【中考专题复习】2018数学《《统计与概率》总复习阶段检测试卷含答案

合集下载

2018中考数学总复习第八单元统计与概率检测卷(江西有答案)

2018中考数学总复习第八单元统计与概率检测卷(江西有答案)

第八单元限时检测卷(时间:120分钟 分值:120分)一、选择题(本大题共6小题,每小题3分,共18分) 1.下列事件中最适合使用普查方式收集数据的是( ) A .了解某班同学的身高情况 B .了解全市每天丢弃的废旧电池数 C .了解50发炮弹的杀伤半径 D .了解我省农民的年人均收入情况2.下列说法正确的是( )A .打开电视,它正在播广告是必然事件B .已知某篮球运动员投篮投中的概率为0.6,则他投10次一定可投中6次C .在抽样调查过程中,样本容量越小,对总体的估计就越准确D .选举中,人们通常最关心的数据是众数3.PM 2.5是形成“灰霾”的主要原因,富含大量有毒、有害物质.2017年5月份,某市测得一周大气的PM 2.5的日均值(单位:微克/立方米)如下:31,35,31,33,30,33,31.对于这组数据下列说法正确的是( )A .众数是30B .中位数是31C .平均数是33D .方差是324.如图1,在4×4正方形网格中,任选一个白色的小正方形并涂黑,图中黑色部分仍为轴对称图形的概率是( )图1A .613B .513C .413D .3135.2017年某市中考体育考试包括必考和选考两项.必考项目:男生1 000米跑;女生800米跑;选考项目(五项中任选两项):A .掷实心球;B .篮球运球;C .足球运球;D .立定跳远;E.一分钟跳绳.那么小丽同学考“800米跑、立定跳远、一分钟跳绳”的概率是( )A .14B .16C .18D .1106.某校实施课程改革,为初三学生设置了A ,B ,C ,D ,E ,F 共六门不同的拓展性课程,现随机抽取若干学生进行了“我最想选的一门课”调查,并将调查结果绘制成如图2所示的统计图表(不完整),根据图表提供的信息,下列结论错误的是()图2AB.扇形统计图中E部分扇形的圆心角为72°C.被调查的学生中最想选F的人数为35人D.被调查的学生中最想选D的有55人二、填空题(本大题共6小题,每小题3分,共18分)7.有两名学员小林和小明练习射击,第一轮10枪打完后两人打靶的环数如图3所示,通常新手的成绩不太稳定,那么根据图中的信息,估计小林和小明两人中__________是新手.图38.已知5个数据:8,8,x,10,10.如果这组数据的某个众数与平均数相等,那么这组数据的中位数是__________.9.(2017南宁)红树林中学共有学生1 600人,为了解学生最喜欢的课外体育运动项目的情况,学校随机抽查了200名学生,其中有85名学生表示最喜欢的项目是跳绳,则可估计该校学生中最喜欢的课外体育运动项目为跳绳的学生有________人.10.一只蚂蚁在如图4所示的七巧板上任意爬行,已知它停在这副七巧板上的任何一点的可能性都相同,那么它停在1号板上的概率是__________.图411.从长度分别是3,4,5的三条线段中随机抽出一条,与长为2,3的两条线段首尾顺次相接,能构成三角形的概率是__________.12.小明有一双白袜子和一双黑袜子(袜子不分左右),把四只袜子放在同一个抽屉里,那么从中随机抽取两只恰好配成同色的一双的概率为__________.三、(本大题共5小题,每小题6分,共30分)13.小龙的妈妈让小龙去买一盒火柴,并叮嘱小龙,一定要试试火柴是否好用.小龙回家后,高兴地告诉妈妈:“火柴好用,我每根都试过了.”(1)小龙采取的是__________调查;(填“全面”或“抽样”)(2)你认为小龙采取的方法是否合适?为什么?14.(2017绥化)某校为了解学生每天参加户外活动的情况,随机抽查了100名学生每天参加户外活动的时间情况,并将抽查结果绘制成如图5所示的扇形统计图.请你根据图中提供的信息解答下列问题:(1)直接写出图中a的值,并求出本次抽查中学生每天参加户外活动时间的中位数;图5(2)求本次抽查中学生每天参加户外活动的平均时间.15.某校组织学生进行排球垫球训练,训练前后,对每个学生进行考核.现随机抽取部分学生,统计了训练前后两次考核成绩,并按“A,B,C”三个等次绘制了如图6所示的不完整的统计图.试根据统计图信息,解答下列问题:图6(1)求出抽取的学生训练后成绩为“A”等次的人数,并补全统计图;(2)若学校有600名学生,请估计该校训练后成绩为“A”等次的人数.16.有两个布袋,甲布袋有12只白球,8只黑球,10只红球;乙布袋中有3只白球,2只黄球,所有小球除颜色外都相同,且各袋中小球均已搅匀.(1)如果任意摸出1球,你想摸到白球,你认为选择哪个布袋成功的机会较大?(2)如果又有一布袋丙中有32只白球,14只黑球,4只黄球,你又选择哪个布袋呢?17.元旦游园活动中,小明,小亮,小红和王老师一起进行“抢凳子”游戏.游戏规则如下:将三位同学的椅子背靠背放在教室中央,四人围着椅子绕圈行走,在行走过程中裁判员随机喊停,听到“停”后四人迅速抢坐在一张椅子上,没有抢坐到椅子的人淘汰,不能进入下一轮.(1)下列事件是必然事件的是()A.王老师被淘汰B.小明抢坐到自己带来的椅子C.小红抢坐到小亮带来的椅子D.至少有两位同学可以进入下一轮游戏(2)如果王老师没有抢坐到任何一张椅子,三位同学都抢到了椅子但都没有抢坐到自己带来的椅子(记为事件A),求出事件A的概率,并用树状图法或列表法加以说明.四、(本大题共3小题,每小题8分,共24分)18.(2017镇江)为了解射击运动员小杰的集训效果,教练统计了他集训前后的两次测试成绩(每次测试射击10次),制作了如图7所示的条形统计图.(1)集训前小杰射击成绩的众数为____________;(2)分别计算小杰集训前后射击的平均成绩;(3)请用一句话评价小杰这次集训的效果.图719.如图8,在3×3的方格纸中,点A,B,C,D,E,F分别位于小正方形的顶点上.(1)从A,D,E,F四个点中任意取一点,以所取的这一点及点B,C为顶点画三角形,则所画三角形是等腰三角形的概率是多少?(2)从A,D,E,F四个点中先后任意取两个不同的点,以所取的这两点及点B,C为顶点画四边形,求所画四边形是平行四边形的概率.(用树状图或列表法求解)图820.为了关注学生的身心健康发展,减轻学生的学业负担,某校对七年级学生完成家庭作业的时间进行问卷调查,随机抽取了部分学生,记录每个人平均每天完成家庭作业的时间,并将调查数据适当整理,绘制成如图9所示的两幅不完整的表和图:图9(1)a=________,b=________,c=________,并将条形统计图补充完整;(2)这次调查中,学生平均每天完成家庭作业时间的中位数出现在________组;(3)若该校有在校学生1 200人,小明根据上述调查结果,对该校平均每天完成家庭作业的时间在80分钟以上的人数作了如下估计:∵1 200×(0.20+0.10)=360,∴估计该校平均每天完成家庭作业的时间在80分钟以上的人数约为360人.①上述过程主要体现的数学思想是________________;②小明估计的结果是否合理,请说明理由;若不合理,怎样估计才合理.五、(本大题共2小题,每小题9分,共18分)21.网瘾低龄化问题已经引起社会各界的高度关注,有关部门在全国范围内对12~35岁的网瘾人群进行了简单的随机抽样调查,绘制出如图10所示的两幅统计图.请根据图中的信息,回答下列问题:(1)这次抽样调查中共调查了__________人;(2)请补全条形统计图;(3)扇形统计图中18~23岁部分的圆心角的度数是__________;(4)据报道,目前我国12~35岁网瘾人数约为2 000万,请估计其中12~23岁的网瘾人数.图1022.某体育老师对自己任教的55名男生进行一百米摸底测试,若规定男生成绩为16秒合格,随机抽取10名男生分为A,B两组,测试成绩与合格标准的差值如下表(比合格标准多的秒数为正,少的秒数为负).(1)请你估算55(2)通过相关的计算,说明哪个组的成绩比较均匀;(3)请选择一个合适的量作为标准,评价A组和B组哪个成绩较好,并说明理由.六、(本大题共12分)23.(2017台州)家庭过期药品属于“国家危险废物”,处理不当将污染环境,危害健康.某市药监部门为了解市民家庭处理过期药品的方式,决定对全市家庭做一次简单随机抽样调査.(1)下列选取样本的方法最合理的一种是________;(只需填上正确答案的序号) ①在市中心某个居民区以家庭为单位随机抽取;②在全市医务工作者中以家庭为单位随机抽取;③在全市常住人口中以家庭为单位随机抽取.(2)本次抽样调査发现,接受调査的家庭都有过期药品,现将有关数据呈现如图11:图11①m =__________,n =__________; ②补全条形统计图;③根据调査数据,你认为该市市民家庭处理过期药品最常见的方式是什么?④家庭过期药品的正确处理方式是送回收点,若该市有180万户家庭,请估计有多少户家庭处理过期药品的方式是送回收点.第八单元限时检测卷1.A 2.D 3.B 4.B 5.D 6.D 7.小林 8.8或10 9.680 10.14 11.23 12.13 13.解:(1)全面;(2)小龙采取的方法不合适,因为试用火柴具有破坏性,所以应用抽样调查. 14.解:(1)a =1-15%-25%-40%=20%. 户外活动时间为0.5小时的有100×20%=20(人), 户外活动时间为1小时的有100×40%=40(人),100名学生的户外活动时间情况的中位数为第50和51名学生户外活动时间的平均数, 所以本次抽查中学生每天参加活动时间的中位数是1.(2)20×0.5+40×1+100×25%×1.5+100×15%×2100=1.175(小时).答:本次抽查中学生每天参加户外活动的平均时间是1.175小时. 15.解:(1)∵抽取的人数为21+7+2=30(人), ∴训练后成绩为“A”等次的人数为30-2-8=20(人).补全统计图略; (2)600×2030=400(人).答:估计该校九年级训练后成绩为“A”等次的人数是400人.16.解:(1)任意摸出1球,甲布袋摸到白球的机会为1212+8+10=0.4,乙布袋摸到白球的机会为33+2=0.6>0.4,故乙布袋成功的机会较大.(2)任意摸出1球,丙布袋摸到白球的机会为3232+14+4=0.64>0.6>0.4,故应选丙布袋.17.解:(1)D ;(2)设小明,小亮,小红三位同学带来的椅子依次为a ,b ,c , 画树状图如图1所示:图1由树状图可知,所有等可能结果共有6种,其中第4种、第5种结果符合题意, ∴事件A 的概率为26=13.18.解:(1)8;(2)小杰集训前射击的平均成绩为8×6+9×3+10×110=8.5(环),小杰集训后射击的平均成绩为8×3+9×5+10×210=8.9(环).(3)由集训前后平均成绩的变化可知,小杰这次集训后的命中环数明显增加.(答案不唯一,合理即可)19.解:(1)从A ,D ,E ,F 四个点中任意取一点,一共有4种可能,只有选取D 点时,所画三角形是等腰三角形,故所画三角形是等腰三角形的概率是14.(2)如图2,用树状图列出所有可能的结果:图2∵只有以点A ,E ,B ,C 为顶点及以D ,F ,B ,C 为顶点所画的四边形是平行四边形, ∴所画四边形是平行四边形的概率是412=13.20.解:(1)36,0.30,120,C 组的人数为120-18-36-24-12=30(人),图略; (2)C ;(3)①样本估计总体;②不合理,因为该样本是从七年级的学生中抽取的,对于八、九年级学生来说不具有代表性.如果要了解全校学生完成家庭作业的时间,应在三个年级随机抽取学生进行调查,进而分析.21.解:(1)1 500;(2)12~17岁的人数为1 500-450-420-330=300(人),图略; (3)108°;(4)估计12~23岁的网瘾人数为2 000×300+4501 500=1 000(万人).22.解:(1)∵从10名男生的成绩可知样本的合格率为610=35,∴55名男生合格的人数约为35×55=33(人).(2)x A =16+15×(-1.5+1.5-1-2-2)=15(秒),x B =16+15×(1+3-3+2-3)=16(秒);s 2A=15×[(-0.5)2+(2.5)2+02+(-1)2+(-1)2]=1.7, s 2B=15×[12+32+(-3)2+22+(-3)2]=6.4. ∴s 2A <s 2B ,即A 组的成绩比较均匀.(3)①若以合格率来作标准,A ,B 两组的合格率分别为80%,40%, ∴A 组成绩较好;②若以平均数作标准,由(2)知x B >x A , ∴A 组成绩较好;③若以众数作标准,A 组成绩的众数是14秒,B 组成绩的众数是13秒, ∴B 组成绩较好;④若以中位数作标准,A 组成绩的中位数是14.5秒,B 组成绩的中位数是17秒, ∴A 组成绩较好.(写出一条即可) 23.解:(1)③;(2)①20;6;②图略,总户数:80÷8%=1 000(户),则C 组户数:1 000×10%=100(户). ③根据调査数据,即可知道该市市民家庭处理过期药品最常见的方式是直接抛弃; ④若该市有180万户家庭,大约有180×10%=18(万户)家庭处理过期药品的方式是送回收点.。

