高二数学 利用空间向量解决立体几何中的垂直问题
纵观立体几何考题感悟向量方法解题
纵观立体几何考题感悟向量方法解题在高中数学学习中,立体几何一直是学生们非常头疼的一个部分。
立体几何的主要难点是空间的复杂性,加上几何思维本来就不易理解,许多学生解题困难。
但是,通过向量方法解题是一种很好的解决立体几何问题的方法。
本文将通过纵观立体几何考题,分享一些关于向量方法解题的经验与感悟。
一、向量的基本概念及运算向量的表示法是用箭头表示。
箭头的长度代表向量的大小,箭头的方向代表向量的方向。
一个向量可以被表示为一个由有序数对$(x,y)$所确定的点A和另一个由有序数对$(x',y')$所确定的点B之间的向量$\vec{AB}$。
向量也可以表示为箭头的坐标,即$\vec{AB}=\begin{pmatrix}x'-x\\y'-y\end{pmatrix}$。
向量的大小表示为$|\vec{AB}|=\sqrt{(x'-x)^2+(y'-y)^2}$。
向量的运算有向量加法和向量数乘。
向量加法的定义是:$\vec{a}+\vec{b}=\begin{pmatrix}a_1+b_1\\a_2+b_2\\a_3+b_3\e nd{pmatrix}$。
其中,$\vec{a}=(a_1,a_2,a_3)$,$\vec{b}=(b_1,b_2,b_3)$。
向量数乘的定义是:$\lambda\vec{a}=(\lambda a_1,\lambda a_2,\lambda a_3)$。
其中,$\lambda$是一个实数。
二、应用向量方法求解空间几何问题1.立体几何基本概念首先,我们需要掌握一些立体几何的基本概念,比如平面、线段、角等。
此外,还需要了解空间中的直线、平面、空间角、平行线等概念。
了解这些概念是建立解题基础的必要条件。
2.向量表达式的转化在解题中,我们可以通过向量的基本运算将问题转化为向量的加、减、数乘问题。
因此,我们需要能够将向量从一个表达式转化为另一个表达式,并灵活地运用向量的加、减、数乘运算法则来求解问题。
高二数学利用空间向量解决立体几何中的垂直问题
n
g
例2:已知:在空间四边形OABC中,OA⊥BC, OB⊥AC, 证明:由已知 OA B C , OB AC 求证:OC⊥ AB O 所以 OA BC 0 , OB AC 0
OA (OC OB) 0 OB (OC OA) 0
A B C
所以 OA OC OA OB OB OC OB OA 所以 OA OC OB OC 0
M
D
B
N
1 1 2 1 2 2 = ( a + a - a) =0 2 2 2
MN AB
C
同理, MN CD
例3 在平行六面体ABCD ABC D中,底面是菱形,AAB
AAD BAD 60 。 (1)求证:AA BD; AB (2)当AC 平面ABD时,求 的值。 AA
D' A'
D A B B'
C'
C
变式训练(二)
(2)已知在平行六面体ABCD-ABCD中,有AA=AB=AD, 且AAD=AAB=BAD=,求证:AC 平面ABD。
D'
C'
证明: AC AB AD AA
A'
D A B
B'
BD AB AD AB AB AA 所以AC BD (AB AD AA ) (AB AD) 0 AC AB (AB AD AA ) (AB AA ) 0 又因为AB BD=B 所以AC 平面ABD
p xa yb zc
二、数量积的性质
1)数量积性质 对于非零向量 a , b ,有: (1) a e=|a|cos a,e
空间向量在立体几何中的应用
空间向量在立体几何中的应用教学目标1、知识与技能(1) 进一步理解向量垂直的充要条件;(2)利用向量法证明线线、线面垂直;(3)利用向量解决立体几何问题,培养学生数形结合的思想方法;2、过程与方法通过学生对空间几何图形的认识,建立恰当的空间直角坐标系,利用向量的坐标将几何问题代数化,提高学生应用知识的能力。
3、情感态度与价值观通过空间向量在立体几何中的应用,让学生感受数学、体会数学的美感,从而激发学数学、用数学的热情。
教学重点建立恰当的空间直角坐标系,用向量法证明线线、线面垂直。
教学难点、关键建立恰当的空间直角坐标系,直线的方向向量; 正确写出空间向量的坐标。
教学方法启发式教学、讲练结合教学媒体ppt课件学法指导交流指导,渗透指导.课型新授课教学过程一、知识的复习与引人自主学习1.若=x i+y j+z k,那么(x,y,z)叫做向量的坐标,也叫点P的坐标.2. 如图,已知长方体的边长为AB=2,AD=2,1AA '=.以这个长方体的顶点为坐标原点,射线分别为轴、轴、轴的正半轴,建立空间直角坐标系,试求长方体各个顶点及A C '中点G 的坐标.3.设a =(x 1,y 1,z 1),b =(x 2,y 2,z 2),那么±=(x 1±x 2,y 1±y 2, ), ⊥⇔ b a ∙=x 1x 2+y 1y 2+ =0.4.设M 1(x 1,y 1,z 1),M 2(x 2,y 2,z 2),则 12M M =(2121,x x y y --, ) [探究]1.直线的方向向量:直线的方向向量是指和这条直线平行(或重合)的非零向量,一条直线的方向向量有 个. 2.空间位置关系的向量表示[合作探究]二、新授课:利用空间向量证明线线垂直、线面垂直例1、如图,在棱长为2的正方体ABCD -A 1B 1C 1D 1中,M 为BC 的中点,N 为AB 的中点,P 为BB 1的中点.(Ⅰ)求证:BD 1⊥B 1C ;(Ⅱ)求证:BD 1⊥平面MNP .设计意图:使学生明确空间向量在证明线线垂直、线面垂直中的作用。
用空间向量研究立体几何中的直线、平面的位置关系(课时教学设计)-高中数学人教A版2019选择性必修一
空间中直线、平面的平行、垂直教学设计(一)教学内容空间直线、平面间的平行、垂直关系的向量表示,证明直线、平面位置关系的判定定理.(二)教学目标通过用向量方法判断直线与直线、直线与平面、平面与平面的平行、垂直关系.发展用向量方法证明必修内容中有关直线、平面平行、垂直关系的判定定理的能力.提升学生的直观想象、逻辑推理、数学运算等素养.(三)教学重点及难点重点:用向量方法解决空间图形的平行、垂直问题.难点:建立空间图形基本要素与向量之间的关系,如何把立体几何问题转化为空间向量问题.(四)教学过程设计新课导入:因为空间向量可以表示空间中的点、直线、平面,所以自然地会联想到利用空间向量及其运算可以表示“直线与直线”“直线与平面”和“平面与平面”之间的平行、垂直等位置关系,解决此问题的关键是转化为研究直线的方向向量、平面的法向量之间的关系.教材对空间中直线、平面的平行和垂直两种位置关系分开研究,首先研究空间中直线、平面的平行.1.空间中直线、平面的平行问题1:由直线与直线、直线与平面或平面与平面的平行关系,可以得到直线的方向向量、平面的法向量间的什么关系?师生活动:学生思考,教师点拨.问题1.1由直线与直线平行,可以得到直线的方向向量间有什u1l1u2l2的方向向量分别为u,v ,则l 1//l 2u //v u =λv , λ∈R.问题1.2由直线与平面平行、平面与平面平行,可以得到直线与面平行.得出结论:直线与平面平行还可以用直线的方向向量与平面法向量垂直进行,平面平行可以转化为法向量共线,教师可以结合右图启发学生对此进行研究.设计意图: 实现将直线平行与直线的方向向量平行的互相转化,直线和平面的平行与直线的方向向量和平面法向量垂直的转化,平面平行与平面法向量共线的转化. 2.空间中直线、平面的平行例题例2. 已知:如图,a ⊄β,b ⊂β,a ⋂b =P , a //α,b //α. 求证:α//β.师生活动:学生读懂题意,尝试分析解答.老师引导分析.分析:设平面α的法向量为n ,直线a ,b 的方向向量分别为u ,v ,则由已知条件可得n·u =n·v =0,由此可以证明n 与平面β内的任意一个向量垂直,即n 也是β的法向量.学生完成证明, 教师示范解答. 证明:如图,取平面α的法向量n ,直线a ,b 的方向向量u ,v .αn 1βn 2a buvP αnβ因为a //α,b //α, 所以n·u =0,n·v =0.因为a ⊂β,b ⊂β,a ⋂b =P ,所以对任意点Q ∈β,存在x ,y ∈R,使得 PQ ⃗⃗⃗⃗⃗ =xu +yv . 从而n·PQ ⃗⃗⃗⃗⃗ =n·(xu +yv )=xn· u +yn· v =0. 所以,向量n 也是平面β的法向量.故α//β.设计意图:例2是用向量方法证明平面与平面平行的判定定理,设置例2的目的是使学生体会利用法向量证明两个平面平行的一般基本思路.例3.如图在长方体ABCD -A 1B 1C 1D 1中,AB=4,BC=3,CC 1=2. 线段BC 上是否存在点P ,使得A 1P//平面 ACD 1? 师生活动:学生读懂题意,尝试解答.老师引导分析.分析:根据条件建立适当的空间直角坐标系,那么问题中涉及的点、向量B 1C ⃗⃗⃗⃗⃗⃗⃗ ,A 1P ⃗⃗⃗⃗⃗⃗⃗⃗ ,以及平面ACD 1的法向量n 等都可以用坐标表示.如果点P 存在,那么就有n·A 1P ⃗⃗⃗⃗⃗⃗⃗⃗ =0,由此通过向量的坐标运算可得结果.学生完成求解,教师示范解答.解:以D 为原点,DA ,DC ,DD 1,所在直线分别为x轴、y 轴、z 轴,建立如图所示的空间直角坐标系.因为A,C,D 1的坐标分别为(3,0,0),(0,4,0),(0,0,2), 所以AC ⃗⃗⃗⃗⃗ =(-3,4,0),AD ⃗⃗⃗⃗⃗ =(-3,0,2). 设n =(x,y,z )是平面ACD 1的法向量, 则n·AC ⃗⃗⃗⃗⃗ =0,n·AD ⃗⃗⃗⃗⃗ =0,即{−3x +4y =0−3x +2z =0),所以x =23z ,y =12z .取z =6,则x =4,y =3, 所以n =(4,3,6)是平面ACD 1的一个法向量,由A,C,B 1的坐标分别为(3,0,2),(0,4,0),(3,4,2), 得A 1B 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ =(0,4,0),B 1C ⃗⃗⃗⃗⃗⃗⃗ =(-3,0,-2)DABC D 1A 1B 1C 1设点P 满足B 1P ⃗⃗⃗⃗⃗⃗⃗ =λB 1C ⃗⃗⃗⃗⃗⃗⃗ (0<λ≤1), 则B 1P ⃗⃗⃗⃗⃗⃗⃗ =(-3λ,0,-2λ),所以A 1P ⃗⃗⃗⃗⃗⃗⃗⃗ =A 1B 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ +B 1P ⃗⃗⃗⃗⃗⃗⃗ =(-3λ,4,-2λ).令n·A 1P ⃗⃗⃗⃗⃗⃗⃗⃗ =0,得-12λ+12-12λ=0,解得λ=12,这样的点P 存在 所以,当B 1P ⃗⃗⃗⃗⃗⃗⃗ =12B 1C ⃗⃗⃗⃗⃗⃗⃗ ,即P 为B 1C 的中点时,A 1P//平面ACD 1.设计意图:例3是用向量方法判断直线与平面平行的问题,设置例3的目的是使学生体会利用法向量和坐标法解决直线与平面平行问题的一般思路.本题也可以利用共面的充要条件求解. 3.空间中直线、平面的垂直问题2:在直线与直线、直线与平面、平面与平面的垂直关系中,直线的方向向量、平面的法向量之间有什么关系?师生活动:教师引导学生结合图形研究线与面垂直,两平面垂直.教师引导学生类比已经经历了研究空间中直线、平面平行的过程,对直线与直线、直线与平面、平面与平面垂直关系的研究可以类似地进行,让学生自主探究,将研究直线、平面间的垂直关系转化为研究直线的方向向量、平面的法向量之间的关系,然后借助图形分别给出直线与直线、直线与平面、平面与平面垂直的向量表达式.问题2.1 直线l 1,l 2的方向向量分别为v 1,v 2,直线l 1,l 2垂直时,方向向量v 1,v 2有什么关系?师生活动:让学生自主探究显现垂直时,直线方向向量v 1,v 2有什么关系,教师展示答案.问题 2.2:由直线与平面的垂直关系,可以得到直线的方向向量、平面的法向量间有什么关系呢?师生活动:让学生自主探究线面垂直时,直线的方向向量、平面的法向量间有什么关系,教师展示答案.问题2.3:由平面与平面的垂直关系,可以得到这两个平面的法向量间有什么关系呢?师生活动:让学生自主探究面面垂直时,两个平面的法向量间有什么关系,教师展示答案.设计意图:让学生自主探究,将研究直线、平面间的垂直关系转化为研究直线的方向向量、平面的法向量之间的关系.然后借助图形分别给出直线与直线、直线与平面、平面与平面垂直的向量表达式,进一步体会空间向量在研究直线、平面间位置关系中的作用. 4.空间中直线、平面的垂直例题例4 如图,在平行六面体ABCD A 1B 1C 1D 1中,AB =AD =AA 1=1, ∠A 1AB =∠A 1AD =∠BAD =60°,求证:直线A 1C ⊥平面BDD 1B 1.师生活动:学生读懂题意,尝试解答,老师引导分析.分析:根据条件建立适当的基底向量,通过向量运算证明直线A 1C ⊥平面BDD 1B 1.证明:设AB a =,AD b =,1AA c =,则{,,}a b c 为空间的一个基底且1AC a b c =+-,BD b a =-,1BB c =.因为AB =AD =AA 1=1, ∠A 1AB =∠A 1AD =∠BAD =60°, 所以2221ab c ===,12a b b c c a ⋅=⋅=⋅=. 在平面BDD 1B 1上,取BD 、1BB 为基向量,则对于面BDD 1B 1上任意一点P ,存在唯一的有序实数对(λ,μ),使得1BP BD BB λμ=+. 所以,1111()()()0AC BP AC BD AC BB a b c b a a b c c λμλμ⋅=⋅+⋅=+-⋅-++-⋅=. 所以1AC 是平面BDD 1B 1的法向量. 所以A 1C ⊥平面BDD 1B 1.设计意图:设置例 4 的目的是使学生体会“基底法”比“坐标法”更具有一般性.教学时要注意让学生体会空间向量基本定理在证明中的作用,体会用空间向量解决问题的一般方法.例 5 证明“平面与平面垂直的判定定理”:若一个平面过另一个平面的垂线,则这两个平面垂直.师生活动:学生读懂题意,尝试解答.老师引导分析,学生完成证明.已知:如图,l⊥α,1⊂β,求证:α⊥β.证明:取直线 l 的方向向量u⃗,平面β的法向量n⃗.因为l⊥α,所以u⃗是平面α的法向量.因为1⊂β,而n⃗是平面β的法向量,所以u⃗⊥n⃗.所以α⊥β.设计意图:设置例 5 的目的是使学生体会利用法向量证明平面与平面垂直的一般思路.教学时要注意突出直线的方向向量和平面的法向量的作用,即通过直线的方向向量和平面的法向量,把直线与直线、直线与平面、平面与平面的关系完全转化为两个向量之间的关系,通过向量的运算,得到空间图形的位置关系.5.课堂小结,反思感悟(1)知识总结:(2)学生反思:①通过这节课,你学到了什么知识?②回顾这节课的学习,空间中用向量法判断直线、平面平行与垂直用的具体方法?③在解决问题时,用到了哪些数学思想?设计意图:通过总结,让学生进一步巩固本节所学内容,提高概括能力,教给学生如何总结,提升学生的数学“学习力”. 6.课堂检测与评价1. 如图,在正方体 ABCD -A 1B 1C 1D 1中,E ,F 分别是面AB 1,面A 1C 1的中心. 求证:EF//平面ACD 1.证明:设正方体的棱长为2,以D 为坐标原点,BA ⃗⃗⃗⃗⃗ , DC ⃗⃗⃗⃗⃗ ,DD 1⃗⃗⃗⃗⃗⃗⃗⃗ ,的方向分别为x 轴,y 轴,z 轴的正方向,建立空间直角坐标系D xyz , 则根据题意A(2,0,0),C( 0,2,0),D 1(0,0,2 ),E( 2,1,1 ), F( 1,1,2 ) 所以EF ⃗⃗⃗⃗⃗ =(−1,0,1),AC ⃗⃗⃗⃗⃗ =(−2,2,0),AD 1⃗⃗⃗⃗⃗⃗⃗ =(−2,0,2), 设n=( x , y ,z )是平面ACD 1的一个法向量,则n ⊥AC ⃗⃗⃗⃗⃗ ,n ⊥AD 1⃗⃗⃗⃗⃗⃗⃗ . 所以{n ⋅AC⃗⃗⃗⃗⃗ =−2x +2y =0n ⋅AD 1⃗⃗⃗⃗⃗⃗⃗ =−2x +2z =0),取x = 1,则y =1,z = 1,所以n = ( 1,1,1 ) 又EF ⃗⃗⃗⃗⃗ ⋅n =(−1,0,1)·(1,1,1)= − 1+1=0,所以EF ⃗⃗⃗⃗⃗ ⊥n , 所以EF 平面ACD 1.2.如图所示,在直三棱柱ABC A 1B 1C 1中,AB ⊥BC ,AB =BC =2,BB 1=1,E 为BB 1的中点,证明:平面AEC 1⊥平面AA 1C 1C .证明:由题意得AB ,BC ,B 1B 两两垂直.以B 为原点,BA ,BC ,BB 1分别为x ,y ,z 轴,建立如图所示的空间直角坐标系.A (2,0,0),A 1(2,0,1),C (0,2,0),C 1(0,2,1),E ⎝⎛⎭⎪⎫0,0,12,则AA 1→=(0,0,1),AC →=(-2,2,0),AC 1→=(-2,2,1),AE →=(-2,0,12). 设平面AA 1C 1C 的一个法向量为n 1=(x 1,y 1,z 1). 则⎩⎨⎧ n 1·AA1→=0,n 1·AC→=0⇒⎩⎪⎨⎪⎧z 1=0,-2x 1+2y 1=0.令x 1=1,得y 1=1.∴n 1=(1,1,0).设平面AEC 1的一个法向量为n 2=(x 2,y 2,z 2). 则⎩⎨⎧n 2·AC 1→=0,n 2·AE→=0⇒⎩⎪⎨⎪⎧-2x 2+2y 2+z 2=0,-2x 2+12z 2=0,令z 2=4,得x 2=1,y 2=-1.∴n 2=(1,-1,4). ∵n 1·n 2=1×1+1×(-1)+0×4=0. ∴n 1⊥n 2,∴平面AEC 1⊥平面AA 1C 1C .设计意图:第一题证明线面平行,第二题用向量法证明面面垂直,恰当建系向量表示后,只需经过向量运算就可得到要证明的结果,思路方法“公式化”,降低了思维难度,可以使学生巩固课上所学习的知识.7.作业布置完成教材:第31页练习第1,2题第33页练习第1,2,3题第41 页习题1.4 第5,8,11题(六)教学反思1.认识与运用向量及其运算中数与形的关联,体会转化思想.教学中应结合几何图形予以探讨,特别要重视平行六面体、长方体模型作用,引导学生借助图形理解它们,注意避免不联系几何意义的死记硬背;2.深化理解向量运算的作用,正是有了向量运算,向量才显示其重要性.要引导学生结合几何问题,关注向量运算在分析解决问题中的作用;3.重视综合方法、基底向量方法、建立坐标系方法各自特点的分析与归纳,综合方法以逻辑推理作为工具解决问题,基底向量方法利用向量的概念及其运算解决问题,坐标方法利用数及其运算来解决问题,坐标方法常与向量运算结合起来使用,根据它们的具体条件和特点选择合适的方法.总之新的教材,让学生经历向量由平面向空间的推广,重视了知识的发生、发展过程,使学生学会数学思考和推理.。
高三立体几何大题专题(用空间向量解决立体几何类问题)
1【知识梳理】一、空间向量的概念及相关运算1、空间向量基本定理、空间向量基本定理如果三个向量,,a b c r r r不共面,那么对空间任一向量p xa yb zc =++u r r r r,,a b c r r r称为基向量。
称为基向量。
2、空间直角坐标系的建立、空间直角坐标系的建立分别以互相垂直的三个基向量k j i ρρρ,,的方向为正方向建立三条数轴:x 轴,y 轴和z 轴。
则轴。
则a xi y j zk =++r r r r(x,y,z )称为空间直角坐标。
)称为空间直角坐标。
注:假如没有三条互相垂直的向量,需要添加辅助线构造,在题目中找出互相垂直的两个面,通过做垂线等方法来建立即可。
建立即可。
3、空间向量运算的坐标表示、空间向量运算的坐标表示(1)若()()111222,,,,,a x y z b x y z ==r r ,则:()121212,,a b x x y y z z ±=±±±r r()111,,a x y z λλλλ=r 121212a b x x y y z z ⋅=++r r 错误!未找到引用源。
121212//,,a b a b x x y y z z λλλλ⇔=⇔===r r r r222111a a a x y z =⋅=++r r r .a b ⋅r r =a rcos ,b a b 〈〉r r r .cos ,a b a b a b ⋅〈〉=r r r r r r121212222222111222cos ,x x y y z za b a b ab x y z x y z ++⋅〈〉==++⋅++r r r r r r (2)(2)设设()()111222,,,,,A x y z B x y z ==则()212121,,AB OB OA x x y y z z =-=---u u u r r r(3)()111,,x y z A ,()222,,x y z B =,则()()()222212121d x x y y z zAB =AB =-+-+-u u u r二、应用:平面的法向量的求法:1、建立恰当的直角坐标系、建立恰当的直角坐标系2、设平面法向量n =(x ,y ,z )3、在平面内找出两个不共线的向量,记为a =(a1,a2, a3) b =(b1,b2,b3)4、根据法向量的定义建立方程组①n*a =0 ②n*b =05、解方程组,取其中一组解即可。
