电动机正转并带动工作台前 进。可见工作台在原位只能前进、不能后退。
实验三 三相异步电机的继电接触器控制
实验三三相异步电机的继电接触器控制一、实验目的1.学会用兆欧表测定异步电动机绕组之间以及绕组与机壳间的绝缘电阻。
2.学习异步电动机直接起动控制电路的接线、查线和操作。
3.学习异步电动机正反转控制电路的接线、查线和操作。
二、实验内容说明1.电动机绝缘电阻测试电动机在日常运行中常会有线圈松动,使绝缘磨损老化,或表面受污染、受潮等引起绝缘电阻日趋下降,绝缘电阻降低到一定值会影响电动机起动和正常运行,甚至会损坏电动机危及人身安全。
因此在各类电动机开始使用之前或经过霉季、受潮、重新安装之后,首先要测定各相绕组对机壳的绝缘电阻及绕组之间的绝缘电阻。
绝缘电阻的测量一般用兆欧表进行,学会兆欧表的使用,在检查电机、电器及线路的绝缘情况和测量高值电阻时能给我们带来方便。
2.电动机直接起动控制电路在三相异步电动机定子绕组连向三相电源的主电路中接有隔离开关QS,熔断器FU,接触器的主触点KM,以及热继电器FR的发热元件。
而接触器KM的线圈则与起动按钮SB2、停止按钮SB1及热继电器FR的动断触点串联后接到电源上构成控制电路,如图3-1所示。
容量较小的异步电动机通常可用接触器进行直接起动,电动机起动时,先合上隔离开关QS接通电源,然后再按下起动按钮SB2,接触器线圈KM通电,于是接触器的三对动合主触点KM闭合而使电动机起动。
与起动按钮并联的接触器动合辅助触点KM也同时闭合,将起动按钮的动合触点短接,当起动按钮松开后,接触器的线圈仍能通电,从而保证电动机能继续正常工作。
这种利用接触器本身的动合辅助触点使其线圈保持通电的作用称为“自锁”作用,而该辅助触点也就称为自锁触点。
按下停止按钮SB1,接触器线圈断电,所有KM触点都断开,电动机就停止转动。
图3-1 电动机直接起动控制电路如果将控制电路中的自锁触点拆除,则可对电动机实行点动控制,这时按下起动按钮SB2时,电动机就运转,松手时就停转。
点动控制时可不用停车按钮SB1。
电动机在运转过程中,如果发生突然停电或电压严重下降的情况,接触器线圈KM将失电而断开所有动合触点。
异步电动机的继电接触控制实验报告
异步电动机的继电接触控制实验报告一、实验目的:1.了解异步电动机的基本原理和结构;2.掌握异步电动机的继电接触控制原理;3.进行异步电动机继电接触控制的实验。
二、实验原理:当然,在实际应用中,我们通常使用继电接触器来控制异步电动机的启停和反转等操作,继电接触器也常用于实现异步电动机的运行保护。
继电接触器包含控制回路和功率回路两部分。
控制回路是通过控制电源来控制继电器的通断,而功率回路则通过控制继电器的继电触点来控制电动机的通断。
三、实验器材和装置:1.异步电动机2.继电接触器3.交流电源4.示波器5.开关和电阻等四、实验步骤:1.按照实验电路连接图,将示波器连接到继电接触器的控制回路上,用来观察控制信号的波形;2.打开交流电源,将继电接触器的三个导线分别连接到异步电动机的三个相位上;3.分别进行异步电动机的启动、停止和反转实验,观察示波器上的波形变化;4.分析实验结果,总结控制信号和异步电动机运行状态之间的关系。
五、实验结果和分析:通过实验观察和记录,可以发现以下现象:1.在异步电动机启动过程中,继电接触器的控制回路会产生连续的短暂脉冲信号,控制信号的频率和幅度与电动机的启动速度相关;2.当控制信号停止时,电动机会立即停止转动;3.当控制信号反向时,电动机会改变转动方向。