2018届中考数学复习《统计与概率的应用》专题训练及答案

2018届中考数学复习《统计与概率的应用》专题训练及答案

2018届初三数学中考复习统计与概率的应用专题复习训练题1.秋季新学期开学时,红城中学对七年级新生掌握“中学生日常行为规范”的情况进行了知识测试,测试成绩全部合格,现学校随机选取了部分学生的成绩,整理90≤x≤100 c请根据上述统计图表,解答下列问题:(1)在表中,a=__0.1__,b=__0.3__,c=__18__;(2)补全频数分布直方图;(3)根据以上选取的数据,计算七年级学生的平均成绩;(4)如果测试成绩不低于80分者为“优秀”等次,请你估计全校七年级的800名学生中,“优秀”等次的学生约有多少人?解:(2)补图略(3)平均成绩是81分(4)800×(0.3+0.2)=400,即“优秀”等次的学生约有400人2. 甲、乙两人利用扑克牌玩“10点”游戏,游戏规则如下:①将牌面数字作为“点数”,如红桃6的“点数”就是6(牌面点数与牌的花色无关);②两人摸牌结束时,将所摸牌的“点数”相加,若“点数”之和小于或等于10,此时“点数”之和就是“最终点数”;若“点数”之和大于10,则“最终点数”是0;③游戏结束前双方均不知道对方“点数”;④判定游戏结果的依据是:“最终点数”大的一方获胜,“最终点数”相等时不分胜负.现甲、乙均各自摸了两张牌,数字之和都是5,这时桌上还有四张背面朝上的扑克牌,牌面数字分别是4,5,6,7.(1)若甲从桌上继续摸一张扑克牌,乙不再摸牌,则甲获胜的概率为__12__; (2)若甲先从桌上继续摸一张扑克牌,接着乙从剩下的扑克牌中摸出一张牌,然后双方不再摸牌.请用树状图或表格表示出这次摸牌后所有可能的结果,再列表呈现甲、乙的“最终点数”,并求乙获胜的概率.解:(2)画树状图:乙 ∴乙获胜的概率为123.为了解某小区某月家庭用水量的情况,从该小区随机抽取部分家庭进行调查,根据以上信息,解答下列问题:(1)家庭用水量在4.0<x≤6.5范围内的家庭有__13__户,在6.5<x≤9.0范围内的家庭数占被调查家庭数的百分比是__30__%;(2)本次调查的家庭数为__50__户,家庭用水量在9.0<x≤11.5范围内的家庭数占被调查家庭数的百分比是__18__%;(3)家庭用水量的中位数落在__C__组.(4)若该小区共有200户家庭,请估计该月用水量不超过9.0吨的家庭数.解:(4)估计该月用水量不超过9.0吨的家庭数为200×4+13+1550=128(户)4.网上购物已经成为人们常用的一种购物方式,售后评价特别引人关注,消费者在网店购买某种商品后,对其有“好评”“中评”“差评”三种评价,假设这三种评价是等可能的.(1)小明对一家网店销售某种商品显示的评价信息进行了统计,并绘制出了两幅不完整的统计图.利用图中所提供的信息解决以下问题:①小明一共统计了__150__个评价;②请将图1补充完整;③图2中“差评”所占的百分比是__13.3%__;(2)若甲、乙两名消费者在该网店购买了同一商品,请你用列表格或画树状图的方法帮助店主求一下两人中至少有一个给“好评”的概率.解:(1)②“好评”一共有150×60%=90(个),补图略.(2)列表:由表可知,一共有95种,∴两人中至少有一个给“好评”的概率是595.某校为更好地开展“传统文化进校园”活动,随机抽查了部分学生,了解他们最喜爱的传统文化项目类型(分为书法、围棋、戏剧、国画共4类),并将统计结果绘制成如图不完整的频数分布表及频数分布直方图.国画类 b 0.20根据以上信息完成下列问题:(1)直接写出频数分布表中a的值;(2)补全频数分布直方图;(3)若全校共有学生1500名,估计该校最喜爱围棋的学生大约有多少人?解:(1)14÷0.28=50,a=18÷50=0.36(2)b=50×0.20=10,补图略(3)1500×0.28=420(人),估计该校最喜爱围棋的学生大约有420人6.某超市为了答谢顾客,凡在本超市购物的顾客,均可凭购物小票参与抽奖活动,奖品是三种瓶装饮料,它们分别是:绿茶(500 mL)、红茶(500 mL)和可乐(600 mL),抽奖规则如下:①如图,是一个材质均匀可自由转动的转盘,转盘被等分成五个扇形区域,每个区域上分别写有“可”“绿”“乐”“茶”“红”字样;②参与一次抽奖活动的顾客可进行两次“有效随机转动”(当转动转盘,转盘停止后,可获得指针所指区域的字样,我们称这次转动为一次“有效随机转动”);③假设顾客转动转盘,转盘停止后,指针指向两区域的边界,顾客可以再转动转盘,直到转动为一次“有效随机转动”;④当顾客完成一次抽奖活动后,记下两次指针所指区域的两个字,只要这两个字和奖品名称的两个字相同(与字的顺序无关),便可获得相应奖品一瓶;不相同时,不能获得任何奖品.根据以上规则,回答下列问题:(1)求一次“有效随机转动”可获得“乐”字的概率;(2)有一名顾客凭本超市的购物小票,参与了一次抽奖活动,请你用列表或树状图等方法,求该顾客经过两次“有效随机转动”后,获得一瓶可乐的概率.解:(1)15(2)画树状图(略),由树状图可知共有25种等可能的结果,该顾客经过两次“有效随机转动”后,获得一瓶可乐的有2种情况,∴该顾客经过两次“有效随机转动”后,获得一瓶可乐的概率为2257.如图,3×3的方格分为上中下三层,第一层有一枚黑色方块甲,可在方格A ,B ,C 中移动,第二层有两枚固定不动的黑色方块,第三层有一枚黑色方块乙,可在方格D ,E ,F 中移动,甲、乙移入方格后,四枚黑色方块构成各种拼图.(1)若乙固定在E 处,移动甲后黑色方块构成的拼图是轴对称图形的概率是__13__; (2)若甲、乙均可在本层移动.①用树状图或列表法求出黑色方块所构拼图是轴对称图形的概率; ②黑色方块所构拼图是中心对称图形的概率是__29__.解:(2)①由树状图可知,黑色方块所构拼图是轴对称图形的概率P =39=138.为了了解某学校九年级学生每周平均课外阅读时间的情况,随机抽查了该学校九年级m 名同学,对其每周平均课外阅读时间进行统计,绘制了如下条形统计图(图一)和扇形统计图(图二):(1)根据以上信息回答下列问题:①求m 值;②求扇形统计图中阅读时间为5小时的扇形圆心角的度数;③补全条形统计图.(2)直接写出这组数据的众数、中位数,求出这组数据的平均数.解:(1)①∵m=15÷14=60 ②560×360°=30° ③第三小组的频数为60-10-15-10-5=20,补图略(2)众数为 3小时,中位数为3小时,平均数为2.75小时9. 某商场举行开业酬宾活动,设立了两个可以自由转动的转盘(如图,两个转盘均被等分),并规定:顾客购买满188元的商品,即可任选一个转盘转动一次,转盘停止后,指针所指区域内容即为优惠方式;若指针所指区域空白,则无优惠.已知小张在该商场消费300元.(1)若他选择转动转盘1,则他能得到优惠的概率为多少?(2)选择转动转盘1和转盘2,哪种方式对于小张更合算,请通过计算加以说明.解:(1)P (得到优惠)=612=12 (2)转盘1能得到的优惠为112×(0.3×300+0.2×300×2+0.1×300×3)=25(元),转盘2能得到的优惠为40×24=20(元),∴选择转盘1更合算10. 研究问题: 一个不透明的盒中装有若干个只有颜色不一样的红球与黄球,怎样估算不同颜色球的数量?操作方法:先从盒中摸出8个球,画上记号放回盒中,再进行摸球试验,摸球试验的要求:先搅拌均匀,每次摸出一个球,放回盒中,再继续.(1)盒中红球、黄球各占总球数的百分比分别是多少?(2)盒中有红球多少个?解:(1)红球占40%,黄球占60%(2)设总球数为x 个,由题意得8x =450,解得x =100,100×40%=40(个),即盒中红球有40个11. 某学校环保志愿者协会对该市城区的空气质量进行调查,从全年365天中随机抽取了80天的空气质量指数(AQI)数据,绘制出三幅不完整的统计图表.请根据图以上 严重污染 2(1)统计表中m =__20__,n =__8__.扇形统计图中,空气质量等级为“良”的天数占__55__%;(2)补全条形统计图,并通过计算估计该市城区全年空气质量等级为“优”和“良”的天数共多少天?(3)据调查,严重污染的2天发生在春节期间,燃放烟花爆竹成为空气污染的一个重要原因,据此,请你提出一条合理化建议.解:(2)估计该市城区全年空气质量等级为“优”和“良”的天数共365×(25%+55%)=292(天),补图略(3)建议不要燃放烟花爆竹12. 在一次中学生田径运动会上,根据参加男子跳高初赛的运动员的成绩(单位:m)绘制出如下的统计图①和图②,请根据相关信息,解答下列问题:(1)图①中a的值为__25__;(2)求统计的这组初赛成绩数据的平均数、众数和中位数;(3)根据这组初赛成绩,由高到低确定9人进入复赛,请直接写出初赛成绩为1.65 m 的运动员能否进入复赛.解:(2)x=1.61;众数是1.65;中位数是1.60(3)能;∵共有20个人,中位数是第10,11个数的平均数.∴根据中位数可以判断出能否进入前9名;∵1.65 m>1.60 m,∴能进入复赛。

2018中考数学总复习统计与概率检测试卷湘教版有答案

2018中考数学总复习统计与概率检测试卷湘教版有答案

课时训练 ( 三十 ) 数据的采集与统计图 | 夯实基础| 一、选择题 1. [2017 ?襄阳 ] 以下检查中,检查方式选择合理的是() A .为认识襄阳市初中生每日锻炼所用的时间,选择全面检查 B .为认识襄阳电视台《襄阳新闻》栏目的收视率,选择全面检查C.为认识神舟飞船设施部件的质量状况,选择抽样检查D .为认识一批节能灯的使用寿命,选择抽样检查 2 .一个样本有若干个数据,分为 5 组,第三组的频数为 12,频次为0.15 ,则样本容量是() A . 60 B . 75C . 80 D. 180 3 . [2017 ? 宁夏 ] 某商品四天内每日每斤的进价与售价信息如图K30- 1所示,则售出这类商品每斤收益最大的是() A .第一天 B .次日 C .第三天D .第四天 4 . [2017 ? 邵阳 ] “治病救人”是我国的传统美德.某媒体就“老人跌倒该不该扶”进行了检查,将获得的数据经统计剖析后绘制成如图 K30 - 2 所示的扇形统计图.依据统计图判断以下说法,此中错误的一项为哪一项20 ×20() A .以为依状况而定的占27% B .认为该扶的在统计图中所对应的圆心角是234°C .以为不应扶的占8% D.以为该扶的占92%5 . [2017 ? 安徽 ] 为认识某校学生今年五一时期参加社团活动时间的状况,随机抽查了100 名学生进行统计,并绘成如图K30- 3 所示的频数直方图,已知该校共有1000名学生.据此预计,该校五一时期参加社团活动时间在 8 ~ 10小时之间的学生数大概是()图 K30- 3A . 280B . 240C . 300D . 260 6 .如图K30 - 4 分别是某班全体学生上学时搭车、步行、骑车人数的条形统计图和扇形统计图( 两图都不完好) ,则以下结论错误的选项是() 图K30-4A.该班总C.乘车人人数为50人B.步行人数为30人数是骑车人数的2.5倍D.骑车人数占 20%二、填空题7.某市今年中考数学学科开考时间是6月22日15时,数串“201706221500”中“0”出现的频数是________ . 8 .某班数学老师想了解20 ×20学生对数学的喜欢程度,对全班50名学生进行调查,根据调查结果绘制了扇形统计图(如图K30-5所示),其中A表示“很喜欢”,B表示“一般”,C表示“不喜欢”,则该班“很喜欢”数学的学生有________人.20 ×20。

2018年中考数学分类复习测试统计与概率

2018年中考数学分类复习测试统计与概率

外…………○…………装………绝密★启用前2018年中考数学分类复习测试统计与概率温馨提示:亲爱的同学,如果这份试卷是一片蔚蓝的天空,你就是那翱翔的雄鹰。

请自信握起你的笔,也许你会比雄鹰飞得更高、更远!本试卷共23题,答题时间为120分钟,满分150分。

1.一组数据1,2,3,4,5的方差是( )A. 4B. 2C.D. 12.某班准备举办一项体育比赛,为了使同学参与比赛热情更高,在全班进行普查,了解同学们对篮球、足球、乒乓球等三种运动项目的喜爱情况,则应关注的统计结果是各种运动项目的( )A. 众数B. 中位数C. 平均数D. 方差 3.下列事件中,必然发生的事件是( ) A. 随意翻到一本书的某页,这页的页码是奇数 B. 通常温度降到0℃以下,纯净的水结冰 C. 地面发射一枚导弹,未击中空中目标 D. 测量某天的最低气温,结果为-150℃4.从 1 到 9这9个自然数中任取一个,是偶数的概率是( ) A.29 B. 49 C. 59 D. 235.若频率为0.2,总数为100,则频数为( ) A. 0.2 B. 200 C. 100 D. 206.从图中的四张图案中任取一张,取出图案是中心对称图形的概率是( )A.14 B. 12 C. 34D. 1 7.甲、乙两人在相同情况下,各射靶10次,两人命中环数的平均数x 甲=x 乙=7,方差2232s s 甲乙=,=,则射击成绩较稳定的是( )装…………○……○……※※要※※在※※装※※题※※…………8.(2015秋•陕西校级期末)下列调查方式合适的是()A. 为了了解电视机的使用寿命,采用普查的方式B. 为了了解全国中学生的视力状况,采用普查的方式C. 对载人航天器“神舟六号”零部件的检查,采用抽样调查的方式D. 为了了解人们保护水资源的意识,采用抽样调查的方式9.澳大利亚野兔泛滥成灾,某牧场为估计该地野兔的只数,先捕捉30只野兔给它们分别作上标志,然后放回,待有标志的野兔完全混合于野兔群后,第二次捕捉100只野兔,发现其中2只有标志,从而估计该地区有野兔()A. 800只B. 1000只C. 1200只D. 1500只10.向如图所示的地砖上随机地掷一个小球,当小球停下时,最终停在地砖上阴影部分的概率是()A.13B.12C.34D.23二、填空题(计20分)11.小明向如图所示的正方形ABCD区域内投掷飞镖,点E是以AB为直径的半圆与对角线AC的交点.如果小明投掷飞镖一次,则飞镖落在阴影部分的概率为____________.12.为了估计湖里有多少条鱼,我们从湖里捕捉100条做标记,然后放回湖里去,经过一段时间,待带标记的鱼完全混合于鱼群中,再捕第二次样品鱼200条,若其中带标记的鱼有25条,则估计湖里有鱼_____________条.13.小张参加某公司招聘测试,他的笔试、面试、计算机操作得分分别为80分,85分,90分,若三项得分依次按照25%、20%、55%确定成绩,则小王的成绩是________.14.在一个不透明的布袋中装有2个白球和a个黄球,它们除颜色不同外,其余均相同,若从中随机摸出一个球,摸到黄球的概率是45,则a=______.三解答题(计90分)15.有4张看上去无差别的卡片,上面分别写着1,2,3,4,随机抽取1张后,放回并混在一起,再随机抽取1张.(1)请用树状图或列表法等方法列出各种可能出现的结果;(2)求两次抽到的卡片上的数字之和等于5的概率.…………装校:___________姓○…………订…16.一只不透明的袋子中装有1个蓝球和2个红球,这些球除颜色外都相同. (1)搅匀后从中任意摸出1个球,求摸到蓝球的概率;(2)搅匀后从中任意摸出1个球,记录颜色后放回、搅匀,再从中任意摸出1个球. 求至少有1次摸到红球的概率.17.甲、乙两人分别进行了5次射击训练,成绩如下(单位:环).(1)甲射击成绩的中位数是环,乙射击成绩的众数是环; (2)求甲射击成绩的方差.18.甲、乙、丙三人站成一横排照相,因甲、乙两人是好友,照相时两人紧邻着站在一起不分开.(1)请按左、中、右的顺序列出所有符合要求的站位的结果;(2)按要求随机的站立,求丙站在甲左边的概率.19.布袋里有四个小球,球表面分别标有2、3、4、6四个数字,它们的材质、形状、大小完全相同。

2018年中考数学真题专题汇编:统计与概率(解析版)

2018年中考数学真题专题汇编:统计与概率(解析版)
三、解答题
19.泰州具有丰富的旅游资源,小明利用周日来泰州游玩,上午从
, 两个景点中任意选择一个游玩,
下午从 、 、 三个景点中任意选择一个游玩, 用列表或画树状图的方法列出所有等可能的结果
.并求
小明恰好选中景点 和 的概率 .
【答案】 解:列树状图如下:
一共有 6 种可能,出现小明恰好选中景点
和 两景点的有 1 种可能
故答案为: A . 【分析】根据这组数据的平均数,列出方程,求解得出 公式即可得出这组数据的方差。
x 的值,进而得出这组数据的平均数,再根据方差
10.某排球队 名身高为
名场上队员的身高(单位: 的队员换下场上身高为
)是:





的队员,与换人前相比,场上队员的身高(
.现用一 )
A. 平均数变小,方差变小 C. 平均数变大,方差变小 【答案】 A
【分析】根据中位数的定义,一组数据从小到大排列后,处于最中间位置的数就是中位数,如果这组数据
的个数是偶数个,则处于中间位置的两个数的平均数就是该组数据的中位数;抽样调查适合于要求的数据
不是那么精准,具有破坏性,等的调查;根据平均数的计算方法,把该组数据的总和除以该组数据的个数
即可得出该组数据的平均数;求一天温差就是用当天的最高温度减去最低温度,根据有理数的减法法则即
∴被录取的教师为乙,其综合成绩为 故答案为: 78.8
78.8 分,
【分析】计算加权平均数时,每类所占的比重需要乘以该类得数才算进综合得数里
.
15.某鞋厂调查了商场一个月内不同尺码男鞋的销量,在平均数、中位数、众数和方差等统计量中,该鞋厂 最关注的是 ________.
【答案】 众数 【解析】 :∵某鞋厂调查了商场一个月内不同尺码男鞋的销量,∴该鞋厂最关注的是众数。

2018中考数学专题训练---统计与概率(含解析)

2018中考数学专题训练---统计与概率(含解析)