新课标下核心素养的空间向量在立体几何中的应用
新课标下核心素养的空间向量在立体几何中的应用摘要:本文探究了新课标下核心素养的空间向量在立体几何中的应用,比较全面地进行总结,结合实例,在教学中提供参考与借鉴。
关键词:核心素养;空间向量;立体几何数学核心素养是指众多的数学素养内那些关键的,处于重要位置上,使用频度较高的素养,是适应个人终身发展和社会发展需要的,具有数学基本特征的思维品格和关键能力,包括数学抽象、逻辑推理、数学建模、数学运算、直观想象、数据分析等六个方面。
数学核心素养是学习者学习数学、运用数学解决学习、生活中的实际问题时所应当具备的一种综合性能力和数学品格,是学生在长期的学习过程中形成的,运用所学空间向量知识与方法解决立体几何中的问题充分反映出这一本质属性与思想,空间向量在立体几何中有着广泛的应用,能解决空间几何中的很多问题,下面谈一下新课标下核心素养的空间向量在立体几何中的具体应用.一、用空间向量证明立何几何中的平行与垂直1.证明线面平行方法一:证明直线的方向向量与平面内某一直线的方向向量共线,然后得出线线平行,再利用线面平行的判定定理证明;方法二:先求出平面的法向量,再求出直线的方向向量,证明直线的方向向量与平面的法向量垂直;方法三:证明直线的方向向量与平面内某一任意二个不共线向量共面,即可说明直线与这二个不共线的向量确定的平面平行。
2.证明面面平行方法一:利用线面平行的证明,再用面面平行的判定定理进行证明;方法二:求出二个平面的法向量,再证明二个法向量共线从而得到面面平行;方法三:先求出一个平面的法向量,再证出此法向量与另一平面垂直。
3.证明线面平垂直方法一:求出直线所在的一个方向向量和平面内二条相交直线所在的二个方向向量,然后证明它们的数量积为0.方法二:算出平面的法向量和直线所在的方向向量,然后证明直线所在的向量和法向量共线即可。
4.证明面面垂直方法一:先用线面垂直方法证出线面垂直,再证到此直线与另一平面平行,从而证得面面垂直。
高中数学第三章空间向量与立体几何3.2立体几何中的向量方法3.2.2利用向量解决平行、垂直问题讲义
3.2.2 利用向量解决平行、垂直问题1.用向量方法证明空间中的平行关系(1)证明线线平行设直线l,m的方向向量分别是a=(a1,b1,c1),b=(a2,b2,c2),则l∥m⇔□01a∥b⇔□02 a=λb⇔□03a1=λa2,b1=λb2,c1=λc2(λ∈R).(2)证明线面平行设直线l的方向向量为a=(a1,b1,c1),平面α的法向量为u=(a2,b2,c2),则l∥α⇔□04a⊥u⇔□05a·u=0⇔□06a1a2+b1b2+c1c2=0.(3)证明面面平行①设平面α,β的法向量分别为u=(a1,b1,c1),v=(a2,b2,c2),则α∥β⇔□07u∥v⇔u=λv⇔□08a1=λa2,b1=λb2,c1=λc2(λ∈R).②由面面平行的判定定理,要证明面面平行,只要转化为相应的线面平行、线线平行即可.2.用向量方法证明空间中的垂直关系(1)证明线线垂直设直线l1的方向向量u1=(a1,b1,c1),直线l2的方向向量u2=(a2,b2,c2),则l1⊥l2⇔□09u1⊥u2⇔□10u1·u2=0⇔□11a1a2+b1b2+c1c2=0.(2)证明线面垂直设直线l的方向向量是u=(a1,b1,c1),平面α的法向量v=(a2,b2,c2),则l⊥α⇔□12 u∥v⇔□13u=λv(λ∈R)⇔□14a1=λa2,b1=λb2,c1=λc2(λ∈R).(3)证明面面垂直若平面α的法向量u=(a1,b1,c1),平面β的法向量v=(a2,b2,c2),则α⊥β⇔□15u ⊥v⇔□16u·v=0⇔□17a1a2+b1b2+c1c2=0.1.判一判(正确的打“√”,错误的打“×”)(1)若两直线方向向量的数量积为0,则这两条直线一定垂直相交.( )(2)若一直线与平面垂直,则该直线的方向向量与平面内的所有直线的方向向量的数量积为0.( )(3)两个平面垂直,则其中一平面内的直线的方向向量与另一平面内的直线的方向向量垂直.( )答案 (1)× (2)√ (3)×2.做一做(请把正确的答案写在横线上)(1)若直线l 1的方向向量为u 1=(1,3,2),直线l 2上有两点A (1,0,1),B (2,-1,2),则两直线的位置关系是________.(2)若直线l 的方向向量为a =(1,0,2),平面α的法向量为n =(-2,0,-4),则直线l 与平面α的位置关系为________.(3)已知两平面α,β的法向量分别为u 1=(1,0,1),u 2=(0,2,0),则平面α,β的位置关系为________.(4)若平面α,β的法向量分别为(-1,2,4),(x ,-1,-2),并且α⊥β,则x 的值为________.答案 (1)垂直 (2)垂直 (3)垂直 (4)-10探究1 利用空间向量解决平行问题例1 已知正方体ABCD -A 1B 1C 1D 1的棱长为2,E ,F 分别是BB 1,DD 1的中点,求证: (1)FC 1∥平面ADE ; (2)平面ADE ∥平面B 1C 1F .[证明] (1)如图所示,建立空间直角坐标系Dxyz ,则有D (0,0,0),A (2,0,0),C 1(0,2,2),E (2,2,1),F (0,0,1),B 1(2,2,2), 所以FC 1→=(0,2,1),DA →=(2,0,0),AE →=(0,2,1).设n 1=(x 1,y 1,z 1)是平面ADE 的法向量,则n 1⊥DA →,n 1⊥AE →, 即⎩⎪⎨⎪⎧n 1·DA →=2x 1=0,n 1·AE →=2y 1+z 1=0,得⎩⎪⎨⎪⎧x 1=0,z 1=-2y 1,令z 1=2,则y 1=-1,所以n 1=(0,-1,2). 因为FC 1→·n 1=-2+2=0,所以FC 1→⊥n 1.又因为FC 1⊄平面ADE ,所以FC 1∥平面ADE . (2)因为C 1B 1→=(2,0,0),设n 2=(x 2,y 2,z 2)是平面B 1C 1F 的一个法向量. 由n 2⊥FC 1→,n 2⊥C 1B 1→,得 ⎩⎪⎨⎪⎧n 2·FC 1→=2y 2+z 2=0,n 2·C 1B 1→=2x 2=0,得⎩⎪⎨⎪⎧x 2=0,z 2=-2y 2.令z 2=2,得y 2=-1,所以n 2=(0,-1,2), 因为n 1=n 2,所以平面ADE ∥平面B 1C 1F . 拓展提升利用向量法证明平行问题的两种途径(1)利用三角形法则和平面向量基本定理实现向量间的相互转化,得到向量的共线关系; (2)通过建立空间直角坐标系,借助直线的方向向量和平面的法向量进行平行关系的证明.【跟踪训练1】 在长方体ABCD -A 1B 1C 1D 1中,AB =4,AD =3,AA 1=2,P ,Q ,R ,S 分别是AA 1,D 1C 1,AB ,CC 1的中点.求证:PQ ∥RS .证明 证法一:以D 为原点,DA ,DC ,DD 1所在直线分别为x 轴、y 轴、z 轴,建立如图所示的空间直角坐标系Dxyz .则P (3,0,1),Q (0,2,2),R (3,2,0),S (0,4,1), PQ →=(-3,2,1),RS →=(-3,2,1),∴PQ →=RS →,∴PQ →∥RS →,即PQ ∥RS . 证法二:RS →=RC →+CS →=12DC →-DA →+12DD 1→,PQ →=PA 1→+A 1Q →=12DD 1→+12DC →-DA →,∴RS →=PQ →,∴RS →∥PQ →,即RS ∥PQ . 探究2 利用空间向量解决垂直问题例2 如图,在四棱锥E -ABCD 中,AB ⊥平面BCE ,CD ⊥平面BCE ,AB =BC =CE =2CD =2,∠BCE =120°.求证:平面ADE ⊥平面ABE .[证明] 取BE 的中点O ,连接OC ,则OC ⊥EB , 又AB ⊥平面BCE .∴以O 为原点建立空间直角坐标系Oxyz .如图所示.则由已知条件有C (1,0,0),B (0,3,0),E (0,-3,0),D (1,0,1),A (0,3,2). 设平面ADE 的法向量为n =(a ,b ,c ),则n ·EA →=(a ,b ,c )·(0,23,2)=23b +2c =0,n ·DA →=(a ,b ,c )·(-1,3,1)=-a +3b +c =0.令b =1,则a =0,c =-3, ∴n =(0,1,-3).∵AB ⊥平面BCE ,∴AB ⊥OC ,又OC ⊥EB ,且EB ∩AB =B ,∴OC ⊥平面ABE , ∴平面ABE 的法向量可取为m =(1,0,0). ∵n ·m =(0,1,-3)·(1,0,0)=0, ∴n ⊥m ,∴平面ADE ⊥平面ABE . 拓展提升利用向量法证明几何中的垂直问题的两条途径(1)利用三角形法则和平面向量基本定理实现向量间的相互转化,得到向量的垂直关系. (2)通过建立空间直角坐标系,借助直线的方向向量和平面的法向量进行证明.证明线面垂直时,只需直线的方向向量与平面的法向量平行或直线的方向向量与平面内两相交的直线的方向向量垂直.在判定两个平面垂直时,只需求出这两个平面的法向量,再看它们的数量积是否为0.【跟踪训练2】 如右图所示,在正方体ABCD -A 1B 1C 1D 1中,E ,F 分别是BB 1,D 1B 1的中点.求证:EF ⊥平面B 1AC .证明 证法一:设AB →=a ,AD →=c ,AA 1→=b ,则EF →=EB 1→+B 1F →=12(BB 1→+B 1D 1→)=12(AA 1→+BD →)=12(AA 1→+AD →-AB →)=12(-a +b +c ),∵AB 1→=AB →+AA 1→=a +b .∴EF →·AB 1→=12(-a +b +c )·(a +b )=12(b 2-a 2+c ·a +c ·b ) =12(|b |2-|a |2+0+0)=0. ∴EF →⊥AB 1→,即EF ⊥AB 1,同理,EF ⊥B 1C . 又AB 1∩B 1C =B 1, ∴EF ⊥平面B 1AC .证法二:设正方体的棱长为2,以DA ,DC ,DD 1所在直线分别为x 轴、y 轴、z 轴建立如图所示的直角坐标系,则A (2,0,0),C (0,2,0),B 1(2,2,2),E (2,2,1),F (1,1,2).∴EF →=(1,1,2)-(2,2,1) =(-1,-1,1).AB 1→=(2,2,2)-(2,0,0)=(0,2,2),AC →=(0,2,0)-(2,0,0)=(-2,2,0),∴EF →·AB 1→=(-1,-1,1)·(0,2,2)=(-1)×0+(-1)×2+1×2=0.EF →·AC →=(-1,-1,1)·(-2,2,0)=2-2+0=0, ∴EF →⊥AB 1→,EF →⊥AC →, ∴EF ⊥AB 1,EF ⊥AC . 又AB 1∩AC =A , ∴EF ⊥平面B 1AC .证法三:同法二得AB 1→=(0,2,2),AC →=(-2,2,0), EF →=(-1,-1,1).设面B 1AC 的法向量n =(x ,y ,z ), 则AB →1·n =0,AC →·n =0,即⎩⎪⎨⎪⎧2y +2z =0,-2x +2y =0,取x =1,则y =1,z =-1,∴n =(1,1,-1),∴EF →=-n ,∴EF →∥n ,∴EF ⊥平面B 1AC . 探究3 与平行、垂直有关的探索性问题例3 如图,在三棱锥P -ABC 中,AB =AC ,D 为BC 的中点,PO ⊥平面ABC ,垂足O 落在线段AD 上,已知BC =8,PO =4,AO =3,OD =2.(1)证明:AP ⊥BC ;(2)在线段AP 上是否存在点M ,使得平面AMC ⊥平面BMC ?若存在,求出AM 的长;若不存在,请说明理由.[解] (1)证明:如图,以O 为原点,以射线OD 为y 轴的正半轴,射线OP 为z 轴的正半轴,建立空间直角坐标系Oxyz .则O (0,0,0),A (0,-3,0),B (4,2,0),C (-4,2,0),P (0,0,4), AP →=(0,3,4),BC →=(-8,0,0),由此可得AP →·BC →=0,所以AP →⊥BC →,即AP ⊥BC .(2)假设存在满足题意的M ,设PM →=λPA →,λ≠1,则PM →=λ(0,-3,-4).BM →=BP →+PM →=BP →+λPA →=(-4,-2,4)+λ(0,-3,-4)=(-4,-2-3λ,4-4λ),AC →=(-4,5,0).设平面BMC 的法向量n 1=(x 1,y 1,z 1), 平面APC 的法向量n 2=(x 2,y 2,z 2). 由⎩⎪⎨⎪⎧BM →·n 1=0,BC →·n 1=0,得⎩⎪⎨⎪⎧-4x 1-(2+3λ)y 1+(4-4λ)z 1=0,-8x 1=0,即⎩⎪⎨⎪⎧x 1=0,z 1=2+3λ4-4λy 1,可取n 1=⎝ ⎛⎭⎪⎫0,1,2+3λ4-4λ.由⎩⎪⎨⎪⎧AP →·n 2=0,AC →·n 2=0,即⎩⎪⎨⎪⎧3y 2+4z 2=0,-4x 2+5y 2=0,得⎩⎪⎨⎪⎧x 2=54y 2,z 2=-34y 2,可取n 2=(5,4,-3),由n 1·n 2=0,得4-3×2+3λ4-4λ=0,解得λ=25,故PM →=⎝ ⎛⎭⎪⎫0,-65,-85,AM →=AP →+PM →=⎝ ⎛⎭⎪⎫0,95,125,所以AM =3.综上所述,存在点M 符合题意,AM =3. 拓展提升利用向量解决探索性问题的方法对于探索性问题,一般先假设存在,利用空间坐标系,结合已知条件,转化为代数方程是否有解的问题,若有解满足题意则存在,若没有满足题意的解则不存在.【跟踪训练3】 如图,直三棱柱ABC -A 1B 1C 1中,AC =3,BC =4,AB =5,AA 1=4.(1)求证:BC 1⊥平面AB 1C ;(2)在AB 上是否存在点D ,使得AC 1∥平面CDB 1.解 (1)证明:由已知AC =3,BC =4,AB =5,因而△ABC 是∠ACB 为直角的直角三角形,由三棱柱是直三棱柱,则CC 1⊥平面ABC ,以CA ,CB ,CC 1分别为x ,y ,z 轴建立空间直角坐标系,从而CA →=(3,0,0),BC 1→=(0,-4,4),则BC 1→·CA →=(0,-4,4)·(3,0,0)=0,则BC 1→⊥AC →,所以BC 1⊥AC .又四边形BCC 1B 1为正方形,因而BC 1⊥B 1C .又∵B 1C ∩AC =C ,∴BC 1⊥平面AB 1C .(2)假设存在点D (x ,y,0),使得AC 1∥平面CDB 1,CD →=(x ,y,0),CB 1→=(0,4,4), 设平面CDB 1的法向量m =(a ,b ,c ),则⎩⎪⎨⎪⎧m ·CD →=0,m ·CB 1→=0,即⎩⎪⎨⎪⎧xa +yb =0,4b +4c =0.令b =-x ,则c =x ,a =y ,所以m =(y ,-x ,x ),而AC 1→=(-3,0,4),则AC 1→·m =0,得-3y +4x =0.① 由D 在AB 上,A (3,0,0),B (0,4,0)得x -3-3=y4,即得4x +3y =12,② 联立①②可得x =32,y =2,∴D ⎝ ⎛⎭⎪⎫32,2,0,即D 为AB 的中点. 综上,在AB 上存在点D ,使得AC 1∥平面CDB 1,点D 为AB 的中点.1.利用向量证明线线平行的两种思路一是建立空间直角坐标系,通过坐标运算,利用向量平行的坐标表示证明;二是用基底思路,通过向量的线性运算,利用共线向量定理证明.2.向量法证明线线垂直的方法用向量法证明空间中两条直线相互垂直,其主要思路是证明两条直线的方向向量相互垂直.具体方法为:(1)坐标法:根据图形的特征,建立适当的空间直角坐标系,准确地写出相关点的坐标,表示出两条直线的方向向量,证明其数量积为0.(2)基向量法:利用向量的加减运算,结合图形,将要证明的两条直线的方向向量用基向量表示出来.利用数量积运算说明两向量的数量积为0.3.向量法证明线面垂直的方法(1)向量基底法,具体步骤如下:①设出基向量,用基向量表示直线的方向向量;②找出平面内两条相交直线的方向向量并分别用基向量表示;③分别计算直线的方向向量与平面内两条相交直线的方向向量的数量积.(2)坐标法,具体方法如下:方法一:①建立空间直角坐标系;②将直线的方向向量用坐标表示;③将平面内任意两条相交直线的方向向量用坐标表示;④分别计算直线的方向向量与平面内两条相交直线的方向向量的数量积.方法二:①建立空间直角坐标系;②将直线的方向向量用坐标表示;③求平面的法向量;④说明平面的法向量与直线的方向向量平行.4.证明面面垂直的两种思路一是证明其中一个平面过另一个平面的垂线,即转化为线面垂直;二是证明两平面的法向量垂直.1.已知线段AB的两端点坐标为A(9,-3,4),B(9,2,1),则线段AB与坐标平面( ) A.xOy平行B.xOz平行C.yOz平行D.yOz相交答案 C解析 因为AB →=(9,2,1)-(9,-3,4)=(0,5,-3),所以AB ∥平面yOz .2.若两个不同平面α,β的法向量分别为u =(1,2,-1),v =(-3,-6,3),则( ) A .α∥β B .α⊥βC .α,β相交但不垂直D .以上均不正确 答案 A解析 ∵v =-3u ,∴α∥β.3.已知直线l 与平面α垂直,直线l 的一个方向向量为u =(1,-3,z ),向量v =(3,-2,1)与平面α平行,则z 等于( )A .3B .6C .-9D .9 答案 C解析 ∵l ⊥α,v 与平面α平行,∴u ⊥v ,即u ·v =0,∴1×3+3×2+z ×1=0,∴z =-9.4.在三棱锥P -ABC 中,CP ,CA ,CB 两两垂直,AC =CB =1,PC =2,在如图所示的空间直角坐标系中,下列向量中是平面PAB 的法向量的是( )A.⎝⎛⎭⎪⎫1,1,12 B .(1,2,1) C .(1,1,1) D .(2,-2,1) 答案 A解析 PA →=(1,0,-2),AB →=(-1,1,0),设平面PAB 的一个法向量为n =(x ,y,1),则x -2=0,即x =2;-x +y =0,即y =x =2.所以n =(2,2,1).因为⎝⎛⎭⎪⎫1,1,12=12n ,所以A正确.5.在棱长为1的正方体ABCD -A 1B 1C 1D 1中,M 为棱BB 1的中点,在棱DD 1上是否存在点P ,使MD ⊥平面PAC?解 如图,建立空间直角坐标系,则A (1,0,0),C (0,1,0),D (0,0,0),M ⎝⎛⎭⎪⎫1,1,12.假设存在P (0,0,x )满足条件,则PA →=(1,0,-x ),AC →=(-1,1,0).设平面PAC 的法向量为n =(x 1,y 1,z 1),则由⎩⎪⎨⎪⎧ PA →·n =0,AC →·n =0,得⎩⎪⎨⎪⎧ x 1-xz 1=0,-x 1+y 1=0.令x 1=1得y 1=1,z 1=1x ,即n =⎝ ⎛⎭⎪⎫1,1,1x , 由题意MD →∥n ,由MD →=⎝⎛⎭⎪⎫-1,-1,-12,得x =2, ∵正方体棱长为1,且2>1,∴棱DD 1上不存在点P ,使MD ⊥平面PAC .。
第3章3.2 立体几何中的向量方法(二)垂直关系
高考调研 ·新课标 ·数学选修2-1
授人以渔
第6页
高考调研 ·新课标 ·数学选修2-1
题型一 利用空间向量证明线线垂直 例 1 已知正三棱柱 ABC-A1B1C1 的各棱 长都为 1,M 是底面上 BC 边的中点,N 是侧棱 CC1 上的点,且 CN=14CC1.求证:AB1⊥MN.
第7页
第15页
高考调研 ·新课标 ·数学选修2-1
探究 2 如何利用向量法证明线面垂直? 用向量法证明线面垂直的方法步骤: (1)坐标法: ①建立空间直角坐标系,将直线的方向向量用坐标表示. ②求平面内任意两条相交直线的方向向量或平面的法向量. ③证明直线的方向向量与平面内两相交直线的方向向量垂 直或与平面的法向量平行.
高考调研 ·新课标 ·数学选修2-1
1.若两个不同平面 α,β 的法向量分别为 u=(2,1,-1),
v=(3,2,8),则( )
A.α ∥β
B.α ⊥β
C.α ,β 相交不垂直 答案 B
D.以上均不正确
解析 ∵v·u=6+2-8=0.
∴v⊥u,∴α⊥β.
第32页
高考调研 ·新课标 ·数学选修2-1
高考调研 ·新课标 ·数学选修2-1
【解析】 方法一:(基向量法) 设A→B=a,A→C=b,A→A1=c,则由已知条件和正三棱柱的性 质,得|a|=|b|=|c|=1,a·c=b·c=0. A→B1=a+c,A→M=12(a+b),A→N=b+14c, M→N=A→N-A→M=-12a+12b+14c, ∴A→B1·M→N=(a+c)·(-12a+12b+14c) =-12+12cos60°+14=0. ∴A→B1⊥M→N,∴AB1⊥MN.
a,0).