六、实验结论:通过本实验,我们成功进行了异步电动机继电接触控制的实验,并观察到了控制信号与电动机运行状态之间的关系。
实验结果表明,继电接触器可以有效控制异步电动机的启停和反转操作,为电机控制提供了一种可靠的手段。
七、实验体会:通过本次实验,我深刻理解了异步电动机的基本原理和结构,掌握了继电接触控制异步电动机的原理和方法。
实验的过程中,我能够熟练操作实验器材和仪器,并成功完成实验过程。
通过实验结果的分析,我对继电接触控制的原理和应用有了更深入的认识和理解。
这次实验不仅巩固了我的理论知识,也提高了我的实验操作能力和分析能力。
《电工技能实训教程》项目三相异步电动机接触器自锁控制与故障检测精讲
《电工技能实训教程》项目三相异步电动机接触器自锁控制与故障检测精讲电工技能实训教程中的项目"三相异步电动机接触器自锁控制与故障检测"是一个非常重要且常见的实训项目,本文将对其进行详尽解析。
首先,我们来介绍一下三相异步电动机接触器自锁控制的基本原理。
在实际工作中,为了节约能源和保护设备,我们通常希望电动机能够在完成工作后自动停止。
而接触器自锁控制就是通过控制接触器的回路,实现电动机的自动停止。
具体而言,接触器自锁控制的实现需要以下几个步骤:1.接触器的自动闭合:在启动时,通过按钮或其他控制方式,使接触器的控制回路闭合,将电源的电流传给电动机。
2.电动机的启动:闭合的接触器使得电动机能够获得电源电流,从而开始转动。
3.自锁控制的触发:在电动机转动一段时间后,通过时间继电器或其他控制装置,触发接触器的自锁功能。
4.接触器的断开:自锁功能触发后,接触器的控制回路断开,电源电流不再传给电动机,电动机停止转动。
通过以上步骤,我们可以实现三相异步电动机的接触器自锁控制,达到自动停止的目的。
接下来,我们来介绍故障检测的精讲。
在实际工作中,电动机可能会出现各种故障,如过载、短路等。
为了保护电动机和其他设备的安全运行,我们需要对这些故障进行及时检测。
具体而言,故障检测需要以下几个步骤:1.故障检测装置的安装:我们需要将故障检测装置,如热继电器、短路保护器等,与电动机的电路相连。
2.故障信号的监测:当电动机发生故障时,故障检测装置会发送故障信号。
我们可以通过观察指示灯、听到警报声等方式,来判断电动机是否存在故障。
3.故障的处理:一旦检测到电动机故障,我们需要及时采取相应的措施,如停止电动机运行、检修电动机等,以避免进一步损坏。
通过以上步骤,我们可以及时检测到电动机的故障,采取相应的措施,确保电动机和其他设备的安全运行。
综上所述,项目"三相异步电动机接触器自锁控制与故障检测"是电工技能实训教程中的一个重要项目,通过学习和掌握该项目的内容,我们可以实现电动机的自动停止和故障及时检测,确保设备的安全运行。
三相异步电动机的继电接触控制
腹有诗书气自华三相异步电动机的继电接触控制1、 实验目的(1) 通过实验进一步了解交流接触器、热继电器、按钮等低压电器的结构、工作原理及其作用。
(2) 学习继电接触控制电路的组成方法。
(3) 学习异步电动机的起动、停止控制电路的接线。
(4) 学习异步电动机的正反转控制电路的接线。
2、 实验预习要求(1) 复习交流接触器、热继电器、按钮等低压电器的结构、工作原理及符号表示方法。
(2) 复习三相异步电动机起动、自锁、互锁、停止及正反转控制线路的工作原理。
3、 实验原理电动机的控制对拖动一般生产机械的电动机的控制,只需满足起动,自锁和停止等功能,其控制电路如图1所示。