专题训练(统计与概率)(120分钟120分)一、选择题(本大题共20小题,在每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来,每小题选对得3分,选错、不选或选出的答案超过一个,均记零分)1.下列调查中,调查方式选择正确的是( )A.为了了解全市中学生课外阅读情况,选择全面调查B.为了了解全国中学生“母亲节”孝敬母亲的情况,选择全面调查C.为了了解一批手机的使用寿命,选择抽样调查D.旅客上飞机前的安检,选择抽样调查【解析】选C.为了了解全市中学生课外阅读情况,选择抽样调查,A错误;为了了解全国中学生“母亲节”孝敬母亲的情况,选择抽样调查,B错误;为了了解一批手机的使用寿命,选择抽样调查,C正确;旅客上飞机前的安检,选择全面调查,D错误.2.2017年我市近9万多名考生参加中考,为了解这些考生的数学成绩,从中抽取1000名考生的数学成绩进行统计分析,以下说法正确的是( )A.这1 000名考生是总体的一个样本B.1 000名考生是样本容量C.每位考生的数学成绩是个体D.近9万多名考生是总体【解析】选C.A.1 000名考生的数学成绩是总体的一个样本,故A错误;B.1 000是样本容量,故B错误;C.每位考生的数学成绩是个体,故C正确;D.9万多名考生的数学成绩是总体,故D错误.3.(2017·扬州中考)下列统计量中,反映一组数据波动情况的是( )A.平均数B.众数C.频率D.方差【解析】选D.方差反映数据的波动情况.4.下列事件中,属于随机事件的是( )A.掷一枚骰子,向上一面的数字是2B.度量四边形的内角和,结果是360°C.测量某天的最高气温是100℃D.袋中装有5只黑球,从中摸出一个是黑球【解析】选A.掷一枚骰子,向上一面的数字是2是随机事件,A符合题意;度量四边形的内角和,结果是360°是必然事件,B不符合题意;测量某天的最高气温是100℃是不可能事件,C不符合题意;袋中装有5只黑球,从中摸出一个是黑球是必然事件,D不符合题意.5.为了估计水塘中的鱼数,养鱼者首先从鱼塘中捕获20条鱼,在每条鱼身上做好记号后,把这些鱼放归鱼塘.再从鱼塘中打捞100条鱼,如果在这100条鱼中有5条鱼是有记号的,则估计该鱼塘中的鱼数约为( )A.300条B.380条C.400条D.420条【解析】选C.因为×100%=5%,所以20÷5%=400(条).6.(2017·宁波中考)一个不透明的布袋里装有5个红球,2个白球,3个黄球,它们除颜色外其余都相同,从袋中任意摸出1个球,是黄球的概率为( )A. B. C. D.【解析】选C.因为布袋里装有5个红球,2个白球,3个黄球,所以从袋中摸出一个球是黄球的概率是.7.(2017·邵阳中考)“救死扶伤”是我国的传统美德.某媒体就“老人摔倒该不该扶”进行了调查,将得到的数据经统计分析后绘制成如图所示的扇形统计图.根据统计图判断下列说法,其中错误的一项是( )A.认为依情况而定的占27%B.认为该扶的在统计图中所对应的圆心角是234°C.认为不该扶的占8%D.认为该扶的占92%【解析】选D.认为依情况而定的占27%,故A正确;认为该扶的在统计图中所对应的圆心角是65%×360°=234°,故B正确;认为不该扶的占1-27%-65%=8%,故C正确;认为该扶的占65%,故D错误.8.(2017·连云港中考)小广,小娇分别统计了自己近5次数学测试成绩,下列统计量中能用来比较两人成绩稳定性的是( )A.方差B.平均数C.众数D.中位数【解析】选A.根据方差的意义,可知方差越小,数据越稳定,因此可知比较两人成绩稳定性的数据为方差.9.(2017·成都中考)学习全等三角形时,数学兴趣小组设计并组织了“生活中的全等”的比赛,全班同学的比赛结果统计如下表:则得分的众数和中位数分别为( )A.70分,70分B.80分,80分C.70分,80分D.80分,70分【解析】选C.根据表格中的数据,可知70出现的次数最多,可知其众数为70分;把数据按从小到大排列,可知其中间的两个的平均数为80分,故其中位数为80分.10.九年级(1)班和(2)班的第一次模拟考试的数学成绩统计如下表:根据上表分析得出如下结论:①两班学生成绩的平均水平基本一致;②(2)班的两极分化比较严重;③若考试分数≥120分为优秀,则(2)班优秀的人数一定多于(1)班优秀的人数.上述结论正确的( )A.①②③B.①②C.①③D.②③【解析】选B.由两班的平均数可得两班学生成绩的平均水平基本一致,故①正确;(2)班方差大于(1)班,因此(2)班的两极分化比较严重,故②正确;(2)班中位数为121,(2)班比(1)班少1人,无法判断哪个班优秀的人数多,故③错误.11.(2017·南充中考)某校数学兴趣小组在一次数字课外活动中,随机抽查该校10名同学参加今年初中学业水平考试的体育成绩,得到结果如下表所示:下列说法正确的是( )A.这10名同学体育成绩的中位数为38分B.这10名同学体育成绩的平均数为38分C.这10名同学体育成绩的众数为39分D.这10名同学体育成绩的方差为2【解析】选C.10名学生的体育成绩中39分出现的次数最多,众数为39分;排序后第5和第6名同学的成绩的平均值为中位数,中位数为=39分; 平均数==38.4分,方差=[(36-38.4)2+2×(37-38.4)2+(38-38.4)2+4×(39-38.4)2+2×(40-38.4)2]=1.64;所以选项A,B,D错误.12.在“我的中国梦”演讲比赛中,有5名学生参加决赛,他们决赛的最终成绩各不相同.其中的一名学生想要知道自己能否进入前3名,不仅要了解自己的成绩,还要了解这5名学生成绩的( )A.中位数B.众数C.平均数D.方差【解析】选A.因为5位进入决赛者的分数肯定是5名参赛选手中最高的,而且5个不同的分数按从小到大排序后,中位数及中位数之前的共有3个数,故只要知道自己的分数和中位数就可以知道是否进入前3名了.13.若将30°,45°,60°的三角函数值填入表中,则从表中任意取一个值,是的概率为( )A. B. C. D.【解析】选D.∵表中共有9个数,有两个,∴从表中任意取一个值,是的概率为.14.小洪根据演讲比赛中九位评委所给的分数制作了如下表格:如果去掉一个最高分和一个最低分,那么表格中数据一定不发生变化的是( ) A.平均数 B.中位数C.众数D.方差【解析】选B.去掉一个最高分和一个最低分对中位数没有影响.15.(2017·金华中考)某校举行以“激情五月,唱响青春”为主题的演讲比赛.决赛阶段只剩下甲,乙,丙,丁四名同学,则甲,乙同学获得前两名的概率是( )A. B. C. D.【解析】选D.画树状图得:所以一共有12种等可能的结果,甲,乙同学获得前两名的有2种情况,所以甲,乙同学获得前两名的概率是=.16.一个不透明的袋子中装有2个白球和若干个黑球,它们除颜色外完全相同,从袋子中随机摸出一球,记下颜色并放回,重复该实验多次,发现摸到白球的频率稳定在0.4,则可判断袋子中黑球的个数为( )A.2个B.3个C.4个D.5个【解析】选B.∵重复该试验多次,摸到白球的频率稳定在0.4,∴估计摸到白球的概率0.4,设袋子中黑球的个数为x,∴=0.4,解得x=3,∴可判断袋子中黑球的个数为3.17.(2017·眉山中考)下列说法错误的是( )A.给定一组数据,那么这组数据的平均数一定只有一个B.给定一组数据,那么这组数据的中位数一定只有一个C.给定一组数据,那么这组数据的众数一定只有一个D.如果一组数据存在众数,那么该众数一定是这组数据中的某一个【解析】选C.A.给定一组数据,那么这组数据的平均数一定只有一个,正确,不符合题意;B.给定一组数据,那么这组数据的中位数一定只有一个,正确,不符合题意;C.给定一组数据,那么这组数据的众数一定只有一个,错误,符合题意;D.如果一组数据存在众数,那么该众数一定是这组数据中的某一个,正确,不符合题意.18.一家鞋店在一段时间内销售了某种女式鞋子38双,其中各种尺码的鞋的销售量如表所示:根据统计的数据,鞋店进货时尺寸码为23cm,23.5cm,24cm的鞋双数合理的比是( ) A.1∶2∶4 B.2∶4∶5C.2∶4∶3D.2∶3∶4【解析】选C.鞋店进货时尺寸码为23cm,23.5cm,24cm的鞋双数合理的比为6∶12∶9=2∶4∶3.19.(2017·绍兴中考)下表记录了甲,乙,丙,丁四名射击运动员最近几次选拔赛成绩的平均数和方差:根据表中数据,要从中选择一名成绩好且发挥稳定的运动员参加比赛,应选择( ) A.甲 B.乙 C.丙 D.丁【解析】选D.比较四名射击运动员成绩的平均数可得,乙和丁的成绩更好,而乙的方差>丁的方差,所以丁的成绩更稳定些.20.学校食堂午餐有10元,12元、15元三种价格的盒饭供选择,若经过统计发现10元、12元、15元的盒饭卖出数量恰好分别占50%,30%,20%,则卖出盒饭价格的中位数是( )A.10元B.11元C.12元D.无法确定【解析】选B.∵10元,12元,15元的盒饭卖出数量恰好分别占50%,30%、20%, ∴最中间的两个数是10元,12元,∴中位数是10和12的平均数,(10+12)÷2=11(元).二、填空题(本大题共4小题,满分12分,只要求填写最后结果,每小题填对得3分)21.(2017·重庆模拟)某班体育委员对本班学生一周锻炼时间(单位:小时)进行了统计,绘制了如图所示的折线统计图,则该班这些学生一周锻炼时间的中位数是________小时.【解析】由统计图可知,一共有6+9+10+8+7=40(人),所以该班这些学生一周锻炼时间的中位数是第20个和第21个学生对应的数据的平均数,所以该班这些学生一周锻炼时间的中位数是11小时.答案:1122.甲乙两地9月上旬的日平均气温如图所示,则甲乙两地这10天日平均气温方差大小关系为______ (填>或<).【解析】观察平均气温统计图可知:乙地的平均气温比较稳定,波动小,则乙地的日平均气温的方差小,故>.答案:>23.(2017·岱岳区模拟)从3,0,-1,-2,-3这五个数中,随机抽取一个数,作为函数y=(5-m2)x和关于x的方程(m+1)x2+mx+1=0中m的值,恰好使所得函数的图象经过第一、三象限,且方程有实数根的概率为________.【解析】因为所得函数的图象经过第一、三象限,所以5-m2>0,所以m2<5,所以3,0,-1,-2,-3中,3和-3均不符合题意,将m=0代入(m+1)x2+mx+1=0中得,x2+1=0,Δ=-4<0,无实数根;将m=-1代入(m+1)x2+mx+1=0中得,-x+1=0,x=1,有实数根;将m=-2代入(m+1)x2+mx+1=0中得,x2+2x-1=0,Δ=4+4=8>0,有实数根.故方程有实数根的概率为.答案:24.(2017·张店区一模)某校射击队从甲,乙,丙,丁四人中选拔一人参加市运会射击比赛.在选拔赛中,每人射击10次,他们10次成绩的平均数及方差如下表所示:请你根据表中数据选一人参加比赛,最合适的人选是________.【解析】因为=5.1,=4.7,=4.5,=4.5,所以>>=,因为丁的平均数大,所以最合适的人选是丁.答案:丁三、解答题(本大题共5个小题,满分48分.解答应写出必要的文字说明、证明过程或推演步骤)25.(8分)(2017·天津中考)某跳水队为了解运动员的年龄情况,做了一次年龄调查,根据跳水运动员的年龄(单位:岁),绘制出如下的统计图①和图②.请根据相关信息,解答下列问题:(1)本次接受调查的跳水运动员人数为________,图①中m的值为________.(2)求统计的这组跳水运动员年龄数据的平均数、众数和中位数.【解析】(1)4030(2)观察所给的条形统计图,因为==15(岁),所以这组数据的平均数为15岁;因为在这组数据中,16出现了12次,出现的次数最多,所以这组数据的众数为16岁;因为将这组数据按照从小到大的顺序排列,其中处于中间的两个数都是15,有=15(岁),所以这组数据的中位数为15岁.26.(8分)(2017·连云港中考)为落实“垃圾分类”,环卫部门要求垃圾要按A,B,C 三类分别装袋投放,其中A类指废电池,过期药品等有毒垃圾,B类指剩余食品等厨余垃圾,C类指塑料,废纸等可回收垃圾.甲投放了一袋垃圾,乙投放了两袋垃圾,这两袋垃圾不同类.(1)直接写出甲投放的垃圾恰好是A类的概率.(2)求乙投放的垃圾恰有一袋与甲投放的垃圾是同类的概率.【解析】(1)一共有3类,所以甲投放的垃圾恰好是A类的概率为.(2)列出树状图如图所示:由图可知,共有18种等可能结果,其中乙投放的垃圾恰有一袋与甲投放的垃圾是同类的结果有12种.所以,P(乙投放的垃圾恰有一袋与甲投放的垃圾是同类)==.即乙投放的垃圾恰有一袋与甲投放的垃圾是同类的概率是.27.(10分)(2017·安徽中考)甲、乙、丙三位运动员在相同条件下各射靶10次,每次射靶的成绩如下:甲:9,10,8,5,7,8,10,8,8,7;乙:5,7,8,7,8,9,7,9,10,10;丙:7,6,8,5,4,7,6,3,9,5.(1)根据以上数据完成下表:(2)依据表中数据分析,哪位运动员的成绩最稳定,并简要说明理由.(3)比赛时三人依次出场,顺序由抽签方式决定.求甲、乙相邻出场的概率.【解析】(1)(2)因为2<2.2<3,所以<<,这说明甲运动员的成绩最稳定.(3)三人的出场顺序有(甲乙丙),(甲丙乙),(乙甲丙),(乙丙甲),(丙甲乙),(丙乙甲)共6种,且每一种结果出现的可能性相等,其中,甲、乙相邻出场的结果有(甲乙丙),(乙甲丙),(丙甲乙),(丙乙甲)共4种,所以甲、乙相邻出场的概率P==.28.(10分)在“书香八桂,阅读圆梦”读书活动中,某中学设置了书法、国学诵读、演讲、征文四个比赛项目(每人只参加一个项目),九(2)班全班同学都参加了比赛,该班班长为了了解本班同学参加各项比赛的情况,收集整理数据后,绘制以下不完整的折线统计图(图1)和扇形统计图(图2).根据图中的信息解答下列各题:(1)请求出九(2)班全班人数.(2)请把折线统计图补充完整.(3)南南和宁宁参加了比赛,请用“列表法”或“画树状图法”求出他们参加的比赛项目相同的概率.【解析】(1)全班总人数为=48(人).(2)由(1)可知,九(2)班全班人数为48人.从扇形统计图中可以得到国学诵读占总人数的百分比为50%,所以国学诵读的人数为48×50%=24(人).描点、连线,补充完整的折线统计图如图所示:(3)画树状图如图:列表如下:南南和宁宁参加比赛一共有16种可能的结果,每种结果出现的可能性相等,而他们参加比赛项目相同的情况有4种,记南南和宁宁参加相同比赛项目为事件A,则P(A)==.29.(12分)为全面开展“大课间”活动,某校准备成立“足球”“篮球”“跳绳”“踢毽”四个课外活动小组,学校体工处根据七年级学生的报名情况(每人限报一项)绘制了两幅不完整的统计图.请根据以上信息,完成下列问题:(1)m=________,n=________,并将条形统计图补充完整.(2)试问全校2000人中,大约有多少人报名参加足球活动小组?(3)根据活动需要,从“跳绳”小组的二男二女四名同学中随机选取两人到“踢毽”小组参加训练,请用列表或树状图的方法计算恰好选中一男一女两名同学的概率.【解析】(1)因为样本容量为15÷15%=100,所以“篮球”所占百分比为=25%,所以m=25;因为“跳绳”对应扇形的圆心角为×360°=108°,所以n=108.(2)全校报名参加足球活动小组的人数为2000×=600(人).(3)列表如下:画树状图如下:因为所有可能出现的结果为12种,其中出现一男一女两名同学的结果为8种, 所以恰好选中一男一女两名同学的概率为=.。

中考专题:数学统计与概率(答案解析)

中考专题:数学统计与概率(答案解析)

