数字信号处理实验程序

合集下载

数字信号处理实验报告

数字信号处理实验报告

实验一 信号、系统及系统响应一、实验目的1、熟悉理想采样的性质,了解信号采样前后的频谱变化,加深对时域采样定理的理解。

2、熟悉离散信号和系统的时域特性。

3、熟悉线性卷积的计算编程方法:利用卷积的方法,观察、分析系统响应的时域特性。

4、掌握序列傅里叶变换的计算机实现方法,利用序列的傅里叶变换对离散信号、系统及其系统响应进行频域分析。

二、 实验原理1.理想采样序列:对信号x a (t)=A e −αt sin(Ω0t )u(t)进行理想采样,可以得到一个理想的采样信号序列x a (t)=A e −αt sin(Ω0nT ),0≤n ≤50,其中A 为幅度因子,α是衰减因子,Ω0是频率,T 是采样周期。

2.对一个连续时间信号x a (t)进行理想采样可以表示为该信号与一个周期冲激脉冲的乘积,即x ̂a (t)= x a (t)M(t),其中x ̂a (t)是连续信号x a (t)的理想采样;M(t)是周期冲激M(t)=∑δ+∞−∞(t-nT)=1T ∑e jm Ωs t +∞−∞,其中T 为采样周期,Ωs =2π/T 是采样角频率。

信号理想采样的傅里叶变换为X ̂a (j Ω)=1T ∑X a +∞−∞[j(Ω−k Ωs )],由此式可知:信号理想采样后的频谱是原信号频谱的周期延拓,其延拓周期为Ωs =2π/T 。

根据时域采样定理,如果原信号是带限信号,且采样频率高于原信号最高频率分量的2倍,则采样以后不会发生频率混叠现象。

三、简明步骤产生理想采样信号序列x a (n),使A=444.128,α=50√2π,Ω0=50√2π。

(1) 首先选用采样频率为1000HZ ,T=1/1000,观察所得理想采样信号的幅频特性,在折叠频率以内和给定的理想幅频特性无明显差异,并做记录;(2) 改变采样频率为300HZ ,T=1/300,观察所得到的频谱特性曲线的变化,并做记录;(3) 进一步减小采样频率为200HZ ,T=1/200,观察频谱混淆现象是否明显存在,说明原因,并记录这时候的幅频特性曲线。

数字信号处理综合实验

数字信号处理综合实验

数字信号处理综合实验一、实验目的本实验旨在通过数字信号处理技术的综合应用,加深对数字信号处理原理和方法的理解,提高学生的实际操作能力和问题解决能力。

二、实验原理数字信号处理是利用数字计算机对摹拟信号进行采样、量化和编码,然后进行数字运算和处理的技术。

本实验主要涉及以下几个方面的内容:1. 信号采集与预处理:通过摹拟信号采集电路将摹拟信号转换为数字信号,然后进行预处理,如滤波、降噪等。

2. 数字滤波器设计:设计和实现数字滤波器,包括FIR滤波器和IIR滤波器,可以对信号进行滤波处理,提取感兴趣的频率成份。

3. 时域和频域分析:对采集到的信号进行时域和频域分析,如时域波形显示、功率谱密度估计等,可以了解信号的时域和频域特性。

4. 信号重构与恢复:通过信号重构算法对采集到的信号进行恢复,如插值、外推等,可以还原信号的原始特征。

三、实验内容根据实验原理,本实验的具体内容包括以下几个部份:1. 信号采集与预处理a. 使用摹拟信号采集电路将摹拟信号转换为数字信号,并通过示波器显示采集到的信号波形。