第23页
空间向量在立体几何中的应用
空间向量在立体几何中的应用【考纲说明】1. 能够利用共线向量、共面向量、空间向量基本定理证明共线、共面、平行及垂直问题;2. 会利用空间向量的坐标运算、两点间的距离公式、夹角公式等解决平行、垂直、长度、角、距离等问题;3. 培养用向量的相关知识思考问题和解决问题的能力;知识梳理】、空间向量的运算1、向量的几何运算1)向量的数量积:已知向量,则叫做的数量积,记作空间向量数量积的性质:① ;②;③.2)向量共线定理:向量a r a r r r r0 与b 共线,当且仅当有唯一一个实数,使b2、向量的坐标运算(1)若,,则.一个向量在直角坐标系中的坐标等于表示这个向量的有向线段的终点的坐标减去起点的坐标。
2)若,,则,,3)夹角公式:(4)两点间的距离公式:若,,则二、空间向量在立体几何中的应用2. 利用空间向量证明平行问题对于平行问题,一般是利用共线向量和共面向量定理进行证明.3. 利用空间向量证明垂直问题对于垂直问题,一般是利用进行证明;4. 利用空间向量求角度1)线线角的求法:设直线AB、CD对应的方向向量分别为a、b,则直线AB与CD所成的角为(线线角的范围[0 0,90 0])2)线面角的求法:(3)二面角的求法:设n1,n2 分别是二面角其补角的大小(如图)5. 利用空间向量求距离1)平面的法向量的求法:设n=(x,y,z),利用n 与平面内的两个不共线的向a, b 垂直,其数量积为零,列出两个三元一次方程,联立后取设n 是平面的法向量,是直线的方向向量,则直线与平面所成的角为其一组解,即得到平面的一个法向量(如图)就是二面角的平面角或的两个面2)利用法向量求空间距离a ) 点 A 到平面 的距离: ,其中 , 是平面 的法向量。
b ) 直线 与平面 之间的距离:,其中 , 是平面 的法向量。
c ) 两平行平面 之间的距离: ,其中 , 是平面 的法向量。
经典例题】例 1】( 2010 全国卷 1理)正方体 ABCD-A 1B 1C 1D 1中, B B 1与平面 AC D 1所成角的余弦值为(A )23B )332C )23 D )63【解析】 D 【例 2】( 2010 全国卷 2 文)已知三棱锥 SA =3,那么直线 AB 与平面 SBC 所成角的正弦值为( ) S ABC 中,底面 ABC 为边长等于 2 的等边三角形, SA 垂直于底面ABC , A ) 3 (B) 4 5(C) 4 (D) 解析】 D 2012 全国卷)三棱柱 ABC A 1B 1C 1 中,底面边长和侧棱长都相等, SABAA 1CAA 1 60o ,则异面直线 AB 1与 BC 1所成角的余弦值为 解析】影是线段BC 的中点O。
最新高考数学解题技巧专题 用空间向量法解决立体几何问题
专题十四用空间向量法解决立体几何问题考问题14用空间向量法解决立体几何问题1.(2012·山东)在如图所示的几何体中,四边形ABCD是等腰梯形,AB∥CD,∠DAB =60°,FC⊥平面ABCD,AE⊥BD,CB=CD=CF.(1)求证:BD⊥平面AED;(2)求二面角F -BD-C的余弦值.(1)证明因为四边形ABCD是等腰梯形,AB∥CD,∠DAB=60°,所以∠ADC=∠BCD=120°.又CB=CD,所以∠CDB=30°,因此∠ADB=90°,AD⊥BD,又AE⊥BD,且AE∩AD=A,AE,AD⊂平面AED,所以BD⊥平面AED.(2)解连接AC,由(1)知AD⊥BD,所以AC⊥BC.又FC⊥平面ABCD,因此CA,CB,CF两两垂直,以C 为坐标原点,分别以CA ,CB ,CF所在的直线为x 轴,y 轴,z 轴, 建立如图所示的空间直角坐标系, 不妨设CB =1, 则C (0,0,0),B (0,1,0), D ⎝⎛⎭⎫32,-12,0,F (0,0,1),因此BD →=⎝⎛⎭⎫32,-32,0,BF →=(0,-1,1).设平面BDF 的一个法向量为m =(x ,y ,z ), 则m ·BD →=0,m ·BF →=0,所以x =3y =3z , 取z =1,则m =(3,1,1).由于CF →=(0,0,1)是平面BDC 的一个法向量, 则cos 〈m ,CF →〉=m ·CF →|m ||CF →|=15=55,所以二面角FBDC 的余弦值为55.对立体几何中的向量方法部分,主要以解答题的方式进行考查,而且偏重在第二问或者第三问中使用这个方法,考查的重点是使用空间向量的方法进行空间角和距离等问题的计算,把立体几何问题转化为空间向量的运算问题.空间向量的引入为空间立体几何问题的解决提供了新的思路,作为解决空间几何问题的重要工具,首先要从定义入手,抓住实质,准确记忆向量的计算公式,注意向量与线面关系、线面角、面面角的准确转化;其次要从向量的基本运算入手,养成良好的运算习惯,确保运算的准确性.必备知识直线与平面、平面与平面的平行与垂直的向量方法设直线l,m的方向向量分别为a=(a1,b1,c1),b=(a2,b2,c2).平面α、β的法向量分别为μ=(a3,b3,c3),v=(a4,b4,c4)(以下相同).(1)线面平行l∥α⇔a⊥μ⇔a·μ=0⇔a1a3+b1b3+c1c3=0.(2)线面垂直l⊥α⇔a∥μ⇔a=kμ⇔a1=ka3,b1=kb3,c1=kc3.(3)面面平行α∥β⇔μ∥v⇔μ=λv⇔a3=λa4,b3=λb4,c3=λc4.(4)面面垂直α⊥β⇔μ⊥ν⇔μ·v=0⇔a3a4+b3b4+c3c4=0.空间角的计算(1)两条异面直线所成角的求法设直线a,b的方向向量为a,b,其夹角为θ,则cos φ=|cos θ|=|a·b||a||b|(其中φ为异面直线a,b所成的角).(2)直线和平面所成角的求法如图所示,设直线l的方向向量为e,平面α的法向量为n,直线l与平面α所成的角为φ,两向量e与n的夹角为θ,则有sin φ=|cos θ|=|e·n| |e||n|.(3)二面角的求法①利用向量求二面角的大小,可以不作出平面角,如图所示,〈m,n〉即为所求二面角的平面角.②对于易于建立空间直角坐标系的几何体,求二面角的大小时,可以利用这两个平面的法向量的夹角来求.如图所示,二面角αlβ,平面α的法向量为n1,平面β的法向量为n2,〈n1,n2〉=θ,则二面有αlβ的大小为θ或πθ.空间距离的计算直线到平面的距离,两平行平面的距离均可转化为点到平面的距离. 点P 到平面α的距离,d =|PM →·n ||n |(其中n 为α的法向量,M 为α内任一点).必备方法1.空间角的范围(1)异面直线所成的角(θ):0<θ≤π2;(2)直线与平面所成的角(θ):0≤θ≤π2;(3)二面角(θ):0≤θ≤π.2.用向量法证明平行、垂直问题的步骤:(1)建立空间图形与空间向量的关系(可以建立空间直角坐标系,也可以不建系),用空间向量表示问题中涉及的点、直线、平面;(2)通过向量运算研究平行、垂直问题; (3)根据运算结果解释相关问题.3.空间向量求角时考生易忽视向量的夹角与所求角之间的关系:(1)求线面角时,得到的是直线方向向量和平面法向量的夹角的余弦,而不是线面角的余弦;(2)求二面角时,两法向量的夹角有可能是二面角的补角,要注意从图中分析.向量法证明垂直与平行多以多面体(特别是棱柱、棱锥)为载体,求证线线、线面、面面的平行或垂直,其中逻辑推理和向量计算各有千秋,逻辑推理要书写清晰,“充分”地推出所求证(解)的结论;向量计算要步骤完整,“准确”地算出所要求的结果.【例1】►如图所示,已知直三棱柱ABCA1B1C1中,△ABC为等腰直角三角形,∠BAC =90°,且AB=AA1,D、E、F分别为B1A、C1C、BC的中点.求证:(1)DE∥平面ABC;(2)B1F⊥平面AEF.[审题视点][听课记录][审题视点] 建系后,(1)在平面ABC 内寻找一向量与DE →共线;(2)在平面AEF 内寻找两个不共线的向量与B 1F →垂直.证明如图建立空间直角坐标系Axyz , 令AB =AA 1=4,则A (0,0,0),E (0,4,2),F (2,2,0), B (4,0,0),B 1(4,0,4).(1)取AB 中点为N ,连接CN , 则N (2,0,0),C (0,4,0),D (2,0,2), ∴DE →=(-2,4,0),NC →=(-2,4,0), ∴DE →=NC →,∴DE ∥NC ,又∵NC ⊂平面ABC , DE ⊄平面ABC .故DE ∥平面ABC . (2)B 1F →=(-2,2,-4),EF →=(2,-2,-2),AF →=(2,2,0).B 1F →·EF →=(-2)×2+2×(-2)+(-4)×(-2)=0, B 1F →·AF →=(-2)×2+2×2+(-4)×0=0.∴B 1F →⊥EF →,B 1F →⊥AF →,即B 1F ⊥EF ,B 1F ⊥AF , 又∵AF ∩FE =F ,∴B 1F ⊥平面AEF .(1)要证明线面平行,只需证明DE →与平面ABC 的法向量垂直;另一个思路则是根据共面向量定理证明向量DE →与NC →相等.(2)要证明线面垂直,只要证明B 1F →与平面AEF 的法向量平行即可;也可根据线面垂直的判定定理证明B 1F →⊥EF →,B 1F →⊥AF →.【突破训练1】 在正方体ABCDA 1B 1C 1D 1中,E ,F 分别是BB 1,DC 的中点. (1)求证:D 1F ⊥平面ADE ;(2)设正方形ADD 1A 1的中心为M ,B 1C 1的中点为N ,求证:MN ∥平面ADE . 证明(1)如图,不妨设正方体的棱长为1,以D 为坐标原点建立空间直角坐标系Dxyz , 则D (0,0,0),A (1,0,0),D 1(0,0,1), F 0,12,0,E 1,1,12,AD →=(-1,0,0),D 1F →=0,12,-1,AD →·D 1F →=(-1,0,0)·0,12,-1=0.∴AD ⊥D 1F .又AE →=0,1,12,D 1F →=0,12,-1,∴AE →·D 1F →=0,1,12·0,12,-1=12-12=0.∴AE ⊥D 1F .又AE ∩A D =A ,D 1F ⊄平面ADE , ∴D 1F ⊥平面ADE .(2)∵M 12,0,12,N 12,1,1,∴MN →=0,1,12.由(1)知,D 1F →=0,12,-1是平面ADE 的法向量.又∵MN →·D 1F →=0+12-12=0,∴MN ⊥D 1F .∵MN ⊄平面ADE ,∴MN ∥平面ADE . 用向量法求线线角、线面角多以空间几何体、平面图形折叠成的空间几何体为载体,考查线线角、线面角的求法,正确科学地建立空间直角坐标系是解此类题的关键.【例2】如图,四棱锥P ABCD 中,底面ABCD 为菱形,P A ⊥底面ABCD ,AC =22,P A =2,E 是PC 上的一点,PE =2EC .(1)证明:PC ⊥平面BED ;(2)设二面角APBC 为90°,求PD 与平面PBC 所成角的大小. [审题视点] [听课记录][审题视点] (1)由PC FC =ACEC 可得△FCE ∽△PCA ,则∠FEC =90°,易得PC ⊥EF 、PC ⊥BD .(2)作AG ⊥PB 于G ,由二面角APBC 为90°,易得底面ABCD 为正方形,可得AD ∥面PBC ,则点D 到平面PCB 的距离d =AG ,找出线面角求解即可.也可利用法向量求解,思路更简单,但计算量比较大.法一(1)证明 因为底面ABCD 为菱形,所以BD ⊥AC ,又P A ⊥底面ABCD ,所以PC ⊥BD . 设AC ∩BD =F ,连接EF .因为AC =22,P A =2,PE =2EC ,故PC =23,EC =233,FC =2,从而PC FC =6,ACEC= 6.因为PC FC =ACEC,∠FCE =∠PCA ,所以△FCE ∽△PCA ,∠FEC =∠P AC =90°,由此知PC ⊥EF .PC 与平面BED 内两条相交直线BD ,EF 都垂直,所以PC ⊥平面BED . (2)解 在平面P AB 内过点A 作AG ⊥PB ,G 为垂足. 因为二面角APBC 为90°,所以平面P AB ⊥平面PBC . 又平面P AB ∩平面PBC =PB ,故AG ⊥平面PBC ,AG ⊥BC .BC 与平面P AB 内两条相交直线P A ,AG 都垂直,故BC ⊥平面P AB ,于是BC ⊥AB ,所以底面ABCD 为正方形,AD =2,PD =P A 2+AD 2=2 2.设D 到平面PBC 的距离为d .因为AD ∥BC ,且AD ⊄平面PBC ,BC ⊂平面PBC ,故AD ∥平面PBC ,A 、D 两点到平面PBC 的距离相等,即d =AG = 2.设PD 与平面PBC 所成的角为α,则si n α=d PD =12.所以PD 与平面PBC 所成的角为30°.法二 (1)证明 以A 为坐标原点,射线AC 为x 轴的正半轴,建立如图所示的空间直角坐标系Axyz .C (22,0,0),设D (2,b,0),其中b >0,则P (0,0,2),E 423,0,23,B (2,-b,0).于是PC →=(22,0,-2), BE →=23,b ,23,DE →=23,-b ,23,从而PC →·BE →=0,PC →·DE →=0, 故PC ⊥BE ,PC ⊥DE .又BE ∩DE =E ,所以PC ⊥平面BDE . (2)解 AP →=(0,0,2),AB →=(2,-b,0). 设m =(x ,y ,z )为平面P AB 的法向量,则 m ·AP →=0,m ·AB →=0,即2z =0且2x -by =0,令x =b ,则m =(b ,2,0).设n =(p ,q ,r )为平面PBC 的法向量,则 n ·PC →=0,n ·BE →=0, 即22p -2r =0且2p 3+bq +23r =0, 令p =1,则r =2,q =-2b ,n =1,-2b, 2. 因为面P AB ⊥面PBC ,故m ·n =0,即b -2b =0,故b =2,于是n =(1,-1,2),DP→=(-2,-2,2).cos 〈n ,DP →〉=n ·DP →|n ||DP →|=12,〈n ,DP →〉=60°.因为PD 与平面PBC 所成角和〈n ,DP →〉互余,故PD 与平面PBC 所成的角为30°.(1)运用空间向量坐标运算求空间角的一般步骤为:①建立恰当的空间直角坐标系;②求出相关点的坐标;③写出向量坐标;④结合公式进行论证、计算;⑤转化为几何结论.(2)求直线与平面所成的角θ,主要通过直线的方向向量与平面的法向量的夹角α求得,即sin θ=|cos α|.【突破训练2】如图,在△ABC 中,∠ABC =60°,∠BAC =90°,AD 是BC 上的高,沿AD 把△ABD 折起,使∠BDC =90°.(1)证明:平面ADB ⊥平面BDC ;(2)设E 为BC 的中点,求A E →与D B →夹角的余弦值. (1)证明 ∵折起前AD 是BC 边上的高,∴当△ABD 折起后,AD ⊥DC ,AD ⊥DB . 又DB ∩DC =D ,∴AD ⊥平面BDC . ∵AD ⊂平面ABD , ∴平面ADB ⊥平面BDC .(2)解 由∠BDC =90°及(1)知DA ,DB ,DC 两两垂直,不妨设|DB |=1,以D 为坐标原点,以D B →,D C →,D A →所在直线分别为x ,y ,z 轴建立如图所示的空间直角坐标系,易得D (0,0,0),B (1,0,0),C (0,3,0), A (0,0,3),E ⎝⎛⎭⎫12,32,0,∴A E →=⎝⎛⎭⎫12,32,-3,D B →=(1,0,0), ∴A E →与D B →夹角的余弦值为cos 〈A E →,D B →〉=A E →·D B →|A E →||D B →|=121×224=2222.用向量法求二面角用空间向量法求二面角的大小是高考的热点.考查空间向量的应用以及运算能力,题目难度为中等.【例3】如图,在四棱锥P ABCD中,P A⊥平面ABCD,AC⊥AD,AB⊥BC,∠BAC=45°,P A =AD=2,AC=1.(1)证明:PC⊥AD;(2)求二面角APCD的正弦值.[审题视点][听课记录][审题视点] 建立空间坐标系,应用向量法求解.解如图,以点A 为原点建立空间直角坐标系,依题意得A (0,0,0),D (2,0,0), C (0,1,0),B -12,12,0,P (0,0,2).(1)证明:易得PC →=(0,1,-2), AD →=(2,0,0).于是PC →·AD →=0,所以PC ⊥AD . (2)PC →=(0,1,-2),CD →=(2,-1,0). 设平面PCD 的法向量n =(x ,y ,z ),则⎩⎪⎨⎪⎧n ·PC →=0,n ·CD →=0,即⎩⎪⎨⎪⎧y -2z =0,2x -y =0.不妨令z =1,可得n =(1,2,1).可取平面P AC 的法向量m =(1,0,0). 于是cos 〈m ,n 〉=m ·n |m |·|n |=16=66.从而si n 〈m ,n 〉=306. 所以二面角APCD 的正弦值为306.借助向量求二面角是解决空间角问题的常用方法.求解过程中应注意以下几个方面:(1)两平面的法向量的夹角不一定就是所求的二面角,有可能两法向量夹角的补角为所求;(2)求平面的法向量的方法:①待定系数法:设出法向量坐标,利用垂直关系建立坐标的方程解之;②先确定平面的垂线,然后取相关线段对应的向量,即确定了平面的法向量.当平面的垂线较易确定时,常考虑此方法.【突破训练3】如图,在三棱柱ABCA1B1C1中,CC1⊥底面ABC,底面是边长为2的正三角形,M,N分别是棱CC1、AB的中点.(1)求证:CN∥平面AMB1;(2)若二面角AMB 1C 为45°,求CC 1的长. (1)证明 设AB 1的中点为P ,连接NP 、MP . ∵CM 綉12AA 1,NP 綉12AA 1,∴CM 綉NP ,∴CNPM 是平行四边形,∴CN ∥MP . ∵CN ⊄平面AMB 1,MP ⊂平面AMB 1, ∴CN ∥平面AMB 1.(2)解 如图,以C 为原点,建立空间直角坐标系Cxyz ,使x 轴、y 轴、z 轴分别与NA →、CN →、CC 1→同向.则C (0,0,0),A (1,3,0),B (-1,3,0),设M (0,0,a )(a >0), 则B 1(-1,3,2a ),MA →=(1,3,-a ),MB 1→=(-1,3,a ),CM →=(0,0,a ), 设平面AMB 1的法向量n =(x ,y ,z ), 则n ·MA →=0,n ·MB 1→=0,即⎩⎨⎧x +3y -az =0,-x +3y +az =0,则y =0,令x =a ,则z =1,即n =(a,0,1). 设平面MB 1C 的一个法向量是m =(u ,v ,w ), 则m ·MB 1→=0,m ·CM →=0,即⎩⎨⎧-u +3v +a w =0,a w =0,则w=0,令v=1,则u=3,即m=(3,1,0).所以cos〈m,n〉=3a2a2+1,依题意,〈m,n〉=45°,则3a2a2+1=22,解得a=2,所以CC1的长为2 2.利用向量法解决立体几何中的探索性问题此类问题命题背景宽,涉及到的知识点多,综合性较强,通常是寻找使结论成立的条件或探索使结论成立的点是否存在等问题,全面考查考生对立体几何基础知识的掌握程度,考生的空间想象能力、逻辑思维能力和运算求解能力.【例4】►如图所示,四边形ABCD是边长为1的正方形,MD⊥平面ABCD,NB⊥平面ABCD,且MD=NB =1,E为BC的中点.(1)求异面直线NE与AM所成角的余弦值;(2)在线段AN上是否存在点S,使得ES⊥平面AMN?若存在,求线段AS的长;若不存在,请说明理由.[审题视点][听课记录][审题视点] 建立以D为原点的空间直角坐标系,利用向量法求解,第(2)问中设AS→=λAN →,由ES ⊥平面AMN 可得λ值.解 (1)如图,以D 为坐标原点,建立空间直角坐标系Dxyz . 依题意,易得D (0,0,0),A (1,0,0), M (0,0,1),C (0,1,0),B (1,1,0), N (1,1,1),E 12,1,0.∴NE →=-12,0,-1,AM →=(-1,0,1).∵cos 〈NE →,AM →〉=NE →·AM →|NE →|·|AM →|=-1252×2=-1010,∴异面直线NE 与AM 所成角的余弦值为1010. (2)假设在线段AN 上存在点S ,使得ES ⊥平面AMN . ∵AN →=(0,1,1),可设AS →=λAN →=(0,λ,λ), 又EA →=12,-1,0,∴ES →=EA →+AS →=12,λ-1,λ.由ES ⊥平面AMN ,得⎩⎪⎨⎪⎧ ES →·AM →=0,ES →·AN →=0,即⎩⎪⎨⎪⎧-12+λ=0,(λ-1)+λ=0,故λ=12,此时AS →=0,12,12,|AS →|=22.经检验,当AS=22时,ES⊥平面AMN.故线段AN上存在点S,使得ES⊥平面AMN,此时AS=22.空间向量最适合于解决这类立体几何中的探索性问题,它无需进行复杂的作图、论证、推理,只需通过坐标运算进行判断.解题时,把要成立的结论当作条件,据此列方程或方程组,把“是否存在”问题转化为“点的坐标是否有解,是否有规定范围的解”等,因此使用问题的解决更简单、有效,应善于运用这一方法解题.【突破训练4】如图1,∠ACB=45°,BC=3,过动点A作AD⊥BC,垂足D在线段BC上且异于点B,连接AB,沿AD将△ABD折起,使∠BDC=90°(如图2所示).(1)当BD 的长为多少时,三棱锥ABCD 的体积最大;(2)当三棱锥ABCD 的体积最大时,设点E ,M 分别为棱BC ,AC 的中点,试在棱CD 上确定一点N ,使得EN ⊥BM ,并求EN 与平面BMN 所成角的大小.解 (1)法一 在如题图1所示的△ABC 中,设BD =x (0<x <3),则CD =3-x .由AD ⊥BC ,∠ACB =45°知,△ADC 为等腰直角三角形,所以AD =CD =3-x .由折起前AD ⊥BC 知,折起后(如题图2),AD ⊥DC ,AD ⊥BD ,且BD ∩DC =D , 所以AD ⊥平面BCD .又∠BDC =90°,所以S △BCD =12BD ·CD =12x (3-x ),于是V ABCD =13AD ·S △BCD =13(3-x )·12x (3-x )=112·2x (3-x )(3-x )≤1122x +(3-x )+(3-x )33=23,当且仅当2x =3-x ,即x =1时,等号成立,故当x =1,即BD =1时,三棱锥ABCD 的体积最大. 法二 同法一,得V ABCD =13AD ·S △BCD =13(3-x )·12x (3-x )=16(x 3-6x 2+9x ).令f (x )=16(x 3-6x 2+9x ), 由f ′(x )=12(x -1)(x -3)=0,且0<x <3,解得x =1.当x ∈(0,1)时,f ′(x )>0;当x ∈(1,3)时,f ′(x )<0. 所以当x =1时,f (x )取得最大值.故当BD =1时,三棱锥ABCD 的体积最大.(2)以D 为原点,建立如图所示的空间直角坐标系Dxyz . 由(1)知,当三棱锥ABCD 的体积最大时,BD =1,AD =CD =2. 于是可得D (0,0,0),B (1,0,0), C (0,2,0),A (0,0,2),M (0,1,1), E 12,1,0,且BM →=(-1,1,1). 设N (0,λ,0),则EN →=-12,λ-1,0.因为EN ⊥BM 等价于EN →·BM →=0, 即-12,λ-1,0·(-1,1,1)=12+λ-1=0,故λ=12,N 0,12,0.所以当DN =12(即N 是CD 的靠近点D 的一个四等分点)时,EN ⊥BM .设平面BMN 的一个法向量为n =(x ,y ,z ),由⎩⎪⎨⎪⎧n ⊥BN →,n ⊥BM →,及BN →=-1,12,0,得⎩⎪⎨⎪⎧y =2x ,z =-x .可取n =(1,2,-1).设EN 与平面BMN 所成角的大小为θ,则由EN →=-12,-12,0,n =(1,2,-1),可得si nθ=cos (90°-θ)=n ·EN →|n |·|EN →|=-12-16×22=32,即θ=60°.故EN 与平面BMN 所成角的大小为60°.利用向量法求空间角要破“四关”利用向量法求解空间角,可以避免利用定义法作角、证角、求角中的“一作、二证、三计算”的繁琐过程,利用法向量求解空间角的关键在于“四破”.第一破“建系关”,第二破“求坐标关”;第三破“求法向量关”;第四破“应用公式关”,熟记线面成的角与二面角的公式,即可求出空间角.【示例】如图所示,在三棱锥P ABC中,已知PC⊥平面ABC,点C在平面PBA内的射影D在直线PB上.(1)求证:AB⊥平面PBC;(2)设AB=BC,直线P A与平面ABC所成的角为45°,求异面直线AP与BC所成的角;(3)在(2)的条件下,求二面角CP AB的余弦值.[满分解答](1)∵PC⊥平面ABC,AB⊂平面ABC,∴AB ⊥PC .∵点C 在平面PBA 内的射影D 在直线PB 上, ∴CD ⊥平面P AB .又∵AB ⊂平面PBA ,∴AB ⊥CD .又∵CD ∩PC =C ,∴AB ⊥平面PBC .(4分)(2)∵PC ⊥平面ABC ,∴∠P AC 为直线P A 与平面ABC 所成的角.于是∠P AC =45°,设AB =BC =1,则PC =AC =2,以B 为原点建立如图所示的空间直角坐标系,则B (0,0,0),A (0,1,0),C (1,0,0),P (1,0,2),AP →=(1,-1,2),BC →=(1,0,0), ∵cos 〈AP →,BC →〉=AP →·BC →|AP →|·|BC →|=12,∴异面直线AP 与BC 所成的角为60°.(8分) (3)取AC 的中点E ,连接BE ,则BE →=12,12,0,∵AB =BC ,∴BE ⊥AC .又∵平面PCA ⊥平面ABC ,∴BE ⊥平面P AC .∴BE →是平面P AC 的法向量.设平面P AB 的法向量为n =(x ,y ,z ),则由⎩⎪⎨⎪⎧n ⊥BA →,n ⊥AP →,得⎩⎨⎧ y =0,x -y +2z =0,取z =1,得⎩⎨⎧y =0,x =-2,∴n =(-2,0,1).于是cos 〈n ,BE →〉=n ·BE→|n |·|B E →|=-223·22=-33.又∵二面角CP AB 为锐角, ∴所求二面角的余弦值为33.(12分) 老师叮咛:(1)解决此类问题,一定要先分析已知条件中,是否直接说出此三条直线是两两垂直,否则,要先证明以后才能建立坐标系,另外,要在作图时画出每条坐标轴的方向.(2)有的考生易忽视向量的夹角与所求角之间的关系,如求解二面角时,不能根据几何体判断二面角的范围,忽视法向量的方向,误以为两个法向量的夹角就是所求的二面角,导致出错.如本例中求得cos BE →=-33,不少考生回答为:二面角的余弦值为-33,这是错误的,原因是忽视了对二面角CP AB 的大小的判断.【试一试】如图所示,在三棱柱ABCA 1B 1C 1中,AA 1⊥平面ABC ,AB =BC =CA =AA 1,D 为AB 的中点.(1)求证:BC 1∥平面DCA 1;(2)求二面角DCA 1C 1的平面角的余弦值. (1)证明如图所示,以BC 的中点O 为原点建立空间直角坐标系Oxyz ,设AB =BC =CA =AA 1=2.设n =(x ,y ,z )是平面DCA 1的一个法向量,则⎩⎪⎨⎪⎧n ·CD →=0,n ·CA 1→=0.又CD →=32,0,32,CA 1→=(1,2,3),所以⎩⎨⎧3x +z =0,x +2y +3z =0.令x =1,z =-3,y =1,所以n =(1,1,-3).因为BC 1→=(-2,2,0), 所以n ·BC 1→=-2+2+0=0.又BC 1⊄平面DCA 1,所以BC 1∥平面DCA 1.(2)解 设m =(x 1,y 1,z 1)是平面CA 1C 1的一个法向量, 则⎩⎪⎨⎪⎧m ·CC 1→=0,m ·CA 1→=0.又CC 1→=(0,2,0),CA 1→=(1,2,3),所以⎩⎨⎧y 1=0,x 1+2y 1+3z 1=0.令z 1=1,x 1=-3,所以m =(-3,0,1).所以cos 〈m ,n 〉=-2325=-155.所以所求二面角的余弦值为-155。
空间向量法解决立体几何问题全面总结
由OA1 =(-1,-1,2),OD1 =(-1,1,2)
得:
x x
y y
2z 2z
0 0
解得:xy20z
取z =1
得平面OA1D1的法向量的坐标n=(2,0,1).
(2)求平面的法向量的坐标的特殊方法:
• 第一步:写出平面内两个不平行的向量 • a = (x1,y1,z1), b = (x2,y2,z2), • 第二步:那么平面法向量为
z
C1
A1
A x
B1
C O
B y
• 解:建立如图示的直角坐标系,则
•
A(
a 2
,0,0),B(0,
3 2
a
,0)
A1(
a 2
,0,).