高频考点统计与概率试题参考答案与试题解析一.选择题(共9小题)1.(2018•河北)为考察甲、乙、丙、丁四种小麦的长势,在同一时期分别从中随机抽取部分麦苗,获得苗高(单位:cm )的平均数与方差为:==13, ==15:s 甲2=s 丁2=3.6,s 乙2=s丙2=6.3.则麦苗又高又整齐的是( )A .甲B .乙C .丙D .丁解:∵=>=,∴乙、丁的麦苗比甲、丙要高, ∵s 甲2=s 丁2<s 乙2=s 丙2,∴甲、丁麦苗的长势比乙、丙的长势整齐, 综上,麦苗又高又整齐的是丁, 故选:D .2.(2018•山西)近年来快递业发展迅速,下表是2018年1~3月份我省部分地市邮政快递业务量的统计结果(单位:万件): 太原市 大同市 长治市 晋中市 运城市 临汾市 吕梁市 3303.78332.68302.34319.79725.86416.01338.871~3月份我省这七个地市邮政快递业务量的中位数是( ) A .319.79万件 B .332.68万件 C .338.87万件D .416.01万件解:首先按从小到大排列数据:302.34,319.79,332.68,338.87,416.01,725.86,3303.78由于这组数据有奇数个,中间的数据是338.87 所以这组数据的中位数是338.87 故选:C .3.(2018•呼和浩特)某学习小组做“用频率估计概率”的试验时,统计了某一结果出现的频率,绘制了如下折线统计图,则符合这一结果的试验最有可能的是( )A .袋中装有大小和质地都相同的3个红球和2个黄球,从中随机取一个,取到红球B .掷一枚质地均匀的正六面体骰子,向上的面的点数是偶数C .先后两次掷一枚质地均匀的硬币,两次都出现反面D .先后两次掷一枚质地均匀的正六面体骰子,两次向上的面的点数之和是7或超过9解:A 、袋中装有大小和质地都相同的3个红球和2个黄球,从中随机取一个,取到红球的概率为,不符合题意;B 、掷一枚质地均匀的正六面体骰子,向上的面的点数是偶数的概率为,不符合题意;C 、先后两次掷一枚质地均匀的硬币,两次都出现反面的概率为,不符合题意;D 、先后两次掷一枚质地均匀的正六面体骰子,两次向上的面的点数之和是7或超过9的概率为,符合题意; 故选:D .4.(2018•山西)在一个不透明的袋子里装有两个黄球和一个白球,它们除颜色外都相同,随机从中摸出一个球,记下颜色后放回袋子中,充分摇匀后,再随机摸出一个球.两次都摸到黄球的概率是( )A .B .C .D .解:画树状图如下:由树状图可知,共有9种等可能结果,其中两次都摸到黄球的有4种结果,∴两次都摸到黄球的概率为, 故选:A .5.(2018•呼和浩特)随着“三农”问题的解决,某农民近两年的年收入发生了明显变化,已知前年和去的年收入分别是60000元和80000元,下面是依据①②③三种农作物每种作物每年的收入占该年年收入的比例绘制的扇形统计图.依据统计图得出的以下四个结论正确的是( )A .①的收入去年和前年相同B .③的收入所占比例前年的比去年的大C .去年②的收入为2.8万D .前年年收入不止①②③三种农作物的收入 解:A 、前年①的收入为60000×=19500,去年①的收入为80000×=26000,此选项错误;B 、前年③的收入所占比例为×100%=30%,去年③的收入所占比例为×1005=32.5%,此选项错误; C 、去年②的收入为80000×=28000=2.8(万元),此选项正确;D、前年年收入即为①②③三种农作物的收入,此选项错误;故选:C.6.(2018•包头)一组数据1,3,4,4,4,5,5,6的众数和方差分别是()A.4,1 B.4,2 C.5,1D.5,2解:数据1,3,4,4,4,5,5,6的众数是4,,则=2,故选:B.7.(2018•黑龙江)某学习小组的五名同学在一次数学竞赛中的成绩分别是94分、98分、90分、94分、74分,则下列结论正确的是()A.平均分是91 B.中位数是90 C.众数是94D.极差是20解:A 、平均分为:(94+98+90+94+74)=90(分),故此选项错误;B、五名同学成绩按大小顺序排序为:74,90,94,94,98,故中位数是94分,故此选项错误;C、94分、98分、90分、94分、74分中,众数是94分.故此选项正确;D、极差是98﹣74=24,故此选项错误.故选:C.8.(2018•齐齐哈尔)我们家乡的黑土地全国特有,肥沃的土壤、绿色的水源是优质大米得天独厚的生长条件,因此黑龙江的大米在全国受到广泛欢迎,小明在平价米店记录了一周中不同包装(10kg,20kg,50kg)的大米的销售量(单位:袋)如下:10kg 装100袋;20kg装220袋;50kg装80袋,如果每千克大米的进价和销售价都相同,则米店老板最应该关注的是这些数据(袋数)中的()A.众数B.平均数C.中位数D.方差解:对这个米店老板来说,他最应该关注的是这些数据(袋数)中的哪一包装卖得最多,即是这组数据的众数.故选:A.9.(2018•大庆)已知一组数据:92,94,98,91,95的中位数为a,方差为b,则a+b=()A.98 B.99 C.100 D.102 解:数据:92,94,98,91,95从小到大排列为91,92,94,95,98,处于中间位置的数是94,则该组数据的中位数是94,即a=94,该组数据的平均数为 [92+94+98+91+95]=94,其方差为 [(92﹣94)2+(94﹣94)2+(98﹣94)2+(91﹣94)2+(95﹣94)2]=6,所以b=6所以a+b=94+6=100.故选:C.二.填空题(共7小题)10.(2018•天津)不透明袋子中装有11个球,其中有6个红球,3个黄球,2个绿球,这些球除颜色外无其他差别.从袋子中随机取出1个球,则它是红球的概率是.解:∵袋子中共有11个小球,其中红球有6个,∴摸出一个球是红球的概率是,故答案为:.11.(2018•包头)从﹣2,﹣1,1,2四个数中,随机抽取两个数相乘,积为大于﹣4小于2的概率是.解:列表如下:﹣2 ﹣1 1 2 ﹣2 2 ﹣2 ﹣4﹣1 2 ﹣1 ﹣21 ﹣2 ﹣1 22 ﹣4 ﹣2 2由表可知,共有12种等可能结果,其中积为大于﹣4小于2的有6种结果,∴积为大于﹣4小于2的概率为=,故答案为:.12.(2018•北京)从甲地到乙地有A,B,C三条不同的公交线路.为了解早高峰期间这三条线路上的公交车从甲地到乙地的用时情况,在每条线路上随机选取了500个班次的公交车,收集了这些班次的公交车用时(单位:分钟)的数据,统计如下:公交车用时公交车用时的频数线路30≤t≤35 35<t≤40 40<t≤45 45<t≤50 合A 59 151 166 124 5B 50 50 122 278 5C 45 265 167 23 5早高峰期间,乘坐C(填“A”,“B”或“C”)线路上的公交车,从甲地到乙地“用时不超过45分钟”的可能性最大.解:∵A线路公交车用时不超过45分钟的可能性为=0.752,B 线路公交车用时不超过45分钟的可能性为=0.444,C 线路公交车用时不超过45分钟的可能性为=0.954,∴C 线路上公交车用时不超过45分钟的可能性最大, 故答案为:C .13.(2018•呼和浩特)已知函数y=(2k ﹣1)x +4(k 为常数),若从﹣3≤k ≤3中任取k 值,则得到的函数是具有性质“y 随x 增加而增加”的一次函数的概率为 .解:当2k ﹣1>0时,解得:k >,则<k ≤3时,y 随x 增加而增加, 故﹣3≤k <时,y 随x 增加而减小,则得到的函数是具有性质“y 随x 增加而增加”的一次函数的概率为: =.故答案为:.14.(2018•赤峰)一组数据:﹣1,3,2,x ,5,它有唯一的众数是3,则这组数据的中位数是 3 .解:∵一组数据:﹣1,3,2,x ,5,它有唯一的众数是3, ∴x=3,∴此组数据为﹣1,2,3,3,5, ∴这组数据的中位数为3, 故答案为3.15.(2018•哈尔滨)一枚质地均匀的正方体骰子,骰子的六个面上分别刻有1到6的点数,张兵同学掷一次骰子,骰子向上的一面出现的点数是3的倍数的概率是.解:掷一次骰子,向上的一面出现的点数是3的倍数的有3,6, 故骰子向上的一面出现的点数是3的倍数的概率是: =. 故答案为:.16.(2018•通辽)如图,这个图案是3世纪我国汉代数学家赵爽在注解《周髀算经》时给出的,人们称它为“赵爽弦图”.已知AE=3,BE=2,若向正方形ABCD 内随意投掷飞镖. 他们的各项成绩如下表所示:候选人 笔试成绩/分面试成绩/分甲 90 88 乙 84 92 丙 x 90 丁8886(1)直接写出这四名候选人面试成绩的中位数;(2)现得知候选人丙的综合成绩为87.6分,求表中x 的值; (3)求出其余三名候选人的综合成绩,并以综合成绩排序确定所要招聘的前两名的人选.解:(1)这四名候选人面试成绩的中位数为: =89(分);(2)由题意得,x ×60%+90×40%=87.6 解得,x=86,答:表中x 的值为86;(3)甲候选人的综合成绩为:90×60%+88×40%=89.2(分), 乙候选人的综合成绩为:84×60%+92×40%=87.2(分), 丁候选人的综合成绩为:88×60%+86×40%=87.2(分), ∴以综合成绩排序确定所要招聘的前两名的人选是甲和丙.23.(2018•通辽)为了解某校九年级学生立定跳远水平,随机抽取该年级50名学生进行测试,并把测试成绩(单位:m )绘制成不完整的频数分布表和频数分布直方图. 学生立定跳远测试成绩的频数分布表分组 频数 1.2≤x <1.6 a 1.6≤x <2.0 12 2.0≤x <2.4 b 2.4≤x <2.810 请根据图表中所提供的信息,完成下列问题:(1)表中a= 8 ,b= 20 ,样本成绩的中位数落在 2.0≤x <2.4 范围内;(2)请把频数分布直方图补充完整;(3)该校九年级共有1000名学生,估计该年级学生立定跳远成绩在2.4≤x <2.8范围内的学生有多少人?解:(1)由统计图可得, a=8,b=50﹣8﹣12﹣10=20,样本成绩的中位数落在:2.0≤x <2.4范围内, 故答案为:8,20,2.0≤x <2.4;(2)由(1)知,b=20,补全的频数分布直方图如右图所示;(3)1000×=200(人),答:该年级学生立定跳远成绩在2.4≤x <2.8范围内的学生有200人.24.(2018•赤峰)国家为了实现2020年全面脱贫目标,实施“精准扶贫”战略,采取异地搬迁,产业扶持等措施.使贫困户的生活条件得到改善,生活质量明显提高.某旗县为了全面了解贫困县对扶贫工作的满意度情况,进行随机抽样调查,分为四个类别:A.非常满意;B.满意;C.基本满意;D.不满意.依据调查数据绘制成图1和图2的统计图(不完整).根据以上信息,解答下列问题:(1)将图1补充完整;(2)通过分析,贫困户对扶贫工作的满意度(A、B、C类视为满意)是95%;(3)市扶贫办从该旗县甲乡镇3户、乙乡镇2户共5户贫困户中,随机抽取两户进行满意度回访,求这两户贫困户恰好都是同一乡镇的概率.解:(1)∵被调查的总户数为60÷60%=100,∴C类别户数为100﹣(60+20+5)=15,补全图形如下:(2)贫困户对扶贫工作的满意度(A、B、C类视为满意)是×100%=95%,故答案为:95%;(3)画树状图如下:由树状图知共有20种等可能结果,其中这两户贫困户恰好都是同一乡镇的有8种结果,所以这两户贫困户恰好都是同一乡镇的概率为=.25.(2018•通辽)为提升学生的艺术素养,学校计划开设四门艺术选修课:A.书法;B.绘画;C.乐器;D.舞蹈.为了解学生对四门功课的喜欢情况,在全校范围内随机抽取若干名学生进行问卷调查为优秀,那么估计获得优秀奖的学生有多少人?解:(1)∵被调查的总人数为10÷=50(人),∴D等级人数所占百分比a%=×100%=30%,即a=30,C等级人数为50﹣(5+7+15+10)=13人,补全图形如下:故答案为:30;(2)扇形B的圆心角度数为360°×=50.4°;(3)估计获得优秀奖的学生有2000×=400人.27.(2018•哈尔滨)为使中华传统文化教育更具有实效性,军宁中学开展以“我最喜爱的传统文化种类”为主题的调查活动,围绕“在诗词、国画、对联、书法、戏曲五种传统文化中,你最喜爱哪一种?(必选且只选一种)”的问题,在全校范围内随机抽取部分学生进行问卷调查,将调查结果整理后绘制成如图所示的不完整的统计图,请你根据图中提供的信息回答下列问题:(1)本次调查共抽取了多少名学生?(2)通过计算补全条形统计图;(3)若军宁中学共有960名学生,请你估计该中学最喜爱国画的学生有多少名?解:(1)本次调查的学生总人数为24÷20%=120人;(2)“书法”类人数为120﹣(24+40+16+8)=32人,补全图形如下:(3)估计该中学最喜爱国画的学生有960×=320人.28.(2018•齐齐哈尔)初三上学期期末考试后,数学老师把一班的数学成绩制成如图所示不完整的统计图(满分120分,每组含最低分,不含最高分),并给出如下信息:①第二组频率是0.12;②第二、三组的频率和是0.48;③自左至右第三,四,五组的频数比为9:8:3;请你结合统计图解答下列问题:(1)全班学生共有50人;(2)补全统计图;(3)如果成绩不少于90分为优秀,那么全年级700人中成绩达到优秀的大约多少人?(4)若不少于100分的学生可以获得学校颁发的奖状,且每班选派两名代表在学校新学期开学式中领奖,则该班得到108分的小强同学能被选中领奖的概率是多少?解:(1)全班学生人数为6÷0.12=50人,故答案为:50;(2)第二、三组频数之和为50×0.48=24,则第三组频数为24﹣6=18,∵自左至右第三,四,五组的频数比为9:8:3,∴第四组频数为16、第五组频数为6,则第六组频数为50﹣(1+6+18+16+6)=3,补全图形如下:(3)全年级700人中成绩达到优秀的大约有700×=350人;(4)小强同学能被选中领奖的概率是=.29.(2018•大庆)九年级一班开展了“读一本好书”的活动,班委会对学生阅读书籍的情况进行了问卷调查,问卷设置了“小说”“戏剧”“散文”“其他”四个选项,每位同学仅选一项,根据调查结果绘制了如下不完整的频数分布表和扇形统计图.类别频数(人数)频率小说16戏剧 4散文 a其他 b合计 1根据图表提供的信息,解答下列问题:(1)直接写出a,b,m的值;(2)在调查问卷中,甲、乙、丙、丁四位同学选择了“戏剧”类,现从以上四位同学中任意选出2名同学参加学校的戏剧兴趣小组,请用列表法或画树状图的方法,求选取的2人恰好是乙和丙的概率.解:(1)∵被调查的学生总人数为4÷10%=40人,∴散文的人数a=40×20%=8,其他的人数b=40﹣(16+4+8)=12,则其他人数所占百分比m%=×100%=30%,即m=30;(2)画树状图,如图所示:所有等可能的情况有12种,其中恰好是丙与乙的情况有2种,所以选取的2人恰好乙和丙的概率为=.。

2018年中考数学统计与概率试题整理

2018年中考数学统计与概率试题整理

2018年xx数学统计与概率试题整理汇集以下是查字典数学网为您推荐的2018年中考数学统计与概率试题整理汇集,希望本篇文章对您学习有所帮助。

2018年中考数学统计与概率试题整理汇集一、选择题1. (北京4分)北京今年6月某日部分区县的高气温如下表:区县大兴通州平谷顺义怀柔门头沟延庆昌平密云房山最高气温32 32 30 32 30 32 29 32 30 32则这10个区县该日最高气温的众数和中位数分别是A、32,32B、32,30C、30,32D、32,31【答案】A。

【考点】众数,中位数。

【分析】一组数据中出现次数最多的一个数是众数,这一组数据中32是出现次数最多的,故众数是32;中位数是将一组数据从小到大(或从大到小)从头排列后,最中间的那个数(最中间两个数的平衡数),是这组数据的中位数,这组数据从头排列:29,30,30,30,32,32,32,32,32,32,位于这组数据中间位置的数是32、32,由中位数的定义可知,这组数据的中位数是32。

故选A。

2.(北京4分)一个不透明的盒子中装有2个白球,5个红球和8个黄球,这些球除颜色外,没有任何其他区别,现从这个盒子中随机摸出一个球,摸到红球的概率为A、B、C、D、【答案】B。

【考点】概率。

【分析】根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率。

根据题意可得:一个不透明的盒子中装有2个白球,5个红球和8个黄球,共15个,摸到红球的概率为。

故选B。

3.(天津3分)下图是甲、乙两人l0次射击成绩(环数)的条形统计图.则下列说法正确的是(A)甲比乙的成绩安定(B)乙比甲的成绩安定(C)甲、乙两人的成绩一样安定(D)无法确定谁的成绩更安定【答案】B。

【考点】条形统计图,平衡数和方差。

【分析】甲的平衡成绩为(84+92+104)10=9,乙的平衡成绩为(83+94+103)10=9,甲的方差为[4(8-9)2+2(9-9)2+4(10-9)2]10=0.8,乙的方差为[3(8-9)2+4(9-9)2+3(10-9)2]10=0.6,∵甲的方差乙的方差,乙比甲的成绩安定。