b. 对采集到的信号进行预处理,如去除噪声、滤波等,确保信号质量。

2. 数字滤波器设计a. 设计并实现FIR滤波器,选择合适的滤波器类型和参数,对采集到的信号进行滤波处理。

b. 设计并实现IIR滤波器,选择合适的滤波器类型和参数,对采集到的信号进行滤波处理。

3. 时域和频域分析a. 对采集到的信号进行时域分析,绘制信号的时域波形图,并计算信号的均值、方差等统计指标。

b. 对采集到的信号进行频域分析,绘制信号的功率谱密度图,并计算信号的频域特性。

4. 信号重构与恢复a. 使用插值算法对采集到的信号进行重构,恢复信号的原始特征。

b. 使用外推算法对采集到的信号进行恢复,还原信号的原始特征。

四、实验步骤1. 搭建信号采集电路,将摹拟信号转换为数字信号,并通过示波器显示采集到的信号波形。

2. 对采集到的信号进行预处理,如去除噪声、滤波等,确保信号质量。

数字信号处理实验四

数字信号处理实验四

实验一:DFS 、DFT 与FFT一、实验内容2、已知某周期序列的主值序列为x(n)=[0,1,2,3,2,1,0],编程显示2个周期的序列波形。

要求:① 用傅里叶级数求信号的幅度谱和相位谱,并画出图形 ② 求傅里叶级数逆变换的图形,并与原序列进行比较。

N=7;xn=[0,1,2,3,2,1,0]; xn=[xn,xn]; n=0:2*N-1; k=0:2*N-1;Xk=xn*exp(-j*2*pi/N).^(n'*k); x=(Xk*exp(j*2*pi/N).^(n'*k))/N; subplot(2,2,1);stem(n,xn);title('x(n)');axis([-1,2*N,1.1*min(xn),1.1*max(xn)]); subplot(2,2,2);stem(n,abs(x));title('IDFS|X(k)|');axis([-1,2*N,1.1*min(x),1.1*max(x)]); subplot(2,2,3),stem(k,abs(Xk));title('|X(k)|');axis([-1,2*N,1.1*min(abs(Xk)),1.1*max(abs(Xk))]); subplot(2,2,4),stem(k,angle(Xk));title('arg|X(k)|');axis([-1,2*N,1.1*min(angle(Xk)),1.1*max(angle(Xk))]);课程名称 数字信号 实验成绩 指导教师 王丽霞实 验 报 告院系 信息工程学院 班级 11专升本通信工程 学号 1103100068 姓名 周海霞日期 2011年10月17日12351051015|X (k)|510-2-1012arg|X (k)|3、已知有限长序列x(n)=[1,0.5,0,0.5,1,1,0.5,0],要求: ① 求该序列的DFT 、IDFT 的图形;xn=[1,0.5,0,0.5,1,1,0.5,0]; N=length(xn); n=0:N-1; k=0:N-1;Xk=xn*exp(-1i*2*pi/N).^(n'*k); x=(Xk*exp(1i*2*pi/N).^(n'*k))/N; subplot(2,2,1);stem(n,xn);title('x(n)');axis([-1,N,1.1*min(xn),1.1*max(xn)]); subplot(2,2,2);stem(n,abs(x));title('IDFT|X(k)|');axis([-1,N,1.1*min(x),1.1*max(x)]); subplot(2,2,3),stem(k,abs(Xk));title('|X(k)|');axis([-1,N,1.1*min(abs(Xk)),1.1*max(abs(Xk))]); subplot(2,2,4),stem(k,angle(Xk));title('arg|X(k)|');axis([-1,N,1.1*min(angle(Xk)),1.1*max(angle(Xk))]);0.510.5124681234|X (k)|2468-2-1012arg|X (k)|② 用FFT 算法求该序列的DFT 、IDFT 的图形;xn=[1,0.5,0,0.5,1,1,0.5,0]; N=length(xn);subplot(2,2,1);stem(n,xn); title('x(n)'); k=0:N-1; Xk=fft(xn,N);subplot(2,1,2);stem(k,abs(Xk)); title('Xk=DFT(xn)'); xn1=ifft(Xk,N);subplot(2,2,2);stem(n,xn1);title('x(n)=IDFT(Xk)');x(n)1234567X k=DFT(xn)x(n)=IDFT(X k)③ 假定采用频率Fs=20Hz ,序列长度N 分别取8、32和64,用FFT 计算其幅度谱和相位谱。

《数字信号处理》上机实验指导书

《数字信号处理》上机实验指导书

《数字信号处理》上机实验指导书实验1 离散时间信号的产生1.实验目的数字信号处理系统中的信号都是以离散时间形态存在,所以对离散时间信号的研究是数字信号处理的基本所在。

而要研究离散时间信号,首先需要产生出各种离散时间信号。

MATLAB 是一套功能强大的工程计算及数据处理软件,广泛应用于工业,电子,医疗和建筑等众多领域。

使用MATLAB软件可以很方便地产生各种常见的离散时间信号,而且它还具有强大的绘图功能,便于用户直观地输出处理结果。

通过本实验,学生将学习如何用MATLAB产生一些常见的离散时间信号,并通过MATLAB中的绘图工具对产生的信号进行观察,加深对常用离散信号的理解。

2.实验要求本实验要求学生运用MATLAB编程产生一些基本的离散时间信号,并通过MATLAB的几种绘图指令画出这些图形,以加深对相关教学内容的理解,同时也通过这些简单的函数练习了MATLAB的使用。

3.实验原理(1)常见的离散时间信号1)单位抽样序列,或称为离散时间冲激,单位冲激:?(n)???1?0n?0 n?0如果?(n)在时间轴上延迟了k个单位,得到?(n?k)即:?1n?k ?(n?k)??0n?0?2)单位阶跃序列n?0?1 u(n)?n?0?0在MATLAB中可以利用ones( )函数实现。