C(-
a 2
,0,
2a)
• 设面ABB1A1的法向量为n=(x,y,z)
•得 a 3
AB ( , 2
2
a,0), AA1 (0,0,
2a)
• •
a
一.引入两个重要的空间向量
1.直线的方向向量
把直线上任意两点的向量或与它平行的向
量都称为直线的方向向量.如图,在空间直角
坐标系中,由A(x1,y1,z1)与B(x2,y2,z2)确定的直 线AB的方向向量是
z
AB (x2 x1, y2 y1, z2 z1)
B
A
y
x
2.平面的法向量 • 如果表示向量n的有向线段所在的直线垂直
n
a
b
α
(1)求平面的法向量的坐标的一般步骤:
• 第一步(设):设出平面法向量的坐标为n=(x,y,z).
空间向量解决立体几何
1 空间直角坐标系构建三策略利用空间向量的方法解决立体几何问题,关键是依托图形建立空间直角坐标系,将其它向量用坐标表示,通过向量运算,判定或证明空间元素的位置关系,以及空间角、空间距离问题的探求.所以如何建立空间直角坐标系显得非常重要,下面简述空间建系的三种方法,希望同学们面对空间几何问题能做到有的放矢,化解自如.1.利用共顶点的互相垂直的三条棱例1 已知直四棱柱中,AA 1=2,底面ABCD 是直角梯形,∠DAB 为直角,AB ∥CD ,AB =4,AD =2,DC =1,试求异面直线BC 1与DC 所成角的余弦值.解 如图以D 为坐标原点,分别以DA ,DC ,DD 1所在的直线为x 轴,y轴,z 轴,建立空间直角坐标系,则D (0,0,0),C 1(0,1,2),B (2,4,0),C (0,1,0),所以BC 1→=(-2,-3,2),CD →=(0,-1,0).所以cos 〈BC 1→,CD →〉=BC 1→·CD →|BC 1→||CD →|=31717. 故异面直线BC 1与DC 所成角的余弦值为31717. 点评 本例以直四棱柱为背景,求异面直线所成角.求解关键是从直四棱柱图形中的共点的三条棱互相垂直关系处着眼,建立空间直角坐标系,写出有关点的坐标和相关向量的坐标,再求两异面直线的方向向量的夹角即可.2.利用线面垂直关系例2 如图,在三棱柱ABC -A 1B 1C 1中,AB ⊥面BB 1C 1C ,E 为棱C 1C 的中点,已知AB =2,BB 1=2,BC =1,∠BCC 1=π3.试建立合适的空间直角坐标系,求出图中所有点的坐标.解 过B 点作BP 垂直BB 1交C 1C 于P 点,因为AB ⊥面BB 1C 1C ,所以BP ⊥面ABB 1A 1,以B 为原点,分别以BP ,BB 1,BA 所在的直线为x ,y ,z 轴,建立空间直角坐标系.因为AB =2,BB 1=2,BC =1,∠BCC 1=π3, 所以CP =12,C 1P =32,BP =32,则各点坐标分别为B (0,0,0),A (0,0,2),B 1(0,2,0),C (32,-12,0),C 1(32,32,0),E (32,12,0),A 1(0,2,2).点评 空间直角坐标系的建立,要尽量地使尽可能多的点落在坐标轴上,这样建成的坐标系,既能迅速写出各点的坐标,又由于坐标轴上的点的坐标含有0,也为后续的运算带来了方便.本题已知条件中的垂直关系“AB ⊥面BB 1C 1C ”,可作为建系的突破口.3.利用面面垂直关系例3 如图1,等腰梯形ABCD 中,AD ∥BC ,AB =AD =2,∠ABC =60°,E 是BC 的中点.将△ABE 沿AE 折起,使平面BAE ⊥平面AEC (如图2),连接BC ,BD .求平面ABE 与平面BCD 所成的锐角的大小.解 取AE 中点M ,连接BM ,DM .因为在等腰梯形ABCD 中,AD ∥BC ,AB =AD ,∠ABC =60°,E 是BC 的中点, 所以△ABE 与△ADE 都是等边三角形,所以BM ⊥AE ,DM ⊥AE .又平面BAE ⊥平面AEC ,所以BM ⊥MD .以M 为原点,分别以ME ,MD ,MB 所在的直线为x ,y ,z 轴,建立空间直角坐标系Mxyz ,如图,则E (1,0,0),B (0,0,3),C (2,3,0),D (0,3,0),所以DC →=(2,0,0),BD →=(0,3,-3),设平面BCD 的法向量为m =(x ,y ,z ),由⎩⎪⎨⎪⎧m ·DC →=2x =0,m ·BD →=3y -3z =0.取y =1,得m =(0,1,1), 又因平面ABE 的一个法向量MD →=(0,3,0),所以cos 〈m ,MD →〉=m ·MD →|m ||MD →|=22, 所以平面ABE 与平面BCD 所成的锐角为45°.点评 本题求解关键是利用面面垂直关系,先证在两平面内共点的三线垂直,再构建空间直角坐标系,然后分别求出两个平面的法向量,求出两法向量夹角的余弦值,即可得所求的两平面所成的锐角的大小.用法向量的夹角求二面角时应注意:平面的法向量有两个相反的方向,取的方向不同求出来的角度就不同,所以最后还应该根据这个二面角的实际形态确定其大小.2 用向量法研究“动态”立体几何问题“动态”立体几何问题是在静态几何问题中渗透了一些“动态”的点、线、面等元素,同时由于“动态”的存在,使得问题的处理趋于灵活.本文介绍巧解“动态”立体几何问题的法宝——向量法,教你如何以静制动.1.求解、证明问题例1 在棱长为a 的正方体OABC —O 1A 1B 1C 1中,E 、F 分别是AB 、BC 上的动点,且AE =BF ,求证:A 1F ⊥C 1E .证明 以O 为坐标原点建立如图所示的空间直角坐标系,则A 1(a,0,a ),C 1(0,a ,a ).设AE =BF =x ,∴E (a ,x,0),F (a -x ,a,0).∴A 1F →=(-x ,a ,-a ),C 1E →=(a ,x -a ,-a ).∵A 1F →·C 1E →=(-x ,a ,-a )·(a ,x -a ,-a )=-ax +ax -a 2+a 2=0,∴A 1F →⊥C 1E →,即A 1F ⊥C 1E .2.定位问题例2 如图,已知四边形ABCD ,CDGF ,ADGE 均为正方形,且边长为1,在DG 上是否存在点M ,使得直线MB 与平面BEF 的夹角为45°?若存在,求出点M 的位置;若不存在,请说明理由.解题提示 假设存在点M ,设平面BEF 的法向量为n ,设BM 与平面BEF所成的角为θ,利用sin θ=|BM →·n ||BM →||n |解出t ,若t 满足条件则存在. 解 因为四边形CDGF ,ADGE 均为正方形,所以GD ⊥DA ,GD ⊥DC .又DA ∩DC =D ,所以GD ⊥平面ABCD .又DA ⊥DC ,所以DA ,DG ,DC 两两互相垂直,如图,以D 为原点建立空间直角坐标系,则B (1,1,0),E (1,0,1),F (0,1,1).因为点M 在DG 上,假设存在点M (0,0,t ) (0≤t ≤1)使得直线BM 与平面BEF 的夹角为45°.设平面BEF 的法向量为n =(x ,y ,z ).因为BE →=(0,-1,1),BF →=(-1,0,1),则⎩⎪⎨⎪⎧ n ·BE →=0,n ·BF →=0,即⎩⎪⎨⎪⎧-y +z =0,-x +z =0,令z =1,得x =y =1, 所以n =(1,1,1)为平面BEF 的一个法向量.又BM →=(-1,-1,t ),直线BM 与平面BEF 所成的角为45°,所以sin 45°=|BM →·n ||BM →||n |=|-2+t |t 2+2×3=22, 解得t =-4±3 2.又0≤t ≤1,所以t =32-4.故在DG 上存在点M (0,0,32-4),且DM =32-4时,直线MB 与平面BEF 所成的角为45°.点评 由于立体几何题中“动态”性的存在,使有些问题的结果变得不确定,这时我们要以不变应万变,抓住问题的实质,引入参量,利用空间垂直关系及数量积将几何问题代数化,达到以静制动的效果.3 向量与立体几何中的数学思想1.数形结合思想向量方法是解决问题的一种重要方法,坐标是研究向量问题的有效工具,利用空间向量的坐标表示可以把向量问题转化为代数运算,从而沟通了几何与代数的联系,体现了数形结合的重要思想.向量具有数形兼备的特点,因此,它能将几何中的“形”和代数中的“数”有机地结合在一起.例1 如图,在四棱柱ABCD -A 1B 1C 1D 1中,A 1A ⊥底面ABCD ,∠BAD =90°,AD ∥BC ,且A 1A =AB =AD =2BC =2,点E 在棱AB 上,平面A 1EC 与棱C 1D 1相交于点F .(1)证明:A 1F ∥平面B 1CE ;(2)若E 是棱AB 的中点,求二面角A 1-EC -D 的余弦值;(3)求三棱锥B 1-A 1EF 的体积的最大值.(1)证明 因为ABCD -A 1B 1C 1D 1是棱柱,所以平面ABCD ∥平面A 1B 1C 1D 1.又因为平面ABCD ∩平面A 1ECF =EC ,平面A 1B 1C 1D 1∩平面A 1ECF =AF ,所以A 1F ∥EC .又因为A 1F ⊄平面B 1CE ,EC ⊂平面B 1CE ,所以A 1F ∥平面B 1CE .(2)解 因为AA 1⊥底面ABCD ,⊥BAD =90°,所以AA 1,AB ,AD 两两垂直,以A 为原点,以AB ,AD ,AA 1分别为x 轴、y 轴和z 轴,如图建立空间直角坐标系.则A 1(0,0,2),E (1,0,0),C (2,1,0),所以A 1E →=(1,0,-2),A 1C →=(2,1,-2).设平面A 1ECF 的法向量为m =(x ,y ,z ),由A 1E →·m =0,A 1C →·m =0,得⎩⎪⎨⎪⎧x -2z =0,2x +y -2z =0. 令z =1,得m =(2,-2,1).又因为平面DEC 的法向量为n =(0,0,1),所以cos 〈m ,n 〉=m ·n |m |·|n |=13, 由图可知,二面角AA 1-EC -D 的平面角为锐角,所以二面角A 1-EC -D 的余弦值为13. (3)解 过点F 作FM ⊥A 1B 1于点M ,因为平面A 1ABB 1⊥平面A 1B 1C 1D 1,FM ⊂平面A 1B 1C 1D 1,所以FM ⊥平面A 1ABB 1,所以VB 1-A 1EF =VF -B 1A 1E =13×S △A 1B 1E ×FM =13×2×22×FM =23FM . 因为当F 与点D 1重合时,FM 取到最大值2(此时点E 与点B 重合),所以当F 与点D 1重合时,三棱锥B 1-A 1EF 的体积的最大值为43. 2.转化与化归思想空间向量的坐标及运算为解决立体几何中的夹角、距离、垂直、平行等问题提供了工具,因此我们要善于把这些问题转化为向量的夹角、模、垂直、平行等问题,利用向量方法解决.将几何问题化归为向量问题,然后利用向量的性质进行运算和论证,再将结果转化为几何问题.这种“从几何到向量,再从向量到几何”的思想方法,在本章尤为重要.例2 如图,在长方体ABCD -A 1B 1C 1D 1中,AA 1=AB =2AD =2,E 为AB 的中点,F 为D 1E 上的一点,D 1F =2FE .(1)证明:平面DFC ⊥平面D 1EC ;(2)求二面角A -DF -C 的平面角的余弦值.分析 求二面角最常用的办法就是分别求出二面角的两个面所在平面的法向量,然后通过两个平面的法向量的夹角得到二面角的大小,但要注意结合实际图形判断所求角是锐角还是钝角.解 (1)以D 为原点,分别以DA 、DC 、DD 1所在的直线为x 轴、y 轴、z 轴建立如图所示空间直角坐标系,则A (1,0,0),B (1,2,0),C (0,2,0),D 1(0,0,2).∵E 为AB 的中点,∴E 点坐标为E (1,1,0),∵D 1F =2FE ,∴D 1F →=23D 1E →=23(1,1,-2) =(23,23,-43), ∴DF →=DD 1→+D 1F →=(0,0,2)+(23,23,-43) =(23,23,23),设n =(x ,y ,z )是平面DFC 的法向量,则⎩⎪⎨⎪⎧ n ·DF →=0,n ·DC →=0, ∴⎩⎪⎨⎪⎧ 23x +23y +23z =0,2y =0.取x =1得平面FDC 的一个法向量为n =(1,0,-1).设p =(x ,y ,z )是平面ED 1C 的法向量,则⎩⎪⎨⎪⎧p ·D 1F →=0,p ·D 1C →=0,∴⎩⎪⎨⎪⎧ 23x +23y -43z =0,2y -2z =0,取y =1得平面D 1EC 的一个法向量p =(1,1,1), ∵n ·p =(1,0,-1)·(1,1,1)=0,∴平面DFC ⊥平面D 1EC .(3)设q =(x ,y ,z )是平面ADF 的法向量,则⎩⎪⎨⎪⎧ q ·DF →=0,q ·DA →=0, ∴⎩⎪⎨⎪⎧23x +23y +23z =0,x =0,取y =1得平面ADF 的一个法向量q =(0,1,-1),设二面角A -DF -C 的平面角为θ,由题中条件可知θ∈(π2,π),则cos θ=|n ·q |n |·|q ||=-0+0+12×2=-12, ∴二面角A -DF -C 的平面角的余弦值为12. 3.函数思想例3 已知关于x 的方程x 2-(t -2)x +t 2+3t +5=0有两个实根,且c =a +t b ,a =(-1,1,3),b =(1,0,-2).问|c |能否取得最大值?若能,求出实数t 的值及对应的向量b 与c 夹角的余弦值;若不能,说明理由.分析 写出|c |关于t 的函数关系式,再利用函数观点求解.解 由题意知Δ≥0,得-4≤t ≤-43, 又c =(-1,1,3)+t (1,0,-2)=(-1+t,1,3-2t ),∴|c |=(-1+t )2+(3-2t )2+1 =5⎝⎛⎭⎫t -752+65. 当t ∈⎣⎡⎦⎤-4,-43时,f (t )=5⎝⎛⎭⎫t -752+65是单调递减函数,∴y max =f (-4),即|c |的最大值存在, 此时c =(-5,1,11).b·c =-27,|c |=7 3.而|b |=5,∴cos 〈b ,c 〉=b·c |b||c |=-275×73=-91535. 点评 凡涉及向量中的最值问题,若可用向量坐标形式,一般可考虑写出函数关系式,利用函数思想求解.4.分类讨论思想例4 如图,矩形ABCD 中,AB =1,BC =a ,P A ⊥平面ABCD (点P 位于平面ABCD 上方),问BC 边上是否存在点Q ,使PQ →⊥QD →?分析 由PQ →⊥QD →,得PQ ⊥QD ,所以平面ABCD 内,点Q 在以边AD为直径的圆上,若此圆与边BC 相切或相交,则BC 边上存在点Q ,否则不存在.解 假设存在点Q (Q 点在边BC 上),使PQ →⊥QD →,即PQ ⊥QD ,连接AQ .∵P A ⊥平面ABCD ,∴P A ⊥QD .又PQ →=P A →+AQ →且PQ →⊥QD →,∴PQ →·QD →=0,即P A →·QD →+AQ →·QD →=0.又由P A →·QD →=0,∴AQ →·QD →=0,∴AQ →⊥QD →.即点Q 在以边AD 为直径的圆上,圆的半径为a 2. 又∵AB =1,由题图知,当a 2=1,即a =2时,该圆与边BC 相切,存在1个点Q 满足题意; 当a 2>1,即a >2时,该圆与边BC 相交,存在2个点Q 满足题意; 当a 2<1,即a <2时,该圆与边BC 相离,不存在点Q 满足题意. 综上所述,当a ≥2时,存在点Q ;当0<a <2时,不存在点。
专题六 立体几何 第三讲 利用空间向量证明平行与垂直关系——2024届高考数学二轮复习
的值为( )
A. 11
6
√B. 11 6
C. 1
2
D. 1
3
设 D(x, y, z) ,则 AD (x 1, y 1, z 2), AB (2, 1, 3), DB (1 x, y, 1 z) . AD 2DB ,
x 1 2(1 x),
x
1 3
,
y
z
1 2
2 y, 2
2z.
y
z
1, 3 0,
D
1 3
,
1 3
,0
, CD
1 3
,
,
1
.
CD
AB,CD
AB
2
1 3
3(1
)
0,
11 6
.故选
B.
(二)核心知识整合
考点 2:向量法求线线角、线面角、面面角 1.向量法求空间角 (1)异面直线所成的角:设 a,b 分别为异面直线 a,b 的方向向量,
则两异面直线所成的角满足 cos = | a b | .
则 B(0,0,0) , A(1,0,1) ,C(0,1,1) ,N(1,1,0) ,因此 BA (1, 0,1) ,BC (0,1,1) ,BN (1,1,0) .设平面 ABC
的一个法向量为
n
(
x,
y,
z)
,则
n
BA
x
z
0,
令
x
1,得
n
(1,1,
1)
.易知三棱锥
S
ABC
的外
n BC y z 0
√A.-1
B.1
C.2
D.3
a c ,a c 2x 4 2 0 ,解得 x 1,又 b//c , 1 y 1 ,
立体几何中不易建系的用空间向量证明垂直问题。
立体几何中不易建系的用空间向量证明垂直问题。
1. 引言1.1 概述立体几何是数学中的一个重要分支,研究空间中的图形和特定关系。
建系问题是立体几何中一个常见的难题,它涉及到如何确定或构建一个合适的坐标系来描述和表示空间中的元素和关系。
在解决建系问题时,传统的方法存在一定局限性和困难,例如难以应对复杂的几何结构、缺乏普适性等。
1.2 文章结构本文将通过引入空间向量理论来探讨解决立体几何中不易建系的问题。
文章分为以下几个部分:- 引言:介绍本文的背景和论文结构。
- 立体几何中的建系问题:阐述建系定义与重要性、传统方法的局限性与困难,以及空间向量在解决建系问题中的优势。
- 空间向量证明垂直问题的基本原理与方法:讨论垂直关系的定义与特征、空间向量表示垂直关系的有效途径,以及应用空间向量证明垂直性质时需要考虑的因素。
- 实例分析:通过一个具体案例来说明使用空间向量证明垂直问题的步骤和推理过程,并对结果进行分析和讨论。
- 结论与展望:总结研究成果并得出结论,同时提出未来研究方向和进一步工作的展望。
1.3 目的本文的目的是介绍空间向量在解决立体几何中不易建系的问题中所起到的作用和优势,并通过实例分析来验证其有效性。
通过本文的研究,读者将能够理解空间向量在解决建系问题中的重要性,并了解使用空间向量证明垂直问题的基本原理与方法。
最终,本文希望为立体几何领域中建系问题的解决提供一种新思路和有价值的参考。
2. 立体几何中的建系问题:2.1 建系的定义与重要性:在立体几何中,建系是指通过选取适当的点或向量作为参照,构建坐标系或基底来描述和表示空间中的几何事物或运动。
建系是解决立体几何问题和进行进一步分析的基础,它可以帮助我们确定方向、测量距离和角度,从而推导出更多关于空间图形、运动和变换的性质。
2.2 建系方法的局限性与困难:传统的建系方法主要包括平行四边形法、角平分线法、垂直线法等。
然而,这些方法在实际应用中存在一定的局限性和困难。
8.7空间向量在立体几何中的应用——证明平行与垂直
1.用向量表示直线或点在直线上的位置(1)给定一个定点A 和一个向量a ,再任给一个实数t ,以A 为起点作向量AP →=t a ,则此向量方程叫做直线l 以t 为参数的参数方程.向量a 称为该直线的方向向量.(2)对空间任一确定的点O ,点P 在直线l 上的充要条件是存在唯一的实数t ,满足等式OP →=(1-t )OA →+tOB →,叫做空间直线的向量参数方程. 2.用向量证明空间中的平行关系(1)设直线l 1和l 2的方向向量分别为v 1和v 2,则l 1∥l 2(或l 1与l 2重合)⇔v 1∥v 2.(2)设直线l 的方向向量为v ,与平面α共面的两个不共线向量v 1和v 2,则l ∥α或l ⊂α⇔存在两个实数x ,y ,使v =x v 1+y v 2.(3)设直线l 的方向向量为v ,平面α的法向量为u ,则l ∥α或l ⊂α⇔v ⊥u . (4)设平面α和β的法向量分别为u 1,u 2,则α∥β⇔u 1 ∥u 2. 3.用向量证明空间中的垂直关系(1)设直线l 1和l 2的方向向量分别为v 1和v 2,则l 1⊥l 2⇔v 1⊥v 2⇔v 1·v 2=0. (2)设直线l 的方向向量为v ,平面α的法向量为u ,则l ⊥α⇔v ∥u . (3)设平面α和β的法向量分别为u 1和u 2,则α⊥β⇔u 1⊥u 2⇔u 1·u 2=0. 【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”) (1)直线的方向向量是唯一确定的.( × ) (2)平面的单位法向量是唯一确定的.( × ) (3)若两平面的法向量平行,则两平面平行.( √ ) (4)若两直线的方向向量不平行,则两直线不平行.( √ ) (5)若a ∥b ,则a 所在直线与b 所在直线平行.( × )(6)若空间向量a 平行于平面α,则a 所在直线与平面α平行.( × )1.平面α的法向量为(1,2,-2),平面β的法向量为(-2,-4,k ),若α∥β,则k 等于( ) A.2 B.-4 C.4 D.-2 答案 C解析 ∵α∥β,∴两平面法向量平行, ∴-21=-42=k-2,∴k =4. 2.已知A (1,0,0),B (0,1,0),C (0,0,1),则下列向量是平面ABC 法向量的是( ) A.(-1,1,1) B.(1,-1,1) C.(-33,-33,-33) D.(33,33,-33) 答案 C解析 设n =(x ,y ,z )为平面ABC 的法向量, 则⎩⎪⎨⎪⎧n ·AB →=0,n ·AC →=0,化简得⎩⎪⎨⎪⎧-x +y =0,-x +z =0,∴x =y =z .故选C.3.已知直线l 的方向向量为v =(1,2,3),平面α的法向量为u =(5,2,-3),则l 与α的位置关系是____________. 答案 l ∥α或l ⊂α解析 ∵v ·u =0,∴v ⊥u ,∴l ∥α或l ⊂α.4.(教材改编)设u ,v 分别是平面α,β的法向量,u =(-2,2,5),当v =(3,-2,2)时,α与β的位置关系为________;当v =(4,-4,-10)时,α与β的位置关系为________. 答案 α⊥β α∥β解析 当v =(3,-2,2)时,u ·v =(-2,2,5)·(3,-2,2)=0⇒α⊥β. 当v =(4,-4,-10)时,v =-2u ⇒α∥β.5.(教材改编)如图所示,在正方体ABCD -A 1B 1C 1D 1中,O 是底面正方形ABCD 的中心,M 是D 1D 的中点,N 是A 1B 1的中点,则直线ON ,AM 的位置关系是________. 答案 垂直解析 以A 为原点,分别以AB →,AD →,AA 1→所在直线为x ,y ,z 轴,建立空间直角坐标系,设正方体棱长为1,则A (0,0,0),M (0,1,12),O (12,12,0),N (12,0,1),AM →·ON →=(0,1,12)·(0,-12,1)=0, ∴ON 与AM 垂直.题型一 利用空间向量证明平行问题例1 如图所示,平面P AD ⊥平面ABCD ,ABCD 为正方形,△P AD 是直角三角形,且P A =AD =2,E ,F ,G 分别是线段P A ,PD ,CD 的中点.求证:PB ∥平面EFG . 证明 ∵平面P AD ⊥平面ABCD ,且ABCD 为正方形,∴AB ,AP ,AD 两两垂直,以A 为坐标原点,建立如图所示的空间直角坐标系Axyz ,则A (0,0,0),B (2,0,0),C (2,2,0),D (0,2,0),P (0,0,2),E (0,0,1),F (0,1,1),G (1,2,0). ∴PB →=(2,0,-2),FE →=(0,-1,0),FG →=(1,1,-1), 设PB →=sFE →+tFG →,即(2,0,-2)=s (0,-1,0)+t (1,1,-1), ∴⎩⎪⎨⎪⎧t =2,t -s =0,-t =-2,解得s =t =2.