2018 初三数学中考复习 统计与概率 专题复习训练题及答案

2018 初三数学中考复习  统计与概率 专题复习训练题及答案

2018 初三数学中考复习统计与概率专题复习训练题1.下列说法正确的是( C )A.为了审核书稿中的错别字,选择抽样调查B.为了了解春节联欢晚会的收视率,选择全面调查C.“射击运动员射击一次,命中靶心”是随机事件D.“经过由交通信号灯的路口,遇到红灯”是必然事件2.某市七天的空气质量指数分别是:28,45,28,45,28,30,53,这组数据的众数是( A )A.28 B.30 C.45 D.533.(2016·临沂)某老师为了了解学生周末学习时间的情况,在所任班级中随机调查了10名学生,绘成如图所示的条形统计图,则这10名学生周末学习的平均时间是( B )A.4 B.3 C.2 D.14.某小学校足球队22名队员年龄情况如下:则这个队队员年龄的众数和中位数分别是( B ) A .11,10 B .11,11 C .10,9 D.10,115.在一个不透明的盒子里有2个红球和n 个白球,这些球除颜色外其余完全相同,摇匀后随机摸出一个,摸到红球的概率是15,则n 的值为( C )A .3B .5C .8D .106.一个盒子内装有大小、形状相同的四个球,其中红球1个、绿球1个、白球2个,小明摸出一个球不放回,再摸出一个球,则两次都摸到白球的概率是( C )A.12B.14C.16D.1127.某学校小组5名同学的身高(单位:cm)分别为:147,151,152,156,159,则这组数据的中位数是 __152__.8.今年5月份有关部门对计划去上海迪士尼乐园的部分市民的前往方式进行调查,图①和图②是收集数据后绘制的两幅不完整统计图.根据图中提供的信息,那么本次调查的对象中选择公交前往的人数是__6_000__.9.一次数学考试中,九年(1)班和(2)班的学生数和平均分如表所示,则这两班平均成绩为__82.6__分.10.如图是一个能自由转动的正六边形转盘,这个转盘被三条分割线分成形状相同,面积相等的三部分,且分别标有“1”,“2”,“3”三个数字,指针的位置固定不动,让转盘自由转动两次,当每次转盘停止后,记录指针指向的数(当指针指向分割线时,视其指向分割线左边的区域),则两次指针指向的数都是奇数的概率为__49__.11.某校为了提升初中学生学习数学的兴趣,培养学生的创新精神,举办“玩转数学”比赛.现有甲、乙、丙三个小组进入决赛,评委从研究报告、小组展示、答辩三个方面为各小组打分,各项成绩均按百分制记录.甲、乙、丙三个小组各项得分如表:(1)计算各小组的平均成绩,并从高分到低分确定小组的排名顺序;(2)如果按照研究报告占40%,小组展示占30%,答辩占30%计算各小组的成绩,哪个小组的成绩最高?解:(1)由题意可得,甲组的平均成绩是91+80+783=83(分),乙组的平均成绩是81+74+853=80(分),丙组的平均成绩是79+83+903=84(分),从高分到低分小组的排名顺序是:丙>甲>乙 (2)由题意可得,甲组的平均成绩是91×40%+80×30%+78×30%40%+30%+30%=83.8(分),乙组的平均成绩是81×40%+74×30%+85×30%40%+30%+30%=80.1(分),丙组的平均成绩是79×40%+83×30%+90×30%40%+30%+30%=83.5(分),由上可得,甲组的成绩最高12.甲乙两人进行射击训练,两人分别射击12次,如图分别统计了两人的射击成绩,已知甲射击成绩的方差s 2甲=712,平均成绩x 甲=8.5.(1)根据图上信息,估计乙射击成绩不少于9环的概率是多少? (2)求乙射击的平均成绩和方差,并据此比较甲乙的射击“水平”.解:(1)∵由图可知,乙射击的总次数是12次,不少于9环的有7次,∴乙射击成绩不少于9环的概率=712(2)x 乙=2×7+3×8+6×9+1×1012=8.5(环),s 2乙=112[(7-8.5)2×2+(8-8.5)2×3+(9-8.5)2×6+(10-8.5)2]=912=34,∵x 甲=x 乙,s 2甲<s 2乙,∴甲的射击成绩更稳定13.某校有学生2 000名,为了了解学生在篮球、足球、排球和乒乓球这四项球类运动中最喜爱的一项球类运动情况,对学生开展了随机调查,并将结果绘制成如下的统计图.请根据以上信息,完成下列问题: (1)本次调查的样本容量是__400__; (2)某位同学被抽中的概率是__15__;(3)据此估计全校最喜爱篮球运动的学生人数约有__800__名; (4)将条形统计图补充完整. 解:(1)400 (2)15 (3)800(4)乒乓球的人数:400×30%=120(人).补图略14.教室里有4排日光灯,每排灯各由一个开关控制,但灯的排数序号与开关序号不一定对应,其中控制第二排灯的开关已坏(闭合开关时灯也不亮). (1)将4个开关都闭合时,教室里所有灯都亮起的概率是__0__;(2)在4个开关都闭合的情况下,不知情的雷老师准备做光学实验,由于灯光太强,他需要关掉部分灯,于是随机将4个开关中的2个断开,请用列表或画树状图的方法,求恰好关掉第一排与第三排灯的概率.解:(1)因为控制第二排灯的开关已坏(闭合开关时灯也不亮),所以将4个开关都闭合时,教室里所有灯都亮起的概率是0(2)用1,2,3,4分别表示第一排、第二排、第三排和第四排灯,画树状图为:共有12种等可能的结果数,其中恰好关掉第一排与第三排灯的结果数为2,所以恰好关掉第一排与第三排灯的概率=212=1 6。

2018届福建省中考总复习《统计与概率》自我检测试卷(8)含答案

2018届福建省中考总复习《统计与概率》自我检测试卷(8)含答案

自我检测(八) 统计与概率 (时间:30分钟 分值:70分)一、选择题(每小题4分,共24分) 1.(2017·长沙)下列说法正确的是(D )A .检测某批次灯泡的使用寿命,适宜用全面调查B .可能性是1%的事件在一次试验中一定不会发生C .数据3,5,4,1,-2的中位数是4D .“367中有2人同月同日出生”为必然事件2.(2017·岳阳)从2,0,π,3.14,6这5个数中随机抽取一个数,抽到有理数的概率是(C )A.15B.25C.35D.45第3题图 3.(2017·温州)某校学生到校方式情况的统计图如图所示,若该校步行到校的学生有100人,则乘公共汽车到校的学生有(D )A .75人B .100人C .125人D .200人 4.(2017·南宁)今年世界环境日,某校组织的保护环境为主题的演讲比赛,参加决赛的6名选手成绩(单位:分)如下:8.5,8.8,9.4,9.0,8.8,9.5,这6名选手成绩的众数和中位数分别是(C )A .8.8分,8.8分B .9.5分,8.9分C .8.8分,8.9分D .9.5分,9.0分 5.(2016·锦州)如果小球在如图所示的地面上自由滚动,并随机停留在某块方砖上,那么它最终停留在黑色区域的概率是(D )A.14B.34C.12D.38第5题图第6题图6.(2017·烟台)甲、乙两地去年12月前5天的日平均气温如图所示,下列描述错误的是(C )A .两地气温的平均数相同B .甲地气温的中位数是6℃C .乙地气温的众数是4℃D .乙地气温相对比较稳定二、填空题(每小题4分,共12分)7.在一个不透明的布袋中装有50个黄、白两种颜色的球,除颜色外其他均相同,小红通过多次摸球试验后,摸到黄球的频率稳定在0.3左右,则布袋中白球可能有35.(导学号 12734124)8.(2017·泰州)“一只不透明的袋子共装有3个小球,它们的标号分别为1,2,3,从中摸出1个小球,标号为“4”,这个事件是不可能事件.(填“必然事件”、“不可能事件”或“随机事件”)9.(2017·襄阳)同时抛掷三枚质地均匀的硬币,出现两枚正面向上,一枚正面向下的概率是38.三、解答题(共34分) 12.(2017·哈尔滨8分)随着社会经济的发展和城市周边交通状况的改善,旅游已成为人们的一种生活时尚,洪祥中学开展以“我最喜欢的风景区”为主题的调查活动,围绕“在松峰山、太阳岛、二龙山和凤凰山四个风景区中,你最喜欢哪一个?(必选且只选一个)”的问题,在全校范围内随机抽取了部分学生进行问卷调查,将调查结果整理后绘制成如图所示的不完整的统计图,请你根据图中提供的信息回答下列问题:(1)本次调查共抽取了多少名学生? (2)通过计算补全条形统计图;(3)若洪祥中学共有1350名学生,请你估计最喜欢太阳岛风景区的学生有多少名.第12题图解:(1)10÷20%=50(名),答:本次调查共抽取了50名学生; (2)50-10-20-12=8(名), 补全条形统计图如解图所示:第12题解图(3)1350×2050=540(名),答:估计最喜欢太阳岛风景区的学生有540名.13.(2016黔南州8分)为弘扬中华传统文化,黔南州近期举办了中小学生“国学经典大赛”.比赛项目为:A .唐诗;B .宋词;C .论语;D .三字经.比赛形式分“单人组”和“双人组”.(1)小丽参加“单人组”,她从中随机抽取一个比赛项目,恰好抽中“三字经”的概率是多少?(2)小红和小明组成一个小组参加“双人组”比赛,比赛规则是:同一小组的两名队员的比赛项目不能相同,且每人只能随机抽取一次,则恰好小红抽中“唐诗”且小明抽中“宋词”的概率是多少?请用画树状图或列表的方法进行说明.解:(1)她从中随机抽取一个比赛项目,恰好抽中“三字经”的概率是14;(2)画树状图如解图:第13题解图由树状图可知,共有12种等可能的结果数,其中恰好小红抽中“唐诗”且小明抽中“宋词”的结果数为1,∴恰好小红抽中“唐诗”且小明抽中“宋词”的概率是112.14.(2017·岳阳8分)为了加强学生课外阅读,开阔视野,某校开展了“书香校园,从我做起”的主题活动,学校随机抽取了部分学生,对他们一周的课外阅读时间进行调查,绘制出频数分布表和频数分布直方图的一部分如下:4请根据图表信息回答下列问题:(1)频数分布表中的a=25,b=0.10;(2)将频数分布直方图补充完整;(3)学校将每周课外阅读时间在8小时以上的学生评为“阅读之星”,请你估计该校2000名学生中评为“阅读之星”的有多少人?(导学号12734125)解:(2)阅读时间为6<t≤8的学生有25人,补全条形统计图如解图所示:第14题解图(3)根据题意得:2000×0.10=200(人),则该校2000名学生中评为“阅读之星”的有200人.15.(2017·长沙10分)为了传承中华优秀传统文化,市教育局决定开展“经典诵读进校园”活动,某校团委组织八年级100名学生进行“经典诵读”选拔赛,赛后对全体参赛学生的成绩进行整理,得到下列不完整的统计图表.C请根据所给信息,解答以下问题:(1)表中a=0.3,b=45;(2)请计算扇形统计图中B组对应扇形的圆心角的度数;(3)已知有四名同学均取得98分的最好成绩,其中包括来自同一班级的甲、乙两名同学,学校将从这四名同学中随机选出两名参加市级比赛,请用列表法或画树状图法求甲、乙两名同学都被选中的概率.解:(2)360°×0.3=108°,答:扇形统计图中B 组对应扇形的圆心角为108°;(3)将同一班级的甲、乙学生记为A 、B ,另外两学生记为C 、D , 画树状图如解图:第15题解图∵共有12种等可能的情况,甲、乙两名同学都被选中的情况有2种, ∴甲、乙两名同学都被选中的概率为212=16.。

2018年九年级数学中考统计与概率专题复习

2018年九年级数学中考统计与概率专题复习

2018 年 九年级数学中考 统计与概率专题复习一、选择题 :1.学校为认识七年级学生参加课外兴趣小组的状况,随机检查了40 名学生,将结果绘制成了以下图的统计图,则七年级学生参加绘画兴趣小组的频次是()A .B .C .D .2. 自来水企业检查了若干用户的月用水量x ( 单位:吨 ) ,按月用水量将用户分红 ,,,, 五组进行统计,ABCDE并制作了以下图的扇形统计图 . 已知除 B 组之外,参加检查的用户共 64 户,则全部参加检查的用户中月用水量在 6 吨以下的共有 ()A .18 户B .20 户C .22 户D .24 户3.已知 a,b,c,d,e 的均匀分是 m,则 a+5,b+12,c+22,d+9,e+2 的均匀分是 ()A . m-1B . m+3C . m+1 0D . m+124.如图是交警在一个路口统计的某个时段来往车辆的车速(单位: 千米 / 时)状况. 则这些车的车速的众数、中位数分别是()A . 8, 6B . 8, 5C . 52, 53D . 52,525. 已知 5 名学生的体重分别是 41、 50、 53、 49、 67(单位: kg ),则这组数据的极差是()A . 8B . 9C . 26D . 416. 以下说法正确的选项是()A .“翻开电视机,正在播《民生当面》”是必定事件B. “一个不透明的袋中装有6 个红球,从中摸出 1 个球是红球”是随机事件C.“概率为 0.0001 的事件”是不行能事件D.“在操场上向上抛出的篮球必定会着落”是确立事件7.九年级一班和二班每班选 8 名同学进行投篮竞赛, 每名同学投篮 10 次,对每名同学投中的次数进行统计,甲说:“一班同学投中次数为6 个的最多”乙说:“二班同学投中次数最多与最少的相差6 个.”上边两名同学的谈论能反应出的统计量是()A .均匀数和众数B .众数和极差C .众数和方差D .中位数和极差8.在 2016 年我县中小学经典朗读竞赛中,10 个参赛单位成绩统计以下图, 关于这 10 个参赛单位的成绩,以下说法中错误的选项是()A .众数是 90B .均匀数是 90C .中位数是 90D .极差是 159.小明统计了他家今年 5 月份打电话的次数及通话时间,并列出了频数散布表:则通话时间不超出15min 的频次为()A .B .C .D .10. 桌面上放有 6 张卡片(卡片除正面的颜色不一样外,其他均同样) ,此中卡片正面的颜色3 张是绿色, 2 张是红色, 1 张是黑色.现将这6 张卡片洗匀后正面向下放在桌面上,从中随机抽取一张,抽出的卡片正面颜色是绿色的概率是A.1B.1C.1D.1 2 3 4 6二、填空题 :11.若数据 1、﹣ 2、 3、x 的均匀数为2,则 x=.12.2016 年 6 月尾,九年级学生马上毕业,好朋友甲、乙、丙三人决定站成一排合影纪念,则甲、乙二人相邻的概率是.13.布袋内装有大小、形状同样的3 个红球和 1 个白球,从布袋中一次摸出两个球,那么两个都摸到红球的概率是.14.甲、乙两地5 月下旬的日均匀气温统计如表(单位:℃):甲地气温24 30 28 24 22 26 27 26 29 24乙地气温24 26 25 26 24 27 28 26 28 26则甲、乙两地这10 天日均匀气温的方差大小关系为:S 甲2S 乙2.(填“>”、“<”或“ =”)15. 如图,圆形转盘中,A,B,C三个扇形地区的圆心角分别为150°, 120°和 90°.转动圆盘后,指针停止在任何地点的可能性都同样(若指针停在分界限上,则从头转动圆盘),则转动圆盘一次,指针停在B区域的概率是.BCA16. 某校射击队从甲、乙、丙、丁四人中选拔一人参加市运动会射击竞赛.在选拔赛中,每人射击10 次,他们 10 次成绩的均匀数及方差以下表所示.请你依据表中数据选一人参加竞赛,最适合的人选是.三、解答题 :17.某地域在一次九年级数学质量检测试题中,有一道分值为8 分的解答题,全部考生的得分只有四种,即:0 分, 3 分, 5 分, 8 分,老师为认识此题学生得分状况,从全区4500 名考生试卷中随机抽取一部分,剖析、整理此题学生得分状况并绘制了以下两幅不完好的统计图:请依据以上信息解答以下问题:(1)本次检查从全区抽取了份学生试卷;扇形统计图中a=,b=;(2)补全条形统计图;(3)该地域此次九年级数学质量检测中,请预计全区考生这道8 分解答题的均匀得分是多少?得8 分的有多少名考生?18.为认识某地域七年级学生对新闻、体育、动画、娱乐、戏曲五类电视节目的喜欢状况,从该地域随机抽取部分七年级学生作为样本,采纳问卷检查的方法采集数据(参加问卷检查的每名同学只好选择此中一类节目),并检查获得的数据用下边的表和扇形图来表示(表、图都没制作达成)依据表、图供给的信息,解决以下问题:(1)计算出表中 a、b的值;(2)求扇形统计图中表示“动画”部分所对应的扇形的圆心角度数;(3)若该地域七年级学生共有 47500 人,试预计该地域七年级学生中喜欢“新闻”类电视节目的学生有多少人?19. 为进一步增强和改良学校体育工作,确实提升学生体质健康水平,决定推动“一校一球队、一级一专项、一人一技术”活动计划,某校决定对学生感兴趣的球类项目(A:足球, B:篮球, C:排球, D:羽毛球, E:乒乓球)进行问卷检查,学生可依据自己的爱好选修一门,李老师对某班全班同学的选课状况进行统计后,制成了两幅不完好的统计图(如图)(1)将统计图增补完好;(2)求出该班学生人数;(3)若该校共用学生 3500 名,请预计有多少人选修足球?(4)该班班委 5 人中, 1 人选修篮球, 3 人选修足球, 1 人选修排球,李老师要从这 5 人中任选 2 人认识他们对体育选修课的见解,请你用列表或画树状图的方法,求选出的 2 人恰巧 1 人选修篮球, 1 人选修足球的概率.20.一袋中装有形状大小都同样的四个小球,每个小球上各标有一个数字,分别是1,4, 7,8.现规定从袋中任取一个小球,对应的数字作为一个两位数的个位数;而后将小球放回袋中并搅拌均匀,再任取一个小球,对应的数字作为这个两位数的十位数.(1)写出按上述规定获得全部可能的两位数;(2)从这些两位数中任取一个,求其算术平方根大于 4 且小于 7 的概率.第5页共7页参照答案9. D.11.答案为: 6.12.答案为.13.答案为: 0.5 .14.答案为:>.15.答案为:16.答案为:丁;17.解:( 1)24÷ 10%=240份, 240﹣ 24﹣108﹣ 48=60 份,60÷ 240=25%, 48÷ 240=20%,抽取了240 份学生试卷;扇形统计图中a=25,b=20;(2)如图:(3) 0× 10%+3× 25%+5× 45%+8× 20%=4.6 分, 4500× 20%=900名.答:这道8 分解答题的均匀得分是 4.6 分;得 8 分的有 900 名考生.18.解:( 1)162, 135;( 2) 108°;( 3)3800.19.解:( 1)检查的家长总数为: 360÷ 60%=600人,很赞成的人数: 600× 20%=120人,不赞成的人数:600﹣ 120﹣ 360﹣ 40=80 人;(2)“赞成”态度的家长的概率是60%;(3)表示家长“无所谓”的圆心角的度数为:24°.20.解:( 1)画树状图:共有 16 种等可能的结果数,它们是: 11, 41,71, 81,14, 44, 74, 84, 17, 47, 77, 87, 18, 48, 78,88;(2)算术平方根大于 4 且小于 7 的结果数为6,因此算术平方根大于 4 且小于 7 的概率 = =.。