x?ones(1,N);3)正弦序列x(n)?Acos(?0n??)这里,A,?0,和?都是实数,它们分别称为本正弦信号x(n)的振幅,角频率和初始相位。

f0??02?为频率。

x(n)?ej?n4)复正弦序列5)实指数序列x(n)?A?n(2)MATLAB编程介绍MATLAB是一套功能强大,但使用方便的工程计算及数据处理软件。

其编程风格很简洁,没有太多的语法限制,所以使用起来非常方便,尤其对初学者来说,可以避免去阅读大量的指令系统,以便很快上手编程。

值得注意得就是,MATLAB中把所有参与处理的数据都视为矩阵,并且其函数众多,希望同学注意查看帮助,经过一段时间的训练就会慢慢熟练使用本软件了。

数字信号处理实验参考程序

数字信号处理实验参考程序

实验一参考程序:1 产生10点的单位抽样序列δ(n);function unit_pulse(N)% unit_pulse.mN=10;x=zeros(1,N);x(1)=1;n=0:N-1;figure(1);stem(n,x);xlabel('单位抽样序列')axis([-1 20 0 1.1])2产生10点同时移位3位的单位抽样序列δ(n-3);function shift_unit_pulse(N,k)% shift_unit_pulse.mN=10;k=3;x=zeros(1,N);x(k+1)=1;n=0:N-1;figure(2);stem(n,x);xlabel('移位3位的单位抽样序列')axis([-1 10 0 1.1])function [x, n]=i shift_unit_pulse (n0,ns,nf)n=[0:9];x=[(n-3)==0]3产生任意序列f(n)=8δ(n)+7δ(n-1)+6δ(n-2) +5δ(n-3)+ 4δ(n-4)+7δ(n-5);function arbitrary_pulse(N)% arbitrary_pulse.mN=10x=zeros(1,N);x(1)=8;x(2)=7;x(3)=6;x(4)=5;x(5)=4;x(6)=7;n=0:N-1;figure(3);stem(n,x);xlabel('任意序列f(n)')axis([-1 10 0 9])4产生N=10点的单位阶跃序列function unit_step(N)% unit_step.mN=10;x=ones(1,N);n=0:N-1;figure(4);stem(n,x);xlabel('单位阶跃序列')axis([-1 15 0 1.1])5产生斜率为3,n0=4,点数为20点的斜坡序列g(n)=B(n-n0)function slope(N,k,B)% slope.mN=20;k=4;B=3;x=[zeros(1,k) ones(1,N-k)];for i=1:Nx(i)=B*x(i)*(i-k);endn=0:N-1;figure(5);stem(n,x);xlabel('斜坡序列')axis([-1 20 0 90])6产生幅度A=3,频率f=100,初始相位 =1.2,点数为32点的正弦序列。

数字信号处理实验报告

数字信号处理实验报告

数字信号处理实验报告实验报告
实验题目:数字信号处理实验
实验日期:XXXX年XX月XX日
实验目的:
1. 了解数字信号处理的基本概念和原理;
2. 掌握数字信号的采样、量化和编码方法;
3. 学习数字信号处理的基本算法和应用。

实验内容:
1. 采样与重建
1.1 采样定理的验证
1.2 重建信号的实现
2. 量化与编码
2.1 量化方法的比较
2.2 编码方法的选择与实现
3. 数字滤波器设计与实现
3.1 FIR滤波器设计方法
3.2 IIR滤波器设计方法
实验步骤:
1. 使用示波器对输入的模拟信号进行采样,记录采样频率和采样点数。

2. 使用恢复信号方法,将采样得到的数字信号重建为模拟信号,并进行对比分析。

3. 对重建的信号进行量化处理,比较不同量化方法的效果,选择合适的方法进行编码。

4. 设计并实现数字滤波器,比较FIR和IIR滤波器的性能和实
现复杂度。

实验结果与分析:
1. 采样与重建实验结果表明,在满足采样定理的条件下,采样频率越高,重建信号的质量越高。

2. 量化与编码实验结果表明,在相同位数下,线性量化方法优于非线性量化方法,而编码方法可以根据信号特性选择,例如
差分编码适用于连续变化的信号。

3. 数字滤波器实验结果表明,FIR滤波器相对于IIR滤波器在时域和频域上更易于设计和理解,但实现复杂度较高。

实验结论:
数字信号处理是对模拟信号进行采样、量化和编码等处理,具有较高的灵活性和可靠性。

在实际应用中,应根据需要选择合适的采样频率、量化位数和编码方式,并根据信号特性选择合适的滤波器设计方法。

数字信号处理实验报告

数字信号处理实验报告

数字信号处理实验报告一、实验目的本次数字信号处理实验的主要目的是通过实际操作和观察,深入理解数字信号处理的基本概念和方法,掌握数字信号的采集、处理和分析技术,并能够运用所学知识解决实际问题。

二、实验设备与环境1、计算机一台,安装有 MATLAB 软件。

2、数据采集卡。

三、实验原理1、数字信号的表示与采样数字信号是在时间和幅度上都离散的信号,可以用数字序列来表示。

在采样过程中,根据奈奎斯特采样定理,为了能够准确地恢复原始信号,采样频率必须大于信号最高频率的两倍。

2、离散傅里叶变换(DFT)DFT 是将时域离散信号变换到频域的一种方法。

通过 DFT,可以得到信号的频谱特性,从而分析信号的频率成分。

3、数字滤波器数字滤波器是对数字信号进行滤波处理的系统,分为有限冲激响应(FIR)滤波器和无限冲激响应(IIR)滤波器。

FIR 滤波器具有线性相位特性,而 IIR 滤波器则在性能和实现复杂度上有一定的优势。

四、实验内容与步骤1、信号的采集与生成使用数据采集卡采集一段音频信号,或者在 MATLAB 中生成一个模拟信号,如正弦波、方波等。

2、信号的采样与重构对采集或生成的信号进行采样,然后通过插值算法重构原始信号,观察采样频率对重构信号质量的影响。

3、离散傅里叶变换对采样后的信号进行DFT 变换,得到其频谱,并分析频谱的特点。

4、数字滤波器的设计与实现(1)设计一个低通 FIR 滤波器,截止频率为给定值,观察滤波前后信号的频谱变化。

(2)设计一个高通 IIR 滤波器,截止频率为给定值,比较滤波前后信号的时域和频域特性。

五、实验结果与分析1、信号的采集与生成成功采集到一段音频信号,并在MATLAB 中生成了各种模拟信号,如正弦波、方波等。

通过观察这些信号的时域波形,对不同类型信号的特点有了直观的认识。

2、信号的采样与重构当采样频率足够高时,重构的信号能够较好地恢复原始信号的形状;当采样频率低于奈奎斯特频率时,重构信号出现了失真和混叠现象。

数字信号处理实验-音频信号处理

数字信号处理实验-音频信号处理

图1 任务一程序流程图1、音频信号采集道,只取第一个声道进行处理,接着使用sound函数以fs频率进行音频回放。

2、音频信号频域分析以采样间隔T划分时域并绘制出signal信号的时域波形;调用fft函数,对signal 进行快速傅里叶变换,用abs函数取傅里叶变换后结果的幅值进行幅频分析,绘制出频谱图。