∴PB →=2FE →+2FG →,又∵FE →与FG →不共线,∴PB →,FE →与FG →共面. ∵PB ⊄平面EFG ,∴PB ∥平面EFG . 引申探究本例中条件不变,证明平面EFG ∥平面PBC . 证明 ∵EF →=(0,1,0),BC →=(0,2,0), ∴BC →=2EF →,∴BC ∥EF .又∵EF ⊄平面PBC ,BC ⊂平面PBC , ∴EF ∥平面PBC ,同理可证GF ∥PC ,从而得出GF ∥平面PBC . 又EF ∩GF =F ,EF ⊂平面EFG ,FG ⊂平面EFG , ∴平面EFG ∥平面PBC .思维升华 (1)恰当建立空间直角坐标系,准确表示各点与相关向量的坐标,是运用向量法证明平行和垂直的关键.(2)证明直线与平面平行,只需证明直线的方向向量与平面的法向量的数量积为零,或证直线的方向向量与平面内的不共线的两个向量共面,或证直线的方向向量与平面内某直线的方向向量平行,然后说明直线在平面外即可.这样就把几何的证明问题转化为向量运算.如图,在四面体A -BCD 中,AD ⊥平面BCD ,BC ⊥CD ,AD =2,BD =22,M 是AD 的中点,P 是BM 的中点,点Q 在线段AC 上,且AQ=3QC .证明:PQ ∥平面BCD .证明 方法一 如图,取BD 的中点O ,以O 为原点,OD 、OP 所在射线分别为y 、z轴的正半轴,建立空间直角坐标系Oxyz .由题意知,A (0,2,2),B (0,-2,0),D (0,2,0). 设点C 的坐标为(x 0,y 0,0). 因为AQ →=3QC →,所以Q ⎝⎛⎭⎫34x 0,24+34y 0,12.因为M 为AD 的中点,故M (0,2,1). 又P 为BM 的中点,故P ⎝⎛⎭⎫0,0,12, 所以PQ →=⎝⎛⎭⎫34x 0,24+34y 0,0.又平面BCD 的一个法向量为a =(0,0,1),故PQ →·a =0. 又PQ ⊄平面BCD ,所以PQ ∥平面BCD .方法二 在线段CD 上取点F ,使得DF =3FC ,连接OF ,同方法一建立空间直角坐标系,写出点A 、B 、C 的坐标,设点C 坐标为(x 0,y 0,0). ∵CF →=14CD →,设点F 坐标为(x ,y,0),则(x -x 0,y -y 0,0)=14(-x 0,2-y 0,0),∴⎩⎨⎧x =34x 0y =24+34y∴OF →=(34x 0,24+34y 0,0)又由方法一知PQ →=(34x 0,24+34y 0,0),∴OF →=PQ →,∴PQ ∥OF .又PQ ⊄平面BCD ,OF ⊂平面BCD , ∴PQ ∥平面BCD .题型二 利用空间向量证明垂直问题 命题点1 证线面垂直例2 如图所示,正三棱柱ABC —A 1B 1C 1的所有棱长都为2,D 为CC 1的中点.求证:AB 1⊥平面A 1BD .证明 方法一 设平面A 1BD 内的任意一条直线m 的方向向量为m .由共面向量定理,则存在实数λ,μ,使m =λBA 1→+μBD →.令BB 1→=a ,BC →=b ,BA →=c ,显然它们不共面,并且|a |=|b |=|c |=2,a ·b =a·c =0,b·c =2,以它们为空间的一个基底,则BA 1→=a +c ,BD →=12a +b ,AB 1→=a -c ,m =λBA 1→+μBD →=⎝⎛⎭⎫λ+12μa +μb +λc , AB 1→·m =(a -c )·⎣⎡⎦⎤⎝⎛⎭⎫λ+12μa +μb +λc =4⎝⎛⎭⎫λ+12μ-2μ-4λ=0.故AB 1→⊥m ,结论得证. 方法二 如图所示,取BC 的中点O ,连接AO . 因为△ABC 为正三角形, 所以AO ⊥BC .因为在正三棱柱ABC —A 1B 1C 1中,平面ABC ⊥平面BCC 1B 1, 所以AO ⊥平面BCC 1B 1.取B 1C 1的中点O 1,以O 为原点,分别以OB →,OO 1→,OA →所在直线为x 轴,y 轴,z 轴建立空间直角坐标系,则B (1,0,0),D (-1,1,0),A 1(0,2,3), A (0,0,3),B 1(1,2,0).设平面A 1BD 的法向量为n =(x ,y ,z ),BA 1→=(-1,2,3),BD →=(-2,1,0). 因为n ⊥BA 1→,n ⊥BD →,故⎩⎪⎨⎪⎧n ·BA 1→=0,n ·BD →=0,⇒⎩⎨⎧-x +2y +3z =0,-2x +y =0,令x =1,则y =2,z =-3,故n =(1,2,-3)为平面A 1BD 的一个法向量, 而AB 1→=(1,2,-3),所以AB 1→=n ,所以AB 1→∥n , 故AB 1⊥平面A 1BD . 命题点2 证面面垂直例3 如图,在三棱锥P ABC 中,AB =AC ,D 为BC 的中点,PO ⊥平面ABC ,垂足O 落在线段AD 上.已知BC =8,PO =4,AO =3,OD =2. (1)证明:AP ⊥BC ;(2)若点M 是线段AP 上一点,且AM =3.试证明平面AMC ⊥平面BMC . 证明 (1)如图所示,以O 为坐标原点,以射线OP 为z 轴的正半轴建立空间直角坐标系Oxyz .则O (0,0,0),A (0,-3,0), B (4,2,0),C (-4,2,0),P (0,0,4).于是AP →=(0,3,4), BC →=(-8,0,0),∴AP →·BC →=(0,3,4)·(-8,0,0)=0, 所以AP →⊥BC →,即AP ⊥BC . (2)由(1)知|AP |=5,又|AM |=3,且点M 在线段AP 上, ∴AM →=35AP →=⎝⎛⎭⎫0,95,125, 又BC →=(-8,0,0),AC →=(-4,5,0),BA →=(-4,-5,0), ∴BM →=BA →+AM →=⎝⎛⎭⎫-4,-165,125, 则AP →·BM →=(0,3,4)·⎝⎛⎭⎫-4,-165,125=0, ∴AP →⊥BM →,即AP ⊥BM ,又根据(1)的结论知AP ⊥BC ,且BM ∩BC =C , ∴AP ⊥平面BMC ,于是AM ⊥平面BMC . 又AM ⊂平面AMC ,故平面AMC ⊥平面BCM . 思维升华 证明垂直问题的方法(1)利用已知的线面垂直关系构建空间直角坐标系,准确写出相关点的坐标,从而将几何证明转化为向量运算.其中灵活建系是解题的关键.(2)其一证明直线与直线垂直,只需要证明两条直线的方向向量垂直;其二证明线面垂直,只需证明直线的方向向量与平面内不共线的两个向量垂直即可,当然 ,也可证直线的方向向量与平面法向量平行;其三证明面面垂直:①证明两平面的法向量互相垂直;②利用面面垂直的判定定理,只要能证明一个平面内的一条直线的方向向量为另一个平面的法向量即可.(1)如图所示,已知直三棱柱ABC —A 1B 1C 1中,△ABC 为等腰直角三角形,∠BAC =90°,且AB =AA 1,D 、E 、F 分别为B 1A 、C 1C 、BC 的中点.求证: ①DE ∥平面ABC ; ②B 1F ⊥平面AEF .证明 ①如图建立空间直角坐标系Axyz , 令AB =AA 1=4,则A (0,0,0),E (0,4,2),F (2,2,0),B (4,0,0),B 1(4,0,4). 取AB 中点为N ,连接CN , 则N (2,0,0),C (0,4,0),D (2,0,2), ∴DE →=(-2,4,0),NC →=(-2,4,0),∴DE →=NC →,∴DE ∥NC ,又∵NC ⊂平面ABC ,DE ⊄平面ABC . 故DE ∥平面ABC .②B 1F →=(-2,2,-4),EF →=(2,-2,-2),AF →=(2,2,0). B 1F →·EF →=(-2)×2+2×(-2)+(-4)×(-2)=0, B 1F →·AF →=(-2)×2+2×2+(-4)×0=0.∴B 1F →⊥EF →,B 1F →⊥AF →,即B 1F ⊥EF ,B 1F ⊥AF , 又∵AF ∩EF =F ,∴B 1F ⊥平面AEF .(2)如图所示,在四棱锥P -ABCD 中,PC ⊥平面ABCD ,PC =2,在四边形ABCD 中,∠B =∠C =90°,AB =4,CD =1,点M 在PB 上,PB =4PM ,PB 与平面ABCD 成30°角.①求证:CM ∥平面P AD ; ②求证:平面P AB ⊥平面P AD .证明 ①以C 为坐标原点,分别以CB 所在直线为x 轴,CD 所在直线为y 轴,CP 所在直线为z 轴建立如图所示的空间直角坐标系Cxyz , ∵PC ⊥平面ABCD ,∴∠PBC 为PB 与平面ABCD 所成的角, ∴∠PBC =30°.∵PC =2,∴BC =23,PB =4.∴D (0,1,0),B (23,0,0),A (23,4,0),P (0,0,2), M (32,0,32), ∴DP →=(0,-1,2),DA →=(23,3,0),CM →=(32,0,32),令n =(x ,y ,z )为平面P AD 的一个法向量, 则⎩⎪⎨⎪⎧DP →·n =0,DA →·n =0,即⎩⎨⎧-y +2z =0,23x +3y =0,∴⎩⎨⎧z =12y ,x =-32y ,令y =2,得n =(-3,2,1).∵n ·CM →=-3×32+2×0+1×32=0,∴n ⊥CM →,又CM ⊄平面P AD , ∴CM ∥平面P AD .②取AP 的中点E ,则E (3,2,1),BE →=(-3,2,1). ∵PB =AB ,∴BE ⊥P A .又∵BE →·DA →=(-3,2,1)·(23,3,0)=0, ∴BE →⊥DA →,∴BE ⊥DA ,又P A ∩DA =A ,∴BE ⊥平面P AD , 又∵BE ⊂平面P AB , ∴平面P AB ⊥平面P AD .题型三 利用空间向量解决探索性问题例4 如图,棱柱ABCD -A 1B 1C 1D 1的所有棱长都等于2,∠ABC 和∠A 1AC 均为60°,平面AA 1C 1C ⊥平面ABCD . (1)求证:BD ⊥AA 1;(2)求二面角D -A 1A -C 的余弦值;(3)在直线CC 1上是否存在点P ,使BP ∥平面DA 1C 1,若存在,求出点P 的位置,若不存在,请说明理由. (1)证明 设BD 与AC 交于点O ,则BD ⊥AC ,连接A 1O ,在△AA 1O 中,AA 1=2,AO =1,∠A 1AO =60°,∴A 1O 2=AA 21+AO 2-2AA 1·AO cos 60°=3, ∴AO 2+A 1O 2=AA 21, ∴A 1O ⊥AO .由于平面AA 1C 1C ⊥平面ABCD ,∴A 1O ⊥平面ABCD .以OB ,OC ,OA 1所在直线分别为x 轴,y 轴,z 轴,建立如图所示的空间直角坐标系,则A (0,-1,0),B (3,0,0),C (0,1,0),D (-3,0,0),A 1(0,0,3),C 1(0,2,3). 由于BD →=(-23,0,0),AA 1→=(0,1,3), AA 1→·BD →=0×(-23)+1×0+3×0=0, ∴BD →⊥AA 1→,即BD ⊥AA 1. (2)解 由于OB ⊥平面AA 1C 1C ,∴平面AA 1C 1C 的一个法向量为n 1=(1,0,0). 设n 2=(x ,y ,z )为平面DAA 1D 1的一个法向量, 则⎩⎪⎨⎪⎧n 2·AA 1→=0,n 2·AD →=0, 即⎩⎨⎧y +3z =0,-3x +y =0,取n 2=(1,3,-1),则〈n 1,n 2〉即为二面角D -A 1A -C 的平面角,∴cos 〈n 1,n 2〉=n 1·n 2|n 1||n 2|=55,所以,二面角D -A 1A -C 的余弦值为55. (3)解 假设在直线CC 1上存在点P ,使BP ∥平面DA 1C 1,设CP →=λCC 1,P (x ,y ,z ),则(x ,y -1,z )=λ(0,1,3). 从而有P (0,1+λ,3λ),BP →=(-3,1+λ,3λ). 设n 3=(x 3,y 3,z 3)⊥平面DA 1C 1,则⎩⎪⎨⎪⎧n 3⊥A 1C 1→,n 3⊥DA 1→,又A 1C 1→=(0,2,0),DA 1→=(3,0,3),则⎩⎨⎧2y 3=0,3x 3+3z 3=0,取n 3=(1,0,-1),因为BP ∥平面DA 1C 1,则n 3⊥BP →, 即n 3·BP →=-3-3λ=0,得λ=-1, 即点P 在C 1C 的延长线上,且C 1C =CP .思维升华 对于“是否存在”型问题的探索方式有两种:一种是根据条件作出判断,再进一步论证;另一种是利用空间向量,先设出假设存在点的坐标,再根据条件求该点的坐标,即找到“存在点”,若该点坐标不能求出,或有矛盾,则判定“不存在”.在四棱锥P —ABCD 中,PD ⊥底面ABCD ,底面ABCD 为正方形,PD =DC ,E 、F 分别是AB 、PB 的中点. (1)求证:EF ⊥CD ;(2)在平面P AD 内求一点G ,使GF ⊥平面PCB ,并证明你的结论. (1)证明 如图,分别以DA 、DC 、DP 所在直线为x 轴、y 轴、z 轴建立空间直角坐标系,设AD =a ,则D (0,0,0), A (a,0,0),B (a ,a,0), C (0,a,0),E ⎝⎛⎭⎫a ,a2,0, P (0,0,a ),F ⎝⎛⎭⎫a 2,a 2,a 2.EF →=⎝⎛⎭⎫-a 2,0,a 2,DC →=(0,a,0). ∵EF →·DC →=0,∴EF →⊥DC →,即EF ⊥CD .(2)解 设G (x,0,z ),则FG →=⎝⎛⎭⎫x -a 2,-a 2,z -a 2, 若使GF ⊥平面PCB ,则由FG →·CB →=⎝⎛⎭⎫x -a2,-a 2,z -a 2·(a,0,0) =a ⎝⎛⎭⎫x -a 2=0,得x =a2;由FG →·CP →=⎝⎛⎭⎫x -a2,-a 2,z -a 2·(0,-a ,a ) =a 22+a ⎝⎛⎭⎫z -a 2=0,得z =0. ∴G 点坐标为⎝⎛⎭⎫a 2,0,0,即G 点为AD 的中点.17.利用向量法解决立体几何问题典例 (12分)(2014·湖北)如图,在棱长为2的正方体ABCD -A 1B 1C 1D 1中,E ,F ,M ,N 分别是棱AB ,AD ,A 1B 1,A 1D 1的中点,点P ,Q 分别在棱DD 1,BB 1上移动,且DP =BQ =λ(0<λ<2).(1)当λ=1时,证明:直线BC 1∥平面EFPQ ;(2)是否存在λ,使平面EFPQ 与平面PQMN 所成的二面角为直二面角?若存在,求出λ的值;若不存在,说明理由. 规范解答解 以D 为原点,射线DA ,DC ,DD 1分别为x ,y ,z 轴的正半轴,建立如图所示的空间直角坐标系Dxyz .[1分]由已知得B (2,2,0),C 1(0,2,2),E (2,1,0),F (1,0,0),P (0,0,λ),M (2,1,2),N (1,0,2),BC 1→=(-2,0,2),FP →=(-1,0,λ),FE →=(1,1,0),MN →=(-1,-1,0),NP →=(-1,0,λ-2).[3分] (1)证明 当λ=1时,FP →=(-1,0,1), 因为BC 1→=(-2,0,2), 所以BC 1→=2FP →,即BC 1∥FP .而FP ⊂平面EFPQ ,且BC 1⊄平面EFPQ , 故直线BC 1∥平面EFPQ .[7分](2)解 设平面EFPQ 的一个法向量为n =(x ,y ,z ),则由⎩⎪⎨⎪⎧ FE →·n =0,FP →·n =0,可得⎩⎪⎨⎪⎧x +y =0,-x +λz =0. 于是可取n =(λ,-λ,1).[9分]同理可得平面PQMN 的一个法向量为m =(λ-2,2-λ,1).若存在λ,使平面EFPQ 与平面PQMN 所成的二面角为直二面角,则m ·n =(λ-2,2-λ,1)·(λ,-λ,1)=0,即λ(λ-2)-λ(2-λ)+1=0,解得λ=1±22.[11分] 故存在λ=1±22,使平面EFPQ 与平面PQMN 所成的二面角为直二面角.[12分] 温馨提醒 (1)利用向量法证明立体几何问题,可以建坐标系或利用基底表示向量;(2)建立空间直角坐标系时,要根据题中条件找出三条互相垂直的直线;(3)利用向量除了可以证明线线平行、垂直,线面、面面平行、垂直外,还可以利用向量求夹角、距离,从而解决线段长度问题、体积问题等.[方法与技巧]1.用向量法解决立体几何问题,是空间向量的一个具体应用,体现了向量的工具性,这种方法可把复杂的推理证明、辅助线的作法转化为空间向量的运算,降低了空间想象演绎推理的难度,体现了由“形”转“数”的转化思想.2.两种思路:(1)选好基底,用向量表示出几何量,利用空间向量有关定理与向量的线性运算进行判断.(2)建立空间直角坐标系,进行向量的坐标运算,根据运算结果的几何意义解释相关问题.[失误与防范]用向量知识证明立体几何问题,仍然离不开立体几何中的定理.如要证明线面平行,只需要证明平面外的一条直线和平面内的一条直线平行,即化归为证明线线平行,用向量方法证明直线a ∥b ,只需证明向量a =λb (λ∈R )即可.若用直线的方向向量与平面的法向量垂直来证明线面平行,仍需强调直线在平面外.A 组 专项基础训练(时间:40分钟)1.若直线l 的方向向量为a =(1,0,2),平面α的法向量为n =(-2,0,-4),则( )A.l ∥αB.l ⊥αC.l ⊂αD.l 与α相交答案 B解析 ∵n =-2a ,∴a 与α的法向量平行,∴l ⊥α.2.已知平面α内有一点M (1,-1,2),平面α的一个法向量为n =(6,-3,6),则下列点P 中,在平面α内A.P (2,3,3)B.P (-2,0,1)C.P (-4,4,0)D.P (3,-3,4)答案 A解析 逐一验证法,对于选项A ,MP →=(1,4,1),∴MP →·n =6-12+6=0,∴MP →⊥n ,∴点P 在平面α内,同理可验证其他三个点不在平面α内.3.若AB →=λCD →+μCE →,则直线AB 与平面CDE 的位置关系是( )A.相交B.平行C.在平面内D.平行或在平面内答案 D解析 ∵AB →=λCD →+μCE →,∴AB →、CD →、CE →共面,∴AB 与平面CDE 平行或在平面CDE 内.4.如图,正方形ABCD 与矩形ACEF 所在平面互相垂直,AB =2,AF =1,M 在EF 上,且AM ∥平面BDE ,则M 点的坐标为( )A.(1,1,1)B.(23,23,1) C.(22,22,1) D.(24,24,1) 答案 C解析 设M 点的坐标为(x ,y,1),AC ∩BD =O ,则O (22,22,0), 又E (0,0,1),A (2,2,0),∴OE →=(-22,-22,1),AM →=(x -2,y -2,1), ∵AM ∥平面BDE ,∴OE →∥AM →,∴⎩⎨⎧ x -2=-22,y -2=-22,⇒⎩⎨⎧ x =22,y =22.5.已知平面α内的三点A (0,0,1),B (0,1,0),C (1,0,0),平面β的一个法向量n =(-1,-1,-1),则不重合的两个平面α与β的位置关系是___________________________________.解析 设平面α的法向量为m =(x ,y ,z ),由m ·AB →=0,得x ·0+y -z =0⇒y =z ,由m ·AC →=0,得x -z =0⇒x =z ,取x =1,∴m =(1,1,1),m =-n ,∴m ∥n ,∴α∥β.6.已知点P 是平行四边形ABCD 所在的平面外一点,如果AB →=(2,-1,-4),AD →=(4,2,0),AP →=(-1,2,-1).对于结论:①AP ⊥AB ;②AP ⊥AD ;③AP →是平面ABCD 的法向量;④AP →∥BD →.其中正确的是________.答案 ①②③解析 ∵AB →·AP →=0,AD →·AP →=0,∴AB ⊥AP ,AD ⊥AP ,则①②正确.又AB →与AD →不平行,∴AP →是平面ABCD 的法向量,则③正确.∵BD →=AD →-AB →=(2,3,4),AP →=(-1,2,-1),∴BD →与AP →不平行,故④错误.7.如图,四棱锥P -ABCD 的底面为正方形,侧棱P A ⊥底面ABCD ,且P A =AD=2,E ,F ,H 分别是线段P A ,PD ,AB 的中点.求证:(1)PB ∥平面EFH ;(2)PD ⊥平面AHF .证明 建立如图所示的空间直角坐标系Axyz .∴A (0,0,0),B (2,0,0),C (2,2,0),D (0,2,0),P (0,0,2),E (0,0,1),F (0,1,1),H (1,0,0).(1)∵PB →=(2,0,-2),EH →=(1,0,-1),∴PB →=2EH →,∴PB ∥EH .∵PB ⊄平面EFH ,且EH ⊂平面EFH ,∴PB ∥平面EFH .(2)PD →=(0,2,-2),AH →=(1,0,0),AF →=(0,1,1),∴PD →·AF →=0×0+2×1+(-2)×1=0,PD →·AH →=0×1+2×0+(-2)×0=0,∴PD ⊥AF ,PD ⊥AH ,又∵AF ∩AH =A ,∴PD ⊥平面AHF .8.如图,四边形ABCD 为正方形,PD ⊥平面ABCD ,PD ∥QA ,QA =AB =12PD .证明:平面PQC ⊥平面DCQ .证明 如图,以D 为坐标原点,线段DA 的长为单位长,射线DA 、DP 、DC 分别为x 轴、y 轴、z 轴的正半轴建立空间直角坐标系Dxyz .依题意有Q (1,1,0),C (0,0,1),P (0,2,0),则DQ →=(1,1,0),DC →=(0,0,1),PQ →=(1,-1,0).∴PQ →·DQ →=0,PQ →·DC →=0.即PQ ⊥DQ ,PQ ⊥DC ,又DQ ∩DC =D ,∴PQ ⊥平面DCQ ,又PQ ⊂平面PQC ,∴平面PQC ⊥平面DCQ .9.如图,在底面是矩形的四棱锥P -ABCD 中,P A ⊥底面ABCD ,E ,F 分别是PC ,PD 的中点,P A =AB =1,BC =2.(1)求证:EF ∥平面P AB ;(2)求证:平面P AD ⊥平面PDC .证明 以A 为原点,AB 所在直线为x 轴,AD 所在直线为y 轴,AP 所在直线为z 轴,建立如图所示的空间直角坐标系,则A (0,0,0),B (1,0,0),C (1,2,0),D (0,2,0),P (0,0,1),∴E (12,1,12),F (0,1,12),EF →=(-12,0,0),PB →=(1,0,-1),PD →=(0,2,-1),AP →=(0,0,1),AD →=(0,2,0),DC →=(1,0,0),AB →=(1,0,0).(1)∵EF →=-12AB →,∴EF →∥AB →,即EF ∥AB , 又AB ⊂平面P AB ,EF ⊄平面P AB ,∴EF ∥平面P AB .(2)∵AP →·DC →=(0,0,1)·(1,0,0)=0,AD →·DC →=(0,2,0)·(1,0,0)=0,∴AP →⊥DC →,AD →⊥DC →,即AP ⊥DC ,AD ⊥DC .又AP ∩AD =A ,∴DC ⊥平面P AD .∵DC ⊂平面PDC ,∴平面P AD ⊥平面PDC .B 组 专项能力提升(时间:25分钟)10.如图,正方体ABCD -A 1B 1C 1D 1的棱长为1,E ,F 分别是棱BC ,DD 1上的点,如果B 1E ⊥平面ABF ,则CE 与DF 的和的值为________.