但也有不少机械,如吊车、刨床等都需要两个方向的运动,则拖动该生产机械的电动机也就必须有两个旋转方向。
由三相异步电动机的工作原理可知,改变电动机的旋转方向,只要改变接于电动机定子的三相电源的相序,也就是调换电源通向电动机定子绕组的三根相线中的任意两根即可。
在图2所示的主电路中,当正转接触器主触点F KM 闭合时,定子绕组三个接线端子1U 、1V 和1W 分别接入电源的1L 、2L 和3L 三相,而当反转接触器的主触点R KM 闭合时,定子绕组三个接线端子1U 、1V 和1W 分别接入电源的3L 、2L 和1L 三相,可见接至定子绕组的电源相序变了,电动的旋转方向也就随之改变。
而接触器F KM 和R KM 的动作,则是由按钮F SB 和R SB 和1SB 控制。
图1和图2所示控制电路中的辅助触点KM 、F KM 和1R KM 为自锁触点,它保证在电动机起动后,松开起动按钮电动机继续运转。
而图2所示控制电路中的2F KM 、2R KM 为互锁触点,它保证了电动机正转时断开反转控制电路以及反转时断开正转控制电路,以防止F KM 和R KM 同时吸合,使主电路发生严重短路故障。
控制电路还必须具有失压保护、短路保护和过载保护。
所谓失压保护,即电动机运行时,因电源突然停电使接触器线圈失电,电动机停止运转,一旦电源恢复供电,不按启动按钮,电动机则不会自行起动,该功能被称为失压保护。
三相异步电动机的继电接触器控制
实验5 三相异步电动机的继电接触器控制实验目的1.学会用兆欧表测定异步电动机绕组之间以及绕组与机壳间的绝缘电阻。
2.学习异步电动机直接起动控制电路的接线、查线和操作。
3.学习异步电动机正反转控制电路的接线、查线和操作。
实验内容说明1. 电动机绝缘电阻测试电动机在日常运行中常会有线圈松动,使绝缘磨损老化,或表面受污染、受潮等引起绝缘电阻日趋下降,绝缘电阻降低到一定值会影响电动机起动和正常运行,甚至会损坏电动机危及人身安全。
因此在各类电动机开始使用之前或经过霉季、受潮、重新安装之后,首先要测定各相绕组对机壳的绝缘电阻及绕组之间的绝缘电阻。
绝缘电阻的测量一般用兆欧表进行,学会兆欧表的使用,在检查电机、电器及线路的绝缘情况和测量高值电阻时能给我们带来方便。
2. 电动机直接起动控制电路在三相异步电动机定子绕组连向三相电源的主电路中接有隔离开关QS ,熔断器FU ,接触器的主触点KM ,以及热继电器FR 的发热元件。
而接触器KM 的线圈则与起动按钮,停止按钮及热继电器FR 的动断触点串联后接到电源上构成控制电路,如图3.5a.1所示。
容量较小的异步电动机通常可用接触器进行直接起动,电动机起动时,先合上隔离开关QS 接通电源,然后再按下起动按钮,接触器线圈KM 通电,于是接触器的三对动合主触点KM 闭合而使电动机起动。
与起动按钮并联的接触器动合辅助触点KM 也同时闭合,将起动按钮的动合触点短接,当起动按钮松开后,接触器的线圈仍能通电,从而保证电动机能继续正常工作。
这种利用接触器本身的动合辅助触点使其线圈保持通电的作用称为“自锁”作用,而该辅助触点也就称为自锁触点。
按下停止按钮,接触器线圈断电,所有KM 触点都断开,电动机就停止转动。
2SB 1SB 2SB 1SB图3.5a.1 电动机直接起动控制电路如果将控制电路中的自锁触点拆除,则可对电动机实行点动控制,这时按下起动按钮时,电动机就运转,松手时就停转。
2SB 电动机在运转过程中,如果发生突然停电或电压严重下降的情况,接触器线圈KM 将失电而断开所有动合触点。