在绘制频谱图时由于考虑到快速傅里叶变换的对称性,只取序列的前半部分进行观察分析。

3、音频信号分解为了实现音频信号的分解及合成,先对原信号的频谱图进行观察分析,发现原信号的主要能量集中在三个主要频率上,于是考虑用这三频率的正弦信号合成原信号。

为了求得这三个频率,先调用findpeaks函数找到频谱图上的各个局部极大值peak及其对应的位置locs,然后用sort对峰值点进行排序,找到最大的三个值,接着用find 函数找到这三个最大值在locs中的位置,也就知道了对应的频率。

这里有一个问题就是最小的峰值频率并不是在sort排序后的第三位而是在第四位,需要有一个调整;确定了主要谱线后,使用text函数进行峰值标注;4、音频信号合成接着将这三个谱线还原回时域正弦信号,幅度的比例等于对应频率上的幅度比例然后然后叠加,得到合成后的信号,绘制出时域波形,与原信号波形进行比较,接着对两个正弦信号进行fft,绘制出他们的频谱,然后对合成的信号进行fft,做出频谱图和原信号的频谱图进行比较.5、音频信号回放用sound函数进行原信号和合成信号的回放,比较差异。

实验内容二:任意音频信号的时域和频域分析及数字滤波器设计通过对任务具体内容的分析,可以建立出任务二程序框图如下,之后将对编程思想及思路进行介绍:图2任务二程序流程图1、音频信号采样自己录音频并另存为”ding.wav”后,先用audioread函数读取音频信号得到采样序列signal及对应采样频率fs,由于获取的音频信号是双声道,只取第一个声道进行处理。

2、时域采样使用audioread函数得到的采样序列signal及采样频率fs为过采样状态,此时我们对signal再进行等间隔采样,达到减少采样点数和降低采样频率的效果,进而实现合理采样状态signal2、fs2和欠采样状态signal1、fs1;使用sound函数分别对这两种采样状态进行回放。

《数字信号处理实验》指导书

《数字信号处理实验》指导书

《数字信号处理实验》实验1 常用信号产生实验目的:学习用MATLAB编程产生各种常见信号。

实验内容:1、矩阵操作:输入矩阵:x=[1 2 3 4;5 4 3 2;3 4 5 6;7 6 5 4]引用 x的第二、三行;引用 x的第三、四列;求矩阵的转置;求矩阵的逆;2、单位脉冲序列:产生δ(n)函数;产生δ(n-3)函数;3、产生阶跃序列:产生U(n)序列;产生U(n-n0)序列;4、产生指数序列:x(n)=0.5n⎪⎭⎫⎝⎛4 35、产生正弦序列:x=2sin(2π*50/12+π/6)6、产生取样函数:7、产生白噪声:产生[0,1]上均匀分布的随机信号:产生均值为0,方差为1的高斯随机信号:8、生成一个幅度按指数衰减的正弦信号:x(t)=Asin(w0t+phi).*exp(-a*t)9、产生三角波:实验要求:打印出程序、图形及运行结果,并分析实验结果。

实验2 利用MATLAB 进行信号分析实验目的:学习用MATLAB 编程进行信号分析实验内容:1数字滤波器的频率响应:数字滤波器的系统函数为:H(z)=21214.013.02.0----++++z z z z , 求其幅频特性和相频特性:2、离散系统零极点图:b =[0.2 0.1 0.3 0.1 0.2];a=[1.0 -1.1 1.5 -0.7 0.3];画出其零极点图3、数字滤波器的冲激响应:b=[0.2 0.1 0.3 0.1 0.2];a=[1.0 -1.1 1.5 -0.7 0.3];求滤波器的冲激响应。

4、 计算离散卷积:x=[1 1 1 1 0 0];y=[2 2 3 4];求x(n)*y(n)。

5、 系统函数转换:(1)将H(z)=)5)(2)(3.0()1)(5.0)(1.0(------z z z z z z 转换为直接型结构。

(2)将H (z )=3213210.31.123.7105.065.06.11-------+--+-zz z z z z 转换为级联型结构。

实验一 数字信号处理

实验一  数字信号处理

实验一系统响应及系统稳定性一、实验目的(1)掌握求系统响应的方法。

(2)掌握时域离散系统的时域特性。

(3)分析、观察及检验系统的稳定性。

二实验内容及步骤1、给定一个低通滤波器的差分方程为y(n)=0.05x(n)+0.05x(n-1)+0.9y(n-1),输入信号x1(n)=R8(n)x2(n)=u(n)a)分别求出系统对x1(n)=R8(n)和x2(n)=u(n)的响应序列,并画出其波形。

b)求出系统的单位冲响应,画出其波形。

xn1=[1 1 1 1 1 1 1 1 zeros(1,50)];xn2=ones(1,128);xn3=[1,zeros(1,50)];B=[0.05,0.05];A=[1,-0.9];yn1=filter(B,A,xn1);yn2=filter(B,A,xn2);yn3=filter(B,A,xn3);figure(1);n1=0:length(yn1)-1;subplot(2,2,1);stem(n1,yn1,'.');xlabel('n');ylabel('yn1');title('yn1');n2=0:length(yn2)-1;subplot(2,2,2);stem(n2,yn2,'.');xlabel('n');ylabel('yn2');title('yn2');n3=0:length(yn3)-1;subplot(2,2,3);stem(n3,yn3,'.');xlabel('n');ylabel('yn3');title('yn3');2、给定系统的单位脉冲响应为h1(n)=R10(n),h2(n)=δ(n)+2.5δ(n-1)+δ(n-2)+δ(n-3)用线性卷积法分别求系统h1(n)和h2(n)对x1(n)=R8(n)的输出响应,并画出波形。