答案 1解析 以D 1A 1,D 1C 1,D 1D 分别为x ,y ,z 轴建立空间直角坐标系,设CE =x ,DF =y ,则易知E (x,1,1),B 1(1,1,0),F (0,0,1-y ),B (1,1,1),∴B 1E →=(x -1,0,1),∴FB →=(1,1,y ),由于B 1E ⊥平面ABF ,∴FB →·B 1E →=(1,1,y )·(x -1,0,1)=0⇒x +y =1.11.在正方体ABCD —A 1B 1C 1D 1中,P 为正方形A 1B 1C 1D 1四边上的动点,O 为底面正方形ABCD 的中心,M ,N 分别为AB ,BC 的中点,点Q 为平面ABCD 内一点,线段D 1Q与OP 互相平分,则满足MQ →=λMN →的实数λ有________个.答案 2解析 建立如图的空间直角坐标系,设正方体的边长为2,则P (x ,y,2),O (1,1,0),∴OP 的中点坐标为⎝⎛⎭⎫x +12,y +12,1, 又知D 1(0,0,2),∴Q (x +1,y +1,0),而Q 在MN 上,∴x Q +y Q =3,∴x +y =1,即点P 坐标满足x +y =1.∴有2个符合题意的点P ,即对应有2个λ.12.如图,在长方体ABCD -A 1B 1C 1D 1中,AA 1=AD =1,E 为CD 的中点.(1)求证:B 1E ⊥AD 1;(2)在棱AA 1上是否存在一点P ,使得DP ∥平面B 1AE ?若存在,求AP 的长;若不存在,说明理由.(1)证明 以A 为原点,AB →,AD →,AA 1→的方向分别为x 轴,y 轴,z 轴的正方向建立空间直角坐标系(如图).设AB =a ,则A (0,0,0),D (0,1,0),D 1(0,1,1),E ⎝⎛⎭⎫a 2,1,0,B 1(a,0,1),故AD 1→=(0,1,1),B 1E →=⎝⎛⎭⎫-a 2,1,-1,AB 1→=(a,0,1),AE →=⎝⎛⎭⎫a 2,1,0. ∵B 1E →·AD 1→=-a 2×0+1×1+(-1)×1=0, ∴B 1E ⊥AD 1.(2)解 假设在棱AA 1上存在一点P (0,0,z 0).使得DP ∥平面B 1AE ,此时DP →=(0,-1,z 0).又设平面B 1AE 的法向量n =(x ,y ,z ).∵n ⊥平面B 1AE ,∴n ⊥AB 1→,n ⊥AE →,得⎩⎪⎨⎪⎧ ax +z =0,ax 2+y =0. 取x =1,得平面B 1AE 的一个法向量n =⎝⎛⎭⎫1,-a 2,-a . 要使DP ∥平面B 1AE ,只要n ⊥DP →,有a 2-az 0=0, 解得z 0=12. 又DP ⊄平面B 1AE ,∴存在点P ,满足DP ∥平面B 1AE ,此时AP =12. 13.如图所示,四棱锥S —ABCD 的底面是正方形,每条侧棱的长都是底面边长的2倍,P 为侧棱SD 上的点.(1)求证:AC ⊥SD .(2)若SD ⊥平面P AC ,则侧棱SC 上是否存在一点E ,使得BE ∥平面P AC .若存在,求SE ∶EC 的值;若不存在,试说明理由.(1)证明 连接BD ,设AC ∩BD =O ,则AC ⊥BD .由题意知SO ⊥平面ABCD .以O 为坐标原点,OB →,OC →,OS →分别为x 轴,y 轴,z 轴的正方向,建立空间直角坐标系,如图.设底面边长为a ,则高SO =62a , 于是S ⎝⎛⎭⎫0,0,62a ,D ⎝⎛⎭⎫-22a ,0,0, B ⎝⎛⎭⎫22a ,0,0,C ⎝⎛⎭⎫0,22a ,0,OC →=⎝⎛⎭⎫0,22a ,0, SD →=⎝⎛⎭⎫-22a ,0,-62a ,则OC →·SD →=0. 故OC ⊥SD .从而AC ⊥SD .(2)解 棱SC 上存在一点E ,使BE ∥平面P AC .理由如下:由已知条件知DS →是平面P AC 的一个法向量,且DS →=⎝⎛⎭⎫22a ,0,62a ,CS →=⎝⎛⎭⎫0,-22a ,62a ,BC →=⎝⎛⎭⎫-22a ,22a ,0. 设CE →=tCS →,则BE →=BC →+CE →=BC →+tCS → =⎝⎛⎭⎫-22a ,22a (1-t ),62at , 而BE →·DS →=0⇔t =13. 即当SE ∶EC =2∶1时,BE →⊥DS →.而BE 不在平面P AC 内,故BE ∥平面P AC .∴存在一点E ,使得BE ∥平面P AC ,此时SE ∶EC =2.。
用空间向量解决立体几何中的垂直问题
第2课时用空间向量解决立体几何中的垂直问题学习目标 1.能用向量法判断一些简单线线、线面、面面垂直关系.2.掌握用向量方法证明有关空间线面垂直关系的方法步骤.知识点一向量法判断线线垂直设直线l的方向向量为a=(a1,a2,a3),直线m的方向向量为b=(b1,b2,b3),则l⊥m⇔a·b =0⇔a1b1+a2b2+a3b3=0.知识点二向量法判断线面垂直设直线l的方向向量a=(a1,b1,c1),平面α的法向量μ=(a2,b2,c2),则l⊥α⇔a∥μ⇔a=kμ(k∈R).知识点三向量法判断面面垂直思考平面α,β的法向量分别为μ1=(x1,y1,z1),μ2=(x2,y2,z2),用向量坐标法表示两平面α,β垂直的关系式是什么?答案x1x2+y1y2+z1z2=0.梳理若平面α的法向量为μ=(a1,b1,c1),平面β的法向量为v=(a2,b2,c2),则α⊥β⇔μ⊥v⇔μ·v=0⇔a1a2+b1b2+c1c2=0.(1)平面α的法向量是唯一的,即一个平面不可能存在两个不同的法向量.(×)(2)两直线的方向向量垂直,则两条直线垂直.(√)(3)直线的方向向量与平面的法向量的方向相同或相反时,直线与平面垂直.(√)(4)两个平面的法向量平行,则这两个平面平行;两个平面的法向量垂直,则这两个平面垂直.(√)类型一线线垂直问题例1已知正三棱柱ABC-A1B1C1的各棱长都为1,M是底面上BC边的中点,N 是侧棱CC 1上的点,且CN =14CC 1.求证:AB 1⊥MN .考点 向量法求解直线与直线的位置关系 题点 方向向量与线线垂直证明 设AB 中点为O ,作OO 1∥AA 1.以O 为坐标原点,OB 所在直线为x 轴,OC 所在直线为y 轴,OO 1所在直线为z 轴建立如图所示的空间直角坐标系Oxyz . 由已知得A ⎝⎛⎭⎫-12,0,0, B ⎝⎛⎭⎫12,0,0,C ⎝⎛⎭⎫0,32,0, N ⎝⎛⎭⎫0,32,14,B 1⎝⎛⎭⎫12,0,1, ∵M 为BC 中点, ∴M ⎝⎛⎭⎫14,34,0.∴MN -→=⎝⎛⎭⎫-14,34,14,AB 1-→=(1,0,1),∴MN -→·AB 1-→=-14+0+14=0.∴MN -→⊥AB 1-→,∴AB 1⊥MN .反思与感悟 证明两直线垂直的基本步骤:建立空间直角坐标系→写出点的坐标→求直线的方向向量→证明向量垂直→得到两直线垂直.跟踪训练1 如图,在直三棱柱ABC -A 1B 1C 1中,AC =3,BC =4,AB =5,AA 1=4,求证:AC ⊥BC 1.考点 向量法求解直线与直线的位置关系 题点 方向向量与线线垂直证明 ∵直三棱柱ABC -A 1B 1C 1底面三边长AC =3,BC =4,AB =5,∴AC ,BC ,C 1C 两两垂直.如图,以C 为坐标原点,CA ,CB ,CC 1所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系Cxyz .则C (0,0,0),A (3,0,0),C 1(0,0,4),B (0,4,0), ∵AC →=(-3,0,0),BC 1-→=(0,-4,4), ∴AC →·BC 1-→=0.∴AC ⊥BC 1.类型二 证明线面垂直例2 如图所示,正三棱柱ABC -A 1B 1C 1的所有棱长都为2,D 为CC 1的中点. 求证:AB 1⊥平面A 1BD .考点 向量法求解直线与平面的位置关系 题点 向量法解决线面垂直证明 如图所示,取BC 的中点O ,连接AO .因为△ABC 为正三角形,所以AO ⊥BC .因为在正三棱柱ABC -A 1B 1C 1中,平面ABC ⊥平面BCC 1B 1,且平面ABC ∩平面BCC 1B 1=BC ,AO ⊂平面ABC ,所以AO ⊥平面BCC 1B 1.取B 1C 1的中点O 1,以O 为坐标原点,OB ,OO 1,OA 所在直线分别为x 轴,y 轴,z 轴,建立空间直角坐标系Oxyz ,则B (1,0,0),D (-1,1,0),A 1(0,2,3),A (0,0,3), B 1(1,2,0).所以AB 1-→=(1,2,-3),BA 1-→=(-1,2,3), BD -→=(-2,1,0).因为AB 1-→·BA 1-→=1×(-1)+2×2+(-3)×3=0. AB 1-→·BD -→=1×(-2)+2×1+(-3)×0=0.所以AB 1-→⊥BA 1-→,AB 1-→⊥BD -→,即AB 1⊥BA 1,AB 1⊥BD . 又因为BA 1∩BD =B ,所以AB 1⊥平面A 1BD . 反思与感悟 用坐标法证明线面垂直的方法及步骤 方法一:(1)建立空间直角坐标系. (2)将直线的方向向量用坐标表示.(3)找出平面内两条相交直线,并用坐标表示它们的方向向量. (4)分别计算两组向量的数量积,得到数量积为0. 方法二:(1)建立空间直角坐标系. (2)将直线的方向向量用坐标表示. (3)求出平面的法向量.(4)判断直线的方向向量与平面的法向量平行.跟踪训练2 如图,在长方体ABCD -A 1B 1C 1D 1中,AB =AD =1,AA 1=2,点P 为DD 1的中点.求证:直线PB 1⊥平面P AC .考点 向量法求解直线与平面的位置关系 题点 向量法解决线面垂直证明 如图,以D 为坐标原点,DC ,DA ,DD 1所在直线分别为x 轴,y 轴,z 轴,建立空间直角坐标系Dxyz , C (1,0,0),A (0,1,0),P (0,0,1),B 1(1,1,2), PC →=(1,0,-1),P A →=(0,1,-1), PB 1-→=(1,1,1),B 1C -→=(0,-1,-2), B 1A -→=(-1,0,-2).PB 1-→·PC →=(1,1,1)·(1,0,-1)=0,所以PB 1-→⊥PC →,即PB 1⊥PC . 又PB 1-→·P A →=(1,1,1)·(0,1,-1)=0, 所以PB 1-→⊥P A →,即PB 1⊥P A .又P A ∩PC =P ,所以PB 1⊥平面P AC . 类型三 证明面面垂直问题例3 三棱锥被平行于底面ABC 的平面所截得的几何体如图所示,截面为A 1B 1C 1,∠BAC =90°,A 1A ⊥平面ABC ,A 1A =3,AB =AC =2A 1C 1=2,D 为BC 的中点.证明:平面A 1AD ⊥平面BCC 1B 1. 考点 向量法求解平面与平面的位置关系 题点 向量法解决面面垂直证明 方法一 如图,以A 为坐标原点,AB ,AC ,AA 1所在直线分别为x 轴,y 轴,z 轴,建立空间直角坐标系Axyz ,则A (0,0,0),B (2,0,0),C (0,2,0),A 1(0,0,3),C 1(0,1,3). ∵D 为BC 的中点,∴D 点坐标为(1,1,0), ∴AD →=(1,1,0),AA 1-→=(0,0,3),BC →=(-2,2,0), ∴AD →·BC →=1×(-2)+1×2+0×0=0, AA 1-→·BC →=0×(-2)+0×2+3×0=0, ∴AD →⊥BC →,AA 1-→⊥BC →, ∴BC ⊥AD ,BC ⊥AA 1.又A 1A ∩AD =A ,∴BC ⊥平面A 1AD .又BC ⊂平面BCC 1B 1,∴平面A 1AD ⊥平面BCC 1B 1. 方法二 同方法一建系后,得AA 1-→=(0,0,3), AD →=(1,1,0),BC →=(-2,2,0),CC 1-→=(0,-1,3). 设平面A 1AD 的法向量为n 1=(x 1,y 1,z 1), 平面BCC 1B 1的法向量为n 2=(x 2,y 2,z 2).由⎩⎪⎨⎪⎧n 1·AA 1-→=0,n 1·AD →=0,得⎩⎪⎨⎪⎧3z 1=0,x 1+y 1=0,令y 1=-1,则x 1=1,z 1=0, ∴n 1=(1,-1,0).由⎩⎪⎨⎪⎧n 2·BC →=0,n 2·CC 1-→=0,得⎩⎪⎨⎪⎧-2x 2+2y 2=0,-y 2+3z 2=0,令y 2=1,则x 2=1,z 2=33, ∴n 2=⎝⎛⎭⎫1,1,33. ∵n 1·n 2=1-1+0=0,∴n 1⊥n 2, ∴平面A 1AD ⊥平面BCC 1B 1.反思与感悟 证明面面垂直的两种方法(1)常规法:利用面面垂直的判定定理转化为线面垂直、线线垂直去证明. (2)向量法:证明两个平面的法向量互相垂直.跟踪训练3 在正方体ABCD -A 1B 1C 1D 1中,E ,F 分别是BB 1,CD 的中点. (1)求证:平面AED ⊥平面A 1FD 1;(2)在直线AE 上求一点M ,使得A 1M ⊥平面AED . 考点 向量法求解平面与平面的位置关系 题点 向量法解决面面垂直(1)证明 以D 为坐标原点,分别以DA ,DC ,DD 1所在直线为x 轴,y 轴,z 轴建立如图所示的空间直角坐标系Dxyz .设正方体的棱长为2,则D (0,0,0),A (2,0,0),E (2,2,1),F (0,1,0),A 1(2,0,2),D 1(0,0,2),∴DA →=D 1A 1-→=(2,0,0),DE →=(2,2,1),D 1F -→=(0,1,-2). 设平面AED 的一个法向量为n 1=(x 1,y 1,z 1).由⎩⎪⎨⎪⎧n 1·DA →=(x 1,y 1,z 1)·(2,0,0)=0,n 1·DE →=(x 1,y 1,z 1)·(2,2,1)=0,得⎩⎪⎨⎪⎧2x 1=0,2x 1+2y 1+z 1=0. 令y 1=1,得n 1=(0,1,-2).同理,平面A 1FD 1的一个法向量为n 2=(0,2,1). ∵n 1·n 2=(0,1,-2)·(0,2,1)=0,∴n 1⊥n 2, ∴平面AED ⊥平面A 1FD 1. (2)解 由于点M 在直线AE 上, 因此可设AM -→=λAE →=λ(0,2,1)=(0,2λ,λ), 则M (2,2λ,λ),∴A 1M -→=(0,2λ,λ-2). 要使A 1M ⊥平面AED ,只需A 1M -→∥n 1, 即2λ1=λ-2-2,解得λ=25. 故当AM =25AE 时,A 1M ⊥平面AED .1.下列命题中,正确命题的个数为( )①若n 1,n 2分别是平面α,β的法向量,则n 1∥n 2⇔α∥β; ②若n 1,n 2分别是平面α,β的法向量,则α⊥β ⇔ n 1·n 2=0;③若n 是平面α的法向量,a 是直线l 的方向向量,若l 与平面α平行,则n ·a =0; ④若两个平面的法向量不垂直,则这两个平面不垂直. A .1 B .2 C .3 D .4考点 向量法求解平面与平面的位置关系 题点 向量法解决面面垂直 答案 C解析 ①中平面α,β可能平行,也可能重合,结合平面法向量的概念,可知②③④正确.2.已知两直线的方向向量为a,b,则下列选项中能使两直线垂直的为()A.a=(1,0,0),b=(-3,0,0)B.a=(0,1,0),b=(1,0,1)C.a=(0,1,-1),b=(0,-1,1)D.a=(1,0,0),b=(-1,0,0)考点向量法求解直线与直线的位置关系题点向量法解决线线垂直答案 B解析因为a=(0,1,0),b=(1,0,1),所以a·b=0×1+1×0+0×1=0,所以a⊥b,故选B. 3.若直线l的方向向量为a=(1,0,2),平面α的法向量为μ=(-2,0,-4),则()A.l∥αB.l⊥αC.l⊂αD.l与α斜交考点向量法求解直线与平面的位置关系题点向量法解决线面垂直答案 B解析∵a∥μ,∴l⊥α.4.平面α的一个法向量为m=(1,2,0),平面β的一个法向量为n=(2,-1,0),则平面α与平面β的位置关系是()A.平行B.相交但不垂直C.垂直D.不能确定考点向量法求解平面与平面的位置关系题点向量法解决面面垂直答案 C解析∵(1,2,0)·(2,-1,0)=0,∴两法向量垂直,从而两平面垂直.5.在三棱锥S-ABC中,∠SAB=∠SAC=∠ACB=90°,AC=2,BC=13,SB=29,则异面直线SC与BC是否垂直________.(填“是”或“否”)考点向量法求解直线与直线的位置关系题点向量法解决线线垂直答案是解析如图,以A为坐标原点,AB,AS所在直线分别为y轴,z轴建立空间直角坐标系Axyz , 则由AC =2,BC =13, SB =29,得B (0,17,0),S (0,0,23),C ⎝ ⎛⎭⎪⎫21317,417,0, SC →=⎝⎛⎭⎪⎫21317,417,-23, CB →=⎝⎛⎭⎪⎫-21317,1317,0. 因为SC →·CB →=0,所以SC ⊥BC .空间垂直关系的解决策略一、选择题1.设直线l 1,l 2的方向向量分别为a =(-2,2,1),b =(3,-2,m ),若l 1⊥l 2,则m 等于( ) A .-2 B .2 C .6 D .10考点 向量法求解直线与直线的位置关系 题点 方向向量与线线垂直 答案 D解析 因为a ⊥b ,故a ·b =0,即-2×3+2×(-2)+m =0,解得m =10.2.若平面α,β的法向量分别为a =(-1,2,4),b =(x ,-1,-2),并且α⊥β,则x 的值为( ) A .10 B .-10 C.12 D .-12考点 向量法求解平面与平面的位置关系 题点 向量法解决面面垂直 答案 B解析 因为α⊥β,所以它们的法向量也互相垂直, 所以a ·b =(-1,2,4)·(x ,-1,-2)=0, 解得x =-10.3.已知点A (0,1,0),B (-1,0,-1),C (2,1,1),P (x,0,z ),若P A ⊥平面ABC ,则点P 的坐标为( ) A .(1,0,-2) B .(1,0,2) C .(-1,0,2)D .(2,0,-1)考点 向量法求解直线与平面的位置关系 题点 向量法解决线面垂直 答案 C解析 由题意知AB →=(-1,-1,-1),AC →=(2,0,1),AP →=(x ,-1,z ),又P A ⊥平面ABC ,所以有AB →·AP →=(-1,-1,-1)·(x ,-1,z )=0,得-x +1-z =0. ① AC →·AP →=(2,0,1)·(x ,-1,z )=0,得2x +z =0,② 联立①②得x =-1,z =2,故点P 的坐标为(-1,0,2).4.在正方体ABCD-A 1B 1C 1D 1中,若E 为A 1C 1的中点,则直线CE 垂直于( )A .ACB .BDC .A 1D D .A 1A考点 向量法求解直线与直线的位置关系题点 方向向量与线线垂直答案 B解析 以D 为坐标原点,DA ,DC ,DD 1所在直线分别为x 轴,y 轴,z 轴,建立空间直角坐标系Dxyz .设正方体的棱长为1.则C (0,1,0),B (1,1,0),A (1,0,0),D (0,0,0),C 1(0,1,1),A 1(1,0,1),E ⎝⎛⎭⎫12,12,1,∴CE →=⎝⎛⎭⎫12,-12,1,AC →=(-1,1,0), BD →=(-1,-1,0),A 1D -→=(-1,0,-1),A 1A -→=(0,0,-1),∵CE →·BD →=(-1)×12+(-1)×⎝⎛⎭⎫-12+0×1=0,∴CE ⊥BD . 5.已知平面α内有一个点A (2,-1,2),α的一个法向量为n =(3,1,2),则下列点P 中,在平面α内的是( )A. (1,-1,1)B.⎝⎛⎭⎫1,3,32C.⎝⎛⎭⎫1,-3,32D.⎝⎛⎭⎫-1,3,-32 考点 直线的方向向量与平面的法向量题点 法向量求解线面垂直答案 B解析 要判断点P 是否在平面α内,只需判断向量P A →与平面α的法向量n 是否垂直,即P A →·n是否为0,因此,要对各个选项进行检验.对于选项A ,P A →=(1,0,1),则P A →·n =(1,0,1)·(3,1,2)=5≠0,故排除A ;对于选项B ,P A →=⎝⎛⎭⎫1,-4,12,则P A →·n =⎝⎛⎭⎫1,-4,12·(3,1,2)=0,故B 正确;同理可排除C ,D.故选B.6.在正方体ABCD -A 1B 1C 1D 1中,E ,F 分别在A 1D ,AC 上,且A 1E =23A 1D ,AF =13AC , 则( )A .EF 至多与A 1D ,AC 中的一个垂直B .EF ⊥A 1D ,EF ⊥ACC .EF 与BD 1相交D .EF 与BD 1异面考点 直线的方向向量与平面的法向量题点 求直线的方向向量答案 B解析 以D 为坐标原点,分别以DA ,DC ,DD 1所在直线为x 轴,y 轴,z轴,建立空间直角坐标系Dxyz ,设正方体的棱长为1,则A 1(1,0,1),D (0,0,0),A (1,0,0),C (0,1,0),E ⎝⎛⎭⎫13,0,13,F ⎝⎛⎭⎫23,13,0,B (1,1,0),D 1(0,0,1),∴A 1D -→=(-1,0,-1),AC →=(-1,1,0),EF →=⎝⎛⎭⎫13,13,-13,BD 1-→=(-1,-1,1),∴EF →=-13BD 1-→,A 1D -→·EF →=0,AC →·EF →=0,从而EF ∥BD 1,EF ⊥A 1D ,EF ⊥AC ,故选B.7.两平面α,β的法向量分别为μ=(3,-1,z ),v =(-2,-y ,1),若α⊥β,则y +z 的值是( )A .-3B .6C .-6D .-12考点 向量法求解平面与平面的位置关系题点 向量法求解面面垂直答案 B解析 ∵α⊥β,∴μ·v =0,即-6+y +z =0,即y +z =6.二、填空题8.如图所示,在三棱锥A -BCD 中,DA ,DB ,DC 两两垂直,且DB =DC ,E 为BC 的中点,则AE →·BC →=_______.考点 向量法求解直线与直线的位置关系题点 方向向量与线线垂直答案 0解析 因为BE =EC ,故AE →=DE →-DA →=12(DB →+DC →)-DA →,在三棱锥A -BCD 中, DA ,DB ,DC 两两垂直,且DB =DC ,故AE →·BC →=⎣⎡⎦⎤12(DB →+DC →)-DA →·(DC →-DB →)=12(DC →2-DB →2)=0. 9.已知点P 是平行四边形ABCD 所在的平面外一点,如果AB →=(2,-1,-4),AD →=(4,2,0),AP →=(-1,2,-1).对于结论:①AP ⊥AB ;②AP ⊥AD ;③AP →是平面ABCD 的法向量. 其中正确的是________.(填序号)考点 向量法求解直线与直线的位置关系题点 向量法解决线线垂直答案 ①②③解析 AP →·AB →=(-1,2,-1)·(2,-1,-4)=-1×2+2×(-1)+(-1)×(-4)=0,∴AP ⊥AB ,即①正确.AP →·AD →=(-1,2,-1)·(4,2,0)=-1×4+2×2+(-1)×0=0.∴AP ⊥AD ,即②正确.又∵AB ∩AD =A ,∴AP ⊥平面ABCD ,即AP →是平面ABCD 的一个法向量,③正确.10.在△ABC 中,A (1,-2,-1),B (0,-3,1),C (2,-2,1).若向量n 与平面ABC 垂直,且|n |=21,则n 的坐标为________________.考点 向量法求解线面垂直问题题点 向量法求解线面垂直答案 (-2,4,1)或(2,-4,-1)解析 据题意,得AB →=(-1,-1,2),AC →=(1,0,2).设n =(x ,y ,z ),∵n 与平面ABC 垂直,∴⎩⎪⎨⎪⎧ n ·AB →=0,n ·AC →=0,即⎩⎪⎨⎪⎧ -x -y +2z =0,x +2z =0,可得⎩⎪⎨⎪⎧y =4z ,y =-2x . ∵|n |=21,∴x 2+y 2+z 2=21,解得y =4或y =-4.