2018辽宁中考数学总复习单元测试八统计与概率

2018辽宁中考数学总复习单元测试八统计与概率

第八章统计与概率自我测试(时间|40分
I
8.9 分D L丨9.5 分,9.0 分]4]・I(2ol7〔?|东营如图,共有12个大小相同的小正方形I其中阴
影部分的|5个小正方形是一个正方体的表面展 开图的一部分,现从其余的小正方形中任取一
个涂上阴影,能构成这个正方体的表面展开图
球,不放回;再随机摸出一球,两次摸出的球 上的汉字组成“孔孟”的概率是-(B )| A .I 8
B.16 C ・l4 D|.l2 (【导学号 I 「58824216) I ] 6 I. (201|7
丨?大连模拟丨)在一个不透明的布袋 中装有50个黄、白两种颜色的球,除颜色外其 他都相同,|小红通过多次摸球试验后发现,摸 到黄球的频率稳定在丨0.|3左右,则布袋中白球 可能有(D ) A I..15个I B|. 20个cl . |30个匚
D L 35个|二、填空题|(每小题一 3分,共〔18分
, , , 已知这个样本的众数为 平均数为|2 L 则这组数据的中位数为丨丨2
)
)。

2018中考试题研究数学(浙江)精品复习:第四章_统计与概率自我测试(含答案)

2018中考试题研究数学(浙江)精品复习:第四章_统计与概率自我测试(含答案)

第四章统计与概率自我测试一、选择题(每小题4分,共32分)1.(2018·张家界)下列事件中是必然事件的为( D )A.有两边及一角对应相等的三角形全等B.方程x2-x+1=0有两个不相等实数根C.面积之比为1∶4的两个相似三角形的周长之比也是1∶4D.圆的切线垂直于过切点的半径2.(2018·枣庄)下列说法正确的是( D )A.“明天降雨的概率是50%”表示明天有半天都在降雨B.数据4,4,5,5,0的中位数和众数都是5C.要了解一批钢化玻璃的最少允许碎片数,应采用普查的方式D.若甲、乙两组数中各有20个数据,平均数x甲=x乙,方差s甲2=1.25,s乙2=0.96,则说明乙组数据比甲组数据稳定3.(2018·内江)今年我市有近4万名考生参加中考,为了解这些考生的数学成绩,从中抽取1000名考生的数学成绩进行统计分析,以下说法正确的是( C) A.这1000名考生是总体的一个样本;B.近4万名考生是总体C.每位考生的数学成绩是个体; D.1000名学生是样本容量4.(2018·德州)雷霆队的杜兰特当选为2018-2018赛季NBA常规赛MVP,下表是他8场比赛的得分,则这8场比赛得分的众数与中位数分别为( B )A.29,27 5.(2018·邵阳)如图是小芹6月1日-7日每天的自主学习时间统计图,则小芹这七天平均每天的自主学习时间是( B )A.1小时 B.1.5小时 C.2小时 D.3小时6.(2018·杭州)让图中两个转盘分别自由转动一次,当转盘停止转动时,两个指针分别落在某两个数所表示的区域,则这两个数的和是2的倍数或是3的倍数的概率等于( C )A.316B.38C.58D.13167.(2018·宁波)如图,在2×2的正方形网格中有9个格点,已经取定点A 和B ,在余下的7个点中任取一点C ,使△ABC 为直角三角形的概率是( D ) A.12 B.25 C.37 D.478.(2018·咸宁)如图,正方形ABCD 是一块绿化带,其中阴影部分EOFB ,GHMN 都是正方形的花圃,已知自由飞翔的小鸟,将随机落在这块绿化带上,则小鸟落在花圃上的概率为( C )A.1732B.12C.1736D.1738二、填空题(每小题6分,共24分)9.(2018·株洲)某招聘考试分笔试和面试两种,其中笔试按60%、面试按40%计算加权平均数作为总成绩,孔明笔试成绩90分,面试成绩85分,那么孔明的总成绩是__88__分.10.(2018·襄阳)从长度分别为2,4,6,7的四条线段中随机取三条,能构成三角形的概率是__12__. 11.(2018·凉山州)“服务社会,提升自我.”凉山州某学校积极开展志愿者服务活动,来自九年级的5名同学(三男二女)成立了“交通秩序维护”小分队,若从该小分队中任选两名同学进行交通秩序维护,则恰好是一男一女的概率是__35__. 12.(2018·重庆)在一个不透明的盒子里装有4个分别标有数字1,2,3,4的小球,它们除数字不同其余完全相同,搅匀后从盒子里随机取出1个小球,将该小球上的数字作为a 的值,则使关于x 的不等式组⎩⎨⎧x >2a -1,x ≤a +2只有一个整数解的概率为__14__.三、解答题(共44分)13.(14分)(2018·邵阳)网瘾低龄化问题已引起社会各界的高度关注,有关部门在全国范围内对12~35岁的网瘾人群进行了简单的随机抽样调查,得到了如图所示的两个不完全统计图.请根据图中的信息,解决下列问题:(1)求条形统计图中a 的值;(2)求扇形统计图中18~23岁部分的圆心角;(3)据报道,目前我国12~35岁网瘾人数约为2000万,请估计其中12~23岁的人数.解:(1)被调查的人数=330÷22%=1 500(人),a =1 500-450-420-330=1500-1200=300(人)(2)360°×4501 500×100%=108° (3)∵12~35岁网瘾人数约为2 000万,∴12~23岁的人数约为2 000万×300+4501 500=1 000万14.(14分)(2018·昆明)九年级某班同学在毕业晚会中进行抽奖活动,在一个不透明的口袋中有三个完全相同的小球,把它们分别标号为1,2,3.随机摸出一个小球记下标号后放回摇匀,再从中随机摸出一个小球记下标号.(1)请用列表或画树形图的方法(只选其中一样),表示两次摸出小球上的标号的所有结果;(2)规定当两次摸出的小球标号相同时中奖,求中奖的概率.解:(1)列表得:(2)可能出现的结果共9种,它们出现的可能性相同,两次摸出小球标号相同的情况共3种,分别为(1,1);(2,2);(3,3),则P =39=1315.(16分)(2018·丽水)学了统计知识后,小刚就本班同学上学“喜欢的出行方式”进行了一次调查.图①和图②是他根据采集的数据绘制的两幅不完整的统计图,请根据图中提供的信息解答以下问题:(1)补全条形统计图,并计算出“骑车”部分所对应的圆心角的度数;(2)如果全年级共600名同学,请估算全年级步行上学的学生人数;(3)若由3名“喜欢乘车”的学生,1名“喜欢步行”的学生,1名“喜欢骑车”的学生组队参加一项活动,欲从中选出2人担任组长(不分正副),列出所有可能的情况,并求出2人都是“喜欢乘车”的学生的概率.解:(1)25÷50%=50(人);50-25-15=10(人);如图所示条形图,圆心角度数=30100×360°=108°(2)估计全年级步行人数=600×20%=120(人)(3)设3名“喜欢乘车”的学生表示为A,B,C,1名“喜欢步行”的学生表示为D,1名“喜欢骑车”的学生表示为E,则有AB,AC,BC,AD,BD,CD,AE,BE,CE,DE10种等可能的情况,2人都是“喜欢乘车”的学生的概率P=310。

河南地区2018年中考数学总复习:专题检测(8)统计与概率(含答案)

河南地区2018年中考数学总复习:专题检测(8)统计与概率(含答案)

章节检测卷8 统计与概率(建议时间:60分钟总分:100分)一、选择题(本大题共8个小题,每小题4分,共32分)1.下列调查中,最适合采用抽样调查的是(D)A.对某地区现有的16名百岁以上老人睡眠时间的调查B.对“神舟十一号”运载火箭发射前零部件质量情况的调查C.对某校九年级三班学生视力情况的调查D.对市场上某一品牌电脑使用寿命的调查2.为纪念中国人民抗日战争的胜利,9月3日被确定为抗日战争胜利纪念日,某校为了了解学生对“抗日战争”的知晓情况,从全校6 000名学生中,随机抽取了120名学生进行调查,在这次调查中(D)A.6 000名学生是总体B.所抽取的每1名学生对“抗日战争”的知晓情况是总体的一个样本C.120名是样本容量D.所抽取的120名学生对“抗日战争”的知晓情况是总体的一个样本3.某校为了了解九年级学生的体能情况,随机抽查了其中的30名学生,测试了1分钟仰卧起坐的次数,并绘制成如图所示的频数分布直方图,请根据图示计算,仰卧起坐次数在30~35次之间的频率是(B)A.0.2 B.0.17 C.0.33 D.0.144.下列说法正确的是(C)A.打开电视,它正在播广告是必然事件B.要考察一个班级中的学生对建立生物角的看法适合用抽样调查C.在抽样调查过程中,样本容量越大,对总体的估计就越准确D.甲、乙两人射中环数的方差分别为s2甲=2,s2乙=4,说明乙的射击成绩比甲稳定5.下表记录了甲、乙、丙、丁四名射击运动员最近几次选拔赛成绩的平均数和方差:择(D)A.甲B.乙C.丙D.丁6.小红同学四次中考数学模拟考试成绩分别是96,104,104,116,关于这组数据下列说法错误的是(D)A.平均数是105 B.众数是104C.中位数是104 D.方差是507.在我市举办的中学生“争做文明盘锦人”演讲比赛中,有15名学生进入决赛,他们决赛的成绩各不相同,小明想知道自己能否进入前8名,不仅要了解自己的成绩,还要了解这15名学生成绩的(D)A.众数B.方差C.平均数D.中位数8.一个布袋里装有4个只有颜色不同的球,其中3个红球,1个白球.从布袋里摸出1个球,记下颜色后放回,搅匀,再摸出1个球,则两次摸到的球都是红球的概率是(D)A.116 B.12 C.38 D.916二、填空题(本大题共5个小题,每小题4分,共20分)9.某校欲招聘一名数学老师,甲、乙两位应试者经审查符合基本条件,参加了笔试和面试,他们的成绩如下表所示,请你按笔试成绩占40%,面试成绩占60%选出综合成绩较高的应试者是甲.10.彭山的枇杷大又甜,在今年5月18日“彭山枇杷节”期间,从山上5棵枇杷树上采摘到了200千克枇杷,请估计彭山近600棵枇杷树今年一共收获了枇杷24 000 千克.11.某班有50名学生,平均身高为166 cm,其中20名女生的平均身高为163 cm,则30名男生的平均身高为168cm.12.淘淘和丽丽是非常要好的九年级学生,在5月份进行的物理、化学、生物实验技能考试中,考试科目要求三选一,并且采取抽签方式取得,那么他们两人都抽到物理实验的概率是1 9.13.如图是由若干个全等的等边三角形拼成的纸板,某人向纸板上投掷飞镖(每次飞镖均落在纸板上),则飞镖落在阴影部分的概率是3 8.三、解答题(本大题共3个小题,共48分)14.(16分)为弘扬中华传统文化,某校举办了学生“国学经典大赛”.比赛项目为:A.唐诗;B.宋词;C.论语;D.三字经.比赛形式分“单人组”和“双人组”.(1)小丽参加“单人组”,她从中随机抽取一个比赛项目,恰好抽中“三字经”的概率是多少?(2)小红和小明组成一个小组参加“双人组”比赛,比赛规则是:同一小组的两名队员的比赛项目不能相同,且每人只能随机抽取一次,则小红和小明都没有抽到“论语”的概率是多少?请用画树状图或列表的方法进行说明.解:(1)P=1 4.答:小丽恰好抽中“三字经”的概率是1 4.(2)画树状图如下:由树状图可知,共有12种等可能的结果,其中小红和小明都没有抽到“论语”的结果有6种,所以小红和小明都没有抽到“论语”的概率为P=6 12=12.15.(16分)中华文明,源远流长;中华汉字,寓意深广.为传承中华优秀传统文化,某校团委组织了一次全校3 000名学生参加的“汉字听写”大赛.为了解本次大赛的成绩,校团委随机抽取了其中200名学生的成绩(成绩x取整数,总分100分)作为样本进行统计,制成如下不完整的统计图表:频数频率分布表根据所给信息,解答下列问题:(1)m=__________,n=__________;(2)补全频数分布直方图;(3)这200名学生成绩的中位数会落在__________分数段;(4)若成绩在90分以上(包括90分)为“优”等,请你估计该校参加本次比赛的3 000名学生中成绩是“优”等的约有多少人?解:(1)70,0.2;(2)补全的频数分布直方图如下图所示:(3)80≤x<90;(4)3 000×0.25=750(人).答:该校参加本次比赛的3 000名学生中成绩是“优”等的约有750人.16.(16分)学校想知道九年级学生对我国倡导的“一带一路”的了解程度,随机抽取部分九年级学生进行问卷调查,问卷设有4个选项(每位被调查的学生必选且只选一项):A.非常了解.B.了解.C.知道一点.D.完全不知道.将调查的结果绘制如下两幅不完整的统计图,请根据两幅统计图中的信息,解答下列问题:(1)求本次共调查了多少学生?(2)补全条形统计图;(3)该校九年级共有600名学生,请你估计“了解”的学生约有多少名?(4)在“非常了解”的3人中,有2名女生,1名男生,老师想从这3人中任选两人做宣传员,请用列表或画树状图法求出被选中的两人恰好是一男生一女生的概率.解:(1)6÷20%=30(名).答:本次共调查了30名学生;(2)补全的条形统计图如下图所示:(3)600×1230=240(名).答:该校九年级600名学生中,“了解”的学生约有240名; (4)画树状图如下:由树状图可知,共有6种等可能的结果,其中被选中的两人恰好是一男生一女生的结果有4种,所以被选中的两人恰好是一男生一女生的概率为P =46=23.。