硕士信号处理实验报告(3篇)

硕士信号处理实验报告(3篇)

第1篇一、实验背景随着信息技术的飞速发展,数字信号处理(DSP)技术已成为通信、图像处理、语音识别等领域的重要工具。

本实验旨在通过一系列实验,加深对数字信号处理基本原理和方法的理解,提高实际应用能力。

二、实验目的1. 理解数字信号处理的基本概念和原理。

2. 掌握常用信号处理算法的MATLAB实现。

3. 培养分析和解决实际问题的能力。

三、实验内容本实验共分为五个部分,具体如下:1. 离散时间信号的基本操作(1)实验目的:熟悉离散时间信号的基本操作,如加法、减法、乘法、除法、延时、翻转等。

(2)实验步骤:- 使用MATLAB生成两个离散时间信号。

- 对信号进行基本操作,如加法、减法、乘法、除法、延时、翻转等。

- 观察并分析操作结果。

2. 离散时间系统的时域分析(1)实验目的:掌握离散时间系统的时域分析方法,如单位脉冲响应、零状态响应、零输入响应等。

(2)实验步骤:- 使用MATLAB设计一个离散时间系统。

- 计算系统的单位脉冲响应、零状态响应和零输入响应。

- 分析系统特性。

(1)实验目的:掌握离散时间信号的频域分析方法,如快速傅里叶变换(FFT)、离散傅里叶变换(DFT)等。

(2)实验步骤:- 使用MATLAB生成一个离散时间信号。

- 对信号进行FFT和DFT变换。

- 分析信号频谱。

4. 数字滤波器的设计与实现(1)实验目的:掌握数字滤波器的设计与实现方法,如巴特沃斯滤波器、切比雪夫滤波器、椭圆滤波器等。

(2)实验步骤:- 使用MATLAB设计一个低通滤波器。

- 使用窗函数法实现滤波器。

- 对滤波器进行性能分析。

5. 信号处理在实际应用中的案例分析(1)实验目的:了解信号处理在实际应用中的案例分析,如语音信号处理、图像处理等。

(2)实验步骤:- 选择一个信号处理应用案例。

- 分析案例中使用的信号处理方法。

- 总结案例中的经验和教训。

四、实验结果与分析1. 离散时间信号的基本操作实验结果表明,离散时间信号的基本操作简单易懂,通过MATLAB可以实现各种操作,方便快捷。

数字信号处理实验报告

数字信号处理实验报告

数字信号处理实验报告数字信号处理实验报告一、实验目的本实验旨在通过数字信号处理的方法,对给定的信号进行滤波、频域分析和采样率转换等操作,深入理解数字信号处理的基本原理和技术。

二、实验原理数字信号处理(DSP)是一种利用计算机、数字电路或其他数字设备对信号进行各种处理的技术。

其主要内容包括采样、量化、滤波、变换分析、重建等。

其中,滤波器是数字信号处理中最重要的元件之一,它可以用来提取信号的特征,抑制噪声,增强信号的清晰度。

频域分析是指将时域信号转化为频域信号,从而更好地理解信号的频率特性。

采样率转换则是在不同采样率之间对信号进行转换,以满足不同应用的需求。

三、实验步骤1.信号采集:首先,我们使用实验室的信号采集设备对给定的信号进行采集。

采集的信号包括噪声信号、含有正弦波和方波的混合信号等。

2.数据量化:采集到的信号需要进行量化处理,即将连续的模拟信号转化为离散的数字信号。

这一步通常通过ADC(模数转换器)实现。

3.滤波处理:将量化后的数字信号输入到数字滤波器中。

我们使用不同的滤波器,如低通、高通、带通等,对信号进行滤波处理,以观察不同滤波器对信号的影响。

4.频域分析:将经过滤波处理的信号进行FFT(快速傅里叶变换)处理,将时域信号转化为频域信号,从而可以对其频率特性进行分析。

5.采样率转换:在进行上述处理后,我们还需要对信号进行采样率转换。

我们使用了不同的采样率对信号进行转换,并观察采样率对信号处理结果的影响。

四、实验结果及分析1.滤波处理:经过不同类型滤波器处理后,我们发现低通滤波器可以有效抑制噪声,高通滤波器可以突出高频信号的特征,带通滤波器则可以提取特定频率范围的信号。

这表明不同类型的滤波器在处理不同类型的信号时具有不同的效果。

2.频域分析:通过FFT处理,我们将时域信号转化为频域信号。

在频域分析中,我们可以更清楚地看到信号的频率特性。

例如,对于噪声信号,我们可以看到其频率分布较为均匀;对于含有正弦波和方波的混合信号,我们可以看到其包含了不同频率的分量。

《数字信号处理》实验指导书-新

《数字信号处理》实验指导书-新

实验一:离散时间序列卷积和MATLAB实现实验学时:2实验类型:验证实验要求:必修(一)实验目的:学会用MATLAB对信号与系统分析的方法,理解离散序列卷积和的计算对进行离散信号与系统分析的重要性。