当y =4时,x =-2,z =1;当y =-4时,x =2,z =-1.三、解答题11.如图,在四棱锥P -ABCD 中,P A ⊥平面ABCD ,AB =4,BC =3,AD=5,∠DAB =∠ABC =90°,E 是CD 的中点.证明:CD ⊥平面P AE .考点 向量法求解直线与平面的位置关系题点 向量法解决线面垂直证明 如图,以A 为坐标原点,AB ,AD ,AP 所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系Axyz .设P A =h ,则A (0,0,0),B (4,0,0),C (4,3,0),D (0,5,0),E (2,4,0),P (0,0,h ).所以CD →=(-4,2,0),AE →=(2,4,0),AP →=(0,0,h ).因为CD →·AE →=-8+8+0=0,CD →·AP →=0,所以CD ⊥AE ,CD ⊥AP ,而AP ,AE 是平面P AE 内的两条相交直线,所以CD⊥平面P AE.12.如图,在四棱锥P-ABCD中,底面ABCD是矩形,P A⊥底面ABCD,P A=AB=1,AD=3,点F是PB的中点,点E在边BC上移动.求证:无论点E在BC边的何处,都有PE⊥AF.考点向量法求解直线与直线的位置关系题点方向向量与线线垂直证明 以A 为坐标原点,AD ,AB ,AP 所在直线分别为x 轴,y 轴,z 轴,建立如图所示空间直角坐标系Axyz ,则P (0,0,1),B (0,1,0),F ⎝⎛⎭⎫0,12,12,D ()3,0,0, 设BE =x (0≤x ≤3),则E (x,1,0),PE →·AF →=(x,1,-1)·⎝⎛⎭⎫0,12,12=0, 所以x ∈[0, 3 ]时都有PE ⊥AF ,即无论点E 在BC 边的何处,都有PE ⊥AF .13.如图,在底面为平行四边形的四棱锥P -ABCD 中,AB ⊥AC ,P A ⊥平面ABCD ,且P A =AB ,点E 是PD 的中点.求证:(1)AC ⊥PB ;(2)PB ∥平面AEC .考点 向量法求解直线与直线的位置关系题点 方向向量与线线垂直证明 (1)如图,以A 为坐标原点,AC ,AB ,AP 所在直线分别为x 轴,y轴,z 轴,建立空间直角坐标系Axyz ,设AC =a ,P A =b .则有A (0,0,0),B (0,b,0),C (a,0,0),P (0,0,b ),∴AC →=(a,0,0),PB →=(0,b ,-b ).从而AC →·PB →=0,∴AC ⊥PB .(2)由已知得D (a ,-b,0),E ⎝⎛⎭⎫a 2,-b 2,b 2,∴AE →=⎝⎛⎭⎫a 2,-b 2,b 2. 设平面AEC 的一个法向量为n ,则n ⊥AC →且n ⊥AE →,可得n =(0,1,1).∵n ·PB →=0,∴n ⊥PB .又PB ⊄平面AEC ,∴PB ∥平面AEC . 四、探究与拓展14.如图,P A ⊥平面ABCD ,四边形ABCD 为正方形,E 是CD 的中点,F 是AD 上一点,当BF ⊥PE 时,AF ∶FD 的比值为( )A .1∶2B .1∶1C .3∶1D .2∶1 答案 B解析 以A 为坐标原点,AB ,AD ,AP 所在直线分别为x 轴,y 轴,z 轴, 建立如图所示的空间直角坐标系Axyz ,设正方形边长为1,P A =a ,则B (1,0,0),E ⎝⎛⎭⎫12,1,0,P (0,0,a ).设点F 的坐标为(0,y,0),则BF →=(-1,y,0),PE →=⎝⎛⎭⎫12,1,-a .因为BF ⊥PE ,所以BF →·PE →=0,解得y =12,即点F 的坐标为⎝⎛⎭⎫0,12,0,所以F 为AD 的中点,所以AF ∶FD =1∶1.15.如图,已知ABCD -A 1B 1C 1D 1是棱长为3的正方体,点E 在AA 1上,点F 在CC 1上,且AE =FC 1=1.(1)求证:E ,B ,F ,D 1四点共面;(2)若点G 在BC 上,BG =23,点M 在BB 1上,GM ⊥BF ,垂足为H ,求证:ME ⊥平面BCC 1B 1.考点 向量法求解直线与平面的位置关系题点 向量法解决线面垂直证明 (1)以B 为坐标原点,BA ,BC ,BB 1所在直线分别为x 轴,y 轴,z 轴,建立如图所示的空间直角坐标系Bxyz ,则BE →=(3,0,1),BF →=(0,3,2),BD 1→=(3,3,3),∴BD 1→=BE →+BF →,故BD 1→,BE →,BF →共面.又它们有公共点B ,∴E ,B ,F ,D 1四点共面.(2)设M (0,0,z ),则GM -→=⎝⎛⎭⎫0,-23,z ,而BF →=(0,3,2), 由题设得GM -→·BF →=-23·3+z ·2=0,得z =1. ∵M (0,0,1),E (3,0,1),∴ME -→=(3,0,0),又BB 1→=(0,0,3),BC →=(0,3,0)∴ME -→·BB 1→=0,ME -→·BC →=0,从而ME ⊥BB 1,ME ⊥BC .又BB 1∩BC =B ,故ME ⊥平面BCC 1B 1.。
用空间向量讨论立体几何中的平行与垂直关系
用空间向量讨论立体几何中的平行与垂直关系编稿:周尚达审稿:张扬责编:严春梅目标认知学习目标:1.理解直线的方向向量与平面的法向量.2.能用向量语言表述直线与直线、直线与平面、平面与平面的垂直、平行关系.3.能用向量方法证明有关直线和平面位置关系的立体几何问题。
重点:空间向量共线与垂直的充要条件;空间向量的运算及其坐标表示;用向量方法证明有关直线和平面位置关系的立体几何问题。
难点:空间直角坐标系的正确建立,空间向量的运算及其坐标表示;用向量语言证明立体几何中有关垂直、平行关系的问题.学习策略:直线的方向向量和平面的法向量可以确定直线和平面的位置,因此用向量讨论立体几何中的平行和垂直问题,关键就是利用直线的方向向量和平面的法向量,讨论这些向量之间的平行垂直关系,从而得出空间直线、平面间的平行垂直关系。
对于垂直问题,一般是利用进行证明;对于平行问题,一般是利用共线向量和共面向量定理进行证明.知识要点梳理知识点一:基本定理线面平行判定定理:如果平面外一条直线与此平面内的一条直线平行,那么该直线与此平面平行.面面平行判定定理:若一个平面内有两条相交直线都平行与另一个平面,则这两个平面平行。
线面垂直判定定理:若一条直线垂直于一个平面内的两条相交直线,则该直线与此平面垂直。
面面垂直判定定理:若一个平面经过另一个平面的一条垂线,则这两个平面垂直。
知识点二:空间向量平行和垂直的充要条件若,,则①,,②知识点三:直线的方向向量和平面的法向量1.直线的方向向量:若A、B是直线上的任意两点,则为直线的一个方向向量;与平行的任意非零向量也是直线的方向向量。
2.平面的法向量:如果直线垂直于平面,那么直线的方向向量就叫做平面的法向量;设平面的法向量为,A、P为平面内任意两点,则。
知识点四:用向量语言表述线与面之间的平行与垂直关系.设空间直线、的方向向量分别为、,平面的法向量分别为、,则:①线线平行:或与重合即:两直线平行或重合两直线的方向向量共线。
空间向量与动点题型汇总 高二数学精讲
专题 空间向量与动点题型汇总常考题型目标题型1共面问题与动点问题题型2线线平行与动点问题题型3线面平行与动点问题题型4面面平行与动点问题题型5线线垂直与动点问题题型6线面垂直与动点问题题型7面面垂直与动点问题题型8线线角与动点问题题型9线面角与动点问题题型10面面角与动点问题题型11点面、线面距离与动点问题题型12点线、线线距离问题题型13面积体积相关问题题型14三角形形状问题知识梳理知识点一.利用空间向量解决立体几何的探索性问题思路:1.根据题设条件的垂直关系,建立适当空间直角坐标系,将相关点、相关向量用坐标表示.2.假设所成的点或参数存在,并用相关参数表示相关点的坐标,根据线、面满足的位置关系、数量关系,构建方程(组)求解,若能求出参数的值且符合该限定的范围,则存在,否则不存在.知识点二.动点的设法(减少变量数量)在解决探索性问题中点的存在性四,经常需要设出点的坐标,而(x ,y ,z )可表示空间中的任一点,使用三个变量设点需要列三个方程,导致运算量增大.为了减少变量数量,用以下设法.1.直线(一维)上的点:用一个变量可以表示出所求点的坐标;依据:根据平面向量共线定理--若a ⎳b ⟹∃λ∈R ,使得a =λb2.平面(二维)上的点:用两个变量可以表示出所求点的坐标.3.依据:平面向量基本定理,若a ,b 不共线,则平面上任意一个向量c ,均存在x ,y ∈R ,使得c =xa +yb题型分类题型一共面问题与动点问题【方法总结】共面定理:平面向量基本定理,若a ,b 不共线,则平面上任意一个向量c ,均存在x ,y ∈R ,使得c =xa +yb1(2021·高二课时练习)如图,在空间直角坐标系Axyz 中,E 0,0,1 ,B 1,0,0 ,F 0,2,2 ,C a ,2,0 .(1)求向量BC 在向量EF 上的投影的数量.(2)是否存在实数a ,使得点E ,F ,C ,B 共面?若存在,求出a 的值;若不存在,说明理由.1.(2021·高二课时练习)如图,在棱长为2的正方体AC 1中,点E ,F 分别是BC ,C 1D 1的中点,点G 在AB 上,AB =3BG .(1)已知上底面A 1C 1内一点H 满足GH ⎳EF ,求A 1H 的长.(2)棱A 1D 1上是否存在一点K ,使得GK ,EF 共面?若存在,求A 1K 的长;若不存在,说明理由.2.(2023·全国·高三专题练习)如图,在四棱锥P-ABCD中,PA⊥面ABCD,AD⊥CD,AD∥BC,PA=AD=CD=2,BC=3.E为PD的中点,点F在PC上,且PFPC =13.(1)求证:CD⊥面PAD;(2)求二面角F-AE-P的正弦值;(3)设点G在PB上,且PGPB=λ.判断是否存在这样的λ,使得A,E,F,G四点共面.3.(2022·全国·高三专题练习)如图所示,在四棱锥P-ABCD中,底面ABCD为正方形,E为侧棱PC上靠近P的三等分点,PA⊥底面ABCD,且PA=AD=2.(1)在侧棱PD上是否存在点F,使得点A,B,E,F四点共面?若存在,指出点F的位置,并证明;若不存在,请说明理由;(2)求二面角P-AB-E的余弦值.1(2023·全国·高二专题练习)如图,已知空间几何体P -ABCD 的底面ABCD 是一个直角梯形,其中∠BAD =90°,AD ⎳BC ,BA =BC =a ,AD =2a ,且PA ⊥底面ABCD ,PD 与底面成30°角.(1)若BC ⋅PD =8,求该几何体的体积;(2)若AE 垂直PD 于E ,证明:BE ⊥PD ;(3)在(2)的条件下,PB 上是否存在点F ,使得EF ⎳BD ,若存在,求出该点的坐标;若不存在,请说明理由.1.(2021·高二课时练习)如图,在棱长为2的正方体AC 1中,点E ,F 分别是BC ,C 1D 1的中点,点G 在AB 上,AB =3BG .(1)已知上底面A 1C 1内一点H 满足GH ⎳EF ,求A 1H 的长.(2)棱A 1D 1上是否存在一点K ,使得GK ,EF 共面?若存在,求A 1K 的长;若不存在,说明理由.1(2023·全国·高二专题练习)如图,直角梯形ABCD与等腰直角三角形ABP所在的平面互相垂直,且AB⎳CD,AB⊥BC,AP⊥PB,AB=2,BC=CD=1.(1)求证:AB⊥PD;(2)求直线PC与平面ABP所成角的余弦值;(3)线段PA上是否存在点E,使得PC⎳平面EBD?若存在,求出AEAP的值;若不存在,请说明理由.1.(2023·全国·高二专题练习)如图所示的几何体中,四边形ABCD是等腰梯形,AB∥CD,∠DAB=60°,FC⊥平面ABCD,AE⊥BD,CB=CD=CF.(1)求二面角D-BF-C的余弦值;(2)在线段AB(含端点)上,是否存在一点P,使得FP∥平面AED.若存在,求出APAB的值;若不存在,请说明理由.2.(2023·全国·高二假期作业)如图:在正方体ABCD-A1B1C1D1中,M为DD1的中点.(1)求证:BD1∥平面AMC;(2)在线段CC1上是否存在一点N,使得平面AMC∥平面BND1,说明理由.3.(2023·全国·高二假期作业)如图,在平面五边形ABCDE中,AB⎳DC,∠BCD=90°,AB= AD=10,AE=6,BC=8,CD=4,∠AED=90°,EH⊥AD,垂足为H,将△ADE沿AD折起(如图),使得平面ADE⊥平面ABCD.(1)求证:EH⊥平面ABCD;(2)求三棱锥C-ADE的体积;(3)在线段BE上是否存在点M,使得MH⎳平面CDE?若存在,求EMEB的值;若不存在,请说明理由.4.(2023·全国·高二专题练习)如图,在直三棱柱ABC-A1B1C1中,∠BAC=90°,AB=AC= 2,AA1=22.M是AB的中点,N是B1C1的中点,P是BC1与B1C的交点.(1)求直线A1P与平面A1CM所成角的正弦值;(2)线段A1N上是否存在点Q,使得PQ⎳平面A1CM?题型四面面平行与动点问题1(2023·高三校联考单元测试)如图,在三棱锥ABOC中,AO⊥平面BOC,∠OAB=∠OAC=π6,AB=AC=2,BC=2,D,E分别为AB,OB的中点.(1)求O到平面ABC的距离;(2)在线段CB上是否存在一点F,使得平面DEF⎳平面AOC?若存在,试确定F的位置,并证明此点满足要求;若不存在,请说明理由.1.(2023·全国·高二假期作业)如图,四棱锥P-ABCD中,AB⎳CD,AB=2CD,E为PB的中点.(1)求证:CE⎳平面PAD.(2)在线段AB上是否存在一点F,使得平面PAD⎳平面CEF?若存在,证明你的结论,若不存在,请说明理由.2.(2023·全国·高二假期作业)如图,在三棱柱ABC -A 1B 1C 1中,E ,F 分别为线段AC 1,A 1C 1的中点.(1)求证:EF ⎳平面BCC 1B 1.(2)在线段BC 1上是否存在一点G ,使平面EFG ⎳平面ABB 1A 1?请说明理由.题型五线线垂直与动点问题1(2023秋·全国·高二随堂练习)如图所示,三棱柱ABC -A 1B 1C 1中,CA =a ,CB =b ,CC 1 =c ,CA =CB =CC 1=1,a ,b =a ,c =2π3,b ,c =π2,N 是AB 中点.(1)用a ,b ,c 表示向量A 1N ;(2)在线段C 1B 1上是否存在点M ,使AM ⊥A 1N ?若存在,求出M 的位置,若不存在,说明理由.1.(2023春·浙江杭州·高二浙江大学附属中学期中)如图,将长方形OAA 1O 1(及其内部)绕OO 1旋转一周形成圆柱,其中OA =1,O 1O =2,劣弧A 1B 1的长为π6,AB 为圆O 的直径.(1)在弧AB 上是否存在点C (C ,B 1在平面OAA 1O 1的同侧),使BC ⊥AB 1,若存在,确定其位置,若不存在,说明理由;(2)求平面A 1O 1B 与平面B 1O 1B 夹角的余弦值. 2.(2023·全国·高二专题练习)如图,在三棱锥P -ABC 中,PB ⊥平面ABC ,AB ⊥BC ,AB =PB =2,BC =23,E 、G 分别为PC 、PA 的中点.(1)求证:平面BCG ⊥平面PAC ;(2)在线段AC 上是否存在一点N ,使PN ⊥BE ?证明你的结论.3.(2023·全国·高二专题练习)在①DE +DF ⊥DE -DF ,②DE =172,③0<cos EF ,DB <1这三个条件中任选一个,补充在下面的问题中,并作答.问题:如图,在正方体ABCD -A 1B 1C 1D 1,中,以D 为坐标原点,建立空间直角坐标系D -xyz .已知点D 1的坐标为0,0,2 ,E 为棱D 1C 1上的动点,F 为棱B 1C 1上的动点,,则是否存在点E ,F ,使得EF ⋅A 1C =0?若存在,求出AE ⋅BF 的值;若不存在,请说明理由.4.(2021·高二课时练习)如图四棱锥P -ABCD 中,底面ABCD 是平行四边形,PG ⊥平面ABCD ,垂足为G ,G 在AD 上且AG =13GD ,BG ⊥GC ,GB =GC =2,E 是BC 的中点,四面体P -BCG 的体积为83.(1)求过点P ,C ,B ,G 四点的球的表面积;(2)求直线DP 与平面PBG 所成角的正弦值;(3)在棱PC 上是否存在一点F ,使DF ⊥GC ,若存在,确定点F 的位置,若不存在,说明理由.5.(2023·全国·高二专题练习)如图,在直三棱柱ABC-A1B1C1中,AC=3,BC=4,AB=5,AA1=4(1)求证AC⊥BC1;(2)在AB上是否存在点D,使得AC1⊥CD?并说明理由6.(2023·全国·高二专题练习)如图,四棱锥S-ABCD中,ABCD为矩形,SD⊥AD,且SD⊥AB,AD=1,AB=2,SD=3.E为CD上一点,且CE=3DE.(1)求证:AE⊥平面SBD;(2)M、N分别在线段SB、CD上的点,是否存在M、N,使MN⊥CD且MN⊥SB,若存在,确定M、N的位置;若不存在,说明理由.线面垂直与动点问题1(2023·全国·高二专题练习)如图,在棱长为1的正方体ABCD -A 1B 1C 1D 1中,点E 为BC 的中点.(1)在B 1B 上是否存在一点P ,使D 1P ⊥平面B 1AE ?(2)在平面AA 1B 1B 上是否存在一点N ,使D 1N ⊥平面B 1AE ?1.(2023·全国·高二专题练习)在棱长为2的正方体ABCD -A 1B 1C 1D 1中,点P 满足AP =λAC +μAA 1 ,其中λ∈[0,1],μ∈0,1 .(1)当λ=1时,求三棱锥B -DD 1P 的体积;(2)当2λ2+μ2=1时,直线BP 与平面ACC 1A 1所成角的正切值的取值范围;(3)当λ+μ=1时,是否存在唯一个点P ,使得BP ⊥平面ADP ,若存在,求出P 点的位置;若不存在,请说明理由.2.(2023·全国·高二专题练习)如图,在四棱锥P-ABCD中,PA⊥平面ABCD,正方形ABCD的边长为2,E是PA的中点.(1)求证:PC⎳平面BDE.(2)若PA=2,线段PC上是否存在一点F,使AF⊥平面BDE?若存在,求出PF的长度;若不存在,请说明理由.3.(2023·全国·高二专题练习)已知四棱锥P-ABCD中,PA⊥平面ABCD,AD∥BC,BC⊥BC,BD=2,PD=5.AB,AB=AD=12(1)求直线PC与平面PBD所成角的正弦值;(2)线段PB上是否存在一点M,使得CM⊥平面PBD?若存在,请指出点M的位置;若不存在,请说明理由.4.(2023春·全国·高二合肥市第六中学校联考开学考试)如图,在长方体ABCD-A1B1C1D1中,点E为AD的中点,且AA1=4,AB=BC=2,点P在线段BD1上.(1)问:是否存在一点P,使得直线BD1⊥平面PEC?若存在,请指出点P的位置;若不存在,请说明理由.(2)若P是线段BD1的中点,求平面PEC与平面ECD1的夹角的余弦值.5.(2023·全国·高二专题练习)如图,在四棱锥P-ABCD中,底面ABCD是正方形,侧面PAD ⊥底面ABCD,E,F分别为PA,BD中点,PA=PD=AD=2.(1)求证:EF⎳平面PBC;(2)在棱PC上是否存在一点G,使GF⊥平面EDF?若存在,指出点G的位置;若不存在,说明理由.面面垂直与动点问题1(2023·全国·高二专题练习)如图,已知四棱锥P -ABCD 的底面是平行四边形,侧面PAB 是等边三角形,BC =2AB ,AC =3AB ,PB ⊥AC .(1)求证:平面PAB ⊥平面ABCD ;(2)设Q 为侧棱PD 上一点,四边形BEQF 是过B ,Q 两点的截面,且AC ∥平面BEQF ,是否存在点Q ,使得平面BEQF ⊥平面PAD ?若存在,求PQ QD的值;若不存在,说明理由. 1.(2023秋·湖南长沙·高二雅礼中学校考开学考试)如图,在正方体ABCD -A 1B 1C 1D 1中,E ,F 分别是棱BC ,DC 的中点.(1)求证:D 1E ⊥AB 1;(2)若点M ,N 分别在C 1D ,AF 上,且MN ⊥C 1D ,MN ⊥AF .求证:MN ⎳D 1E ;(3)棱CC 1上是否存在点P ,使平面CD 1E ⊥平面AFP ?若存在,确定点P 的位置,若不存在,说明理由.2.(2023·全国·高二专题练习)如图1,在边长为2的菱形ABCD中,∠BAD=60°,DE⊥AB于点E,将△ADE沿DE折起到△A1DE的位置,使A1D⊥BE,如图2.(1)求证:A1E⊥平面BCDE;(2)在线段BD上是否存在点P,使平面A1EP⊥平面A1BD?若存在,求BPBD的值;若不存在,说明理由.3.(2023·全国·高二专题练习)如图,在正四棱柱ABCD-A1B1C1D1中,AA1=2AB=2,E,F分别为棱AA1,CC1的中点,G为棱DD1上的动点.(1)求证:B,E,D1,F四点共面;(2)是否存在点G,使得平面GEF⊥平面BEF?若存在,求出DG的长度;若不存在,说明理由.4.(2022春·高二单元测试)如图,在矩形ABCD 中,AB =1,BC =2,E 为边AD 上的动点,将△DCE 沿CE 折起,记折起后D 的位置为P ,且P 在平面ABCD 上的射影O 恰好落在折线CE 上.(1)设∠DCE =α,当α为何值时,△PBC 的面积最小?(2)当△PBC 的面积最小时,在线段BC 上是否存在一点F ,使平面PAF ⊥平面POF ,若存在求出BF 的长,若不存在,请说明理由.题型八线线角与动点问题1(2023秋·高二课时练习)如图,在正三棱柱ABC A 1B 1C 1中,所有的棱长均为2,M 是BC 边的中点,则在棱CC 1上是否存在点N ,使得AB 1与MN 所成的夹角为3π4?1.(2023·全国·高二专题练习)如图,在四棱锥P-ABCD中,PD⊥底面ABCD,底面ABCD是边长为2的正方形,PD=DC,F,G分别是PB,AD的中点.(1)求证:GF⊥平面PCB;(2)在AP上是否存在一点M,使得DM与PC所成角为60°?若存在,求出M点的位置,若不存在,请说明理由.2.(2023·全国·高二假期作业)已知直三棱柱ABC-A1B1C1中,侧面AA1B1B为正方形,AB=BC=2,且AB⊥BC,E,F分别为AC和CC1的中点,D为棱A1B1上的点.(1)证明:BF⊥DE;(2)在棱A1B1上是否存在一点M,使得异面直线MF与AC所成的角为30°?若存在,指出M的位置;若不存在,说明理由.3.(2022秋·辽宁大连·高二大连八中校考阶段练习)如图,C是以AB为直径的圆O上异于A,B的点,平面PAC⊥平面ABC,PA=PC=AC=2,BC=4,E,F分别是PC,PB的中点,记平面AEF与平面ABC的交线为直线l.(1)求证:直线l⊥平面PAC;(2)直线l上是否存在点Q,使直线PQ分别与平面AEF,直线EF所成的角互余?若存在,求出AQ的值;若不存在,请说明理由.题型九线面角与动点问题1(2023秋·广西南宁·高二南宁二中校考开学考试)图①是直角梯形ABCD,AB⎳CD,∠D=90°,四边形ABCE是边长为2的菱形,并且∠BCE=60°,以BE为折痕将△BCE折起,使点C到达C1的位置,且AC1 =6.(1)求证:平面BC1E⊥平面ABED;(2)在棱DC1上是否存在点P,使得点P到平面ABC1的距离为155?若存在,求出直线EP与平面ABC1所成角的正弦值;若不存在,请说明理由.1.(2023秋·高二单元测试)在直角梯形ABCD 中,AD ⎳BC ,BC =2AD =2AB =22,∠ABC =90°,如图①把△ABD 沿BD 翻折,使得平面ABD ⊥平面BCD (如图②).(1)求证:CD ⊥AB ;(2)若点M 为线段BC 的中点,求点M 到平面ACD 的距离;(3)在线段BC 上是否存在点N ,使得AN 与平面ACD 所成的角为60°?若存在,求出BNBC的值;若不存在,请说明理由.2.