2018年中考数学总复习阶段检测10统计与概率试题2

2018年中考数学总复习阶段检测10统计与概率试题2

阶段检测10 统计与概率一、选择题(本大题有10小题,每小题4分,共40分.请选出各小题中唯一的正确选项,不选、多选、错选,均不得分)1.下列说法中正确的是( )A.“打开电视,正在播放《新闻联播》”是必然事件B.“x2<0(x是实数)”是随机事件C.掷一枚质地均匀的硬币10次,可能有5次正面向上D.为了了解夏季冷饮市场上冰淇淋的质量情况,宜采用普查方式调查2.如表记录了甲、乙、丙、丁四名跳高运动员最近几次选拔赛成绩的平均数与方差:根据表中数据,要从中选择一名成绩好且发挥稳定的运动员参加比赛,应该选择( ) A.甲 B.乙 C.丙 D.丁3.如图是某校参加各兴趣小组的学生人数分布扇形统计图,则参加人数最多的兴趣小组是( )第3题图A.棋类 B.书画C.球类 D.演艺4.在一个不透明的盒子里,装有4个黑球和若干个白球,它们除颜色外没有任何其他区别,摇匀后从中随机摸出一个球记下颜色,再把它放回盒子里,不断重复,共摸球40次,其中10次摸到黑球,则估计盒子中大约有白球( )A.12个 B.16个 C.20个 D.30个5.某校规定学生的学期数学成绩满分为100分,其中研究性学习成绩占40%,期末卷面成绩占60%,小明的两项成绩(百分制)依次是80分,90分,则小明这学期的数学成绩是( )A .80分B .82分C .84分D .86分6.如图是九(1)班45名同学每周课外阅读时间的频数直方图(每组含前一个边界值,不含后一个边界值).由图可知,人数最多的一组是( )A .2~4小时B .4~6小时C .6~8小时D .8~10小时第6题图 第8题图7.有一枚均匀的正方体骰子,骰子各个面上的点数分别为1,2,3,4,5,6,若任意抛掷一次骰子,朝上的面的点数记为x ,计算|x -4|,则其结果恰为2的概率是( )A.16B.14C.13D.128.某校男子足球队的年龄分布如图所示,则根据图中信息可知这些队员年龄的平均数,中位数分别是( )A .15.5,15.5B .15.5,15C .15,15.5D .15,15 9.同时抛掷三枚质地均匀的硬币,至少有两枚硬币正面向上的概率是( ) A.38 B.58 C.23 D.1210.某校九年级数学兴趣小组的同学调查了若干名家长对“初中学生带手机上学”现象的看法,统计整理并制作了如图的条形与扇形统计图.第10题图依据图中信息,得出下列结论: (1)接受这次调查的家长人数为200人;(2)在扇形统计图中,“不赞同”的家长部分所对应的扇形圆心角大小为162°; (3)表示“无所谓”的家长人数为40人;(4)随机抽查一名接受调查的家长,恰好抽到“很赞同”的家长的概率是110.其中正确的结论个数为( )A.4 B.3 C.2 D.1二、填空题(本大题有6小题,每小题5分,共30分)11.一组数据4,0,1,-2,2的标准差是____________________.12.某校为了了解九年级学生“一分钟内跳绳次数”的情况,随机选取了3名女生和2名男生,则从这5名学生中,选取2名同时跳绳,恰好选中一男一女的概率是____________________.13.九年级(3)班共有50名同学,如图是该班一次体育模拟测试成绩的频数分布直方图(满分为30分,成绩均为整数).若将不低于23分的成绩评为合格,则该班此次成绩达到合格的同学占全班人数的百分比是____________________.第13题图14.某学校为了解本校学生课外阅读的情况,从全体学生中随机抽取了部分学生进行调查,并将调查结果绘制成统计表.已知该校全体学生人数为1200人,由此可以估计每周课外阅读时间在1~2(不含1)小时的学生有____________________人.15.如图,正方形的阴影部分是由四个直角边长都是1和3的直角三角形组成的,假设可以在正方形内部随意取点,那么这个点取在阴影部分的概率为____________________.第15题图第16题图16.如图是某足球队全年比赛情况统计图:根据图中信息,该队全年胜了_________场.三、解答题(本大题有8小题,第17~20题每题8分,第21题10分,第22、23题每题12分,第24题14分,共80分)17.甲、乙两名同学进行射击训练,在相同条件下各射靶5次,成绩统计如下表:若从甲、乙两人射击成绩方差的角度评价两人的射击水平,则谁的射击成绩更稳定些?18.一只不透明的袋子中装有1个白球、1个蓝球和2个红球,这些球除颜色外都相同.(1)从袋中随机摸出1个球,摸出红球的概率为____________________;(2)从袋中随机摸出1个球(不放回)后,再从袋中余下的3个球中随机摸出1个球,求两次摸到的球颜色不相同的概率.19.2017年6月18日是父亲节,某商店老板统计了这四年父亲节当天剃须刀销售情况,以下是根据该商店剃须刀销售的相关数据所绘制统计图的一部分.第19题图请根据图1、图2解答下列问题:(1)近四年父亲节当天剃须刀销售总额一共是5.8万元,请将图1中的统计图补充完整;(2)计算该店2016年父亲节当天甲品牌剃须刀的销售额.20.交通指数是交通拥堵指数的简称,是综合反映道路畅通或拥堵的概念.其指数在100以内为畅通,200以上为严重拥堵,从某市交通指挥中心选取了5月1日至14日的交通状况,依据交通指数数据绘制的折线统计图如图所示,某人随机选取了5月1日至14日的某一天到达该市.第20题图(1)请结合折线图分别找出交通为畅通和严重拥堵的天数;(2)求此人到达当天的交通为严重拥堵的概率;(3)由图判断从哪天开始连续三天的交通指数方差最大?(直接判断,不要求计算)21.某校想了解学生每周的课外阅读时间情况,随机调查了部分学生,对学生每周的课外阅读时间x(单位:小时)进行分组整理,并绘制了如图所示的不完整的频数分布直方图和扇形统计图:第21题图根据图中提供的信息,解答下列问题:(1)补全频数分布直方图;(2)求扇形统计图中m的值和E组对应的圆心角度数;(3)请估计该校3000名学生中每周的课外阅读时间不小于6小时的人数.22.如图所示,A、B两个旅游点从2013年至2017年“五一长假”期间的旅游人数变化情况分别用实线和虚线表示,请解答以下问题:第22题图(1)B旅游点的旅游人数相对上一年,增长最快的是哪一年?(2)求A、B两个旅游点从2013年到2017年旅游人数的平均数和方差,并从平均数和方差的角度,用一句话对这两个旅游点的情况进行评价;(3)A旅游点现在的门票价格为每人80元,为保护旅游点环境和游客的安全,A旅游点的最佳接待人数为4万人.A旅游点决定提高门票价格来控制游客数量.已知游客数量y(万人)与门票价格x(元)之间满足函数关系y=5-x100.若要使A旅游点的游客人数不超过4万人,则门票价格至少应提高多少元?23.为增强学生环保意识,某中学组织全校2000名学生参加环保知识大赛,比赛成绩均为整数,从中抽取部分同学的成绩进行统计,并绘制成如右统计图.第23题图请根据图中提供的信息,解答下列问题:(1)若抽取的成绩用扇形图来描述,则表示“第三组(79.5~89.5)”的扇形的圆心角为____________________度;(2)若成绩在90分以上(含90分)的同学可以获奖,请估计该校约有多少名同学获奖?(3)某班准备从成绩最好的4名同学(男、女各2名)中随机选取2名同学去社区进行环保宣传,则选出的同学恰好是1男1女的概率为____________________.24.有甲、乙两个不透明的布袋,甲袋中装有3个完全相同的小球,分别标有数字0,1,2;乙袋中装有3个完全相同的小球,分别标有数字-1,-2,0;现从甲袋中随机抽取一个小球,记录标有的数字为x,再从乙袋中随机抽取一个小球,记录标有的数字为y,确定点M坐标为(x,y).(1)用树状图或列表法列举点M所有可能的坐标;(2)求点M(x,y)在函数y=-x+1的图象上的概率;(3)在平面直角坐标系xOy中,⊙O的半径是2,求过点M(x,y)能作⊙O的切线的概率.参考答案阶段检测10 统计与概率一、1—5.CACAD 6—10.BCDDA二、11.2 12.35 13.92% 14.240 15.1316.22三、17.x 甲=8(环);x 乙=8(环),∴S 2甲=15[2×(7-8)2+2×(8-8)2+(10-8)2]=1.2,S 2乙=15[(7-8)2+3×(8-8)2+(9-8)2]=0.4.∵S 2甲>S 2乙,∴乙同学的射击成绩比较稳定.18.(1)12(2)设白球为A ,蓝球为B ,红球为C 1、C 2,列表如下:由表可知共有12种可能情况,颜色不相同的情况有10种,∴P(颜色不同)=12=6.∴两次摸到的球颜色不相同的概率是56.19.(1)2014年父亲节当天剃须刀的销售额为5.8-1.7-1.2-1.3=1.6(万元),补全条形图如图: (2)1.3×17%=0.221(万元).答:该店2016年父亲节当天甲品牌剃须刀的销售额为0.221万元.第19题图20.(1)由纵坐标看出畅通的天数为7天,严重拥堵的天数为2天; (2)此人到达当天的交通为严重拥堵的概率P =214=17; (3)由方差越大,数据波动越大,得5、6、7三天数据波动最大,故从5日开始.21.(1)补全频数分布直方图,如图所示. (2)∵10÷10%=100人,∴40÷100=40%,∴m =40,∵4÷100=4%,∴“E ”组对应的圆心角度数=4%×360°=14.4°. (3)3000×(25%+4%)=870(人).答:估计该校3000名学生中每周的课外阅读时间不少于6小时的人数是870人.第21题图22.(1)B 旅游点的旅游人数相对上一年,增长最快的是2016年, (2)x A =3(万人),x B =3(万人),S 2A =2,S 2B =0.4,从2013至2017年五一长假期间,A 、B 两个旅游点平均每年的旅游人数均为3万人,但A 旅游点较B 旅游点的旅游人数波动更大一些. (3)由y =5-x100≤4,得x≥100,x -80≥20,A 旅游点门票至少要提高20元. 23.(1)144 (2)成绩在90分以上的占比为1650×100%=32%,∴估计该校约有2000×32%=640名同学获奖. (3)2324.(1)画树状图:共有9种等可能的结果,它们是:(0,-1),第24题图(0,-2),(0,0),(1,-1),(1,-2),(1,0),(2,-1),(2,-2),(2,0); (2)在直线y =-x +1的图象上的点有:(1,0),(2,-1),所以点M(x ,y)在函数y =-x +1的图象上的概率为29; (3)在⊙O 上的点有(0,-2),(2,0),在⊙O 外的点有(1,-2),(2,-1),(2,-2),所以过点M(x ,y)能作⊙O 的切线的点有5个,所以过点M(x ,y)能作⊙O 的切线的概率为59.。

2018届中考数学复习阶段测评(8)统计与概率(含答案)

2018届中考数学复习阶段测评(8)统计与概率(含答案)