(二)实验原理:1、离散时间序列f1(k)和f2(k)的卷积和定义:f(k)=f1(k)*f2(k)=∑∞-∞=-∙iikfif)(2)(12、在离散信号与系统分析中有两个与卷积和相关的重要结论:a、f(k)= ∑∞-∞=-∙iikif)()(δ=f(k)* δ(k)即离散序列可分解为一系列幅度由f(k)决定的单位序列δ(k)及其平移序列之积。

b、对线性时不变系统,设其输入序列为f(k),单位响应为h(k),其零状态响应为y(k),则有:y(k)= ∑∞-∞=-∙iikhif)()((三)实验内容:conv.m用来实现两个离散序列的线性卷积。

其调用格式是:y=conv(x,h)若x的长度为N,h的长度为M,则y的长度L=N+M-1。

题一:令x(n)= {}5,4,3,2,1,h(n)={}246326,,,,,,y(n)=x(n)*h(n),求y(n)。

要求用subplot和stem画出x(n),h(n),y(n)与n的离散序列图形。

题二:已知序列f1(k)=⎩⎨⎧≤≤其它0201k f2(k)=⎪⎪⎩⎪⎪⎨⎧===其它332211k k k调用conv()函数求上述两序列的卷积和题三:编写计算两离散序列卷积和f(k)=f1(k)*f2(k)的实用函数dconv().要求该程序在计算出卷积和f(k)的同时,还绘出序列f1(k),f2(k)和f(k)的时域波形图,并返回f(k)的非零样值点的对应向量。

function[f,k]=dconv(f1,f2,k1,k2)%f1(k),f2(k)及f(k)的对应序号向量分别为k1,k2和k 。

题四:试用MATLAB 计算如下所示序列f1(k)与f2(k)的卷积和f(k),绘出它们的时域波形,并说明序列f1(k)与f2(k)的时域宽度与序列f(k)的时域宽度的关系。

数字信号处理实验指导书(带源程序)

数字信号处理实验指导书(带源程序)

实验一离散时间系统与MA TLAB一. 实验目的1. 进一步加深对离散时间系统的理解。

2. 学习在MATLAB中怎样表示离散时间信号。

3. 熟悉离散时间信号的作图。

二. 实验步骤1. 复习离散时间系统的有关容。

2. 复习MA TLAB的基本语法。

3. 按实验容熟悉stem。

4. 编写程序。

5. 输出结果,总结结论,按要求写出实验报告。

三. 实验容1.掌握stem函数STEM(Y) plots the data sequence Y as stems from the x axis terminated with circles for the data value.STEM(X,Y) plots the data sequence Y at the values specified in X.例:t=[0:0.1:2]; x=cos(pi*t+0.6); stem(t,x);xn=[4,2,2,3,6,7]; stem(xn);思考:STEM(Y)与STEM(X,Y)有什么不同?STEM与PLOT函数有什么不同?2.掌握subplot函数H = SUBPLOT(m,n,p), or SUBPLOT(mnp), breaks the Figure window into an m-by-n matrix of small axes, selects the p-th axes for the current plot, and returns the axis handle. The axes are counted along the top row of the Figure window, then the second row, etc.例:n1=0:3;x1=[1,1,1,1];subplot(221);stem(n1,x1);title('x1序列');n2=0:7;x2=[1,2,3,4,4,3,2,1];subplot(222);stem(n2,x2);title('x2序列');n3=0:7;x3=[4,3,2,1,1,2,3,4];subplot(223);stem(n3,x3);title('x3序列');n4=0:7;x41=cos((pi/4)*n4);subplot(224);stem(n4,x41);title('x4序列');思考:subplot是怎样分配各个作图分区的顺序号的?3.信号的运算]0,1.0,4.0,7.0,1[)(1=n x ,]9.0,7.0,5.0,3.0,1.0[)(2=n x ,请作出)()(21n x n x +,)()(21n x n x 的图形。

数字信号处理实验参考程序

数字信号处理实验参考程序

幼儿园防溺水宣传计划幼儿园安全宣传一、概述随着社会的发展和进步,人民生活水平不断提高,对幼儿教育的重视也日益增加。

幼儿园作为儿童成长发展的重要场所,其安全工作显得尤为重要。

溺水是儿童意外伤害中的一大杀手,因此我们应该加强对幼儿园防溺水的宣传工作,提高教职员工和家长的安全意识,有效预防溺水事故的发生。

二、宣传目标1. 提高园内教职员工对溺水危险的认识和防范意识;2. 提高家长对幼儿园溺水安全问题的重视,强化家庭教育;3. 增强幼儿对自我保护的意识和能力,懂得遵守安全规则。

三、宣传策略1. 制定相关政策和措施,设置明确的安全责任人,强化安全管理;2. 利用多种形式的媒体,如横幅、宣传画、安全标识等,进行宣传教育;3. 注重开展家长会、学习班等形式的公开宣传活动,使家长积极参与;4. 制作宣传材料,比如安全知识手册、安全教育视瓶等,定期进行宣传;5. 通过特色活动,如安全教育周、实地演练等形式,增强幼儿对安全问题的认识。

四、宣传内容1. 水域危险认知提醒家长和教职员工,加强对水域危险的认知,不让幼儿单独接近水域,及时发现危险并加强监护;2. 安全教育通过故事、图片等形式,向幼儿们普及溺水知识,教会他们正确的自救和呼救方式;3. 安全设施使用指导孩子如何正确使用安全设施,如救生圈、游泳圈等,增强自我保护能力;4. 灾害逃生组织模拟演练,让孩子们了解常见溺水灾害的逃生方法和注意事项。