(2023·全国·高二专题练习)如图,在三棱柱ABC -A 1B 1C 1中,平面ABB 1A 1⊥平面ABC ,AB =BC =2,∠ABC =120°,BB 1=5,且A 1B ⊥AC ,E 是棱AA 1上的一点.(1)求证:A 1B ⊥B 1C 1;(2)是否存在点E ,使得直线CE 与平面BCC 1B 1所成角的正弦值为34256?若存在,求出A 1E EA的值;若不存在,说明理由.3.(2023·全国·高二专题练习)如图所示,等腰梯形ABCD 中,AB ⎳CD ,AD =AB =BC =2,CD =4,E 为CD 中点,AE 与BD 交于点O ,将△ADE 沿AE 折起,使点D 到达点P 的位置(P ∉平面ABCE ).(1)证明:平面POB ⊥平面ABCE ;(2)若PB =6,试判断线段PB 上是否存在一点Q (不含端点),使得直线PC 与平面AEQ 所成角的正弦值为155,若存在,求出PQ OB的值;若不存在,说明理由.4.(2023·全国·高二专题练习)如图,四棱台ABCD -A 1B 1C 1D 1中,上、下底面均是正方形,且侧面是全等的等腰梯形,AB =2A 1B 1=4,E 、F 分别为DC 、BC 的中点,上下底面中心的连线O 1O 垂直于上下底面,且O 1O 与侧棱所在直线所成的角为45°.(1)求证:BD 1∥平面C 1EF ;(2)线段BF 上是否存在点M ,使得直线A 1M 与平面C 1EF 所成的角的正弦值为32222,若存在,求出线段BM 的长;若不存在,请说明理由.5.(2023·全国·高二专题练习)在底面ABCD 为梯形的多面体中.AB ∥CD ,BC ⊥CD ,AB =2CD =22,∠CBD =45°,BC =AE =DE ,且四边形BDEN 为矩形.(1)求证:BD ⊥AE ;(2)线段EN 上是否存在点Q ,使得直线BE 与平面QAD 所成的角为60°?若不存在,请说明理由.若存在,确定点Q 的位置并加以证明.6.(2023·全国·高二专题练习)如图1,在△ABC 中,AB =AC =2,∠BAC =2π3,E 为BC 的中点,F 为AB 上一点,且EF ⊥AB .将△BEF 沿EF 翻折到△B EF 的位置,如图2.(1)当AB =2时,证明:平面B AE ⊥平面ABC ;(2)已知二面角B -EF -A 的大小为π4,棱AC 上是否存在点M ,使得直线B E 与平面B MF 所成角的正弦值为1010?若存在,确定M 的位置;若不存在,请说明理由.面面角与动点问题1(2023·全国·高二专题练习)如图,已知在三棱柱ABC-A1B1C1中,A1B=1,AA1=5,AB=BC=2,∠BAC=30°,平面ABB1A1⊥平面ABC.(1)求AA1与BC所成角的余弦值;(2)在棱AA1上是否存在一点E,使得二面角E-BC-B1的余弦值为-51326?若存在,求出AE AA1的值,若不存在,说明理由.1.(2022秋·高二单元测试)如图,在四棱锥P-ABCD中,PA⊥平面ABCD,AD⎳BC,AD⊥CD,且AD=CD=2,BC=22,PA=2.(1)取PC的中点N,求证:DN⎳平面PAB;(2)求直线AC与PD所成角的余弦值.(3)在线段PD上,是否存在一点M,使得平面MAC与平面ACD所成锐二面角的平面角为45°?如果存在,求出BM与平面MAC所成角的大小;如果不存在,请说明理由.2.(2023·全国·高二专题练习)如图所示,在三棱锥P -ABC 中,已知PA ⊥平面ABC ,平面PAB ⊥平面PBC .(1)证明:BC ⊥平面PAB ;(2)若PA =AB =6,BC =3,在线段PC 上(不含端点),是否存在点D ,使得二面角B -AD -C 的余弦值为105,若存在,确定点D 的位置;若不存在,说明理由.3.(2023·全国·高二专题练习)已知在直三棱柱ABC -A 1B 1C 1中,其中AA 1=2AC =4,AB =BC ,F 为BB 1的中点,点E 是CC 1上靠近C 1的四等分点,A 1F 与底面ABC 所成角的余弦值为22.(1)求证:平面AFC ⊥平面A 1EF ;(2)在线段A 1F 上是否存在一点N ,使得平面AFC 与平面NB 1C 1所成的锐二面角的余弦值为277,若存在,确定点N 的位置,若不存在,请说明理由.4.(2023秋·高二单元测试)如图,在三棱柱ABC-A1B1C1中,△AB1C为等边三角形,四边形AA1B1B为菱形,AC⊥BC,AC=4,BC=3.(1)求证:BC⊥平面ACB1;(2)线段CC1上是否存在一点E,使得平面AB1E与平面ABC的夹角的正弦值为154?若存在,求出点E的位置;若不存在,请说明理由.5.(2023·全国·高二专题练习)已知如图1直角梯形ABCD,AB∥CD,∠DAB=90°,AB=4,AD=CD=2,E为AB的中点,沿EC将梯形ABCD折起(如图2),使平面BED⊥平面AECD.(1)证明:BE⊥平面AECD;(2)在线段CD上是否存在点F,使得平面FAB与平面EBC所成的锐二面角的余弦值为23,若存在,求出点F的位置:若不存在,请说明理由.点面、线面距离与动点问题1(2023·全国·高二专题练习)如图,三棱锥P -ABC 的底面是以AC 为底边的等腰直角三角形,且AC =22,各侧棱长均为3.(1)求证:平面PAC ⊥平面ABC ;(2)若点E 为棱PA 的中点,线段CE 上是否存在一点Q ,使得Q 到平面PBC 的距离与Q 到直线AB 的距离之比为14?若存在,求出此时CQ 的长;若不存在,说明理由.1.(2023·全国·高二专题练习)如图,四棱锥P -ABCD 中,底面ABCD 是边长为2的正方形,PB ⊥BC ,PD ⊥CD ,且PA =2,E 为PD 的中点.(1)求证:PA ⊥平面ABCD ;(2)求PC 与平面ACE 所成角的正弦值;(3)在线段BC 上是否存在点F ,使得点E 到平面PAF 的距离为255若存在,确定点F 的位置;若不存在,请说明理由.2.(2023·全国·高二专题练习)已知四棱锥S-ABCD中,底面ABCD为矩形,SA⊥平面ABCD,AD=3AB=3SA=3,点E在棱BC上.(1)若E为BC的中点,求直线SE与平面SCD所成角的正弦值;(2)是否存在一点E,使得点A到平面SDE的距离为355若存在,求出BEEC的值;若不存在,说明理由.3.(2023·全国·高二专题练习)图1是直角梯形ABCD,AB∥CD,∠D=90°,四边形ABCE是边长为4的菱形,并且∠BCE=60°,以BE为折痕将△BCE折起,使点C到达C1的位置,且AC1=26,如图2.(1)求证:平面BC1E⊥平面ABED;(2)在棱DC1上是否存在点P,使得P到平面ABC1的距离为2155?若存在,求出直线EP与平面ABC1所成角的正弦值.4.(2022秋·辽宁鞍山·高二统考期中)如图在四棱锥P-ABCD中,侧面PAD⊥底面ABCD,侧棱PA=PD=2,底面ABCD为直角梯形,其中BC∥AD,AB⊥AD,AD=2AB=2BC=2,O为AD的中点.(1)求证:PO⊥平面ABCD;(2)求二面角C-PD-A的正弦值;(3)线段AD上是否存在Q,使得它到平面PCD的距离为32若存在,求出AQQD的值;若不存在,说明理由.5.(2023·全国·高二专题练习)如图在四棱锥P-ABCD中,侧面PAD⊥底面ABCD,侧棱PA=PD=22,底面ABCD为直角梯形,其中BC∥AD,AB⊥AD,AD=2AB=2BC=4,O为AD的中点.(1)求证:PO⊥平面ABCD;(2)求平面PCD与平面PAD夹角的正弦值;(3)线段AD上是否存在Q,使得它到平面PCD的距离为3?若存在,求出AQQD的值;若不存在,说明理由.点线、线线距离问题1(2023·全国·高二专题练习)已知直三棱柱ABC -A 1B 1C 1中,侧面AA 1B 1B 为正方形.AB =BC =2,E ,F 分别为AC 和CC 1的中点,BF ⊥A 1B 1.(1)求四棱锥E -BB 1C 1F 的体积;(2)是否存在点D 在直线A 1B 1上,使得异面直线BF ,DE 的距离为1?若存在,求出此时线段DE 的长;若不存在,请说明理由.1.(2023春·高二课时练习)如图,在四棱锥P -ABCD 中,底面四边形ABCD 为菱形,E 为棱PD 的中点,O 为边AB 的中点.(1)求证:AE ⎳平面POC ;(2)若侧面PAB ⊥底面ABCD ,且∠ABC =∠PAB =π3,AB =2PA =4;①求PD 与平面POC 所成的角;②在棱PD 上是否存在点F ,使点F 到直线OD 的距离为24221,若存在,求DFDP 的值;若不存在,说明理由.2.(2022秋·高二单元测试)如图所示,在直三棱柱ABC-A1B1C1中,侧面AA1C1C为长方形,AA1=1,AB=BC=2,∠ABC=120°,AM=CM.(1)求证:平面AA1C1C⊥平面C1MB;(2)求直线A1B和平面C1MB所成角的正弦值;(3)在线段A1B上是否存在一点T,使得点T到直线MC1的距离是13T的长,不存在说明3,若存在求A1理由.题型十三面积体积相关问题1(2023·全国·高二假期作业)如图,在△ABC中,O是BC的中点,AB=AC,AO=2OC=2.将△BAO 沿AO折起,使B点移至图中B'点位置.(1)求证:AO⊥平面B OC;(2)当三棱锥B -AOC的体积取最大时,求二面角A-B C-O的余弦值;(3)在(2)的条件下,试问在线段B A上是否存在一点P,使CP与平面B OA所成的角的正弦值为53证明你的结论,并求AP的长.1.(2018春·安徽滁州·高二开学考试)如图,三棱柱ABC-A1B1C1中,底面ABC为正三角形,AA1⊥底面ABC,且AA1=AB=3,D是BC的中点.(1)求证:A1B⎳平面ADC1;(2)求证:平面ADC1⊥平面DCC1;(3)在侧棱CC1上是否存在一点E,使得三棱锥C-ADE的体积是98?若存在,求出CE的长;若不存在,说明理由.2.(2022秋·高二课时练习)在空间直角坐标系中,已知A(3,0,1)和B(1,0,-3),试问:(1)在y轴上是否存在点M,满足MA?=MB(2)在y轴上是否存在点N,使△NAB为等边三角形?若存在,试求出点N的坐标.3.(2022·高二课时练习)如图:圆锥底面半径为1,高为3.(1)求圆锥内接圆柱(一底面在圆锥底面上,另一底面切于圆锥侧面)侧面积的最大值;(2)圆锥内接圆柱的表面积是否存在最大值?若存在,请求出最大值;若不存在,请说明理由.4.(2022秋·全国·高二期中)已知椭圆Γ:x 2a 2+y 2b 2=1(a >0,b >0)的左、右焦点分别为F 1(-1,0),F 2(1,0).经过点F 1且倾斜角为θ0<θ<π2的直线l 与椭圆Γ交于A ,B 两点(其中点A 在x 轴上方),△ABF 2的周长为8.(1)求椭圆Γ的标准方程;(2)如图,将平面xOy 沿x 轴折叠,使y 轴正半轴和x 轴所确定的半平面(平面AF 1F 2)与y 轴负半轴和x 轴所确定的半平面(平面BF 1F 2)互相垂直.①若θ=π3,求异面直线AF 1和BF 2所成角的余弦值;②是否存在θ0<θ<π2 ,使得折叠后△ABF 2的周长为152?若存在,求tan θ的值;若不存在,说明理由.三角形形状问题1(2021·高二单元测试)在直三棱柱ABC-A1B1C1中,|AC|=2,CB=4,M,N分别是C1B1,=CC1CB的中点,如图建立空间直角坐标系.(1)在四边形ABB1A1(包含边界)内找一点P,使△ABP为等边三角形.(2)在线段MN上是否存在一点Q,使△AQB是以AB为斜边的直角三角形?若存在,求出点Q的坐标;若不存在,请说明理由.1.(2023·全国·高二假期作业)如图,在四棱锥P-ABCD中,PA⊥平面ABCD,DE⊥平面ABCD,底面ABCD为矩形,点F在棱PD上,且P与E位于平面ABCD的两侧.(1)证明:CE∥平面PAB;(2)若PA=AD=5,AB=2,DE=3,试问在线段PD上是否存在点F,使得△ACF与△ACE的面积相等?若存在,求F到AD的距离;若不存在,说明理由.。
2022-2023学年人教A版数学高二上学期同步1-4-1-3 空间中直线、平面的垂直 教学设计
第一章 空间向量与立体几何1.4 空间向量的应用1.4.1 用空间向量研究直线、平面的位置关系1.4.1.3 空间中直线、平面的垂直一、教学目标1、理解并掌握空间中点、直线和平面的向量表示;2、理解空间中直线、平面的平行和垂直与空间向量的关联;3、正确理解法向量,熟练掌握法向量的求解,并逐步熟悉法向量的应用.4、通过空间向量的应用,培养求知探索精神,提高数学综合素养.二、教学重点、难点重点:空间中点、直线和平面的向量表示即关联.难点:熟练掌握法向量的求解,并逐步熟悉法向量的应用.三、学法与教学用具1、学法:学生在老师的引导下,通过阅读教材,自主学习、思考、交流、讨论和概括,从而完成本节课的教学目标.2、教学用具:多媒体设备等四、教学过程(一)创设情景,揭示课题【问题】既然空间中点、直线和平面可以用向量表示,是否可以利用空间向量解决直线、平面的垂直问题?(二)阅读精要,研讨新知【发现】3.空间中直线、平面的垂直12,u u ,则12120u u u u ⊥⇔=⋅空间中直线与平面的垂直u 是直线l 的方向向量,n 是平面α的法向量,则//,l u n R αλ⊥⇔∃∈使得u n λ=.空间中平面与平面的垂直设12,n n 分别是平面,αβ的法向量,则12120n n n n αβ⊥⇔⊥⇔=⋅.【例题研讨】阅读领悟课本32P 例4、例5(用时约为2分钟,教师作出准确的评析.) 例4如图1.4-14, 在平行六面体1111ABCD A B C D -中,11,AB AD AA ===01160A AB A AD BAD ∠=∠=∠=,求证:直线1AC ⊥平面11BDD B . 证明:设1,,AB a AD b AA c ===,则{,,}a b c 为空间的一个基底, 且0||||||1,,,,60a b c a b a c b c ===<>=<>=<>=,所以12a b a c b c ===⋅⋅⋅又11,,AC a b c BD b a BB c =+-=-= 在平面11BDD B 上,取1,BD BB 为基向量,则对于平面11BDD B 上任意一点P , 存在唯一的有序实数对(,)λμ,使得1BP BD BB λμ=+所以,11()AC BP AC BD BB AC BD AC BB λμλμ=+=+⋅⋅⋅⋅()()()0a b c b a a b c c λμ=+--++-=⋅⋅所以1AC 是平面11BDD B 的法向量 所以1A C ⊥平面11BDD B .例5证明“平面与平面垂直的判定定理”:若一个平面过另一个平面的垂线,则这两个平面垂直. 已知:如图1.4-15, ,l l αβ⊥⊂. 求证: αβ⊥.证明:取直线l 的方向向量u ,平面β的法向量n因为l α⊥,所以u 是平面α的法向量.因为l β⊂,而n 是平面β的法向量,所以u n ⊥ 所以αβ⊥.【小组互动】完成课本33P 练习1、2、3,同桌交换检查,老师答疑. 【练习答案】(三)探索与发现、思考与感悟1.如图,已知三棱柱111ABC A B C -的侧棱与底面垂直,11AB AC AA ===,AB AC ⊥,,M N 分别是1,CC BC 的中点,点P 在直线11A B 上.证明:PN AM ⊥.证明:如图,由已知1,,AB AC AA 两两垂直.以1,,AB AC AA 分别 作为,,x y z 轴正方向建立空间直角坐标系Axyz , 则111(0,0,0),(1,0,0),(0,1,0),(0,0,1),(1,0,1),(0,1,1)A B C A B C . ∵M 是1CC 的中点,N 是BC 的中点,∵111(0,1,),(,,0)222M N ,设111A P A B λ=,∵1(),0,P λ,则111(,,1),(0,1,)222A PN M λ=--=,则110022PN AM =+-=⋅,所以PN AM ⊥.2.如图,四棱锥P ABCD -中,PA ⊥底面ABCD ,AB AD ⊥,AC CD ⊥,060ABC ∠=,2PA AB BC ===,E 是PC 的中点.求证:(1)CD AE ⊥;(2)PD ⊥平面ABE . 证明:方法一(向量法):(1)如图,以A 为坐标原点,,,AB AD AP 所在直线分别为,,x y z 轴,建立空间直角坐标系Axyz .则2,0,0B,()3,0C,43D,()002P,,,13(2)E,()0,0,0A,()所以3()CD =-,12)3(AE =, 所以13310102CD AE ⋅=-⨯+⨯=,所以CD AE ⊥. (2)由(1)得43(0,,2)3PD =-,()2,0,0AB =,12)32(,AE =. 设向量(),,n x y z =是平面ABE 的法向量,则00n AB n AE ⎧⋅=⎨⋅=⎩,即201302x x y z =⎧⎪⎨+=⎪⎩, 取2y =,则(0,2,3)n =,所以23PD n =,所以//PD n , 所以PD ⊥平面ABE .方法二(几何法):(1)∵PA ⊥底面ABCD ,∵PA CD ⊥. 又AC CD ⊥,PAAC A =,∵CD ⊥平面PAC .∵AE ⊂平面PAC ,∵CD AE ⊥. (2)∵PA ⊥底面ABCD ,∵PA AB ⊥. 又AB AD ⊥,PAAD A =,∵AB ⊥平面PAD ,∵AB PD ⊥.由题可得2PA AC ==,由E 是PC 的中点,∵AE PC ⊥. 又CD AE ⊥,PCCD C =,∴AE ⊥平面PCD ,∴AE PD ⊥. ∵AB PD ⊥,AE PD ⊥,AB AE A =,∴PD ⊥平面ABE .3.如图,在直三棱柱111ABC A B C -中,1AB AC AB AC AA D ⊥==,,为BC 的中点. (1)证明:1//A B 平面1ADC ;(2)证明:平面1ADC ⊥平面11BB C C .证明:(1)在直三棱柱111ABC A B C -中,AB AC ⊥∴以1A 为原点,11A B 为x 轴,11A C 为y 轴,1A A 为z 轴,建立空间直角坐标系,设12AB AC AA ===,则111000),(2,0(,0),(0,2,0),A B C ,,002),(2,0,2),((0,2,2),A B C ,,)(112D ,,则1202A B =(,,),(110AD =,,),1022AC =(,,-), 设平面1ADC 的法向量是111(,,)n x y z =,则111110220n AD x y n AC y z ⎧⋅=+=⎪⎨⋅=-=⎪⎩,取11x =,得(1,1,1)n =--, 12020n A B ⋅=+-=,且1A B ⊄平面1ADC ,则1//A B 平面1ADC(2)1(1,1,0),(1,1,2)DC DC =-=--,设平面11BB C C 的一个法向量222(,,)m x y z =,则221222020m DC x y m DC x y z ⎧⋅=-+=⎪⎨⋅=-+-=⎪⎩,取21x =,得(1,1,0)m =, 又平面1ADC 的法向量(1,1,1)n =--,则1100n m ⋅=-+=,则n m ⊥ ∴平面1ADC ⊥平面11BB C C .(四)归纳小结,回顾重点12,u u ,则12120u u u u ⊥⇔=⋅空间中直线与平面的垂直u 是直线l 的方向向量,n 是平面α的法向量,则//,l u n R αλ⊥⇔∃∈使得u n λ=.空间中平面与平面的垂直设12,n n 分别是平面,αβ的法向量,则12120n n n n αβ⊥⇔⊥⇔=⋅.(五)作业布置,精炼双基P习题1.4 5、8、111.完成课本412.预习课本1.4.2 用空间向量研究距离、夹角问题五、教学反思:(课后补充,教学相长)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
⊥
分析:由定义可知,只需证l与平面内任意直线g 垂直。
l
要证l与g垂直,只需证 l·g = 0
r g l mr
n
n ur ur mg
而 m , n 不平行,由共面向量 定理知,存在唯一的有序实数 对(x, y), 使得 g =x m + y n
要证 l·g = 0, 只需 l ·g = xl ·m + y l ·n = 0
B
AC • AB (AB AD AA)•(AB AA) 0
又因为AB BD=B
所以AC 平面ABD
课堂小结:
• 1.会用平面内不共线的两向量表示同一平面 内其它向量;
• 2.结合空间向量基本定理合理选择基底表示 空间的向量;
• 3.利用向量解决垂直问题关键是利用数量积 为零来判断。
课外作业:
• 见活页综合检测(16)
B'
uuur uuur uuur BD AB AD
uuur uuur uuur
AB AB AA
C
uuur uuur uuur uuur uuur uuur uuur 所以AC • BD (AB AD AA)•(AB AD) 0
uuur uuur uuur uuur uuur uuuur uuur
|a||b|
2)数量积满足的运算律
1) (a) b (a b)
2) a b b a (交换律)
3)a (b c) a b a c (分配律)
注意: 数量积不满足结合律,即(a b) c a (b c)
例1:已知m, n是平面内的两条相交直线,直
线 l 与的交点为B,且l ⊥m ,l ⊥n,求证:l
ur r r r p xa yb zc
二、数量积的性质
rr
1)数量r积r性质r 对r于r非零向量 a , b ,有:
(1) a e=|a|cos a,e
r r rr
(2) a b a b=0
r rr
--证明向量垂直的依据
(3) |a|2 =ar ar (4) cos a,b
r -r-求向量的长度(模)的依据 = ar br --求向量夹角的依据
而 l·m = 0 ,l·n = 0
故 l·g = 0
例2:已知:在空间四边形OABC中,OA⊥BC,
OB⊥AC, 求证:OC⊥OAB
证明:由已知 OA BC,OB AC 所以 OA BC 0 , OB AC 0
OA (OC OB) 0
OB (OC OA) 0
A
C 所以 OA OC OA OB
uuuur MN
1(uAuCur
uuur uuur AD-AB)
2
uuur MN
uuur AB=
1
uuur (AB
uuur uuur AC+AB
uAuDur-uAuBur 2
)
2
D
=
1(1 22
a2
+
1 2
a2
-
a2)=0
MN AB 同理, MN CD
例3 在平行六面体ABCD ABCD中,底面是菱形,AAB AAD BAD 60o。
B
OB OC OB OA
所以 OAOC OB OC 0
(OA OB) OC 0
BAOC 0 所以 OC AB
变式训练(一)
(1)已知空间四边形ABCD 的每条边和对角线的长都等于
a ,点 M、N 分别是边 AB、CD 的中点。
求证:MN AB , MN CD 。
M B
A
N C
(1)求证:AA BD;
(2)当AC
平面ABD时,求
AB AA
的值。
D' A'
C' B'
D
C
A
B
变式训练(二) (2)已知在平行六面体ABCD-ABCD中,有AA=AB=AD,
且AAD=AAB=BAD=,求证:AC 平面ABD。
D' A' D A
C'
uuur uuur uuur uuur
证明:AC AB AD AA
利用空间向量解决立体几何中的垂直问题
rr
1.共面向量定理:如果两个向量 a , b不共线,则向量
与向量
ur
r a
,
brr共面r的充要条件是存在实数对x,y,使
ur p
Pp xa yb
b, c不共面,那么对空间任一向量 p ,存
在一个唯一的有序实数对x、y、z,使