阶段测评(八)统计与概率时间:90分钟满分:120分一、选择题(每小题3分,共30分)1.(2017重庆中考A卷)下列调查中,最适合采用全面调查(普查)方式的是(D)A.对重庆市初中学生每天阅读时间的调查B.对端午节期间市场上粽子质量情况的调查C.对某批次手机的防水功能的调查D.对某校九年级(3)班学生肺活量情况的调查2.(2017苏州中考)有一组数据:2,5,5,6,7,这组数据的平均数为(C)A.3 B.4 C.5 D.63.(2017苏州中考)下列成语描述的事件为随机事件的是(B)A.水涨船高B.守株待兔C.水中捞月D.缘木求鱼4.(2017安顺中考)如图是根据某班40名同学一周的体育锻炼情况绘制的条形统计图.那么该班40名同学一周参加体育锻炼时间的众数、中位数分别是(B)A.16,10.5 B.8,9C.16,8.5 D.8,8.55.(常德中考)下列说法正确的是(D)A.袋中有形状、大小、质地完全一样的5个红球和1个白球,从中随机抽出1个球,一定是红球B.天气预报“明天降水概率10%”,是指明天有10%的时间会下雨C.某地发行一种福利彩票,中奖概率是千分之一.那么,买这种彩票1 000张,一定会中奖D.连续掷一枚均匀硬币,若5次都是正面朝上,则第6次仍然可能正面朝上6.(2017苏州中考)为了鼓励学生课外阅读,学校公布了“阅读奖励”方案,并设置了“赞成、反对、无所谓”三种意见.现从学校所有2 400名学生中随机征求了100名学生的意见,其中持“反对”和“无所谓”意见的共有30名学生,估计全校持“赞成”意见的学生人数约为(C)A.70 B.720 C.1 680 D.2 3707.(2017德州中考)某专卖店专营某品牌的衬衫,店主对上一周中不同尺码的衬衫销售(C)A.平均数B.方差C.众数D.中位数8.(2017枣庄中考)如表记录了甲、乙、丙、丁四名跳高运动员最近几次选拔赛成绩的平均数与方差:,应该选择( A ) A .甲 B .乙 C .丙 D .丁9.(2017菏泽中考)某兴趣小组为了解我市气温变化情况,记录了今年1月份连续6天的最低气温(单位:℃):-7,-4,-2,1,-2,2.关于这组数据,下列结论不正确的是( D )A .平均数是-2B .中位数是-2C .众数是-2D .方差是710.(乐山中考)现有两枚质地均匀的正方体骰子,每枚骰子的六个面上都分别标有数字1,2,3,4,5,6.同时投掷这两枚骰子,以朝上一面所标的数字为掷得的结果,那么所得结果之和为9的概率是( C )A .13B .16C .19D .112二、填空题(每小题4分,共24分)11.“明天的太阳从西方升起”这个事件属于__不可能__(选填“必然”“不可能”或“不确定”)事件.12.(2017天津中考)不透明袋子中装有6个球,其中有5个红球、1个绿球,这些球除颜色外无其他差别.从袋子中随机取出1个球,则它是红球的概率是__56__.13.(2017长沙中考)甲、乙两名同学进行跳高测试,每人10次跳高的平均成绩恰好是1.6 m ,方差分别是s 2甲=1.2,s 2乙=0.5,则在本次测试中,__乙__(选填“甲”或“乙” )同学的成绩更稳定.14.(2017益阳中考)学习委员调查本班学生课外阅读情况,对学生喜爱的书籍进行分类统计,其中“古诗词类”的频数为12人,频率为0.25,那么被调查的学生人数为__48__.15.某校为纪念世界反法西斯战争胜利70周年,举行了主题为“让历史照亮未来”的演讲比赛,其中九年级的5位参赛选手的比赛成绩(单位:分)分别为8.6,9.5,9.7,8.8,9,则这5个数据中的中位数是__9__.16.(内江中考)任取不等式组⎩⎪⎨⎪⎧k -3≤0,2k +5>0的一个整数解,则能使关于x 的方程2x +k =-1的解为非负数的概率为__13__.三、解答题(共66分)17.(8分)如图,韦玲和贾静两人玩“剪刀、石头、布”的游戏,游戏规则为:剪刀胜布,布胜石头,石头胜剪刀.(1)请用列表法或树状图表示出所有可能出现的游戏结果; (2)求韦玲胜出的概率.解:(1)画树状图如图:由树状图可知共有9种等可能的结果;(4分)(2)∵韦玲胜出的可能性有3种,故韦玲胜出的概率是13.(8分)18.(8分)(乐山中考)甲、乙两名射击运动员进行射击比赛,两人在相同条件下各射击10次,射击的成绩如图所示.根据图中信息,回答下列问题:(1)甲的平均数是______,乙的中位数是______;(2)分别计算甲、乙成绩的方差,并从计算结果来分析,你认为哪位运动员的射击成绩更稳定?解:(1)8;7.5;(2分)(2)x 乙=110(7+10+…+7)=8;(4分)s 2甲=110[(6-8)2+(10-8)2+…+(7-8)2]=1.6, s 2乙=110[(7-8)2+(10-8)2+…+(7-8)2]=1.2, ∵s 2乙<s 2甲,∴乙运动员的射击成绩更稳定.(8分)19.(8分)(2017连云港中考)为落实“垃圾分类”,环卫部门要求垃圾要按A ,B ,C 三类分别装袋、投放,其中A 类指废电池、过期药品等有毒垃圾,B 类指剩余食品等厨余垃圾、C 类指塑料,废纸等可回收垃圾.甲投放了一袋垃圾,乙投放了两袋垃圾,这两袋垃圾不同类.(1)直接写出甲投放的垃圾恰好是A 类的概率;(2)求乙投放的垃圾恰有一袋与甲投放的垃圾是同类的概率.解:(1)甲投放的垃圾恰好是A 类的概率是13;(2分)(2)列出树状图如图所示:由图可知,共有18种等可能结果,其中乙投放的垃圾恰有一袋与甲投放的垃圾是同类的结果有12种. 所以,P(乙投放的垃圾恰有一袋与甲投放的垃圾是同类)=1218=23. 即乙投放的垃圾恰有一袋与甲投放的垃圾是同类的概率是23. (8分)20.(8分)(岳阳中考)某学校环保志愿者协会对该市城区的空气质量进行调查,从全年365天中随机抽取了80天的空气质量指数(AQI )数据,绘制出三幅不完整的统计图表.请根据图表中提供的信息解答下列问题:(1)统计表中m=________,n=________;扇形统计图中,空气质量等级为“良”的天数占________%;(2)补全条形统计图,并通过计算估计该市城区全年空气质量等级为“优”和“良”的天数共多少天;(3)据调查,严重污染的2天发生在春节期间,燃放烟花爆竹成为空气污染的一个重要原因.据此,请你提出一条合理化建议.解:(1)20;8;55;(3分)(2)估计该市城区全年空气质量等级为“优”和“良”的天数共365×(25%+55%)=292(天);补全统计图如图;(5分)(3)建议不要燃放烟花爆竹.(8分)21.(8分)(2017长沙中考)为了传承中华民族优秀的传统文化,市教育局决定开展“经典诵读进校园”活动,某校园团委组织八年级100名学生进行“经典诵读”选拔赛,赛后对全体参赛学生的成绩进行整理,得到下列不完整的统计图表:请根据所给信息,解答以下问题:(1)表中a=________;b=________;(2)请计算扇形统计图中B组对应的圆心角的度数;(3)已知有四名同学均取得98分的最好成绩,其中包括来自同一班级的甲、乙两名同学,学校将从这四名同学中随机选出两名参加市级比赛,请用列举法或树状图法求甲、乙两名同学都被选中的概率.解:(1)0.3;45;(2分)(2)360°×0.3=108°;(4分)(3)由表格可知,甲、乙两名同学都被选中的概率为16.(8分)22.(8分)(2016金华中考模拟)小红想了解她所居住的小区500户居民的家庭月食品支出情况,从中随机调查了40户居民家庭的情况(支出取整数,单位:元),并绘制了如下的频数分布表和频数分布直方图:频数分布表根据表中提供的信息,解答下列问题:(1)补全频数分布表; (2)补全频数分布直方图;(3)请你估计该小区居民的家庭月食品支出不足2 000元的户数大约有多少户. 解:(1)18;0.450;(2分)(2)补全的直方图如图所示;(4分)(3)第一组和第二组的频率之和为0.050+0.150=0.2,0.2×500=100(户).该小区居民的家庭月食品支出不足2 000元的户数大约有100户.(8分)23.(9分)(2017苏州中考)七年级(1)班针对“你最喜爱的课外活动项目”对全班学生进行调查(每名学生分别选一个活动项目),并根据调查结果列出统计表,绘制成扇形统计图:男、女生所选项目人数统计表根据以上信息解决下列问题:(1)m=________,n=________;(2)扇形统计图中机器人项目所对应扇形的圆心角度数为________;(3)从选航模项目的4名学生中随机选取2名学生参加学校航模兴趣小组训练,请用列举法(画树状图或列表)求所选取的2名学生中恰好有1名男生、1名女生的概率.解:(1)8,3;(2分)(2)144°;(4分)(3)将选航模项目的2名男生编上号码1,2,将2名女生编上号码3,4.用表格列出所有名女生”有8种可能,∴P(1名男生、1名女生)=812=23.(9分)24.(9分)(2017山西中考)从共享单车,共享汽车等共享出行到共享充电宝、共享雨伞等共享物品,各式各样的共享经济模式在各个领域迅速普及应用,越来越多的企业与个人成为参与者与受益者.根据国家信息中心发布的《中国分享经济发展报告2017》显示,2016年我国共享经济市场交易额约为34 520亿元,比上年增长103%;超6亿人参与共享经济活动,比上年增加约1亿人.如图是源于该报告中的中国共享经济重点领域市场规模统计图:(1)请根据统计图解答下列问题:①图中涉及的七个重点领域中,2016年交易额的中位数是________亿元;②请分别计算图中的“知识技能”和“资金”两个重点领域从2015年到2016年交易额的增长率(精确到1%),并就这两个重点领域中的一个分别从交易额和增长率两个方面,谈谈你的认识;(2)小宇和小强分别对共享经济中的“共享出行”和“共享知识”最感兴趣,他们上网查阅了相关资料,顺便收集到四个共享经济领域的图标,并将其制成编号为A ,B ,C ,D 的四张卡片(除编号和内容外,其余完全相同).他们将这四张卡片背面朝上,洗匀放好,从中随机抽取一张(不放回),再从中随机抽取一张.请用列表或画树状图的方法求抽到的两张卡片恰好是“共享出行”和“共享知识”的概率.(这四张卡片分别用它们的编号A ,B ,C ,D 表示)解:(1)①2 038;②“知识技能”的增长率为:610-200200=2.05=205%.“资金”的增长率为:20 863-10 00010 000=1.086 3≈109%;对于这两个领域的认识,答案不唯一.例如:知识技能领域交易额较小,但是增长率最高,达到了200%以上,其发展速度惊人;(3分)或画树状图如下:由列表(或树状图)可知一共有12种可能的结果,且每种结果出现的可能性相同,其中抽到“共享出行”和“共享知识”的结果有2种.所以,P(抽到“共享出行”和“共享知识”)=212=。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

阶段检测10统计与概率一、选择题(本大题有10小题,每小题4分,共40分.请选出各小题中唯一的正确选项,不选、多选、错选,均不得分)1.下列说法中正确的是()A.“打开电视,正在播放《新闻联播》”是必然事件B.“x2<0(x是实数)”是随机事件C.掷一枚质地均匀的硬币10次,可能有5次正面向上D.为了了解夏季冷饮市场上冰淇淋的质量情况,宜采用普查方式调查2.如表记录了甲、乙、丙、丁四名跳高运动员最近几次选拔赛成绩的平均数与方差:根据表中数据,要从中选择一名成绩好且发挥稳定的运动员参加比赛,应该选择() A.甲B.乙C.丙D.丁3.如图是某校参加各兴趣小组的学生人数分布扇形统计图,则参加人数最多的兴趣小组是()第3题图A.棋类B.书画C.球类D.演艺4.在一个不透明的盒子里,装有4个黑球和若干个白球,它们除颜色外没有任何其他区别,摇匀后从中随机摸出一个球记下颜色,再把它放回盒子里,不断重复,共摸球40次,其中10次摸到黑球,则估计盒子中大约有白球()A.12个B.16个C.20个D.30个5.某校规定学生的学期数学成绩满分为100分,其中研究性学习成绩占40%,期末卷面成绩占60%,小明的两项成绩(百分制)依次是80分,90分,则小明这学期的数学成绩是()A .80分B .82分C .84分D .86分6.如图是九(1)班45名同学每周课外阅读时间的频数直方图(每组含前一个边界值,不含后一个边界值).由图可知,人数最多的一组是( )A .2~4小时B .4~6小时C .6~8小时D .8~10小时第6题图 第8题图7.有一枚均匀的正方体骰子,骰子各个面上的点数分别为1,2,3,4,5,6,若任意抛掷一次骰子,朝上的面的点数记为x ,计算|x -4|,则其结果恰为2的概率是( )A.16B.14C.13D.128.某校男子足球队的年龄分布如图所示,则根据图中信息可知这些队员年龄的平均数,中位数分别是( )A .15.5,15.5B .15.5,15C .15,15.5D .15,15 9.同时抛掷三枚质地均匀的硬币,至少有两枚硬币正面向上的概率是( ) A.38 B.58 C.23 D.1210.某校九年级数学兴趣小组的同学调查了若干名家长对“初中学生带手机上学”现象的看法,统计整理并制作了如图的条形与扇形统计图.第10题图依据图中信息,得出下列结论: (1)接受这次调查的家长人数为200人;(2)在扇形统计图中,“不赞同”的家长部分所对应的扇形圆心角大小为162°; (3)表示“无所谓”的家长人数为40人;(4)随机抽查一名接受调查的家长,恰好抽到“很赞同”的家长的概率是110.其中正确的结论个数为()A.4 B.3 C.2 D.1二、填空题(本大题有6小题,每小题5分,共30分)11.一组数据4,0,1,-2,2的标准差是____________________.12.某校为了了解九年级学生“一分钟内跳绳次数”的情况,随机选取了3名女生和2名男生,则从这5名学生中,选取2名同时跳绳,恰好选中一男一女的概率是____________________.13.九年级(3)班共有50名同学,如图是该班一次体育模拟测试成绩的频数分布直方图(满分为30分,成绩均为整数).若将不低于23分的成绩评为合格,则该班此次成绩达到合格的同学占全班人数的百分比是____________________.第13题图14.某学校为了解本校学生课外阅读的情况,从全体学生中随机抽取了部分学生进行调查,并将调查结果绘制成统计表.已知该校全体学生人数为1200人,由此可以估计每周课外阅读时间在1~2(不含1)小时的学生有____________________人.15.如图,正方形的阴影部分是由四个直角边长都是1和3的直角三角形组成的,假设可以在正方形内部随意取点,那么这个点取在阴影部分的概率为____________________.第15题图第16题图16.如图是某足球队全年比赛情况统计图:根据图中信息,该队全年胜了_________场.三、解答题(本大题有8小题,第17~20题每题8分,第21题10分,第22、23题每题12分,第24题14分,共80分)17.甲、乙两名同学进行射击训练,在相同条件下各射靶5次,成绩统计如下表:若从甲、乙两人射击成绩方差的角度评价两人的射击水平,则谁的射击成绩更稳定些?18.一只不透明的袋子中装有1个白球、1个蓝球和2个红球,这些球除颜色外都相同.(1)从袋中随机摸出1个球,摸出红球的概率为____________________;(2)从袋中随机摸出1个球(不放回)后,再从袋中余下的3个球中随机摸出1个球,求两次摸到的球颜色不相同的概率.19.2017年6月18日是父亲节,某商店老板统计了这四年父亲节当天剃须刀销售情况,以下是根据该商店剃须刀销售的相关数据所绘制统计图的一部分.第19题图请根据图1、图2解答下列问题:(1)近四年父亲节当天剃须刀销售总额一共是5.8万元,请将图1中的统计图补充完整;(2)计算该店2016年父亲节当天甲品牌剃须刀的销售额.20.交通指数是交通拥堵指数的简称,是综合反映道路畅通或拥堵的概念.其指数在100以内为畅通,200以上为严重拥堵,从某市交通指挥中心选取了5月1日至14日的交通状况,依据交通指数数据绘制的折线统计图如图所示,某人随机选取了5月1日至14日的某一天到达该市.第20题图(1)请结合折线图分别找出交通为畅通和严重拥堵的天数;(2)求此人到达当天的交通为严重拥堵的概率;(3)由图判断从哪天开始连续三天的交通指数方差最大?(直接判断,不要求计算)21.某校想了解学生每周的课外阅读时间情况,随机调查了部分学生,对学生每周的课外阅读时间x(单位:小时)进行分组整理,并绘制了如图所示的不完整的频数分布直方图和扇形统计图:第21题图根据图中提供的信息,解答下列问题:(1)补全频数分布直方图;(2)求扇形统计图中m的值和E组对应的圆心角度数;(3)请估计该校3000名学生中每周的课外阅读时间不小于6小时的人数.22.如图所示,A、B两个旅游点从2013年至2017年“五一长假”期间的旅游人数变化情况分别用实线和虚线表示,请解答以下问题:第22题图(1)B旅游点的旅游人数相对上一年,增长最快的是哪一年?(2)求A、B两个旅游点从2013年到2017年旅游人数的平均数和方差,并从平均数和方差的角度,用一句话对这两个旅游点的情况进行评价;(3)A旅游点现在的门票价格为每人80元,为保护旅游点环境和游客的安全,A旅游点的最佳接待人数为4万人.A旅游点决定提高门票价格来控制游客数量.已知游客数量y(万人)与门票价格x(元)之间满足函数关系y=5-x100.若要使A旅游点的游客人数不超过4万人,则门票价格至少应提高多少元?23.为增强学生环保意识,某中学组织全校2000名学生参加环保知识大赛,比赛成绩均为整数,从中抽取部分同学的成绩进行统计,并绘制成如右统计图.第23题图请根据图中提供的信息,解答下列问题:(1)若抽取的成绩用扇形图来描述,则表示“第三组(79.5~89.5)”的扇形的圆心角为____________________度;(2)若成绩在90分以上(含90分)的同学可以获奖,请估计该校约有多少名同学获奖?(3)某班准备从成绩最好的4名同学(男、女各2名)中随机选取2名同学去社区进行环保宣传,则选出的同学恰好是1男1女的概率为____________________.24.有甲、乙两个不透明的布袋,甲袋中装有3个完全相同的小球,分别标有数字0,1,2;乙袋中装有3个完全相同的小球,分别标有数字-1,-2,0;现从甲袋中随机抽取一个小球,记录标有的数字为x,再从乙袋中随机抽取一个小球,记录标有的数字为y,确定点M坐标为(x,y).(1)用树状图或列表法列举点M所有可能的坐标;(2)求点M(x,y)在函数y=-x+1的图象上的概率;(3)在平面直角坐标系xOy中,⊙O的半径是2,求过点M(x,y)能作⊙O的切线的概率.参考答案阶段检测10 统计与概率一、1—5.CACAD 6—10.BCDDA二、11.2 12.35 13.92% 14.240 15.1316.22三、17.x 甲=8(环);x 乙=8(环),∴S 2甲=15[2×(7-8)2+2×(8-8)2+(10-8)2]=1.2,S 2乙=15[(7-8)2+3×(8-8)2+(9-8)2]=0.4.∵S 2甲>S 2乙,∴乙同学的射击成绩比较稳定. 18.(1)12(2)设白球为A ,蓝球为B ,红球为C 1、C 2,列表如下:由表可知共有12种可能情况,颜色不相同的情况有10种,∴P(颜色不同)=1012=56.∴两次摸到的球颜色不相同的概率是56.19.(1)2014年父亲节当天剃须刀的销售额为5.8-1.7-1.2-1.3=1.6(万元),补全条形图如图: (2)1.3×17%=0.221(万元).答:该店2016年父亲节当天甲品牌剃须刀的销售额为0.221万元.第19题图20.(1)由纵坐标看出畅通的天数为7天,严重拥堵的天数为2天; (2)此人到达当天的交通为严重拥堵的概率P =214=17; (3)由方差越大,数据波动越大,得5、6、7三天数据波动最大,故从5日开始.21.(1)补全频数分布直方图,如图所示. (2)∵10÷10%=100人,∴40÷100=40%,∴m =40,∵4÷100=4%,∴“E ”组对应的圆心角度数=4%×360°=14.4°. (3)3000×(25%+4%)=870(人).答:估计该校3000名学生中每周的课外阅读时间不少于6小时的人数是870人.第21题图22.(1)B 旅游点的旅游人数相对上一年,增长最快的是2016年, (2)x A =3(万人),x B=3(万人),S 2A =2,S 2B =0.4,从2013至2017年五一长假期间,A 、B 两个旅游点平均每年的旅游人数均为3万人,但A 旅游点较B 旅游点的旅游人数波动更大一些. (3)由y =5-x100≤4,得x ≥100,x -80≥20,A 旅游点门票至少要提高20元. 23.(1)144 (2)成绩在90分以上的占比为1650×100%=32%,∴估计该校约有2000×32%=640名同学获奖. (3)2324.(1)画树状图:共有9种等可能的结果,它们是:(0,-1),第24题图(0,-2),(0,0),(1,-1),(1,-2),(1,0),(2,-1),(2,-2),(2,0); (2)在直线y =-x +1的图象上的点有:(1,0),(2,-1),所以点M(x ,y)在函数y =-x +1的图象上的概率为29; (3)在⊙O 上的点有(0,-2),(2,0),在⊙O 外的点有(1,-2),(2,-1),(2,-2),所以过点M(x ,y)能作⊙O 的切线的点有5个,所以过点M(x ,y)能作⊙O 的切线的概率为59.。

相关文档
最新文档