五、宣传形式1. 安全知识手册制作具体的幼儿园防溺水的安全知识手册,向家长发放,让家长了解幼儿园的安全措施;2. 安全教育视瓶制作针对幼儿的安全教育视瓶,通过播放的形式让幼儿加深对安全知识的理解;3. 安全演练定期组织模拟演练,让孩子们亲身体验安全逃生的情景,增强安全意识和逃生能力;4. 公开宣传通过家长会、学习班等形式,公开宣传防溺水的重要性,引导家长和教职员工重视这一问题。

六、宣传效果评估1. 制定评估方案建立一套完整的宣传效果评估方案,包括对教职员工、家长及幼儿的问卷调查等,定期进行评估;2. 持续改进根据评估结果,及时发现宣传工作中的不足和问题,做出合理调整,持续改进宣传效果;3. 宣传效果展示定期向相关部门和家长公示宣传工作的效果,增强公众对幼儿园安全工作的信任和支持。

数字信号处理实验程序清单

数字信号处理实验程序清单

实验一: 系统响应及系统稳定性%实验1:系统响应及系统稳定性close all;clear all%======内容1:调用filter解差分方程,由系统对u(n)的响应判断稳定性==A=[1,-0.9];B=[0.05,0.05]; %系统差分方程系数向量B和Ax1n=[1 1 1 1 1 1 1 1 zeros(1,50)]; %产生信号x1(n)=R8(n)x2n=ones(1,128); %产生信号x2(n)=u(n)hn=impz(B,A,58); %求系统单位脉冲响应h(n)subplot(2,2,1);y='h(n)';tstem(hn,y); %调用函数tstem绘图title('(a) 系统单位脉冲响应h(n)');box ony1n=filter(B,A,x1n); %求系统对x1(n)的响应y1(n)subplot(2,2,2);y='y1(n)';tstem(y1n,y);title('(b) 系统对R8(n)的响应y1(n)');box ony2n=filter(B,A,x2n); %求系统对x2(n)的响应y2(n)subplot(2,2,4);y='y2(n)';tstem(y2n,y);title('(c) 系统对u(n)的响应y2(n)');box on%===内容2:调用conv函数计算卷积========x1n=[1 1 1 1 1 1 1 1 ]; %产生信号x1(n)=R8(n)h1n=[ones(1,10) zeros(1,10)];h2n=[1 2.5 2.5 1 zeros(1,10)];y21n=conv(h1n,x1n);y22n=conv(h2n,x1n);figure(2)subplot(2,2,1);y='h1(n)';tstem(h1n,y); %调用函数tstem绘图title('(d) 系统单位脉冲响应h1(n)');box onsubplot(2,2,2);y='y21(n)';tstem(y21n,y);title('(e) h1(n)与R8(n)的卷积y21(n)');box onsubplot(2,2,3);y='h2(n)';tstem(h2n,y); %调用函数tstem绘图title('(f) 系统单位脉冲响应h2(n)');box onsubplot(2,2,4);y='y22(n)';tstem(y22n,y);title('(g) h2(n)与R8(n)的卷积y22(n)');box on%=========内容3:谐振器分析================un=ones(1,256); %产生信号u(n)n=0:255;xsin=sin(0.014*n)+sin(0.4*n); %产生正弦信号A=[1,-1.8237,0.9801];B=[1/100.49,0,-1/100.49]; %系统差分方程系数向量B和Ay31n=filter(B,A,un); %谐振器对u(n)的响应y31(n)y32n=filter(B,A,xsin); %谐振器对u(n)的响应y31(n)figure(3)subplot(2,1,1);y='y31(n)';tstem(y31n,y);title('(h) 谐振器对u(n)的响应y31(n)');box onsubplot(2,1,2);y='y32(n)';tstem(y32n,y);title('(i) 谐振器对正弦信号的响应y32(n)');box ontstem 程序清单function tstem(xn,yn)%时域序列绘图函数% xn:信号数据序列,yn:绘图信号的纵坐标名称(字符串)n=0:length(xn)-1;stem(n,xn,'.');box onxlabel('n');ylabel(yn);axis([0,n(end),min(xn),1.2*max(xn)])实验二时域采样与频域采样1 时域采样理论的验证程序清单% 时域采样理论验证程序exp2a.mTp=64/1000; %观察时间Tp=64微秒%产生M长采样序列x(n)% Fs=1000;T=1/Fs;Fs=1000;T=1/Fs;M=Tp*Fs;n=0:M-1;A=444.128;alph=pi*50*2^0.5;omega=pi*50*2^0.5;xnt=A*exp(-alph*n*T).*sin(omega*n*T);Xk=T*fft(xnt,M); %M点FFT[xnt)]yn='xa(nT)';subplot(3,2,1);tstem(xnt,yn); %调用自编绘图函数tstem绘制序列图box on;title('(a) Fs=1000Hz');k=0:M-1;fk=k/Tp;subplot(3,2,2);plot(fk,abs(Xk));title('(a) T*FT[xa(nT)],Fs=1000Hz');xlabel('f(Hz)');ylabel('幅度');axis([0,Fs,0,1.2*max(abs(Xk))])%========================================% Fs=300Hz和Fs=200Hz的程序与上面Fs=1000Hz完全相同。

数字信号处理上机实验及参考程序

数字信号处理上机实验及参考程序

数字信号处理上机实验及参考程序数字信号处理实验实验⼀离散时间信号与系统及MA TLAB实现1.单位冲激信号:n = -5:5;x = (n==0);subplot(122);stem(n, x);2.单位阶跃信号:x=zeros(1,11);n0=0;n1=-5;n2=5;n = n1:n2;x(:,n+6) = ((n-n0)>=0);stem(n,x);3.正弦序列:n = 0:1/3200:1/100;x=3*sin(200*pi*n+1.2);stem(n,x);4.指数序列n = 0:1/2:10;x1= 3*(0.7.^n);x2=3*exp((0.7+j*314)*n);subplot(221);stem(n,x1);subplot(222);stem(n,x2);5.信号延迟n=0:20;Y1=sin(100*n);Y2=sin(100*(n-3));subplot(221);stem(n,Y1);subplot(222);stem(n,Y2);6.信号相加X1=[2 0.5 0.9 1 0 0 0 0];X2=[0 0.1 0.2 0.3 0.4 0.5 0.6 0.7];X=X1+X2;stem(X);7.信号翻转X1=[2 0.5 0.9 1];n=1:4;X2=X1(5-n);subplot(221);stem(n,X1);subplot(222);stem(n,X2);8.⽤MATLAB计算序列{-2 0 1 –1 3}和序列{1 2 0 -1}的离散卷积。

a=[-2 0 1 -1 3]; b=[1 2 0 -1];c=conv(a,b);M=length(c)-1;n=0:1:M;stem(n,c);xlabel('n');ylabel('幅度');9.⽤MA TLAB计算差分⽅程当输⼊序列为时的输出结果。

N=41;a=[0.8 -0.44 0.36 0.22];b=[1 0.7 -0.45 -0.6];x=[1 zeros(1,N-1)];k=0:1:N-1;y=filter(a,b,x);stem(k,y)xlabel('n');ylabel('幅度')10.冲激响应impzN=64;a=[0.8 -0.44 0.36 0.22];b=[1 0.7 -0.45 -0.6];x=[1 zeros(1,N-1)];k=0:1:N-1;y=impz(a,b,N);stem(k,y)xlabel('n');ylabel('幅度')11.传递函数频率响应a=[0.8 -0.44 0.36 0.22];%分⼦的系数数组b=[1 0.7 -0.45 -0.6];%分母的系数数组n=(0:500)*pi/500%在pi范围内取501个采样点[h,f]=freqz(a,b,n);%求系统的频率响应subplot(2,1,1),plot(n/pi,abs(h));grid%作系统的幅度频响图axis([0,1,1.1*min(abs(h)),1.1*max(abs(h))]);ylabel('幅度');subplot(2,1,2),plot(n/pi,angle(h));grid %作系统的相位频响图axis([0,1,1.1*min(angle(h)),1.1*max(angle(h))]);ylabel('相位');xlabel('以pi为单位的频率');12.系统零极点图a=[0.8 -0.44 0.36 0.22];b=[1 0.7 -0.45 -0.6];h=zplane(a,b);实验⼆离散信号变换1.解⽅程y(n)-2y(n-1)+3y(n-2)=4x(n)-5x(n-1)+6x(n-2)-7x(n-3)a=[4,-5,6,-7];b=[1,-2,3];n=[0:7]; x=ones(length(n));Y=[-1,1];X=[1,-1];xic=filtic(b,a,Y,X);y1=filter(b,a,x,xic)stem(n,y1);xlabel('n');ylabel('y(n)');2.对连续的单⼀频率周期信号按采样频率采样,截取长度N分别选N =20和N =16,观察其DFT结果的幅度谱。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验一离散时间信号分析(2学时) 1.目的要求
掌握两个序列的相加、相乘、移位、反褶、卷积等基本运算。

例如:给出2个离散序列:f1[k]={-2,-1,0,1,2}, f2[k]={1,1,1},试用MATLAB绘出它们的波形及f1[k]+f2[k]和f1[k]×f2[k]的波形。

2.方法原理
参考《数字信号处理》教材的离散系统时域分析一章。

3.主要实验仪器及材料
微型计算机、Matlab6.5教学版、TC编程环境。

4.掌握要点
掌握用Matlab软件或C语言设计流程,重点是画出两个序列运算前后的图形。

5.实验内容
(1)用Matlab或C语言编制两个序列的相加、相乘、移位、反褶、卷积等的程序;(2)画出两个序列运算以后的图形;
(3)对结果进行分析;
(4)完成实验报告。

f1=-2:2;
k1=-2:2;
f2=[1 1 1];
k2=-1:1;
subplot(2,2,1);
stem(k1,f1);
axis([-3 3 -2.5 2.5]);
title('f1[k]');
subplot(2,2,2);
stem(k2,f2);
axis([-3 3 -2.5 2.5]);
title('f2[k]');
subplot(2,2,3);
%[f,k]=lsxj(f1,f2.k1,k2);(P33)——加注释说明f2=[0 1 1 1 0];
fk=f1+f2;
stem(k1,fk);
axis([-3 3 -2.5 2.5]);
title('f[k]=f1[k]+f2[k]');
f1=-2:2;
k1=0:4;
f2=[1 1 1];
k2=0:2;
subplot(2,2,1);
stem(k1,f1);
axis([0 4 -4 4]);
title('f1[k]');
subplot(2,2,2);
stem(k2,f2);
axis([0 4 -4 4]);
title('f2[k]');
subplot(2,2,3);
%[f,k]=lsxj(f1,f2.k1,k2);(P33)f2=[1 1 1 0 0];
fk=f1+f2;
stem(k1,fk);
axis([0 4 -4 4]);
title('f[k]=f1[k]+f2[k]');。

相关文档
最新文档